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What is it?

Roughly, a differential cohomology theory ĥn is a geometric
refinement of a cohomology theory hn.

ĥn detects refined geometric information which cannot be
captured by a topological cohomology theory.

Every differential cohomology theory comes equipped with a
”forgetful” map

I : ĥn → hn ,

which forgets the geometric information and recovers the
underlying topological information.
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Why study it?

Let G be a Lie group with finitely many connected
components. Recall the universal Chern-Weil homomorphism

W : I k(g)→ H2k(BG ;R) ,

where I k(g) is the vector space of Adg invariant polynomials
p (of homogeneous degree k). In more detail

Let P → M be a principal G -bundle with connection θ. The
curvature Ω of the connection θ is a g valued 2-form.

For an invariant polynomial p ∈ I k(g), we can define the
differential form p(Ω) by setting

p(Ω1⊗t1,Ω2⊗t2, . . .Ωk⊗tk) = Ω1∧Ω2∧. . .∧Ωkp(t1, t2, . . . , tk) ,

where ti ∈ g and Ωi are 2-forms.
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One can show p(Ω) is closed. Let f : M → BG be the map
classifying the principal bundle P → M.

With some care, one
can do this construction for BG to obtain W . Then the
theorem of Chern and Weil asserts that

[p(Ω)] = f ∗(W (p))

in H2k(M;R).
Information is lost in this identity! We forgot the connection θ
which gave the representative p(Ω) of the above class. Chern
and Simons observed the following.
Define the form φ = tΩ + 1

2 (t2− t)[θ, θ]. The differential form

Tp(θ) :=

∫ 1

0
p(θ ∧ φ)dt ,

satisfies dTp(θ) = p(Ω) on P.
Taking G = SO(3), M an oriented 3-dimensional, and p = p1

to be the first Pontryagin polynomial. Then p1(Ω) = 0.
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In this case, Tp1(θ) is closed. Since M is oriented 3-d, its
frame bundle trivializes. Fix a global section s : M → F (M).
The integral

1

2

∫
M
s∗Tp1(θ) mod Z =: CS(M)

is a conformal invariant of the manifold called the
Chern-Simons invariant.

Cheeger and Simons defined a differential refinement
Ĥ2k(M;Z) of the ordinary integral cohomology groups
H2k(M;Z) which fit into the following commutative diagram.
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The diamond diagram

Tp(θ) p(Ω)

Ω2k−1(M)/im(d)
d //

a
))

Ω2k(M)cl

((

[p(Ω)]

H2k−1(M;R)

55

))

CS(θ)

Ĥ2k(M;Z)
I
((

R 66

f ∗(α)

H2k(M;R)

H2k−1(M;R/Z)

55

β
// H2k(M;Z)

i 66

The Chern-Weil homomorphism naturally factors through
Ĥ∗(M;Z). α ∈ H∗(BG ;Z) is such that i(α) = W (p).

When p(Ω) = 0, we have a secondary characteristic class
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Ĥ2k(M;Z)
I
((

R 66

f ∗(α)

66

∈

H2k(M;R)

H2k−1(M;R/Z)

55

β
// H2k(M;Z)

i 66

The Chern-Weil homomorphism naturally factors through
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Generalizations

The need for the differential refinement Ĥn(M;Z) came from
the specific differential from representative p(Ω) for the
cohomology class [p(Ω)].

The form Tp(θ) was defined so that
(locally) dTp(θ) = p(Ω).

In physics applications, a variety of differential forms appear
and these forms are organized in various ways.

For example, in type II string theory, the Ramond-Ramond
fields arise as differential forms. They are usually combined
together in a way that mixes the degrees. In type IIA one
considers the formal expression

F = F0 + F2 + F4 + . . . ,

where F2i has degree 2i .

Daniel Grady NYU Abu Dhabi

Differential cohomology and applications



Generalizations

The need for the differential refinement Ĥn(M;Z) came from
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In type IIB, one considers the similar expression

F = F1 + F3 + F5 + . . . .

Our current refinement only works for a single form of fixed
degree. We can find other cohomology theories which recover
these types of expressions as the ”underlying” differential form
representative.

For example, complex K -theory admits a differential
refinement K̂ . This theory fits into the diagram
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Ωodd(M)/im(d) //

&&

Ωev (M)cl

&&

Hodd(M;R)

77

''

K̂ (M)

I

$$

R
::

Hev (M;R)

K−1
R/Z(M)

88

β
// K (M)

ch

99

Since this refines even forms, one can consider applications to
type IIA string theory.
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Axiomatizing differential cohomology

Recall that by the Brown representability theorem, ordinary
cohomology theories are represented by spectra (we will come
back to this in a moment).

