Plan for the rest of the semester

$$
\varphi(x) \rightarrow e^{-i \alpha} \varphi(x)
$$

$$
U(\Lambda)^{-1} B^{\mu \nu}(x) U(\Lambda)=\Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{\nu} B^{\rho \sigma}\left(\Lambda^{-1} x\right)
$$

for symmetric $B^{\mu \nu}(x)=B^{\nu \mu}(x)$ and antisymmetric $B^{\mu \nu}(x)=-B^{\nu \mu}(x)$ tensors, the symmetry is preserved by Lorentz transformations.

In addition, the trace $T(x) \equiv g_{\mu \nu} B^{\mu \nu}(x)$ transforms as a scalar:

$$
U(\Lambda)^{-1} T(x) U(\Lambda)=T\left(\Lambda^{-1} x\right)
$$

Thus a general tensor field can be written as:

$$
B^{\mu \nu}(x)=A^{\mu \nu}(x)+S^{\mu \nu}(x)+\frac{1}{4} g^{\mu \nu} T(x)
$$

$$
\text { antisymmetric } \quad \text { symmetric and traceless } g_{\mu \nu} S^{\mu \nu}=0
$$

where different parts do not mix with each other under LT!

How do we find the smallest (irreducible) representations of the Lorentz group for a field with n vector indices?

Let's start with a field carrying a generic Lorentz index:

$$
\begin{aligned}
& U(\Lambda)^{-1} \varphi_{A}(x) U(\Lambda)=L_{A}{ }^{B}(\Lambda) \varphi_{B}\left(\Lambda^{-1} x\right) \\
& \quad \text { matrices that depend on } \Lambda, \\
& \text { they must obey the group composition rule } \\
& L_{A}{ }^{B}\left(\Lambda^{\prime}\right) L_{B}{ }^{C}(\Lambda)=L_{A}{ }^{C}\left(\Lambda^{\prime} \Lambda\right)
\end{aligned}
$$

we say these matrices form a representation of the Lorentz group.
and a tensor field $B^{\mu \nu}(x)$ that would transform as:

$$
U(\Lambda)^{-1} B^{\mu \nu}(x) U(\Lambda)=\Lambda^{\mu}{ }_{\rho} \Lambda^{\nu}{ }_{\sigma} B^{\rho \sigma}\left(\Lambda^{-1} x\right)
$$

For an infinitesimal transformation we had:
$\Lambda^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}+\delta \omega^{\mu}{ }_{\nu}$

$$
U(1+\delta \omega)=I+\frac{i}{2} \delta \omega_{\mu \nu} M^{\mu \nu}
$$

where the generators of the Lorentz group satisfied:

$$
\left[M^{\mu \nu}, M^{\rho \sigma}\right]=i\left(g^{\mu \rho} M^{\nu \sigma}-(\mu \leftrightarrow \nu)\right)-(\rho \leftrightarrow \sigma)
$$

Lie algebra of the Lorentz group
or in components (angular momentum and boost),

$$
\begin{aligned}
& J_{i} \equiv \frac{1}{2} \varepsilon_{i j k} M^{j k} \\
& K_{i} \equiv M^{i 0}
\end{aligned}
$$

we have found:

$$
\begin{aligned}
{\left[J_{i}, J_{j}\right] } & =i \hbar \varepsilon_{i j k} J_{k} \\
{\left[J_{i}, K_{j}\right] } & =i \hbar \varepsilon_{i j k} K_{k} \\
{\left[K_{i}, K_{j}\right] } & =-i \hbar \varepsilon_{i j k} J_{k}
\end{aligned}
$$

$$
U(1+\delta \omega)=I+\frac{i}{2} \delta \omega_{\mu \nu} M^{\mu \nu}
$$

In a similar way, for an infinitesimal transformation we also define:

$$
\begin{aligned}
L_{A}^{B}(1+\delta \omega)=\delta_{A}^{B}+\frac{i}{2} \delta \omega_{\mu \nu}\left(S^{\mu \nu}\right)_{A}^{B} \\
U(\Lambda)^{-1} \varphi_{A}(x) U(\Lambda)=L_{A}^{B}(\Lambda) \varphi_{B}\left(\Lambda^{-1} x\right) \\
\text { comparing linear terms in } \delta \omega_{\mu \nu}
\end{aligned}
$$

