
Quantum electrodynamics (QED)
based on S-58

Quantum electrodynamics is a theory of photons interacting with the 
electrons and positrons of a Dirac field:

Noether current of the 
lagrangian for a free Dirac field

we want the current to be conserved and so we need to enlarge the gauge 
transformation also to the Dirac field:

symmetry of the lagrangian and so the current is 
conserved no matter if equations of motion are satisfied

global symmetry is 
promoted into localREV

IEW
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We can write the QED lagrangian as:

covariant derivative
(the covariant derivative of a field transforms as the field itself)

Proof:

and so the lagrangian is manifestly gauge invariant!

REV
IEW
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We can also define the transformation rule for D:

then

as required.

Now we can express the field strength in terms of D’s:

REV
IEW
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Then we simply see:

the field strength is gauge invariant as we already knew

no derivatives act on 
exponentialsREV

IEW
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lagrangian has also the     symmetry,                      , that enlarges SO(N) to O(N)

Nonabelian symmetries
based on S-24

Let’s generalize the theory of two real scalar fields:

to the case of N real scalar fields:

the lagrangian is clearly invariant under the SO(N) transformation:
orthogonal matrix with det = 1

REV
IEW
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we choose normalization:

or                     .

there are               linearly independent real antisymmetric 
matrices, and we can write:

infinitesimal SO(N) transformation:

RT
ij = δij + θji

R−1
ij = δij − θij

Im(R−1R)ij = Im
∑

k

RkiRkj = 0

antisymmetric

(N^2  linear combinations of Im parts  = 0)

real

hermitian, antisymmetric, NxN

R = e−iθaT a

generator matrices of  SO(N)

The commutator of two generators is a lin. comb. of generators:

structure constants of the SO(N) group
REV

IEW
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e.g. SO(3):

Levi-Civita symbol

REV
IEW
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we can always write                    so that                  .

consider now a theory of N complex scalar fields:

the lagrangian is clearly invariant under the U(N) transformation:

group of unitary 
NxN matrices

SU(N) - group of special 
unitary NxN matrices

U(N) = U(1) x SU(N)

actually, the lagrangian has 
larger symmetry, SO(2N):REV

IEW
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or                     .

there are            linearly independent traceless hermitian matrices:

infinitesimal SU(N) transformation:
hermitian

traceless

Ũ = e−iθaT a

e.g. SU(2) - 3 Pauli matrices

      SU(3) - 8 Gell-Mann matrices
the structure coefficients 

are                   ,         
the same as for SO(3)REV

IEW
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then the kinetic terms and mass terms:                    ,             ,            and           ,                           
are gauge invariant. The transformation of covariant derivative in general implies that 
the gauge field transforms as:

Nonabelian gauge theory
based on S-69

Consider a theory of N scalar or spinor fields that is invariant under: 

for SO(N): a special orthogonal NxN matrix
for SU(N): a special unitary NxN matrix

In the case of U(1) we could promote the symmetry to local symmetry but we had to 
include a gauge field           and promote ordinary derivative to covariant derivative:

for U(1):

244

Now we can easily generalize this construction for SU(N) or SO(N):

an infinitesimal SU(N) transformation:

generator matrices 
(hermitian and traceless):

gauge coupling constant

structure constants 
(completely antisymmetric)

from     to 
from     to 

the SU(N) gauge field is a traceless hermitian NxN matrix transforming as:
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the covariant derivative is:

NxN identity matrixor acting on a field:

using covariant derivative we get a gauge invariant lagrangian

We define the field strength (kinetic term for the gauge field) as:

a new term

it transforms as:

and so the gauge invariant kinetic term can be written as:
not gauge invariant separately
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we can expand the gauge field in terms of the generator matrices:

that can be inverted:

similarly:

thus we have:
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the kinetic term can be also written as:

Example, quantum chromodynamics - QCD:

1, ... , 8 gluons
(massles spin 1 particles)

flavor index:
up, down, strange, 
charm, top, bottom

color index: 1,2, 3

in general, scalar and spinor fields can be in different representations of the 
group,        ; gauge invariance requires that the gauge fields transform independently 
of the representation.
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Group representations
based on S-70

A representation of a group is specified by a set of                       
hermitian matrices that obey:

(the original set of NxN dimensional 
matrices for SU(N) or SO(N) corresponds 
to the fundamental representation)

the dimension of 
the representation

structure constants 
(real numbers)

taking the complex conjugate we see that              is also a representation!

