CHAPTER 2

POSITIVE FORMS AND REPRESENTATIONS

One of the most important concepts of this book is that of a represen-
tation. Given an involutive Banach algebra A, it would be 3 difficult task
to establish the existence of representations of A directly. However, we
shall set up a correspondence between representations of A and positive
forms on A, and in particular between irreducible representations and
pure positive forms. Moreover, the classical tools of functional analysis,
namely the Hahn-Banach and Krein-Milman theorems, enable us to
prove the existence of positive forms and indeed of pure positive forms
as well. This is the basic idea of this chapter.

In the various results which follow, the involutive algebras being
studied are subjected to a variety of conditions. At a first reading,
however, it may be assumed that we are concerned exclusively with
C*.algebras.

2.1. Positive forms

2.1.1. DeFINITION. Let A be an involutive algebra. A linear form f on A
is said to be positive if f(x*x)=0 for each x€A. If A is a
normed involutive algebra, a state of A is a continuous positive linear
form f on A such that ||f]] = 1.

Let A be an involutive algebra and f and g linear forms on A, We say
that f dominates g and we write f= g or g=<fif f— g is positive. This
defines a preorder in the dual of A which is compatible with the real
vector space structure. If A is a C*-algebra this relation is in fact a
partial ordering, for if f=0 and f=0, then f vanishes on A*, therefore
on the set of hermitian elements of A (1.6.5) and hence f = 0.

Let 2 be a locally compact space and A the C*-algebra of continuous
complex-valued functions on {2 which vanish at infinity. A continuous
linear form on A is simply a bounded measure & on £, and to say that
this linear form is positive is exactly the same as saying that the measure
i is positive.
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2.1.2. Let A be an involutive algebra and f a positive form on A. For
x, ¥y € A put (x| y) = f(y*x). This scalar product is linear in x, anti-linear
in y and (x|x)=0 for each x. A is thus endowed with a pre-Hilbert
space structure.

In particular, we have

1)) fy*x) = fx*y) (xE A,y €A,
v [fy*0f = fx*x)f(y*y) (xEA,y€EA).

If A is unital, we deduce, putting y =1 in (1) and (2), that

) f(e*) = flx),
@ [FCo)* = f(F(x*x).

Let H be the Hausdorfi pre-Hilbert space constructed canonically
from the pre-Hilbert space A, so that H = A/N where N is the set of
those x € A for which f{x*x) =0. By (2). N is equally the set of xE A
such that f(yx)=0 for all y € A, so that N is a left ideal of A.

[Putting (x| y)= f(xy*) we would obtain another pre-Hilbert space
structure on A with analogous properties.]

2.1.3. LemMa. Let A be a unital Banach algebra, x' an element of A
with x| <1 and x = 1 + x’. The series
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converges to an element y of A such that y'= x. If A has an isometric
involution and if x is hermitian, then so is y.
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is convergent from which it follows that the element y exists. If we
compute y°, we obtain a power series in x' whose coefficients we
recognize from the classical situation where A = C; indeed, we have

e
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y'=14x"= x. If A hasanisometric involution and if x is hermitian, y is
seen to be a limit of hermitian elements and is therefore hermitian
because the involution is continuous.

2.1.4. PROPOSITION. Let A be an involutive Banach algebra having an
identity | such that ||1||= 1. If f is a positive linear form on A, then f is
continuous and [|f| = f(1).

If x € A is hermitian and ||x|]| < 1, then | —x can be written in the form
¥*y (lemma 2.1.3), from which it follows that f(1—x)=0 and so f(x)=
f(). If x*€A and [|x’| =<1, then |x™*x|=<1, and hence, using 2.1.2,
formula (4),

[f(x} = FDAx"™*x) = f(1)

This shows that f is continuous and that [|f]|=<f(1). It is plain that
f(y=|fl, and hence |fl = f(1).

2.1.5. ProrosITION. Let A be an involutive Banach algebra having an
approximate identity (B 29), A the involutive algebra obtained from A by
adjoining an identity to it, and f a continuous positive linear form on A.
Then. _
(i) fx*)=f(x) for every x € A.
FOP <l - f(x*x) for every x € A.
i) [f(y*xy)| <|x(f(y*y) for all x, y € A.
i) [[fl = sup.cajojer flx*x).
(v) If (x)iy is a family of elements of A indexed by a directed set,
stech that ||x|<1 and f(x)—=|fll, then fix*x)—|fl.
() If (u))ic; is an approximate identity for A, then f(u)—|fll, and
fauuy—> (.
(vi) f can be uniquely extended to a positive form { on A such that
Ff()y=|fll. Every positive form on A which extends f dominates f.
(vil) In the notation of (iv), we have x;— 1 for the pre-Hilbert space
structure defined on A by f, so that A is dense in A for this structure.

We have, for each x € A,
f(x*) = lim f(x*u;) = lim fQe¥x) = lim f((x* 1,)*) = f(x**) = f(x),
[FC = lim |f(x)]F < floka) lim fu o) < ||fIlf(x*x).

This proves (i) and it is plain that (i) = (iv) = (iii). We prove (vi). The
uniqueness of f is immediate, so we just have to establish the existence
of f. For each element (A, x)=A+xof AQAEC, xE€EA) put flA+x)=
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Allfl+ f(x). Then f is a linear form on A extending f and using (i), we
have
FO + XY A +x)) = f(x*x + Xx + ax®) + A A
= f(x*x) + 2 Re Af(x) + [AF 11
= fl*x) = 2A] - A" o) + IWFA
= [f(x*n) = A]- AT =0,
and so [ is positive. Clearly, F()=fl. Now let g be any positive form
on A which extends £ A can be given an involutive Banach algebra
structure extending that of A and such that ||1]| = 1. By (2.1.4), we have
g =|lgl = A, from which we obtain
gl(A +x)*(A + X)) = flx*x + Ax + Ax*)+ |AFg(1)
= flx*x + Ax + ax)+ A1
= flA + ) + 1)),
so that g = f, and (v1) is proved. If y € A, the form x - f(y*xy) on A is
positive, because FOx*x)y) = fl(xey)*(xy)) = 0; by (2.1.4), its norm is

f(y*y) and (ii) now follows.
In the notation of (iv), we have

£l = %05 = 1) = flkx) — ) — oy + A

=A== A+ 1A=
from which (vii) follows.

We have (| )= f(utu)<|fl. For every x €A, (ux)=flx*u)-
f(x*)= (1] x); since A is dense in A (cf. (vii)), we see that 4 converges
weakly to 1. Hence flu)=(u| )=, )=Ff)=|f]. From (iv).
ffu)—|IAl.

2.1.6. In the notation of 2.1.5, f is called the canonical extension of f to
A

CoroLLARY. Let f, g be continuous positive forms on A and f. & their

canonical extension to A. Then

I +el=W+lel, (+a) =F+a
The first relation follows from 2.1.5 (v), while the second follows from
the first.

It follows that the set of states of A is a convex subset of the dual of
A.



30 POSITIVE FORMS AND REPRESENTATIONS [CH. 2, §1

2.1.7: We retain the notation of 2.1,5. Now let Q be the set of con-
tinuous positive forms on A and @ the set of positive forms on A such
that g(1) =g | A]. Then f— f is a bijection of Q onto Q which preserves
both the additive and order structures. If a positive form on A is
dominated by an element of Q, it must itself belong to Q: in fact let
g =g +g where g€ Q and 8., 8, are positive forms on A, and let £
f> be the restrictions of g, g,, g, to A. We have

atsm=g=f=f+f
and
a)=fim,  gLl=f),
from which it follows that
g =f(1, gD =FAD;
and thus g, €0, g, € Q.

