Lagrangians for spinor fields

based on S-36
we want to find a suitable lagrangian for left- and right-handed spinor fields.
it should be:
\diamond Lorentz invariant and hermitian
\diamond quadratic in ψ_{a} and $\psi_{\dot{a}}^{\dagger}$
equations of motion will be linear with plane wave solutions (suitable for describing free particles)
terms with no derivative:

$$
\psi \psi=\psi^{a} \psi_{a}=\varepsilon^{a b} \psi_{b} \psi_{a}
$$

terms with derivatives:

$$
\partial^{\mu_{\psi}} \theta_{\mu} \psi
$$

would lead to a hamiltonian unbounded from below
to get a bounded hamiltonian the kinetic term has to contain both ψ_{a} and $\psi_{\dot{a}}^{\dagger}$, a candidate is:

$$
i \psi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi
$$

is hermitian up to a total divergence

Our complete lagrangian is:

$$
\mathcal{L}=i \psi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi-\frac{1}{2} m \psi \psi-\frac{1}{2} m^{*} \psi^{\dagger} \psi^{\dagger}
$$

the phase of m can be absorbed into the definition of fields

$$
m=|m| e^{i \alpha} \quad \psi=e^{-i \alpha / 2} \tilde{\psi}
$$

and so without loss of generality we can take m to be real and positive.
Equation of motion:

$$
0=-\frac{\delta S}{\delta \psi^{\dagger}}=-i \bar{\sigma}^{\mu} \partial_{\mu} \psi+m \psi^{\dagger}
$$

Taking hermitian conjugate:

$$
0=-i \bar{\sigma}^{\mu \dot{a} c} \partial_{\mu} \psi_{c}+m \psi^{\dagger \dot{a}}
$$

$$
\begin{aligned}
\bar{\sigma}^{\mu \dot{a} a}=(I,-\vec{\sigma}) & 0 \\
\text { are hermitian } & =+i\left(\bar{\sigma}^{\mu a \dot{c}}\right)^{*} \partial_{\mu} \psi_{\dot{c}}^{\dagger}+m \psi^{a} \\
\bar{\sigma}^{\mu \dot{a} a} \equiv \varepsilon^{a b} \varepsilon^{\dot{a} \dot{b}} \sigma_{b \dot{b}}^{\mu} \longrightarrow & =+i \bar{\sigma}^{\mu \dot{c} a} \partial_{\mu} \psi_{\dot{c}}^{\dagger}+m \psi^{a} \\
& =-i \sigma_{a \dot{c}}^{\mu} \partial_{\mu} \psi^{\dagger \dot{c}}+m \psi_{a}
\end{aligned}
$$

We can combine the two equations:

$$
\begin{aligned}
& 0=-i \bar{\sigma}^{\mu \dot{a} c} \partial_{\mu} \psi_{c}+m \psi^{\dagger \dot{a}} \\
& 0=-i \sigma_{a \dot{c}}^{\mu} \partial_{\mu} \psi^{\dagger \dot{c}}+m \psi_{a}
\end{aligned}
$$

$$
\left(\begin{array}{cc}
m \delta_{a}^{c} & -i \sigma_{a \dot{c}}^{\mu} \partial_{\mu} \\
-i \bar{\sigma}^{\mu \dot{a} c} \partial_{\mu} & m \delta_{\dot{c}}^{\dot{a}}
\end{array}\right)\binom{\psi_{c}}{\psi^{\dagger \dot{c}}}=0
$$

which we can write using 4×4 gamma matrices:

$$
\gamma^{\mu} \equiv\left(\begin{array}{cc}
0 & \sigma_{a \dot{c}}^{\mu} \\
\bar{\sigma}^{\mu \dot{a} c} & 0
\end{array}\right)
$$

and defining four-component Majorana field:

$$
\Psi \equiv\binom{\psi_{c}}{\psi^{\dagger \dot{c}}}
$$

as:

$$
\left(-i \gamma^{\mu} \partial_{\mu}+m\right) \Psi=0
$$

Dirac equation
using the sigma-matrix relations:

$$
\sigma_{a \dot{a}}^{\mu}=(I, \vec{\sigma})
$$

$$
\begin{aligned}
& \left(\sigma^{\mu} \bar{\sigma}^{\nu}+\sigma^{\nu} \bar{\sigma}^{\mu}\right)_{a}{ }^{c}=-2 g^{\mu \nu} \delta_{a}{ }^{c} \\
& \left(\bar{\sigma}^{\mu} \sigma^{\nu}+\bar{\sigma}^{\nu} \sigma^{\mu}\right)^{\dot{a}}{ }_{\dot{c}}=-2 g^{\mu \nu} \delta^{\dot{a}}{ }_{\dot{c}}
\end{aligned}
$$

we see that

$$
\gamma^{\mu} \equiv\left(\begin{array}{cc}
0 & \sigma_{a \dot{c}}^{\mu} \\
\bar{\sigma}^{\mu \dot{a} c} & 0
\end{array}\right)
$$

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=-2 g^{\mu \nu}
$$

and we know that that we needed 4 such matrices;
recall:

$$
\begin{array}{r}
i \hbar \frac{\partial}{\partial t} \psi_{a}(x)=\left(-i \hbar c\left(\alpha^{j}\right)_{a b} \partial_{j}+m c^{2}(\beta)_{a b}\right) \psi_{b}(x) \\
\left\{\alpha^{j}, \alpha^{k}\right\}_{a b}=2 \delta^{j k} \delta_{a b}, \quad\left\{\alpha^{j}, \beta\right\}_{a b}=0, \quad\left(\beta^{2}\right)_{a b}=\delta_{a b} \quad \begin{array}{r}
\beta=\gamma^{0} \\
\alpha^{k}=\gamma^{0} \gamma^{k}
\end{array} \\
\left(-i \gamma^{\mu} \partial_{\mu}+m\right) \Psi=0
\end{array}
$$

$$
\bar{\sigma}^{\mu \dot{a} a}=(I,-\vec{\sigma})
$$

consider a theory of two left-handed spinor fields:

$$
\mathcal{L}=i \psi_{i}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi_{i}-\frac{1}{2} m \psi_{i} \psi_{i}-\frac{1}{2} m \psi_{i}^{\dagger} \psi_{i}^{\dagger}
$$

the lagrangian is invariant under the $\mathrm{SO}(2)$ transformation:

$$
\binom{\psi_{1}}{\psi_{2}} \rightarrow\left(\begin{array}{rr}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}
$$

it can be written in the form that is manifestly $U(I)$ symmetric:

$$
\begin{array}{r}
\chi=\frac{1}{\sqrt{2}}\left(\psi_{1}+i \psi_{2}\right) \\
\xi=\frac{1}{\sqrt{2}}\left(\psi_{1}-i \psi_{2}\right) \\
\mathcal{L}=i \chi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \chi+i \xi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \xi-m \chi \xi-m \xi^{\dagger} \chi^{\dagger} \\
\chi \rightarrow e^{-i \alpha} \chi \\
\xi \rightarrow e^{+i \alpha} \xi
\end{array}
$$

$$
\mathcal{L}=i \chi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \chi+i \xi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \xi-m \chi \xi-m \xi^{\dagger} \chi^{\dagger}
$$

Equations of motion for this theory:

$$
\left(\begin{array}{cc}
m \delta_{a}^{c} & -i \sigma_{a \dot{c}}^{\mu} \partial_{\mu} \\
-i \bar{\sigma}^{\mu \dot{a} c} \partial_{\mu} & m \delta_{\dot{c}}^{\dot{a}}
\end{array}\right)\binom{\chi_{c}}{\xi^{\dagger \dot{c}}}=0
$$

we can define a four-component Dirac field: $\quad \Psi \equiv\binom{\chi_{c}}{\xi^{\dagger \dot{c}}}$

$$
\left(-i \gamma^{\mu} \partial_{\mu}+m\right) \Psi=0
$$

Dirac equation
we want to write the lagrangian in terms of the Dirac field:

$$
\begin{array}{cr}
\Psi^{\dagger}=\left(\chi_{\dot{a}}^{\dagger}, \xi^{a}\right) & \beta \equiv\left(\begin{array}{cc}
0 & \delta^{\dot{a}}{ }_{\dot{c}} \\
\delta_{a}{ }^{c} & 0
\end{array}\right) \\
\bar{\Psi} \equiv \Psi^{\dagger} \beta=\left(\xi^{a}, \chi_{\dot{a}}^{\dagger}\right) & \text { numerically } \\
\beta=\gamma^{0} \\
\text { but different spinor index structure }
\end{array}
$$

Then we find:

$$
\bar{\Psi} \equiv \Psi^{\dagger} \beta=\left(\xi^{a}, \chi_{\dot{a}}^{\dagger}\right)
$$

$$
\bar{\Psi} \Psi=\xi^{a} \chi_{a}+\chi_{\dot{a}}^{\dagger} \xi^{\dagger \dot{a}}
$$

$$
\Psi \equiv\binom{\chi_{c}}{\xi^{\dot{c}}}
$$

$$
\bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi=\xi^{a} \sigma_{a \dot{c}}^{\mu} \partial_{\mu} \xi^{\dagger \dot{c}}+\chi_{\dot{a}}^{\dagger} \bar{\sigma}^{\mu \dot{a} c} \partial_{\mu} \chi_{c}
$$

$$
A \partial B=-(\partial A) B+\partial(A B) \quad \gamma^{\mu} \equiv\left(\begin{array}{cc}
0 & \sigma_{a \dot{c}}^{\mu} \\
\bar{\sigma}^{\mu a c} & 0
\end{array}\right)
$$

$$
\xi^{a} \sigma_{a \dot{c}}^{\mu} \partial_{\mu} \xi^{\dagger \dot{c}}=-\left(\partial_{\mu} \xi^{a}\right) \sigma_{a \dot{c}}^{\mu} \xi^{\dagger \dot{c}}+\partial_{\mu}\left(\xi^{a} \sigma_{a \dot{c}}^{\mu} \xi^{\dagger \dot{c}}\right)
$$

$$
-\left(\partial_{\mu} \xi^{a}\right) \sigma_{a \dot{c}}^{\mu} \xi^{\dagger \dot{c}}=+\xi^{\dagger \dot{c}} \sigma_{a \dot{c}}^{\mu} \partial_{\mu} \xi^{a}=+\xi_{\dot{c}}^{\dagger} \bar{\sigma}^{\mu \dot{c} a} \partial_{\mu} \xi_{a}
$$