R is real if                   
or if there is a unitary transformation                            that makes

R is pseudoreal if it is not real but there is 
a transformation such that

complex conjugate representation     is specified by:

e.g. the fundamental rep of SU(2) :

e.g. fundamental reps. of SU(N), N>2

e.g. fundamental reps. of SO(N)

if R is not real or pseudoreal then it is complex

                         ,      
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The adjoint representation A:

A is a real representation

the dimension of the adjoint representation,          = # of generators
= the dimension of the group

to see that      s  satisfy commutation relations we use the Jacobi identity:

follows from:
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The quadratic Casimir          :

The index of a representation         :

multiplies the identity matrix

commutes with every generator, homework S-69.2

Useful relation:

SU(N): SO(N):
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A representation is reducible if there is a unitary transformation

that brings all the generators to the same block diagonal form (with at 
least two blocks); otherwise it is irreducible.

For example, consider a reducible representation R that can put into two 
blocks, then R is a direct sum representation:

and we have:
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Consider a field that carries two group indices             :

to prove this we use the fact that                      .

then the field is in the direct product representation:

The corresponding generator matrix is:

and we have:
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hermitian conjugation changes R to     and for a field in the conjugate 
representation we will use the upper index

We will use the following notation for indices of a complex representation:

we write generators as:

indices are contracted only if one is up and one is down!

an infinitesimal group transformation of       is:
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generator matrices for      are then given by

we trade complex conjugation for transposition

and an infinitesimal group transformation of       is:

is invariant!
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this means that the product of the representations      and      must contain 
the singlet representation    , specified by               .

Consider the Kronecker delta symbol

is an invariant symbol of the group!

Thus we can write:
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Another invariant symbol:

this implies that:

must contain the singlet representation!
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multiplying by A we find:

(A is real)

combining it with a previous result we get

the product of a representation with its complex conjugate is always reducible 
into a sum that contains at least the singlet and the adjoint representations!

For the fundamental representation N of SU(N) we have:

(no room for anything else)
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Consider a real representation     :

implies the existence of an invariant 
symbol with two R indices

For the fundamental representation N of SO(N) we have:

corresponds to a field with a 
symmetric traceless pair of 
fundamental indices
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Consider now a pseudoreal representation:

still holds but the Kronecker delta is not the corresponding invariant symbol:

R is pseudoreal if it is not real but there is 
a transformation such that

the only alternative is to have the singlet appear in the antisymmetric part 
of the product. For SU(N) another invariant symbol is the Levi-Civita 
symbol with N indices:

similarly for             .
For SU(2):

we can use       and        to raise and lower SU(2) indices; if        is in the             
representation, then we can get a field in the      representation by raising the 
index:                    .
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for real or pseudoreal representations                 .

Another invariant symbol of interest is         :

generator matrices in any rep. are invariant, or 

the right-hand side is obviously invariant.

Very important invariant symbol is the anomaly coefficient of the rep.:

is completely symmetric

Since                          we have:

we also have:

e.g.  for SU(2), all representation are real or pseudoreal and               for all of them

normalized so that                for SU(N) with           .
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The path integral for photons
based on S-57

We will discuss the path integral for photons and the photon propagator 
more carefully using the Lorentz gauge:

Problem: the matrix    has zero eigenvalue and cannot be inverted.

as in the case of scalar field we Fourier-transform to the momentum space:

we shift integration variables so that mixed terms disappear... REV
IEW
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To see this, note:

where

is a projection matrix

and so the only allowed eigenvalues are 0 and +1

Since

it has one 0 and three +1 eigenvalues.REV
IEW
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component does not contribute to the quadratic term because

and it doesn’t even contribute to the linear term because

and so there is no reason to integrate over it; we define the path integral 
as integral over the remaining three basis vector; these are given by

which is equivalent to

Lorentz gauge

We can decompose the gauge field          into components aligned along a 
set of linearly independent four-vectors, one of which is      and then this

REV
IEW
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Within the subspace orthogonal to        the projection matrix is simply the 
identity matrix and the inverse is straightforward; thus we get:

going back to the 
position space

propagator in the Lorentz gauge (Landau gauge)

we can again neglect the term with momenta because the current is 
conserved and we obtain the propagator in the Feynman gauge:REV

IEW
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The path integral for nonabelian gauge theory
based on S-71

Now we want to evaluate the path integral for nonabelian gauge theory:

for U(1) gauge theory, the component of the gauge field parallel to the four-
momentum      did not appear in the action and so it should not be integrated over; 
since the U(1) gauge transformation is of the form                                    , excluding 
the components parallel to      removes the gauge redundancy in the path integral.

nonabelian gauge transformation is nonlinear:

266



we have:

we have to remove the gauge redundancy in a different way!