2.1.8. Let A be a C*-algebra and f a positive form on A. Then f is
continuous. Indeed, let (x,, xs, . . .) be a sequence of elements of A* such
that ||x;|| = 1. We show that the numbers f(x;) form a bounded set. For
each sequence (A, A, ...) of non-negative real numbers satisfying

Tl A <+, the series Z{_, Aix; converges to an element x of A. For
every integer n = 1, we have Z{_,,, A;;; 0 by 1.6.1, and so

2 Af(x) = f (E »\;x;) < f(x).

Hence Zi_ Af(x;)<+. Since this holds for any sequence (A} of
non-negative reals with 25 A; <+, it follows that the set of the
numbers f{(x;) is bounded. It now follows from this that

M= sup flx)<+oo

xeA’ k=1
If x is hermitian and of norm =1, we have
|fC| < |f(x) + [ f(x7)] < 2M,

and if x is any element of norm =1, then

e o)+ |olGex- )

Hence f is continuous.

=4M.

HEES
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In the sequel, positive forms on C*-algebras will be mentioned over
and over again, and the reader should never forget that these forms are
automatically continuous.

2.1.9. PropPOSITION. Let A be a unital C*-aigebra and f a continuous
linear form on A. For f to be positive, it is necessary and sufficient that

I = .

If f=0, then ||f]l = f(1) (2.1.4). Now suppose [f]| = f(1). Let x € A" and
suppose that f(x)# 0, (We can, of course, assume that f(1)=1.) There is
a closed disc |z — zg| < p in C which contains Sp x but not f(x). Now the
spectrum of the normal element x — z, is contained in the disc |z]=p,
from which it follows that [lx — zJ| < p. Hence

|F(x) = 2ol = 1fCe) = zof (Df = [fCx = z)| <f] - |x = zd| = o,

which is a contradiction. (An alternative proof is based on B 28.))
The work “‘state” is borrowed from physics.

References: [174], [618], [619], [638], [1097], [1101], [1323], [1455). The
result of 2.1.8 can be generalized to involutive Banach algebras with an
approximate identity [1755].

2.2, Representations

2.2.1. DEFINITION. Let A be an involutive algebra and H a Hilbert
space. A representation of A in H is a morphism of the involutive
algebra A into the involutive algebra F(H).

In other words, a representation of A in H is a map & of A into $(H)
such that
mix+y)=7w(x)+ 7(y), w(Ax) = Aw (),

w(xy) = w(x)m(y), w(x*) = w(x)*

for x, yEA, AEC.

The (Hilbert) dimension of H is called the dimension of # and is
denoted by dim . The space H is called the space of 7 and is denoted
by H,.

Two representations # and =" of A in H and H' are said to be
equivalent, and we write 7 = #' if there is an isomorphism U of the
Hilbert space H onto the Hilbert space H' which transforms #(x) into
7'(x) for each x € A. Hence the definition of a class of representations.
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(For convenience, we will often not distinguish between representations
and classes of representations.)

2.2.2. An intertwining operator for = and «' is any continuous linear
operator T: H— H' such that Tr(x)=7"(x)T for any x € A. The
operator U of the previous definition is an intertwining operator. The set
of all intertwining operators for = and =’ is a vector space whose
dimension is called the intertwining number of 7w and «’, and is the same
as the intertwining number of 7’ and . For let T: H—H' be an
intertwining operator for 7 and #". Then T*: H'— H is an intertwining
operator for 7' and =, because

T*7'(x) = (7' (xT)* = (Tr(x*))* = w(x)T*.
It follows from this, that
T*Ta(x)=T*7' ()T =w(x)T*T,

and thus |T| = (T*T)"? commutes with w(A4). Let T = U|T| be the polar
decomposition of T. We have, for each x € A,

4)] Un()|T| = U|T|m(x) = Ta(x) = 2 ()T = #'(x)U|T|.
If Ker T =0, then |T|(H) is dense in H and (1) implies
@ Ur(x)=m"{x)U.

If moreover T(H)= H', i.e. if Ker T* =0, then U is an isomorphism of
H onto H', and (2) shows that # and «' are equivalent.

2.2.3. Let (m)e; be a family of representations of A in Hilbert spaces
H; Let H be the Hilbert sum of the H. If the set of numbers |m;(x)| is
bounded for each x € A (which is the case, by 1.3.7, if A is an involutive
Banach algebra), we can construct the continuous linear operator 7(x) in
H which induces m;(x) in each H. Then x— w{x) is a representation of
A in H, known as the Hilbert sum of the #; and denoted by @;m;, or
TP 7P B w7, in the case of a (finite) family (=, m,, ..., m,) of
representations.

I (m);s; is a family of representations of A each of which is equal to
some representation =, and if Card I =c, the representation B is
denoted by cm. Every representation equivalent to a representation of
this type is called a multiple of =.
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2.2.4. Let 7 be a representation of A in H. If a closed vector subspace
K of H is invariant under 7(A), the restrictions of the w(x)’s to K
define a subrepresentation n' of A in K denoted by my or o if E= Py,
In this situation H & K is also invariant under w(A), since if £ € K and
n € H © K, we have that m{x*)¢ € K for each x € A, and therefore

(w(X)n | &) =(n |7 =(n|x(xHO =0,

50 that w(x)y € H © K. Hence Py commutes with #(A). If #” is the
subrepresentation of « defined by H S K, then r= 7' »".

Let p, p' be two representations of A. If p' is equivalent to a
subrepresentation of p, we say that p’ is contained in p or that p
contains p’, and we write p’<p or p=p’.

2.2.5. Let 7 be a representation of A in H and let £ € H. The closure of
w(A)¢ is a closed subspace of H, invariant under 7(A). If this subspace
is equal to H, we say that £ is a cyclic vector for =.

2.2.6. PROPOSITICN. Let 7 be a representation of A in H, and let K be
the closed subspace of H generated by the n(x) xE A, (¢EH). Laa K’
be the closed subspace of H consisting of those £ € H such that w{(x)¢ =
0 for every x € A. Then K and K’ are invariant under n(A) and w(AY
[the commutant of w(A) in L(H)], are mutually orthogonal and their
direct sum is equal to H.

Clearly, K and K' are invariant under w{A). Any operator that
commutes with w{(x) leaves the kernel and range of #(x) invariant so
that K and K’ are invariant under 7(AY. Let ¢ € H. We have

(EK ©(m(AE| H)=0 (¢ | m(AH) =0
SEtEHSK,
hence K'=H S K.

K is called the essential subspace of «. 7 is said to be non-degenerate
if K = H. The above argument shows that every representation of A can
be uniquely expressed as the direct sum of a trivial representation and a
non-degenerate representation.

2.2.7. It is plain that a direct sum of non-degenerate representations is
non-degenerate and that a representation that admits a cyclic vector is
non-degenerate. Conversely:
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ProrosiTioN. Every non-degenerate representation of A is a direct
sum of representations that admit cyclic vectors.

