Dubrovin-Frobenius manifolds from classical W-algebras

Yassir Dinar

Sultan Qaboos University, Oman New York University Abu Dhabi, UAE

September 11, 2024

イロト イヨト イヨト イヨト 二日

1/39

Outline

Dubrovin-Frobenius manifolds

Motivation and results

Construction method

Classical W-algebras

Scheme for construction

Distinguished nilpotent elements of semisimple type

In Progress: Key challenges and next steps

Geometric WDVV system

A function $\mathbb{F}(t^1, ..., t^r)$ with particular index, here is r, such that

1. The following $r \times r$ -matrix is nondegenerate constant

$$\eta_{ij} = \partial_{t^i} \partial_{t^j} \partial_{t^r} \mathbb{F}(t).$$

 F satisfies the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV): ∀i, j, q, n

$$\begin{split} \sum_{k,p} \partial_{t^{i}} \partial_{t^{j}} \partial_{t^{k}} \mathbb{F}(t) \eta^{kp} \partial_{t^{p}} \partial_{t^{q}} \partial_{t^{q}} \mathbb{F}(t) \\ &= \sum_{k,p} \partial_{t^{n}} \partial_{t^{j}} \partial_{t^{k}} \mathbb{F}(t) \ \eta^{kp} \ \partial_{t^{p}} \partial_{t^{q}} \partial_{t^{i}} \mathbb{F}(t). \end{split}$$

3. $\mathbb{F}(t)$ is quasihomogenous, i.e., exists Euler vector field $E = \sum d_i t^i \partial_{t^i}$, $d_r = 1$ such that

 $E\mathbb{F}(t) = (3 - d)\mathbb{F}(t) +$ quadratic polynomial.

The numbers d_i 's are the **degrees** and d is the **charge**.

Dubrovin-Frobenius manifold

Set $C_{ijk}(t) = \partial_{t^i} \partial_{t^k} \mathbb{F}(t)$ and consider it as a (0,3)-tensor on the tangent space $\langle \partial_{t^1}, ..., \partial_{t^r} \rangle$. Then

• the flat metric $\eta_{ij} = (\partial_{t^i}, \partial_{t^j}) = C_{ijr}$, and

► the product $\partial_{t^i} \circ \partial_{t^j} = \sum_m \eta^{km} C_{mij} \partial_{t^k} = \sum_k C_{ij}^k(t) \partial_{t^k}$ define a family of Frobenius algebras, i.e., it is

- 1. commutative,
- 2. associative: as a result of WDVV equations,
- 3. has identity $e = \partial_{t^r}$,
- 4. and compatible bilinear form $(\partial_{t^i} \circ \partial_{t^j}, \partial_{t^k}) = (\partial_{t^i}, \partial_{t^j} \circ \partial_{t^k}).$

Examples and classification

► In dimension 2:

$$\begin{split} \mathbb{F}(t_1, t_2) &= \frac{1}{2} t_2^2 t_1 + t_1^k, \ k = \frac{3-d}{1-d}, \ d \neq -1, 1, 3 \\ \mathbb{F}(t_1, t_2) &= \frac{1}{2} t_2^2 t_1 + t_1^2 \log t_1, \ d = -1, \\ \mathbb{F}(t_1, t_2) &= \frac{1}{2} t_2^2 t_1 + \log t_1, \ d = 3 \\ \mathbb{F}(t_1, t_2) &= \frac{1}{2} t_2^2 t_1 + e^{\frac{2}{k} t_1}, \ d = 1, \ k \neq 0 \\ \mathbb{F}(t_1, t_2) &= \frac{1}{2} t_2^2 t_1, \ d = 1, \ k = 0 \end{split}$$

Here the potentials are normalized:

$$\eta^{ij}=\left(egin{array}{cc} 0&1\ 1&0\end{array}
ight), \quad E=((1-d)t_1+rac{k}{2}\delta_{1,d})\partial_{t_1}+t_2\partial_{t_2}$$

・ロト ・四ト ・ヨト ・ヨト 三日

Motivation and results

Conjecture on algebraic Dubrovin-Frobenius manifolds

Dubrovin's conjecture: Irreducible semisimple algebraic Dubrovin-Frobenius manifolds with positive degrees and charge are in one-to-one correspondence with quasi-Coxeter conjugacy classes of irreducible finite reflection groups (1998').

A_r	B _r	Dr	E_6	E_7	E_8	F_4	H_3	H_4	$I_2(k)$
1	1	[r/2]	3	5	9	2	3	10	m

 Isomonodromic deformation of algebraic Dubrovin-Frobenius manifolds leads to quasi-Coxeter conjugacy classes.

