Quantum electrodynamics (QED)

based on S-58
Quantum electrodynamics is a theory of photons interacting with the electrons and positrons of a Dirac field:

$$
\mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+i \bar{\Psi} \not \partial \Psi-m \bar{\Psi} \Psi+e \bar{\Psi} \gamma^{\mu} \Psi A_{\mu}
$$

$e=-0.302822$
$\alpha=e^{2} / 4 \pi=1 / 137.036$

$$
\begin{aligned}
& \text { Noether current of the } \\
& \text { lagrangian for a free Dirac field } j^{\mu}(x)=e \bar{\Psi}(x) \gamma^{\mu} \Psi(x) \\
& \qquad \partial_{\mu} j^{\mu}(x)=\delta \mathcal{L}(x)-\frac{\delta S}{\delta \varphi_{a}(x)} \delta \varphi_{a}(x)
\end{aligned}
$$

we want the current to be conserved and so we need to enlarge the gauge transformation also to the Dirac field:

$$
A^{\mu}(x) \rightarrow A^{\mu}(x)-\partial^{\mu} \Gamma(x),
$$

global symmetry is promoted into local $\Psi(x) \rightarrow \exp [-i e \Gamma(x)] \Psi(x)$,
$\Psi \rightarrow e^{-i \alpha} \Psi$
$\bar{\Psi} \rightarrow e^{+i \alpha} \bar{\Psi}$
$\bar{\Psi}(x) \rightarrow \exp [+i e \Gamma(x)] \bar{\Psi}(x)$.
symmetry of the lagrangian and so the current is conserved no matter if equations of motion are satisfied

We can write the QED lagrangian as:

$$
\mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+i \bar{\Psi} \not D \Psi-m \bar{\Psi} \Psi
$$

$$
D_{\mu} \equiv \partial_{\mu}-i e A_{\mu}
$$

covariant derivative
(the covariant derivative of a field transforms as the field itself) $\Psi(x) \rightarrow \exp [-i e \Gamma(x)] \Psi(x)$

$$
D_{\mu} \Psi(x) \rightarrow \exp [-i e \Gamma(x)] D_{\mu} \Psi(x)
$$

and so the lagrangian is manifestly gauge invariant!
Proof:

$$
\begin{aligned}
D_{\mu} \Psi & \rightarrow\left(\partial_{\mu}-i e\left[A_{\mu}-\partial_{\mu} \Gamma\right]\right)(\exp [-i e \Gamma] \Psi) \\
& =\exp [-i e \Gamma]\left(\partial_{\mu} \Psi-i e\left(\partial_{\mu} \Gamma\right) \Psi-i e\left[A_{\mu}-\partial_{\mu} \Gamma\right] \Psi\right) \\
& =\exp [-i e \Gamma]\left(\partial_{\mu}-i e A_{\mu}\right) \Psi \\
& =\exp [-i e \Gamma] D_{\mu} \Psi .
\end{aligned}
$$

$\Psi(x) \rightarrow \exp [-i e \Gamma(x)] \Psi(x)$
$D_{\mu} \Psi(x) \rightarrow \exp [-i e \Gamma(x)] D_{\mu} \Psi(x)$
We can also define the transformation rule for D :

$$
D_{\mu} \rightarrow e^{-i e \Gamma} D_{\mu} e^{+i e \Gamma}
$$

then

$$
\begin{aligned}
D_{\mu} \Psi & \rightarrow\left(e^{-i e \Gamma} D_{\mu} e^{+i e \Gamma}\right)\left(e^{-i e \Gamma} \Psi\right) \\
& =e^{-i e \Gamma} D_{\mu} \Psi
\end{aligned}
$$

as required.
Now we can express the field strength in terms of D's:

$$
D_{\mu} \equiv \partial_{\mu}-i e A_{\mu}
$$

$$
\left[D^{\mu}, D^{\nu}\right] \Psi(x)=-i e F^{\mu \nu}(x) \Psi(x)
$$

$$
F^{\mu \nu}=\frac{i}{e}\left[D^{\mu}, D^{\nu}\right]
$$

$$
\begin{array}{r}
F^{\mu \nu}=\frac{i}{e}\left[D^{\mu}, D^{\nu}\right] \\
D_{\mu} \rightarrow e^{-i e \Gamma} D_{\mu} e^{+i e \Gamma}
\end{array}
$$

Then we simply see:

$$
\begin{aligned}
F^{\mu \nu} & \rightarrow \frac{i}{e}\left[e^{-i e \Gamma} D^{\mu} e^{+i e \Gamma}, e^{-i e \Gamma} D^{\nu} e^{+i e \Gamma}\right] \\
& =e^{-i e \Gamma}\left(\frac{i}{e}\left[D^{\mu}, D^{\nu}\right]\right) e^{+i e \Gamma} \\
& =e^{-i e \Gamma} F^{\mu \nu} e^{+i e \Gamma} \\
& =F^{\mu \nu}
\end{aligned}
$$

no derivatives act on
exponentials
the field strength is gauge invariant as we already knew

Nonabelian symmetries

Let's generalize the theory of two real scalar fields:

$$
\mathcal{L}=-\frac{1}{2} \partial^{\mu} \varphi_{1} \partial_{\mu} \varphi_{1}-\frac{1}{2} \partial^{\mu} \varphi_{2} \partial_{\mu} \varphi_{2}-\frac{1}{2} m^{2}\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)-\frac{1}{16} \lambda\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)^{2}
$$

to the case of N real scalar fields:

$$
\mathcal{L}=-\frac{1}{2} \partial^{\mu} \varphi_{i} \partial_{\mu} \varphi_{i}-\frac{1}{2} m^{2} \varphi_{i} \varphi_{i}-\frac{1}{16} \lambda\left(\varphi_{i} \varphi_{i}\right)^{2}
$$

the lagrangian is clearly invariant under the $\mathrm{SO}(\mathrm{N})$ transformation:

$$
\begin{array}{r}
\varphi_{i}(x) \rightarrow R_{i j}(x) \\
\text { orthogonal matrix with det }=\text { । } \\
R^{T}=R^{-1} \\
\operatorname{det} R=+1
\end{array}
$$

lagrangian has also the Z_{2} symmetry, $\varphi_{i}(x) \rightarrow-\varphi_{i}(x)$, that enlarges $\mathrm{SO}(\mathrm{N})$ to $\mathrm{O}(\mathrm{N})$
infinitesimal $\mathrm{SO}(\mathrm{N})$ transformation:

$$
\begin{aligned}
& \text { transformation: } \\
& \qquad \begin{array}{r}
\text { real } \\
\operatorname{Im}\left(R^{-1} R\right)_{i j}= \\
\text { antisymmetric } \\
R_{i j}=\delta_{i j}+\theta_{i j}^{T}+O\left(\theta^{2}\right) \\
R_{i j}^{T}=\delta_{i j}+\theta_{j i} \\
R_{i j}^{-1}=\delta_{i j}-\theta_{i j} \\
\hline
\end{array} \\
& \qquad \begin{array}{l}
R_{k j}=0
\end{array}
\end{aligned}
$$

$\left(\mathrm{N}^{\wedge} 2\right.$ linear combinations of $\stackrel{k}{\mathrm{Im}}$ parts $\left.=0\right)$
there are $\frac{1}{2} N(N-1)$ linearly independent real antisymmetric
matrices, and we can write:

$$
\begin{aligned}
& \text { te: } \\
& \qquad \theta_{j k}=-i \theta^{a}\left(T^{a}\right)_{j k} \quad \begin{array}{c}
\text { hermitian, antisymmetric, } \mathrm{N} \times \mathrm{N} \\
\text { generator matrices of } \mathrm{SO}(\mathrm{~N})
\end{array}
\end{aligned}
$$

or $R=e^{-i \theta^{a} T^{a}}$
The commutator of two generators is a lin. comb. of generators:

$$
\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}
$$

we choose normalization: $\operatorname{Tr}\left(T^{a} T^{b}\right)=2 \delta^{a b} \longrightarrow f^{a b d}=-\frac{1}{2} i \operatorname{Tr}\left(\left[T^{a}, T^{b}\right] T^{d}\right)$

$$
\left(T^{a}\right)_{i j}=-i \varepsilon^{a i j}
$$

$$
\left[T^{a}, T^{b}\right]=i \varepsilon^{a b c} T^{c}
$$

$$
\varepsilon^{123}=+1
$$

Levi-Civita symbol
consider now a theory of N complex scalar fields:

$$
\mathcal{L}=-\partial^{\mu} \varphi_{i}^{\dagger} \partial_{\mu} \varphi_{i}-m^{2} \varphi_{i}^{\dagger} \varphi_{i}-\frac{1}{4} \lambda\left(\varphi_{i}^{\dagger} \varphi_{i}\right)^{2}
$$

the lagrangian is clearly invariant under the $U(N)$ transformation:

$$
\begin{aligned}
\varphi_{i}(x) & \rightarrow U_{i j} \varphi_{j}(x) \\
U^{\dagger} & =U^{-1}
\end{aligned}
$$

we can always write $U_{i j}=e^{-i \theta} \tilde{U}_{i j}$ so that $\operatorname{det} \tilde{U}^{-}=+1$.
actually, the lagrangian has
larger symmetry, $\mathrm{SO}(2 \mathrm{~N})$:
$\mathrm{SU}(\mathrm{N})$ - group of special unitary NxN matrices $\mathrm{U}(\mathrm{N})=\mathrm{U}(\mathrm{I}) \times \mathrm{SU}(\mathrm{N})$
$\varphi_{j}=\left(\varphi_{j 1}+i \varphi_{j 2}\right) / \sqrt{2}$
$\varphi_{j}^{\dagger} \varphi_{j}=\frac{1}{2}\left(\varphi_{11}^{2}+\varphi_{12}^{2}+\ldots+\varphi_{N 1}^{2}+\varphi_{N 2}^{2}\right)$
infinitesimal $S U(N)$ transformation:

$$
\tilde{U}_{i j}=\delta_{i j}-i \theta^{a}\left(T^{a}\right)_{i j}+O\left(\theta^{2}\right) \quad \text { hermitian } \quad U^{\dagger}=U^{-1}
$$

or $\tilde{U}=e^{-i \theta^{a} T^{a}}$.
traceless

$$
\operatorname{det} \widetilde{U}=+1
$$

$$
\ln \operatorname{det} A=\operatorname{Tr} \ln A
$$

there are $N^{2}-1$ linearly independent traceless hermitian matrices:

$$
\begin{aligned}
& \qquad\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c} \\
& \operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b} \\
& \text { the structure coefficients } \\
& \text { are } f^{a b c}=2 \varepsilon^{a b c}, \\
& \text { the same as for } \mathrm{SO}(3)
\end{aligned}
$$

e.g. $S U(2)-3$ Pauli matrices

Nonabelian gauge theory

based on S-69
Consider a theory of N scalar or spinor fields that is invariant under:

$$
\phi_{i}(x) \rightarrow U_{i j} \phi_{j}(x) \underset{\text { for } \mathrm{SU}(\mathrm{~N}) \text { : a special unitary } \mathrm{N} \times \mathrm{N} \text { matrix }}{\text { for } \mathrm{SO}(\mathrm{~N}): \text { a special orthogonal } \mathrm{N} \times \mathrm{N} \text { matrix }}
$$

In the case of $U(I)$ we could promote the symmetry to local symmetry but we had to include a gauge field $A_{\mu}(x)$ and promote ordinary derivative to covariant derivative:

$$
\begin{array}{ll}
\phi(x) \rightarrow U(x) \phi(x) & U(x)=\exp [-i e \Gamma(x)] \quad D_{\mu}=\partial_{\mu}-i e A_{\mu} \\
D_{\mu} \rightarrow U(x) D_{\mu} U^{\dagger}(x)
\end{array}
$$

then the kinetic terms and mass terms: $-\left(D_{\mu} \varphi\right)^{\dagger} D^{\mu} \varphi, m^{2} \varphi^{\dagger} \varphi, i \bar{\Psi} D D \Psi$ and $m \bar{\Psi} \Psi$ are gauge invariant. The transformation of covariant derivative in general implies that the gauge field transforms as:

$$
\begin{aligned}
& A_{\mu}(x) \rightarrow U(x) A_{\mu}(x) U^{\dagger}(x)+\frac{i}{e} U(x) \partial_{\mu} U^{\dagger}(x) \\
& \text { for } \cup(I): A_{\mu}(x) \rightarrow A_{\mu}(x)-\partial_{\mu} \Gamma(x)
\end{aligned}
$$

Now we can easily generalize this construction for $\mathrm{SU}(\mathrm{N})$ or $\mathrm{SO}(\mathrm{N})$:
an infinitesimal $\mathrm{SU}(\mathrm{N})$ transformation:
from 1 to $N^{2}-1$
from 1 to N
 (hermitian and traceless): $\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$

$$
\operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b}
$$

structure constants
(completely antisymmetric)
the $\mathrm{SU}(\mathrm{N})$ gauge field is a traceless hermitian $N x N$ matrix transforming as:

$$
\begin{aligned}
& A_{\mu}(x) \rightarrow U(x) A_{\mu}(x) U^{\dagger}(x)+\frac{i}{g} U(x) \partial_{\mu} U^{\dagger}(x) \\
& U(x)=\exp \left[-i g \Gamma^{a}(x) T^{a}\right]
\end{aligned}
$$

the covariant derivative is:

$$
D_{\mu}=\partial_{\mu}-i g A_{\mu}(x)
$$

or acting on a field:

$$
\mathrm{N} \times \mathrm{N} \text { identity matrix }
$$

$$
\left(D_{\mu} \phi\right)_{j}(x)=\partial_{\mu} \phi_{j}(x)-i g A_{\mu}(x)_{j k} \phi_{k}(x)
$$

using covariant derivative we get a gauge invariant lagrangian
We define the field strength (kinetic term for the gauge field) as:

$$
\begin{aligned}
F_{\mu \nu}(x) & \equiv \frac{i}{g}\left[D_{\mu}, D_{\nu}\right] \\
& =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i g\left[A_{\mu}, A_{\nu}\right]
\end{aligned}
$$

$$
F_{\mu \nu}(x) \rightarrow U(x) F_{\mu \nu}(x) U^{\dagger}(x)
$$

not gauge invariant separately
and so the gauge invariant kinetic term can be written as:

$$
\mathcal{L}_{\mathrm{kin}}=-\frac{1}{2} \operatorname{Tr}\left(F^{\mu \nu} F_{\mu \nu}\right)
$$

we can expand the gauge field in terms of the generator matrices:

$$
A_{\mu}(x)=A_{\mu}^{a}(x) T^{a}
$$

that can be inverted:

$$
A_{\mu}^{a}(x)=2 \operatorname{Tr} A_{\mu}(x) T^{a}
$$

similarly:

$$
\begin{aligned}
& F_{\mu \nu}(x)=F_{\mu \nu}^{a} T^{a} \\
& F_{\mu \nu}^{a}(x)=2 \operatorname{Tr} F_{\mu \nu} T^{a}
\end{aligned}
$$

$F_{\mu \nu}(x) \equiv \frac{i}{g}\left[D_{\mu}, D_{\nu}\right]$
$=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i g\left[A_{\mu}, A_{\nu}\right] \longrightarrow F_{\mu \nu}^{c} T^{c}=\left(\partial_{\mu} A_{\nu}^{c}-\partial_{\nu} A_{\mu}^{c}\right) T^{c}-i g A_{\mu}^{a} A_{\nu}^{b}\left[T^{a}, T^{b}\right]$

$$
\longrightarrow=\left(\partial_{\mu} A_{\nu}^{c}-\partial_{\nu} A_{\mu}^{c}+g f^{a b c} A_{\mu}^{a} A_{\nu}^{b}\right) T^{c}
$$

thus we have:

$$
F_{\mu \nu}^{c}=\partial_{\mu} A_{\nu}^{c}-\partial_{\nu} A_{\mu}^{c}+g f^{a b c} A_{\mu}^{a} A_{\nu}^{b}
$$

the kinetic term can be also written as:

$$
\mathcal{L}_{\text {kin }}=-\frac{1}{4} F^{c \mu \nu} F_{\mu \nu}^{c}
$$

$$
\begin{array}{r}
\mathcal{L}_{\text {kin }}=-\frac{1}{2} \operatorname{Tr}\left(F^{\mu \nu} F_{\mu \nu}\right) \\
F_{\mu \nu}(x)=F_{\mu \nu}^{a} T^{a} \\
\operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b} \\
{ }_{\mu \nu}^{c} \\
F_{\mu \nu}^{c}=\partial_{\mu} A_{\nu}^{c}-\partial_{\nu} A_{\mu}^{c}+g f^{a b c} A_{\mu}^{a} A_{\nu}^{b}
\end{array}
$$

Example, quantum chromodynamics - QCD:

in general, scalar and spinor fields can be in different representations of the group, T_{R}^{a}; gauge invariance requires that the gauge fields transform independently of the representation.

