On the Beilinson conjectures for elliptic curves with complex multiplication Christopher Deninger and Kay Wingberg

Introduction

The aim of this paper is to give a coherent and detailed exposition of the Bloch-Beilinson results concerning the leading coefficient at zero of the L-function associated to an elliptic curve over $\mathbb Q$ with complex multiplication. According to the conjectures as formulated by Beilinson this value should be equal up to a rational factor to the determinant of a regulator map between certain K-groups and Deligne cohomology.

In contrast to the approach given by Bloch in [3] lect. 8,9 where he uses a definition of the regulator based upon relative cycles we start from Beilinson's definition as expounded in [2]. There he derives an expression for the regulator of an elliptic curve as a linear combination of Eisenstein-Kronecker-Lerch series. In order to complete his argument one has to refer to Bloch's computation of the L-series given in [3] lect. 9.

It seems to us however that Bloch considers only those elliptic curves with complex multiplication by θ where the period lattice with respect to a real differential is generated as an θ -module by a real period.

Without this assumption a construction of his involving N-torsion points on the elliptic curve for a natural number N has to be generalized using v-torsion points with $\nu\in \mathcal{O}$. We also note that the root of unity in Bloch's final result can be discarded.

We would like to thank M. Rapoport and A. Scholl for helpful explanations.

§1 A formula for the regulator of curves

An analytic space U_{an} over $\mathbb R$ can be given by a pair $(U_{an}(\mathbb C),F_{\infty})$ consisting of a complex analytic space $U_{an}(\mathbb C)$ and an antiholomorphic involution F_{∞} on $U_{an}(\mathbb C)$. A sheaf F on U_{an} is then a sheaf $F_{\mathbb C}$ on $U_{an}(\mathbb C)$ together with a morphism $\sigma\colon F_{\infty}^{*F}_{\mathbb C}\to F_{\mathbb C}$ such that $\sigma\circ F_{\infty}^{*\sigma}=\operatorname{id}$. In other words the pair (F_{∞},σ) is an involution on $(U_{an}(\mathbb C),F_{\mathbb C})$. For a $\mathbb Q$ -sheaf one has essentially by definition

$$H^{i}(U_{an},F) = H^{i}(U_{an}(C),F_{C})$$
 (F_{\infty},\sigma) the (F_{\infty},\sigma)-fixmodule

of the analytic sheaf cohomology $\operatorname{H}^{i}(\operatorname{U}_{an}(\mathbb{C}), F_{\mathbb{C}})$. See [6] 2.1. We will be concerned with sheaves $F = \operatorname{A}(n)$, $\Omega_{\operatorname{U}}^{p}$ given by $F_{\mathbb{C}} = \operatorname{A}(n)$, $\Omega_{\operatorname{U}_{an}}^{p}(\mathbb{C})$ together with the usual complex conjugation. Here $\mathbb{Q} \subset \operatorname{A} \subset \mathbb{C}$ is a subgroup and $\operatorname{A}(n) = (2\pi i)^{n}\operatorname{A}$. For example an element of $\operatorname{H}^{o}(\operatorname{U}_{an}, \Omega_{\operatorname{U}_{an}}^{1})$ is given by a differential form ω on $\operatorname{U}_{an}(\mathbb{C})$ such that $F_{\infty}^{*}\omega = \overline{\omega}$. We call ω a real holomorphic form.

Let X denote a smooth complete curve over \mathbb{R} (i.e. a smooth, complete, geometrically irreducible, one-dimensional \mathbb{R} - scheme). Consider a closed nonempty subscheme $P \subset X$, $P \neq X$ and let $U = X \setminus P$. Then U carries the structures of a smooth affine \mathbb{R} -scheme and that of an analytic space U_{an} over \mathbb{R} given by $U_{an} = (U(\mathbb{C}), F_{\infty})$. Here $U(\mathbb{C})$ is the manifold of complex points of U and F_{∞} is induced by complex conjugation. From [6.] (2.12) we know that

$$\begin{array}{lll} & \operatorname{H}^1_{\mathcal D}(U,\mathbb R\ (1)) = \{\phi \in \operatorname{H}^O(U_{\operatorname{an}}, \mathcal O_{U_{\operatorname{an}}}/\mathbb R\ (1)) \,|\, \mathrm{d}\phi \in \operatorname{F}^1(U) \} \\ & \text{where } & \operatorname{F}^1(U) = \operatorname{H}^O(X_{\operatorname{an}}, \Omega^1_{X_{\operatorname{an}}} < P>) = \operatorname{H}^O(X(\mathbb C)\,, \Omega^1_{X(\mathbb C)} < P(\mathbb C)>) \\ & \text{consists of the real meromorphic forms on } X(\mathbb C) & \text{which are holomorphic on } U(\mathbb C) & \text{and have at most first order poles on } P(\mathbb C) & \text{. We need another description of this group. Clearly } \\ & \epsilon = \operatorname{Re} \ \phi & \text{is a well defined real valued } \operatorname{F}_\infty\text{-invariant } \operatorname{C}^\infty\text{-} \\ & \text{function on } U(\mathbb C) & \text{(i.e. an element of } \operatorname{C}^\infty(U_{\operatorname{an}},\mathbb R\)) & \text{which} \\ & \end{array}$$

is integrable on $X(\mathbb{C})$ as it has only logarithmic poles. Moreover

 $2\partial \varepsilon = \partial \phi = d\phi$ is integrable as well and

according to the generalized Cauchy integral formula ([7] 0.1) one has the equation of currents on $X(\mathbb{C})$:

(1.1)
$$\frac{1}{\pi i} \, \overline{\partial} \, \partial \, \varepsilon = \sum_{\mathbf{x} \in \mathbf{P}(\mathbf{C})} \alpha_{\mathbf{x}} \delta_{\mathbf{x}}$$

where $\delta_{\mathbf{x}}$ is the Dirac distribution at the point \mathbf{x} and $\alpha_{\mathbf{x}} = \operatorname{Res}_{\mathbf{x}}(\mathrm{d}\phi)$ is real and such that $\alpha_{\mathbf{F}_{m}}(\mathbf{x}) = \alpha_{\mathbf{x}}$. We set

(1.1.1) div
$$\varepsilon = \text{div}(2\partial \varepsilon) = \text{div}(\text{d}\phi) = \sum_{\mathbf{x} \in P(\mathbb{C})} \alpha_{\mathbf{x}} \cdot \mathbf{x}$$
.

Clearly div $\epsilon \in \mathbb{R}[P]^{O}=(group\ of\ divisors\ of\ degree\ O\ on\ P)\otimes\mathbb{R}$.

On the other hand a function ε on U with the above properties gives rise to an element ϕ in $H^1_{\mathcal{D}}(U,\mathbb{R}(1))$ such that $\varepsilon=\mathrm{Re}\ \phi$ and hence we have [6] 2.17 ii

$$(1.2) \ \ H_{\mathcal{D}}^{1}(\mathtt{U},\mathtt{R}(\mathtt{1})) = \{ \varepsilon \in \mathtt{C}^{\infty}(\mathtt{U}_{\mathtt{an}},\mathtt{R}) \mid \varepsilon \in \mathtt{L}^{1}(\mathtt{U}(\mathtt{C})), \frac{1}{\pi \mathtt{i}} \overline{\eth} \vartheta \varepsilon = \sum_{\mathbf{x} \in \mathtt{P}(\mathtt{C})} \alpha_{\mathbf{x}} \delta_{\mathbf{x}}$$

and
$$\alpha = \sum_{\mathbf{x} \in P(\mathbb{C})} \alpha_{\mathbf{x}} \mathbf{x} \in \mathbb{R}[P]^{O}$$
.