Thus we have:

$$
\bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi=\chi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \chi+\xi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \xi+\partial_{\mu}\left(\xi \sigma^{\mu} \xi^{\dagger}\right)
$$

Thus the lagrangian can be written as: $\quad \mathcal{L}=i \chi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \chi+i \xi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \xi-m \chi \xi-m \xi^{\dagger} \chi^{\dagger}$

$$
\mathcal{L}=i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi-m \bar{\Psi} \Psi
$$

The $U(I)$ symmetry is obvious:

$$
\begin{aligned}
& \Psi \rightarrow e^{-i \alpha} \Psi \\
& \bar{\Psi} \rightarrow e^{+i \alpha} \bar{\Psi}
\end{aligned}
$$

The Nether current associated with this symmetry is: ${ }_{j}{ }^{\mu}(x) \equiv \frac{\partial \mathcal{L}(x)}{\partial\left(\partial_{\mu} \varphi_{a}(x)\right)} \delta \varphi_{a}(x)$

$$
j^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi=\chi^{\dagger} \bar{\sigma}^{\mu} \chi-\xi^{\dagger} \bar{\sigma}^{\mu} \xi
$$

later we will see that this is the electromagnetic current

$$
\mathcal{L}=i \chi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \chi+i \xi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \xi-m \chi \xi-m \xi^{\dagger} \chi^{\dagger}
$$

There is an additional discrete symmetry that exchanges the two fields,
charge conjugation:

$$
\begin{aligned}
& C^{-1} \chi_{a}(x) C=\xi_{a}(x) \\
& C^{-1} \xi_{a}(x) C=\chi_{a}(x)
\end{aligned}
$$

unitary charge conjugation operator

$$
C^{-1} \mathcal{L}(x) C=\mathcal{L}(x)
$$

we want to express it in terms of the Dirac field:
Let's define the charge conjugation matrix:

$$
\mathcal{C} \equiv\left(\begin{array}{cc}
\varepsilon_{a c} & 0 \\
0 & \varepsilon^{\dot{a} \dot{c}}
\end{array}\right)
$$

then
and we have:

$$
\Psi^{\mathrm{C}} \equiv \mathcal{C} \bar{\Psi}^{\mathrm{T}}=\binom{\xi_{a}}{\chi^{\nmid \dot{a}}}
$$

$$
C^{-1} \Psi(x) C=\Psi^{C}(x)
$$

The charge conjugation matrix has following properties:

$$
\mathcal{C}^{\mathrm{T}}=\mathcal{C}^{\dagger}=\mathcal{C}^{-1}=-\mathcal{C}
$$

$$
\mathcal{C} \equiv\left(\begin{array}{cc}
\varepsilon_{a c} & 0 \\
0 & \varepsilon^{\dot{a} \dot{c}}
\end{array}\right)
$$

it can also be written as:

$$
\mathcal{C}=\left(\begin{array}{cc}
-\varepsilon^{a c} & 0 \\
0 & -\varepsilon_{\dot{a} \dot{c}}
\end{array}\right)
$$

and then we find a useful identity:

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma_{\dot{c i}}^{\mu} \\
\bar{\sigma}^{\mu e a} & 0
\end{array}\right)
$$

$$
\mathcal{C}^{-1} \gamma^{\mu} \mathcal{C}=\left(\begin{array}{cc}
\varepsilon^{a b} & 0 \\
0 & \varepsilon_{\dot{a} \dot{b}}
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{b \dot{c}}^{\mu} \\
\bar{\sigma}^{\mu \dot{ }} & 0
\end{array}\right)\left(\begin{array}{cc}
\varepsilon_{c e} & 0 \\
0 & \varepsilon^{\dot{e}}
\end{array}\right)
$$

transposed form of $\quad=\left(\begin{array}{cc}0 & \varepsilon^{a b} \sigma_{b \dot{c}}^{\mu} \dot{e}^{\dot{\varepsilon} \dot{e}} \\ \varepsilon_{\dot{a} \dot{\bar{b}}} \bar{\sigma}^{\dot{b}} \varepsilon_{c e} & 0\end{array}\right)$
$\bar{\sigma}^{\mu \dot{a} a} \equiv \varepsilon^{a b} \varepsilon^{\bar{a} \dot{b}} \sigma_{b \dot{b}}^{\mu} \longrightarrow=\left(\begin{array}{cc}0 & -\bar{\sigma}^{\mu a \dot{e}} \\ -\sigma_{\dot{a} e}^{\mu} & 0\end{array}\right)$.

$$
\mathcal{C}^{-1} \gamma^{\mu} \mathcal{C}=-\left(\gamma^{\mu}\right)^{\mathrm{T}}
$$

Majorana field is its own conjugate:

$$
\Psi^{\mathrm{C}}=\Psi
$$

$$
\Psi \equiv\binom{\psi_{c}}{\psi^{\grave{c}}}
$$

similar to a real scalar field

$$
\varphi^{\dagger}=\varphi
$$

Following the same procedure with:

$$
\begin{gathered}
\chi \rightarrow \psi \\
\xi \rightarrow \psi
\end{gathered}
$$

we get:

$$
\mathcal{L}=\frac{i}{2} \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi-\frac{1}{2} m \bar{\Psi} \Psi
$$

does not incorporate the Majorana condition

$$
\Psi=\mathcal{C} \bar{\Psi}^{\mathrm{T}}
$$

incorporating the Majorana condition, we get:

$$
\bar{\Psi}=\Psi^{\mathrm{T}} \mathcal{C}
$$

$$
\mathcal{L}=\frac{i}{2} \Psi^{\mathrm{T}} \mathcal{C} \gamma^{\mu} \partial_{\mu} \Psi-\frac{1}{2} m \Psi^{\mathrm{T}} \mathcal{C} \Psi
$$

lagrangian for a Majorana field

If we want to go back from 4-component Dirac or Majorana fields to the two-component Weyl fields, it is useful to define a projection matrix:

$$
\gamma_{5} \equiv\left(\begin{array}{cc}
-\delta_{a}^{c} & 0 \\
0 & +\delta_{\dot{c}}^{\dot{a}}
\end{array}\right)
$$

We can define left and right projection matrices:

$$
\begin{aligned}
& P_{\mathrm{L}} \equiv \frac{1}{2}\left(1-\gamma_{5}\right)=\left(\begin{array}{cc}
\delta_{a}^{c} & 0 \\
0 & 0
\end{array}\right) \\
& P_{\mathrm{R}} \equiv \frac{1}{2}\left(1+\gamma_{5}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & \delta^{\dot{a}}
\end{array}\right)
\end{aligned}
$$

And for a Dirac field we find:

$$
\begin{aligned}
& P_{\mathrm{L}} \Psi=\binom{\chi_{c}}{0} \\
& P_{\mathrm{R}} \Psi=\binom{0}{\xi^{\dagger \dot{c}}}
\end{aligned}
$$

$$
\Psi \equiv\binom{\chi_{c}}{\xi^{\dagger \dot{c}}}
$$

The gamma-5 matrix can be also written as:

$$
\begin{aligned}
\gamma_{5} & =i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \\
& =-\frac{i}{24} \varepsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}
\end{aligned}
$$

$$
\varepsilon_{0123}=-1
$$

Finally, let's take a look at the Lorentz transformation of a Dirac or Majorana field:

$$
U(\Lambda)^{-1} \psi_{a}(x) U(\Lambda)=L(\Lambda)_{a}^{c} \psi_{c}\left(\Lambda^{-1} x\right)
$$

$U(\Lambda)^{-1} \Psi(x) U(\Lambda)=D(\Lambda) \Psi\left(\Lambda^{-1} x\right)$

$$
U(\Lambda)^{-1} \psi_{\dot{a}}^{\dagger}(x) U(\Lambda)=R(\Lambda)_{\dot{a}}^{\dot{c}} \psi_{\dot{c}}^{\dagger}\left(\Lambda^{-1} x\right)
$$

$L(1+\delta \omega)_{a}{ }^{c}=\delta_{a}{ }^{c}+\frac{i}{2} \delta \omega_{\mu \nu}\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}{ }^{c}$
$D(1+\delta \omega)=1+\frac{i}{2} \delta \omega_{\mu \nu} S^{\mu \nu}$
$R(1+\delta \omega)_{\dot{a}}{ }^{\dot{c}}=\delta_{\dot{a}}{ }^{\dot{c}}+\frac{i}{2} \delta \omega_{\mu \nu}\left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{a}}{ }^{\dot{c}}$
$\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}{ }^{c}=+\frac{i}{4}\left(\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\nu} \bar{\sigma}^{\mu}\right)_{a}{ }^{c}$
$\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]=\left(\begin{array}{cc}+\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}{ }^{c} & 0 \\ 0 & -\left(S_{\mathrm{R}}^{\mu \nu}\right)^{\dot{a}}{ }_{\dot{c}}\end{array}\right) \equiv S^{\mu \nu}$
$\left(S_{\mathrm{R}}^{\mu \nu}\right)^{\dot{a}}{ }_{\dot{c}}=-\frac{i}{4}\left(\bar{\sigma}^{\mu} \sigma^{\nu}-\bar{\sigma}^{\nu} \sigma^{\mu}\right)^{\dot{a}}{ }_{\dot{c}}$
$\gamma^{\mu}=\left(\begin{array}{cc}0 & \sigma_{e \dot{e}}^{\mu} \\ \bar{\sigma}^{\mu \dot{e} a} & 0\end{array}\right)$
compensates for $\dot{c} \dot{c}={ }_{\dot{c}} \dot{c}$