Problem: Existence of these algebraic Dubrovin-Frobenius manifolds.

イロン イボン イヨン イヨン 三日

Classification of polynomials manifolds

Polynomial Dubrovin-Frobenius structures are in one-to-one correspondence with Coxeter conjugacy classes.

- Dubrovin constructed them on the orbit spaces of reflection representations of Coxeter groups (1992'). (Using the work of Saito, Yano, and Sekiguchi 1980').
- 2. They exhaust the set of all possible polynomial structures up to an equivalence (Hertling 2002).
- 3. Dubrovin proved that the isomonodromic deformation leads to Coxeter conjugacy classes.
- 4. The degrees are $\frac{\eta_i+1}{\eta_r+1}$ and the charge is $\frac{\eta_r-1}{\eta_r+1}$.

Group	η_1,\ldots,η_r
An	1, 2,, r
Bn	1, 3,, 2r - 1
Dn	$1, 3, \ldots, 2r - 3, r - 1$
E ₆	1, 4, 5, 7, 8, 11
E7	1, 5, 7, 9, 11, 13, 17
E ₈	1, 7, 11, 13, 17, 19, 23, 29
F ₄	1, 5, 7, 11
H ₃	1, 5, 9
H ₄	1, 11, 19, 29
$I_2(K)$	1, k - 1

Algebraic structures

Reflection groups	# Quasi-Coxeter	# Dubrovin-Frobenius		
	conjugacy classes	structures found		
A _m	1	1		
B _m	1	1		
<i>D</i> _{2<i>m</i>}	т	2		
D_{2m+1}	т	1		
E ₆	3	3		
E ₇	5	3		
E ₈	9	7		
F ₄	2	2		
H ₃	3	3		
H ₄	10	7		
$I_2(k)$	т	т		

Construction method

Flat pencil of metrics

Any Dubrovin-Frobenius manifold possesses a **quasihomogeneous** flat pencil of metrics consists of the flat metric $\Omega_1^{ij} = \eta^{ij}$ and the intersection form

$$\Omega_2^{ij}(t) := E(dt^i \circ dt^j).$$

This means:

Ω^{ij}_(λ) := Ω^{ij}₂ + λΩ^{ij}₁ defines a flat metric for generic λ,
 The Christoffel symbols of Ω^{ij}_(λ) are Γ^{ij}_{2k} + λΓ^{ij}_{1k}.
 Main properties for quasihomogeneity:

$$E =
abla_2 t^1, \quad e =
abla_1 t^1$$

 $\mathfrak{L}_E \Omega_2^{ij} = (d-1)\Omega_2, \quad \mathfrak{L}_e \Omega_2^{ij} = \Omega_1^{ij} \text{ and } \mathfrak{L}_e \Omega_1^{ij} = 0$

1

1

(日)

Construction from flat pencil of metrics

A contravariant regular quasihomogeneous flat pencil of metrics on a manifold M defines Dubrovin-Frobenius structure on M.

$$egin{aligned} \Omega_2^{ij} &= (d-1+d_i+d_j)\Omega_1^{ilpha}\Omega_2^{jeta}\partial_{t^lpha}\partial_{t^eta}\mathbb{F}\ & & E\mathbb{F}(t) = (3-d)\mathbb{F}(t). \end{aligned}$$

Reflection group of type A_2

The invariant ring is generated by

$$t_1 = rac{1}{3}(h_1^2 + h_1h_2 + h_2^2), \quad t_2 = h_1^2h_2 + h_1h_2^2.$$

Flat pencil of metrics:

1. The intersection form
 $\langle dt^i | dt^j \rangle = \Omega_2^{ij} = \begin{pmatrix} 2t_1 & 3t_2 \\ 3t_2 & \frac{2}{3}t_1^2 \end{pmatrix}$ Hexagon
Invaria2. Flat metric $\Omega_1^{ij} = \partial_{t_2}\Omega_2^{ij} = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$ $\langle dh_i \rangle$

Hexagon: Symmetry $A_2 \simeq S_3$.