and we find:

$$
\begin{aligned}
& {\left[\varphi_{A}(x), M^{\mu \nu}\right]=} \mathcal{L}^{\mu \nu} \varphi_{A}(x)+ \\
&\left(S^{\mu \nu}\right)_{A}^{B} \varphi_{B}(x) \\
& \mathcal{L}^{\mu \nu} \equiv \frac{1}{i}\left(x^{\mu} \partial^{\nu}-x^{\nu} \partial^{\mu}\right)
\end{aligned}
$$

also it is possible to show that $\mathcal{L}^{\mu \nu}$ and $\left(S^{\mu \nu}\right)_{A}^{B}$ obey the same commutation relations as the generators

$$
\left[M^{\mu \nu}, M^{\rho \sigma}\right]=i\left(g^{\mu \rho} M^{\nu \sigma}-(\mu \leftrightarrow \nu)\right)-(\rho \leftrightarrow \sigma)
$$

How do we find all possible sets of matrices that satisfy ${ }_{\downarrow}$?

$$
\left[M^{\mu \nu}, M^{\rho \sigma}\right]=i\left(g^{\mu \rho} M^{\nu \sigma}-(\mu \leftrightarrow \nu)\right)-(\rho \leftrightarrow \sigma)
$$

$$
\left[J_{i}, J_{j}\right]=i \hbar \varepsilon_{i j k} J_{k}
$$

$$
\left[J_{i}, K_{j}\right]=i \hbar \varepsilon_{i j k} K_{k}
$$

$$
\left[K_{i}, K_{j}\right]=-i \hbar \varepsilon_{i j k} J_{k}
$$

the first one is just the usual set of commutation relations for angular momentum in QM:
for given $\mathrm{j}(0,1 / 2, I, \ldots)$ we can find three $(2 \mathrm{j}+\mathrm{I}) \times(2 \mathrm{j}+\mathrm{I})$ hermitian matrices $\mathcal{J}_{1}, \mathcal{J}_{2}$ and \mathcal{J}_{3} that satisfy the commutation relations and the eigenvalues of \mathcal{J}_{3} are $-\mathrm{j},-\mathrm{j}+1, \ldots,+\mathrm{j}$.
π not related by a unitary transformation such matrices constitute all of the inequivalent, irreducible representations of the Lie algebra of $\mathrm{SO}(3)$
cannot be made block diagonal
equivalent to the Lie algebra of $S U(2)$
by a unitary transformation

The Lie algebra of the Lorentz group splits into two different SU(2) Lie algebras that are related by hermitian conjugation!

A representation of the Lie algebra of the Lorentz group can be specified by two integers or half-integers:

$$
\left(2 n+1,2 n^{\prime}+1\right)
$$

there are $(2 n+1)\left(2 n^{\prime}+1\right)$ different components of a representation they can be labeled by their angular momentum representations: since $J_{i}=N_{i}+N_{i}^{\dagger}$,for given n and n^{\prime} the allowed values of j are

$$
\left|n-n^{\prime}\right|,\left|n-n^{\prime}\right|+1, \ldots, n+n^{\prime}
$$

(the standard way to add angular momenta , each value appears exactly once)

$$
\begin{aligned}
& \text { Crucial observation: } \\
& {\left[J_{i}, J_{j}\right]=i \hbar \varepsilon_{i j k} J_{k},} \\
& N_{i} \equiv \frac{1}{2}\left(J_{i}-i K_{i}\right) \\
& {\left[J_{i}, K_{j}\right]=i \hbar \varepsilon_{i j k} K_{k},} \\
& N_{i}^{\dagger} \equiv \frac{1}{2}\left(J_{i}+i K_{i}\right) \\
& {\left[K_{i}, K_{j}\right]=-i \hbar \varepsilon_{i j k} J_{k}} \\
& \begin{aligned}
{\left[N_{i}, N_{j}\right] } & =i \varepsilon_{i j k} N_{k}, \\
{\left[N_{i}^{\dagger}, N_{j}^{\dagger}\right] } & =i \varepsilon_{i j k} N_{k}^{\dagger}, \\
{\left[N_{i}, N_{j}^{\dagger}\right] } & =0 .
\end{aligned}
\end{aligned}
$$