Let « be a non-degenerate representation of A in H with H# 0. It is
enough to show that there is a sub-representation of s in a non-trivial
space which admits a cyclic vector (for the result then follows from an
application of Zorn's lemma). Let £ be a non-zero element of H. The
closure K of w(A)¢ is non-trivial and invariant under #. Let L=
HOSK, and put £=£,+ ¢ with £, €K, &€ L If x € A, then w(x)£, €
K, m(x)& € L and w(x)€, + w(x)& = wix)E € K, so that w(x)& = 03 con-
sequently w(x)¢ = m(x)£,. Thus K is the closure of w{A)¢,.

2.2.8. Let 7 be a representation of A in H and let H be the Hilbert
space conjugate to H (H = H, but when passing from H to H, mul-
tiplication by A €C is replaced by multiplication by A and scalar
products are changed into their complex conjugates). Let A® be the
reversed involutive algebra of A. It is easily checked that the map
x— m(x*) is a representation of A®in H, which is denoted by #°.

2.29. Let A be the involutive algebra obtained from A by adjoining an
identity and let 7w be a representation of A in H. Then = has a unique
extension (known as the canonical extension) to a representation # of A
in H such that #(1) =1,

2.2.10. Let A be an involutive Banach algebra and « a representation of
A in H. Recall (1.3.7) that |#(x)||<|lx| for every x€ A. If A has an
approximate identity (1) and if 7 is nondegenerate, then w(&;) tends
strongly to 1. Indeed, for each y € A and each ¢ € H, w(u)(#(¥)E) =
w(uy)¢ tends strongly to «(¥)£ since

o {ay) ~ a()| < wy ~ y| = 0;

now, the w(y)& constitute a total subset of H and moreover ||w(u)||<
]| = 1, so that o (#;)n tends strongly to o for each n € H.

References: [618], [1101], [1323].

2.3. Topologically irreducible representations

2.3.1. ProposITION. Let A be an involutive algebra, H a Hilbert space
and 7 a representation of A in H. Then the following conditions are
equivalent:
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() The only closed subspaces of H invariant under w(A) are 0 and H ;

(ii)y The commutant of mw(A) in £(H) is just the set of scalar operators;

(iti) Every non-zero vector of H is a cyclic vector for w, or =« is
1-dimensional.

(i)= (1ii): suppose condition (i) is satisfied. Let £ € H, £ 0. If w(A)¢
is not dense in H, then w(A)f =0 by (i). Thus C¢ is invariant under
a(A), and so H = C¢ and  is 1-dimensional,

(ii) = (i): suppose condition (iii) is satisfied. Let K#0 be a closed
subspace of H invariant under 7(A). We must show that K = H, which
is plain if dim o = 1. Now suppose that every non-zero vector of H is a
cyclic vector for m, and let £ € K, £# 0, Then w(A) C K and w(A)=
H, so that K = H.

(ii) = (i): suppose condition (ii} is satisfied. Let K be a closed sub-
space of H invariant under w(A). Py then commutes with 7(A) (2.2.4),
and is therefore a scalar operator so that either Py =0 or Py =1, i.e.
K=0or H.

()= (ii): suppose condition (i) is satisfied. Let T be an element of
Z{H) that commutes with w{A); we show that T is scalar. Since T+ T*
and T —T* commute with w(A), we need only consider the case of
hermitian T. The spectral projections of T then commute with w(A) and
are all therefore equal to either 0 or 1, by (i). Hence T is scalar.

2.3.2. DEFINITION. Let A be an involutive algebra, H a Hilbert space
and 7 a representation of A in H. = is said to be topologically
irreducible if H# 0 and if = satisfies the equivalent conditions of 2.3.1.

Such a representation is either trivial, 1-dimensional or else non-
trivial and non-degenerate. We denote by A the set of classes of non-trivial
topologically irreducible representations of A.

Remember that irreducibility of # in the algebraic sense means that
the only subspaces of H invariant under =(A) are {0} and H. If dim H =
+¢o, this is a condition far more restrictive than topological irreducibility.
We shall presently see (2.8.4), however, that if A is a C*-algebra then the
two notions are equivalent.

A finite-dimensional representation of A is a direct sum of topologi-
cally irreducible representations (2.3.5). We shall see (8.5.2) that this
result also holds to a certain extent for infinite-dimensional represen-
tations, albeit in a rather more subtle form, which is one of the reasons
why we shall be particularly concerned with topologically irreducible
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representations in what follows. A fundamental problem associated with
any given involutive algebra A is that of determining, up to equivalence,
all the topologically irreducible representations of A, It should be noted
that there may well not exist any non-zero topologically irreducible
representations (or even any non-zero representations at all) of A; we shall
nevertheless see (2.7.3) that every C*-algebra has “enough™ topologically
irreducible representatidns,

2.33, Let A be a separable normed involutive algebra and = a to-
pologically irreducible representation of A in a Hilbert space H. Then H
is separable: this is obvious if 7 is zero 1-dimensional; otherwise, let £
be a non-zero vector of H; if (x,) is a dense sequence in A, then the
7(x,)¢ are dense in H. The same argument shows that, for any normed
involutive algebra B, the dimensions of the topologically irreducible
representations of B are bounded above by some fixed cardinal.

23.4. Let A be an involutive algebra and #, «' two topologically
irreducible representations of A with intertwining number n. If n =0,
then 7 and 7" are not equivalent. If n > 0, let T: H,— H, be a non-zero
intertwining operator. By 2.2.2, T*T and TT* are non-zero scalar
operators and 7 and #' are equivalent.

2.3.5. Let A be an involutive algebra, We study the finite-dimensional
representations of A, and while what we say here can be regarded as a
special case of certain theorems which we shall meet later on, or equally
as a special case of some purely algebraic results, we think it better, for
the convenience of the reader, to present a direct treatment here and
now.

Let « be a finite-dimensional representation of A. Then

r=m@ - bm,

where the mr; are irreducible. This is obvious if dim = =0 with of course,
n =0. Now suppose that dim 7 =g and that the assertion has been
proved for dim 7 < gq. If = is irreducible, there is nothing to prove.
Otherwise, 7 = 7' 7" where dim 7' < g, dim 7" < q and we merely
have to make use of the inductive hypothesis. The decomposition
T=m - -, 1s not unique; for example, the representation A —
A -lof Cin C" for n> 1 admits infinitely many different decompositions
into 1-dimensional representations. We shall, nevertheless, establish a
uniqueness result, Let p, and p, be two irreducible subrepresentations of
m, and P, and P, the projections of H, onto H, and H,. These
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projections commute with 7(A), and so the restriction of P, to H, is an
intertwining operator for p, and p;. Hence, unless H, and H, are
orthogonal, p, = p, (2.3.4). This proves that every irreducible subre-
presentation of 7 is equivalent to one of the 7,’s, and thus, rearranging
the «;’s, we see that # = v, - - - & »,,, where each »; is a multiple pp}
of an irreducible representation v} and the »{’s are mutually inequivalent.
If p is an irreducible sub-representation of =, the above discussion
shows that H, is orthogonal to all but one of the H,’s and so H, is
contained in one of the H,’s. This proves that every subspace H, is
uniquely determined, namely, it is the subspace of H, generated by the
spaces of the subrepresentations of # equivalent to v}

Thus, in the decomposition = =p,¢iP--- P p,v. of =v.....v5
irreducible and inequivalent), the integers p; and the classes of the ] are
uniquely determined, just as are the spaces of the p,vl.