Invariant metric on T^*V

$$\langle dh_i | dh_j
angle = egin{pmatrix} 2 & 1 \ 1 & 2 \end{pmatrix}$$

$$\mathbb{F} = rac{1}{2}t_1t_2^2 + rac{3}{8}t_1^4, \quad E[\mathbb{F}] = rac{1}{3}(2t_1\partial_1 + 3t_2\partial_2)[\mathbb{F}] = (3 - rac{1}{3})\mathbb{F}$$

Classical W-algebras

The Korteweg–De Vries bihamiltonian structure

$$u_t = 6uu_x - u_{xxx}$$

► Gardner-Zakharov bracket $\{u(x), u(y)\}_1 = \delta'(x - y)$.

- 1. Lie algebra structure $\{\mathcal{F}[u(x)], \mathcal{I}[u(y)]\} = \int \frac{\delta \mathcal{F}}{\delta u} \partial_x(\frac{\delta \mathcal{I}}{\delta u}) dx$.
- 2. Evolutionary PDE: $u_t = \{u(x), \mathcal{F}[u(y)]\} = \partial_x \frac{\delta \mathcal{F}}{\delta u}$
- 3. Hamiltonian H[u] = ∫ u³(x) + ½u²_xdx leads to KdV equation.
 ▶ Hamiltonian H[u] = ∫ u²(x)dx with Magri bracket

$$\{u(x), u(y)\}_2 = -\frac{1}{2}\delta'''(x-y) + 2u(x)\delta'(x-y) + u_x\delta(x-y)$$

- 1. They are compatible or form a bihamitonian structure as $\{.,.\}_{(\lambda)} := \{.,.\}_2 + \lambda \{.,.\}_1$ is local Poisson bracket $\forall \lambda$.
- 2. Setting $U_m = \int x^{m+1} u dx$ give Virasoro algebra $\{U_m, U_n\}_2 = (m-n)U_{m+n} - \frac{c}{2}(m^3 - m)\delta_{m+n,0}.$ (Zomolodchikov, Geravis, Adler, Gelfand, Dickey, Fateev, Lukyanov et al)

Local Lie-Poisson structure

For a simple Lie algebra \mathfrak{g} with bracket $[\cdot, \cdot]$ and Killing form $\langle \cdot | \cdot \rangle$. Fix a basis ξ_1, ξ_2, \ldots and dual basis ξ^1, ξ^2, \ldots

$$[\xi^i,\xi^j] := c_k^{ij}\xi^k, \quad G^{ij} = \langle \xi^i | \xi^j \rangle.$$

▶ We consider the coordinates $q^i(g) := \langle g - L | \xi^I \rangle$, $L \in \mathfrak{g}$. The local Lie-Poisson bracket \mathbb{B} has the form

$$\{q^i(x),q^j(y)\}_2 = G^{ij}\delta'(x-y) + c_k^{ij}q^k(x)\delta(x-y).$$

The leading term $c_k^{ij}q$ define the Lie-Poisson structure on \mathfrak{g} :

- 1. The symplectic leaves are the adjoint orbits.
- 2. The invariant polynomials P_1, \ldots, P_r are global Casimirs.
- 3. $P_i(q + \lambda \Lambda_1) = \sum_{j \ge 0} \lambda^j P_i^j(q)$ define a completely integrable systems.

Classical W-algebera

Let Q be a "transverse subspace" to the orbit space of a nilpotent element L_1 . Then a local Poisson bracket \mathbb{B}^Q on Q can be obtained equivalently by using (2009'):

- Drinfeld-Sokolov reduction: Leibniz rule on invariant ring of differential polynomials.
- Dirac reduction: matrices operations.
- Bihamitonian reduction: Solving recursive equation.
- ▶ The local Poisson bracket $\mathbb{B}^{\mathcal{Q}}$ is a classical *W*-algebra.

$$\{t^{1}(x), t^{1}(y)\}_{2} = C\delta'''(x-y) + 2t^{1}(x)\delta'(x-y) + t^{1}_{x}\delta(x-y), \{t^{1}(x), t^{i}(y)\}_{2} = (\eta_{i}+1)t^{i}(x)\delta'(x-y) + \eta_{i}t^{i}_{x}\delta(x-y),$$

(De Groot, Hollowood, Miramontes, Burroughs, Feher, O'Raifeartaigh, Ruelle, Tsutsui, Casati, Pedroni et al. from 1977')