Canonical quantization of spinor fields I

based on S-37

Consider the lagrangian for a left-handed Weyl field:

$$
\mathcal{L}=i \psi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi-\frac{1}{2} m\left(\psi \psi+\psi^{\dagger} \psi^{\dagger}\right)
$$

the conjugate momentum to the left-handed field is: $\pi^{a}(x) \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \psi_{a}(x)\right)}$

$$
=i \psi_{\dot{a}}^{\dagger}(x) \bar{\sigma}^{0 \dot{a} a}
$$

and the hamiltonian is simply given as:

$$
\begin{aligned}
\mathcal{H} & =\pi^{a} \partial_{0} \psi_{a}-\mathcal{L} \\
& =i \psi_{\dot{a}}^{\dagger} \bar{\sigma}^{0 \dot{a} a} \dot{\psi}_{a}-\mathcal{L} \\
& =-i \psi^{\dagger} \bar{\sigma}^{i} \partial_{i} \psi+\frac{1}{2} m\left(\psi \psi+\psi^{\dagger} \psi^{\dagger}\right)
\end{aligned}
$$

the appropriate canonical anticommutation relations are:

$$
\begin{aligned}
& \left\{\psi_{a}(\mathbf{x}, t), \psi_{c}(\mathbf{y}, t)\right\}=0 \\
& \left\{\psi_{a}(\mathbf{x}, t), \pi^{c}(\mathbf{y}, t)\right\}=i \delta_{a}^{c} \delta^{3}(\mathbf{x}-\mathbf{y})
\end{aligned}
$$

or

$$
\left\{\psi_{a}(\mathbf{x}, t), \psi_{\dot{c}}^{\dagger}(\mathbf{y}, t)\right\} \bar{\sigma}^{0 \dot{c} c}=\delta_{a}^{c} \delta^{3}(\mathbf{x}-\mathbf{y})
$$

$$
\begin{aligned}
\pi^{a}(x) & \equiv \frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \psi_{a}(x)\right)} \\
& =i \psi_{\bar{a}}^{\dagger}(x) \bar{\sigma}^{0 \dot{a} a}
\end{aligned}
$$

using $\bar{\sigma}^{0}=\sigma^{0}=I$ we get

$$
\left\{\psi_{a}(\mathbf{x}, t), \psi_{c}^{\dagger}(\mathbf{y}, t)\right\}=\sigma_{a \dot{c}}^{0} \delta^{3}(\mathbf{x}-\mathbf{y})
$$

or, equivalently,

$$
\left\{\psi^{a}(\mathbf{x}, t), \psi^{\dagger \dot{c}}(\mathbf{y}, t)\right\}=\bar{\sigma}^{0 \dot{c} a} \delta^{3}(\mathbf{x}-\mathbf{y})
$$

For a four-component Dirac field we found:

$$
\begin{aligned}
\mathcal{L} & =i \chi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \chi+i \xi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \xi-m\left(\chi \xi+\xi^{\dagger} \chi^{\dagger}\right) \\
& =i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi-m \bar{\Psi} \Psi
\end{aligned}
$$

$$
\begin{aligned}
\Psi & \equiv\binom{\chi_{c}}{\xi^{\dagger \dot{c}}} \\
\bar{\Psi} \equiv \Psi^{\dagger} \beta & =\left(\xi^{a}, \chi_{\dot{a}}^{\dagger}\right)
\end{aligned}
$$

and the corresponding canonical anticommutation relations are:
can be also derived directly from $\partial \mathcal{L} / \partial\left(\partial_{0} \Psi\right)=i \bar{\Psi} \gamma^{0}, \ldots$

For a four-component Majorana field we found:

$$
\begin{aligned}
& \mathcal{L}=i \psi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi-\frac{1}{2} m\left(\psi \psi+\psi^{\dagger} \psi^{\dagger}\right) \\
&=\frac{i}{2} \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi-\frac{1}{2} m \bar{\Psi} \Psi \\
&=\frac{i}{2} \Psi^{\mathrm{T}} \mathcal{C} \gamma^{\mu} \partial_{\mu} \Psi-\frac{1}{2} m \Psi^{\mathrm{T}} \mathcal{C} \Psi . \quad \bar{\Psi} \equiv \Psi^{\dagger} \beta=\left(\psi^{a}, \psi_{\dot{a}}^{\dagger}\right) \\
& \bar{\Psi}=\Psi^{\mathrm{T}} \mathcal{C}
\end{aligned}
$$

$$
\begin{array}{r}
\bar{\Psi}=\Psi^{\mathrm{T}} \mathcal{C} \\
\mathcal{C} \equiv\left(\begin{array}{cc}
-\varepsilon^{a c} & 0 \\
0 & -\varepsilon_{\dot{a} \dot{c}}
\end{array}\right)
\end{array}
$$

and the corresponding canonical anticommutation relations are:

$$
\begin{aligned}
& \left\{\Psi_{\alpha}(\mathbf{x}, t), \Psi_{\beta}(\mathbf{y}, t)\right\}=\left(\mathcal{C} \gamma^{0}\right)_{\alpha \beta} \delta^{3}(\mathbf{x}-\mathbf{y}) \\
& \left\{\Psi_{\alpha}(\mathbf{x}, t), \bar{\Psi}_{\beta}(\mathbf{y}, t)\right\}=\left(\gamma^{0}\right)_{\alpha \beta} \delta^{3}(\mathbf{x}-\mathbf{y})
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\psi_{a}(\mathbf{x}, t), \psi_{\dot{c}}^{\dagger}(\mathbf{y}, t)\right\}=\sigma_{a \dot{c}}^{0} \delta^{3}(\mathbf{x}-\mathbf{y}) \\
& \left\{\psi_{a}(\mathbf{x}, t), \psi_{\dot{c}}^{\dagger}(\mathbf{y}, t)\right\}=\sigma_{a \dot{c}}^{0} \delta^{3}(\mathbf{x}-\mathbf{y}) \\
& \left\{\Psi_{\alpha}(\mathbf{x}, t), \Psi_{\beta}(\mathbf{y}, t)\right\}=0, \\
& \left\{\Psi_{\alpha}(\mathbf{x}, t), \bar{\Psi}_{\beta}(\mathbf{y}, t)\right\}=\left(\gamma^{0}\right)_{\alpha \beta} \delta^{3}(\mathbf{x}-\mathbf{y}) \\
& \gamma^{\mu} \equiv\left(\begin{array}{cc}
0 & \sigma_{a \dot{c}}^{\mu} \\
\bar{\sigma}^{\mu \dot{a} c} & 0
\end{array}\right)
\end{aligned}
$$

Now we want to find solutions to the Dirac equation:

$$
(-i \not \partial+m) \Psi=0
$$

where we used the Feynman slash: $\quad \not \equiv \equiv a_{\mu} \gamma^{\mu}$

$$
\begin{aligned}
\phi \phi & =a_{\mu} a_{\nu} \gamma^{\mu} \gamma^{\nu} \\
& =a_{\mu} a_{\nu}\left(\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}+\frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]\right) \\
& =a_{\mu} a_{\nu}\left(-g^{\mu \nu}+\frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]\right) \\
& =-a_{\mu} a_{\nu} g^{\mu \nu}+0 \\
& =-a^{2}
\end{aligned}
$$

then we find:

$$
\begin{aligned}
0 & =(i \not \partial+m)(-i \not \partial+m) \Psi \\
& =\left(\not \partial \not \partial+m^{2}\right) \Psi \\
& =\left(-\partial^{2}+m^{2}\right) \Psi . \quad \text { the Dirac (or Majorana) field satisfies } \\
& \text { the Klein-Gordon equation and so } \\
& \text { the Dirac equation has plane-wave solutions! }
\end{aligned}
$$

Consider a solution of the form:

$$
\begin{aligned}
\Psi(x)=u(\mathbf{p}) e^{i p x}+ & v(\mathbf{p}) e^{-i p x} \\
& p^{0}=\omega \equiv\left(\mathbf{p}^{2}+m^{2}\right)^{1 / 2}
\end{aligned}
$$

four-component constant spinors

$$
(-i \not \partial+m) \Psi=0
$$

$$
(\not p+m) u(\mathbf{p}) e^{i p x}+(-\not p+m) v(\mathbf{p}) e^{-i p x}=0
$$

that requires:

$$
\begin{aligned}
(\not p+m) u(\mathbf{p}) & =0 \\
(-\not p+m) v(\mathbf{p}) & =0
\end{aligned}
$$

The general solution of the Dirac equation is:

$$
\begin{aligned}
& \Psi(x)=\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}(\mathbf{p}) u_{s}(\mathbf{p}) e^{i p x}+d_{s}^{\dagger}(\mathbf{p}) v_{s}(\mathbf{p}) e^{-i p x}\right] \\
& d p \equiv \frac{d^{3} p}{(2 \pi)^{3} 2 \omega}
\end{aligned}
$$

Spinor technology

based on S-38
The four-component spinors obey equations:

$$
\begin{aligned}
(\not p+m) u_{s}(\mathbf{p}) & =0 \\
(-\not p+m) v_{s}(\mathbf{p}) & =0
\end{aligned}
$$