References: [1101], [1323].

2.4. Positive forms and representations

2.4.1. ProPOSITION. Let A be an involutive algebra.

() If = is a representation of A in H and £ € H, then x > {(w(x)E| &) is
a positive form on A.

(i) Let w and ' be representations of A in H and H', and let £ (resp.
&£ be a cyclic vector for w (resp. w"). If (w(x)¢ | &) = (7' ()¢ | £ for every
X € A, there is a unique isomorphism of H onto H' mapping « to «' and
Eto .

We have

(m(x*x)¢| &) = (w(x)* ()| &) = [w(X)EF =0,

which gives (i). Now suppose the conditions of {i1) are satisfied. For any
X,y E A we have

(#(E| 7 = (r(y*x)E| §) = (@' (y*0)¢' | &) = (7' ()¢ | 7' (y)E).

Since the w(x)¢ (resp. #'(x)&") are dense in H (resp. H") it follows that
there is an isomorphism U of H onto H' such that U(wr(x)£) = n'(x)&
for any x € A, We show that U transforms # into #', i.e. that Ur(x) =
7'(x)U for each x € A; for every y € A, we have

(Ur ()7 (y)€) = Um(xy)€ = w'(xy)¢’
= a' (X' (¥)¢) = (7' (Y UNm(y)§).
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Since the w(y)¢ are dense in H, it follows that Usmr(x)= ="(x)}U.
Moreover, for each x € A,

(&' 7'()EY= (¢ | ()8 = (UE| Un(x)§) = (U | 7' (08,

which implies that &= U£ Finally, the uniqueness of U is immediate
since the values that U takes on the (dense) set of the w(A)¢ are
predetermined.

2.4.2. In the above notation, the form x— (7 (x)£|£) on A is called the
Jorm defined by = and £ If « is fixed while £ varies in H, we obtain the
forms associated with w. If § is a set of representations of A, the forms
associated with S are just the forms associated with the various ele-
ments of S.

Let H be a Hilbert space, B an involutive subalgebra of ¥(H) and &
an element of H. We denote by w, the positive form on B defined by the
identical representation of B and £, i.e. the form x— (x&| £). A positive
form on B is said to be a vector form if it is equal to w, for a suitable
choice of £ in H.

2.43. Let A be an involutive Banach algebra with an approximate
identity (i), w a non-degenerate representation of A in H, ¢ an element
of H and f the positive form defined by 7 and £ Then ||l =(&]&). In
fact, by 2.1.5 (v},

1Al = tim () = lim(ar ()4 | ),

and w(x;) tends strongly to 1 (2.2.10). It follows that if ﬁ_ is the
involutive algebra obtained by adjoining an identity to A, and f and #
are the canonical extensions of f and 7 to A, then

flx)=(#F(x)E| &) for each xE A.

In particular, if # is the identical representation, assumed to be non-
degenerate, of a sub-C*-algebra A of ¥(H) which does not cgntain 1,
then the canonical extensionto A=A+C-10of o | A is | A

2.4.4. ProroOSITION. Let A be an involutive Banach algebra with an
approximate identity, A the involutive algebra obtained by adjoining an
identity to A, f a continuous positive form on A, § its canonical extension
to A, N the left ideal of A consisting of those x € A such that f(x*x) =0,
A} the (Hausdorff) pre-Hilbert space AIN and A; the Hilbert space
which is the completion of A} For each x € A, let 7'(x) be the operator
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in A[N obtained from left multiplication by x in A by passage to the
quotient. Let £ be the canonical image of 1 in A}
(i) Each w'(x) has a unique extension to a contintious linear operator
m(x) in Ap
(i) The map x> m(x)(x € A) is a representation of A in A,
(iil) £ is a cyclic vector for m(A).
(iv) f(x) =(m(x)¢| &) for each x € A.

By 2.1.5 (i), we have, for x, y € A,

(#(xX)m' (NE | 7 ()7 (1)E) = fy*x*xy) < x*x|fy*y)
=|lx*x|l(=' ()¢ | 7' ()&,

from which (i) follows. It is plain that 7’ and then = also, are represen-
tations in the sense of the algebra structure. For x, v, z € A, we have

()7 (NE | 7(2)E) = fz*(xy)) = {(x*2*y) = (2 | #(x*)m(2)E),

which implies that w(x)* = 7 (x*), and (i) is proved. The set 7w (A){ is the
canonical image of A in A} and is therefore dense in A, by 2.1.5 (vii);
this proves (iii). Finally, we have for each x € A,

(m ()£ | & = fir*x1) = f(x).

We say that the representation « and the vector £ are defined by f, and
we denote them by =, and £

2.4,5. With the above notation, let M be the left ideal of A consisting of
those x € A such that f(x*x) = 0. The canonical image of A in A; can be
identified with A/M, and is moreover dense in A, A; can thus be defined
as the completion of the Hausdorff pre-Hilbert space A/M, and for each
x € A, w(x) can be defined as the continuous extension of the operator
in A/M of left multiplication by x. This avoids the introduction of A and
f, although, in this approach, the definition of ¢ would be less simple.

2.46. Let A be an involutive Banach algebra with an approximate
identity, f a continuous positive form on A, and 7 and ¢ the represen-
tation and vector defined by f Then by 2.4.4 (iv) f is precisely the
positive form defined by = and £

Conversely, starting with a representation = of A in a Hilbert space
and a cyclic vector £ for =, let f be the positive form defined by = and £,
which is continuous as # is. Let 7' and £ be the representation and
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vector defined by f. Then
()| &)= f(x) = (m'(x)¢'| &) for each x € A,

and ¢ is a cyclic vector for #’. By 2.4.1 (ii), there is a unique isomor-
phism of H, onto H,_ mapping 7 to =’ and ¢ to £'.

In particular, let = be a non-trivial topologically irreducible represen-
tation of A. Every non-zero vector of H, is a cyclic vector for «, and so
7 is defined up to equivalence by any non-zero form associated with =.

2.4.7. PROPOSITION. Let A be an involutive Banach algebra with an
approximate identity, and 7 a representation of A, For each x € A,

()| = sup flx*x),

where f varies over the set of positive forms associated with w such that

IA=1.

Thanks to 2.2.6, we need only consider the case of non-degenerate 7.
By 2.4.3, the positive forms associated with 7 of norm =1 are just the
forms w, o m where £ € H, ||&| < 1. Thus

[l () = sup{m(x)¢ | 7(x)¢)

I

= sup{w; © wHx*x).
b=t

2.4.8, ProrosITION. Let A be an involutive Banach algebra with an
approximate identity, f a continuous positive form on A and w and £ the
representation and the vector defined by f.

() If x, € A, the form x = f(x%xx,) is associated with .

(i) Iff is a positive from associated with w, [* is the limit (in the norm
topology) of forms x - f(x¥xx,), where x, € A.

If x, € A, then
Flxkxxe) = (w(x¥xxdé | ©) = (w(x)w ()€ | w(x0)8),

and we have (i).
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Now let &€ H, and f'=w, ° o. For every €>>0 there is an x,€ A
such that [[a{x)é — &< € and so for each x € A4,

IF () = fxxxo)| = ()€ | £) ~ (w7 (x | m(x0)&)|
<[l7 ()] € - w(xe¢l
+ |l (x)¢ ~ w(x)w (x| - | (x|
<lx)l - l¢7 - € + <] - edlig+ &)
=[|lxllele] + €,

and 2¢|¢| + € is arbitrarily small.