Classical W-algebra sl₂

On the loop algebra of sl_2

The Lie-Poisson bracket

$$\begin{aligned} q(x) &= \begin{pmatrix} \frac{1}{2}q_1(x) & q_3(x) \\ q_2(x) & -\frac{1}{2}q_1(x) \end{pmatrix} & \{q_1(x), q_1(y)\} &= 2\delta'(x-y) \\ \{q_1(x), q_3(y)\} &= 2q_3(x)\delta(x-y) \\ \{q_1(x), q_2(y)\} &= -2q_2(x)\delta(x-y) \\ \{q_3(x), q_2(y)\} &= \delta'(x-y) + q_1(x)\delta(x-y). \end{aligned}$$

$$u(x) = q_{2}(x) - \frac{1}{4}q_{1}^{2}(x) + \frac{1}{2}q_{1}'(x) \text{ from the gauage fixing}$$

$$\begin{pmatrix} \partial_{x} & 1\\ u(x) & \partial_{x} \end{pmatrix} = \begin{pmatrix} 1 & 0\\ s & 1 \end{pmatrix} \begin{pmatrix} \partial_{x} + \frac{1}{2}q_{1} & 1\\ q_{2} & \partial_{x} - \frac{1}{2}q_{1} \end{pmatrix} \begin{pmatrix} 1 & 0\\ -s & 1 \end{pmatrix}$$

$$\{u(x), u(y)\}_{2} = \frac{\partial u(x)}{\partial \partial^{m}q_{i}}\partial_{x}^{m} \left(\frac{\partial u(y)}{\partial \partial^{n}q_{j}}\partial_{y}^{n} (\{q_{i}(x), q_{j}(y)\})\right)$$

$$= -\frac{1}{2}\delta'''(x-y) + 2u(x)\delta'(x-y) + u_{x}\delta(x-y)$$

18 / 39

Geometry of W-algebras

$$\begin{aligned} \{u^{i}(x), u^{j}(y)\}_{2} &= \sum_{k \geq 0} A_{k}^{i,j}(u, u_{x}, u_{xx}, \ldots) \frac{d^{\kappa}}{dx^{k}} \delta(x - y). \\ \{u^{i}(x), u^{j}(y)\}_{2}^{[-1]} &= F_{2}^{ij}(u(x))\delta(x - y), \\ \{u^{i}(x), u^{j}(y)\}_{2}^{[0]} &= \Omega_{2}^{ij}(u(x))\delta'(x - y) + \Gamma_{k}^{ij}(u(x))u_{x}^{k}\delta(x - y). \end{aligned}$$

1.

- 1. $F_2^{ij}(u)$ define the transverse Poisson structure B_2 on Q of the Lie-Poisson structure, it is known as finite *W*-algebra.
- 2. It is an example of polynomial Poisson bracket.
- 3. The rank is dim $\mathfrak{g}^f r$.
- 4. It admits a dispersionless limit if $\{\cdot, \cdot\}_2^{[-1]} = 0$

Scheme for construction

Scheme for construction

- 1. Fix a classical *W*-algebra $\{\cdot, \cdot\}_2$
- 2. Construct a compatible local Poisson bracket $\{\cdot, \cdot\}_1$.
- 3. Study the space N defined by Poisson tensors $B_{\alpha} := F_{\alpha}^{ij}(q)$

$$N := \{q \in Q : \ker B_1(q) = \ker B_2(q)\}$$

The reduction to L(N) admits a dispersionless limit.
 The leading terms are Poisson brackets of hydrodynamic type.

$$\{u^{i}(x), u^{j}(y)\}_{\alpha}^{[0]} = \Omega_{\alpha}^{ij}(u(x))\delta'(x-y) + \Gamma_{\alpha,k}^{ij}(u(x))u_{x}^{k}\delta(x-y),$$

- 5. Nondegeneracy condition leads to a flat pencil of metrics $\Omega_2^{ij}(u)$ and $\Omega_1^{ij}(u)$ (Dubrovin, Novikov 1984')
- 6. Check quasihomogeneity and construct an associated Dubrovin-Frobenius manifolds.

 $D_4(a_1)$

$$\mathbb{F} = \frac{-Z t_1^4}{1620} + \frac{Z t_1^3 t_2}{810} - \frac{Z t_1^2 t_2^2}{540} + \frac{Z t_1 t_2^3}{810} - \frac{Z t_2^4}{1620} \\ - \frac{2Z t_1^2 t_3}{135} + \frac{2Z t_1 t_2 t_3}{135} - \frac{2Z t_2^2 t_3}{135} - \frac{4Z t_3^2}{45} \\ + \frac{91 t_1^5}{103680} - \frac{5 t_1^4 t_2}{20736} + \frac{t_1^3 t_2^2}{10368} + \frac{t_1^2 t_2^3}{10368} - \frac{5 t_1 t_2^4}{20736} \\ + \frac{91 t_2^5}{103680} + \frac{t_1^3 t_3}{54} - \frac{t_1^2 t_2 t_3}{36} - \frac{t_1 t_2^2 t_3}{36} + \frac{t_2^3 t_3}{54} \\ + \frac{t_1 t_3^2}{24} + \frac{t_2 t_3^2}{24} + \frac{t_1 t_3 t_4}{4} - \frac{t_2 t_3 t_4}{4} + \frac{t_1 t_4^2}{8} + \frac{t_2 t_4^2}{8}.$$

