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Introduction

The aim of this paper is to give a coherent and detailed ex-
position of the Bloch-Beilinson results concerning the lea-
ding coefficient at zero of the L-function associated to an
elliptic curve over @ with complex multiplication. Accord-
ing to the conjectures as formulated by Beilinson this value
should be equal up to a rational factor to the determinant of

a regulator map between certain K-groups and Deligne cohomolo-

gy -

In contrast to the approach given by Bloch in [3] lect. 8,9
where he uses a definition of the regulator based upon rela-
tive cycles we start from Beilinson's definition as expounded
in [2] . There he derives an expression for the regulator of
an elliptic curve as a linear combination of Eisenstein-
Kronecker-Lerch series. In order to complete his argument one
has to refer to Bloch's computation of the L-series given in
[3] lect. 9. ' ’

It seems to us however that Bloch considers only those ellip-
tic curves with complex multiplication by 0 where the
period lattice with respect to a real differential is genera-

ted as an 0O-module by a real period.

Without this assumption a construction of his involving N-

torsion points on the elliptic curve for a natural number N
has to be generalized using v-torsion poinﬁs with v € 0 .
We also note that the root of unity in Bloch's final result

can be discarded.

We would like to thank M. Rapoport and A. Scholl for helpful

explanations.



§1 A formula for the regulator of curves

An analytic space Uan over IR can be given by a pair

(Uan(G),Fw) consisting of a complex analytic space Uan(¢)

and an antiholomorphic involution F_ on Uan(Q) . A sheaf

F on U is then a sheaf F on U__(C) together with a
an c an

morphism o©: F;Fc - FC such that 0¢F¥o = id . In other
words the pair (Fm,o) is an involution on (Uan(G),FG) .
For a Q-sheaf one has essentially by definition

(F,,0)

o .
UgnrF) = HO(U, (©),F @) the (F_,0)-fixmodule

ut(

of the analytic sheaf cohomology Hl(Uan(C),F ) . See [6] 2.1.

We will be concerned with sheaves F = A(n),Q% given by
an
F¢ = A(n),Qg () together with the usual complex conjuga-
an
tion. Here Q « A< € is a subgroup and A(n) = (2Wi)nA .

1

Uan

ferential form ® on U_ (€) such that F*w = 0 . We call

w a real holomorphic form.

For example an element of Ho(Uan,Q ) is given by a dif-

Let X denote a smooth complete curve over IR (i.e. a smooth,
complete, geometrically irreducible, one-dimensional R -
scheme) . Consider a closed nonempty subscheme P < X , P # X
and let U = XNP . Then U carries the structures of a

smooth affine R -scheme and that of an analytic space Uan

over IR given by Usn = (u(e),F) . Here U(C) 1is the mani-
fold of complex points of U and F_ is induced by complex
conjugation. From [6.] (2.12) we know that

H) (U, R (1)) = 0eH® (U, 0 /R (1) |deer ' (U) )

F

; <pP>) = Ho(x(c),sz1 <P(C)>)

an X(C)
consists of the real meromorphic forms on X(C) which are

1 _ .0
where F (U) = H (Xan,Q

holomorphic on U(C) and have at most first order poles on
P(C) . We need another description of this group. Clearly
€ = Re ¢ 1is a well defined real valued F_-invariant c®-

function on U(C) (i.e. an element of Cw(Uan,I{)) which



is integrable on X(C) as it has only logarithmic poles.

Moreover

23 = 3@ = do is integrable as well and

according to the generalized Cauchy integral formula ([7] 0.1)

one has the equation of currents on X(C):

g
(1.1) — 990e = X o8 ’
mi XEP (C) X X
where éx is the Dirac distribution at the point x and
o, = ResX(dw) is real and such that aFw(x) =a . We set
(1.1.1) div € = div(29¢g) = div(dy) = T a X .
XEP (CT)

Clearly div € € RI[P]®=(group of divisors of degree O on P)®R .

On the other hand a function € on Uan with the above
properties gives rise to an element ¢ in H;(U,Ii(1)) such
that € = Re ¢ and hence we have [6] 2.17 ii

1 _ o 1 1 =
77(1.2) HD(U,]R(1))—{€€C (Uan,IR)I€€L (U(c)),ﬁaae-xeg(m)axéx

and o= I ax€ R [P]°} .
XEP (C)
In the following we will use this description of Deligne coho-

mology.