Group representations

based on S-70

A representation of a group is specified by a set of $D(\mathrm{R}) \times D(\mathrm{R})$
hermitian matrices that obey:

$$
\begin{aligned}
& \left.\qquad T_{\mathrm{R}}^{a}, T_{\mathrm{R}}^{b}\right]=i f^{a b c} T_{\mathrm{R}}^{c} \\
& \text { (the original set of } \mathrm{N} \times \mathrm{N} \text { dimensional } \\
& \text { matrices for } \mathrm{SU}(\mathrm{~N}) \text { or } \mathrm{SO}(\mathrm{~N}) \text { corresponds } \\
& \text { to the fundamental representation) } \\
& \text { the representation }
\end{aligned}
$$

\diamond if \mathbf{R} is not real or pseudoreal then it is complex
e.g. fundamental reps. of $\mathrm{SU}(\mathrm{N}), \mathrm{N}>2$ complex conjugate representation $\overline{\mathrm{R}}$ is specified by: $T_{\overline{\mathrm{R}}}^{a}=-\left(T_{\mathrm{R}}^{a}\right)^{*}$

The adjoint representation A :

$$
\left(T_{\mathrm{A}}^{a}\right)^{b c}=-i f^{a b c}
$$

A is a real representation

$$
-\left(T_{\mathrm{A}}^{a}\right)^{*}=T_{\mathrm{A}}^{a}
$$

the dimension of the adjoint representation, $D(\mathrm{~A})=\#$ of generators
$=$ the dimension of the group
to see that $T_{\mathrm{A}}^{a} \mathrm{~s}$ satisfy commutation relations we use the Jacobi identity:

$\left(T_{\mathrm{A}}^{a}\right)^{b d}\left(T_{\mathrm{A}}^{c}\right)^{d e}-\left(T_{\mathrm{A}}^{c}\right)^{b d}\left(T_{\mathrm{A}}^{a}\right)^{d e}=i f^{a c d}\left(T_{\mathrm{A}}^{d}\right)^{b e}$
$\left[T_{\mathrm{A}}^{a}, T_{\mathrm{A}}^{c}\right]=i f^{a c d} T_{\mathrm{A}}^{d}$

The index of a representation $T(\mathrm{R})$:

$$
\operatorname{Tr}\left(T_{\mathrm{R}}^{a} T_{\mathrm{R}}^{b}\right)=T(\mathrm{R}) \delta^{a b}
$$

The quadratic Casimir $C(\mathrm{R}):$

$$
T_{\mathrm{R}}^{a} T_{\mathrm{R}}^{a}=C(\mathrm{R})^{\text {multiplies the identity matrix }}
$$

Useful relation:

$$
T(\mathrm{R}) D(\mathrm{~A})=C(\mathrm{R}) D(\mathrm{R})
$$

$S U(N)$:
$T(\mathrm{~N})=\frac{1}{2}$
$T(\mathrm{~A})=N$
$D(\mathrm{~A})=N^{2}-1$
$\mathrm{SO}(\mathrm{N})$:
$T(\mathrm{~N})=2$
$T(\mathrm{~A})=2 N-4$
$D(\mathrm{~A})=\frac{1}{2} N(N-1)$

A representation is reducible if there is a unitary transformation

$$
T_{\mathrm{R}}^{a} \rightarrow U^{-1} T_{\mathrm{R}}^{a} U
$$

that brings all the generators to the same block diagonal form (with at least two blocks); otherwise it is irreducible.

For example, consider a reducible representation \mathbf{R} that can put into two blocks, then \mathbf{R} is a direct sum representation:

$$
\mathrm{R}=\mathrm{R}_{1} \oplus \mathrm{R}_{2}
$$

and we have:

$$
\begin{aligned}
D\left(\mathrm{R}_{1} \oplus \mathrm{R}_{2}\right) & =D\left(\mathrm{R}_{1}\right)+D\left(\mathrm{R}_{2}\right) \\
T\left(\mathrm{R}_{1} \oplus \mathrm{R}_{2}\right) & =T\left(\mathrm{R}_{1}\right)+T\left(\mathrm{R}_{2}\right)
\end{aligned}
$$

Consider a field that carries two group indices $\varphi_{i I}(x)$:

then the field is in the direct product representation:

$$
\mathrm{R}_{1} \otimes \mathrm{R}_{2}
$$

The corresponding generator matrix is:

$$
\left(T_{\mathrm{R}_{1} \otimes \mathrm{R}_{2}}^{a}\right)_{i I, j J}=\left(T_{\mathrm{R}_{1}}^{a}\right)_{i j} \delta_{I J}+\delta_{i j}\left(T_{\mathrm{R}_{2}}^{a}\right)_{I J}
$$

and we have:

$$
\begin{gathered}
D\left(\mathrm{R}_{1} \otimes \mathrm{R}_{2}\right)=D\left(\mathrm{R}_{1}\right) D\left(\mathrm{R}_{2}\right) \\
T\left(\mathrm{R}_{1} \otimes \mathrm{R}_{2}\right)=T\left(\mathrm{R}_{1}\right) D\left(\mathrm{R}_{2}\right)+D\left(\mathrm{R}_{1}\right) T\left(\mathrm{R}_{2}\right) \\
\text { to prove this we use the fact that }\left(T_{\mathrm{R}}^{a}\right)_{i i}=0
\end{gathered}
$$

We will use the following notation for indices of a complex representation:

$$
\varphi_{i} \quad i=1,2, \ldots, D(\mathrm{R})
$$

hermitian conjugation changes \mathbf{R} to $\overline{\mathrm{R}}$ and for a field in the conjugate representation we will use the upper index

$$
\left(\varphi_{i}\right)^{\dagger}=\varphi^{\dagger i}
$$

we write generators as:

$$
\left(T_{\mathrm{R}}^{a}\right)_{i}{ }^{j}
$$

indices are contracted only if one is up and one is down
an infinitesimal group transformation of φ_{i} is:

$$
\begin{aligned}
\varphi_{i} & \rightarrow\left(1-i \theta^{a} T_{\mathrm{R}}^{a}\right)_{i}{ }^{j} \varphi_{j} \\
& =\varphi_{i}-i \theta^{a}\left(T_{\mathrm{R}}^{a}\right)_{i}{ }^{j} \varphi_{j}
\end{aligned}
$$

generator matrices for $\overline{\mathrm{R}}$ are then given by

$$
\left(T_{\overline{\mathrm{R}}}^{a}\right)^{i}{ }_{j}=-\left(T_{\mathrm{R}}^{a}\right)_{j}^{i} \quad T_{\overline{\mathrm{R}}}^{a}=-\left(T_{\mathrm{R}}^{a}\right)^{*}
$$

we trade complex conjugation for transposition and an infinitesimal group transformation of $\varphi^{\dagger i}$ is:

Consider the Kronecker delta symbol

$$
\begin{aligned}
\overline{\mathrm{R}} & \\
\mathrm{R}_{i}^{j} & \rightarrow\left(1+i \theta^{a} T_{\mathrm{R}}^{a}\right)_{i}^{k}\left(1+i \theta^{a} T_{\mathrm{R}}^{a}\right)^{j}{ }_{l} \delta_{k}^{l} \\
& =\left(1+i \theta^{a} T_{\mathrm{R}}^{a}\right)_{i}^{k} \delta_{k}^{l}\left(1-i \theta^{a} T_{\mathrm{R}}^{a}\right)_{l}^{j} \\
& =\delta_{i}^{j}+O\left(\theta^{2}\right) .
\end{aligned}
$$

is an invariant symbol of the group!
this means that the product of the representations R and $\overline{\mathrm{R}}$ must contain the singlet representation 1 , specified by $T_{1}^{a}=0$

Thus we can write:

$$
\mathrm{R} \otimes \overline{\mathrm{R}}=1 \oplus \ldots
$$

Another invariant symbol:

$$
\begin{aligned}
& \xrightarrow[\left(T_{\mathrm{R}}^{b}\right)_{i}{ }^{j} \rightarrow\left(1-i \theta^{a} T_{\mathrm{R}}^{a}\right)_{i}{ }^{k}\left(1-i \theta^{a} T_{\mathrm{R}}^{a}\right)^{j}{ }_{l}\left(1-i \theta^{a} T_{\mathrm{A}}^{a}\right)^{b c}\left(T_{\mathrm{R}}^{c}\right)_{k}{ }^{l}]{ } \\
& \mathrm{R}=\left(T_{\mathrm{R}}^{b}\right)_{i}{ }^{j}-i \theta^{a}\left[\left(T_{\mathrm{R}}^{a}\right)_{i}{ }^{k}\left(T_{\mathrm{R}}^{b}\right)_{k}{ }^{j}+\left(T_{\overline{\mathrm{R}}}^{a}\right)^{j}{ }_{l}\left(T_{\mathrm{R}}^{b}\right)_{i}^{l}+\left(T_{\mathrm{A}}^{a}\right)^{b c}\left(T_{\mathrm{R}}^{c}\right)_{i}{ }^{j}\right] \\
& +O\left(\theta^{2}\right) \text {. } \\
& \left(T_{\mathrm{R}}^{a}\right)^{i}{ }_{j}=-\left(T_{\mathrm{R}}^{a}\right)_{j}{ }^{i} \quad\left(T_{\mathrm{A}}^{a}\right)^{b c}=-i f^{a b c} \\
& {[\ldots]=\left(T_{\mathrm{R}}^{a}\right)_{i}{ }^{k}\left(T_{\mathrm{R}}^{b}\right)_{k}{ }^{j}-\left(T_{\mathrm{R}}^{a}\right)_{l}{ }^{j}\left(T_{\mathrm{R}}^{b}\right)_{i}{ }^{l}-i f^{a b c}\left(T_{\mathrm{R}}^{c}\right)_{i}{ }^{j}} \\
& =\left(T_{\mathrm{R}}^{a} T_{\mathrm{R}}^{b}\right)_{i}{ }^{j}-\left(T_{\mathrm{R}}^{b} T_{\mathrm{R}}^{a}\right)_{i}{ }^{j}-i f^{a b c}\left(T_{\mathrm{R}}^{c}\right)_{i}{ }^{j} \\
& =0 \text {, }
\end{aligned}
$$

this implies that:
$\mathrm{R} \otimes \overline{\mathrm{R}} \otimes \mathrm{A}=1 \oplus \ldots$
must contain the singlet representation!

$$
\mathrm{R} \otimes \overline{\mathrm{R}} \otimes \mathrm{~A}=1 \oplus \ldots
$$

multiplying by \mathbf{A} we find:

$$
\mathrm{R} \otimes \overline{\mathrm{R}}=\mathrm{A} \oplus \ldots
$$

$\mathrm{R} \otimes \overline{\mathrm{R}}=1 \oplus \ldots$
$\mathrm{A} \otimes \mathrm{A}=1 \oplus \ldots$
(A is real)
combining it with a previous result we get

$$
\mathrm{R} \otimes \overline{\mathrm{R}}=1 \bigoplus \mathrm{~A} \bigoplus \ldots
$$

the product of a representation with its complex conjugate is always reducible into a sum that contains at least the singlet and the adjoint representations!

For the fundamental representation N of $S U(N)$ we have:

$$
\mathbf{N} \otimes \overline{\mathbf{N}}=1 \oplus \mathrm{~A} \begin{array}{r}
D(1)=1 \\
D(\mathrm{~N})=D(\overline{\mathrm{~N}})=N \\
D(\mathrm{~A})=N^{2}-1
\end{array}
$$

(no room for anything else)

Consider a real representation R :

$$
\begin{array}{r}
\mathrm{R} \otimes \overline{\mathrm{R}}=1 \oplus \mathrm{~A} \oplus \ldots \\
\overline{\mathrm{R}}=\mathrm{R}
\end{array}
$$

$$
\mathrm{R} \otimes \mathrm{R}=1 \oplus \mathrm{~A} \oplus \ldots
$$

implies the existence of an invariant
symbol with two R indices

$$
\begin{aligned}
\delta_{i j} & \rightarrow\left(1-i \theta^{a} T_{\mathrm{R}}^{a}\right)_{i}^{k}\left(1-i \theta^{a} T_{\mathrm{R}}^{a}\right)_{j}^{l} \delta_{k l} \\
& =\delta_{i j}-i \theta^{a}\left[\left(T_{\mathrm{R}}^{a}\right)_{i_{j}}+\left(T_{\mathrm{R}}^{a}\right)_{j i}\right]+O\left(\theta^{2}\right)
\end{aligned}
$$

For the fundamental representation N of $\mathrm{SO}(\mathrm{N})$ we have:

| N $\otimes \mathrm{N}=1_{\mathrm{S}} \oplus \mathrm{A}_{\mathrm{A}} \oplus \mathrm{S}_{\mathrm{S}}$ |
| :--- | :--- |
| $D(1)=1$ |
| $D(\mathrm{~N})=N$ |
| $D(\mathrm{~A})=\frac{1}{2} N(N-1)$ |
| $D(\mathrm{~S})=\frac{1}{2} N(N+1)-1$ |$\quad \delta_{i j}=\delta_{j i} \quad$| corresponds to a field with a |
| :--- |
| symmetric traceless pair of |
| fundamental indices |

> R is pseudoreal if it is not real but there is a transformation such that $-\left(T_{\mathrm{R}}^{a}\right)^{*}=V^{-1} T_{\mathrm{R}}^{a} V$