Where Z satisfies $Z^2 - t_1^2 - t_1 t_2 + t_2^2 + 12 t_3 = 0$ $E[\mathbb{F}] = (t_4 \partial_{t_4} + t_3 \partial_{t_3} + \frac{1}{2} t_2 \partial_{t_2} + \frac{1}{2} t_1 \partial_{t_1})\mathbb{F} = \frac{5}{2}\mathbb{F}(t).$

Pavlyk (2003)

 $F_4(a_2)$

F	=	$\frac{9 Z^2 t_1^5}{44800} + \frac{3 Z^2 t_1^4 t_2}{89600} - \frac{3 Z^2 t_1^3 t_2^2}{89600} - \frac{3 Z^2 t_1^2 t_2^3}{640000} + \frac{153 Z^2 t_1 t_2^4}{89600000} + \frac{1107 Z^2 t_2^5}{448000000}$
		$81 Z^{2} t_{1}^{2} t_{3} 243 Z^{2} t_{1} t_{2} t_{3} 729 Z^{2} t_{2}^{2} t_{3} 409 Z t_{1}^{6} 191 Z t_{1}^{5} t_{2}$
	Ŧ	$\frac{1}{2800} + \frac{1}{14000} + \frac{1}{280000} + \frac{1}{2419200} - \frac{1}{1344000}$
	+	$\frac{187 Z t_1^4 t_2^2}{100} \pm \frac{67 Z t_1^3 t_2^3}{100} = \frac{319 Z t_1^2 t_2^4}{100} \pm \frac{529 Z t_1 t_2^5}{100} \pm \frac{1247 Z t_2^6}{100}$
	1	5376000 13440000 179200000 13440000000 3840000000
	т.	$\frac{27 Z t_1^3 t_3}{1000} - \frac{117 Z t_1^2 t_2 t_3}{1000} + \frac{9 Z t_1 t_2^2 t_3}{1000} + \frac{369 Z t_2^3 t_3}{1000} + \frac{243 Z t_3^2}{1000}$
	1	560 5600 56000 70
		29459 $t_1^6 t_2 = 6089 t_1^5 t_2^2 = 254609 t_1^4 t_2^3 = 152263 t_1^3 t_2^4$
	_	$\frac{1}{580608000} + \frac{1}{276480000} - \frac{1}{34836480000} + \frac{1}{116121600000}$
	_	$\frac{300457 t_1^2 t_2^5}{1000000000000000000000000000000000000$
		5806080000000 174182400000000 19353600000000 44800
		$2647 t_1^{\ 3} t_2 t_3 6059 t_1^{\ 2} t_2^{\ 2} t_3 18223 t_1 t_2^{\ 3} t_3 11443 t_1^{\ 7} 60131 t_2^{\ 4} t_3$
	_	$\frac{1}{336000} + \frac{1}{2240000} + \frac{1}{33600000} + \frac{1}{174182400} + \frac{1}{1344000000}$
	+	$\frac{t_1 t_3^2}{t_1 t_3^2} + \frac{3 t_2 t_3^2}{t_2 t_3^2} - 2 t_1 t_2 t_4 + \frac{3 t_2 t_3 t_4}{t_1 t_2 t_2 t_3 t_4} + 2 t_1 t_4^2$
	1	20 200 $2 c_1 c_3 c_4 + 5$ 5 $2 c_1 c_4 + 5$
<i>Z</i> ³	- Z	$\left(\frac{t_1^2}{48} + \frac{t_1t_2}{80} + \frac{3t_2^2}{1600}\right) - \frac{t_1^3}{96} + \frac{13t_1^2t_2}{2880} - \frac{t_1t_2^2}{28800} - \frac{41t_2^3}{288000} - \frac{3t_3}{2} = 0$ (2007')

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 二重 - 釣�? 23 / 39

E₈(a₁) A potential consist of 303 monomial(2010') simplified by J. Sekiguchi (2020').