In the following we will use this description of Deligne cohomology.

The divisor mapping induces an exact (Gysin-) sequence

$$(1.3) \longrightarrow \mathbb{R} \to H_0^1(\mathbb{U},\mathbb{R}(1)) \stackrel{\text{div}}{\to} \mathbb{R}[\mathbb{P}]^0 \to 0.$$

Exactness in the middle follows from Weyl's lemma: any distribution solution to the homogenous Poisson equation is a harmonic function on $X(\mathbb{C})$ hence a constant.

As F^2 of H^1 of curves is zero we have by [2](1.6)or[6]2.16.

$$\mathrm{H}^2_{\mathcal{D}}(\mathtt{U},\mathtt{I\!R}\;(2)) \;=\; \mathrm{H}^1\left(\mathtt{U}_{\mathrm{an}},\mathtt{I\!R}\;(1)\right) \;\subset\; \mathrm{H}^1\left(\mathtt{U}_{\mathrm{an}},\mathtt{C}\right) \;\;.$$

Describing the latter group by closed \bar{F}_{∞} -invariant C^{∞} 1-forms on U(C) modulo exact forms the cup product

$$\Lambda^2 H^1_{\mathcal{D}}(\mathbb{U},\mathbb{R}\ (1)) \stackrel{\mathsf{U}}{\to} H^2_{\mathcal{D}}(\mathbb{U},\mathbb{R}\ (2))$$

is given by the formula ε U $\varepsilon' = 2(\varepsilon\pi_1(\partial\varepsilon') - \varepsilon'\pi_1(\partial\varepsilon))$. Here $\pi_1: \mathbb{C} \to \mathbb{R}$ (1) is the canonical projection (see [2] (1.2.5) and [6] 3.12).

Let $F^1(U(\mathfrak{C})) = H^0(X(\mathfrak{C}), \Omega_{X(\mathfrak{C})}^1 < P(\mathfrak{C})^>)$ be the F^1 -term of the Hodge filtration on $H^1(U(\mathfrak{C}), \mathfrak{C})$. We have [5] $H^1(X(\mathfrak{C}), \mathfrak{C}) = (F^1(U(\mathfrak{C})) \cap H^1(X(\mathfrak{C}), \mathfrak{C})) \oplus (F^1(U(\mathfrak{C})) \cap H^1(X(\mathfrak{C}), \mathfrak{C}))$ and since $Gr_2^W H^1(U(\mathfrak{C}), \mathfrak{C})$ is purely of type (1,1) $H^1(U(\mathfrak{C}), \mathfrak{C}) = F^1(U(\mathfrak{C})) + H^1(X(\mathfrak{C}), \mathfrak{C}) = \overline{F^1(U(\mathfrak{C}))} + H^1(X(\mathfrak{C}), \mathfrak{C})$. It follows that the canonical inclusions induce an isomorphism

(1.4) $H^1(X(\mathbb{C}),\mathbb{C}) \oplus (F^1(U(\mathbb{C})) \cap \overline{F^1(U(\mathbb{C}))}) \stackrel{\sim}{\to} H^1(U(\mathbb{C}),\mathbb{C})$. Taking the fixed modules under \overline{F}_{∞} we obtain the decomposition

(1.5)
$$H^{1}(U_{an}, \mathbb{C}) = H^{1}(X_{an}, \mathbb{C}) \oplus (F^{1}(U) \cap \overline{F^{1}(U)})$$

which finally gives

(1.6) $H^1(U_{an},\mathbb{R}(1))=H^1(X_{an},\mathbb{R}(1))\oplus (H^1(U_{an},\mathbb{R}(1))\cap F^1(U))$. Let $\operatorname{pr}_{\mathcal{D}}$ be the projection onto $H^1(X_{an},\mathbb{R}(1))$ associated with the decomposition (1.6). Putting everything together we find a map $[,]_{\mathcal{D}}$ making the following diagram with exact columnes commute

 Using as an intermediate the Deligne cohomology of non-complete curves and its cup product structure we have thus associated to every pair of cycles on P an element in $H^2_{\mathcal{D}}(X,\mathbb{R}\ (2))$. An analogous construction for the absolute cohomology will be described later.

In order to identify the element $pr_{\mathcal{D}}(\varepsilon U \varepsilon')$ in $H^2_{\mathcal{D}}(X, \mathbb{R}(2))$ we introduce the pairing

$$\langle \xi, \eta \rangle = \frac{1}{2\pi i} \int_{X(\mathfrak{C})} \xi \wedge \eta$$

defined for C^{∞} 1-forms ξ , η on $X(\mathbb{C})$. Representing cohomology classes by closed forms we get an isomorphism

(1.9)
$$H^{1}(X_{an}, \mathbb{R}(1)) \stackrel{\sim}{\to} Hom(F^{1}(X), \mathbb{R}) ,$$

where $F^1(X) = H^0(X(\mathbb{C}), \Omega^1)^{\overline{F}_\infty}$. A simple calculation based on Stokes's formula gives the following result ([2] (4.2)).

(1.10) Lemma Let $\alpha, \beta \in \mathbb{R}[P]^{O}$ and choose $\epsilon_{\alpha}, \epsilon_{\beta} \in H^{1}_{\mathcal{D}}(U, \mathbb{R}(1))$ such that div $\epsilon_{\alpha} = \alpha$, div $\epsilon_{\beta} = \beta$. Then for any real holomorphic form $\omega \in F^{1}(X)$ we have

$$\frac{1}{2} < \omega, [\alpha, \beta]_{\mathcal{D}} > = \frac{1}{2\pi i} \int_{X(\mathfrak{C})} \varepsilon_{\alpha}(\overline{\partial} \varepsilon_{\beta}) \wedge \omega$$
.

Observe that the integral exists since $\frac{1}{|z|} \log |z|$ is integrable.

§2 A weakened version of the Beilinson conjecture for elliptic curves

For an elliptic curve $X_{/\mathbb{Q}}$ defined over \mathbb{Q} let $L(X,s) = L(H^1(X),s)$ be its L-series converging for $Re \ s>\frac{3}{2}$. It is conjectured that L(X,s) has an analytic continuation to the whole s-plane and that it satisfies a functional equation of the form

$$\Lambda(X,s) = w\Lambda(X,2-s)$$

where $\Lambda(X,s) = N^{s/2}(2\pi)^{-s}\Gamma(s)L(X,s)$ with $w = \pm 1$ and $N \in \mathbb{N}$ denoting the conductor of $X_{/\mathbb{Q}}$. This is proved if X is a modular curve and (in particular) if it has complex multiplication. Assuming (2.1) the L-function has a first order zero at s = 0 and its leading coefficient is given by

$$L'(X,0) = \frac{wN}{(2\pi)^2} L(X,2)$$
.

On the other hand $H_{\mathcal{D}}^2(X_{\mathbb{R}},\mathbb{R}(2)) = H^1(X_{\mathbb{R}},\mathbb{R}(1))$ is one-dimensional and we have a regulator map

$$r_{\mathcal{D}}: H_{A}^{2}(X_{\mathbb{Z}}, \mathbb{Q}(2)) \rightarrow H_{\mathcal{D}}^{2}(X_{\mathbb{IR}}, \mathbb{R}(2))$$
.