$s=+$ or -
In the rest frame, $\mathbf{p}=\mathbf{0}$ we can choose:

$$
\begin{array}{cc}
u_{+}(\mathbf{0})=\sqrt{m}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right), & u_{-}(\mathbf{0})=\sqrt{m}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right), \\
v_{+}(\mathbf{0})=\sqrt{m}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right), & v_{-}(\mathbf{0})=\sqrt{m}\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right) .
\end{array}
$$

convenient normalization and phase
for $m \neq 0$
$\not p=-m \gamma^{0}$
$\gamma^{0}=\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right)$

$$
\begin{array}{cc}
u_{+}(\mathbf{0})=\sqrt{m}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right), & u_{-}(\mathbf{0})=\sqrt{m}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right), \\
v_{+}(\mathbf{0})=\sqrt{m}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right), & v_{-}(\mathbf{0})=\sqrt{m}\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right) .
\end{array}
$$

let us also compute the barred spinors:

$$
\begin{gathered}
\bar{u}_{s}(\mathbf{p}) \equiv u_{s}^{\dagger}(\mathbf{p}) \beta \\
\bar{v}_{s}(\mathbf{p}) \equiv v_{s}^{\dagger}(\mathbf{p}) \beta
\end{gathered}
$$

$$
\beta=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)
$$

we get:

$$
\beta^{\mathrm{T}}=\beta^{\dagger}=\beta^{-1}=\beta
$$

$$
\begin{aligned}
& \bar{u}_{+}(\mathbf{0})=\sqrt{m}(1,0,1,0) \\
& \bar{u}_{-}(\mathbf{0})=\sqrt{m}(0,1,0,1) \\
& \bar{v}_{+}(\mathbf{0})=\sqrt{m}(0,-1,0,1) \\
& \bar{v}_{-}(\mathbf{0})=\sqrt{m}(1,0,-1,0)
\end{aligned}
$$

$$
\begin{array}{cc}
u_{+}(\mathbf{0})=\sqrt{m}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right), & u_{-}(\mathbf{0})=\sqrt{m}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right), \\
v_{+}(\mathbf{0})=\sqrt{m}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right), & v_{-}(\mathbf{0})=\sqrt{m}\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right) .
\end{array}
$$

this choice corresponds to eigenvectors of the spin matrix:

$$
\begin{array}{rlr}
S_{z} & =\frac{i}{4}\left[\gamma^{1}, \gamma^{2}\right]=\frac{i}{2} \gamma^{1} \gamma^{2}=\left(\begin{array}{cc}
\frac{1}{2} \sigma_{3} & 0 \\
0 & \frac{1}{2} \sigma_{3}
\end{array}\right) \\
S_{z} u_{ \pm}(\mathbf{0}) & = \pm \frac{1}{2} u_{ \pm}(\mathbf{0}) & S^{\mu \nu} \equiv \frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] \\
S_{z} v_{ \pm}(\mathbf{0}) & =\mp \frac{1}{2} v_{ \pm}(\mathbf{0}) &
\end{array}
$$

this choice results in (we will see it later):

$$
\begin{array}{rlr}
{\left[J_{z}, b_{ \pm}^{\dagger}(\mathbf{0})\right]} & = \pm \frac{1}{2} b_{ \pm}^{\dagger}(\mathbf{0}) & \begin{array}{c}
\text { creates a particle with } \\
{\left[J_{z}, d_{ \pm}^{\dagger}(\mathbf{0})\right]}
\end{array}= \pm \frac{1}{2} d_{ \pm}^{\dagger}(\mathbf{0})
\end{array}
$$

We can find spinors at arbitrary 3-momentum by applying the matrix that corresponds to the boost:
$U(\Lambda)^{-1} \Psi(x) U(\Lambda)=D(\Lambda) \Psi\left(\Lambda^{-1} x\right)$

$$
\begin{array}{r}
D(\Lambda)=\exp (i \eta \hat{\mathbf{p}} \cdot \mathbf{K}) \\
K^{j}=\frac{i}{4}\left[\gamma^{j}, \gamma^{0}\right]=\frac{i}{2} \gamma^{j} \gamma^{0} \\
S^{\mu \nu} \equiv \frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] \\
\eta \equiv \sinh ^{-1}(|\mathbf{p}| / m)
\end{array}
$$

we find:

$$
\begin{aligned}
u_{s}(\mathbf{p}) & =\exp (i \eta \hat{\mathbf{p}} \cdot \mathbf{K}) u_{s}(\mathbf{0}) \\
v_{s}(\mathbf{p}) & =\exp (i \eta \hat{\mathbf{p}} \cdot \mathbf{K}) v_{s}(\mathbf{0})
\end{aligned}
$$

and similarly:

$$
\begin{aligned}
\bar{u}_{s}(\mathbf{p}) & =\bar{u}_{s}(\mathbf{0}) \exp (-i \eta \hat{\mathbf{p}} \cdot \mathbf{K}) \\
\bar{v}_{s}(\mathbf{p}) & =\bar{v}_{s}(\mathbf{0}) \exp (-i \eta \hat{\mathbf{p}} \cdot \mathbf{K})
\end{aligned} \quad \overline{K^{j}}=K^{j} .
$$

For any combination of gamma matrices we define:

$$
\bar{A} \equiv \beta A^{\dagger} \beta
$$

It is straightforward to show:

$$
\begin{array}{rlr}
\overline{\gamma^{\mu}} & =\gamma^{\mu}, & \\
\overline{S^{\mu \nu}} & =S^{\mu \nu}, & S^{\mu \nu} \equiv \frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] \\
\overline{K^{j}}=K^{j} \\
\overline{i \gamma_{5}} & =i \gamma_{5}, \\
\overline{\gamma^{\mu} \gamma_{5}} & =\gamma^{\mu} \gamma_{5} \\
\overline{i \gamma_{5} S^{\mu \nu}} & =i \gamma_{5} S^{\mu \nu}
\end{array}
$$

218

For barred spinors we get:

$$
\bar{u}_{s}(\mathbf{p})(\not p+m)=0
$$

$$
\bar{v}_{s}(\mathbf{p})(-\not p+m)=0
$$

$$
\begin{array}{r}
(\not p+m) u(\mathbf{p})=0 \\
(-\not p+m) v(\mathbf{p})=0 \\
\bar{u}_{s}(\mathbf{p}) \equiv u_{s}^{\dagger}(\mathbf{p}) \beta \\
\bar{v}_{s}(\mathbf{p}) \equiv v_{s}^{\dagger}(\mathbf{p}) \beta
\end{array}
$$

It is straightforward to derive explicit formulas for spinors, but will will not need them; all we will need are products of spinors of the form:

$$
\bar{u}_{s^{\prime}}(\mathbf{p}) u_{s}(\mathbf{p})=\bar{u}_{s^{\prime}}(\mathbf{0}) u_{s}(\mathbf{0})
$$

$u_{s}(\mathbf{p})=\exp (i \eta \hat{\mathbf{p}} \cdot \mathbf{K}) u_{s}(\mathbf{0})$
$v_{s}(\mathbf{p})=\exp (i \eta \hat{\mathbf{p}} \cdot \mathbf{K}) v_{s}(\mathbf{0})$
$\bar{u}_{s}(\mathbf{p})=\bar{u}_{s}(\mathbf{0}) \exp (-i \eta \hat{\mathbf{p}} \cdot \mathbf{K})$ $\bar{v}_{s}(\mathbf{p})=\bar{v}_{s}(\mathbf{0}) \exp (-i \eta \hat{\mathbf{p}} \cdot \mathbf{K})$

Useful identities (Gordon identities):

$$
\begin{aligned}
2 m \bar{u}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \gamma^{\mu} u_{s}(\mathbf{p}) & =\bar{u}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\left[\left(p^{\prime}+p\right)^{\mu}-2 i S^{\mu \nu}\left(p^{\prime}-p\right)_{\nu}\right] u_{s}(\mathbf{p}) \\
-2 m \bar{v}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \gamma^{\mu} v_{s}(\mathbf{p}) & =\bar{v}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\left[\left(p^{\prime}+p\right)^{\mu}-2 i S^{\mu \nu}\left(p^{\prime}-p\right)_{\nu}\right] v_{s}(\mathbf{p})
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\gamma^{\mu} \not p & =\frac{1}{2}\left\{\gamma^{\mu}, \not p\right\}+\frac{1}{2}\left[\gamma^{\mu}, \not p\right] \\
\not p \gamma^{\prime} & =-p^{\mu}-2 i S^{\mu \nu} p_{\nu} \\
& =\frac{1}{2}\left\{\gamma^{\mu}, \not p^{\prime}\right\}-\frac{1}{2}\left[\gamma^{\mu}, \not{ }^{\prime}\right]
\end{aligned}=-p^{\prime \mu}+2 i S^{\mu \nu} p_{\nu}^{\prime} .
$$

add the two equations, and sandwich them between spinors, $\begin{gathered}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=-2 g^{\mu \nu} \\ S^{\mu \nu} \equiv \frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]\end{gathered}$ and use:

$$
\begin{aligned}
(\not p+m) u(\mathbf{p}) & =0 & \bar{u}_{s}(\mathbf{p})(\not p+m) & =0 \\
(-\not p+m) v(\mathbf{p}) & =0 & \bar{v}_{s}(\mathbf{p})(-\not p+m) & =0
\end{aligned}
$$

An important special case $p^{\prime}=p$:

$$
\begin{aligned}
& \bar{u}_{s^{\prime}}(\mathbf{p}) \gamma^{\mu} u_{s}(\mathbf{p})=2 p^{\mu} \delta_{s^{\prime} s} \\
& \bar{v}_{s^{\prime}}(\mathbf{p}) \gamma^{\mu} v_{s}(\mathbf{p})=2 p^{\mu} \delta_{s^{\prime} s}
\end{aligned}
$$

One can also show:

$$
\begin{aligned}
& \bar{u}_{s^{\prime}}(\mathbf{p}) \gamma^{0} v_{s}(-\mathbf{p})=0 \\
& \bar{v}_{s^{\prime}}(\mathbf{p}) \gamma^{0} u_{s}(-\mathbf{p})=0
\end{aligned}
$$

homework

Gordon identities with gamma-5:

$$
\begin{aligned}
& \bar{u}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\left[\left(p^{\prime}+p\right)^{\mu}-2 i S^{\mu \nu}\left(p^{\prime}-p\right)_{\nu}\right] \gamma_{5} u_{s}(\mathbf{p})=0 \\
& \bar{v}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\left[\left(p^{\prime}+p\right)^{\mu}-2 i S^{\mu \nu}\left(p^{\prime}-p\right)_{\nu}\right] \gamma_{5} v_{s}(\mathbf{p})=0
\end{aligned}
$$

homework

We will find very useful the spin sums of the form:

$$
\sum_{s= \pm} u_{s}(\mathbf{p}) \bar{u}_{s}(\mathbf{p})
$$

can be directly calculated but we will find the correct for by the following argument: the sum over spin removes all the memory of the spin-quantization axis, and the result can depend only on the momentum four-vector and gamma matrices with all indices contracted.