Distinguished nilpotent elements of semisimple type

Transverse subspace to a nilpotent orbit

Fix a nilpotent element L_1 in a simple Lie algebra \mathfrak{g} of rank r and a sl_2 -triple

$$[h, L_1] = L_1, \ [h, f] = -f, \ [L_1, f] = 2h$$

1. The set of weights η_1, \ldots, η_n :

$$\mathfrak{g} = \bigoplus_{i=1}^{n} \mathcal{V}_i, \quad \dim \mathcal{V}_i = 2\eta_i + 1.$$

2. Dynkin grading: $\mathfrak{g} = \bigoplus_{i=-\eta_r}^{\eta_r} \mathfrak{g}_i$; $\mathfrak{g}_i := \{g \in \mathfrak{g} : \mathrm{ad}_h g = ig\}$ 3. A transverse subspace Q to the adjoint orbit of L_1

$$Q := L_1 + \mathfrak{g}^f, \quad \mathfrak{g}^f := \{g \in \mathfrak{g} : [f,g] = 0\}$$

4. The affine loop space $Q = L_1 + \mathfrak{L}(\mathfrak{g}^f)$

イロト イヨト イヨト イヨト 二日

Drinfeld-Sokolov reduction-gauge action

For each operator of the form

$$\mathcal{L} = \partial_x + b + L_1$$
 where $b \in \mathfrak{L}(\mathfrak{b}), \ \mathfrak{b} := \bigoplus_{i \leq 0} \mathfrak{g}_i.$

there is a unique element $\mathrm{w}\in\mathfrak{L}(\mathfrak{n}),\,\mathfrak{n}:=\bigoplus_{i<0}\mathfrak{g}_i$ such that

$$(\exp \operatorname{adw})\mathcal{L} = \partial_x + q + L_1, \ \ q \in \mathfrak{L}(\mathfrak{g}^f)$$

► Coordinates of *q* and w are differential polynomials in the coordinates of *b*.

Distinguished nilpotent elements of semisimple type

Assume L_1 is a distinguished nilpotent element of semisimple type:

- $1. \ \dim \mathfrak{g}_0 = \dim \mathfrak{g}_1.$
- 2. There is $K_1 \in \mathfrak{g}_{-\eta_r}$ such that $\Lambda_1 := L_1 + K_1$ is regular semisimple.

Associated structure:

• The opposite Cartan subalgebra $\mathfrak{h}' = \mathfrak{g}^{\Lambda_1}$.

w := exp ^{2πi}/_{η_r+1}ad_h acts on β' as a representative of regular cuspidal conjugacy class in the associated Weyl group.

$$\mathfrak{h}'=<\Lambda_1,\ldots,\Lambda_r>,\ w(\Lambda_i)=e^{rac{2i\pi\eta_i}{\eta_r+1}}\Lambda_i$$

• We call the numbers η_1, \ldots, η_r the exponents of L_1 .