The simplest representations of the Lie algebra of the Lorentz group are:
$\left(2 n+1,2 n^{\prime}+1\right)$

Left- and Right-handed spinor fields

based on S-34
Let's start with a left-handed spinor field (left-handed Weyl field) $\psi_{a}(x)$:
under Lorentz transformation we have:

$$
U(\Lambda)^{-1} \psi_{a}(x) U(\Lambda)=L_{a}^{b}(\Lambda) \psi_{b}\left(\Lambda^{-1} x\right)
$$

matrices in the $(2,1)$ representation, that satisfy the group composition rule:

$$
L_{a}{ }^{b}\left(\Lambda^{\prime}\right) L_{b}{ }^{c}(\Lambda)=L_{a}{ }^{c}\left(\Lambda^{\prime} \Lambda\right)
$$

For an infinitesimal transformation we have:

$$
\begin{array}{r}
L_{a}^{b}(1+\delta \omega)=\delta_{a}^{b}+\frac{i}{2} \delta \omega_{\mu \nu}\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}^{b} \quad \Lambda^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}+\delta \omega^{\mu}{ }_{\nu} \\
\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}^{b}=-\left(S_{\mathrm{L}}^{\nu \mu}\right)_{a}{ }^{b} \\
{\left[S_{\mathrm{L}}^{\mu \nu}, S_{\mathrm{L}}^{\rho \sigma}\right]=i\left(g^{\mu \rho} S_{\mathrm{L}}^{\nu \sigma}-(\mu \leftrightarrow \nu)\right)-(\rho \leftrightarrow \sigma)}
\end{array}
$$

Using

$$
U(1+\delta \omega)=I+\frac{i}{2} \delta \omega_{\mu \nu} M^{\mu \nu}
$$

we get

$$
U(\Lambda)^{-1} \psi_{a}(x) U(\Lambda)=L_{a}{ }^{b}(\Lambda) \psi_{b}\left(\Lambda^{-1} x\right)
$$

$$
\begin{aligned}
{\left[\psi_{a}(x), M^{\mu \nu}\right]=\mathcal{L}^{\mu \nu} \psi_{a}(x)+} & \left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}^{b} \psi_{b}(x) \\
& \mathcal{L}^{\mu \nu} \equiv \frac{1}{i}\left(x^{\mu} \partial^{\nu}-x^{\nu} \partial^{\mu}\right)
\end{aligned}
$$

present also for a scalar field to simplify the formulas, we can evaluate everything at space-time origin, $x^{\mu}=0$. and since $M^{i j}=\varepsilon^{i j k} J_{k}$, we have:

$$
\begin{array}{r}
\varepsilon^{i j k}\left[\psi_{a}(0), J_{k}\right]=\left(S_{\mathrm{L}}^{i j}\right)_{a}^{b} \psi_{b}(0) \\
\text { standard convention } \\
\left(S_{\mathrm{L}}^{i j}\right)_{a}^{b}=\frac{1}{2} \varepsilon^{i j k} \sigma_{k} \\
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{array}
$$

so that for $\mathrm{i}=\mathrm{I}$ and $\mathrm{j}=2$:
$\left(S_{\mathrm{L}}^{12}\right)_{a}{ }^{b}=\frac{1}{2} \varepsilon^{12 k} \sigma_{k}=\frac{1}{2} \sigma_{3}$
$\left(S_{\mathrm{L}}^{12}\right)_{1}{ }^{1}=+\frac{1}{2},\left(S_{\mathrm{L}}^{12}\right)_{2}{ }^{2}=-\frac{1}{2}$
$\left(S_{\mathrm{L}}^{12}\right)_{1}{ }^{2}=\left(S_{\mathrm{L}}^{12}\right)_{2}{ }^{1}=0$