In the rest frame, $\not p=-m \gamma^{0}$, we have:

$$
\begin{aligned}
& \sum_{s= \pm} u_{s}(\mathbf{0}) \bar{u}_{s}(\mathbf{0})=m \gamma^{0}+m \\
& \sum_{s= \pm} v_{s}(\mathbf{0}) \bar{v}_{s}(\mathbf{0})=m \gamma^{0}-m
\end{aligned}
$$

Thus we conclude:

$$
\begin{aligned}
& \sum_{s= \pm} u_{s}(\mathbf{p}) \bar{u}_{s}(\mathbf{p})=-\not p+m \\
& \sum_{s= \pm} v_{s}(\mathbf{p}) \bar{v}_{s}(\mathbf{p})=-\not p-m
\end{aligned}
$$

if instead of the spin sum we need just a specific spin product, e.g.

$$
u_{+}(\mathbf{p}) \bar{u}_{+}(\mathbf{p})
$$

we can get it using appropriate spin projection matrices:
in the rest frame we have

$$
\begin{aligned}
& \frac{1}{2}\left(1+2 s S_{z}\right) u_{s^{\prime}}(\mathbf{0})=\delta_{s s^{\prime}} u_{s^{\prime}}(\mathbf{0}) \\
& \frac{1}{2}\left(1-2 s S_{z}\right) v_{s^{\prime}}(\mathbf{0})=\delta_{s s^{\prime}} v_{s^{\prime}}(\mathbf{0})
\end{aligned}
$$

$$
\begin{aligned}
S_{z} u_{ \pm}(\mathbf{0}) & = \pm \frac{1}{2} u_{ \pm}(\mathbf{0}) \\
S_{z} v_{ \pm}(\mathbf{0}) & =\mp \frac{1}{2} v_{ \pm}(\mathbf{0})
\end{aligned}
$$

the spin matrix $S_{z}=\frac{i}{2} \gamma^{1} \gamma^{2}$ can be written as:

$$
S_{z}=-\frac{1}{2} \gamma_{5} \gamma^{3} \gamma^{0}
$$

$$
\gamma_{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right)
$$

in the rest frame we can write γ^{0} as $-\not p / m$ and γ^{3} as $\not \boldsymbol{\chi}$ and so we have:

$$
\begin{array}{rr}
S_{z}=\frac{1}{2 m} \gamma_{5} \not p \not p & z^{\mu}=(0, \hat{\mathbf{z}}) \\
z^{2}=1
\end{array}
$$

we can now boost it to any frame
simply by replacing z and p with
their values in that frame

Boosting to a different frame we get:

$$
\begin{array}{rr}
\frac{1}{2}\left(1+2 s S_{z}\right) u_{s^{\prime}}(\mathbf{0})=\delta_{s s^{\prime}} u_{s^{\prime}}(\mathbf{0}) & \\
\frac{1}{2}\left(1-2 s S_{z}\right) v_{s^{\prime}}(\mathbf{0})=\delta_{s s^{\prime}} v_{s^{\prime}}(\mathbf{0}) & u_{s}(\mathbf{p})=\exp (i \eta \hat{\mathbf{p}} \cdot \mathbf{K}) u_{s}(\mathbf{0}) \\
S_{z}=\frac{1}{2 m} \gamma_{5} \not 2 \not p & v_{s}(\mathbf{p})=\exp (i \eta \hat{\mathbf{p}} \cdot \mathbf{K}) v_{s}(\mathbf{0}) \\
(\not p+m) u(\mathbf{p})=0 & \frac{1}{2}\left(1-s \gamma_{5} \not p\right) u_{s^{\prime}}(\\
(-\not p+m) v(\mathbf{p})=0 & \frac{1}{2}\left(1-s \gamma_{5} \not p\right) v_{s^{\prime}}(\\
\sum_{s= \pm} u_{s}(\mathbf{p}) \bar{u}_{s}(\mathbf{p})=-\not p+m & \\
\sum_{s= \pm} v_{s}(\mathbf{p}) \bar{v}_{s}(\mathbf{p})=-\not p-m & \\
u_{s}(\mathbf{p}) \bar{u}_{s}(\mathbf{p})=\frac{1}{2}\left(1-s \gamma_{5} \not p\right)(-\not p+m) \\
v_{s}(\mathbf{p}) \bar{v}_{s}(\mathbf{p})=\frac{1}{2}\left(1-s \gamma_{5} \not p\right)(-\not p-m)
\end{array}
$$

$$
\begin{aligned}
u_{s}(\mathbf{p}) \bar{u}_{s}(\mathbf{p}) & =\frac{1}{2}\left(1-s \gamma_{5} \not p\right)(-\not p+m) \\
v_{s}(\mathbf{p}) \bar{v}_{s}(\mathbf{p}) & =\frac{1}{2}\left(1-s \gamma_{5} \not p\right)(-\not p-m)
\end{aligned}
$$

Let's look at the situation with 3-momentum in the z-direction:
The component of the spin in the direction of the 3-momentum is called the helicity (a fermion with helicity $+\mathrm{I} / 2$ is called right-handed, a fermion with helicity $-\mathrm{I} / 2$ is called left-handed.

$$
\begin{aligned}
& \\
& \frac{1}{m} p^{\mu}=(\cosh \eta, 0,0, \sinh \eta) \\
& z^{\mu}=(\sinh \eta, 0,0, \cosh \eta) \\
& \leftarrow \begin{array}{r}
\text { rapidity } \\
z
\end{array} \\
& z=1
\end{aligned}
$$

In the limit of large rapidity

$$
z^{\mu}=\frac{1}{m} p^{\mu}+O\left(e^{-\eta}\right)
$$

$$
\begin{aligned}
u_{s}(\mathbf{p}) \bar{u}_{s}(\mathbf{p}) & =\frac{1}{2}\left(1-s \gamma_{5} \not x\right)(-\not p+m) \\
v_{s}(\mathbf{p}) \bar{v}_{s}(\mathbf{p}) & =\frac{1}{2}\left(1-s \gamma_{5} \not x\right)(-\not p-m)
\end{aligned}
$$

In the limit of large rapidity

$$
z^{\mu}=\frac{1}{m} p^{\mu}+O\left(e^{-\eta}\right)
$$

$$
\begin{aligned}
& u_{s}(\mathbf{p}) \bar{u}_{s}(\mathbf{p}) \rightarrow \frac{1}{2}\left(1+s \gamma_{5}\right)(-\not p) \\
& v_{s}(\mathbf{p}) \bar{v}_{s}(\mathbf{p}) \rightarrow \frac{1}{2}\left(1-s \gamma_{5}\right)(-\not p)
\end{aligned}
$$

dropped m, small relative to p
In the extreme relativistic limit the right-handed fermion (helicity $+\mathrm{I} / 2$) (described by spinors u+ for b-type particle and v- for d-type particle) is projected onto the lower two components only (part of the Dirac field that corresponds to the right-handed Weyl field). Similarly left-handed fermions are projected onto upper two components (right-handed Weyl field.

Formulas relevant for massless particles can be obtained from considering the extreme relativistic limit of a massive particle; in particular the following formulas are valid when setting $m=0$:

$$
\begin{array}{cr}
(\not p+m) u_{s}(\mathbf{p})=0 & \bar{u}_{s^{\prime}}(\mathbf{p}) \gamma^{\mu} u_{s}(\mathbf{p})=2 p^{\mu} \delta_{s^{\prime} s} \\
(-\not p+m) v_{s}(\mathbf{p})=0 & \bar{v}_{s^{\prime}}(\mathbf{p}) \gamma^{\mu} v_{s}(\mathbf{p})=2 p^{\mu} \delta_{s^{\prime} s} \\
\bar{u}_{s}(\mathbf{p})(\not p+m)=0 & \bar{u}_{s^{\prime}}(\mathbf{p}) \gamma^{0} v_{s}(-\mathbf{p})=0 \\
\bar{v}_{s}(\mathbf{p})(-\not p+m)=0 & \bar{v}_{s^{\prime}}(\mathbf{p}) \gamma^{0} u_{s}(-\mathbf{p})=0 \\
\bar{u}_{s^{\prime}}(\mathbf{p}) u_{s}(\mathbf{p})=+2 m \delta_{s^{\prime} s}, & \sum_{s= \pm} u_{s}(\mathbf{p}) \bar{u}_{s}(\mathbf{p})=-\not p+m \\
\bar{v}_{s^{\prime}}(\mathbf{p}) v_{s}(\mathbf{p})=-2 m \delta_{s^{\prime} s}, & \sum_{s= \pm} v_{s}(\mathbf{p}) \bar{v}_{s}(\mathbf{p})=-\not p-m \\
\bar{u}_{s^{\prime}}(\mathbf{p}) v_{s}(\mathbf{p})=0, & u_{s}(\mathbf{p}) \bar{u}_{s}(\mathbf{p}) \rightarrow \frac{1}{2}\left(1+s \gamma_{5}\right)(-\not p) \\
\bar{v}_{s^{\prime}}(\mathbf{p}) u_{s}(\mathbf{p})=0 . & v_{s}(\mathbf{p}) \bar{v}_{s}(\mathbf{p}) \rightarrow \frac{1}{2}\left(1-s \gamma_{5}\right)(-\not p)
\end{array}
$$