A key feature of differential cohomology is the existence of the
diamond diagram.

If we take the existence of the diamond diagram as an axiom
for differential refinements, we can ask for an analogue of
Brown representability in this setting.

Let’s first recall the classical statement of Brown
representability.
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Let’s take a step back

What is a topological cohomology theory? These are characterized
by the Eilenberg-Steenrod axioms.

Definition

A (reduced) cohomology theory h∗ is a functor T op+ → GrAb
satisfying the following

Homotopy: For f : X → Y a basepoint preserving homotopy
equivalence, the induced map f ∗ : h∗(Y )→ h∗(X ) is an
isomorphism.

Suspension: For the based suspension ΣX , we have a
canonical isomorphism

σ∗ : h∗+1(ΣX ) ∼= h∗(X )
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Definition (Cont.)

Exactness: For the sequence of based spaces
f : X → Y → cone(f ), with cone(f ) the mapping cone, we
have an induced long exact sequence

. . .→ h∗(cone(f ))→ h∗(Y )→ h∗(X )
σ∗
→ h∗+1(cone(f ))→ . . .

Additivity: For a Wedge product X =
∨

i Xi , we have an
isomorphism

h∗(X ) ∼=
⊕
i

h∗(Xi ) .

It turns out that all cohomology theories are representable by
objects called spectra
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A (pre)spectrum E is a sequence En, n ∈ Z, of based
CW-complexes, equipped with maps

σ : ΣEn → En+1 .

E is called a spectrum (or Ω-spectrum) if the adjoint of σ
(under the bijection hom(ΣEn,En+1) ∼= hom(En,ΩEn+1)) is
an equivalence. That is,

σ : En
'→ ΩEn+1 .

It is relatively easy to show that the functors defined by

hn(X ) := π0Map(X ,En)

satisfy the Eilenberg-Steenrod axioms. Surprisingly, the
converse is also true!

Daniel Grady NYU Abu Dhabi

Differential cohomology and applications



A (pre)spectrum E is a sequence En, n ∈ Z, of based
CW-complexes, equipped with maps

σ : ΣEn → En+1 .

E is called a spectrum (or Ω-spectrum) if the adjoint of σ
(under the bijection hom(ΣEn,En+1) ∼= hom(En,ΩEn+1)) is
an equivalence. That is,

σ : En
'→ ΩEn+1 .

It is relatively easy to show that the functors defined by

hn(X ) := π0Map(X ,En)

satisfy the Eilenberg-Steenrod axioms. Surprisingly, the
converse is also true!

Daniel Grady NYU Abu Dhabi

Differential cohomology and applications



A (pre)spectrum E is a sequence En, n ∈ Z, of based
CW-complexes, equipped with maps

σ : ΣEn → En+1 .

E is called a spectrum (or Ω-spectrum) if the adjoint of σ
(under the bijection hom(ΣEn,En+1) ∼= hom(En,ΩEn+1)) is
an equivalence. That is,

σ : En
'→ ΩEn+1 .

It is relatively easy to show that the functors defined by

hn(X ) := π0Map(X ,En)

satisfy the Eilenberg-Steenrod axioms.

Surprisingly, the
converse is also true!

Daniel Grady NYU Abu Dhabi

Differential cohomology and applications



A (pre)spectrum E is a sequence En, n ∈ Z, of based
CW-complexes, equipped with maps

σ : ΣEn → En+1 .

E is called a spectrum (or Ω-spectrum) if the adjoint of σ
(under the bijection hom(ΣEn,En+1) ∼= hom(En,ΩEn+1)) is
an equivalence. That is,

σ : En
'→ ΩEn+1 .

It is relatively easy to show that the functors defined by

hn(X ) := π0Map(X ,En)

satisfy the Eilenberg-Steenrod axioms. Surprisingly, the
converse is also true!

Daniel Grady NYU Abu Dhabi

Differential cohomology and applications



Theorem (Brown)

For every cohomology theory h∗, there is a spectrum E such that

hn(X ) := π0Map(X ,En) .

Spectra can be organized into a category Sp. The objects are
spectra and the morphisms are levelwise maps fn : En → Gn

which commute with the suspension σ.

The morphisms can be organized into a topological space
Map(E ,G ). Even better, Map(E ,G ) is an infinite loop space
and there is a spectrum of maps F (E ,G ) whose infinite loop
space is Map(E ,G ).