Once we set the representation matrices for the angular momentum operator, those for boosts $K_{k}=M^{k 0}$ follow from:

$$
\begin{array}{cr}
J_{k}=N_{k}+N_{k}^{\dagger} & N_{i} \equiv \frac{1}{2}\left(J_{i}-i K_{i}\right) \\
N_{i}^{\dagger} \equiv \frac{1}{2}\left(J_{i}+i K_{i}\right)
\end{array}
$$

N_{k}^{\dagger} do not contribute when acting on a field in $(2, I)$ representation and so the representation matrices for K_{k} are i times those for J_{k} :

$$
\left(S_{\mathrm{L}}^{k 0}\right)_{a}^{b}=\frac{1}{2} i \sigma_{k}
$$

$$
\left(S_{\mathrm{L}}^{i j}\right)_{a}{ }^{b}=\frac{1}{2} \varepsilon^{i j k} \sigma_{k}
$$

Let's consider now a hermitian conjugate of a left-handed spinor field $\psi_{a}(x)$ (a hermitian conjugate of a $(2, I)$ field should be a field in the $(1,2)$ representation $)=$ right-handed spinor field (right-handed Weyl field)

$$
\left[\psi_{a}(x)\right]^{\dagger}=\psi_{\dot{a}}^{\dagger}(x)
$$

$$
\text { we use dotted indices to distinguish }(2,1) \text { from }(1,2) \text { ! }
$$

under Lorentz transformation we have:

$$
U(\Lambda)^{-1} \psi_{\dot{a}}^{\dagger}(x) U(\Lambda)=R_{\dot{a}}^{\dot{b}}(\Lambda) \psi_{\dot{b}}^{\dagger}\left(\Lambda^{-1} x\right)
$$

matrices in the $(1,2)$ representation,
that satisfy the group composition rule:

$$
R_{\dot{a}}^{\dot{b}}\left(\Lambda^{\prime}\right) R_{\dot{b}}^{\dot{c}}(\Lambda)=R_{\dot{a}}^{\dot{c}}\left(\Lambda^{\prime} \Lambda\right)
$$

For an infinitesimal transformation we have:

$$
\begin{aligned}
R_{\dot{a}}{ }^{\dot{b}}(1+\delta \omega)= & \delta_{\dot{a}}{ }^{\dot{b}}+\frac{i}{2} \delta \omega_{\mu \nu}\left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{a}}{ }^{\dot{b}} \\
& \left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{a}}^{\dot{b}}=-\left(S_{\mathrm{R}}^{\nu \mu}\right)_{\dot{a}}^{\dot{b}}
\end{aligned}
$$

in the same way as for the left-handed field we find:

$$
\left[\psi_{\dot{a}}^{\dagger}(0), M^{\mu \nu}\right]=\left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{a}}^{\dot{b}} \psi_{\dot{b}}^{\dagger}(0)
$$

taking the hermitian conjugate,

$$
\left[M^{\mu \nu}, \psi_{a}(0)\right]=\left[\left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{a}}\right]^{*} \psi_{b}(0)
$$

we find:

$$
\left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{a}}^{\dot{b}}=-\left[\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}{ }^{b}\right]^{*}
$$

Let's consider now a field that carries two $(2,1)$ indices. Under Lorentz transformation we have:

$$
U(\Lambda)^{-1} C_{a b}(x) U(\Lambda)=L_{a}{ }^{c}(\Lambda) L_{b}{ }^{d}(\Lambda) C_{c d}\left(\Lambda^{-1} x\right)
$$

Can we group 4 components of C into smaller sets that do not mix under Lorentz transformation?