Consider now a pseudoreal representation:

$$
\mathrm{R} \otimes \mathrm{R}=1 \oplus \mathrm{~A} \oplus \ldots
$$

still holds but the Kronecker delta is not the corresponding invariant symbol:

$$
\begin{aligned}
\delta_{i j} & \rightarrow\left(1-i \theta^{a} T_{\mathrm{R}}^{a}\right)_{i}^{k}\left(1-i \theta^{a} T_{\mathrm{R}}^{a}\right)_{j} \delta_{k l} \\
& =\delta_{i j}-i \theta^{a}\left[\left(T_{\mathrm{R}}^{a}\right)_{i j}+\left(T_{\mathrm{R}}^{a}\right)_{j i}\right]+O\left(\theta^{2}\right)
\end{aligned}
$$

the only alternative is to have the singlet appear in the antisymmetric part of the product. For $\mathrm{SU}(\mathrm{N})$ another invariant symbol is the Levi-Civita symbol with N indices:

$$
\begin{aligned}
\varepsilon_{i_{1} \ldots i_{N}} & \rightarrow U_{i_{1}}^{j_{1}} \ldots U_{i_{N}}^{j_{N}} \varepsilon_{j_{1} \ldots j_{N}} \\
& =(\operatorname{det} U) \varepsilon_{i_{1} \ldots i_{N}}
\end{aligned}
$$

For $S U(2)$:

$$
2 \otimes 2=1_{\mathrm{A}} \oplus 3_{\mathrm{S}}
$$

we can use $\varepsilon^{i j}$ and $\varepsilon_{i j}$ to raise and lower $\operatorname{SU}(2)$ indices; if φ_{i} is in the 2 representation, then we can get a field in the $\overline{2}$ representation by raising the index: $\varphi^{i}=\varepsilon^{i j} \varphi_{j}$

Another invariant symbol of interest is $f^{a b c}$:
$\left(T_{\mathrm{A}}^{a}\right)^{b c}=-i f^{a b c}$
generator matrices in any rep. are invariant, or

$$
T(\mathrm{R}) f^{a b c}=-i \operatorname{Tr}\left(T_{\mathrm{R}}^{a}\left[T_{\mathrm{R}}^{b}, T_{\mathrm{R}}^{c}\right]\right)
$$

the right-hand side is obviously invariant.
Very important invariant symbol is the anomaly coefficient of the rep.:

$$
A(\mathrm{R}) d^{a b c} \equiv \frac{1}{2} \operatorname{Tr}\left(T_{\mathrm{R}}^{a}\left\{T_{\mathrm{R}}^{b}, T_{\mathrm{R}}^{c}\right\}\right)
$$

is completely symmetric
normalized so that $A(\mathrm{~N})=1$ for $\mathrm{SU}(\mathrm{N})$ with $N \geq 3$
Since $\left(T_{\mathrm{R}}^{a}\right)^{i}{ }_{j}=-\left(T_{\mathrm{R}}^{a}\right)_{j}{ }^{i}$ we have:

$$
A(\overline{\mathrm{R}})=-A(\mathrm{R})
$$

for real or pseudoreal representations $A(\mathrm{R})=0$. e.g. for $\mathrm{SU}(2)$, all representation are real or pseudoreal and $A(\mathrm{R})=0$ for all of them we also have:

$$
\begin{aligned}
& A\left(\mathrm{R}_{1} \oplus \mathrm{R}_{2}\right)=A\left(\mathrm{R}_{1}\right)+A\left(\mathrm{R}_{2}\right) \\
& A\left(\mathrm{R}_{1} \otimes \mathrm{R}_{2}\right)=A\left(\mathrm{R}_{1}\right) D\left(\mathrm{R}_{2}\right)+D\left(\mathrm{R}_{1}\right) A\left(\mathrm{R}_{2}\right)
\end{aligned}
$$

The path integral for photons

based on S-57
We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge:

$$
Z_{0}(J)=\int \mathcal{D} A e^{i S_{0}}
$$

$\mathcal{L}=+\frac{1}{2} A_{\mu}\left(g^{\mu \nu} \partial^{2}-\partial^{\mu} \partial^{\nu}\right) A_{\nu}+J^{\mu} A_{\mu}$
as in the case of scalar field we Fourier-transform to the momentum space:

$$
S_{0}=\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}}\left[-\widetilde{\varphi}(k)\left(k^{2}+m^{2}\right) \widetilde{\varphi}(-k)+\widetilde{J}(k) \widetilde{\varphi}(-k)+\widetilde{J}(-k) \widetilde{\varphi}(k)\right]
$$

$$
\begin{aligned}
S_{0}=\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} & -\widetilde{A}_{\mu}(k)\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right) \widetilde{A}_{\nu}(-k) \\
& \left.+\widetilde{J}^{\mu}(k) \widetilde{A}_{\mu}(-k)+\widetilde{J}^{\mu}(-k) \widetilde{A}_{\mu}(k)\right]
\end{aligned}
$$

we shift integration variables so that mixed terms disappear...

[^0]To see this, note:

$$
k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}=k^{2} P^{\mu \nu}(k)
$$

where

$$
P^{\mu \nu}(k) \equiv g^{\mu \nu}-k^{\mu} k^{\nu} / k^{2}
$$

is a projection matrix

$$
P^{\mu \nu}(k) P_{\nu}^{\lambda}(k)=P^{\mu \lambda}(k)
$$

and so the only allowed eigenvalues are 0 and +1
Since

$$
\begin{aligned}
& P^{\mu \nu}(k) k_{\nu}=0 \\
& g_{\mu \nu} P^{\mu \nu}(k)=3
\end{aligned}
$$

it has one 0 and three $+\mid$ eigenvalues.

$$
S_{0}=\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}}\left[-\widetilde{A}_{\mu}(k)\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right) \widetilde{A}_{\nu}(-k)\right.
$$

$$
\left.+\widetilde{J}^{\mu}(k) \widetilde{A}_{\mu}(-k)+\widetilde{J}^{\mu}(-k) \widetilde{A}_{\mu}(k)\right]
$$

We can decompose the gauge field $\widetilde{A}_{\mu}(k)$ into components aligned along a set of linearly independent four-vectors, one of which is k_{μ} and then this component does not contribute to the quadratic term because

$$
P^{\mu \nu}(k) k_{\nu}=0
$$

and it doesn't even contribute to the linear term because

$$
\partial^{\mu} J_{\mu}(x)=0 \quad \longrightarrow \quad k^{\mu} \widetilde{J}_{\mu}(k)=0
$$

and so there is no reason to integrate over it; we define the path integral as integral over the remaining three basis vector; these are given by

$$
k^{\mu} \widetilde{A}_{\mu}(k)=0
$$

which is equivalent to

$$
\partial^{\mu} A_{\mu}(x)=0
$$

$$
P^{\mu \nu}(k) \equiv g^{\mu \nu}-k^{\mu} k^{\nu} / k^{2}
$$

Within the subspace orthogonal to k_{μ} the projection matrix is simply the identity matrix and the inverse is straightforward; thus we get:

$$
\begin{aligned}
Z_{0}(J) & =\exp \left[\frac{i}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \widetilde{J}_{\mu}(k) \frac{P^{\mu \nu}(k)}{k^{2}-i \epsilon} \widetilde{J}_{\nu}(-k)\right] \\
& =\exp \left[\frac{i}{2} \int d^{4} x d^{4} y J_{\mu}(x) \Delta^{\mu \nu}(x-y) J_{\nu}(y)\right]
\end{aligned}
$$

going back to the
position space

$$
\Delta^{\mu \nu}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{i k(x-y)} \frac{P^{\mu \nu}(k)}{k^{2}-i \epsilon}
$$

propagator in the Lorentz gauge (Landau gauge)
we can again neglect the term with momenta because the current is conserved and we obtain the propagator in the Feynman gauge:

$$
\Delta^{\mu \nu}(x-y) \equiv \int \frac{d^{4} k}{(2 \pi)^{4}} e^{i k(x-y)} \tilde{\Delta}^{\mu \nu}(k) \quad \tilde{\Delta}^{\mu \nu}(k)=\frac{g^{\mu \nu}}{k^{2}-i \epsilon}
$$

The path integral for nonabelian gauge theory

based on S-7I

Now we want to evaluate the path integral for nonabelian gauge theory:

$$
\begin{aligned}
Z(J) & \propto \int \mathcal{D} A e^{i S_{\mathrm{YM}}(A, J)}, \\
S_{\mathrm{YM}}(A, J) & =\int d^{4} x\left[-\frac{1}{4} F^{a \mu \nu} F_{\mu \nu}^{a}+J^{a \mu} A_{\mu}^{a}\right]
\end{aligned}
$$

for $U(I)$ gauge theory, the component of the gauge field parallel to the fourmomentum k^{μ} did not appear in the action and so it should not be integrated over; since the $U(\mathrm{I})$ gauge transformation is of the form $A_{\mu}(x) \rightarrow A_{\mu}(x)-\partial_{\mu} \Gamma(x)$, excluding the components parallel to k^{μ} removes the gauge redundancy in the path integral.
nonabelian gauge transformation is nonlinear:

$$
\begin{aligned}
A_{\mu}(x) \rightarrow U(x) A_{\mu}(x) U^{\dagger}(x)+\frac{i}{g} U(x) \partial_{\mu} U^{\dagger}(x) & \\
& A_{\mu}(x)=A_{\mu}^{a}(x) T^{a}
\end{aligned}
$$

for an infinitesimal transformation:

$$
\begin{aligned}
U(x) & =I-i g \theta(x)+O\left(\theta^{2}\right) \\
& =I-i g \theta^{a}(x) T^{a}+O\left(\theta^{2}\right)
\end{aligned}
$$

we have:

$$
A_{\mu}(x) \rightarrow U(x) A_{\mu}(x) U^{\dagger}(x)+\frac{i}{g} U(x) \partial_{\mu} U^{\dagger}(x)
$$

$$
A_{\mu}(x) \rightarrow A_{\mu}(x)+i g\left[A_{\mu}(x), \theta(x)\right]-\partial_{\mu} \theta(x)
$$

or, in components:
$A_{\mu}(x)=A_{\mu}^{a}(x) T^{a}$

$$
\begin{aligned}
A_{\mu}^{a}(x) & \rightarrow A_{\mu}^{a}(x)-g f^{a b c} A_{\mu}^{b}(x) \theta^{c}(x)-\partial_{\mu} \theta^{a}(x) \\
& =A_{\mu}^{a}(x)-\left[\delta^{a c} \partial_{\mu}+g f^{a b c} A_{\mu}^{b}(x)\right] \theta^{c}(x) \\
& =A_{\mu}^{a}(x)-\left[\delta^{a c} \partial_{\mu}-i g A_{\mu}^{b}\left(-i f^{b a c}\right)\right] \theta^{c}(x) \\
& =A_{\mu}^{a}(x)-\left[\delta^{a c} \partial_{\mu}-i g A_{\mu}^{b}\left(T_{\AA}^{b}\right)^{a c}\right] \theta^{c}(x) \\
& =A_{\mu}^{a}(x)-D_{\mu}^{a c} \theta^{c}(x),
\end{aligned}
$$

the covariant derivative in the adjoint representation (instead of ∂_{μ} that we have for the $\cup(I)$ transformation)
we have to remove the gauge redundancy in a different way!

Consider an ordinary integral of the form:

$$
Z \propto \int d x d y e^{i S(x)}
$$

the integral over \mathbf{y} is redundant
we can simply drop it and define: $Z \equiv \int d x e^{i S(x)} \begin{aligned} & \text { this is how we dealt with gauge } \\ & \text { redundancy in the abelian case }\end{aligned}$
or we can get the same result by inserting a delta function:

$$
Z=\int d x d y \delta(y) e^{i S(x)}
$$

the this is what we are going to do
he argument of the delta for the nonabelian case

$$
Z=\int d x d y \delta(y-f(x)) e^{i S(x)}
$$

$$
Z=\int d x d y \delta(y-f(x)) e^{i S(x)}
$$

if $y=f(x)$ is a unique solution of $G(x, y)=0$ for fixed \mathbf{x}, we can write:

$$
\delta(G(x, y))=\frac{\delta(y-f(x))}{|\partial G / \partial y|}
$$

then we have:

$$
Z=\int d x d y \frac{\partial G}{\partial y} \delta(G) e^{i S}
$$

we dropped the abs. value
generalizing the result to an integral over \mathbf{n} variables:

$$
Z=\int d^{n} x d^{n} y \operatorname{det}\left(\frac{\partial G_{i}}{\partial y_{j}}\right) \prod_{i} \delta\left(G_{i}\right) e^{i S}
$$

Now we translate this result to path integral over nonabelian gauge fields:

let's evaluate the functional derivative:
$Z(J) \propto \int \mathcal{D} A \operatorname{det}\left(\frac{\delta G}{\delta \theta}\right) \prod_{x, a} \delta(G) e^{i S_{\mathrm{YM}}}$

$$
\begin{aligned}
& G^{a}(x) \equiv \partial^{\mu} A_{\mu}^{a}(x)-\omega^{a}(x) \\
& A_{\mu}^{a}(x) \rightarrow A_{\mu}^{a}(x)-D_{\mu}^{a c} \theta^{c}(x)
\end{aligned} \quad \longrightarrow G^{a}(x) \rightarrow G^{a}(x)-\partial^{\mu} D_{\mu}^{a b} \theta^{b}(x)
$$

and we find:

$$
\frac{\delta G^{a}(x)}{\delta \theta^{b}(y)}=-\partial^{\mu} D_{\mu}^{a b} \delta^{4}(x-y)
$$

$$
\frac{\delta \varphi_{b}(y)}{\delta \varphi_{a}(x)}=\delta_{b a} \delta^{4}(y-x)
$$

Recall, the functional determinant can be written as a path integral over complex Grassmann variables:
$\int d^{n} \bar{\psi} d^{n} \psi \exp \left(-i \bar{\psi}_{i} M_{i j} \psi_{j}\right) \propto \operatorname{det} M$

$$
\operatorname{det} \frac{\delta G^{a}(x)}{\delta \theta^{b}(y)} \propto \int \mathcal{D} c \mathcal{D} \bar{c} e^{i S_{\mathrm{gh}}}
$$

$$
S_{\mathrm{gh}}=\int d^{4} x \mathcal{L}_{\mathrm{gh}}
$$

where:

$$
\mathcal{L}_{\mathrm{gh}}=\bar{c}^{a} \underbrace{\partial^{\mu} D_{\mu}^{a b} c^{b}}
$$

the ghost lagrangian can be further written as:

$$
\begin{aligned}
& \qquad \begin{aligned}
& \mathcal{L}_{\mathrm{gh}}=\bar{c}^{a} \partial^{\mu} D_{\mu}^{a b} c^{b} \\
& \text { we drop the total divergence }
\end{aligned} \\
&=-\partial^{\mu} \bar{c}^{a} D_{\mu}^{a b} c^{b} \\
& D_{\mu}^{a c}=\delta^{a c} \partial_{\mu}-i g A_{\mu}^{b}\left(T_{\mathrm{A}}^{b}\right)^{a c}=-\partial^{\mu} \bar{c}^{a} \partial_{\mu} c^{a}+i g \partial^{\mu} \bar{c}^{a} A_{\mu}^{c}\left(T_{\mathrm{A}}^{c}\right)^{a b} c \\
&=-\partial^{\mu} \bar{c}^{a} \partial_{\mu} c^{a}+g f^{a b c} A_{\mu}^{c} \partial^{\mu} \bar{c}^{a} c^{b}
\end{aligned}
$$

Comments:
\diamond ghost fields interact with the gauge field; however ghosts do not exist and we will see later (when we discuss the BRST symmetry) that the amplitude to produce them in any scattering process is zero. The only place they appear is in loops! Since they are Grassmann fields, a closed loop of ghost lines in a Feynman diagram comes with a minus sign!
\diamond For abelian gauge theory $f^{a b c}=0$ and thus there is no interaction term for ghost fields; we can absorb its path integral into overall normalization.