Here $H_A^2(X_{\mathbb{Z}},\mathbb{Q}(2))$ is the image of $K_2(X)\otimes\mathbb{Q}$ in $H_A^2(X,\mathbb{Q}(2))$ where X denotes a proper flat regular model of X over \mathbb{Z} . According to [2] 2.4.2 the group $H_A^2(X_{\mathbb{Z}},\mathbb{Q}(2))$ is well defined. Bloch and Beilinson conjecture that $r_0\otimes\mathbb{R}$ is an isomorphism and that

Im
$$r_{\mathcal{D}} = L'(X,0) \cdot H^{1}(X_{an},Q(1))$$
 in $H^{2}_{\mathcal{D}}(X_{\mathbb{IR}},\mathbb{R}(2))$.

Clearly this determines L'(X,0) up to a rational multiple. As it is not even known if $K_2(X)$ is finitely generated we consider the following weaker version of the conjecture.

 $\frac{(2.2) \text{ Conjecture}}{\text{exist}} \xrightarrow{\Psi \in H^2_A(X_{\mathbb{Z}}, \mathbb{Q}(2))} \text{ and } 0 \neq \Phi \in H^1(X_{\text{an}}, \mathbb{Q}(1)) \text{ such that}$

$$r_{\mathcal{D}}(\Psi) = \frac{N}{4\pi^2} L(X,2) \Phi \text{ in } H_{\mathcal{D}}^2(X_{\mathbb{R}}, \mathbb{R}(2))$$
.

Observe that for modular elliptic curves this is equivalent to

$$r_{\mathcal{D}}(\Psi) = L'(X,0)\Phi$$
.

In the rest of this paper we give the proof of the following result due to Bloch and Beilinson:

(2.3) Theorem Let X/\mathbb{Q} be an elliptic curve with complex multiplication by the ring of integers θ in an imaginary quadratic extension K/\mathbb{Q} . Then conjecture (2.2) holds true.

Using the pairing (1.8) we obtain a commutative diagram

$$H^{1}(X_{an}, \mathbb{Q}(1)) \xrightarrow{<,>} Hom(H^{1}(X_{an}, \mathbb{Q}), \mathbb{Q}) \cong H_{1}(X_{an}, \mathbb{Q})$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

As $H_1(X_{an}, \mathbb{Q}) = \langle X(\mathbb{R})^{\circ} \rangle$ we find that (2.3) is equivalent to

that
$$\int\limits_{X(\mathbb{IR})}^{\omega} \omega \in \mathbb{Q}^{x} \text{ and } <\omega_{\mathbb{Q}}, r_{\mathcal{D}}(\psi)> \equiv L^{1}(X,0) \mod \mathbb{Q}^{x}.$$

Later the element $r_{\mathcal{D}}(\psi)$ will have the form $r_{\mathcal{D}}(\psi) = [\alpha, \beta]_{\mathcal{D}}$ for cycles $\alpha, \beta \in \mathbb{R}[P]^{O}$ and hence we have to calculate the integral in (1.10) for elliptic curves. This is dealt with in the next section.

In this section X denotes an elliptic curve over $\mathbb R$. Let $P\subset X$ be a finite closed subscheme of X and set $U=X\backslash P$. We choose a real holomorphic differential $\omega\in F^1(X)$ such that

$$\frac{i}{2\pi} \int_{X(\mathbb{C})} \omega \wedge \overline{\omega} = 1 .$$

Its period lattice $\Gamma \subset \mathbb{C}$ is invariant under complex conjugation $\overline{\Gamma} = \Gamma$. The analytic isomorphism

J:
$$X(\mathbb{C}) \stackrel{\sim}{\to} \mathbb{C}/\Gamma$$

$$x \mapsto \int_{\Omega} \omega \mod \Gamma$$

The pairing (,): $\mathbb{C}/\Gamma \otimes \Gamma \to \mathbb{U}(1) \subset \mathbb{C}^*$ (z, γ) = $\exp(z\overline{\gamma} - \gamma\overline{z})$

identifies C/Γ and Γ as Pontrjagin duals of each other.

For $\alpha \in \mathbb{R}[P]^O$ we construct $\varepsilon_{\alpha} \in H_{\mathcal{D}}^1(\mathbb{U},\mathbb{R}(1))$ with div $\varepsilon_{\alpha} = \alpha$ as follows (compare (1.2)): Define $f_{\alpha} \colon \Gamma \to \mathbb{C}$ by setting

$$f_{\alpha}(\gamma) = \frac{-1}{2|\gamma|^2} \sum_{x \in P(\mathbb{C})} \alpha_x(x,\gamma)$$
 for $\gamma \neq 0$, $f_{\alpha}(0) = 0$

and let $\hat{\mathbf{f}}_{\alpha}$ be its Fourier transform in the sense of distributions.

Consider the series

$$\varepsilon_{\alpha}(z) = \sum_{\gamma \in \Gamma} f_{\alpha}(\gamma) (\overline{z, \gamma}) = -\frac{1}{2} \sum_{\substack{\gamma \in \Gamma \\ x \in P(\mathbb{C})}} \frac{\alpha_{x}(x-z, \gamma)}{|\gamma|^{2}} \text{ for } z \in U(\mathbb{C})$$

which is given a sense by Eisenstein or Kronecker summation (c f. [14]). The dash indicates ommission of $\gamma=0$ in the sum. The function $\epsilon_{\alpha}(z)$ has logarithmic singularities as z

approaches the point $x \in P(\mathbb{C})$ and hence it is integrable on $X(\mathbb{C})$. It can be shown that as distributions $\epsilon_{\alpha} = \hat{f}_{\alpha}$. Differentiating in the sense of currents we get

$$\frac{1}{\pi i} \overline{\partial} \partial \varepsilon_{\alpha} = -\frac{1}{2\pi i} \sum_{\substack{\gamma \in \Gamma \\ \chi \in P(\mathfrak{C})}}^{\Sigma'} \alpha_{\chi} (x-z,\gamma) dz \wedge d\overline{z}$$

$$= \sum_{\chi \in P(\mathfrak{C})}^{\Sigma} \alpha_{\chi} \sum_{\gamma \in \Gamma}^{\Sigma} (z-x,\gamma) d\mu$$

where $d\mu=\frac{i}{2\pi}\;dz\wedge d\overline{z}$ is the normalized Haar measure on C/T. Here we have changed $\;\gamma$ into $-\gamma\;$ and used that $\;\alpha\in {\rm I\!R}\left[P\right]^O$. It is well known that

$$\sum_{\gamma \in \Gamma} (z-x,\gamma) d\mu = \delta_x$$

and hence $\frac{1}{\pi \, \mathrm{i}} \, \overline{\partial} \, \partial \, \varepsilon_{\alpha} = \sum_{\mathbf{x} \in \mathrm{P}(\mathbb{C})} \alpha_{\mathbf{x}} \, \delta_{\mathbf{x}}$. By Weyl's lemma ε_{α} is harmonic on $\mathrm{U}(\mathbb{C})$ and in particular $\varepsilon_{\alpha} \in \mathrm{C}^{\infty}(\mathrm{U}_{\mathrm{an}},\mathbb{R})$. Hence $\varepsilon_{\alpha} \in \mathrm{H}^{1}_{\mathcal{D}}(\mathrm{U},\mathbb{R}\,(1))$ and div $\varepsilon_{\alpha} = \alpha$. We can now use lemma (1.10) to calculate $<\omega$, $[\alpha,\beta]_{\mathcal{D}}>$

$$\frac{1}{2} < \omega, [\alpha, \beta]_{\mathcal{D}} > = \frac{1}{2\pi i} \int_{X(\mathbb{C})} (\varepsilon_{\alpha} \overline{\partial} \varepsilon_{\beta}) \wedge \omega$$

$$= \int_{\mathbb{C}/\Gamma} (\varepsilon_{\alpha} \frac{\partial \varepsilon_{\beta}}{\partial \overline{z}}) d\mu$$