The divisor mapping induces an exact (Gysin-) sequence

(1.3) 0 - R - H;(U,IR(H) div R (p1° >0 .

Exactness in the middle follows from Weyl's lemma: any
distributiéon solution to the homogenous Poisson equation is
a harmonic function on X(C) hence a constant.

As F2 of H1 of curves is zero we have by [2](1.6)or[612.16.

2 o 1
Hy(U,R (2)) = H (U ,R (1)) < H (U, ,C) .

n




Describing the latter group by closed fm—invariant ¢ 1-forms

on U(C) modulo exact - forms the cup product

2.1 u .2
A HD(U,IR (1)) > HD(U,IR (2))

is given by the formula € U g' = 2(€ﬂ1(3€') - €'ﬂ1(3€)).
Here P C » R (1) is the canonical projection (see [2]
(1.2.5) and [6] 3.12).

Let Fl(U(C)) = HO(X(G),Q;(¢)<P(¢)>) be the F'-term of the
Hodge filtration on H (U(C),C) . We have [5]
1 (x(C),0)=(F (U(C)) N H'(X(C),)) & (F (U(EC)) N H (X(C),T))

and since GrgH1(U(¢),¢) is purely of type (1,1)

1 (U(e),e) = Fl(u(C)) + H (X(C),0) = F (U(€)) + H (X(C),C)
It follows that the canonical inclusions induce an isomor-
phism

(1.4)  H(X(C),0) & (F (U(@) N F (U(E)) 3 B (U(©),0)
Taking the fixed modules under fw we obtain the decomposi-

tion

1

1 1 1
(1.5) H (Uan,(E) = H (Xa ,C) & (F (U) nF (U))

n
which finally gives

1
(1.6) H (U,

A 1 1
,R (1))=H (xa ,R (1)) (H (Uan,]R(1)) n rF (U))

n n
Let pry be the projection onto H1(Xan,It(1)) associated
with the decomposition (1.6) . Putting everything together
we find a map [']D making the following diagram with exact
columnes commute 0

U

1 1 1 1
IR@HD(U,IR (1)) & HD(U,IR (1))®IR — H (Uan,]R (1))nF (U)

201 (U, R (1)) Y 5w JR(;n—H‘(U R (1))
(1.7) A HplU, > Hp ¥y - an’
l r%div . pry
A
2 o D 2 ]
AR [P] > HD(X,IR (2))=H (Xan,IR (1))

| |

0 ’ 0]



Using as an intermediate the Deligne cohomology of non-com-
plete curves and its cup product structure we have thus
associated to every pair of cycles on P an element in
H%(X,I{(Z)). An analogous construction for the absolute coho-

mology will be described later.

In order to identify the element prD(QUe') in HS(X,I{(Z))

we introduce the pairing

(1.8) <€m> =5 [ Eanm

defined for C° 1-forms g,n on X(C). Representing cohomo-

logy classes by closed forms we get an isomorphism

(1.9) g (xan,m_(n) S Hom(F'(X),R) ,

F
where F1(X) = HO(X(¢),Q1) . A simple calculation based on

Stokes's formula gives the following result ([2] (4.2)).

(1.10) Lemma Let o,B € ]R[P]o and choose €7 €

such that div €y, =. O div ¢

]
B€HD(U,1R(1))

= B . Then for any real holo-

B

morphic form w € F1(X) we have

1 1 =
> <w,[a,Bl> = 5=~ e (de,) A w .
2 D 2mi X (C) o R

Observe that the integral exists since T%T log |z| is inte-
grable.



§2 A weakened version of the Beilinson conjecture for

elliptic curves

For an elliptic curve X/Q defined over Q let L(X,s) =

= L(H1(X),s) be its L-series converging for Re s>% . It is
conjectured that L(X,s) has an analytic continuation to the
whole s-plane and that it satisfies a functional equation of
the form

(2.1) A(X,s) = wh(X,2-s)

where A(X,s) = Ns/z(Zﬂ)—SF(s)L(X,s) with w = *1 and NEN
denoting the conductor of X/Q . This is proved if X 1is a
modular curve and (in particular) if it has complex multipli-
cation. Assuming (2.1) the L-function has a first order zero

at s=0 and its leading coefficient is given by

L' (x,0) = N L(x,2) .
(2m)
2 R . A
On the other hand HD(XE{,H{(Z)) = H (Xan,ﬂz(1)) is one-di

mensional and we have a regulator map

2 2
rp: Hy(Xy ,@(2)) » Hy(Xp R (2)) .