The existence of the mapping spaces allows us to talk about
the homotopy theory of spectra.
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The differential version of Brown

To arrive at a differential version of Brown representability, we
need to somehow combine differential geometry and stable
homotopy theory.

Since we’re not yet sure what the correct generalization is, we
take a cue from Grothendieck. Any good notion of ”smooth
spectra” should come from the ”functor of points”
perspective.

More specifically, we should consider sheaves of spectra on the
site of smooth manifolds (which encodes our differential
geometry). We then look for a convenient subcategory which
characterizes differential refinements.
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Definition

A sheaf of spectra is a functor

E :Manop → Sp

which satisfies descent with respect to good open covers of
manifolds – i.e. it glues up to higher homotopy coherence on such
covers.

We write Sh∞(Man;Sp) for the category of sheaves of
spectra.

For any two sheaves of spectra E and G, we have
mapping spaces Map(E ,G) inherited from Sp. We have a
good notion of homotopy theory of sheaves of spectra.

We can now state the ”representability theorem” for
differential cohomology theories. This is due to Bunke,
Nikolaus and Völkl.
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”Theorem” (Bunke,Nikolaus,Völkl):
Every differential cohomology theory is representable by a sheaf of
spectra.

Let’s make this more precise. Starting from a sheaf of spectra,
we want to somehow recover the differential cohomology
diamond diagram.

The homotopy theory of Sh∞(Man;Sp) is related to that of
Sp in several ways.

For each sheaf of spectra E , we can evaluate on the point
manifold ∗ ∈ Man to obtain an ordinary spectrum E . This
operation is functorial and so we get a functor

Γ : Sh∞(Man;Sp)→ Sp

called the global sections functor.
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We also have a functor δ : Sp → Sh∞(Man;Sp), which
sends each ordinary spectrum E to the the sheafification of
the constant presheaf M 7→ E for all M ∈Man.
More interestingly, we have a functor

Π : Sp∞(Man;Sp)→ Sp ,
which associates to each sheaf of spectra E , the spectrum
which is the homotopy colimit over the diagram{

. . . E(∆2)oooo
oooo E(∆1)oooo

oo E(∆0)oooo

}
These functors can be organized into a (homotopy) quadruple
adjunction

Sp∞(Man;Sp)
Π //

Γ // Sp
? _δoo

oo

This structure is called cohesion and was introduced by Urs
Schreiber.
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By composing the adjoints Π a δ a Γ, we recover the diamond
diagram

Σ−1cone(I) //

$$

cone(η)

%%

Σ−1δΠcone(η)

77

((

E
I

""

R
<<

δΠcone(η)

δΓ(E)

η

::

// δΠ(E)

88

This is a homotopy commutative diagram in Sh∞(Man;Sp).
The left and right squares are homotopy pullback squares.
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Setting ĥn(M) := π0Map(M; En) gives a differential
cohomology theory fitting into a diamond diagram.

Here is sheaf of spectra which recovers the differential K -theory
diagram. Example:

Let Ωe/o be the sheaf of chain complexes which associates to
each smooth manifold M the chain complex

. . . // Ωeven(M)
d // Ωodd(M)

d // Ωeven(M) // . . . .

Consider the truncated complex τ≥0Ωe/o

deg zero

��

. . . // Ωodd(M)
d // Ωeven(M) // 0 // .
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Setting ĥn(M) := π0Map(M; En) gives a differential
cohomology theory fitting into a diamond diagram.

Here is sheaf of spectra which recovers the differential K -theory
diagram. Example:

Let Ωe/o be the sheaf of chain complexes which associates to
each smooth manifold M the chain complex

. . . // Ωeven(M)
d // Ωodd(M)

d // Ωeven(M) // . . . .

Consider the truncated complex τ≥0Ωe/o

deg zero

��

. . . // Ωodd(M)
d // Ωeven(M) // 0 // .

Daniel Grady NYU Abu Dhabi

Differential cohomology and applications



There is a functor H : Ch→ Sp which assigns every
unbounded chain complex to a spectrum. This functor is
called the Eilenberg-Maclane functor.

The name comes from
the example

H
(
. . . // 0 // A // 0 // . . .

)
' HA

Applying H to both Ωe/o and τ≥0Ωe/o gives two sheaves of
spectra H(τ≥0Ωe/o) and H(Ωe/o).
We also have the constant sheaf of spectra δ(K ).
Recall the Chern character map

ch : K → H(R[u, u−1]) .