2,49, Let A be a C¥*-algebra, I a closed two-sided ideal of A, B the
C*-algebra A/I and w: A— B the canonical morphism, If f is a positive
form on A such that f(f) =0, then f defines a positive form g on B by
passage to the quotient. For each x € A, we have

(m(w(NE | &) = glw(x)) = f(x),

so that 7, - @ and £ may be identified with &, and ¢ respectively
24.1.

ProPOSITION. Let A be a C*-aigebra, f a positive form on A and I a
closed two-sided ideal of A. Then f(I) =0 if and only if w{(I) = 0.

Ker m;CKer f, so that w{(I)=0 implies f(I})=0. If f(I)=0, then
;= T, ¢ @ in our previous notation, so that w(I)=0.
2.4.10. CoroLLARY. Ker m, is the largest closed two-sided ideal of A
contained in Ker f.

2.4.11. CorOLLARY. Let A be a C*-algebra and f and g positive forms
on A, Then the following conditions are equivalent:

(i) Ker m; C Ker 7.

(ii) g vanishes on Ker m;

References: [618], [619], (638], [1097], [1101], []323], [1455]).

2.5. Pure forms and irreducible representations

We know how to associate representations with positive forms, and
we now settle the question of when this procedure leads to irreducible
representations.
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2.5.1. PROPOSITION., Let A be an involutive algebra, = a representation
of A in H, £ an element of H and f the positive form defined on A by 7
and £

() If T is an hermitian operator on H which commutes with w(A) and
satisfies 0<T <1, the form

x> (m()TE | TE) = (n(x)€ | T%)

on A is a positive form fr which is dominated by f.

(ii) If ¢ is a cyclic vector for m, the map T = f; is injective.

(iii) If A is an involutive Banach algebra with an approximate identity,
every contintious positive form on A which is dominated by f can be
written fr for some T,

Since fr=wp o m, fr=0.If xE A,
frix*) = (r(x*0)TE | TE) = |m () TEP
= |Tx(x)¢l < |7 (el = flx*x),
so that fr < f, and (i) is proved.
If fr = fr-, then
(m()¢| T = (w(x)E | T8

for any x € A, so that T?¢ = T¢ if £ is a cyclic vector for a(A). Since ¢
is then a separating vector for the commutant of 7(A) (A 14) it follows
that T?=T**, and hence T =T' as T =0, T'=0. This proves (ii).

Let g be a positive form on A which is dominated by f. For x, yE A

lg(y*x) < g(x* )g(y*y) < f(x*x)f (y*y) = [ r(OEF - | =&

Hence the relation

(m()E | m(9)E) = g(y*x),
defines a unique continuous sesquilinear form on the subspace m(A)¢ of
H which is clearly positive and hermitian. There then exists an her-
mitian operator T, on X = w(A)¢ such that 0= T,=1I and
gly*x) = (w(x)¢| Tym(y)é).
For x, y, z € A, we have
(m(9)¢ | Tom(2)m(x)&) = g((zx)*y) = g(x*(z*y))
= (m(z*y)¢ | Tom(x)8) = (# (Y w(NE | Tom(x)E)
= (7w (NE| (D) Tem ()8,



CH. 2, §5] PURE FORMS AND IRRENDUCIBLE REPRESENTATIONS 43

from which it follows that Tym(z) = #(2)T, on X. Moreover, X is
invariant under 7(A) and so Py commutes with w(A). Hence TP is an
hermitian operator in H, lying between 0 and I, which commutes with
the w(z)'s (z€ A). Let T be its positive square root, which again
commutes with the 7w(z)’s. Then 0= T =1, and

g(y*x) = (n(x)¢ | T*w(3)€) = (w()TE | w()TO
=(w(y*0)TE| TH = fr(y*x).

Finally, suppose that A is an involutive Banach algebra with an
approximate identity () and that g is continuous. Then

gy =limg(y*u),  fr(y® =lim fr(y*u),
and thus g = f.

2.5.2. DEFINITION. Let A be a normed involutive algebra and f a
continuous positive form on A. f is said to be pure if f# 0 and if every
continuous positive form on A which is dominated by f is of the form
Af(0= )\ =<1). We denote by P(A) the set of pure states of A.

Let (2 be a locally compact space and A the C*-algebra of continuous
complex-valued functions on {2 that vanish at infinity. The pure positive
forms on A may be identified with the positive measures on {} whose
support consists of a single point, i.e. with measures of the form
f—=Af(w) where A > 0 and o is a fixed point of Q: it follows from this
that the pure states of a commutative C*-algebra are just the characters
of the algebra.

2.5.3. Let A be an involutive Banach algebra with an approximate
identity, A the involutive Banach algebra obtained by adjoining an
identity to A, f a continuous positive form on A and f its canonical
extension to A. Then f is pure if and only if f is pure. Indeed, to begin
with, the conditions f =0 and f =0 are equivalent. Moreover, as g runs
through the set of continuous positive forms on A dominated by f, g
runs through the set of continuous positive forms on A dominated by f
(2.1.7). Finally, for g to be of the form Af where 0= A < 1 it is necessary
and sufficient that g = Af

2.5.4. PROPOSITION. Let A be an involutive Banach algebra with an
approximate identity, f a continuous positive form on A and =« the
representation of A defined by f. Then w is non-trivial and topologically
irreducible if and only if f is pure.
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Let & be the vector of H, defined by f.

Suppose f is pure, and let E be a projection in H, which commutes
with (A). The form x — (7 (x)E£| E£) on A is continuous and positive
and is dominated by f [2.5.1 ()], and is therefore equal to Af for some
0=x=1. Thus

(m(x)E¢| E) = (w(x)A'"?¢ | A'"E)  for each x € A,

By 2.5.1 (ii), E=A"2-1 and so E =0 or 1. Furthermore, there exist
x€ A such that f(x)#0 and hence such that (w(x)£|£)# 0, which
shows that 7 is non-trivial and topologically irreducible.

Now suppose =« is non-trivial and topologically irreducible. There
exist x € A such that (w(x)£| &) #0 and hence f#0. Let g be a con-
tinuous positive form on A dominated by f. By 2.5.1 (iii), there is a
hermitian operator T E w(AY such that 0s<Ts=</! and g(x)=
(m(X)TE| TE) for every x € A, Since w is topologically irreducible,
T=u-1 with 0Spu <1 and so g=pu’f. Hence f is pure, and the
proposition is proved.

Proposition 2.5.4 allows us to define a canonical map

P(A)— A.

This map is surjective by 2.4.6 and 2.5.4, and the inverse image in P(4)
of # € A is the set of states associated with « (on this subject, cf. 2.5.7).

2.5.5. PRoPOSITION. Let A be an involutive Banach aigebra with an
approximate identity and B the set of continuous positive forms on A of
norm =<1,

(1) B is convex and compact in the weak*-topology o(A', A) of the
dual A' of A.

(ii) The extreme points of P consist of 0 and the pure states.

(ii) B is the weak*-closed convex hull of 0 and the set of pure states.

B is a weak*-closed convex subset of the unit ball of A’, This ball is
weak*-compact and so we have (i).