イロン 不良 とくほど 不良とう ほ

Weights and exponents

	W(L	1)	
$Z_r(a_s)$	$\eta_1 \leq \leq \eta_r$	$\eta_{r+1} \leq \ldots \leq \eta_n$	$[\mu_1,\ldots,\mu_r]$
$A_r(a_0)$	$1, 2, \ldots, r$	(1997)	[0"]
$B_r(a_0)$	$1, 3, \ldots, 2r-1$		[0 ^r]
$B_{2m}(a_m)$	$1, 1, 3, 3, \ldots, 2m - 1, 2m - 1$	$1, 2, \cdots, m-1; m-1, m; m, m+1, \dots, 2m-2$	$[0^{m+1}, 1^{m-1}]$
$C_r(a_0)$	$1, 3, \dots, 2r - 1$		[0 ^r]
$D_r(a_0)$	$1, 3, \ldots, r-1; r-1, r-3, \ldots, 2r-3$	2	[0"]
$D_{2m}(a_{m-1})$	$1, 1, 3, 3, \ldots, 2m - 1, 2m - 1$	$1,2,\cdots,2m-2$	$[0^{m+1}, 1^{m-1}]$
$E_{6}(a_{0})$	1,4,5,7,8,11		[0 ⁿ]
$E_6(a_1)$	1, 2, 4, 5, 7, 8	3, 5	$[0^{n-1}, 1]$
$E_{6}(a_{3})$	1, 1, 2, 4, 5, 5	1, 2, 2, 3, 3, 4	$[0^3, 1^3]$
$E_7(a_0)$	1, 5, 7, 9, 11, 13, 17		[07]
$E_7(a_1)$	1, 3, 5, 7, 9, 11, 13	5,8	$[0^6, 1]$
$E_{7}(a_{5})$	1, 1, 1, 3, 5, 5, 5	1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4	$[0^2, 1^3, 2^2]$
$E_{8}(a_{0})$	1, 7, 11, 13, 17, 19, 23, 29		[0 ⁸]
$E_{8}(a_{1})$	1, 5, 7, 11, 13, 17, 19, 23	9,14	$[0^7, 1]$
$E_{8}(a_{2})$	1, 3, 7, 9, 11, 13, 17, 19	5, 8, 11, 14	$[0^6, 1^2]$
$E_8(a_4)$	1, 2, 4, 7, 8, 11, 13, 14	3, 5, 5, 7, 7, 9, 9, 11	$[0^5, 1^3]$
$E_{8}(a_{5})$	1, 1, 5, 5, 7, 7, 11, 11	1, 2, 3, 4, 5, 5, 6, 6, 7, 8, 9, 10	$[0^3, 1^4, 2]$
$E_{8}(a_{6})$	1, 1, 3, 3, 7, 7, 9, 9	1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8	$[0^2, 1^4, 2^2]$
$E_{8}(a_{7})$	1, 1, 1, 1, 5, 5, 5, 5	1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	$[0, 1^2, 2^2, 3^2, 4]$
$F_4(a_0)$	1,5,7,11	-	[04]
$F_{4}(a_{1})$	1,3,5,7	2,5	$[0^3, 1]$
$F_{4}(a_{2})$	1,1,5,5	1,2,3,4	$[0^2, 1^2]$
$F_{4}(a_{3})$	1,1,3,3	1,1,1,1,2,2,2,2	$[0, 1^2, 2]$
$G_2(a_0)$	1,5	-	[0 ²]
	$E(L_1)$	$\overline{E}(L_1)$	

Table 1: Exponents and weights of distinguished nilpotent elements of semisimple type

Integrable systems

$$egin{aligned} Q &= L_1 + \sum z^i X_i, \; X_i \in \mathfrak{g}^f \ \mathrm{ad}_h X_i &= -\eta_i X_i, \deg z^i := \eta_i + 1. \end{aligned}$$

Consider Drinfeld-Sokolov bihamiltonian structure.

$$\{.,.\}_1 := \mathfrak{L}_{\partial_{u^r}}\{.,.\}_2, \quad \deg u^r = (\max_i \eta_i) + 1.$$

Using argument shift method:

$$\overline{P}_i(q+\lambda K_1)=\sum_{j=0}^{\mu_i}\lambda^j\overline{P}_i^j(q), \,\, q\in Q.$$

\$\overline{P}_i^0\$ are Casimirs of \$B_2\$ and \$\overline{P}_i^{\mu_i}\$ are Casimirs of \$B_1\$.
 \$\overline{P}_i^j\$ define a completely integrable system.

イロト イロト イヨト イヨト 三日

Special coordinates

There exist quasihomogeneous change of coordinates

$$t^{i} = \begin{cases} z^{1}, & i=1, \\ z^{i} + \text{non linear terms}, & i=2,\dots,r, \\ z^{i}, & i=r+1,\dots,n. \end{cases}$$

where t^1, \ldots, t^r form a complete set of Casimirs for $\{., .\}_1^{[-1]}$ and they are in involution with respect to $\{., .\}_2^{[-1]}$. The restriction of the adjoint quotient map to Q

$$\Phi(t_1,\ldots,t_n) := (\overline{P}_1,\ldots,\overline{P}_r), \quad s = \frac{1}{2}(3r-n)$$
$$= (t_1,\ldots,t_s,\overline{P}_{s+1},\ldots,\overline{P}_r).$$

For subregular nilpotent elements (n=r+2), it is a semiuniversal deformation of simple hypersurface singularity of the same type as \mathfrak{g} (Brieskorn, Slodowy 1980').

Space of common equilibrium points

The space of common equilibrium points N has the following equivalent definitions.

$$N := \{q \in Q : \ker B_1(q) = \ker B_2(q)\} \\ = \{t : F_2^{j\beta}(t) = 0; i = 1, ..., r, \beta = r + 1, ..., n\}, \\ = \{t : \partial_{t\beta} \overline{P}_j^0(t) = 0; j = r - s + 1, ..., r, \beta = r + 1, ..., n\}.$$

Moreover, (t^1, \ldots, t^r) provide local coordinates around generic points of N.