Canonical quantization of spinor fields II

based on S-39

Lagrangian for a Dirac field:

$$
\mathcal{L}=i \bar{\Psi} \not \partial \Psi-m \bar{\Psi} \Psi
$$

canonical anticommutation relations:

$$
\begin{aligned}
& \left\{\Psi_{\alpha}(\mathbf{x}, t), \Psi_{\beta}(\mathbf{y}, t)\right\}=0 \\
& \left\{\Psi_{\alpha}(\mathbf{x}, t), \bar{\Psi}_{\beta}(\mathbf{y}, t)\right\}=\left(\gamma^{0}\right)_{\alpha \beta} \delta^{3}(\mathbf{x}-\mathbf{y})
\end{aligned}
$$

The general solution to the Dirac equation:

$$
(-i \not \partial+m) \Psi=0
$$

$$
\Psi(x)=\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}(\mathbf{p}) u_{s}(\mathbf{p}) e^{i p x}+d_{s}^{\dagger}(\mathbf{p}) v_{s}(\mathbf{p}) e^{-i p x}\right]
$$

creation and annihilation operators

$$
\Psi(x)=\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}(\mathbf{p}) u_{s}(\mathbf{p}) e^{i p x}+d_{s}^{\dagger}(\mathbf{p}) v_{s}(\mathbf{p}) e^{-i p x}\right]
$$

We want to find formulas for creation and annihilation operator:

b's are time independent!

$$
\Psi(x)=\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}(\mathbf{p}) u_{s}(\mathbf{p}) e^{i p x}+d_{s}^{\dagger}(\mathbf{p}) v_{s}(\mathbf{p}) e^{-i p x}\right]
$$

similarly for d :

$$
\int d^{3} x e^{i p x} \Psi(x)=\sum_{s^{\prime}= \pm}\left[\frac{1}{2 \omega} e^{-2 i \omega t} b_{s^{\prime}}(-\mathbf{p}) u_{s^{\prime}}(-\mathbf{p})+\frac{1}{2 \omega} d_{s^{\prime}}^{\dagger}(\mathbf{p}) v_{s^{\prime}}(\mathbf{p})\right]
$$

multiply by $\bar{v}_{s}(\mathbf{p}) \gamma^{0}$ on the left:

for the hermitian conjugate we get:

$$
d_{s}(\mathbf{p})=\int d^{3} x e^{-i p x} \bar{\Psi}(x) \gamma^{0} v_{s}(\mathbf{p})
$$

$$
\begin{array}{ll}
b_{s}(\mathbf{p})=\int d^{3} x e^{-i p x} \bar{u}_{s}(\mathbf{p}) \gamma^{0} \Psi(x) & d_{s}(\mathbf{p})=\int d^{3} x e^{-i p x} \bar{\Psi}(x) \gamma^{0} v_{s}(\mathbf{p}) \\
d_{s}^{\dagger}(\mathbf{p})=\int d^{3} x e^{i p x} \bar{v}_{s}(\mathbf{p}) \gamma^{0} \Psi(x) & b_{s}^{\dagger}(\mathbf{p})=\int d^{3} x e^{i p x} \bar{\Psi}(x) \gamma^{0} u_{s}(\mathbf{p})
\end{array}
$$

we can easily work out the anticommutation relations for b and d operators:

$$
\begin{aligned}
& \left\{\Psi_{\alpha}(\mathbf{x}, t), \Psi_{\beta}(\mathbf{y}, t)\right\}=0, \\
& \left\{\Psi_{\alpha}(\mathbf{x}, t), \bar{\Psi}_{\beta}(\mathbf{y}, t)\right\}=\left(\gamma^{0}\right)_{\alpha \beta} \delta^{3}(\mathbf{x}-\mathbf{y})
\end{aligned}
$$

$$
\begin{array}{rlr}
\left\{b_{s}(\mathbf{p}), b_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\right\}=0 & \left\{b_{s}^{\dagger}(\mathbf{p}), b_{s^{\prime}}^{\dagger}\left(\mathbf{p}^{\prime}\right)\right\}=0 \\
\left\{d_{s}(\mathbf{p}), d_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\right\}=0 & \left\{d_{s}^{\dagger}(\mathbf{p}), d_{s^{\prime}}^{\dagger}\left(\mathbf{p}^{\prime}\right)\right\}=0 \\
\left\{b_{s}(\mathbf{p}), d_{s^{\prime}}^{\dagger}\left(\mathbf{p}^{\prime}\right)\right\}=0 & & \left\{b_{s}^{\dagger}(\mathbf{p}), d_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\right\}=0
\end{array}
$$

$b_{s}(\mathbf{p})=\int d^{3} x e^{-i p x} \bar{u}_{s}(\mathbf{p}) \gamma^{0} \Psi(x)$

$$
b_{s}^{\dagger}(\mathbf{p})=\int d^{3} x e^{i p x} \bar{\Psi}(x) \gamma^{0} u_{s}(\mathbf{p})
$$

we can easily work out the anticommutation relations for b and d operators:

$$
\begin{aligned}
& \left\{\Psi_{\alpha}(\mathbf{x}, t), \Psi_{\beta}(\mathbf{y}, t)\right\}=0 \\
& \left\{\Psi_{\alpha}(\mathbf{x}, t), \bar{\Psi}_{\beta}(\mathbf{y}, t)\right\}=\left(\gamma^{0}\right)_{\alpha \beta} \delta^{3}(\mathbf{x}-\mathbf{y})
\end{aligned}
$$

$$
\left\{b_{s}(\mathbf{p}), b_{s^{\prime}}^{\dagger}\left(\mathbf{p}^{\prime}\right)\right\}=\int d^{3} x d^{3} y e^{-i p x+i p^{\prime} y} \bar{u}_{s}(\mathbf{p}) \gamma^{0}\{\Psi(x), \bar{\Psi}(y)\} \gamma^{0} u_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)
$$

$$
\begin{array}{lr}
=\int d^{3} x e^{-i\left(p-p^{\prime}\right) x} \bar{u}_{s}(\mathbf{p}) \gamma^{0} \gamma^{0} \gamma^{0} u_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) & \left(\gamma^{0}\right)^{2}=1 \\
=(2 \pi)^{3} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \bar{u}_{s}(\mathbf{p}) \gamma^{0} u_{s^{\prime}}(\mathbf{p}) & \bar{u}_{s}(\mathbf{p}) \gamma^{0} u_{s^{\prime}}(\mathbf{p})=2 \omega \delta_{s s^{\prime}} \\
=(2 \pi)^{3} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) 2 \omega \delta_{s s^{\prime}} . &
\end{array}
$$

$$
d_{s}(\mathbf{p})=\int d^{3} x e^{-i p x} \bar{\Psi}(x) \gamma^{0} v_{s}(\mathbf{p})
$$

$$
d_{s}^{\dagger}(\mathbf{p})=\int d^{3} x e^{i p x} \bar{v}_{s}(\mathbf{p}) \gamma^{0} \Psi(x)
$$

similarly:

$$
\begin{aligned}
&\left\{\Psi_{\alpha}(\mathbf{x}, t), \Psi_{\beta}(\mathbf{y}, t)\right\}=0 \\
&\left\{\Psi_{\alpha}(\mathbf{x}, t), \bar{\Psi}_{\beta}(\mathbf{y}, t)\right\}=\left(\gamma^{0}\right)_{\alpha \beta} \delta^{3}(\mathbf{x}-\mathbf{y}) \\
&\left\{d_{s}^{\dagger}(\mathbf{p}), d_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\right\}=\int d^{3} x d^{3} y e^{i p x-i p^{\prime} y} \bar{v}_{s}(\mathbf{p}) \gamma^{0}\{\Psi(x), \bar{\Psi}(y)\} \gamma^{0} v_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \\
&= \int d^{3} x e^{i\left(p-p^{\prime}\right) x} \bar{v}_{s}(\mathbf{p}) \gamma^{0} \gamma^{0} \gamma^{0} v_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \\
&=(2 \pi)^{3} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \bar{v}_{s}(\mathbf{p}) \gamma^{0} v_{s^{\prime}}(\mathbf{p}) \\
&=(2 \pi)^{3} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) 2 \omega \delta_{s s^{\prime}}
\end{aligned}
$$

$$
b_{s}(\mathbf{p})=\int d^{3} x e^{-i p x} \bar{u}_{s}(\mathbf{p}) \gamma^{0} \Psi(x) \quad d_{s}(\mathbf{p})=\int d^{3} x e^{-i p x} \bar{\Psi}(x) \gamma^{0} v_{s}(\mathbf{p})
$$

and finally:

$$
\begin{aligned}
&\left\{\Psi_{\alpha}(\mathbf{x}, t), \Psi_{\beta}(\mathbf{y}, t)\right\}=0 \\
&\left\{\Psi_{\alpha}(\mathbf{x}, t), \bar{\Psi}_{\beta}(\mathbf{y}, t)\right\}=\left(\gamma^{0}\right)_{\alpha \beta} \delta^{3}(\mathbf{x}-\mathbf{y}) \\
&\left\{b_{s}(\mathbf{p}), d_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\right\}=\int d^{3} x d^{3} y e^{-i p x-i p^{\prime} y} \bar{u}_{s}(\mathbf{p}) \gamma^{0}\{\Psi(x), \bar{\Psi}(y)\} \gamma^{0} v_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \\
&=\int d^{3} x e^{-i\left(p+p^{\prime}\right) x} \bar{u}_{s}(\mathbf{p}) \gamma^{0} \gamma^{0} \gamma^{0} v_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \\
&=(2 \pi)^{3} \delta^{3}\left(\mathbf{p}+\mathbf{p}^{\prime}\right) \bar{u}_{s}(\mathbf{p}) \gamma^{0} v_{s^{\prime}}(-\mathbf{p}) \\
&=0 .
\end{aligned}
$$

$$
\Psi(x)=\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}(\mathbf{p}) u_{s}(\mathbf{p}) e^{i p x}+d_{s}^{\dagger}(\mathbf{p}) v_{s}(\mathbf{p}) e^{-i p x}\right]
$$