Recall from QM that two spin $1 / 2$ particles can be in a state of total spin 0 or I:

$$
2 \otimes 2=1_{\mathrm{A}} \oplus 3_{\mathrm{S}}
$$

I antisymmetric spin 0 state
3 symmetric spin I states
Thus for the Lorentz group we have:

$$
(2,1) \otimes(2,1)=(1,1)_{\mathrm{A}} \oplus(3,1)_{\mathrm{S}}
$$

and we should be able to write:

$$
C_{a b}(x)=\varepsilon_{a b} D(x)+G_{a b}(x)
$$

$$
\varepsilon_{a b}=-\varepsilon_{b a}
$$

$$
G_{a b}(x)=G_{b a}(x)
$$

$$
C_{a b}(x)=\varepsilon_{a b} D(x)+G_{a b}(x)
$$

$$
\begin{array}{r}
\varepsilon_{a b}=-\varepsilon_{b a} \\
\varepsilon_{21}=-\varepsilon_{12}=+1
\end{array}
$$

$U(\Lambda)^{-1} C_{a b}(x) U(\Lambda)=L_{a}{ }^{c}(\Lambda) L_{b}^{d}(\Lambda) C_{c d}\left(\Lambda^{-1} x\right)$

$$
L_{a}{ }^{c}(\Lambda) L_{b}{ }^{d}(\Lambda) \varepsilon_{c d}=\varepsilon_{a b}
$$

We can use it, and its inverse to raise and lower left-handed spinor indices:
$\varepsilon^{12}=\varepsilon_{21}=+1, \quad \varepsilon^{21}=\varepsilon_{12}=-1 \quad \varepsilon_{a b} \varepsilon^{b c}=\delta_{a}{ }^{c}, \quad \varepsilon^{a b} \varepsilon_{b c}=\delta^{a}{ }_{c}$
to raise and lower left-handed spinor indices:

$$
\psi^{a}(x) \equiv \varepsilon^{a b} \psi_{b}(x)
$$

$$
\begin{aligned}
\varepsilon_{a b} \varepsilon^{b c}=\delta_{a}{ }^{c}, \quad \varepsilon^{a b} \varepsilon_{b c}=\delta^{a}{ }_{c} \\
\psi^{a}(x) \equiv \varepsilon^{a b} \psi_{b}(x)
\end{aligned}
$$

We also have:

$$
\psi_{a}=\varepsilon_{a b} \psi^{b}=\varepsilon_{a b} \varepsilon^{b c} \psi_{c}=\delta_{a}^{c} \psi_{c}
$$

we have to be careful with the minus sign, e.g.:

$$
\psi^{a}=\varepsilon^{a b} \psi_{b}=-\varepsilon^{b a} \psi_{b}=-\psi_{b} \varepsilon^{b a}=\psi_{b} \varepsilon^{a b}
$$

or when contracting indices:

$$
\psi^{a} \chi_{a}=\varepsilon^{a b} \psi_{b} \chi_{a}=-\varepsilon^{b a} \psi_{b} \chi_{a}=-\psi_{b} \chi^{b}
$$

Exactly the same discussion applies to two $(1,2)$ indices:

$$
(1,2) \otimes(1,2)=(1,1)_{\mathrm{A}} \oplus(1,3)_{\mathrm{S}}
$$

with $\varepsilon_{\dot{a} \dot{b}}$ defined in the same way as $\varepsilon_{a b}: \varepsilon_{\dot{a} \dot{b}}=-\varepsilon_{\dot{b} \dot{a}}, \ldots .$.

Finally, let's consider a field that carries one undotted and one dotted index; it is in the $(2,2)$ representation (vector):

it is an invariant symbol,
we can deduce its existence from

$$
(2,1) \otimes(1,2) \otimes(2,2)=(1,1) \oplus \ldots
$$

A consistent choice with what we have already set for $S_{\mathrm{L}}^{\mu \nu}$ and $S_{\mathrm{R}}^{\mu \nu}$ is:

$$
\sigma_{a \dot{a}}^{\mu}=(I, \vec{\sigma})
$$

In general, whenever the product of a set of representations includes the singlet, there is a corresponding invariant symbol,
e.g. the existence of $g_{\mu \nu}=g_{\nu \mu}$ follows from

$$
(2,2) \otimes(2,2)=(1,1)_{\mathrm{S}} \oplus(1,3)_{\mathrm{A}} \oplus(3,1)_{\mathrm{A}} \oplus(3,3)_{\mathrm{S}}
$$

another invariant symbol we will use is completely antisymmetric LeviCivita symbol:
$(2,2) \otimes(2,2) \otimes(2,2) \otimes(2,2)=(1,1)_{\mathrm{A}} \oplus \ldots$