for an infinitesimal transformation:

or, in components:

the covariant derivative in the adjoint representation 
(instead of      that we have for the U(1) transformation)
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Consider an ordinary integral of the form:

the integral over y is redundant
we can simply drop it and define:

this is how we dealt with gauge 
redundancy in the abelian case

or we can get the same result by inserting a delta function:

this is what we are going to do 
for the nonabelian casethe argument of the delta function can 

be shifted by an arbitrary function of x
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if                  is a unique solution of                      for fixed x, we can write:

then we have:

we dropped the abs. value

generalizing the result to an integral over n variables:
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Now we translate this result to path integral over nonabelian gauge fields:

i index now represents x and a

x and y 

y 

G becomes the gauge fixing function:

fixed, arbitrarily chosen 
function of x

for        gauge we use:
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let’s evaluate the functional derivative:

and we find:

Recall, the functional determinant can be written as a path integral over 
complex Grassmann variables:

where:

Faddeev-Popov ghosts
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the ghost lagrangian can be further written as: 

we drop the total divergence

ghost fields interact with the gauge field; however ghosts do not exist and we 
will see later (when we discuss the BRST symmetry) that the amplitude to 
produce them in any scattering process is zero. The only place they appear is in 
loops! Since they are Grassmann fields, a closed loop of ghost lines in a Feynman 
diagram comes with a minus sign!

Comments:

For abelian gauge theory                   and thus there is no interaction term for 
ghost fields; we can absorb its path integral into overall normalization.
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At this point we have:

fixed, arbitrarily chosen function of x

The path integral is independent of           ! Thus we can multiply it by arbitrary 
functional of      and perform a path integral over      ; the result changes only the 
overall normalization of          .

we can multiply         by:

our final result is:

integral over      is trivial

gauge fixing term

next time we will derive Feynman rules from this action...
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The Feynman rules for nonabelian gauge theory
based on S-72

The lagrangian for nonabelian gauge theory is:

the gauge fixing term for       gauge:

we can write the gauge fixed lagrangian in the form:
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The gluon propagator in the       gauge:

going to the momentum space and taking 
the inverse of the quadratic term
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The three-gluon vertex:

all photons outgoing

the derivative acting on an outgoing particle 
brings (-i momentum) of the particle
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The four-gluon vertex:
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The ghost lagrangian: we need ghosts for loop calculations

The ghost propagator:

massless complex scalar 
they carry charge arrow
(and also a group index)
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The ghost-ghost-gluon vertex:

ghosts are complex scalars so their 
propagator carry a charge arrow

the derivative acting on an outgoing particle brings (-i momentum) of the particle

279

Finally we can include quarks:

propagator:

vertex:

for fields in different representations we would have            .
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The beta function in nonabelian gauge theory
based on S-73

The complete (renormalized) lagrangian for nonabelian gauge theory is:

from gauge invariance we expect:

Slavnov-Taylor identities
(non-abelian analogs of  Ward identities)
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There is only one diagram contributing at one loop level:

fictitious photon mass

the photon propagator 
in the Feynman gauge:REV

IEW
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following the usual procedure:

we get: REV
IEW
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we can impose                    by writing:

we set Z’s to cancel divergent parts

fixed by imposing:

REV
IEW
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Let’s start with the quark propagator: 
we work in Feynman gauge and use the        scheme

the calculation is identical to QED with additional color factor:

the result has to be identical to QED up to the color factor:
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Finally, let’s evaluate the diagram contributing to the vertex:

REV
IEW
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combining denominators...

REV
IEW
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continuing to d dimensions

evaluating the loop integral we get:

the infinite part can be absorbed by Z

the finite part of the vertex function is fixed by a suitable condition.REV
IEW
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Let’s continue with the quark-quark-gluon vertex: 

the calculation of the 1st diagram is identical to QED with additional color 
factor:

thus the divergent part is the same as 
in QED up to the color factor:
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Let’s evaluate the second diagram:

the divergent piece doesn’t depend on external momenta, so we can set 
them to 0; using Feynman rules we get:
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the numerator is:

we can drop linear terms

for          (we are interested in the divergent part only):
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thus for the divergent part of the 2nd diagram we find:

putting pieces together we get:

and we find:

in Feynman gauge and the        scheme
292

Let’s now calculate the              at one loop:

extra -1 for fermion loop; and the trace

REV
IEW
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we ignore terms linear in q
REV

IEW
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the integral diverges in 4 spacetime dimensions and so we analytically 
continue it to               ; we also make the replacement                       to 
keep the coupling dimensionless:

see your homework

is transverse :)REV
IEW
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the integral over q is straightforward:

imposing               fixes

and REV
IEW
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Let’s now evaluate one-loop corrections to the gluon propagator: 

0

297
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combining denominators and continuing to                 dimension:

where
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expanding and ignoring 
terms linear in q

we are interested in 
the divergent part only
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integrating over x, we get the result for the divergent part of

we get:
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now let’s calculate the ghost loop:

extra -1 for closed ghost loop

combining denominators,
shifting the numerator,
performing integrals, ...
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finally, let’s calculate the fermion loop:

the same calculation as in QED, 
except for the color factor:

the number of flavors
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Putting pieces together:

0

we find:

and so:

gluon self-energy is transverse
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not equal! 