The graded ring R[u, u−1] gives rise to a complex(
0 // R // 0 // R // 0 // . . .

)
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It follows from the Poincaré lemma that the chain map
i : δ(R[u, u−1])→ Ωe/o , defined levelwise by

. . . // R

��

// 0

��

// R

��

// . . .

. . . // Ωeven d // Ωodd d // Ωeven // . . .

is a quasi-isomorphism of sheaves of complexes.

We then consider the composite map

c : δ(K )
δ(ch)−→ H(δ(R[u, u−1]))

H(i) '−→ H(Ωe/o) .
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Define the sheaf of spectra K̂ as the homotopy pullback in
Sh∞(Man;Sp)

K̂ //

��

H(τ≥0Ωe/o)

��

δ(K )
c // H(Ωe/o)

Then K̂ (M) = π0Map(M; K̂0).
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The Atiyah-Hirzebruch spectral sequence and apps

For an topological cohomology theory h∗, Atiyah and
Hirzebruch constructed a spectral sequence of the form

Hp(X ; hq(∗))⇒ hp+q(X ) .

In joint work with Hisham Sati, we constructed a spectral
sequence that works for any differential cohomology theory
and reduces to the usual Atiyah-Hirzebruch for topological
theories.

Let’s first recall the classical construction by Atiyah and
Hirzebruch.
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The Atiyah-Hirzebruch spectral sequence

Suppose X is a finite dimensional CW-complex. Then we have a
CW-filtration on X

X = lim
{
F0

// F1
// F2

// . . .
}
.

The successive quotients are given as the wedge products of
spheres

Fn/Fn−1 '
∨

σ∈C(n)

Sn .
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The filtration gives rise to an exact couple∏
p,q h

p+q(Fp) //
∏

p,q h
p+q(Fp)

∂

vv∏
p,q h

p+q(Fp,Fp−1)

hh

Ep,q
1 = hp+q(Fp,Fp−1)

∼=
⊕

σ∈C(n)

h̃p+q(Sp)

∼=
⊕

σ∈C(p)

h̃q(S0) ∼= Cp(X ; hq(∗))
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Ep,q
2 = Hp(X ; hq(∗))

Considering the case for complex K -theory, we have
Kq(∗) ∼= Z, q even and Kq(∗) ∼= 0 if q odd. So in this case,

Ep,2q
2 = Hp(X ;Z), Ep,2q+1

2 = 0 .

Question: given a cohomology class, when can you lift to
K -theory?

Obstructions are in the differentials of the spectral sequence,
for example on the E3-page, Atiyah showed that

d3 = Sq3
Z : Hp(X ;Z)→ Hp+3(X ;Z)

If η ∈ Hp(X ;Z) is such that Sq3
Z(η) 6= 0, then η cannot

represent a K -theory class.
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The differential refinement

Key idea:

Replace the CW-filtration by the Čech nerve
filtration.

More precisely, we consider the simplicial object

C ({Uα}) =
{
. . .

//////
∐
αβ Uαβ

////
∐
α Uα ,

}
in Sh∞(Man)

We can filter the realization of the simplicial object C ({Uα})
(again taken in Sh∞(Man)) by skeleta and take

Fn = |skkC ({Uα})|

so that limFn ' M (by descent).
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Note that in spaces, this filtration gives rise to a CW-filtration
of M!

This follows from a folk theorem (going back at least
to Borsuk in 1948), which states that the CW-complex given
by contracting out the various intersections of the cover and
geometrically realizing is equivalent to M.

In the case of K -theory we have the following.

(Grady, Sati). This gives a spectral sequence with E2-page

Ep,q
2 = Hp(X ;U(1)), q < 0, q odd

E 0,0
2 = Ωev

cl (X )

Ep,q
2 = Hp(X ;Z), q > 0, q even
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Theorem (Grady, Sati)

The differential on the E3-page of the spectral sequence is given by

d3 = Ŝq
3

: Hp(M;U(1))→ Hp+3(M;U(1)) .

This gives an obstruction to lifting a class in
U(1)-cohomology to a flat class in differential K -theory

There are differentials

d2k : Ωev(M)cl → H2k(X ,U(1)) .

Conjecture: For M admitting Spinc -structure, we have

d2k(ω) = n2k

[
Â(M) ∧ ec1/2 ∧ ω

]
2k

,

where n2k is an integer related to solving Steenrod’s problem for
representability of a cycle c : ∆2k → M by a smooth manifold.
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Thank you!
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