$$= \varepsilon_{\alpha} \cdot \frac{\partial \varepsilon_{\beta}}{\partial \overline{z}} (0)$$

$$= \widehat{\varepsilon}_{\alpha} * \frac{\partial \varepsilon_{\beta}}{\partial \overline{z}} (0)$$

where $\hat{\epsilon}$ is the Fouriertransform of ϵ , i.e. $\hat{\epsilon}(\gamma)$ is the γ 'th Fouriercoefficient of ϵ , and where * denotes convolution on Γ . Using Fourier-inversion in the sense of distributions we find that

$$\dot{\hat{\epsilon}}_{\alpha}(\gamma) = \hat{\hat{f}}_{\alpha}(\gamma) = f_{\alpha}(-\gamma) \text{ and}$$

$$\frac{\partial \hat{\epsilon}_{\beta}}{\partial z}(\gamma) = \widehat{\gamma}\hat{f}_{\beta} = -\gamma f_{\beta}(-\gamma) . \text{ Thus}$$

$$\frac{1}{2} \langle \omega, [\alpha, \beta]_{\mathcal{D}} \rangle = \sum_{\gamma \in \Gamma} f_{\alpha}(-\gamma) \gamma f_{\beta}(\gamma)$$

$$= -\sum_{\gamma \in \Gamma} f_{\alpha}(\overline{\gamma}) \overline{\gamma} f_{\beta}(-\overline{\gamma}).$$

For a completely rigorous argument see [17].

In conclusion we obtain

(3.2) Lemma Let X be an elliptic curve over \mathbb{R} and let $\omega \in F^1(X)$ be normalized by (3.1). For $\alpha, \beta \in \mathbb{R}[P]^O$ we have

$$\langle \omega, [\alpha, \beta]_{p} \rangle = -\frac{1}{2} \sum_{\substack{\gamma \in \Gamma \\ x, y \in P(\mathbb{C})}} \frac{\overline{\gamma}}{|\gamma|^{4}} \cdot \alpha_{x} \beta_{y} (y-x, \gamma) .$$

In addition we observe the following consequence of (3.2):

(3.3) Remark Assume that P(C) is a subgroup of X(C) and consider the cycle $\alpha = -(|P(C)|-1) \cdot O + \sum_{x \in P(C)} x \in \mathbb{Z}[P]^O$

Then for any $\beta \in \mathbb{R}[P]^O$ we have the formula

$$\langle \omega, [\alpha, \beta]_{p} \rangle = \frac{\lceil P(\mathfrak{C}) \rceil}{2} \sum_{\substack{\gamma \in \Gamma \\ \gamma \in P(\mathfrak{C})}} \beta_{\gamma} \frac{\overline{\gamma}}{|\gamma|^{4}} (\gamma, \gamma).$$

Proof: We have
$$-\sum_{x,y\in P(\mathbb{C})} \alpha_x \beta_y (y-x,\gamma) = -\sum_{x,z} \alpha_x \beta_{x+z} (z,\gamma)$$

$$= \sum_{z} (-\sum_{x} \alpha_x \beta_{x+z}) (z,\gamma)$$

and
$$-\sum_{\mathbf{x}} \alpha_{\mathbf{x}} \beta_{\mathbf{x}+\mathbf{z}} = -\alpha_{\mathbf{0}} \beta_{\mathbf{z}} - \sum_{\mathbf{x} \neq \mathbf{0}} \alpha_{\mathbf{x}} \beta_{\mathbf{x}+\mathbf{z}}$$

$$= (|P(\mathbb{C})| - 1) \beta_{\mathbf{z}} - \sum_{\mathbf{x} \neq \mathbf{0}} \beta_{\mathbf{x}+\mathbf{z}}$$

$$= |P(\mathbb{C})| \beta_{\mathbf{z}} - \sum_{\mathbf{x}} \beta_{\mathbf{x}+\mathbf{z}}$$

$$= |P(\mathbb{C})| \beta_{\mathbf{z}}$$

since β has degree zero.

In the next section we will approach the conjectured equality in (2.4) from the point of view of L-series.

§4 Relations between the L-function of an elliptic curve over

© with complex multiplication and Eisenstein-KroneckerLerch series

In this section we consider an elliptic curve X defined over $\mathbb Q$ with complex multiplication by the ring of integers 0 in an imaginary quadratic field K . Observe that K has class number one since the values of the j-invariant of its ideal classes are in the field of definition of X i.e. in $\mathbb Q$. We consider K as a subfield of $\mathbb C$ such that the Hecke character ψ of $X_K=X\times_{\mathbb Q} K$ has the form

$$\psi((\alpha)) = \chi(\alpha)\overline{\alpha}$$

on ideals (α) prime to the conductor (f) of ψ ; here χ factors

$$\chi \colon \ (\textit{0}/(\texttt{f})) \, ^* \, \rightarrow \, \mu_{\textrm{K}} \, \subset \, \mathbb{C}^*$$
 .

Then (f) is the conductor of χ as well and as usual we set $\chi(\alpha) = 0 \quad \text{for} \quad \alpha \in \emptyset \quad \text{with} \quad (\alpha_*(f)) \neq 1.$

Since X is defined over \mathbb{Q} we have $\overline{\psi}((\alpha)) = \psi((\overline{\alpha}))$ for all $\alpha \in \mathcal{O}$ [8] Th. 10.1.3 and hence $(\overline{f}) = (f)$ and $\overline{\chi}(\alpha) = \chi(\overline{\alpha})$. In the following we choose a fixed generator $f \in \mathcal{O}$ of the conductor (f). Clearly $\overline{f} = \epsilon f$ for some $\epsilon \in \mu_K$.

Let $\theta\colon 0\ \widetilde{\to}\ \mathrm{End}(\mathrm{X}(\mathfrak{C}))\ \widetilde{=}\ \mathrm{End}(\mathrm{X}_K)$ be a normalized isomorphism i.e. $\theta(\alpha)*\eta=\alpha\eta$ for all $\alpha\in 0$ and $\eta\in \operatorname{H}^0(\mathrm{X}(\mathfrak{C}),\Omega^1)$. We choose $\omega\in \mathrm{F}^1(\mathrm{X}_{IR})$ as in (3.1) and let $\Gamma\subset \mathfrak{C}$ denote its period lattice. Via θ the analytic isomorphism J: $\mathrm{X}(\mathfrak{C})\widetilde{\to}\mathfrak{C}/\Gamma$ considered earlier is 0-invariant thus we may further identify $\mathrm{X}(\mathfrak{C})$ with \mathfrak{C}/Γ .

As K has class number one there is an Ω € C* unique up to an element of μ_K such that as subsets of C

$$\Gamma = \Omega O$$

If $\Omega_{\rm IR}=\int\limits_{X({\rm IR})}\omega$ denotes the real period of ω there is a number $h\in \mathcal{O}$ such that $\Omega_{\rm IR}=\Omega h$. As $\overline{\Gamma}=\Gamma$ we have $(\overline{h})=(h)$ for the ∂ -ideal (h), and setting

(4.2)
$$v = f\overline{f}h$$
 we have $(\overline{v}) = (v)$ as well.

By descent theory there is a closed subscheme P of $X_{/\Omega}$ such that $P \times_0 K = V(X_K)$ the group scheme of v-torsion points on X_{K} . Concerning h we refer to a conjecture of Gross [9] \S 5.