We next show that ¢ is an extreme point of B. If fE B and — f€ B,
then f(x*x)=0 for each x € A, so that |f(x)f <|flf(x*x)=0 (2.1.5);
hence f=0.

Now let f be a pure state, and suppose f=Af;+(1 —A)f, with 0 <A <
1, fi, /€ B. Then Af, is dominated by f so that Af, = puf with 0= p <1,

Since
=[IAl = Allfll + 1 = V£
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and [[fl, |l <1 we must have |f|=|[ffl=1, and therefore A = » and
fi=f=F.. We have thus proved that f is an extreme point of B.

Conversely, let f be a non-zero extreme point of B. Clearly |f]=1.
Now let f=f, +f with f,, f; continuous positive and non-zero. Put
If.] = A. so that ||l =1~ A, and let g,=A7'f,, g2=(1~A)"'fo. Then f=
Ag,+(1—A)g,, with g, g:€ B. Since f is extreme, f=g,= g;. Hence
fi=Af, ;=0 —=A)f from which it follows that f is a pure state. This
proves (ii).

Finally (ii1) follows from (i) while (ii) follows from the Krein-Milman
theorem.

2.5.6. We retain the above notation and assume in addition that A is
unital. B is then the set of positive forms f on A such that f(I)< 1, and
the set E(A) of states of A is the set of positive forms f on A such that
f(1) = 1. It follows that E(A) is convex and weak*-compact, and that the
set of extreme points of E(A) is the set of those extreme points of B
which belong to E(A), i.e. the set P{A). E(A) is therefore the closed
conveX hull of P(A).

2.5.7. PrOPOSITION. Let A be an involutive algebra, ™ a non-trivial
topologically irreducible representation of A, &, and £, two vectors of H,
and f, and f, the positive forms defined by (m,£) and (7, &). Then f,= [,
if and only if there is a complex number A of absolute value 1 such that

&= Ay

If & = A& with |[A] = 1, then clearly f, = f,. On the other hand, suppose
fi="F. Since & and & are cyclic vectors for # (2.3.1), there is an
automorphism U of H commuting with the #(x)’s such that U¢ =4,
(2.4.1 (ii)). Now U is a scalar operator (2.3.1), and so &= A£, with
[A] = 1.

In particular, the canonical map P(A)— A is bijective if and only if
every topologically irreducible representation of A is one-dimensional.
When A is a C*-algebra, theorem 2.7.3 implies that this condition is
fulfilled if and only if A is commutative.

References: [618], [619], [6381, [1097], [1101], [1323], [1455].

2.6. Existence of representations of C*-algebras

2.6.1. THEOREM. Any C*-algebra A has an isometric representation on
a Hilbert space.
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Let A, be the real Banach space consisting of the hermitian elements
of A, and let x be a non-zero element of A. By (1.6.1), —x*x& A", and
since A* is a closed convex cone (1.6.1), there is a continuous linear
form f, on A, such that f(y)=0 if y€ A" and f(—x*x)<0 (BS).
Identifying f, with an hermitian form on A, we see that f, is a positive
form on A and f(x*x) >0, so that the representation , defined by f,
following 2.4.4 satisfies 7 .(x) # 0. Let the representation m be the direct
sum of the x.’s for x € A, x# 0. Then =« is injective and therefore
isometric (1.3.7 and 1.8.1) and the theorem is proved.

Thus, as we previously asserted, the closed involutive sub-algebras of
Z(H) for H a Hilbert space are indeed the most general examples of
C*.algebras.

2.6.2. PROPOSITICN, Let A be a C*-algebra and let x € A. Then the
following conditions are equivalent:
i) x=0,

(i) The operator w(x) is =0 for every representation w of A.

(iii) f(x)=0 for every positive form f on A.

(i) = (iii); obvious.

(iii) = (ii); let = be a representation of A and ¢ € H,; the form
y—=(m(y)&| &) on A is positive, and so (7(x)¢| £ =0 if (iii) holds. The
operator w(x) is thus =0.

(i) = (i): let = be an isometric representation of A (2.6.1); if the
operator w(x) is =0, then «(x) is positive in «(A) (1.6.5) and so x is
positive in A.

2.6.3. CorROLLARY. Let A be a C*-algebra, A, the set of hermitian
elements of A, B the set of positive forms on A of noom <l and PCRB
the set of pure states of A, where B and P are endowed with the
weak*-topology. Let €(B), %(P) be the sets of continuous real-valued
functions on B and P respectively, and for each x € A, let F, be the
continuous real-valued function f =, x) on B and G, its restriction to P,
Then the map x — F, (resp. x > () is an isometric isomorphism of the
ordered Banach space A, onto a subspace of the ordered Banach space
G(B) [resp. €(P)].

It is clear that the maps are linear and that
x=z02>F 202G, =0,
Suppose conversely that G, =0, i.e. that f(x)=0 for each f€ P, By
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2.5.5, f(x)=0 for each f€ B, and so x=0 (2.6.2). Now suppose A is
represented in a Hilbert space H (2.6.1) and let x € A4, with Jx]|=1.
There exist £ € H of norm 1 with |(x¢ | &) arbitrarily close to 1, hence
there exist f € B with |[f(x)| arbitrarily close to 1 and therefore also f € P
with |[f(x)] arbitrarily close to 1. Consequently, 1 <||G,|| < FJ|<1 and the
corollary follows.

When A is commutative, the map x— G, is simply the Gelfand
isomorphism restricted to A;. An alternative generalization of the Gel-
fand isomorphism to the non-commutative case, more satisfactory in
some ways, will be studied later on (10.5.4).

2.6.4. CorOLLARY. Let A bea C*-algebra and g a continuous hermitian
linear form on A. Then there exist positive forms f, f on A such that
g=rf—1 lgl=A+I£1.

We keep the notation of 2.6.3, and identify A, with a subspace of
4(B). By the Hahn-Banach theorem, g can be extended to a linear form
p on €(B) with |lu] = lg|] (cf. 1.2.6). The measure ¢ on B can be written
p=p" —p where p*, u” are positive measures such that |u|=
l*l+ ek Let £= w” Ay, £= u~| Ay Then g = f— and

gl < AN+ 074 <= e "N+ Nos 7 = Heall = dell,
so that
llgll = 1Al + £
We shall see later (12.3.4) that the decomposition of 2.6.4 is unique.

References: [618], [619], [681], [848], [1097], [1101], [1323], [1455],
[1589].

2.7. The enveloping C*-algebra of an involutive Banach algebra

2.7.1. ProrosSITION. Let A be an involutive Banach algebra with an
approximate identity. Let R be the set of representations of A, R’ the set
of topologically irreducible representations of A, B the set of continuous
positive forms of norm =1 on A, and P the set of pure states of A. For
each x € A, we have

n sup |7 (x)]| = sup |7 (x)]| = sup fx*x)** = sup f(x*x)'?,
=R R feg feP

and denoting the common value of these four expressions by |x|', we
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have x| < ||x|. The map x —||x| is a seminorm on A such that
Dyl =< belllylls el = el el = )
forany x, y € A,

We denote the four numbers in the order in which they appear in (1)
by a, b, ¢, d.

d=<b; let fE€ P; then f is associated with a representation ¥ € R’
(2.5.4) and f(x*x)<|w (] 2.4.7);

b = a: obvious;

a = ¢: this follows from 2.4.7;

c=d: let fEB; by 2.5.5, f(x*x) lies in the closed interval whose
left-hand end-point is 0 and whose right-hand end-point is sup,cp g(x*x),
i.e. f(x*x) < sup,cpg(x*x).