Here Hi(Xy ,0(2)) is the image of K,(X)®Q in HA (X,0(2))
where X denotes a proper flat regular model of X over Z.
According to [2] 2.4.2 the group Hi(xzz’Q(z)) is well de-

fined. Bloch and Beilinson conjecture that ri)®IR is an iso-

morphism and that
_ 1 . 2
Im ry = L'(X,0)-H (Xan,Q(1)) in HD(XﬂRﬁm(z))'

Clearly this determines L'(X,0) up to a rational multiple.
As it is not even known if KZ(X) is finitely generated we

consider the following weaker version of the conjecture.

(2.2) Conjecture Let X/Q be an elliptic curve. Then there
. 2 1 ’

exist VY € HA(XZ:,Q(Z)) and 0+9% € H (Xan,Q(1)) such that

N

2
47
Observe that for modular elliptic curves this is equivalent to

rp(¥) = L(X,2)0 in H%(xm,m(z)) i
rD(W) = L'(X,0)% .

In the rest of this paper we give the proof of the following

result due to Bloch and Beilinson:



(2.3) Theorem Let X/Q

multiplication by the ring of integers (0 in an imaginary

be an elliptic curve with complex

quadratic extension K/@ . Then conjecture (2.2) holds true.

Using the pairing (1.8) we obtain a commutative diagram

H'(x,,0010) < mon (x__,0),0 = H (X__,0)

1 1 Integration
1 <,>

H'(X__,TR (1)) » Hom(F' (X ),R) .

As H1(Xan’Q) =<X(ﬂl)o) we find that (2.3) is equivalent to

€ F1(X

(2.4) There exist ¢ € Hi(xzz,Q(Z)) and wQ Hi) such
that J weQ® and <wgrrp(¥)> = L'(X,0) mod " .

X(IR)
Later the element rv(w) will have the form rv(w) = [a,B]D

for cycles «a,B GZR[P]O and hence we have to calculate the
integral in (1.10) for elliptic curves. This is dealt with in

the next section.



§3 Calculating <w,[a,8]b> for elliptic curves over R

In this section X denotes an elliptic curve over IR . Let

P c X be a finite closed subscheme of X and set U = X\P .
We choose a real holomorphic differential w € F1(X) such
that

(3.1) wA®=1.

L
2m X (@)
Its period lattice T < € 1is invariant under complex conju-

gation T =T . The analytic isomorphism
J: X(C) 5 ¢/T
X
X » fw mod T

o
is Gal(C/IR )-invariant. It identifies (X(G),w,Fw) with

(¢/T,dz,-) where - denotes complex conjugation. In parti-
cular 7 = % fdzadz = Vol(€/T) = Vol(I)

c/T
The pairing (,):C/T @ T » U(1) < C*

(z,y) = exp(z? - vz)
identifies (€/I' and T as Pontrjagin duals of each other.

For o € I{[P]o we construct g € H;(U,I2(1)) with
div €, = & as follows (compare (1.2)):
Define fu: ' €C by setting

~—:l§— bx ax(x,y) for vy *# 0 , fa(O) =0
21yl XEP (T)

and let fa be its Fourier transform in the sense of distri-

fa(Y)

butions.

Consider the series

— 1
€ (z) = T f (y)(z,y) =-5 ZI' = . for z€U(T)
a ver ¢ 2 vyer lv|?
XEP (CT)

which is given a sense by Eisenstein or Kronecker summation
(c £. [14]). The dash indicates ommission of Yy = O in the

sum. The function ea(z) has logarithmic singularities as z



approaches the point x € P(C) and hence it is integrable on
X(€C) . It can be shown that as distributions €y = %u .
Differentiating in the sense of currents we get

1= 1 -
—933€ = — —— X! o, (x-z,v)dzadz
Ti o 2mi YET X
XEP (T)
= X o, I (z-x,Y)du
XEP (C) “yE€r
where duy = = dzadz is the normalized Haar measure on c/T.