According to Deuring we have

(4.3)
$$L(X,s) = L(\psi,s) = \sum_{(\alpha,f)=1}^{\infty} \frac{\psi(\alpha)}{N\alpha^{S}}$$
$$= \frac{1}{|\mu_{K}|} \sum_{\substack{\alpha \in \mathcal{O} \\ (\alpha,f)=1}} \frac{\chi(\alpha)\overline{\alpha}}{|\alpha|^{2S}}$$

In order to get rid of the restriction $(\alpha, f) = 1$ we introduce Gauss-sums. Define a perfect pairing

$$(4.4) \qquad <,> : 0/v \times 0/v \rightarrow U(1) \subset \mathbb{C}^*$$

by setting $\langle a,b \rangle = (\frac{\Omega}{V} a,\Omega b)$ where (,): $\mathbb{C}/\Gamma \otimes \Gamma \to U(1)$ is the duality pairing introduced in §3. Observe that $\frac{\Omega}{\pi}$ a $\in {}_{V}X(\mathbb{C})$ and $\Omega b \in \Gamma/\nu\Gamma$ because of (4.2). Explicitly <a,b> = exp $(|\Omega|^2(\frac{a\overline{b}}{\overline{\nu}}-\frac{\overline{a}b}{\nu}))$ and thus

 $\langle a,bc \rangle = \langle ac,b \rangle$ for $a,b,c \in 0/v$.

0/f we get a perfect pairing

<,>
$$_{f}: 0/f \times 0/f \to U(1)$$

 $<,>_f: 0/f \times 0/f \rightarrow U(1)$ by defining $<a,b>_f = <a,bg> = (\frac{\Omega}{f} a,\Omega b)$ where we have set $q = \bar{f}h$ such that v = fg.

The Gauss sum for χ is then given by

$$G(\chi,x) = \sum_{y \in 0/f} \chi(y) < y, x>_f \text{ for } x \in 0/f.$$

It has the following properties:

(4.5) Lemma

$$|G(\chi,1)| = |f|$$

ii)
$$\chi(\alpha) = \frac{G(\chi, \alpha)}{G(\chi, 1)} \text{ for } \underline{\text{all}} \quad \alpha \in 0.$$

iii)
$$\overline{G(\chi,1)} = \overline{\epsilon} \ G(\chi,1)$$
 where $\epsilon \in \mu_K$ was defined by $\overline{f} = \epsilon f$.

iv) For
$$g = \overline{f}h$$
, $v = fg$ we have
$$\sum_{z \in \mathcal{O}/v} \chi(z) \langle z, x \rangle = \begin{cases} 0 & \text{if } x \not\equiv 0 \mod g \\ \\ g\overline{g} G(\chi, \frac{x}{g}) & \text{if } x \equiv 0 \mod g \end{cases}$$

Proof: For the standard properties i) and ii) we refer to [11] 22, §1.

iii)
$$\frac{\overline{G(\chi,1)}}{Y^{\epsilon,0}/f} = \sum_{\substack{\chi \in \mathcal{O}/f}} \overline{\chi(y)} \quad (\frac{\overline{\Omega}}{\overline{f}} y, \Omega)$$

$$= \sum_{\substack{\chi \in \mathcal{O}/f}} \chi(\overline{y}) \quad (\frac{\overline{\Omega}}{\overline{f}} \varepsilon \overline{y}, \Omega)$$

$$= \sum_{\substack{\chi \in \mathcal{O}/f}} \chi(\overline{y}) \langle \varepsilon \overline{y}, 1 \rangle_{f}$$

$$= \chi(\varepsilon)^{-1} G(\chi,1) = \overline{\varepsilon} G(\chi,1)$$

Observe that iv)

$$\sum_{y' \in 0/g} \langle y', fx \rangle = \begin{cases} 0 & \text{if } fx \neq 0 \mod v \\ \\ gg & \text{if } fx \equiv 0 \mod v \end{cases}.$$

Hence decomposing $z \in 0/v$ as $z = y + \overline{f}y'$ with $y \in 0/f$ and $y' \in 0/g$ we get

We can now return to the L-series and to (4.3).
$$L(X,s) \stackrel{\text{ii}}{=} \frac{1}{|\mu_K|G(\chi,1)} \sum_{\alpha \in \mathcal{O}} \frac{\bar{\alpha}}{|\alpha|^2 s}$$

$$\stackrel{\text{iv}}{=} \frac{1}{|\mu_K|G(\chi,1)g\bar{g}} \sum_{\alpha \in \mathcal{O}} \frac{\bar{\alpha}}{z \in \mathcal{O}/\nu} \times (z) \langle z,g\alpha \rangle \frac{\bar{\alpha}}{|\alpha|^2 s}$$

$$= \frac{|g|^{2s-2}}{|\mu_K|G(\chi,1)\bar{g}} \sum_{\alpha \in \mathcal{O}} \frac{\bar{\alpha}}{z \in \mathcal{O}/\nu} \times (z) \langle z,g\alpha \rangle \frac{\bar{\alpha}}{|\alpha|^2 s}$$

$$\stackrel{\text{iv}}{=} \frac{|g|^{2s-2}}{|\mu_K|G(\chi,1)\bar{g}} \sum_{\alpha \in \mathcal{O}} \frac{\bar{\alpha}}{z \in \mathcal{O}/\nu} \times (z) \langle z,\alpha \rangle \frac{\bar{\alpha}}{|\alpha|^2 s}$$

According to (4.5) i), iii) the number $G(\chi,1)/\overline{f}$ is real of absolute value equal to one, hence

$$L\left(X,s\right) \; = \; \frac{+}{2} \; \frac{\left|g\right|^{2s-2}}{\left|\mu_{K}\right| \, \overline{f} \overline{g}} \qquad \frac{\left|\Omega\right|^{2s}}{\overline{\Omega}} \; \sum_{\gamma \in \Gamma} \; \sum_{z \in \mathcal{O}/\nu} \chi\left(z\right) < z\,, \frac{\gamma}{\overline{\Omega}} > \frac{\overline{\gamma}}{\left|\gamma\right|^{2s}}$$

$$(4.6) = \pm \frac{|g|^{2s-2}}{|\mu_{k}||f|^{2}} \frac{|\Omega|^{2s}}{\Omega_{\mathbb{R}}} \sum_{\gamma \in \Gamma} \sum_{\mathbf{x} \in P(\mathbb{C})} \chi(\mathbf{x}) (\mathbf{x}, \gamma) \frac{\overline{\gamma}}{|\gamma|^{2s}}$$

where we have used that $\overline{fg}\overline{\Omega} = \overline{ff}\overline{h}\overline{\Omega} = \overline{ff}\Omega_{\mathbb{R}}$ and where for $x \in P(\mathfrak{C}) = \sqrt{X(\mathfrak{C})}$ we have set

(4.7)
$$\chi(x) = \chi(\frac{\overline{\nu}}{\Omega}x)$$
. Observe that since $\frac{\overline{\nu}}{\Omega} = \frac{|f|^2|h|^2}{\Omega_{\mathbb{R}}}$

is real we have $\bar{\chi}(x) = \chi(\bar{x})$ for all $x \in P(\mathbb{C})$.

From $\Gamma=\Omega \theta$ it follows that $|\Omega|^2 \sqrt{|d_K|}=2 \text{ Vol}(\Gamma)=2\pi$. Specializing to s=2 in (4.6) and using that by the functional equation

$$L'(X,0) = \pm \frac{N}{4\pi^2} L(X,2)$$

where N is the conductor of $X_{/0}$ we get

$$L'(X,O) = \pm \frac{|v|^2}{|\mu_K||f|^2\Omega_{IR}} \sum_{\gamma \in \Gamma} \sum_{x \in P(\mathfrak{C})} \chi(x)(x,\gamma) \frac{\overline{\gamma}}{|\gamma|^4}.$$

Here we have also taken into account that $N=|d_K|f\bar{f}$ (c f. [8] 10.3.2). Since $|P(C)|=|v|^2$ and since μ_K operates on Γ we get

$$(4.8) \ \text{L'}(\text{X,O}) = \pm \frac{1}{|f|^2 \Omega_{\text{IR}}} \frac{|P(\mathfrak{C})|}{|\mu_{\text{K}}|} \sum_{\gamma \in \Gamma} \sum_{\mathbf{x} \in P(\mathfrak{C})} (\overline{\chi}(\mathbf{x}) \mathbf{x}, \gamma) \frac{\overline{\gamma}}{|\gamma|^4}.$$

This is already rather close to the formula in (3.3). Observe that the theory developed in §3 applies to $X_{\mathbb{IR}}$, $P_{\mathbb{IR}}$.