We found: in Feynman gauge and the        scheme

the dictionary:

Let’s calculate the beta function; define:
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Beta functions in quantum electrodynamics
based on S-66

Let’s calculate the beta function in QED:

the dictionary:

Note                !REV
IEW
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following the usual procedure:

we find: REV
IEW
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or equivalently:

For a theory with N Dirac fields with charges       :

= 1

we find:

REV
IEW

308

following the usual procedure:

we find:
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beta function is negative for                ,
the gauge coupling gets weaker at higher energies!

or equivalently:

For QCD:
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BRST symmetry
based on S-74

We are going to show that the gauge-fixed lagrangian:

has a residual form of the gauge symmetry - Becchi-Rouet-Stora-Tyutin symmetry

Consider an infinitesimal transformation for a non-abelian gauge theory:

scalars or spinors in 
representation R

The BRST transformation is defined as:

we use the ghost field (scalar 
Grassmann field) instead of   f         . 

Anything that is gauge invariant is automatically BRST invariant,

in particular                      !
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Now we are going to require that                  :
this requirement will determine the BRST transformation of the ghost field.

Thus we have:

that will vanish for all         if and only if:

-1 for      acting as an anticommuting object
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Now we have to check that                  for the gauge field:
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Now we have to check that                  for the gauge field:

vanishes for the variation of the ghost field we found before:
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The BRST transformation of the antighost field is defined as:

then                   implies:

B is a scalar field

Lautrup-Nakanishi auxiliary field

we treat ghost and antighost fields as independent fields

What is it good for?

We can add to the lagrangian any term that is the BRST variation of some 
object:

BRST invariant because 
it is gauge invariant

BRST invariant because

corresponds to fixing a gauge
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Let’s choose:

gauge-fixing function

we will get the       gauge
then

-1 for      acting as an anticommuting object

or
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now we can easily perform the path integral over B:

it is equivalent to solving the classical equation of motion,

and substituting the result back to the formula:

we obtained the gauge fixing lagrangian and the ghost lagrangian
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Symmetries of the complete action:

Lorentz invariance

Parity, Time reversal, Charge conjugation

Global invariance under a given (non-abelian) symmetry group

BRST invariance

ghost number conservation (+1 for ghost and -1 for antighost)

antighost translation invariance

The lagrangian already includes all the terms allowed by these symmetries!

this means that all the divergencies can be absorbed by the Zs of these terms, BRST 
symmetry requires that the gauge coupling renormalize in the same way in each term.
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There is the Noether current associated with the BRST symmetry:

and the corresponding BRST charge:

it is hermitian 

all the fields in the theory

the BRST charge generates a BRST transformation:

commutator for scalars and anticommutator for spinors
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The energy-momentum four-vector is:

Recall, we defined the space-time translation operator 

so that

we can easily verify it; for an infinitesimal transformation it becomes:

it is straightforward to verify this by using the canonical commutation 
relations for          and          .REV

IEW
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Since                  we have:

Consider states for which:

such states are said to be in the Kernel of       .

Cohomology of        :  Image of        :  

zero norm states:

we identify two states as a single 
element of the cohomology if their 
difference is in the image:

Q is hermitian:                  . 
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Consider a normalized state in the cohomology:    

since the lagrangian is BRST invariant:

and so the time evolved state is still annihilated by       :

(in addition, a unitary time evolution does not change the norm of a state)

the time-evolved stay must still be in the cohomology!

We will see shortly that the physical states of the theory correspond to 
the cohomology of       !
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All states in the theory can be generated from creation operators (we start with 
widely separated wave packets, and so we can neglect interaction):

represents matter fields

we are neglecting group indices

for                                           four polarization vectors can be chosen as:
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Setting            and matching coefficients of             we find:

we also use EM to eliminate B:
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  the state                is 
proportional to                  and 
so it is not in the cohomology

Consider a normalized state in the cohomology:    

if we add a photon with polarization >, 
the state               is not annihilated by 

Q and so it is not in the cohomology

states:                 ,                   and                 are annihilated by Q but cannot be 
written as Q acting on some state and so they are in the cohomology!

the state                is 
proportional to                     and 
so it is not in the cohomology

the state               is not annihilated by 
Q and so it is not in the cohomology

the vacuum is also in the cohomology
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we can build an initial state of widely separated particles that is in the 
cohomology only with matter particles and photons with polarizations + and -. 
No ghosts or >, < polarized photons can be produced in the scattering process 
(a state in the cohomology will evolve to another state in the cohomology).

Thus we found:
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