We want to calculate the hamiltonian in terms of the b and d operators; in the four-component notation we would find:

$$
H=\int d^{3} x \bar{\Psi}\left(-i \gamma^{i} \partial_{i}+m\right) \Psi
$$

let's start with:

$$
\begin{aligned}
& \begin{aligned}
\left(-i \gamma^{i} \partial_{i}+m\right) \Psi=\sum_{s= \pm} \int \widetilde{d p}\left(-i \gamma^{i} \partial_{i}+m\right) & \left(b_{s}(\mathbf{p}) u_{s}(\mathbf{p}) e^{i p x}\right. \\
& \left.+d_{s}^{\dagger}(\mathbf{p}) v_{s}(\mathbf{p}) e^{-i p x}\right)
\end{aligned} \\
& \begin{aligned}
\left(-i \gamma^{i} \partial_{i}+m\right) \Psi=\sum_{s= \pm} \int \widetilde{d p}\left(-i \gamma^{i} \partial_{i}+m\right) & \left(b_{s}(\mathbf{p}) u_{s}(\mathbf{p}) e^{i p x}\right. \\
& \left.+d_{s}^{\dagger}(\mathbf{p}) v_{s}(\mathbf{p}) e^{-i p x}\right)
\end{aligned} \\
& \begin{aligned}
=\sum_{s= \pm} \int \widetilde{d p} & {\left[b_{s}(\mathbf{p})\left(+\gamma^{i} p_{i}+m\right) u_{s}(\mathbf{p}) e^{i p x}\right.} \\
& \left.+d_{s}^{\dagger}(\mathbf{p})\left(-\gamma^{i} p_{i}+m\right) v_{s}(\mathbf{p}) e^{-i p x}\right]
\end{aligned} \\
& \begin{aligned}
=\sum_{s= \pm} \int \widetilde{d p} & {\left[b_{s}(\mathbf{p})\left(+\gamma^{i} p_{i}+m\right) u_{s}(\mathbf{p}) e^{i p x}\right.} \\
& \left.+d_{s}^{\dagger}(\mathbf{p})\left(-\gamma^{i} p_{i}+m\right) v_{s}(\mathbf{p}) e^{-i p x}\right]
\end{aligned} \\
& \begin{array}{l}
(\not p+m) u_{s}(\mathbf{p})=0 \\
(-p p+m) v_{s}(\mathbf{p})=0
\end{array} \\
& =\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}(\mathbf{p})\left(\gamma^{0} \omega\right) u_{s}(\mathbf{p}) e^{i p x}\right. \\
& \left.+d_{s}^{\dagger}(\mathbf{p})\left(-\gamma^{0} \omega\right) v_{s}(\mathbf{p}) e^{-i p x}\right] .
\end{aligned}
$$

$$
\Psi(x)=\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}(\mathbf{p}) u_{s}(\mathbf{p}) e^{i p x}+d_{s}^{\dagger}(\mathbf{p}) v_{s}(\mathbf{p}) e^{-i p x}\right]
$$

$$
H=\int d^{3} x \bar{\Psi}\left(-i \gamma^{i} \partial_{i}+m\right) \Psi
$$

thus we have:

$$
\begin{aligned}
\left(-i \gamma^{i} \partial_{i}+m\right) \Psi=\sum_{s= \pm} \int \widetilde{d p} & {\left[b_{s}(\mathbf{p})\left(\gamma^{0} \omega\right) u_{s}(\mathbf{p}) e^{i p x}\right.} \\
& \left.+d_{s}^{\dagger}(\mathbf{p})\left(-\gamma^{0} \omega\right) v_{s}(\mathbf{p}) e^{-i p x}\right]
\end{aligned}
$$

$$
\begin{array}{r}
H=\sum_{s, s^{\prime}} \int \widetilde{d p} \widetilde{d p^{\prime}} d^{3} x\left(b_{s^{\prime}}^{\dagger}\left(\mathbf{p}^{\prime}\right) \bar{u}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) e^{-i p^{\prime} x}+d_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \bar{v}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) e^{i p^{\prime} x}\right) \\
\times \omega\left(b_{s}(\mathbf{p}) \gamma^{0} u_{s}(\mathbf{p}) e^{i p x}-d_{s}^{\dagger}(\mathbf{p}) \gamma^{0} v_{s}(\mathbf{p}) e^{-i p x}\right) \\
=\sum_{s, s^{\prime}} \int \widetilde{d p} \widetilde{d p^{\prime}} d^{3} x \omega\left[b_{s^{\prime}}^{\dagger}\left(\mathbf{p}^{\prime}\right) b_{s}(\mathbf{p}) \bar{u}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \gamma^{0} u_{s}(\mathbf{p}) e^{-i\left(p^{\prime}-p\right) x}\right. \\
-b_{s^{\prime}}^{\dagger}\left(\mathbf{p}^{\prime}\right) d_{s}^{\dagger}(\mathbf{p}) \bar{u}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \gamma^{0} v_{s}(\mathbf{p}) e^{-i\left(p^{\prime}+p\right) x} \\
+d_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) b_{s}(\mathbf{p}) \bar{v}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \gamma^{0} u_{s}(\mathbf{p}) e^{+i\left(p^{\prime}+p\right) x} \\
\left.-d_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) d_{s}^{\dagger}(\mathbf{p}) \bar{v}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \gamma^{0} v_{s}(\mathbf{p}) e^{+i\left(p^{\prime}-p\right) x}\right]
\end{array}
$$

$$
\begin{aligned}
& H=\int d^{3} x \bar{\Psi}\left(-i \gamma^{i} \partial_{i}+m\right) \Psi \\
& =\sum_{s, s^{\prime}} \int \widetilde{d p} \widetilde{d p}^{\prime} d^{3} x \omega\left[b_{s^{\prime}}^{\dagger}\left(\mathbf{p}^{\prime}\right) b_{s}(\mathbf{p}) \bar{u}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \gamma^{0} u_{s}(\mathbf{p}) e^{-i\left(p^{\prime}-p\right) x}\right. \\
& -b_{s^{\prime}}^{\dagger}\left(\mathbf{p}^{\prime}\right) d_{s}^{\dagger}(\mathbf{p}) \bar{u}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \gamma^{0} v_{s}(\mathbf{p}) e^{-i\left(p^{\prime}+p\right) x} \\
& +d_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) b_{s}(\mathbf{p}) \bar{v}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \gamma^{0} u_{s}(\mathbf{p}) e^{+i\left(p^{\prime}+p\right) x} \\
& \left.-d_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) d_{s}^{\dagger}(\mathbf{p}) \bar{v}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right) \gamma^{0} v_{s}(\mathbf{p}) e^{+i\left(p^{\prime}-p\right) x}\right] \\
& =\sum_{s, s^{\prime}} \int \widetilde{d p} \frac{1}{2}\left[b_{s^{\prime}}^{\dagger}(\mathbf{p}) b_{s}(\mathbf{p}) \bar{u}_{s^{\prime}}(\mathbf{p}) \gamma^{0} u_{s}(\mathbf{p})\right. \\
& -b_{s^{\prime}}^{\dagger}(-\mathbf{p}) d_{s}^{\dagger}(\mathbf{p}) \bar{u}_{s^{\prime}}(-\mathbf{p}) \gamma^{0} v_{s}(\mathbf{p}) e^{+2 i \omega t} \\
& +d_{s^{\prime}}(-\mathbf{p}) b_{s}(\mathbf{p}) \bar{v}_{s^{\prime}}(-\mathbf{p}) \gamma^{0} u_{s}(\mathbf{p}) e^{-2 i \omega t} \\
& \left.-d_{s^{\prime}}(\mathbf{p}) d_{s}^{\dagger}(\mathbf{p}) \bar{v}_{s^{\prime}}(\mathbf{p}) \gamma^{0} v_{s}(\mathbf{p})\right] \\
& =\sum_{s} \int \widetilde{d p} \omega\left[b_{s}^{\dagger}(\mathbf{p}) b_{s}(\mathbf{p})-d_{s}(\mathbf{p}) d_{s}^{\dagger}(\mathbf{p})\right] . \\
& \bar{u}_{s}(\mathbf{p}) \gamma^{0} u_{s^{\prime}}(\mathbf{p})=2 \omega \delta_{s s^{\prime}} \\
& \bar{u}_{s^{\prime}}(\mathbf{p}) \gamma^{0} v_{s}(-\mathbf{p})=0 \\
& \bar{v}_{s^{\prime}}(\mathbf{p}) \gamma^{0} u_{s}(-\mathbf{p})=0
\end{aligned}
$$

$$
H=\sum_{s} \int \widetilde{d p} \omega\left[b_{s}^{\dagger}(\mathbf{p}) b_{s}(\mathbf{p})-d_{s}(\mathbf{p}) d_{s}^{\dagger}(\mathbf{p})\right]
$$

$$
\left\{d_{s}^{\dagger}(\mathbf{p}), d_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\right\}=(2 \pi)^{3} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) 2 \omega \delta_{s s^{\prime}}
$$

finally, we find:

$$
\begin{array}{r}
H=\sum_{s= \pm} \int \widetilde{d p} \omega\left[b_{s}^{\dagger}(\mathbf{p}) b_{s}(\mathbf{p})+d_{s}^{\dagger}(\mathbf{p}) d_{s}(\mathbf{p})\right]-4 \mathcal{E}_{0} V \\
V=(2 \pi)^{3} \delta^{3}(\mathbf{0})=\int d^{3} x \\
\mathcal{E}_{0}=\frac{1}{2}(2 \pi)^{-3} \int d^{3} k \omega
\end{array}
$$