Local Poisson bracket on $\mathfrak{L}(N)$

On the loop space $\mathcal{N} = \mathfrak{L}(N)$

$$\{.,.\}_{2}^{\mathcal{Q}}, \{.,.\}_{1}^{\mathcal{Q}} \xrightarrow{\text{Dirac Reductions}} \{.,.\}_{2}^{\mathcal{N}}, \{.,.\}_{1}^{\mathcal{N}}$$

▶ $\{.,.\}_2^N$ is an algebraic classical *W*-algebra:

$$\{t^{u}(x), t^{v}(y)\}_{\alpha}^{\mathcal{N}} = \{t^{u}(x), t^{v}(y)\}_{\alpha}^{\mathcal{Q}}, u, v = 1, \dots, r$$

with t^k, k > r are solutions of the polynomial equations defining N.
▶ The leading terms of {.,.}^N₂, {.,.}^N₁ define bihamiltonian structure of hydrodynamic type

$$\{t^u(x),t^v(y)\}^{[0]}_{\alpha} = \Omega^{uv}_{\alpha}(t(x))\delta'(x-y) + \Gamma^{uv}_{\alpha k}(t(x))t^k_x\delta(x-y).$$

Algebraic Frobenius manifold on N

From construction: ∂_tΩ₂^{uv}(t) = Ω₁^{uv}(t) and ∂_tΩ₁^{uv}(t) = 0.
 nondegenerate: from Leibniz rule of Drinfeld-Sokolov reduction.

$$\Omega_1^{u,r-u}(t) = \langle \Lambda_u | \Lambda_{r-u} \rangle = \eta_r + 1, \quad \det \Omega_1^{uv}(t) = (\eta_r + 1)^r$$

▶ quasihomogenius: follows from definition of classical *W*-algebra:

$$\Omega_2^{1\nu}(t) = (\eta_\nu + 1)t^\nu$$

▶ regular: from the structure of the exponents of L_1 .

It leads to algebraic Dubrovin-Frobenius manifold structure with charge $\frac{\eta_r-1}{\eta_r+1}$ and degrees $\frac{\eta_i+1}{\eta_r+1}$

イロト イポト イヨト イヨト 二日

In Progress: Key challenges and next steps

Regular nilpotent elements

▶ L₁ is regular if dim g^f = rank g = r.
 ▶ Q = N and the resulting Dubrovin-Frobenius manifolds is polynomial of the same type as g.

Things obtained in this case:

- 1. The manifolds are semisimple.
- 2. The central invariants of the Drinfeld-Sokolov bihamiltonian structures are calculated.
- 3. For simply laced Lie algebra g, the bihamiltonian structure is of topological type.
- 4. Relation to Coxeter conjugacy classes through isomonodromic deformation are obtained.

Algebraic non-polynomial structures

Reflection groups	‡ non-Coxeter	# Dubrovin-Frobenius		
	conjugacy classes	structures found		
$D_{2m}, m \geq 2$	m-1	1		
$D_{2m+1}, m \geq 2$	m-1	0		
E_6	2	2		
E ₇	4	2		
E ₈	8	6		
F ₄	1	1		
H ₃	2	2		
H_4	9	6		
$I_2(k)$	т	т		

Third column is associated to regular quasi-Coxeter conjugacy classes.
 Algebraic non-polynomials Dubrovin-Frobenius manifolds for the groups of type *H* are founded by the work of Dubrovin, Mazzocco, Sekiguchi, Mano, Kato, Douvropoulos, Feigin, Wright et al.

Subregular nilpotent element in A_r

- dim $\mathfrak{g}^{L_1} = rank \mathfrak{g} + 2$, Thus dim Q = r + 2.
- ▶ There exists opposite Cartan subalgebra \mathfrak{h}' .

► The reduction of Drinfeld-Sokolov bihamiltonian structure fails to define flat pencil of metrics.

We construct a bihamiltonian structure associated to classical W-algebra:

- 1. Logarithmic Dubrovin-Frobenius manifold.
- 2. Conjugacy class of partition [r] in S_{r+1} .
- 3. Orbit spaces of the natural representation of S_r .
- 4. In low dimension, the bihamiltonian structure is of topological type.
- Example in dimension 4:

$$-\frac{it_4t_1^4}{12\sqrt{3}} - \frac{1}{2}i\sqrt{3}t_2t_4t_1^2 + t_3t_4t_1 + \frac{3t_2^4}{8} + \frac{1}{2}t_2t_3^2 - \frac{3}{2}i\sqrt{3}t_2^2t_4 + \frac{3}{2}t_4^2\log(t_4)$$

Thank you!