
Lagrangians for spinor fields

we want to find a suitable lagrangian for left- and right-handed spinor fields.

based on S-36

Lorentz invariant and hermitian                                 

it should be:

quadratic in        and        
equations of motion will be linear with plane wave solutions 

(suitable for describing free particles)

terms with no derivative:

terms with derivatives:

+ h.c.

would lead to a hamiltonian unbounded from below
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to get a bounded hamiltonian the kinetic term has to contain both         
and         , a candidate is:   

is hermitian up to a total divergence

does not contribute to the action

are hermitian
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Taking hermitian conjugate:

Our complete lagrangian is:

the phase of m can be absorbed into the definition of fields

and so without loss of generality we can take m to be real and positive.

Equation of motion:

are hermitian
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We can combine the two equations:

which we can write using 4x4 gamma matrices:

and defining four-component Majorana field:

as:

Dirac equation
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and we know that that we needed 4 such matrices;

using the sigma-matrix relations:

we see that

recall:
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consider a theory of two left-handed spinor fields:

i = 1,2

the lagrangian is invariant under the SO(2) transformation:

it can be written in the form that is manifestly U(1) symmetric:
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Equations of motion for this theory:

we can define a four-component Dirac field:

Dirac equation

we want to write the lagrangian in terms of the Dirac field:

Let’s define:
numerically

but different  spinor index structure
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Then we find:

Thus we have:
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Thus the lagrangian can be written as:

The U(1) symmetry is obvious: 

The Nether current associated with this symmetry is:

later we will see that this is the electromagnetic current
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There is an additional discrete symmetry that exchanges the two fields, 
charge conjugation:

we want to express it in terms of the Dirac field:

Let’s define the charge conjugation matrix:

then

and we have:

unitary charge conjugation operator
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The charge conjugation matrix has following properties:

it can also be written as:

and then we find a useful identity:

transposed form of
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Majorana field is its own conjugate:

similar to a real scalar field

Following the same procedure with:

we get:

does not incorporate  the Majorana condition

incorporating the Majorana condition, we get:

lagrangian for a Majorana field
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If we want to go back from 4-component Dirac or Majorana fields to the 
two-component Weyl fields, it is useful to define a projection matrix:

just a name

We can define left and right projection matrices:

And for a Dirac field we find:
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The gamma-5 matrix can be also written as:

Finally, let’s take a look at the Lorentz transformation of a Dirac or 
Majorana field:

compensates for -
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Canonical quantization of spinor fields I

Consider the lagrangian for a left-handed Weyl field:

based on S-37

the conjugate momentum to the left-handed field is:

and the hamiltonian is simply given as:
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the appropriate canonical anticommutation relations are:

or

using                     we get

or, equivalently,
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can be also derived directly from                              , ... 

For a four-component Dirac field we found:

and the corresponding canonical anticommutation relations are:
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For a four-component Majorana field we found:

and the corresponding canonical anticommutation relations are:
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where we used the Feynman slash: 

Now we want to find solutions to the Dirac equation:

then we find:

the Dirac (or Majorana) field satisfies 
the Klein-Gordon equation and so 

the Dirac equation has plane-wave solutions!
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The general solution of the Dirac equation is:

Consider a solution of the form:

four-component constant spinors

plugging it into the Dirac equation gives:

that requires:

each eq. has two solutions (later)
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Spinor technology

The four-component spinors obey equations:

based on S-38

s = + or -

In the rest frame,             we can choose:
    for

convenient normalization and phase
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this choice corresponds to eigenvectors of the spin matrix:

this choice results in (we will see it later):

creates a particle with 
spin up (+) or down (-) 

along the z axis
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let us also compute the barred spinors:

we get:
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We can find spinors at arbitrary 3-momentum by applying the matrix that 
corresponds to the boost:

homework

we find:

and similarly:
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For any combination of gamma matrices we define:

It is straightforward to show:

homework
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For barred spinors we get:

It is straightforward to derive explicit formulas for spinors, but will will not 
need them; all we will need are products of spinors of the form:

which do not depend on p!

we find:
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add the two equations, and sandwich them between spinors,

and use:

Useful identities (Gordon identities):

Proof:

An important special case                :
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One can also show:

homework

Gordon identities with gamma-5:

homework
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We will find very useful the spin sums of the form:

can be directly calculated but we will find the correct for by the following argument: 
the sum over spin removes all the memory of the spin-quantization axis, and the 
result can depend only on the momentum four-vector and gamma matrices with all 
indices contracted.

In the rest frame,                  , we have:

Thus we conclude:
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in the rest frame we can write       as              and        as     and so we have:         

if instead of the spin sum we need just a specific spin product, e.g.

we can get it using appropriate spin projection matrices:

in the rest frame we have

the spin matrix                     can be written as:

we can now boost it to any frame 
simply by replacing z and p with 

their values in that frame frame independent

223

Boosting to a different frame we get:
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Let’s look at the situation with 3-momentum in the z-direction:

The component of the spin in the direction of the 3-momentum is called 
the helicity (a fermion with helicity +1/2 is called right-handed, a fermion 
with helicity -1/2 is called left-handed.

rapidity

In the limit of large rapidity
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In the limit of large rapidity

dropped m, small relative to p

In the extreme relativistic limit the right-handed fermion (helicity +1/2)
(described by spinors u+ for b-type particle and v- for d-type particle) is 
projected onto the lower two components only (part of the Dirac field 
that corresponds to the right-handed Weyl field). Similarly left-handed 
fermions are projected onto upper two components (right-handed Weyl 
field.
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Formulas relevant for massless particles can be obtained from considering 
the extreme relativistic limit of a massive particle; in particular the 
following formulas are valid when setting               : 

becomes exact
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Canonical quantization of spinor fields II

Lagrangian for a Dirac field:

based on S-39

canonical anticommutation relations:

The general solution to the Dirac equation:

creation and annihilation operators
four-component spinors
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We want to find formulas for creation and annihilation operator:

multiply by                  on the left:

for the hermitian conjugate we get:

b’s are time independent!
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multiply by                  on the left:

similarly for d:

for the hermitian conjugate we get:
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we can easily work out the anticommutation relations for b and d 
operators:
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we can easily work out the anticommutation relations for b and d 
operators:
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similarly:
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and finally:
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We want to calculate the hamiltonian in terms of the b and d operators; in 
the four-component notation we would find:

let’s start with:
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thus we have:
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finally, we find:

four times the zero-point 
energy of a scalar field
and opposite sign!

we will assume that the zero-point energy is cancelled by a constant term
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b-type particle with momentum      , energy                              , and 
spin             :        

spin-1/2 states:

vacuum:

d-type particle with momentum      , energy                              , and 
spin             :        

labels the charge of a particle
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b- and d-type particles are distinguished by the value of the charge:

very similar calculation as for the hamiltonian; we get:

counts the number of b-type particles -  the number of d-type particles

(later, the electron will be a b-type particle and the positron a d-type particle)
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we need to incorporate the Majorana condition:

For a Majorana field:

next page
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we have just used:

Proof:

by direct calculation:

boosting to any frame we get:
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We have found that a Majorana field can be written:

canonical anticommutation relations:

translate into:

 calculation the same as for the Dirac field
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The hamiltonian for the Majorana field is:

and repeating the same manipulations as for the Dirac field we would find:

two times the zero-point 
energy of a scalar field
and opposite sign!

we will assume that the zero-point energy is cancelled by a constant term
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