2m
Hére we have changed 7y into -y and used that o € R[P]°

It is well known that

z (z-x,y)du = ¢

YET X

and hence %% 30e. = X axﬁx . By Weyl's lemma €, is
. X€EP(C) - ’
harmonic on U(C) and in particular €, € C (Uan,Iz). Hence

1 ; -
aa~€ HD(U,I{(1)) and div €y = O -
We can now use lemma (1.710) to calculate <w,[a,B]D>
1 1 ‘

5 <w,[o,Bly> = 5—= [ (e 3e,) A w
2 D 2mi X (C) o B
e
= [ (e -ﬁ)du
C/T o 0Z
/\
368
= ea Y4 (0)
—
_ 838
=& * 37 ©

where € 1is the Fouriertransform of ¢ , i.e. &(y) is the
Y'th Fouriercoefficient of € , and where * denotes convo-
lution on T . Using Fourier-inversion in the sense of distri-
butions we find that

~

€a(v) = f (y) = £,(-Y) and

[0
1
F<w,[a,Bl,> = T £ _(-y)vYEf,(Y)
2 D YET o B
= - X £ (Y)YE,(-Y).
ver & B

For a completely rigorous arqument see [17].



In conclusion we obtain

(3.2) Lemma Let X be an elliptic curve over IR and let
w € F1(X) be normalized by (3.1). For o,B € I{[P]O we have

1 7
<w,[a,Bly> = -5 z! ca B (y-x,v) .
2 4
D ver |yt XY
X,YEP (C)

In addition weobserve the following consequence of (3.2):

(3.3) Remark Assume that P(C) is a subgroup of X(C€) and

consider the cycle a = =(|P(C)|-1)+0 + X x € z [P]°
X€EP (CT)
x#*0

Then for any B € R [P]1° we have the formula

<w,la,8]p> =1BB L wv g Yo qy,y)
YET |y
YEP (CT)
Proof: We have -~ z a. B (y=x,y) = - Z a_B (2,y)
X ,yEP (C) XY X,z X Xtz
= x(- To B, ) (z,7)
z X
and - zoLx6x+z = e Bz - r OLx8x+z
X x#0

Il

(IP(©)1-1)8, - = B,

+
x*0 z

IP (@) 18, - ZB,,,
X

[l

IP(T) 18,

since B has degree zero.

In the next section we will approach the conjectured equality

in (2.4) from the point of view of L-series.



-

§4 Relations between the L-function of an elliptic curve over

Q with complex multiplication and Eisenstein-Kronecker-

Lerch series

In this section we consider an elliptic curve X defined over
@ with complex multiplication by the ring of integers (0 in
an imaginary quadratic field K . Observe that K has class
number one since the values of the j-invariant of its ideal
classes are in the field of definition of X i.e. in @ . We
consider K as a subfield of € such that the Hecke

character ¢ of XK = Xfot has the form

(4.1) Y((a)) = x(a)a

on ideals (o) prime to the conductor (f) of ¢ ; here ¥
factors
x: (0/(£))* - u, = ¢*

Then (f) 1is the conductor of ¥ as well and as usual we set
x(a) = 0 for o0€0 with (o,(£f)) 1.

Since X is defined over @ we have U((a)) = Y((3a)) for
all o€0 [8] Th. 10.1.3 and hence (F) =(f) and X(a) = x(3).
In the following we choose a fixed generator f € 0 of the
conductor (f) . Clearly f = e¢f for some ¢ € Mg -

Let 6: 0 5 End(X(C)) = End(XK) be a normalized isomorphism
i.e. 6(a)*n =on for all a €0 and n € HO(X(G),Q1) . We
choose w € F1(XHQ as in (3.1) and let T c C denote its
period lattice. Via 6 the analytic isomorphism J: X(C)S3¢/T
considered earlier is O-invariant thus we may further identi-
fy X(€) with /T . '

As K has class number one there is an { € C€* wunique up to

an element of My such that as subsets of €
r =Q0.,

If Q = [ w denotes the real period of w there is a
R x(mw°
number h €0 such that Qp=Qh . As T =T we have

(h) = (h) for the 0-ideal (h) , and setting

11



(4.2) v = ffh we have (V) = (v) as well,

By descent theory there is a closed subscheme P of X

/9

such that E’XQK.= v(XK) the group scheme of v-torsion points

on Xy . Concerning h we refer to a conjecture of Gross [9]§5.