At this point we have:

$$
\begin{aligned}
& Z(J) \propto \int \mathcal{D} A \operatorname{det}\left(\frac{\delta G}{\delta \theta}\right) \prod_{x, a} \delta(G) e^{i S_{\mathrm{YM}}} \\
& \operatorname{det} \frac{\delta G^{a}(x)}{\delta \theta^{b}(y)} \propto \int \mathcal{D} c \mathcal{D} \bar{c} e^{i S_{\mathrm{gh}}} \quad G^{a}(x) \equiv \partial^{\mu} A_{\mu}^{a}(x)-\omega^{a}(x)
\end{aligned}
$$

fixed, arbitrarily chosen function of \mathbf{x}
The path integral is independent of $\omega^{a}(x)$! Thus we can multiply it by arbitrary functional of $\boldsymbol{\omega}$ and perform a path integral over $\boldsymbol{\omega}$; the result changes only the overall normalization of $Z(J)$.
we can multiply $Z(J)$ by:

$$
\exp \left[-\frac{i}{2 \xi} \int d^{4} x \omega^{a} \omega^{a}\right] \underbrace{\text { integral over }} \boldsymbol{\omega} \text { is trivial }
$$

our final result is: $S_{\mathrm{gf}}=\int d^{4} x \mathcal{L}_{\mathrm{gf}}$

$$
Z(J) \propto \int \mathcal{D} A \mathcal{D} \bar{c} \mathcal{D} c \exp \left(i S_{\mathrm{YM}}+i S_{\mathrm{gh}}+i S_{\mathrm{gf}}\right)
$$

next time we will derive Feynman rules from this action...

The Feynman rules for nonabelian gauge theory

based on S-72

The lagrangian for nonabelian gauge theory is:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{YM}}= & -\frac{1}{4} F^{e \mu \nu} F_{\mu \nu}^{e} \\
= & -\frac{1}{4}\left(\partial^{\mu} A^{e \nu}-\partial^{\nu} A^{e \mu}+g f^{a b e} A^{a \mu} A^{b \nu}\right)\left(\partial_{\mu} A_{\nu}^{e}-\partial_{\nu} A_{\mu}^{e}+g f^{c d e} A_{\mu}^{c} A_{\nu}^{d}\right) \\
= & -\frac{1}{2} \partial^{\mu} A^{e \nu} \partial_{\mu} A_{\nu}^{e}+\frac{1}{2} \partial^{\mu} A^{e \nu} \partial_{\nu} A_{\mu}^{e} \\
& -g f^{a b e} A^{a \mu} A^{b \nu} \partial_{\mu} A_{\nu}^{e}-\frac{1}{4} g^{2} f^{a b e} f^{c d e} A^{a \mu} A^{b \nu} A_{\mu}^{c} A_{\nu}^{d}
\end{aligned}
$$

the gauge fixing term for R_{ξ} gauge:

$$
\mathcal{L}_{\mathrm{gf}}=-\frac{1}{2} \xi^{-1} \partial^{\mu} A_{\mu}^{e} \partial^{\nu} A_{\nu}^{e}
$$

we can write the gauge fixed lagrangian in the form:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{YM}}+\mathcal{L}_{\mathrm{gf}}= & \frac{1}{2} A^{e \mu}\left(g_{\mu \nu} \partial^{2}-\partial_{\mu} \partial_{\nu}\right) A^{e \nu}+\frac{1}{2} \xi^{-1} A^{e \mu} \partial_{\mu} \partial_{\nu} A^{e \nu} \\
& -g f^{a b c} A^{a \mu} A^{b \nu} \partial_{\mu} A_{\nu}^{c}-\frac{1}{4} g^{2} f^{a b e} f^{c d e} A^{a \mu} A^{b \nu} A_{\mu}^{c} A_{\nu}^{d}
\end{aligned}
$$

The gluon propagator in the R_{ξ} gauge:

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{YM}}+\mathcal{L}_{\mathrm{gf}}= \\
& \frac{\frac{1}{2} A^{e \mu}\left(g_{\mu \nu} \partial^{2}-\partial_{\mu} \partial_{\nu}\right) A^{e \nu}+\frac{1}{2} \xi^{-1} A^{e \mu} \partial_{\mu} \partial_{\nu} A^{e \nu}}{} \\
& \\
& \begin{array}{l}
\text { going to the momentum space and taking } \\
\text { the inverse of the quadratic term }
\end{array} \\
& \tilde{\Delta}_{\mu \nu}^{a b c} A^{a \mu} A^{b \nu} \partial_{\mu} A_{\nu}^{c}-\frac{1}{4} g^{2} f^{a b e} f^{c d e} A^{a \mu} A^{b \nu} A_{\mu}^{c} A_{\nu}^{d}
\end{aligned}
$$

The three-gluon vertex:

$$
\mathcal{L}_{\mathrm{YM}}+\mathcal{L}_{\mathrm{gf}}=\frac{1}{2} A^{e \mu}\left(g_{\mu \nu} \partial^{2}-\partial_{\mu} \partial_{\nu}\right) A^{e \nu}+\frac{1}{2} \xi^{-1} A^{e \mu} \partial_{\mu} \partial_{\nu} A^{e \nu}
$$

$$
\underline{-g f^{a b c} A^{a \mu} A^{b \nu} \partial_{\mu} A_{\nu}^{c}-\frac{1}{4} g^{2} f^{a b e} f^{c d e} A^{a \mu} A^{b \nu} A_{\mu}^{c} A_{\nu}^{d}, ~}
$$

$i \mathbf{V}_{\mu \nu \rho}^{a b c}(p, q, r)=i\left(-g f^{a b c}\right)\left(-i r_{\mu} g_{\nu \rho}\right)$
$+[5$ permutations of $(a, \mu, p),(b, \nu, q),(c, \rho, r)]$
$=g f^{a b c}\left[(q-r)_{\mu} g_{\nu \rho}+(r-p)_{\nu} g_{\rho \mu}+(p-q)_{\rho} g_{\mu \nu}\right]$.

The four-gluon vertex:

$$
\begin{gathered}
\mathcal{L}_{\mathrm{YM}}+\mathcal{L}_{\mathrm{gf}}=\frac{1}{2} A^{e \mu}\left(g_{\mu \nu} \partial^{2}-\partial_{\mu} \partial_{\nu}\right) A^{e \nu}+\frac{1}{2} \xi^{-1} A^{e \mu} \partial_{\mu} \partial_{\nu} A^{e \nu} \\
\quad-g f^{a b c} A^{a \mu} A^{b \nu} \partial_{\mu} A_{\nu}^{c}-\frac{1}{4} g^{2} f^{a b e} f^{c d e} A^{a \mu} A^{b \nu} A_{\mu}^{c} A_{\nu}^{d} \\
i \mathbf{V}_{\mu \nu \rho \sigma}^{a b c d}=- \\
\quad+i g^{2} f^{a b e} f^{c d e} g_{\mu \rho} g_{\nu \sigma} \\
=-[5 \operatorname{permutations~of~}(b, \nu),(c, \rho),(d, \sigma)]^{-i g^{2}\left[f^{a b e} f^{c d e}\left(g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right)\right.} \\
\quad+f^{a c e} f^{d b e}\left(g_{\mu \sigma} g_{\rho \nu}-g_{\mu \nu} g_{\rho \sigma}\right) \\
\left.\quad+f^{a d e} f^{b c e}\left(g_{\mu \nu} g_{\sigma \rho}-g_{\mu \rho} g_{\sigma \nu}\right)\right]
\end{gathered}
$$

The ghost-ghost-gluon vertex:
$\mathcal{L}_{\mathrm{gh}}=-\partial^{\mu} \bar{c}^{c} \partial_{\mu} c^{c}+g f^{a b c} A_{\mu}^{a} \partial^{\mu} \bar{c}^{b} c^{c}$
the derivative acting on an outgoing particle brings (-i momentum) of the particle
$\begin{aligned} & \text { ghosts are complex scalars so their } \\ & \text { propagator carry a charge arrow }\end{aligned} \quad \begin{array}{cccc}c & \\ \cdots\end{array}$
$i \mathbf{V}_{\mu}^{a b c}(q, r)=i\left(g f^{a b c}\right)\left(-i q_{\mu}\right)$
$=g f^{a b c} q_{\mu}$.

Finally we can include quarks:
propagator:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{q}} & =i \bar{\Psi}_{i} \not D_{i j} \Psi_{j}-m \bar{\Psi}_{i} \Psi_{i} \\
& =i \bar{\Psi}_{i} \not \partial \Psi_{i}-m \bar{\Psi}_{i} \Psi_{i}+g A_{\mu}^{a} \bar{\Psi}_{i} \gamma^{\mu} T_{i j}^{a} \Psi_{j}
\end{aligned}
$$

$\tilde{S}_{i j}(p)=\frac{(-\not p+m) \delta_{i j}}{p^{2}+m^{2}-i \epsilon}$
vertex:

$$
\left.\dot{i} \mathbf{V}_{i j}^{\mu a}=i g\right\urcorner^{\mu} \prod_{i j}^{a}
$$

for fields in different representations we would have $\left(T_{\mathrm{R}}^{a}\right)_{i j}$.

The beta function in nonabelian gauge theory

The complete (renormalized) lagrangian for nonabelian gauge theory is:

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2} Z_{3} A^{a \mu}\left(g_{\mu \nu} \partial^{2}-\partial_{\mu} \partial_{\nu}\right) A^{a \nu}+\frac{1}{2} \xi^{-1} A^{a \mu} \partial_{\mu} \partial_{\nu} A^{a \nu} \\
& -Z_{3 g} g f^{a b c} A^{a \mu} A^{b \nu} \partial_{\mu} A_{\nu}^{c}-\frac{1}{4} Z_{4 g} g^{2} f^{a b e} f^{c d e} A^{a \mu} A^{b \nu} A_{\mu}^{c} A_{\nu}^{d} \\
& -Z_{2^{\prime}} \partial^{\mu} \overline{\overparen{C}}^{a} \partial_{\mu} C^{a}+Z_{1^{\prime}} g f^{a b c} A_{\mu}^{c} \partial^{\mu} \bar{C}^{a} C^{b} \\
& +i Z_{2} \bar{\Psi}_{i} \not \partial \Psi_{i}-Z_{m} m \frac{1}{\bar{\Psi}_{i}} \Psi_{i}+Z_{1} g A_{\mu}^{a} \bar{\Psi}_{i} \gamma^{\mu} T_{i j}^{a} \Psi_{j} .
\end{aligned}
$$

from gauge invariance we expect.
$d=4-\varepsilon$

$$
g_{0}^{2}=\frac{Z_{1}^{2}}{Z_{2}^{2} Z_{3}} g^{2} \tilde{\mu}^{\varepsilon}=\frac{Z_{1^{\prime}}^{2}}{Z_{2^{\prime}}^{2} Z_{3}} g^{2} \tilde{\mu}^{\varepsilon}=\frac{Z_{3 g}^{2}}{Z_{3}^{3}} g^{2} \tilde{\mu}^{\varepsilon}=\frac{Z_{4 g}}{Z_{3}^{2}} g^{2} \tilde{\mu}^{\varepsilon}
$$

Slavnov-Taylor identities (non-abelian analogs of Ward identities)

There is only one diagram contributing at one loop level:

$$
\begin{gathered}
i \Sigma(\not p)= \\
\left(i Z_{1} e\right)^{2}\left(\frac{1}{i}\right)^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}}\left[\gamma^{\nu} \tilde{S}(\not p+\ell) \gamma^{\mu}\right] \tilde{\Delta}_{\mu \nu}(\ell) \\
-i\left(Z_{2}-1\right) \not p-i\left(Z_{m}-1\right) m+O\left(e^{4}\right)
\end{gathered}
$$

the photon propagator in the Feynman gauge: $\tilde{\Delta}_{\mu \nu}(\ell)=\frac{g_{\mu \nu}}{\ell^{2}+m_{\gamma}^{2}-i \epsilon}$ fictitious photon mass
following the usual procedure:

$$
i \Sigma(\not p)=\left(i Z_{1} e\right)^{2}\left(\frac{1}{i}\right)^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}}\left[\gamma^{\nu} \tilde{S}(\not p+\ell) \gamma^{\mu}\right] \tilde{\Delta}_{\mu \nu}(\ell)
$$

$$
-i\left(Z_{2}-1\right) \not p-i\left(Z_{m}-1\right) m+O\left(e^{4}\right) .
$$

$$
\begin{aligned}
i \Sigma(\not p)= & e^{2} \tilde{\mu}^{\varepsilon} \int_{0}^{1} d x \int \frac{d^{d} q}{(2 \pi)^{d}} \frac{N}{\left(q^{2}+D\right)^{2}} \\
& -i\left(Z_{2}-1\right) \not p-i\left(Z_{m}-1\right) m+O\left(e^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& q=\ell+x p \\
& D=x(1-x) p^{2}+x m^{2}+(1-x) m_{\gamma}^{2} \\
& N=\gamma_{\mu}(-\not p-\ell+m) \gamma^{\mu}
\end{aligned}
$$

$$
\gamma_{\mu} \gamma^{\mu}=-d \xrightarrow{\longrightarrow}=-(d-2)(\not p+\ell)-d m
$$

$$
\gamma_{\mu} \not p \gamma^{\mu}=(d-2) \not p \quad=-(d-2)[d / d+(1-x) \not p]-d m,
$$

we get:

$$
\begin{aligned}
\Sigma(\not p)= & -\frac{e^{2}}{8 \pi^{2}} \int_{0}^{1} d x((2-\varepsilon)(1-x) \not p+(4-\varepsilon) m)\left[\frac{1}{\varepsilon}-\frac{1}{2} \ln \left(D / \mu^{2}\right)\right] \\
& -\left(Z_{2}-1\right) \not p-\left(Z_{m}-1\right) m+O\left(e^{4}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\Sigma(\not p)= & -\frac{e^{2}}{8 \pi^{2}} \int_{0}^{1} d x((2-\varepsilon)(1-x) \not p+(4-\varepsilon) m)\left[\frac{1}{\varepsilon}-\frac{1}{2} \ln \left(D / \mu^{2}\right)\right] \\
& -\left(Z_{2}-1\right) \not p-\left(Z_{m}-1\right) m+O\left(e^{4}\right) .
\end{aligned}
$$

we set Z's to cancel divergent parts

$$
\begin{aligned}
Z_{2} & =1-\frac{e^{2}}{8 \pi^{2}}\left(\frac{1}{\varepsilon}+\text { finite }\right)+O\left(e^{4}\right) \\
Z_{m} & =1-\frac{e^{2}}{2 \pi^{2}}\left(\frac{1}{\varepsilon}+\text { finite }\right)+O\left(e^{4}\right)
\end{aligned}
$$

we can impose $\Sigma(-m)=0$ by writing:

$$
\begin{aligned}
& \Sigma(\not p)=\frac{e^{2}}{8 \pi^{2}}\left[\int_{0}^{1} d x((1-x) \not p+2 m) \ln \left(D / D_{0}\right)+\kappa_{2}(\not p+m)\right]+O\left(e^{4}\right) \\
& \text { fixed by imposing: } \Sigma^{\prime}(-m)=0 \quad D=x(1-x) p^{2}+x m^{2}+(1-x) m_{\gamma}^{2} \\
& D_{0}=x^{2} m^{2}+(1-x) m_{\gamma}^{2}
\end{aligned} \kappa_{2}=-2 \int_{0}^{1} d x x\left(1-x^{2}\right) m^{2} / D_{0} .
$$

we work in Feynman gauge and use the $\overline{\mathrm{MS}}$ scheme Let's start with the quark propagator:

the result has to be identical to QED up to the color factor:

$$
Z_{2}=1-C(\mathrm{R}) \frac{g^{2}}{8 \pi^{2}} \frac{1}{\varepsilon}+O\left(g^{4}\right)
$$