By 1.3.7, [#(x)| <|x| for every = € R, so that ||x| <|x|. Moreover,
each function x—|7w(x)] is a seminorm on A, hence x—|x|| is a
seminorm on A, We have

lw(x*)| =) and [lw(x*x)| = [ (0|
for each w € R, and so
_ lx*"=1xll and [lx*x|f = ]
Finally, if x, y € A, we have for each # €ER,

7 Gyl (]l - M < <l - I1olF,  hence eyl ==l - 1)

2.7.2. Let I be the set of x € A such that |x|'=0, which is a closed
self-adjoint two-sided ideal of A. The map x —|x||' defines a norm on the
quotient A/, Endowad with this norm, Aff satisfies all the C*-algebra
axioms except that A/ is not complete in general. The completion B of
A/l is a C*-algebra called the enveloping C¥-algebra of A. The canonical
map of A into B is a norm-reducing involutive algebra morphism whose
image is dense in B.

2.7.3. When A is a C*-algebra, |x|/ =|x| by 2.6.1, and A may be
identified with its enveloping C*-algebra. In this case, proposition 2.7.1
shows the existence of “sufficiently many” topologically irreducible re-
presentations, as we had already claimed, and considerably strengthens
theorem 2.6.1;
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THEOREM. For any C*-aigebra A, there is a family (=) of topologi-
cally irreducible representations of A such that x| = sup; |m(x)| for
every x € A

2.74. ProrosiTioN. Let A be an involutive Banach algebra with an
approximate identity, B the enveloping C*-algebra of A and 1 the
canonical map of A into B,

() If w is a representation of A, there is exactly one representation p
of B such that w=p < 1, and p(B) is the C*-algebra generated by w(A).

(i) The map w— p is a bijection of the set of representations of A onto
the set of representations of B.

(iii) p is non-degenerate (resp. topologically irreducible) if and only if
@ is non-degenerate (resp. topologically irreducible).

Let 7 be a representation of A. In the notation of 2.7.2, 7 vanishes on
1, and defines, by passing to the quotient, a representation «' of A/l
such that ||='(z)]| =<||z|| for each z € A/I, where | || denotes the norm of B,
7' therefore extends to a representation p of B which satisfies w =p o 7.
The uniqueness statement of (i) follows from the fact that r{A) is dense
in B. This also implies that w(A) is dense in p{B) in the operator-norm
topology. Since p(B) is a (*-algebra (1.83), it is the (*-algebra
generated by w(A). Statements (i1) and (iii) are immediate,

Proposition 2.7.4 shows that B is the solution of a universal problem,
It also shows that in the majority of questions concerning represen-
tations of involutive Banach algebras with an approximate identity, it is
enough to deal only with the C*-algebra case.

2.7.5. ProprosiTION, With A, B, v as in 2.7.4:
() If f is a continwous positive form on A, there is exactly one
positive form g on B such that f =g ~ 7. Moreover |lg| = |fl.

(i) The map f— g is a bijection of the set of continuous positive forms
on A onto the set of positive forms on B,

(1) Let M be a bounded set of continuous positve forms on A. Then
the map f— g, restricted to M, is bicontinuous for the weak*-topologies
a(A’, A), o(B', B), where A’', B' denote the duals of A and B respec-
tively,

Let f be a continuous positive form on A. Then for each x € A we
have, using 2.1.5 (i),

[FCol < A" e < | AIM
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so that there is a continuous linear form g on B such that f=g = 7 and
lgll=|IAl- If y € B there is a sequence (x,) in A such that 7(x,)— y which
implies that

gly*y)=lim fix*x,) =0,
and so g is positive. If x € A and |x|| =<1, then

[ = lgtrCen <[lgll - Ir(ol <llgl - x| <llgll.  and hence £l <|lg].

The uniqueness of g follows from the fact that r{A) is dense in B, We
have now proved (1), and (i) is immediate. Let M C A’ be a set of
continuous positive forms on A and N C B’ its image under the map
f—g The map f->g of M onto N is plainly bicontinuous for the
weak*-topologies o{A’, A), o(B', r(A)). If M is bounded, N is bounded
by (i), so that a(B’, 7( A)) and (B’ B) coincide on N as r(A) is dense in
B.

2.76. Let A be an involutive Banach algebra with an approximate
identity, and let Q be the set of continuous positive forms on A, For
each f € Q, let 7, be the representation defined by f. Then 7 = @eq 7 is
called the universal representation of A, and is non-degenerate. By
(2.2.7) and (2.4.6), every non-degenerate representation of A is a direct
sum of representations of the form m, so that |[x|' = [l=(x)| for every
x € A. Hence if B is the enveloping C*-algebra of A, the representation
of B corresponding to « is an isomorphism of B onto (A).

References: [582], [619], (638], [1097], [1101], [1323], [1455].

2.8. A theorem on transitivity

28.1. LemMma. Let H be a Hilbert space, (¢,,...,¢&,) an orthonormal
system in H, and &,,...,¢, vectors in H of norm < r. Then there is a
b € L(H) of norm <(2nm)"r such that b¢,=¢,, ..., b&, = ¢, If there is
an hermitian element h of X(H) such that h& =&, ... hE, =, b can
also be chosen to be hermitian,

Let K be the subspace of H generated by &,,.... &, &p..... L. We
shall define b as an operator which leaves K invariant and which
vanishes on H & K. This reduces us to the case where K = H. Now let
(&, oo s & it - - - &) be an orthonormal basis for H, and let b be the
operator in H whose matrix with respect to (£,,..., &) is as follows:
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(a) the first # columns are the coordinates of £, ..., {, with respeci 10
the &

(b} if h exists, the first » rows are the complex conjugates of the first
n columns (this is possible since the existence of h implies that the
square matrix comprising the first n rows and the first # columns is
hermitian).

(c) all the entries not already defined are zero.

We have

b£I=€l!"'*b§n=£n
and
[6]F = Tr(b*by < 2(|Z P + - - - + |2 < 2nr.

If h exists, b is hermitian by construction.

2.8.2. LEMMA. Let H\,..., H, be Hilbert spaces, H=H, & - - @ H,,
and A a C*-algebra of operators on H which is strongly dense in the von
Neumann algebra ZX(H)X---xZ%(H,). Let (£,...,¢,) be an or-
thonormal system in H and n, . .. , n, be vectors in H of norm < r, where
we assume that for i=1,...,n, & and ; both lie in the same subspace
Hy,. Then there exists a b€ A of norm <3m' such that bé, =
Nis--- s D& =1, If there Is an hermitian element h of $(H) such that
h& =1 ..., hé, =, then b can in addition be chosen to be an
hermitian element of A.

By Kaplansky’s density theorem, the unit ball of A (respectively of
the hermitian part of A) is strongly dense in the unit ball of $(H,) X
-+« X Z(H,) (respectively of the hermitian part of L(H,) X - - X L(H,)).