According to Deuring we have

(4.3)  L(X,s) = L(y,s) = I viz)
' (e, £)=1 Na
e O
|ugl o€l |a| S
a,f)=1

In order to get rid of the restriction (a,f) =1 we intro-

duce Gauss-sums. Define a perfect pairing
(4.4) <,>: 0/v x 0/v » U(1) < C*

by setting <a,b> =(%e1,9b) where (,): €/T®l - U(1) is the

duality pairing introduced in §3. Observe that gaa € VX(C)
and Qb € T/Vvl because of (4.2). v
Explicitly <a,b> = exp (Ile(éP-—~)) and thus
<a,bc> = <ac,b> for a,b,c € 0/v .
on 0/f we get a perfect pairing
< >gt 0/f x g/f - U((1)
by d?fining <a,b>f = <a,bg> = (§ a,Nb) where we have set
g = fh such that v = fg .
The Gauss sum for ¥ is then given by
G(x,x) = X x(y)<y,x>¢ for x € 0/f
yeO/£
It has the following properties:
(4.5) Lemma
i) lcx, | = |£]
ii) x (o) = 8E§'?; for all o € 0 .
iii) G(x,1) = € G(x,1) where ¢ € Hg was defined

by f = ef .



fh

iv) For g = , Vv = fg we have
0 if x
L x(z)<z,x> =
2€0/v 99 G(x,2) if x
~ g
Proof: For the standard properties i)

to [11]1 22, §1.

13

F Omod g

O mod g

and 1ii) we refer

111) G0 = = y» Ey,0
vel/£ £
- Q -
= X x(y) (Z ey,9)
ye0/f f
= I x(y)<ey,1>;
y€eo/f
_1 -
= x(¢€) G(x,1) =€ G(x,1)
iv) Observe that
0O if fx ¥ O mod Vv
> <y',fx> =
1 -
y'€0/g gg if fx = O mod v .
Hence decomposing z € 0/v as z =y + fy' with
y € 0/f and y' € 0/g we get
b2 x(z)<z,x> = X X (y) <y, x> z <y',fx>
z€0/v y€O/£f yv'€0/qg
- , O if x # O mod g
=99 I x(y)<y,X>{ if x =
yeO/£ 1 if x = O mod g
We can now return to the L-series and to (4.3).
ii) 1 : . &
L(Xls) = IuK G(Xl1) Z'G(XIC(») 53
A o€l | o]
iv) 1 : : o
= — z z x (2)<z,ga>
|uglG(x,1)gg €0 z€0/v Ialzs
2s-2 —
= Igl _ 'z x(z)<z,ga> g >3
|uK|G(x,1)g €0 z€0/v lga|
iv) 2s5-2 -
= lg] — T’ T x(z)<z,a> —9—75—
|uK|G(X,1)g 0€0 z€0/v lo]
According to (4.5) i), iii) the number G(x,1)/f is real

of absolute value equal to one, hence



! |2S—2 |Q|28 -
L(X,s) = + d — — ' X X(z)<z,%> Y 55
IuK|fg Q YET z€0/v [y |
2s-2 2s : =
(4.6) - el T BT s s L
i 1£12 g ver xep (@) v]

where we have used that fgfi = ffhQ = fo]R and where for
x € P(C) = X(€) we have set

- - 2 2
(4.7) x(x) = X(Xx). Observe that since Y= lﬁi—ihl——

Q Q QIK
is real we have ¥X(x) = x(i) for all x € P(Q)
From I = 20 it follows that |a]|?/]d | = 2 vol(r) = 2.