Finally, let's evaluate the diagram contributing to the vertex:

$$
i \mathbf{V}^{\mu}\left(p^{\prime}, p\right)=i Z_{1} e \gamma^{\mu}+i \mathbf{V}_{1 \text { loop }}^{\mu}\left(p^{\prime}, p\right)+O\left(e^{5}\right)
$$

$$
i \mathbf{V}_{1 \text { loop }}^{\mu}\left(p^{\prime}, p\right)=(i e)^{3}\left(\frac{1}{i}\right)^{3} \int \frac{d^{4} \ell}{(2 \pi)^{4}}\left[\gamma^{\rho} \tilde{S}\left(\not p^{\prime}+\ell\right) \gamma^{\mu} \tilde{S}(\not p+\ell) \gamma^{\nu}\right] \tilde{\Delta}_{\nu \rho}(\ell)
$$

$$
\tilde{\Delta}_{\mu \nu}(\ell)=\frac{g_{\mu \nu}}{\ell^{2}+m_{\gamma}^{2}-i \epsilon}
$$

combining denominators..
$i \mathbf{V}_{1 \text { loop }}^{\mu}\left(p^{\prime}, p\right)=(i e)^{3}\left(\frac{1}{i}\right)^{3} \int \frac{d^{4} \ell}{(2 \pi)^{4}}\left[\gamma^{\rho} \tilde{S}\left(\not p^{\prime}+\ell\right) \gamma^{\mu} \tilde{S}(p p+\ell) \gamma^{\nu}\right] \tilde{\Delta}_{\nu \rho}(\ell)$

$$
i \mathbf{V}_{1 \text { loop }}^{\mu}\left(p^{\prime}, p\right)=e^{3} \int d F_{3} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{N^{\mu}}{\left(q^{2}+D\right)^{3}}
$$

$q=\ell+x_{1} p+x_{2} p^{\prime}$,
$\int d F_{3} \equiv 2 \int_{0}^{1} d x_{1} d x_{2} d x_{3} \delta\left(x_{1}+x_{2}+x_{3}-1\right)$
$D=x_{1}\left(1-x_{1}\right) p^{2}+x_{2}\left(1-x_{2}\right) p^{\prime 2}-2 x_{1} x_{2} p \cdot p^{\prime}$
$+\left(x_{1}+x_{2}\right) m^{2}+x_{3} m_{\gamma}^{2}$,
$N^{\mu}=\gamma_{\nu}\left(-\not p^{\prime}-\ell+m\right) \gamma^{\mu}(-\not p-\ell+m) \gamma^{\nu}$
$=\gamma_{\nu}\left[-\not q+x_{1} \not p-\left(1-x_{2}\right) \not p^{\prime}+m\right] \gamma^{\mu}\left[-\not q-\left(1-x_{1}\right) \not p+x_{2} \not p^{\prime}+m\right] \gamma^{\nu}$
$=\gamma_{\nu} \phi \gamma^{\mu} \phi \gamma^{\nu}+\tilde{N}^{\mu}+($ linear in $q)$

$$
\tilde{N}^{\mu}=\gamma_{\nu}\left[x_{1} \not p-\left(1-x_{2}\right) \not p^{\prime}+m\right] \gamma^{\mu}\left[-\left(1-x_{1}\right) \not p+x_{2} \not p^{\prime}+m\right] \gamma^{\nu}
$$

$i \mathbf{V}_{1 \text { loop }}^{\mu}\left(p^{\prime}, p\right)=e^{3} \int d F_{3} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{N^{\mu}}{\left(q^{2}+D\right)^{3}}$
$N^{\mu}=\gamma_{\nu} \phi \gamma^{\mu} \phi \gamma^{\nu}+\tilde{N}^{\mu}+($ linear in $q)$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\tilde{N}^{\mu}=\gamma_{\nu}\left[x_{1} \not p-\left(1-x_{2}\right) \not p^{\prime}+m\right] \gamma^{\mu}\left[-\left(1-x_{1}\right) \not p+x_{2} \not p^{\prime}+m\right] \gamma^{\nu} \\
\text { continuing to d dimensions } \\
\gamma_{\nu} \phi q \gamma^{\mu} \phi q \gamma^{\nu} \rightarrow \frac{1}{d} q^{2} \gamma_{\nu} \gamma_{\rho} \gamma^{\mu} \gamma^{\rho} \gamma^{\nu}=(d-2) \gamma^{\mu}
\end{array}\right\} \frac{(d-2)^{2}}{d} q^{2} \gamma^{\mu}
\end{aligned}
$$

evaluating the loop integral we get:

$$
\begin{gathered}
\mathbf{V}_{1 \text { loop }}^{\mu}\left(p^{\prime}, p\right)=\frac{e^{3}}{8 \pi^{2}}\left[\left(\frac{1}{\varepsilon}-1-\frac{1}{2} \int d F_{3} \ln \left(D / \mu^{2}\right)\right) \gamma^{\mu}+\frac{1}{4} \int d F_{3} \frac{\tilde{N}^{\mu}}{D}\right] \\
\begin{array}{l}
i \mathbf{V}^{\mu}\left(p^{\prime}, p\right)=i Z_{1} e \gamma^{\mu}+i \mathbf{V}_{1 \text { loop }}^{\mu}\left(p^{\prime}, p\right)+O\left(e^{5}\right) \\
\text { the infinite part can be absorbed by } Z
\end{array} \\
Z_{1}=1-\frac{e^{2}}{8 \pi^{2}}\left(\frac{1}{\varepsilon}+\text { finite }\right)+O\left(e^{4}\right)
\end{gathered}
$$

the finite part of the vertex function is fixed by a suitable condition.

Let's continue with the quark-quark-gluon vertex:

$+$

the calculation of the Ist diagram is identical to QED with additional color factor:
$\left(T^{b} T^{a} T^{b}\right)_{i j}$

$$
\begin{aligned}
T^{b} T^{a} T^{b} & =T^{b}\left(T^{b} T^{a}+i f^{a b c} T^{c}\right) \\
& =C(\mathrm{R}) T^{a}+\frac{1}{2} i f^{a b c}\left(T^{b}, T^{c}\right] \\
& =C(\mathrm{R}) T^{a}+\frac{1}{2}\left(i f^{a b c}\right)\left(i f^{b d d}\right) T^{d} \\
& =C(\mathrm{R}) T^{a}-\frac{1}{2}\left(T_{\Lambda}^{a}\right) b c\left(T_{A}^{d}\right)^{b b} T^{d} \\
& =\left[C(\mathrm{R})-\frac{1}{2} T(\mathrm{~A})\right] T^{a} .
\end{aligned}
$$

thus the divergent part is the same as
in QED up to the color factor:

$$
\left[C(\mathrm{R})-\frac{1}{2} T(\mathrm{~A})\right] \frac{g^{2}}{8 \pi^{2} \varepsilon} i g T_{i j}^{a} \gamma^{\mu}
$$

Let's evaluate the second diagram:

$$
i \mathbf{V}_{\mu \nu \rho}^{a b c}(p, q, r)=g f^{a b c}\left[(q-r)_{\mu} g_{\nu \rho}+(r-p)_{\nu} g_{\rho \mu}+(p-q)_{\rho} g_{\mu \nu}\right]
$$

the divergent piece doesn't depend on external momenta, so we can set them to 0; using Feynman rules we get:

$$
\begin{aligned}
& i \mathbf{V}_{i j}^{a \mu}(0,0)=(i g)^{2} g f^{a b c}\left(T^{c} T^{b}\right)_{i j}\left(\frac{1}{i}\right)^{3} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\gamma_{\rho}(-\ell+m) \gamma_{\nu}}{\ell^{2} \ell^{2}\left(\ell^{2}+m^{2}\right)} \\
& \times\left[(\ell-(-\ell))^{\mu} g^{\nu \rho}+(-\ell-0)^{\nu} g^{\rho \mu}+(0-\ell)^{\rho} g^{\mu \nu}\right]
\end{aligned}
$$

$$
\begin{aligned}
& i \mathbf{V}_{i j}^{a \mu}(0,0)=(i g)^{2} g f^{a b c}\left(T^{c} T^{b}\right)_{i j}\left(\frac{1}{i}\right)^{3} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\gamma_{\rho}(-\ell+m) \gamma_{\nu}}{\ell^{2} \ell^{2}\left(\ell^{2}+m^{2}\right)} \\
& \times\left[(\ell-(-\ell))^{\mu} g^{\nu \rho}+(-\ell-0)^{\nu} g^{\rho \mu}+(0-\ell)^{\rho} g^{\mu \nu}\right] \\
& f^{a b c} T^{c} T^{b}=\frac{1}{2} f^{a b c}\left[T^{c}, T^{b}\right] \\
&=\frac{1}{2} i f^{a b c} f^{c b d} T^{d} \\
&=-\frac{1}{2} i T(\mathrm{~A}) T^{a}
\end{aligned}
$$

the numerator is:

$$
\begin{aligned}
& N^{\mu}=\gamma_{\rho}\left(-\gamma_{\sigma} \ell^{\sigma}+m\right) \gamma_{\nu}\left(2 \ell^{\mu} g^{\nu \rho}-\ell^{\nu} g^{\rho \mu}-\ell^{\rho} g^{\mu \nu}\right) \\
& \ell^{\sigma} \ell^{\mu} \rightarrow d^{-1} \ell^{2} g^{\sigma \mu} \text { we can drop linear terms } \\
& N^{\mu} \rightarrow-d^{-1} \ell^{2}\left(\gamma_{\rho} \gamma_{\sigma} \gamma_{\nu}\right)\left(2 g^{\sigma \mu} g^{\nu \rho}-g^{\sigma \nu} g^{\rho \mu}-g^{\sigma \rho} g^{\mu \nu}\right) \\
& \rightarrow-d^{-1} \ell^{2}\left(2 \gamma^{\nu} \gamma^{\mu} \gamma_{\nu}-\gamma^{\mu} \gamma^{\nu} \gamma_{\nu}-\gamma_{\rho} \gamma^{\rho} \gamma^{\mu}\right) \\
& \rightarrow-d^{-1} \ell^{2}(2(d-2)+d+d) \gamma^{\mu}
\end{aligned}
$$

for $d=4$ (we are interested in the divergent part only):

$$
N^{\mu} \rightarrow-3 \ell^{2} \gamma^{\mu}
$$

$$
i \mathbf{V}_{i j}^{a \mu}(0,0)=(i g)^{2} g f^{a b c}\left(T^{c} T^{b}\right)_{i j}\left(\frac{1}{i}\right)^{3} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\gamma_{\rho}(-\ell+m) \gamma_{\nu}}{\ell^{2} \ell^{2}\left(\ell^{2}+m^{2}\right)}
$$

$$
\begin{array}{rlrl}
f^{a b c} T^{c} T^{b} & =\frac{1}{2} f^{a b c}\left[T^{c}, T^{b}\right] \\
& =\frac{1}{2} i f^{a b c} c c b d \\
& =-\frac{1}{2} i T(\mathrm{~A}) T^{a} & N^{\mu} \rightarrow-3 \ell^{2} \gamma^{\mu}
\end{array}
$$

thus for the divergent part of the 2nd diagram we find:

$$
i \mathbf{V}_{i j}^{a \mu}(0,0)=\frac{3}{2} T(\mathrm{~A}) g^{3} T_{i j}^{a} \gamma^{\mu} \underbrace{\int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{1}{\ell^{2}\left(\ell^{2}+m^{2}\right)}}
$$

putting pieces together we get:

$$
\mathbf{V}_{i j}^{a \mu}(0,0)_{\mathrm{div}}=\left(Z_{1}+\left[C(\mathrm{R})-\frac{1}{2} T(\mathrm{~A})\right] \frac{g^{2}}{8 \pi^{2} \varepsilon}+\frac{3}{2} T(\mathrm{~A}) \frac{g^{2}}{8 \pi^{2} \varepsilon}\right) g T_{i j}^{a} \gamma^{\mu}
$$

and we find:

$$
Z_{1}=1-[C(\mathrm{R})+T(\mathrm{~A})] \frac{g^{2}}{8 \pi^{2}} \frac{1}{\varepsilon}+O\left(g^{4}\right)
$$

in Feynman gauge and the $\overline{\mathrm{MS}}$ scheme

Let's now calculate the $i \Pi^{\mu \nu}(k)$ at one loop:

extra - I for fermion loop; and the trace
$\tilde{S}(\not p)=\frac{-\not p+m}{p^{2}+m^{2}-i \epsilon}$

$$
i \Pi^{\mu \nu}(k)=(-1)\left(i Z_{1} e\right)^{2}\left(\frac{1}{i}\right)^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \operatorname{Tr}\left[\tilde{S}(\not \subset+\not \ell) \gamma^{\mu} \tilde{S}(\ell) \gamma^{\nu}\right]
$$

$$
-i\left(Z_{3}-1\right)\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right)+O\left(e^{4}\right),
$$

$\mathcal{L}_{\mathrm{ct}}=i\left(Z_{2}-1\right) \bar{\Psi} \not \partial \Psi-\left(Z_{m}-1\right) m \bar{\Psi} \Psi-\frac{1}{4}\left(Z_{3}-1\right) F^{\mu \nu} F_{\mu \nu}$

$$
\begin{aligned}
i \Pi^{\mu \nu}(k)=(-1)\left(i Z_{1} e\right)^{2}\left(\frac{1}{i}\right)^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \operatorname{Tr}\left[\tilde{S}(\ell+\not \ell) \gamma^{\mu} \tilde{S}(\ell) \gamma^{\nu}\right] & \\
-i\left(Z_{3}-1\right)\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right)+O\left(e^{4}\right), & \tilde{S}(\not p)=\frac{-\not p+m}{p^{2}+m^{2}-i \epsilon} \\
\operatorname{Tr}\left[\tilde{S}(\ell+\not \ell) \gamma^{\mu} \tilde{S}(\ell) \gamma^{\nu}\right]=\int_{0}^{1} d x \frac{4 N^{\mu \nu}}{\left(q^{2}+D\right)^{2}} & q=\ell+x k
\end{aligned}
$$

$$
D=x(1-x) k^{2}+m^{2}-i \epsilon
$$

$\operatorname{Tr}[\phi b \phi d d]=4[(a d)(b c)-(a c)(b d)+(a b)(c d)]$
$4 N^{\mu \nu}=\operatorname{Tr}\left[(-\ell-\not \ell \neq m) \gamma^{\mu}(-\ell+m) \gamma^{\nu}\right]$
$\operatorname{Tr}[\phi b]=-4(a b)$

$$
\begin{gathered}
N^{\mu \nu}=(\ell+k)^{\mu} \ell^{\nu}+\ell^{\mu}(\ell+k)^{\nu}-\left[\ell(\ell+k)+m^{2}\right] g^{\mu \nu} \\
\ell \ell=q-x k \\
N^{\mu \nu} \rightarrow 2 q^{\mu} q^{\nu}-2 x(1-x) k^{\mu} k^{\nu}-\left[q^{2}-x(1-x) k^{2}+m^{2}\right] g^{\mu \nu}
\end{gathered}
$$