Let $\alpha \in \mathbb{Z}[P_{/\mathbb{Q}}]^{O}$ be the cycle defined by

$$\alpha = -(|P(\mathbb{C})|-1) \cdot O + \sum_{x \in P(\mathbb{C})} x$$

and consider the cycle

$$\beta = \sum_{\mathbf{x} \in P(\mathbb{C}) / \mu_{K}} \beta(\overline{\chi}(\mathbf{x}) \mathbf{x}) \in \mathbb{Z} [P(\mathbb{C})]^{\circ}$$

where for $z \in P(C)$ we have set

Since
$$\beta^{\mathbf{F}_{\infty}} = \sum_{\mathbf{x} \in \mathbf{P}(\mathbf{C}) / \mu_{\mathbf{K}}} (\mathbf{F}_{\infty}(\overline{\chi}(\mathbf{x})\mathbf{x}))$$

$$= \sum_{\mathbf{x} \in \mathbf{P}(\mathbf{C}) / \mu_{\mathbf{K}}} \beta(\chi(\mathbf{x})\overline{\mathbf{x}})$$

$$= \sum_{\mathbf{x} \in \mathbf{P}(\mathbf{C}) / \mu_{\mathbf{K}}} \beta(\chi(\overline{\mathbf{x}})\mathbf{x}) = \beta \quad (\text{use } \chi(\overline{\mathbf{x}}) = \overline{\chi}(\mathbf{x}) \text{ by } (4.7))$$

$$= \sum_{\mathbf{x} \in \mathbf{P}(\mathbf{C}) / \mu_{\mathbf{K}}} \beta(\chi(\overline{\mathbf{x}})\mathbf{x}) = \beta \quad (\text{use } \chi(\overline{\mathbf{x}}) = \overline{\chi}(\mathbf{x}) \text{ by } (4.7))$$

we have that $\beta \in \mathbb{Z}[P_{\mathbb{R}}]^{O}$ and thus (3.3) applies

$$(4.9) \quad \langle \omega, [\alpha, \beta]_{\mathcal{D}} \rangle = \frac{|P(\mathfrak{C})|}{8|\mu_{K}|} \sum_{\gamma \in \Gamma} \sum_{\mathbf{x} \in P(\mathfrak{C})} (\overline{\chi}(\mathbf{x})\mathbf{x}, \gamma) \frac{\overline{\gamma}}{|\gamma|^{4}} .$$

Here we have used that $\Sigma' \frac{\overline{\gamma}}{|\gamma|^4} = 0$ since $-\Gamma = \Gamma$. A comparison of (4.8) and (4.9) shows that

$$<\omega, [\alpha, \beta]_{\mathcal{D}}> = \pm \frac{1}{2} |f|^2 \Omega_{\mathbb{IR}} L'(X, 0)$$

= $\pm \frac{N}{|d_{K}|^2} \Omega_{\mathbb{IR}} L'(X, 0)$

since $N = |d_{\overline{K}}|f\overline{f}$. In conclusion:

(4.10) Theorem Let X be an elliptic curve over $\mathbb Q$ with complex multiplication by the ring of integers $\mathbb Q$ in an imaginary quadratic field K with discriminant $\mathrm d_K$. Determine $\mathrm V\in \mathbb Q$ as in (4.2) and let P be the $\mathbb Q$ -subscheme of X such that $\mathrm P \times_{\mathbb Q} \mathrm K = {}_{\mathbb V} \mathrm X_K$. Consider the following cycles on X with support in P.

$$\alpha = -(|P(\mathfrak{C})|-1) \cdot O + \sum_{\substack{\mathbf{x} \in P(\mathfrak{C}) \\ \mathbf{x} \neq \mathbf{O}}} \mathbf{x} \in \mathbb{Z} [P_{/\mathbb{Q}}]^{O}$$

$$\beta = \sum_{\substack{\mathbf{x} \in P(\mathfrak{C})/\mu_{\mathbb{Z}}}} \beta(\overline{\chi}(\mathbf{x})\mathbf{x}) \in \mathbb{Z} [P_{/\mathbb{Q}}]^{O}$$

where for $z \in P(\mathbb{C})$ we have set $\beta(z) = -0 + z \in \mathbb{Z} \left[P(\mathbb{C})\right]^{O}$ and χ is defined by (4.1) and (4.7). Denote by $\omega_{\mathbb{Q}} \in F^{1}(X_{\mathbb{R}})$ the real differential such that $\int_{X(\mathbb{R})} \omega_{\mathbb{Q}} = 1$. Then we have

$$\langle \omega_{\mathbb{Q}}, [\alpha, \beta]_{\mathcal{D}} \rangle = \pm \frac{N}{2 |d_{\kappa}|} L'(X, 0)$$

where N is the conductor of $X_{/\mathbb{Q}}$.

<u>Proof:</u> We have shown everything except the rationality of β . As we have already seen that β is real it suffices to show that β is defined over K. For any $\sigma \in Gal(K(_{\nu}X(\mathfrak{C}))/K)$ there is an a $\in (0/\nu)*/\mu_K$ such that the action of σ on $x \in_{\nu} X(\mathfrak{C}) \cong \frac{1}{\nu} \Gamma/\Gamma$ is given by $x^{\sigma} = a^{-1}\chi(a)x = a^{-1}\chi(a^{-1})x$. Hence

$$\beta^{\sigma} = \sum_{\mathbf{x} \in \mathbb{P}(\mathfrak{C}) / \mu_{K}} \beta(\overline{\chi}(\mathbf{x})\mathbf{x})^{\sigma} = \sum_{\mathbf{x} \in \mathbb{P}(\mathfrak{C}) / \mu_{K}} \beta(\mathbf{a}^{-1}\overline{\chi}(\mathbf{a}^{-1})\overline{\chi}(\mathbf{x})\mathbf{x})$$

$$= \sum_{\mathbf{x} \in P(\mathbb{C}) / \mu_{K}} \beta(\overline{\chi}(\mathbf{a}^{-1}\mathbf{x})(\mathbf{a}^{-1}\mathbf{x})) = \beta .$$

Clearly the equivalent version (2.4) of theorem (2.3) will follow from this result once we have established that $[\alpha,\beta]_{\mathcal{D}}=r_{\mathcal{D}}(\psi)$ for some $\psi\in H^2_{A}(X_{\mathbb{Z}},\mathbb{Q}(2))$. This is done in the next section.

- Remarks (a) A closer look at the root numbers in the functional equation for the L-series of Hecke characters reveals that $w = G(\chi,1)/\bar{f}$ and therefore the sign in the final formula of (4.10) is in fact +1.
- (b) One of the authors (C.D.) has extended (4.10) to the case of L-series for certain Hecke characters of imaginary quadratic fields at all negative integers. This is done in the context of the Beilinson conjectures for motives with coefficients in a number field [16], [17].