Specializing to s = 2 in (4.6) and using that by the

functional equation
N

L' (X,0) = + —— L(X,2)
4T
where N 1is the conductor of X/Q we get
[v] 7
L' (X,0) = # —— I' I yx) ) —L— .
|uK||f| Qp YET x€P(C) [y ]
Here we have also taken into account that N=IdK|ff (c £.
[8] 10.3.2). Since IP(C)] = lv|2 and since g, operates on
I' we get
(4.8) ' (x,0 = x —3— B s Geoxn Ty
£]%0g gl  yer xep(€) Ly |

This is already rather close to the formula in (3.3). Observe

that the theory developed in §3 applies to Xp PR -

Let o € Z [P/Q]O be the cycle defined by
a = =(lP(€)I-1)-0 + X x
xX€EP (CT)
x*0
and consider the cycle
B= I B(X(x)x) € = [P(@)]°

X€EP (C) /Uy

where for 2z € P(C) we have set

14



15

B(z) = -0 +z € m[P(C)1° .
F
Since B~ = I (F,, (X (x)x))
XEP (C) /1y ’
= = B (X (x)Xx)
XEP(C) /u
K
= I B(x(x)x) = B (use x(X)=x(x) by (4.7))
XEP (C) /uy
we have that B € ZZ[P]R]o and thus (3.3) applies
(4.9) <u,lo,8lp = O w0 5 Geox,y) X
K! ver xep(c) | v |
Here we have used that ! —l—z = 0 since -~T =T .
YET |[vy]
A comparison of (4.8) and (4.9) shows that
<w,la,Bl > =+L|£]%0_ L' (x,0)
1% BlpT SI3 R ’
N '
since N = ldK|ff . In conclusion:

(4.170) Theorem Let X be an elliptic curve over @ with

complex multiplication by the ring of integers 0 in an
imaginary quadratic field K with discriminant dK . De-
termine v € 0 as in (4.2) and let P be the Q-subscheme
of X such that PxQK = vXK . Consider the following cycles
on X with support in P .

a=-(|P(@)]|-1)-0+ = x€ ZZ[P/Q]O
X€EP (C)
x*0
B = I B(x(x)x) € z [P ,0]1°
XEP(G)/UK
where for 2z € P(C) we have set B(z) = -0+z€Z [P(C)]O and
X 1s defined by (4.1) and (4.7) . Denote by wQ€F1(XIz)
the real differential such that f owQ = 1 . Then we have
X(R)

A _ N '
<wQ’[Q’B]D> = iW L (XIO)
where N is the conductor of X/Q .



Proof: We have shown everything except the rationality of 8.
As we have already seen that B 1is real it suffices to show
that B is defined over K . For any O € Gal(K(vX(C))/K)
there is an a € (O/\))*/uK such that the action of ¢ on

X€ X (C) = %F/P is given by x° = a-1x(a)x=a_1i(a—1)x . Hence

89 = — Bxx)x)% = — ga 5@ % (x)x)
x€P(¢)/uK XEP(G)/UK
= — B(x(a 'x) (@ 'x)) = B .
x€P(¢)/uK

Clearly the equivalent version (2.4) of theorem (2.3) will
follow from this result once we have established that [a,B]D
rv(w) for some Y € Hi(xz ,0(2)) . This is done in the next

section.

Remarks (a) A closer look at the root numbers in the func-
tional equation for the L-series of Hecke characters reveals
that w = G(x,1)/f and therefore the sign in the final for-
mula of (4.10) is in fact +1.

(b) One of the authors (C.D.) has extended (4.10) to the
case of L-series for certain Hecke characters of ima¢inary
quadratic fields at all negative integers. This is done in
the context of the Beilinson conjectures f£6r motives with

coefficients in a number field [16] , [17].

16
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§5 The absolute cohomology

In order to prove that [u,B]D lies in the image of the regu-
lator map
2 2
rp: HA(X,Q(Z)) - HD(XIR,IR (2))

we use the following theorem.

Let X/k be a smooth, projective curve over a field k and
let P c X be a finite closed subscheme over k with open
complement U = X\P“j» X . By Z[P] and Z [P]1° we denote
the group of divisors on X with support in P and its sub-
group of divisors of degree zero respectively. Tensoring with
Q@ we obtain @[P] and Q[P]o .

(5.1) Theorem Let k be a number field contained in R . If

the image of %z [P1° in the Jacobian of X 4is a torsion
group, then there exists a pairing

[,1, : A%QIP1° » Hj(X,0(2))
such that the following diagram commutes

(/]
12orp1° A L H (x,0(2))

X
D
F,;;\\\\\\\\\$ l

2 ,
Hy (Xp +R (2)) .

We prepare the proof of this theorem by the following lemma.