$\varepsilon^{\mu \nu \rho \sigma}$

$$
\varepsilon^{0123}=+1
$$

$\Lambda^{\mu}{ }_{\alpha} \Lambda^{\nu}{ }_{\beta} \Lambda^{\rho}{ }_{\gamma} \Lambda^{\sigma}{ }_{\delta} \varepsilon^{\alpha \beta \gamma \delta}$ is antisymmetric on exchange of any two of its uncontracted indices, and therefore must be proportional to $\varepsilon^{\mu \nu \rho \sigma}$, the constant of proportionality is $\operatorname{det} \Lambda$ which is + I for proper Lorentz transformations.

Comparing the formula for a general field with two vector indices

$$
(2,2) \otimes(2,2)=(1,1)_{\mathrm{S}} \oplus(1,3)_{\mathrm{A}} \oplus(3,1)_{\mathrm{A}} \oplus(3,3)_{\mathrm{S}}
$$

we see that A is not irreducible and, since $(3, I)$ corresponds to a symmetric part of undotted indices,

$$
\begin{array}{r}
2 \otimes 2=1_{\mathrm{A}} \oplus 3_{\mathrm{S}} \\
C_{a b}(x)=\varepsilon_{a b} D(x)+G_{a b}(x)
\end{array}
$$

we should be able to write it in terms of G and its hermitian conjugate.
see Srednicki

Fun with spinor indices

based on S-35
invariant symbol for raising and lowering spinor indices:

$$
\psi^{a}(x) \equiv \varepsilon^{a b} \psi_{b}(x)
$$

$$
\begin{aligned}
& \varepsilon^{12}=\varepsilon^{\mathrm{i} \dot{2}}=\varepsilon_{21}=\varepsilon_{\dot{2} \dot{1}}=+1, \quad \varepsilon^{21}=\varepsilon^{\dot{2} \dot{1}}=\varepsilon_{12}= \varepsilon_{\dot{1} \dot{2}}=-1 \\
& \varepsilon^{a b}=-\varepsilon_{a b}=i \sigma_{2}
\end{aligned}
$$

another invariant symbol:

$$
\begin{array}{rrr}
\sigma_{a \dot{a}}^{\mu}=(I, \vec{\sigma}) & A_{a \dot{a}}(x)=\sigma_{a \dot{a}}^{\mu} A_{\mu}(x) \\
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{array}
$$

Simple identities:

$$
\begin{gathered}
\sigma_{a \dot{a}}^{\mu} \sigma_{\mu b \dot{b}}=-2 \varepsilon_{a b} \varepsilon_{\dot{a} \dot{b}} \\
\varepsilon^{a b} \varepsilon^{\dot{a} \dot{b}} \sigma_{a \dot{a}}^{\mu} \sigma_{b \dot{b}}^{\nu}=-2 g^{\mu \nu} \quad \text { fromortionality constants direct calculation }
\end{gathered}
$$

What can we learn about the generator matrices $\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}^{b}$ from invariant symbols?
\diamond from $\quad \varepsilon_{a b}=L(\Lambda)_{a}^{c} L(\Lambda)_{b}{ }^{d} \varepsilon_{c d}$:
for an infinitesimal transformation we had:

$$
\Lambda^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}+\delta \omega^{\mu}{ }_{\nu}
$$

$$
L_{a}^{b}(1+\delta \omega)=\delta_{a}^{b}+\frac{i}{2} \delta \omega_{\mu \nu}\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}^{b}
$$

and we find:

$$
\begin{aligned}
& \varepsilon_{a b}=\varepsilon_{a b}+\frac{i}{2} \delta \omega_{\mu \nu}\left[\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}^{c} \varepsilon_{c b}+\left(S_{\mathrm{L}}^{\mu \nu}\right)_{b}^{d} \varepsilon_{a d}\right]+O\left(\delta \omega^{2}\right) \\
&=\varepsilon_{a b}+\frac{i}{2} \delta \omega_{\mu \nu}\left[-\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a b}+\left(S_{\mathrm{L}}^{\mu \nu}\right)_{b a}\right]+O\left(\delta \omega^{2}\right) . \\
&\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a b}=\left(S_{\mathrm{L}}^{\mu \nu}\right)_{b a}
\end{aligned}
$$

similarly:

$$
\left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{a} \dot{b}}=\left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{b} \dot{a}}
$$

from $\sigma_{a \dot{a}}^{\rho}=\Lambda^{\rho}{ }_{\tau} L(\Lambda)_{a}{ }^{b} R(\Lambda)_{\dot{a}}{ }^{\dot{b}} \sigma_{b \dot{b}}^{\tau}:$
for infinitesimal transformations we had:

$$
\begin{aligned}
\Lambda^{\rho}{ }_{\tau} & =\delta^{\rho}{ }_{\tau}+\frac{i}{2} \delta \omega_{\mu \nu}\left(S_{V}^{\mu \nu}\right)^{\rho}{ }_{\tau}, \quad\left(S_{V}^{\mu \nu}\right)^{\rho}{ }_{\tau} \equiv \frac{1}{i}\left(g^{\mu \rho} \delta^{\nu}{ }_{\tau}-g^{\nu \rho} \delta^{\mu}{ }_{\tau}\right) \\
L_{a}{ }^{b}(1+\delta \omega) & =\delta_{a}{ }^{b}+\frac{i}{2} \delta \omega_{\mu \nu}\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}{ }^{b}, \\
R_{\dot{a}}{ }^{\dot{b}}(1+\delta \omega) & =\delta_{\dot{a}}{ }^{\dot{b}}+\frac{i}{2} \delta \omega_{\mu \nu}\left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{a}}{ }^{\dot{b}},
\end{aligned}
$$

isolating linear terms in $\delta \omega_{\mu \nu}$ we have:

$$
\left(g^{\mu \rho} \delta_{\tau}^{\nu}-g^{\nu \rho} \delta^{\mu}{ }_{\tau}\right) \sigma_{a \dot{a}}^{\tau}+i\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}{ }^{b} \sigma_{b \dot{a}}^{\rho}+i\left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{a}}{ }^{\dot{b}} \sigma_{a \dot{b}}^{\rho}=0
$$

multiplying by $\sigma_{\rho c \dot{c}}$ we have:

$$
\begin{gathered}
\sigma_{c \dot{c}}^{\mu} \sigma_{a \dot{a}}^{\nu}-\sigma_{c \dot{c}}^{\nu} \sigma_{a \dot{a}}^{\mu}+i\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}^{b} \sigma_{b \dot{a}}^{\rho} \sigma_{\rho c \dot{c}}+i\left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{a}}^{\dot{b}} \sigma_{a \dot{b}}^{\rho} \sigma_{\rho c \dot{c}}=0 \\
\downarrow_{a \dot{a}}^{\mu} \sigma_{\mu b \dot{b}}=-2 \varepsilon_{a b} \varepsilon_{\dot{a} \dot{b}} \backslash \\
\sigma_{a \dot{a}}^{\mu}-\sigma_{c \dot{c}}^{\nu} \sigma_{a \dot{a}}^{\mu}+2 i\left(S_{\mathrm{L}}^{\mu \nu}\right)_{a c} \varepsilon_{\dot{a} \dot{c}}+2 i\left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{a} \dot{c}} \varepsilon_{a c}=0
\end{gathered}
$$

similarly, multiplying by $\varepsilon^{a c}$ we get:

$$
\left(S_{\mathrm{R}}^{\mu \nu}\right)_{\dot{a} \dot{c}}=\frac{i}{4} \varepsilon^{a c}\left(\sigma_{a \dot{a}}^{\mu} \sigma_{c \dot{c}}^{\nu}-\sigma_{a \dot{a}}^{\nu} \sigma_{c \dot{c}}^{\mu}\right)
$$

let's define:

$$
\bar{\sigma}^{\mu \dot{a} a} \equiv \varepsilon^{a b} \varepsilon^{\dot{a} \dot{b}} \sigma_{b \dot{b}}^{\mu}
$$

we find:

$$
\begin{gathered}
\sigma_{a \dot{a}}^{\mu}=(I, \vec{\sigma}) \\
\mu \dot{a} a=(I,-\vec{\sigma})
\end{gathered}
$$

$$
\begin{aligned}
& \left(S_{\mathrm{L}}^{\mu \nu}\right)_{a}{ }^{b}=+\frac{i}{4}\left(\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\nu} \bar{\sigma}^{\mu}\right)_{a}{ }^{b} \\
& \left(S_{\mathrm{R}}^{\mu \nu}\right)^{\dot{a}}{ }_{\dot{b}}=-\frac{i}{4}\left(\bar{\sigma}^{\mu} \sigma^{\nu}-\bar{\sigma}^{\nu} \sigma^{\mu}\right)^{\dot{a}}{ }_{\dot{b}}
\end{aligned}
$$

c_{c} consistent with our previous choice! (homework)

Convention:

missing pair of contracted indices is understood to be written as:

thus, for left-handed Weyl fields we have:

$$
\chi \psi=\chi^{a} \psi_{a} \quad \text { and } \quad \chi^{\dagger} \psi^{\dagger}=\chi_{\dot{a}}^{\dagger} \psi^{\dagger \dot{a}}
$$

spin I/2 particles are fermions that anticommute:

$$
\chi \psi=\chi^{a} \psi_{a}=-\psi_{a} \chi^{a}=\psi^{a} \chi_{a}=\psi \chi
$$

the spin-statistics theorem (later)
and we find:

$$
\chi \psi=\chi^{a} \psi_{a} \quad \text { and } \quad \chi^{\dagger} \psi^{\dagger}=\chi_{\dot{a}}^{\dagger} \psi^{\dagger \dot{a}}
$$

spin I/2 particles are fermions that anticommute:

$$
\underline{\chi \psi=} \chi^{a} \psi_{a}=-\psi_{a} \chi^{a}=\psi^{a} \chi_{a}=\psi \chi
$$

for hermitian conjugate we find:

$$
(\chi \psi)^{\dagger}=\left(\chi^{a} \psi_{a}\right)^{\dagger}=\left(\psi_{a}\right)^{\dagger}\left(\chi^{a}\right)^{\dagger}=\psi_{\dot{a}}^{\dagger} \chi^{\dagger \dot{a}}=\psi^{\dagger} \chi^{\dagger}
$$

and similarly:

$$
\underline{\psi}^{\dagger} \chi^{\dagger}=\underline{\chi}^{\dagger} \psi^{\dagger}
$$

we will write a right-handed field always with a dagger!

Let's look at something more complicated:

$$
\psi^{\dagger} \bar{\sigma}^{\mu} \chi=\psi_{\dot{a}}^{\dagger} \bar{\sigma}^{\mu \dot{a} c} \chi_{c}
$$

it behaves like a vector field under Lorentz transformations:

$$
U(\Lambda)^{-1}\left[\psi^{\dagger} \bar{\sigma}^{\mu} \chi\right] U(\Lambda)=\Lambda_{\nu}^{\mu}\left[\psi^{\dagger} \bar{\sigma}^{\nu} \chi\right]
$$

the hermitian conjugate is:

$$
\begin{aligned}
{\left[\psi^{\dagger} \bar{\sigma}^{\mu} \chi\right]^{\dagger} } & =\left[\psi_{\dot{a}}^{\dagger} \bar{\sigma}^{\mu \dot{a} c} \chi_{c}\right]^{\dagger} \\
& =\chi_{\dot{c}}^{\dagger}\left(\bar{\sigma}^{\mu a \dot{c}}\right)^{*} \psi_{a} \\
> & =\chi_{\dot{c}}^{\dagger} \bar{\sigma}^{\mu \dot{c} a} \psi_{a} \\
& =\chi^{\dagger} \bar{\sigma}^{\mu} \psi .
\end{aligned}
$$