§5 The absolute cohomology

In order to prove that $\left[\alpha,\beta\right]_{\mathcal{D}}$ lies in the image of the regulator map

$$r_{\mathcal{D}} \colon \operatorname{H}^{2}_{A}(X,\mathbb{Q}(2)) \to \operatorname{H}^{2}_{\mathcal{D}}(X_{\mathbb{R}},\mathbb{R}(2))$$

we use the following theorem.

Let $X_{/k}$ be a smooth, projective curve over a field k and let $P \subset X$ be a finite closed subscheme over k with open complement $U = X \setminus P \stackrel{j}{\rightarrow} X$. By $\mathbb{Z}[P]$ and $\mathbb{Z}[P]^O$ we denote the group of divisors on X with support in P and its subgroup of divisors of degree zero respectively. Tensoring with Φ we obtain $\Phi[P]$ and $\Phi[P]^O$.

(5.1) Theorem Let k be a number field contained in $\mathbb R$. If the image of $\mathbb Z\left[P\right]^O$ in the Jacobian of X is a torsion group, then there exists a pairing

$$[,]_A:\Lambda^2\mathbb{Q}[P]^{\circ}\to H^2_A(X,\mathbb{Q}(2))$$

such that the following diagram commutes

$$\Lambda^{2}\mathbb{Q}[P]^{\circ} \xrightarrow{[,]_{A}} H_{A}^{2}(X,\mathbb{Q}(2))$$

$$\downarrow^{r_{\mathcal{D}}}$$

$$H_{\mathcal{D}}^{2}(X_{\mathbb{R}},\mathbb{R}(2))$$

We prepare the proof of this theorem by the following lemma. Let k' be a finite galois extension of k and write P',U',X' for the base changes of P,U,X with k'/k. Assume that all points of P' are k'-rational and let $\phi\colon U'\to U$ denote the canonical covering.

(5.2) Lemma If the elements of $\mathbb{Z}[P]^{O}$ are of finite order in the Jacobian of X then we have

Here $\{0*(U'),k'*\}$ is the subgroup of $H_A^2(U',\mathbb{Q}(2)) \subset K_2(k'(X')) \otimes \mathbb{Q}$ generated by the symbols $\{f,a\}$ with $f \in 0*(U')$ and $a \in k'*$.

 $\begin{array}{c} \underline{\text{Proof:}} & \text{The Gysin sequence for absolute cohomology ([12]Th.8,9)} \\ & \text{$H_A^O(P,\mathbb{Q}(1))$} \to \text{$H_A^2(X,\mathbb{Q}(2))$} \xrightarrow{j*} \text{$H_A^2(U,\mathbb{Q}(2))$} \to \text{$H_A^1(P,\mathbb{Q}(1))$} \\ & \text{shows that j^* is injective: Writing $P = \coprod \text{Spec k_i}$ we get} \\ & \text{$H_A^O(P,\mathbb{Q}(1))$} = \oplus \text{$K_2^{(1)}$}(k_i)$, but as $K_2(k_i)$ is generated by symbols we have $K_2(k_i)$ & $\mathbb{Q} = K_2^{(2)}(k_i)$ ([12] Th. 2) and hence $H_A^O(P,\mathbb{Q}(1))$} = 0$. \end{array}$

In the commutative and exact diagram

$$0 \to H_A^2(X,\mathbb{Q}(2)) \to H_A^2(U,\mathbb{Q}(2)) \to \operatorname{coker} j^* \to 0$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

the image of the tame symbol coincides with $\mathbb{Q}[P']^{O}\otimes k'*$ since div \otimes id is surjective by our assumption. On the other hand the relation $\phi_*\phi^*=[k':k]$ implies that the map ϕ_* in the diagram is surjective and hence induces a surjection $\mathbb{Q}[P']^{O}\otimes k'* \to coker$ j*. This proves the first assertion of (5.2).

The sequence

$$O \to \mathcal{O}^*(X') \otimes k'^* \otimes \mathbb{Q} \to \mathcal{O}^*(U') \otimes k'^* \otimes \mathbb{Q} \to \text{div } \mathcal{O}^*(U') \otimes k'^* \otimes \mathbb{Q} \to O$$

being exact we obtain a commutative and exact diagram

Observing that 0*(X') = k'* and that $H_A^2(\operatorname{Spec} k', \mathbb{Q}(2)) = K_2(k') \otimes \mathbb{Q}$ is generated by symbols we find

$$H_{A}^{2}(\mathrm{Spec}\ k',\mathbb{Q}(2)) \ = \ \{0*(X'),k'*\}\otimes\mathbb{Q} = H^{2}(X',\mathbb{Q}(2))\cap\{0*(U'),k'*\}\otimes\mathbb{Q} \ .$$

Applying the surjective map ϕ_* gives the second assertion of (5.2) since $\phi^*\phi_*$ corresponds to taking Gal(k'/k)-in-variants and ϕ^* is injective.

<u>Proof of (5.1):</u> Since k is assumed to be a number field the group $H_A^2(\operatorname{Spec}\, k,\mathbb{Q}(2)) = K_2(k) \otimes \mathbb{Q}$ is zero. Let pr_A denote the projection of $H_A^2(U,\mathbb{Q}(2))$ onto $H_A^2(X,\mathbb{Q}(2))$ associated with the decomposition in (5.2). Since $k \subset \mathbb{R}$ we can use (1.6) to obtain an exact diagram

$$\phi_{*}\{0^{*}(U'),k'^{*}\}\otimes\mathbb{Q} \longrightarrow H^{1}(U_{an},\mathbb{R}(1)) \cap F^{1}(U_{\mathbb{R}})$$

$$\downarrow^{2}(U,\mathbb{Q}(2)) \longrightarrow H^{2}_{\mathcal{D}}(U_{\mathbb{R}},\mathbb{R}(2))=H^{1}(U_{an},\mathbb{R}(1))$$

$$\downarrow^{*}\downarrow^{pr}_{\mathcal{A}} \qquad \qquad \downarrow^{pr}_{\mathcal{D}}$$

$$\downarrow^{2}(X_{\mathbb{R}},\mathbb{R}(2))=H^{1}(X_{an},\mathbb{R}(1))$$

which commutes because $r_{\mathcal{D}}j^*=j^*r_{\mathcal{D}}$ and because $r_{\mathcal{D}}(\phi_*\{0^*(U'),k'^*\}\otimes \mathbb{Q})$ is contained in $F^1(U_{\mathbb{R}})$. Indeed, consider the commutative diagram

Since $H^1(U_{an},\mathbb{R}(1)) \cap F^1(U_{\mathbb{R}}) = H^1(U_{an},\mathbb{R}(1)) \cap F^1(U(\mathbb{C}))$ we have to show that

$$\operatorname{ch}_{2,2}(\phi^*\phi_*\{0^*(U'),k'^*\}) \subset \operatorname{F}^1(U(\mathfrak{C})).$$

But $ch_{2,2}$ is a ring homomorphism ([2] 2.3.1) and using that $\phi*\phi_* = \sum_{\sigma \in Gal(k'/k)} \sigma \in Gal(k'/k)$

for all $f \in \mathcal{O}^*(U')$ and $a \in k'^*$. In conclusion we have established that $pr_{\mathcal{D}^{\bullet}}r_{\mathcal{D}} = r_{\mathcal{D}^{\bullet}}pr_{A}$.

The identity $\phi_*\phi^*=[k':k]$ implies that for $f\in \mathcal{O}^*(U)$, a \in k^* we have $[k':k]\{f,a\}=\phi_*\{\phi^*(f),\phi^*(a)\}$ and hence that $\mathcal{O}^*(U)\otimes k^*\otimes \mathbb{Q}\subset \phi_*\{\mathcal{O}^*(U'),k'^*\}\otimes \mathbb{Q}$.