Let k' be a_finiteAgalQis extens;on of “k and write P',U‘,
X' for the base changes of P,U,X with k'/k . Assume that “
all points of P' are k'-rational and let ¢: U' -» U denote

the canonical covering.

(5.2) Lemma If the elements of % [P1° are of finite order

in the Jacobian of X then we have
H2 (U,0(2)) = Ha(X,0(2)) + 0,{0%(U") ,k'*} @ @
HZ (Spec k,Q(2)) = Hy(X,0(2)) N 0, {0%(U") ,k'*} & @ .

Here {0*(U'),k'*} is the subgroup of Hi(U',Q(Z)) c
K,(k'(X')) ® @ generated by the symbols {f,a}l with
f € 0*(U') and a € k'*.



Proof: The Gysin sequence for absolute cohomology ([12]1Th.8,9)
H(P,0(1)) - H3(X,0(2)) 5 Hi(U,0(2)) » Hy(P,0(1))

shows that j* is injective: Writing P = || Spec ki we get

HA(P (1)) = o K(1)(k ) , but as K, (k ) is generated by

symbols we have K, (k ) ® @ = K(z)(k ) ([12]1 Th. 2) and

hence HA(P (1)) = O

In the commutative and exact diagram

0~ HZ(X,0(2)) -~ H;(U,Q(2)) -~ coker j* >0

| |

0 - Hj(X',0(2)) - Hi(U',Q(Z)) Q[P']o®k'*CH1(P',Q(1))

{Li///////w -div @ id

0% (U')@k'*®Q

tame
_9

the image of the tame symbol coincides with o[rP'1° ® k' *
since div ® id is surjective by our assumption.

On the other hand the relation ¢,9* = [k':k] implies that
the map ¢, in the diagram is surjective and hence induces a
surjection 0[P'1° ® k'* - coker j* . This proves the first
assertion of (5.2).

The sequence
o *'0*(X‘)®k'*®Q -» 0*(U')®k'*®Q - div 0*(U')®kf*®Q‘» 0

being exact we obtain a commutative and exact diagram

0 » {0%(x') ,k'*}8Q » {0%(U') ,k'*}80 *Z® m) (p',0(1))

, , ) |
0 - Hy (X',Q(2)) - Hy(U',0(2)) - Hy(®',0(1))
Observing that O0*(X') = k'* and that Hi(Spec k',0(2)) =

Kz(k') ® @ 1is generated by symbols we find

Hy (Spec k',0(2)) = {0%(x'),k'*}@Q=H" (X',@(2))N{0*(U") k' *}8Q

18
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Applying the surjective map ¢, gives the second assertion
of (5.2) since ¢*¢, corresponds to taking Gal(k'/k)-in-

variants and ¢* is injective.

Proof of (5.1): Since k 1is assumed to be a number field

the group Hi(Spec k,D(2)) = K2(k) ® 0 is zero. Let pr,
denote the projection of Hi(U,Q(2)) onto Hi(X,Q(Z)) asso-
ciated with the decomposition in (5.2). Since k <« IR we can

use (1.6) to obtain an exact diagram

w*{ojfU'),k'* 1 S ——— > H' (U, R (1) nF (Ug)
HS (U,0(2)) i 2 R (2))=H 1 R (1))
atlsQ »  Hy(Up ,R (2))=H (U_,

j*] 1prA j*J lprv

2 rD 2 1
HA(X,Q(Z)) _» HD(XI{,Iz(z))=H (Xan’na(1))

which commutes because rDj* = j*rv and because
r; (0, {0*(U') ,k'*} ® @) 1is contained in F1(UIQ) . Indeed,

consider the commutative diagram

ch
HR(U',0(2)) 22 WO (U, R (2) > F (U()

E |

2 5 p 2 R (2 1 )
Hy(U,0(2)) ——— Hp(Up ,R(2)) > F' (Ug) .

. 1 1 o1 1
Since H (Uan,nz(1)) nr (UIQ) = H (Uan,I{(1)) nrFr (UC)) we
have to show that

ch, ,(9*0,{0%(U") ,k'*}) cF' (U(D)).