$i \Pi^{\mu \nu}(k)=(-1)\left(i Z_{1} e\right)^{2}\left(\frac{1}{i}\right)^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \operatorname{Tr}\left[\tilde{S}(\ell+\not k) \gamma^{\mu} \tilde{S}(\ell) \gamma^{\nu}\right]$

$$
-i\left(Z_{3}-1\right)\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right)+O\left(e^{4}\right), \quad \quad \operatorname{Tr}\left[\tilde{S}(\ell+k) \gamma^{\mu} \tilde{S}(\ell) \gamma^{\nu}\right]=\int_{0}^{1} d x \frac{4 N^{\mu \nu}}{\left(q^{2}+D\right)^{2}}
$$

$$
N^{\mu \nu} \rightarrow 2 q^{\mu} q^{\nu}-2 x(1-x) k^{\mu} k^{\nu}-\left[q^{2}-x(1-x) k^{2}+m^{2}\right] g^{\mu \nu}
$$

the integral diverges in 4 spacetime dimfensions and so we analytically continue it to $d=4-\varepsilon$; we also make the replacement $e \rightarrow e \tilde{\mu}^{\varepsilon / 2}$ to keep the coupling dimensionless:

$$
\iint d^{d} q q^{\mu} q^{\nu} f\left(q^{2}\right)=\frac{1}{d} g^{\mu \nu} \int_{\text {see }} d^{d} q q^{2} f\left(q^{2}\right)
$$

$$
N^{\mu \nu} \rightarrow-2 x(1-x) k^{\mu} k^{\nu}+\left[\left(\frac{2}{d}-1\right) q^{2}+x(1-x) k^{2}-m^{2}\right] g^{\mu \nu}
$$

$$
\left(\frac{2}{d}-1\right) q^{2} \rightarrow D
$$

$$
\int \frac{d^{d} \bar{a}}{(2 \pi)^{d}} \frac{\left(\bar{q}^{2}\right)^{a}}{\left(\bar{q}^{2}+D\right)^{b}}=\frac{\Gamma\left(b-a-\frac{1}{2} d\right) \Gamma\left(a+\frac{1}{2} d\right)}{(4 \pi)^{d / 2} \Gamma(b) \Gamma\left(\frac{1}{2} d\right)} D^{-(b-a-d / 2)}
$$

$$
D=x(1-x) k^{2}+m^{2}-i \epsilon
$$

$$
\left(\frac{2}{d}-1\right) \int \frac{d^{d} q}{(2 \pi)^{d}} \frac{q^{2}}{\left(q^{2}+D\right)^{2}}=D \int \frac{d^{d} q}{(2 \pi)^{d}} \frac{1}{\left(q^{2}+D\right)^{2}}
$$

$$
N^{\mu \nu} \rightarrow 2 x(1-x)\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right)
$$

is transverse :)
$i \Pi^{\mu \nu}(k)=(-1)\left(i Z_{1} e\right)^{2}\left(\frac{1}{i}\right)^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \operatorname{Tr}\left[\tilde{S}(\nmid+\nmid k) \gamma^{\mu} \tilde{S}(\ell) \gamma^{\nu}\right]$

$$
-i\left(Z_{3}-1\right)\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right)+O\left(e^{4}\right),
$$

$$
\operatorname{Tr}\left[\tilde{S}(\ell+\nmid k) \gamma^{\mu} \tilde{S}(\ell) \gamma^{\nu}\right]=\int_{0}^{1} d x \frac{4 N^{\mu \nu}}{\left(q^{2}+D\right)^{2}}
$$

the integral over q is straightforward:

$$
N^{\mu \nu} \rightarrow 2 x(1-x)\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right)
$$

$$
\tilde{\mu}^{\varepsilon} \int \frac{d^{d} q}{(2 \pi)^{d}} \frac{1}{\left(q^{2}+D\right)^{2}}=\frac{i}{16 \pi^{2}} \Gamma\left(\frac{\varepsilon}{2}\right)\left(4 \pi \tilde{\mu}^{2} / D\right)^{\varepsilon / 2}
$$

$$
=\frac{i}{8 \pi^{2}}\left[\frac{1}{\varepsilon}-\frac{1}{2} \ln \left(D / \mu^{2}\right)\right]
$$

$$
\mu^{2}=4 \pi e^{-\gamma} \tilde{\mu}^{2}
$$

$$
\Pi\left(k^{2}\right)=-\frac{e^{2}}{\pi^{2}} \int_{0}^{1} d x x(1-x)\left[\frac{1}{\varepsilon}-\frac{1}{2} \ln \left(D / \mu^{2}\right)\right]-\left(Z_{3}-1\right)+O\left(e^{4}\right)
$$

imposing $\Pi(0)=0$ fixes

$$
Z_{3}=1-\frac{e^{2}}{6 \pi^{2}}\left[\frac{1}{\varepsilon}-\ln (m / \mu)\right]+O\left(e^{4}\right)
$$

and

$$
\Pi\left(k^{2}\right)=\frac{e^{2}}{2 \pi^{2}} \int_{0}^{1} d x x(1-x) \ln \left(D / m^{2}\right)+O\left(e^{4}\right)
$$

Let's now evaluate one-loop corrections to the gluon propagator:

$$
\begin{aligned}
& \tilde{\mu}^{\varepsilon} \int \frac{d^{d} \ell}{(2 \pi)^{d}} \frac{1}{\ell^{2}+m^{2}}=-\frac{i}{8 \pi^{2}} \frac{1}{\varepsilon} m^{2}+O\left(\varepsilon^{0}\right) \\
& m^{2} \rightarrow 0 \downarrow \\
& -i\left(Z_{3}-1\right)\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right) \delta^{a b} \\
& 0
\end{aligned}
$$

$i \Pi^{\mu \nu a b}(k)=\frac{1}{2} g^{2} f^{a c d} f^{b c d}\left(\frac{1}{i}\right)^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{N^{\mu \nu}}{\ell^{2}(\ell+k)^{2}}$

$$
\begin{aligned}
N^{\mu \nu}= & {\left.[(k+\ell)-(-\ell))^{\mu} g^{\rho \sigma}+(-\ell-(-k))^{\rho} g^{\sigma \mu}+((-k)-(k+\ell))^{\sigma} g^{\mu \rho}\right] } \\
& \left.\times[(-k-\ell)-\ell)^{\nu} g_{\rho \sigma}+(\ell-k)_{\rho} \delta_{\sigma}{ }^{\nu}+(k-(-k-\ell))_{\sigma} \delta^{\nu}{ }_{\rho}\right] \\
= & -\left[(2 \ell+k)^{\mu} g^{\rho \sigma}-(\ell-k)^{\rho} g^{\sigma \mu}-(\ell+2 k)^{\sigma} g^{\mu \rho}\right] \\
& \times\left[(2 \ell+k)^{\nu} g_{\rho \sigma}-(\ell-k)_{\rho} \delta_{\sigma}{ }^{\nu}-(\ell+2 k)_{\sigma} \delta^{\nu}{ }_{\rho}\right]
\end{aligned}
$$

$$
\begin{aligned}
& i \Pi^{\mu \nu a b}(k)=\frac{1}{2} g^{2} f^{a c d} f^{b c d}\left(\frac{1}{i}\right)^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{N^{\mu \nu}}{\ell^{2}(\ell+k)^{2}} \\
& f^{a c d} f^{b c d}=T(\mathrm{~A}) \delta^{a b} N^{\mu \nu}= \\
&-\left[(2 \ell+k)^{\mu} g^{\rho \sigma}-(\ell-k)^{\rho} g^{\sigma \mu}-(\ell+2 k)^{\sigma} g^{\mu \rho}\right] \\
& \times\left[(2 \ell+k)^{\nu} g_{\rho \sigma}-(\ell-k)_{\rho} \delta_{\sigma}{ }^{\nu}-(\ell+2 k)_{\sigma} \delta^{\nu}{ }_{\rho}\right]
\end{aligned}
$$

combining denominators and continuing to $d=4-\varepsilon$ dimension:

$$
\begin{array}{r}
-\frac{1}{2} g^{2} T(\mathrm{~A}) \delta^{a b} \tilde{\mu}^{\varepsilon} \int_{0}^{1} d x \int \frac{d^{d} q}{(2 \pi)^{d}} \frac{N^{\mu \nu}}{\left(q^{2}+D\right)^{2}} \\
q=\ell+x k \\
D=x(1-x) k^{2}
\end{array}
$$

where

$$
\begin{aligned}
N^{\mu \nu}= & -\left[(2 q+(1-2 x) k)^{\mu} g^{\rho \sigma}-(q-(1+x) k)^{\rho} g^{\sigma \mu}-(q+(2-x) k)^{\sigma} g^{\mu \rho}\right] \\
& \times\left[(2 q+(1-2 x) k)^{\nu} g_{\rho \sigma}-(q-(1+x) k)_{\rho} \delta_{\sigma}^{\nu}-(q+(2-x) k)_{\sigma} \delta_{\rho}^{\nu}\right]
\end{aligned}
$$

$$
\begin{aligned}
& N^{\mu \nu}=-\left[(2 q+(1-2 x) k)^{\mu} g^{\rho \sigma}-(q-(1+x) k)^{\rho} g^{\sigma \mu}-(q+(2-x) k)^{\sigma} g^{\mu \rho}\right] \\
& \times\left[(2 q+(1-2 x) k)^{\nu} g_{\rho \sigma}-(q-(1+x) k)_{\rho} \delta_{\sigma}{ }^{\nu}-(q+(2-x) k)_{\sigma} \delta^{\nu}{ }_{\rho}\right] \\
& \text { expanding and ignoring } \\
& \text { terms linear in q } \\
& N^{\mu \nu} \rightarrow-2 q^{2} g^{\mu \nu}-(4 d-6) q^{\mu} q^{\nu} \\
& -\left[(1+x)^{2}+(2-x)^{2}\right] k^{2} g^{\mu \nu} \\
& -\left[d(1-2 x)^{2}+2(1-2 x)(1+x)\right. \\
& -2(2-x)(1+x)-2(2-x)(1-2 x)] k^{\mu} k^{\nu} \\
& \begin{array}{l|l}
\text { we are interested in } \\
\text { the divergent part only }
\end{array} \downarrow \begin{array}{l}
d=4 \\
q^{\mu} q^{\nu} \rightarrow \frac{1}{4} q^{2} g^{\mu \nu}
\end{array} \\
& N^{\mu \nu} \rightarrow-\frac{9}{2} q^{2} g^{\mu \nu}-\left(5-2 x+2 x^{2}\right) k^{2} g^{\mu \nu}+\left(2+10 x-10 x^{2}\right) k^{\mu} k^{\nu}
\end{aligned}
$$

$\tilde{\mu}^{\varepsilon} \int \frac{d^{d} q}{(2 \pi)^{d}} \frac{1}{\left(q^{2}+D\right)^{2}}=\frac{i}{8 \pi^{2} \varepsilon}+O\left(\varepsilon^{0}\right)$
we get:

$$
-\frac{i g^{2}}{16 \pi^{2}} T(\mathrm{~A}) \delta^{a b} \frac{1}{\varepsilon} \int_{0}^{1} d x N^{\mu \nu}+O\left(\varepsilon^{0}\right)
$$

integrating over x , we get the result for the divergent part

$$
-\frac{i g^{2}}{16 \pi^{2}} T(\mathrm{~A}) \delta^{a b} \frac{1}{\varepsilon}\left(-\frac{19}{6} k^{2} g^{\mu \nu}+\frac{11}{3} k^{\mu} k^{\nu}\right)
$$

now let's calculate the ghost loop:

extra - I for closed ghost loop

$$
=g f^{a b c} q_{\mu} .
$$

finally, let's calculate the fermion loop:

Putting pieces together: $-\frac{i g^{2}}{16 \pi^{2}} T(\mathrm{~A}) \delta^{a b} \frac{1}{\varepsilon}\left(-\frac{19}{6} k^{2} g^{\mu \nu}+\frac{11}{3} k^{\mu} k^{\nu}\right)$

we find:

$$
\begin{array}{r}
\Pi^{\mu \nu a b}(k)=\Pi\left(k^{2}\right)\left(k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right) \delta^{a b} \\
\quad \text { gluon self-energy is transverse }
\end{array}
$$

$$
\Pi\left(k^{2}\right)_{\text {div }}=-\left(Z_{3}-1\right)+\left[\frac{5}{3} T(\mathrm{~A})-\frac{4}{3} n_{\mathrm{F}} T(\mathrm{R})\right] \frac{g^{2}}{8 \pi^{2}} \frac{1}{\varepsilon}+O\left(g^{4}\right)
$$

and so:

$$
Z_{3}=1+\left[\frac{5}{3} T(\mathrm{~A})-\frac{4}{3} n_{\mathrm{F}} T(\mathrm{R})\right] \frac{g^{2}}{8 \pi^{2}} \frac{1}{\varepsilon}+O\left(g^{4}\right)
$$

We found:
in Feynman gauge and the $\overline{\mathrm{MS}}$ scheme
not equal!

$$
\begin{aligned}
& Z_{1}=1-[C(\mathrm{R})+T(\mathrm{~A})] \frac{g^{2}}{8 \pi^{2}} \frac{1}{\varepsilon}+O\left(g^{4}\right) \\
& Z_{2}=1-C(\mathrm{R}) \frac{g^{2}}{8 \pi^{2}} \frac{1}{\varepsilon}+O\left(g^{4}\right), \\
& Z_{3}=1+\left[\frac{5}{3} T(\mathrm{~A})-\frac{4}{3} n_{\mathrm{F}} T(\mathrm{R})\right] \frac{g^{2}}{8 \pi^{2}} \frac{1}{\varepsilon}+O\left(g^{4}\right),
\end{aligned}
$$

Let's calculate the beta function; define:

$$
\alpha \equiv \frac{g^{2}}{4 \pi}
$$

the dictionary: $g_{0}^{2}=\frac{Z_{1}^{2}}{Z_{2}^{2} Z_{3}} g^{2} \tilde{\mu}^{\varepsilon}=\frac{Z_{1}^{2}}{Z_{2}^{2} Z_{3}} g^{2} \tilde{\mu}^{\varepsilon}=\frac{Z_{3 g}^{2}}{Z_{3}^{3}} g^{2} \tilde{\mu}^{\varepsilon}=\frac{Z_{4 g}}{Z_{3}^{2}} g^{2} \tilde{\mu}^{\varepsilon}$

$$
\alpha_{0}=\frac{Z_{1}^{2}}{Z_{2}^{2} Z_{3}} \alpha \tilde{\mu}^{\varepsilon}
$$