Hence there is a map $[,]_{A}$ completing the diagram

Observe that Ker div = 0*(X) = k* and that because of $\{f,-f\} = 1$ the symbol becomes an alternating function on $(0*(U)\otimes Q)\otimes (0*(U)\otimes Q)$. For $f,g\in 0*(U)$ we now obtain

$$\begin{split} \mathbf{r}_{\mathcal{D}}[\text{div f, div g}]_{A} &= \mathbf{r}_{\mathcal{D}}\mathbf{p}\mathbf{r}_{A}\{\text{f,g}\} = \mathbf{p}\mathbf{r}_{\mathcal{D}}\mathbf{r}_{\mathcal{D}}\{\text{f,g}\} \\ &= \mathbf{p}\mathbf{r}_{\mathcal{D}}(\log|\text{f}|\text{U}\log|\text{g}|) \\ &= \left[\text{div}(\log|\text{f}|), \text{div}(\log|\text{g}|)\right]_{\mathcal{D}} \text{ by (1.7)}. \end{split}$$

But according to (1.1.1) we have $\operatorname{div}(\log|f|) = \operatorname{div}(2\partial \log|f|) = \operatorname{div}(\frac{\operatorname{d}f}{f}) = \sum_{x} \operatorname{Res}_{x}(\frac{\operatorname{d}f}{f})x = \operatorname{div}f$ and hence the proof of theorem (5.1) is complete.

Now let X be again an elliptic curve over \mathbb{Q} . It remains to prove that for the divisors α,β of theorem (4.10) the element $[\alpha,\beta]_A\in H_A^2(X,\mathbb{Q}(2))$ belongs to the "integral" subspace $H_A^2(X_{\mathbb{Z}},\mathbb{Q}(2))$. In fact the following stronger result holds true:

(5.3) Lemma Let X be an elliptic curve over \mathbb{Q} with potential good reduction at all finite places. Then

$$H_A^2(X_{ZZ}, Q(2)) = H_A^2(X, Q(2))$$
.

<u>Proof:</u> Let X be the regular minimal model of X over $Spec(\mathbb{Z})$. By assumption it has either good or additive reduction X_p at the primes p of \mathbb{Z} . According to the localization exact sequence

$$\kappa_2^{(X)} \rightarrow \kappa_2^{(X)} \rightarrow \bigoplus_p \kappa_1^{\prime} (x_p^{\prime})$$

it will be sufficient to show that $K_1'(X_p) \otimes Q = 0$ for all p. If Y is a smooth proper curve over a finite field F it follows immediately from the localization sequence

that $K_1(Y)$ is torsion. Here y runs over the closed points of Y and κ denotes the residue field.

We may thus assume that X_p is singular and also reduced because $K_n'(X_p) = K_n'(X_p^{red})$. By the Kodaira-Néron classification X_p^{red} is the disjoint union of a copy of \mathbb{P}^1 with copies of \mathbb{A}^1 (open in X_p^{red}). Using the exact sequence

$$K_1'(X_p^{\text{red}} A^1) \rightarrow K_1'(X_p^{\text{red}}) \rightarrow K_1(A^1)$$

and the fact that $K_1(\mathbb{A}^1)\otimes \mathbb{Q}=0$ one is reduced to $K_1(\mathbb{P}^1)$. But this group is torsion as well whence $K_1(X_p)\otimes \mathbb{Q}=0$.

Remark: Bloch and Grayson [4] considered modular elliptic curves X without complex multiplication. With the aid of a computer program they found in this case as well rational relations between the value at two of the L-function of X and special values of Kronecker-Eisenstein-Lerch series.

These relations have the form

$$(\alpha, \gamma) = \exp A^{-1}(\alpha \overline{\gamma} - \overline{\alpha} \gamma)$$
 and $\Gamma = ZZ \oplus ZZ \tau \subset C$

is the period lattice of a real differential having volume $Vol(\Gamma) = \pi A$.

For example the curve

$$y^2 + xy + y = x^3 - x^2 - 3x + 7$$

has a point of order 7 and the computer suggests the only relations

26 L(X,2) + 28 M(X,
$$\frac{2}{7}$$
) + 28 M(X, $\frac{3}{7}$) = 0
5 M(X, $\frac{1}{7}$) + 10 M(X, $\frac{2}{7}$) + 8 M(X, $\frac{3}{7}$) = 0.

This points towards

rank
$$K_2(X) = 2$$
 (>1!)

which is surprising at first glance. But X has <u>multi-plicative</u> reduction at 2 (and good reduction at all other primes). Considering the localization sequence and observing that $K_1^i(X_p)$ has rank 1 if the reduction X_p is of multiplicative type then implies

$$rank K_2(X_{\mathbb{Z}}) = 1$$

as it should be by Beilinson's conjecture (Actually these computations had led to a revision of the original conjectures by taking into account the integral model). For further results on $H_A^2(X_{\mathbb{Z}}, \mathbb{Q}(2))$ of elliptic curves we refer to [10], [13].

References

- 1) A.A. Beilinson. Higher regulators and values of L-functions of curves. Funct. Anal. Appl. 14 (1980), 116-118.
- 2) A.A. Beilinson. Higher regulators and values of L-functions. J. Soviet Math. 30 (1985), 2036-2070.
- 3) S. Bloch. Lectures on algebraic cycles. Duke Univ. Math. series (1981).
- 4) S. Bloch, D. Grayson. K₂ and L-functions of elliptic curves: Computer calculations. Contemporary Math. 55, Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory I (1986), 79-88.
- 5) P. Deligne. Théorie de Hodge II. Publ. Math. I.H.E.S. 40(1971), 5-58.
- 6) H. Esnault, E. Viehweg. Deligne-Beilinson cohomology. This volume.
- 7) P. Griffiths, J. Harris. Principles of algebraic geometry, Wiley & sons (1978).
- 8) B.H. Gross. Arithmetic on elliptic curves with complex multiplication . Springer LN in math. 776 (1980).
- 9) B.H. Gross. On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication. In: Number Theory related to Fermat's Last Theorem. Edited by Neal Koblitz. Progress in Mathematics Vol. 26. Birkhäuser (1982).
- 10) K. Kato. A Hasse principle for two dimensional global fields. J. reine angew. Math. 366 (1986), 142-181.

- 11) S. Lang. Elliptic functions. Addison-Wesley (1973).
- 12) C. Soulé. Opérations en K-théorie algébrique. Canad. J. Math. 37 (1985), 488-550.
- 13) C. Soulé. p-adic K-theory of elliptic curves. Duke Math. J. 54 (1987), 249-269.
- 14) A. Weil. Elliptic functions according to Eisenstein and Kronecker. Springer (1976).

After this paper was written we learned of related work by Rohrlich who computes the regulators for various choices of n-torsion points. See:

15) D. Rohrlich. Elliptic curves and values of L-functions.

To appear in: Proc. Montreal Summer School of Can. Math.

Soc. 1985.

Generalizations to L-series at negative integers are contained in

- 16) C. Deninger. Higher regulators of elliptic curves with complex multiplication. Preprint 1987.
- 17) C. Deninger. Higher regulators and Hecke L-series of imaginary quadratic fields. Preprint 1987.

For p-adic analogues we refer to [13] and

18) R. Coleman, E. de Shalit. p-adic regulators on curves and special values of p-adic L-functions. Preprint 1987.

Fakultät für Mathematik Universität Regensburg Universitätsstr. 31 D-8400 Regensburg Mathematisches Institut Universität Erlangen Bismarckstr. 1 1/2 D-8520 Erlangen