But ch2 2 is a ring homomorphism ([2] 2.3.1) and using that
7 -

V¥, = z o we get
c€Gal (k'/k)

ch (p*p,{f,a}) = X ch {fc,ao} = Z(longOIUlogIaOi)
2,2 * S 12,2 -

= -3 logla®1d logl£%l € F' (U(C))
o)



for all f € 0*(U') and a € k'* ., In conclusion we have

established that Prperp = Ypo pry

The identity @,0* = [k':k] implies that for £ € 0*(U) ,

a € k¥ we have [k':kl{f,a} = o, {o*(f),p*(a)} and hence that
0*(U) ® k* ® @ < @, {0*(U"),k"*} ® @ .

Hence there is a map [’]A completing the diagram

120% ) 8 ) — B2 (u,0(2))

2.
I ATdiv J Pr 4

12orp1° LA, w2x,002))

Observe that Ker div = 0*(X) = k* and that because of
{£,-f} = 1 the symbol becomes an alternating function on
(0*(U)8Q)®(0*(U)®Q) . For £f,g € 0*¥(U) we now obtain

rD[div f, div g]A = errA{f,g} = prDrD{f,g}
prD(loglfl U loglgl)
[div(loglfl),div(loglgl) ], by (1.7).

But accdording to (1.1.1) we have
div(logl£l) = div(23loglfl) = div(SE) = z Res (F)x = div £

and hence the proof of theorem (5.1) is complete.

Now let X be again an elliptic curve over @ . It remains
to prove that for the divisors o,8 of theorem (4.10) the
element 2[oc,B]A € Hi(X,Q(2)) belongs to the "integral" sub-
space HA(.XZZ y@(2)). In fact the following stronger result
holds true:

(5.3) Lemma Let X be an elliptic curve over @ with

potential good reduction at all finite places. Then

2 2
HY (X, ,0(2)) = HY(X,0(2)) .



Proof: Let X be the regular minimal model of X over Spec(Z ).

By assumption it has either good or additive reduction
Xp at the primes p of % . According to the localization

exact sequence

)
K2(X) -~ KZ(X) - © K.] (Xp)
p
it will be sufficient to show that K%(XP)QQ = 0 for all p .
If Y is a smooth proper curve over a finite field F it
follows immediately from the localization sequence

® «(y)* K, (Y) » K, (F(Y)) div o g

Y Y
that K1(Y) is torsion. Here y runs over the closed points
of Y and « denotes the residue field.
We may thus assume that X is singular and also reduced be-

cause Kg(xp) = Kﬁ(Xged). By the Kodaira-Néron classification

X;ed is the disjoint union of a copy of Eﬂ with copies of
Al (open in X;ed). Using the exact sequence
red

ah) - kY Lok @)

K! (X
X5 1%p

1

and the fact that K1(A1) ® @ = O one is reduced to K1(ZlP1

But this group is torsion as well whence Ki(xp) @ Q=20.

) .

Remark: Bloch and Grayson [4] considered modular elliptic

curves X without complex multiplication. With the aid of a
computer program they found in this case as well rational re-
lations between the value at two of the L-function of X and

special values of Kronecker-Eisenstein-Lerch series.

These relations have the form

C L(C,2) + )3 caM(x,oc) =0 , ca,c € Z

0Lex((mtor.,

where M(X,o0) = (Im T)2 r (a,v) ‘?—IZ
YET |yl

& A




(a,Y) = exp A_1(oc§—av) and I''=Z @ ZT cCcC

is the period lattice of a real differential having volume
Vol (') = mA .

For example the curve

y2 + xy +y = x3 - x2 - 3x + 7

has a point of order 7 and the computer suggests the only

reglations
26 L(X,2) + 28 M(X,5) + 28 M(X,—z—) =0
5 M(X,3) + 10 M(X,3) + 8 M(X,3) =0 .

This points towards
rank K2(X) = 2 (>11)

which is surprising at first glance. But X has multi-
plicative reduction at 2 (and good reduction at all other
primes) . Considering the localization sequence and observing
that K%(Xp) has rank 1 if the reduction Xp is of multi-

plicative type then implies
rank K, (Xz) =1

as it should be by Beilinson's conjecture (Actually these
computations had led to a revision of the original con-
jectures by taking into account the integral model) . For
further results on Hi(XZS’Q(Z)) of elliptic curves we
refer to_ [10], [13].
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