Beta functions in quantum electrodynamics

Let's calculate the beta function in QED:

$$
\mathcal{L}_{0}=i \bar{\Psi} \not \partial \Psi-m \bar{\Psi} \Psi-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}
$$

$$
\begin{aligned}
\mathcal{L} & =\mathcal{L}_{0}+\mathcal{L}_{1} \\
\mathcal{L}_{1} & =Z_{1} e \bar{\Psi} \not A \Psi+\mathcal{L}_{\mathrm{ct}} \\
\mathcal{L}_{\mathrm{ct}} & =i\left(Z_{2}-1\right) \bar{\Psi} \not \partial \Psi-\left(Z_{m}-1\right) m \bar{\Psi} \Psi-\frac{1}{4}\left(Z_{3}-1\right) F^{\mu \nu} F_{\mu \nu}
\end{aligned}
$$

the dictionary:

$$
Z_{1}=1-\frac{\alpha}{2 \pi} \frac{1}{\varepsilon}+O\left(\alpha^{2}\right)
$$

$$
e_{0}=Z_{3}^{-1 / 2} Z_{2}^{-1} Z_{1} \tilde{\mu}^{\varepsilon / 2} e
$$

$$
\alpha=e^{2} / 4 \pi
$$

$$
\alpha_{0}=Z_{3}^{-1} Z_{2}^{-2} Z_{1}^{2} \tilde{\mu}^{\varepsilon} \alpha
$$

following the usual procedure:
$\alpha_{0}=Z_{3}^{-1} Z_{2}^{-2} Z_{1}^{2} \tilde{\mu}^{\varepsilon} \alpha$

$$
\ln \left(Z_{3}^{-1} Z_{2}^{-2} Z_{1}^{2}\right)=\sum_{n=1}^{\infty} \frac{E_{n}(\alpha)}{\varepsilon^{n}}
$$

$Z_{1}=1-\frac{\alpha}{2 \pi} \frac{1}{\varepsilon}+O\left(\alpha^{2}\right)$
$Z_{2}=1-\frac{\alpha}{2 \pi} \frac{1}{\varepsilon}+O\left(\alpha^{2}\right)$
$\xrightarrow{\longrightarrow}$
$E_{1}(\alpha)=\frac{2 \alpha}{3 \pi}+O\left(\alpha^{2}\right)$
$Z_{3}=1-\frac{2 \alpha}{3 \pi} \frac{1}{\varepsilon}+O\left(\alpha^{2}\right)$
we find:
$\beta(\alpha)=\alpha^{2} E_{1}^{\prime}(\alpha)$
$\beta(\alpha)=\frac{2 \alpha^{2}}{3 \pi}+O\left(\alpha^{3}\right)$

$$
\beta(\alpha)=\frac{2 \alpha^{2}}{3 \pi}+O\left(\alpha^{3}\right)
$$

or equivalently:

$$
\beta(e)=\frac{e^{3}}{12 \pi^{2}}+O\left(e^{5}\right)
$$

$$
\alpha=e^{2} / 4 \pi
$$

$$
\dot{\alpha}=e \dot{e} / 2 \pi
$$

For a theory with N Dirac fields with charges $Q_{i} e$:
$Z_{1}=1-\frac{\alpha}{2 \pi} \frac{1}{\varepsilon}+O\left(\alpha^{2}\right)$
$Z_{2}=1-\frac{\alpha}{2 \pi} \frac{1}{\varepsilon}+O\left(\alpha^{2}\right)$
$Z_{3}=1-\frac{2 \alpha}{3 \pi} \frac{1}{\varepsilon}+O\left(\alpha^{2}\right) \longrightarrow \sum_{i} Q_{i}^{2} \alpha$

we find:

$$
Z_{1 i} / Z_{2 i}=1
$$

$$
\beta(e)=\frac{\sum_{i=1}^{N} Q_{i}^{2}}{12 \pi^{2}} e^{3}+O\left(e^{5}\right)
$$

following the usual procedure:

$Z_{1}=1-[C(\mathrm{R})+T(\mathrm{~A})] \frac{g^{2}}{8 \pi^{2}} \frac{1}{\varepsilon}+O\left(g^{4}\right)$,
$\begin{aligned} & Z_{2}=1-C(\mathrm{R}) \frac{g^{2}}{8 \pi^{2}} \frac{1}{\varepsilon}+O\left(g^{4}\right), \\ & Z_{3}=1+\left[\frac{5}{3} T(\mathrm{~A})-\frac{4}{3} n_{\mathrm{F}} T(\mathrm{R})\right] \frac{g^{2}}{8 \pi^{2}} \frac{1}{\varepsilon}+O\left(g^{4}\right),\end{aligned} \quad G_{1}(\alpha)=-\left[\frac{11}{3} T(\mathrm{~A})-\frac{4}{3} n_{\mathrm{F}} T(\mathrm{R})\right] \frac{\alpha}{2 \pi}+O\left(\alpha^{2}\right)$
we find:
$\beta(\alpha)=\alpha^{2} G_{1}^{\prime}(\alpha)$

$$
\beta(\alpha)=-\left[\frac{11}{3} T(\mathrm{~A})-\frac{4}{3} n_{\mathrm{F}} T(\mathrm{R})\right] \frac{\alpha^{2}}{2 \pi}+O\left(\alpha^{3}\right)
$$

$$
\begin{aligned}
& \beta(\alpha)=-\left[\frac{11}{3} T(\mathrm{~A})-\frac{4}{3} n_{\mathrm{F}} T(\mathrm{R})\right] \frac{\alpha^{2}}{2 \pi}+O\left(\alpha^{3}\right) \\
& \alpha=g^{2} / 4 \pi \\
& \dot{\alpha}=g \dot{g} / 2 \pi
\end{aligned}
$$

or equivalently:

$$
\beta(g)=-\left[\frac{11}{3} T(\mathrm{~A})-\frac{4}{3} n_{\mathrm{F}} T(\mathrm{R})\right] \frac{g^{3}}{16 \pi^{2}}+O\left(g^{5}\right)
$$

For QCD:
$T(\mathrm{~A})=3$
$T(\mathrm{R})=\frac{1}{2}$
$11-\frac{2}{3} n_{\mathrm{F}}$
beta function is negative for $n_{\mathrm{F}} \leq 16$,
the gauge coupling gets weaker at higher energies!

BRST symmetry

We are going to show that the gauge-fixed lagrangian:

$$
\mathcal{L} \equiv \mathcal{L}_{\mathrm{YM}}+\mathcal{L}_{\mathrm{gf}}+\mathcal{L}_{\mathrm{gh}}
$$

has a residual form of the gauge symmetry - Becchi-Rouet-Stora-Tyutin symmetry Consider an infinitesimal transformation for a non-abelian gauge theory:

$$
\begin{array}{cl}
\delta A_{\mu}^{a}(x)=-D^{a b} \theta^{b}(x) & \text { scalars or spinors in } \\
\delta \phi_{i}(x)=-i g \theta^{a}(x)\left(T_{\mathrm{R}}^{a}\right)_{i j} \phi_{j}(x) & \text { representation } \mathrm{R} \tag{x}
\end{array}
$$

The BRST transformation is defined as:
$\begin{aligned} \delta_{\mathrm{B}} A_{\mu}^{a}(x) & \equiv D_{\mu}^{a b} c^{b}(x) \\ & =\partial_{\mu} c^{a}(x)-g f^{a b c} A_{\mu}^{c}(x) c^{b}(x) \quad \text { we use the ghost field (scalar } \\ \delta_{\mathrm{B}} \phi_{i}(x) & \equiv i g c^{a}(x)\left(T_{\mathrm{R}}^{a}\right)_{i j} \phi_{j}(x) \quad \text { Grassmann field) instead of }-\theta^{a}(x) .\end{aligned}$ in particular $\delta_{\mathrm{B}} \mathcal{L}_{\mathrm{YM}}=0$!

Now we are going to require that $\delta_{\mathrm{B}} \delta_{\mathrm{B}}=0$:
this requirement will determine the BRST transformation of the ghost field.

$$
\delta_{\mathrm{B}} \phi_{i}(x) \equiv i g c^{a}(x)\left(T_{\mathrm{R}}^{a}\right)_{i j} \phi_{j}(x)
$$

$$
\delta_{\mathrm{B}}\left(\delta_{\mathrm{B}} \phi_{i}\right)=i g\left(\delta_{\mathrm{B}} c^{a}\right)\left(T_{\mathrm{R}}^{a}\right)_{i j} \phi_{j}-i g c^{a}\left(T_{\mathrm{R}}^{a}\right)_{i j} \delta_{\mathrm{B}} \phi_{j}
$$

$$
\delta_{\mathrm{B}}\left(\delta_{\mathrm{B}} \phi_{i}\right)=i g\left(\delta_{\mathrm{B}} c^{a}\right)\left(T_{\mathrm{R}}^{a}\right)_{i j} \phi_{j}-g^{2} c^{a} c^{b}\left(T_{\mathrm{R}}^{a} T_{\mathrm{R}}^{b}\right)_{i k} \phi_{k}
$$

$$
\begin{gathered}
c^{b} c^{a}=-c^{a} c^{b} \\
\frac{1}{2}\left[T_{\mathrm{R}}^{a}, T_{\mathrm{R}}^{b}\right]=\frac{i}{2} f^{a b c} T_{\mathrm{R}}^{c}
\end{gathered}
$$

Thus we have:

$$
\delta_{\mathrm{B}}\left(\delta_{\mathrm{B}} \phi_{i}\right)=i g\left(\delta_{\mathrm{B}} c^{c}+\frac{1}{2} g f^{a b c} c^{a} c^{b}\right)\left(T_{\mathrm{R}}^{c}\right)_{i j} \phi_{j}
$$

that will vanish for all $\phi_{j}(x)$ if and only if:

$$
\delta_{\mathrm{B}} c^{c}(x)=-\frac{1}{2} g f^{a b c} c^{a}(x) c^{b}(x)
$$

Now we have to check that $\delta_{\mathrm{B}} \delta_{\mathrm{B}}=0$ for the gauge field:

$$
\begin{aligned}
& \delta_{\mathrm{B}} A_{\mu}^{a}(x) \equiv D_{\mu}^{a b} c^{b}(x) \\
& =\partial_{\mu} c^{a}(x)-g f^{a b c} A_{\mu}^{c}(x) c^{b}(x) \\
& \delta_{\mathrm{B}}\left(\delta_{\mathrm{B}} A_{\mu}^{a}\right)=\left(\delta^{a b} \partial_{\mu}-g f^{a b c} A_{\mu}^{c}\right)\left(\delta_{\mathrm{B}} c^{b}\right)-g f^{a b c}\left(\delta_{\mathrm{B}} A_{\mu}^{c}\right) c^{b} \\
& =D_{\mu}^{a b}\left(\delta_{\mathrm{B}} c^{b}\right)-g f^{a b c}\left(D_{\mu}^{c d} c^{d}\right) c^{b} \\
& =D_{\mu}^{a b}\left(\delta_{\mathrm{B}} c^{b}\right)-g f^{a b c} \underline{\left(\partial_{\mu} c^{c}\right) c^{b}}+g^{2} f^{a b c} f^{c d e} A_{\mu}^{e} c^{d} c^{b} \\
& \frac{1}{2}\left(\partial_{\mu} c^{[c}\right) c^{b]} \equiv \frac{1}{2}\left(\partial_{\mu} c^{c}\right) c^{b}-\frac{1}{2}\left(\partial_{\mu} c^{b}\right) c^{c} \quad=\frac{1}{2}\left(f^{a b c} f^{c d e}-f^{a d c} f^{c b e}\right) \\
& =\frac{1}{2}\left(\partial_{\mu} c^{c}\right) c^{b}+\frac{1}{2} c^{c}\left(\partial_{\mu} c^{b}\right) \quad=-\frac{1}{2}\left[\left(T_{\mathrm{A}}^{b}\right)^{a c}\left(T_{\mathrm{A}}^{d}\right)^{c e}-\left(T_{\mathrm{A}}^{d}\right)^{a c}\left(T_{\mathrm{A}}^{b}\right)^{c e}\right] \\
& =\frac{1}{2} \partial_{\mu}\left(c^{c} c^{b}\right) \text {. } \\
& =-\frac{1}{2} i f^{b d h}\left(T_{\mathrm{A}}^{h}\right)^{a e} \\
& =-\frac{1}{2} f^{b d h} f^{h a e} \text {, }
\end{aligned}
$$

Now we have to check that $\delta_{\mathrm{B}} \delta_{\mathrm{B}}=0$ for the gauge field:

$$
\begin{aligned}
\delta_{\mathrm{B}} A_{\mu}^{a}(x) & \equiv D_{\mu}^{a b} c^{b}(x) \\
& =\partial_{\mu} c^{a}(x)-g f^{a b c} A_{\mu}^{c}(x) c^{b}(x) \\
\delta_{\mathrm{B}}\left(\delta_{\mathrm{B}} A_{\mu}^{a}\right)= & \left(\delta^{a b} \partial_{\mu}-g f^{a b c} A_{\mu}^{c}\right)\left(\delta_{\mathrm{B}} c^{b}\right)-g f^{a b c}\left(\delta_{\mathrm{B}} A_{\mu}^{c}\right) c^{b} \\
= & D_{\mu}^{a b}\left(\delta_{\mathrm{B}} c^{b}\right)-g f^{a b c}\left(D_{\mu}^{c d} c^{d}\right) c^{b} \\
= & D_{\mu}^{a b}\left(\delta_{\mathrm{B}} c^{b}\right)-g f^{a b c} \frac{\left(\partial_{\mu} c^{c}\right) c^{b}}{}+g^{2} \frac{f^{a b c} f^{c d e}}{} A_{\mu}^{e} c^{d} c^{b} \\
& =\frac{1}{2} \partial_{\mu}\left(c^{c} c^{b}\right) \downarrow=-\frac{1}{2} f^{b d h} f^{h a e} \\
\delta_{\mathrm{B}}\left(\delta_{\mathrm{B}} A_{\mu}^{a}\right)= & D_{\mu}^{a b}\left(\delta_{\mathrm{B}} c^{b}\right)-\frac{1}{2} g f^{a b c}\left(\partial_{\mu} c^{c} c^{b}\right)-\frac{1}{2} g^{2} f^{b d h} f^{h a e} A_{\mu}^{e} c^{d} c^{b} \\
= & D_{\mu}^{a h}\left(\delta_{\mathrm{B}} c^{h}\right)-\left(\delta^{a h} \partial_{\mu}-g f^{a h e} A_{\mu}^{e}\right) \frac{1}{2} g f^{b c h} c^{c} c^{b} \\
= & D_{\mu}^{a h}\left(\delta_{\mathrm{B}} c^{h}+\frac{1}{2} g f^{b c h} c^{b} c^{c}\right) .
\end{aligned}
$$

vanishes for the variation of the ghost field we found before:

$$
\delta_{\mathrm{B}} c^{c}(x)=-\frac{1}{2} g f^{a b c} c^{a}(x) c^{b}(x)
$$

The BRST transformation of the antighost field is defined as:
we treat ghost and antighost fields as independent fields

$$
\delta_{\mathrm{B}} \bar{c}^{a}(x)=B^{a}(x)
$$

B is a scalar field
then $\delta_{\mathrm{B}} \delta_{\mathrm{B}}=0$ implies:
Lautrup-Nakanishi auxiliary field

$$
\delta_{\mathrm{B}} B^{a}(x)=0
$$

What is it good for?
We can add to the lagrangian any term that is the BRST variation of some object:

Let's choose:

$$
\begin{aligned}
& \mathcal{O}(x)=\bar{c}^{a}(x)\left[\frac{1}{2} \xi B^{a}(x)-G^{a}(x)\right] \\
& \text { gauge-fixing function } \\
& G^{a}(x)=\partial^{\mu} A_{\mu}^{a}(x)
\end{aligned}
$$

then
we will get the R_{ξ} gauge
$\delta_{\mathrm{B}} \mathcal{O}=\left(\delta_{\mathrm{B}} \bar{c}^{a}\right)\left[\frac{1}{2} \xi B^{a}-\partial^{\mu} A_{\mu}^{a}\right]-\bar{c}^{a}\left[\frac{1}{2} \xi\left(\delta_{\mathrm{B}} B^{a}\right)-\partial^{\mu}\left(\delta_{\mathrm{B}} A_{\mu}^{a}\right)\right]$
$\delta_{\mathrm{B}} A_{\mu}^{a}(x) \equiv D_{\mu}^{a b} c^{b}(x)$
-I for δ_{B} acting as an anticommuting object

$$
=\partial_{\mu} c^{a}(x)-g f^{a b c} A_{\mu}^{c}(x) c^{b}(x)
$$

$\delta_{B} \bar{c}^{a}(x)=B^{a}(x)$

$$
\delta_{\mathrm{B}} \mathcal{O}=\frac{1}{2} \xi B^{a} B^{a}-B^{a} \partial^{\mu} A_{\mu}^{a}+\bar{c}^{a} \partial^{\mu} D_{\mu}^{a b} c^{b}
$$

or

$$
\delta_{\mathrm{B}} \mathcal{O} \rightarrow \frac{1}{2} \xi B^{a} B^{a}-B^{a} \partial^{\mu} A_{\mu}^{a}-\partial^{\mu} \bar{c}^{a} D_{\mu}^{a b} c^{b}
$$

$$
\delta_{\mathrm{B}} \mathcal{O} \rightarrow \frac{1}{2} \xi B^{a} B^{a}-B^{a} \partial^{\mu} A_{\mu}^{a}-\partial^{\mu} \bar{c}^{a} D_{\mu}^{a b} c^{b}
$$

now we can easily perform the path integral over B :
it is equivalent to solving the classical equation of motion,

$$
\frac{\partial\left(\delta_{\mathrm{B}} \mathcal{O}\right)}{\partial B^{a}(x)}=\xi B^{a}(x)-\partial^{\mu} A_{\mu}^{a}(x)=0
$$

and substituting the result back to the formula:

$$
\delta_{\mathrm{B}} \mathcal{O} \rightarrow-\frac{1}{2} \xi^{-1} \partial^{\mu} A_{\mu}^{a} \partial^{\nu} A_{\nu}^{a}-\partial^{\mu} \bar{c}^{a} D_{\mu}^{a b} c^{b}
$$

we obtained the gauge fixing lagrangian and the ghost lagrangian

$$
\begin{array}{rr}
\mathcal{L}=\mathcal{L}_{\mathrm{YM}}+\delta_{\mathrm{B}} \mathcal{O} & S=\int d^{4} x \mathcal{L} \\
\delta_{\mathrm{B}} \mathcal{O} \rightarrow-\frac{1}{2} \xi^{-1} \partial^{\mu} A_{\mu}^{a} \partial^{\nu} A_{\nu}^{a}-\partial^{\mu} \bar{c}^{a} D_{\mu}^{a b} c^{b}
\end{array}
$$

Symmetries of the complete action:
\diamond Lorentz invariance
\diamond Parity, Time reversal, Charge conjugation
\diamond Global invariance under a given (non-abelian) symmetry group
\diamond
BRST invariance
\diamond ghost number conservation (+| for ghost and - I for antighost)$>$ antighost translation invariance
$\bar{c}^{a}(x) \rightarrow \bar{c}^{a}(x)+\chi$
The lagrangian already includes all the terms allowed by these symmetries! this means that all the divergencies can be absorbed by the Zs of these terms, BRST symmetry requires that the gauge coupling renormalize in the same way in each term.

There is the Noether current associated with the BRST symmetry:

$$
j_{\mathrm{B}}^{\mu}(x)=\sum_{I} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Phi_{I}(x)\right)} \delta_{\mathrm{B}} \Phi_{I}(x)
$$

and the corresponding BRST charge:

$$
Q_{\mathrm{B}}=\int d^{3} x j_{\mathrm{B}}^{0}(x)
$$

all the fields in the theory
it is hermitian
the BRST charge generates a BRST transformation:

$$
\begin{array}{rlr}
i\left[Q_{\mathrm{B}}, A_{\mu}^{a}(x)\right] & =D_{\mu}^{a b} c^{b}(x), & \delta_{\mathrm{B}} A_{\mu}^{a}(x) \equiv D_{\mu}^{a b} c^{b}(x) \\
i\left\{Q_{\mathrm{B}}, c^{a}(x)\right\} & =-\frac{1}{2} g f^{a b c} c^{b}(x) c^{c}(x), & \delta_{\mathrm{B}} c^{c}(x)=-\frac{1}{2} g f^{a b c} c^{a}(x) c^{b}(x) \\
i\left\{Q_{\mathrm{B}}, \bar{c}^{a}(x)\right\} & =B^{a}(x), & \delta_{\mathrm{B}} c^{a}(x)=B^{a}(x) \\
i\left[Q_{\mathrm{B}}, B^{a}(x)\right] & =0, & \delta_{\mathrm{B}} B^{a}(x)=0 \\
i\left[Q_{\mathrm{B}}, \phi_{i}(x)\right]_{ \pm} & =i g c^{a}(x)\left(T_{\mathrm{R}}^{a}\right)_{i j} \phi_{j}(x) . & \delta_{\mathrm{B}} \phi_{i}(x) \equiv i g c^{a}(x)\left(T_{\mathrm{R}}^{a}\right)_{i j} \phi_{j}(x)
\end{array}
$$

The energy-momentum four-vector is:

$$
P^{\mu}=\int d^{3} x T^{0 \mu}(x)
$$

Recall, we defined the space-time translation operator

$$
T(a) \equiv \exp \left(-i P^{\mu} a_{\mu}\right)
$$

so that

$$
T(a)^{-1} \varphi_{a}(x) T(a)=\varphi_{a}(x-a)
$$

we can easily verify it; for an infinitesimal transformation it becomes:

$$
\left[\varphi_{a}(x), P^{\mu}\right]=\frac{1}{i} \partial^{\mu} \varphi_{a}(x)
$$

it is straightforward to verify this by using the canonical commutation relations for $\varphi_{a}(x)$ and $\Pi_{a}(x)$.

Since $\delta_{\mathrm{B}} \delta_{\mathrm{B}}=0$ we have:

$$
Q_{\mathrm{B}}^{2}=0
$$

Consider states for which:

$$
Q_{\mathrm{B}}|\psi\rangle=0
$$

$\langle\psi \mid \psi\rangle=\langle\psi| Q_{\mathrm{B}}|\chi\rangle=0$
Q is hermitian: $\langle\psi| Q_{\mathrm{B}}=0$.

Consider a normalized state in the cohomology:

$$
\langle\psi \mid \psi\rangle=1, Q_{\mathrm{B}}|\psi\rangle=0,|\psi\rangle \neq Q_{\mathrm{B}}|\chi\rangle
$$

since the lagrangian is BRST invariant:

$$
\left[H, Q_{\mathrm{B}}\right]=0
$$

and so the time evolved state is still annihilated by Q_{B} :

$$
Q_{\mathrm{B}} e^{-i H t}|\psi\rangle=e^{-i H t} Q_{\mathrm{B}}|\psi\rangle=0
$$

(in addition, a unitary time evolution does not change the norm of a state)
the time-evolved stay must still be in the cohomology!
We will see shortly that the physical states of the theory correspond to the cohomology of Q_{B} !

All states in the theory can be generated from creation operators (we start with widely separated wave packets, and so we can neglect interaction):

$$
\begin{aligned}
A^{\mu}(x) & =\sum_{\lambda=>,<,} \int \widetilde{d k}\left[\varepsilon_{\lambda}^{\mu *}(\mathbf{k}) a_{\lambda}(\mathbf{k}) e^{i k x}+\varepsilon_{\lambda}^{\mu}(\mathbf{k}) a_{\lambda}^{\dagger}(\mathbf{k}) e^{-i k x}\right] \\
c(x) & =\int \widetilde{d k}\left[c(\mathbf{k}) e^{i k x}+c^{\dagger}(\mathbf{k}) e^{-i k x}\right], \\
\bar{c}(x) & =\int \widetilde{d k}\left[b(\mathbf{k}) e^{i k x}+b^{\dagger}(\mathbf{k}) e^{-i k x}\right], \\
\phi(x) & =\int \widetilde{d k}\left[a_{\phi}(\mathbf{k}) e^{i k x}+a_{\phi}^{\dagger}(\mathbf{k}) e^{-i k x}\right],
\end{aligned}
$$

for $k^{\mu}=(\omega, \mathbf{k})=\longleftrightarrow(1,0,0,1)$ four polarization vectors can be chosen as:

$$
\begin{aligned}
\varepsilon_{>}^{\mu}(\mathbf{k}) & =\frac{1}{\sqrt{2}}(1,0,0,1) \\
\varepsilon_{<}^{\mu}(\mathbf{k}) & =\frac{1}{\sqrt{2}}(1,0,0,-1), \\
\varepsilon_{+}^{\mu}(\mathbf{k}) & =\frac{1}{\sqrt{2}}(0,1,-i, 0), \\
\varepsilon_{-}^{\mu}(\mathbf{k}) & =\frac{1}{\sqrt{2}}(0,1,+i, 0) .
\end{aligned}
$$

Setting $g=0$ and matching coefficients of $e^{-i k x}$ we find: $i\left[Q_{\mathrm{B}}, A_{\mu}^{a}(x)\right]=D_{\mu}^{a b} c^{b}(x)$,
$i\left\{Q_{\mathrm{B}}, c^{a}(x)\right\}=-\frac{1}{2} g f^{a b c} c^{b}(x) c^{c}(x)$,
$i\left\{Q_{\mathrm{B}}, \bar{c}^{a}(x)\right\}=B^{a}(x)$,
$i\left[Q_{\mathrm{B}}, B^{a}(x)\right]=0$,
$i\left[Q_{\mathrm{B}}, \phi_{i}(x)\right]_{ \pm}=i g c^{a}(x)\left(T_{\mathrm{R}}^{a}\right)_{i j} \phi_{j}(x)$.

$$
\begin{aligned}
A^{\mu}(x) & =\sum_{\lambda=\lambda} \int \widetilde{d k}\left[\varepsilon_{\lambda}^{\mu *}(\mathbf{k}) a_{\lambda}(\mathbf{k}) e^{i k x}+\varepsilon_{\lambda}^{\mu}(\mathbf{k}) a_{\lambda}^{\dagger}(\mathbf{k}) e^{-i k x}\right] \\
c(x) & =\int \widetilde{d k}\left[c(\mathbf{k}) e^{i k x}+c^{\dagger}(\mathbf{k}) e^{-i k x}\right], \\
\bar{c}(x) & =\int \widetilde{d k}\left[b(\mathbf{k}) e^{i k x}+b^{\dagger}(\mathbf{k}) e^{-i k x}\right], \\
\phi(x) & =\int \widetilde{d k}\left[a_{\phi}(\mathbf{k}) e^{i k x}+a_{\phi}^{\dagger}(\mathbf{k}) e^{-i k x}\right],
\end{aligned}
$$

$$
\varepsilon_{>}^{\mu}(\mathbf{k})=\frac{1}{\sqrt{2}}(1,0,0,1),
$$

$$
\varepsilon_{<}^{\mu}(\mathbf{k})=\frac{1}{\sqrt{2}}(1,0,0,-1),
$$

$$
\varepsilon_{+}^{\mu}(\mathbf{k})=\frac{1}{\sqrt{2}}(0,1,-i, 0),
$$

$$
\left[Q_{\mathrm{B}}, a_{\lambda}^{\dagger}(\mathbf{k})\right]=\sqrt{2} \omega \delta_{\lambda>} c^{\dagger}(\mathbf{k})
$$

$$
\varepsilon_{-}^{\mu}(\mathbf{k})=\frac{1}{\sqrt{2}}(0,1,+i, 0) .
$$

$$
\left\{Q_{\mathrm{B}}, c^{\dagger}(\mathbf{k})\right\}=0
$$

we also use EM to eliminate B :
$\left\{Q_{\mathrm{B}}, b^{\dagger}(\mathbf{k})\right\}=\xi^{-1} \sqrt{2} \omega a_{<}^{\dagger}(\mathbf{k})$,
$\frac{\partial\left(\delta_{\mathrm{B}} \mathcal{O}\right)}{\partial B^{a}(x)}=\xi B^{a}(x)-\partial^{\mu} A_{\mu}^{a}(x)=0$

$$
\left[Q_{\mathrm{B}}, a_{\phi}^{\dagger}(\mathbf{k})\right]=0
$$

Consider a normalized state in the cohomology: $\langle\psi \mid \psi\rangle=1, Q_{\mathrm{B}}|\psi\rangle=0$,
the state $c^{\dagger}(\mathbf{k})|\psi\rangle$ is
proportional to $Q_{\mathrm{B}} a_{>}^{\dagger}(\mathbf{k})|\psi\rangle$ and
so it is not in the cohomology

$$
\begin{aligned}
& {\left[Q_{\mathrm{B}}, a_{\lambda}^{\dagger}(\mathbf{k})\right]=\sqrt{2} \omega \delta_{\lambda>} c^{\dagger}(\mathbf{k})} \\
& \left\{Q_{\mathrm{B}}, c^{\dagger}(\mathbf{k})\right\}=0 \\
& \left\{Q_{\mathrm{B}}, b^{\dagger}(\mathbf{k})\right\}=\xi^{-1} \sqrt{2} \omega a_{<}^{\dagger}(\mathbf{k}) \\
& {\left[Q_{\mathrm{B}}, a_{\phi}^{\dagger}(\mathbf{k})\right]=0}
\end{aligned}
$$

the state $b^{\dagger}(\mathbf{k})|\psi\rangle$ is not annihilated by Q and so it is not in the cohomology
if we add a photon with polarization >, the state $a_{>}^{\dagger}(\mathbf{k})|\psi\rangle$ is not annihilated by Q and so it is not in the cohomology
states: $a_{+}^{\dagger}(\mathbf{k})|\psi\rangle, a_{-}^{\dagger}(\mathbf{k})|\psi\rangle$ and $a_{\phi}^{\dagger}(\mathbf{k})|\psi\rangle$ are annihilated by Q but cannot be written as Q acting on some state and so they are in the cohomology!
the vacuum is also in the cohomology

Thus we found:

we can build an initial state of widely separated particles that is in the

 cohomology only with matter particles and photons with polarizations + and - . No ghosts or >, < polarized photons can be produced in the scattering process (a state in the cohomology will evolve to another state in the cohomology).
[^0]: $$
 \widetilde{\chi}(k)=\widetilde{\varphi}(k)-\frac{\widetilde{J}(k)}{k^{2}+m^{2}}
 $$

 Problem: the matrix has zero eigenvalue and cannot be inverted.