four times the zero-point
energy of a scalar field
and opposite sign!
we will assume that the zero-point energy is cancelled by a constant term

$$
\Psi(x)=\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}(\mathbf{p}) u_{s}(\mathbf{p}) e^{i p x}+d_{s}^{\dagger}(\mathbf{p}) v_{s}(\mathbf{p}) e^{-i p x}\right]
$$

spin- I/2 states:
vacuum:
$|0\rangle$

$$
b_{s}(\mathbf{p})|0\rangle=d_{s}(\mathbf{p})|0\rangle=0
$$

b-type particle with momentum \mathbf{p}, energy $\omega=\left(\mathbf{p}^{2}+m^{2}\right)^{1 / 2}$, and spin $S_{z}=\frac{1}{2} s$:

$$
|p, s,+\rangle=b_{s}^{\dagger}(\mathbf{p})|0\rangle
$$

labels the charge of a particle
d-type particle with momentum \mathbf{p}, energy $\omega=\left(\mathbf{p}^{2}+m^{2}\right)^{1 / 2}$, and spin $S_{z}=\frac{1}{2} s$:

$$
|p, s,-\rangle=d_{s}^{\dagger}(\mathbf{p})|0\rangle
$$

b- and d-type particles are distinguished by the value of the charge:

$$
Q=\int d^{3} x j^{0}
$$

$$
\begin{array}{r}
j^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi \\
\Psi \rightarrow e^{-i \alpha} \Psi, \bar{\Psi} \rightarrow e^{+i \alpha} \bar{\Psi}
\end{array}
$$

very similar calculation as for the hamiltonian; we get:

$$
\begin{aligned}
Q & =\int d^{3} x \bar{\Psi} \gamma^{0} \Psi \\
& =\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}^{\dagger}(\mathbf{p}) b_{s}(\mathbf{p})+d_{s}(\mathbf{p}) d_{s}^{\dagger}(\mathbf{p})\right] \\
& =\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}^{\dagger}(\mathbf{p}) b_{s}(\mathbf{p})-d_{s}^{\dagger}(\mathbf{p}) d_{s}(\mathbf{p})\right]+\text { constant }
\end{aligned}
$$

counts the number of b-type particles - the number of d-type particles (later, the electron will be a b-type particle and the positron a d-type particle)

For a Majorana field:

$$
\begin{aligned}
& \mathcal{L}=\frac{i}{2} \Psi^{\mathrm{T}} \mathcal{C} \not \partial \Psi-\frac{1}{2} m \Psi^{\mathrm{T}} \mathcal{C} \Psi \\
& \Psi(x)=\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}(\mathbf{p}) u_{s}(\mathbf{p}) e^{i p x}+d_{s}^{\dagger}(\mathbf{p}) v_{s}(\mathbf{p}) e^{-i p x}\right]
\end{aligned}
$$

we need to incorporate the Majorana condition:

$$
\begin{gathered}
\Psi=\mathcal{C} \bar{\Psi}^{\mathrm{T}} \\
\bar{\Psi}(x)=\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}^{\dagger}(\mathbf{p}) \bar{u}_{s}(\mathbf{p}) e^{-i p x}+d_{s}(\mathbf{p}) \bar{v}_{s}(\mathbf{p}) e^{i p .4}\right] \\
\mathcal{C} \bar{\Psi}^{\mathrm{T}}(x)=\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}^{\dagger}(\mathbf{p}) \mathcal{C} \bar{u}_{s}^{\mathrm{T}}(\mathbf{p}) e^{-i p x}+d_{s}(\mathbf{p}) \mathcal{C} \bar{v}_{s}^{\mathrm{T}}(\mathbf{p}) e^{i p}\right. \\
\begin{array}{l}
\mathcal{C} \bar{u}_{s}(\mathbf{p})^{\mathrm{T}}=v_{s}(\mathbf{p}) \\
\overline{\mathcal{C}}_{s}(\mathbf{p})^{\mathrm{T}}=u_{s}(\mathbf{p}) \\
\text { next page } \quad \mathcal{C} \bar{\Psi}^{\mathrm{T}}(x)
\end{array} \sum_{s= \pm} \int \widetilde{d p}\left[b_{s}^{\dagger}(\mathbf{p}) v_{s}(\mathbf{p}) e^{-i p x}+d_{s}(\mathbf{p}) u_{s}(\mathbf{p}) e^{i p x} .\right.
\end{gathered}
$$

we have just used:

$$
\begin{aligned}
& \mathcal{C} \bar{u}_{s}(\mathbf{p})^{\mathrm{T}}=v_{s}(\mathbf{p}) \\
& \mathcal{C} \bar{v}_{s}(\mathbf{p})^{\mathrm{T}}=u_{s}(\mathbf{p})
\end{aligned}
$$

Proof:
$\mathcal{C}=\left(\begin{array}{cccc}0 & -1 & 0 & 0 \\ +1 & 0 & 0 & 0 \\ 0 & 0 & 0 & +1 \\ 0 & 0 & -1 & 0\end{array}\right)$

$$
\bar{u}_{+}(\mathbf{0})=\sqrt{m}(1,0,1,0),
$$

$\bar{u}_{-}(\mathbf{0})=\sqrt{m}(0,1,0,1)$,
$\bar{v}_{+}(\mathbf{0})=\sqrt{m}(0,-1,0,1)$,
$\bar{v}_{-}(\mathbf{0})=\sqrt{m}(1,0,-1,0)$.

$$
\begin{array}{ll}
u_{+}(\mathbf{0})=\sqrt{m}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right), & u_{-}(\mathbf{0})=\sqrt{m}\left(\begin{array}{c}
0 \\
1 \\
0 \\
1
\end{array}\right), \\
v_{+}(\mathbf{0})=\sqrt{m}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right), & v_{-}(\mathbf{0})=\sqrt{m}\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right) .
\end{array}
$$

by direct calculation:

$$
\begin{aligned}
& \mathcal{C} \bar{u}_{s}(\mathbf{0})^{\mathrm{T}}=v_{s}(\mathbf{0}) \\
& \mathcal{C} \bar{v}_{s}(\mathbf{0})^{\mathrm{T}}=u_{s}(\mathbf{0})
\end{aligned}
$$

boosting to any frame we get:
$\bar{u}_{s}(\mathbf{p})=\bar{u}_{s}(\mathbf{0}) \exp (-i \eta \hat{\mathbf{p}} \cdot \mathbf{K})$
$\bar{v}_{s}(\mathbf{p})=\bar{v}_{s}(\mathbf{0}) \exp (-i \eta \hat{\mathbf{p}} \cdot \mathbf{K})$
$u_{s}(\mathbf{p})=\exp (i \eta \hat{\mathbf{p}} \cdot \mathbf{K}) u_{s}(\mathbf{0})$
$v_{s}(\mathbf{p})=\exp (i \eta \hat{\mathbf{p}} \cdot \mathbf{K}) v_{s}(\mathbf{0}$

$$
\begin{aligned}
& \mathcal{C} \bar{u}_{s}(\mathbf{p})^{\mathrm{T}}=v_{s}(\mathbf{p}) \\
& \mathcal{C} \bar{v}_{s}(\mathbf{p})^{\mathrm{T}}=u_{s}(\mathbf{p})
\end{aligned}
$$

$$
\begin{array}{r}
\beta \mathcal{C}=-\mathcal{C} \beta \\
\mathcal{C}^{-1} \gamma^{\mu} \mathcal{C}=-\left(\gamma^{\mu}\right)^{\mathrm{T}} \\
K^{j}=\frac{i}{4}\left[\gamma^{j}, \gamma^{0}\right]=\frac{i}{2} \gamma^{j} \gamma^{0} \\
\mathcal{C}^{-1} K^{j} \mathcal{C}=-\left(K^{j}\right)^{\mathrm{T}}
\end{array}
$$

The hamiltonian for the Majorana field is:

$$
\begin{aligned}
H & =\frac{1}{2} \int d^{3} x \Psi^{\mathrm{T}} \mathcal{C}\left(-i \gamma^{i} \partial_{i}+m\right) \Psi \\
& =\frac{1}{2} \int d^{3} x \bar{\Psi}\left(-i \gamma^{i} \partial_{i}+m\right) \Psi
\end{aligned}
$$

and repeating the same manipulations as for the Dirac field we would find:

[^0]We have found that a Majorana field can be written:

$$
\Psi(x)=\sum_{s= \pm} \int \widetilde{d p}\left[b_{s}(\mathbf{p}) u_{s}(\mathbf{p}) e^{i p x}+b_{s}^{\dagger}(\mathbf{p}) v_{s}(\mathbf{p}) e^{-i p x}\right]
$$

canonical anticommutation relations:

$$
\begin{aligned}
& \left\{\Psi_{\alpha}(\mathbf{x}, t), \Psi_{\beta}(\mathbf{y}, t)\right\}=\left(\mathcal{C} \gamma^{0}\right)_{\alpha \beta} \delta^{3}(\mathbf{x}-\mathbf{y}), \\
& \left\{\Psi_{\alpha}(\mathbf{x}, t), \Psi_{\beta}(\mathbf{y}, t)\right\}=\left(\gamma^{0}\right)_{\alpha \beta} \delta^{3}(\mathbf{x}-\mathbf{y}),
\end{aligned}
$$

translate into:

$$
\begin{aligned}
& \left\{b_{s}(\mathbf{p}), b_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\right\}=0 \\
& \left\{b_{s}(\mathbf{p}), b_{s^{\prime}}^{\dagger}\left(\mathbf{p}^{\prime}\right)\right\}=(2 \pi)^{3} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) 2 \omega \delta_{s s^{\prime}}
\end{aligned}
$$

[^0]: we will assume that the zero-point energy is cancelled by a constant term