Now by 2.8.1 applied to the spaces H,,..., H, in turn, there is a
Vo€ Z(H) X+ X Z(H,) such that

Y€ =M-- o Yoka =m0 ydlsC20)Pr,
and then by the preceding remark there is X, € A such that
Ikt = vofll i, . oL lxobe — yo&al b, xd =2m)*r.
Next, again by 2.8.1, there exists y,€ £(H,) X -+« X Z(H,) such that
V&= X s ik = N — Xobn, Iyl si2n)"r
and then x, € A such that

e —yigllsin. .o In&-né&l<in  llal<i2a)"r
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By induction, we construct sequences of elements y €
F(H)* -+ xL(H,) and x;, € A such that

1
y&i=m— X~ — X Iyl = 2_" (2n)"r,

"-’-’:c'ff )’:cf:" =

1
Sl e

(f h exists, the y, and x can be chosen to be hermitian,) x,+ x,+ -+
then converges in norm to an element b € A such that

bél =nh"°9b§n=nm
6l s +3+5+- - ¥2m)*r<3m'?

2.8.3. THEOREM. Let A be a C*-algebra, A the C*-algebra obtained by
adjoining an identity to A, =, ..., m, representations of A in Hilbert
spaces H,, ..., H,, and #,, ..., 7, their canonical extensions to A, where
the m; are assumed to be topologically irreducible, non-zero and mutually
inequivalent.

() Let TyEX(H),..., T, € £(H,) and K, ..., K, be finite-dimen-
sional subspaces of H,, ..., H, respectively. Then there exists x € A such
that

7(x)|K;=T)| K, forj=1,...,p.

(ii) Let T\€ Z(H),...,T,€E¥(H,) be hermitian operators and
K., ..., K, finite-dimensional subspaces of H,, ..., H,. Then there is an
hermitian element x of A such that

() | K =T | K; forj=1,.

(iii) Let T,€EX(H),...,T,€ L(H,) be unitary operators and
Ky, ..., K, finite-dimensional subspaces of H, ..., H,. Then there is a
unitary element x of A such that

‘ﬁ'].(x)lK,=T}|KI forj=]..--,p.

Let H=H, & - G H, m=m7 - -Dm,. By 1.8.3, m#(A) is a sub-
C*-algebra of F(H) which commutes with the projections E;= Py,
Now if B is the von Neumann algebra generated by 7(A), we have

mA)C L(H) X+ xXZL(H,), and hence BC¥(H)x -+ X Z(H,).

Since each m; is non-degenerate, = is non-degenerate and so w(A) is
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strongly dense in B. Since m; is topologically irreducible, E; is a minimal
projection of w(A) = B’ and the von Neumann algebra induced on H; by
B is 2(H). Let F;&€ B N B’ be the central support of E; (A 10), and let j
and k be distinct indices. If F; and F, are not orthogonal, there exist
non-zero projections Ej, E; of B’ dominated by E; and E, respectively
and equivalent relative to B’ (A 44); since E;, E, are minimal projections
of B', we have E;=E, E;= E,, and so there is a partial isometry of B'
with E; and E, as initial and final projections respectively; but then ;
and m are equivalent which is a contradiction. Hence the F’s are
mutually orthogonal. Now F; = E; for each J. and so E; = F,€ B. Since

SE(H,) we see that B 2 .'%’(H yX-«-x #(H,) and finally B=
.Sf(Hl) X o Z(H).

Let TyEZ(HY),..., T, € 2(H,) and K,, ..., K, be finite-dimensional
subspaces of H,,...,H, By 282, there is an x€ A such that
m(x)| K;=T;| K, for j=1,...,p. If the T;’s are hermitian, x can be
chosen so that (x) is hermitian (2.8.2), and as 7(x)= 7((x + x*)), x can
itself be chosen to be hermitian. Now suppose the T;’s are unitary. For
j=1,...,p there is a finite-dimensional subspace KD K; of H, and a
unitary operator T;€ Z(H;) which leaves K/ invariant and is such that
T)| K =T,| Kj; there then exists an herrnman operator T'] € ¥(H;), again
leavmg K invariant, such that exp(iT}) | K}= T}| K’ By the foregoing
work, there is an hermitian element y of A such that ﬂ'(}’)l K;=Tj| Kjfor
each j. Then x = exp(iy) is a unitary element of A and #;(x)| K,- = T;| K; for
each j.

2.8.4, CorOLLARY. Every topologically irreducible representation of a
C*.algebra is algebraically irreducible.

We have merely to apply theorem 2.8.3 with p=1 and dim K, =1.
Thus we will henceforth speak of irreducible representations of a
C*-algebra without further qualification.

2.8.5. COROLLARY. Let A be a C*-algebra, f a pure positive form on A
and N the left ideal of those x € A such that f(x*x)=0. Then AIN, with
the scalar product derived from fiy*x) is complete and therefore coin-
cides with the space of the representation defined by f.

Indeed, let 7 be this representation, topologically irreducible by
(2.5.4). From the construction of 7, A/N is a subspace of H, invariant
under 7. Now AIN#0 and so AIN = H, (2.8.4).
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2.8.6. COROLLARY. Let A be a C*-algebra, A the C*-algebra obtained
by adjoining an identity to A, and f, and f, two pure states of A, Then f,
and f, define equivalent representations m and m, if and only if there is a
unitary element u of A such that f{x) = f(u*xu) for each x € A.

Let £ be the vector of H, defined by f,. The states of A that define
representations equivalent to s, are just the states associated with
(2.4.6), i.e. the forms x> (7 (x)¢|£) where ¢ is a unit vector of H,
(2.4.3). Now the unit vectors of H, are just the vectors #,(u)§;, where u
is unitary in A (2.8.3) and #, is lhe canonical extension of m, to A.
Finally,

(mx)m(u)é, | m(#)€) = (m(u*xu)é, I &) = fi(u*xu).
References: [633], [849], [1323].

2.9, ldeals in C*-algebras

29.1. ProOPOSITION. Let A be a C*-algebra, f a positive formon A, M
its kernel and N the set of x € A such that f(x*x)=0. Then MDJD N +
N* and if fis pure M= N + N*,

Since |[f(Of <|[f|f(x*x), N C M, hence N*C M*=M and so N +
N*C M. Now suppose [ is pure, and let A be the C*-algebra obtained
by adjoining an identity to A, and f the canonical extension of f to A.
Let = and £ be the irreducible representation and vector defined by f.
Let b € M and let n be its canonical image in H,. By the construction of
m and ¢ (| & = f(1* - b) = 0, and hence there is an hermitian operator
in H, which maps £ to zero and leaves n fixed. By 2.8.3, there is an
hermitian element a of A such that w(a)é =0 and n{a)n =1, i.e. such
that a € N and b —ab € N. Thus

b*=(b—ab)*+b*a € N*+ N,
and so M =M*C N*+ N,
2.9.2. LEMMA. Let A be a unital C*-algebra, L a closed left ideal of A

and x € A*. If, for every € >0, there is a positive element u, of L such
that x < u,+¢€, then x€ L,

If ¢ = uY” then ¢, is a limit of polynomials in u, with no constant term
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and therefore belongs to L. Now
e+ Vey't, — x4 = [x"*Ve, + Ve
= €t + Veyr' (" xu, + Vey |
= ¢el(t, + Vey 'x(t, + V)|
and since 0 < x <2+ ¢ we have (1.6.8):
0=s(,+ Ve 'xt, + Ve st + Ve + ), + Ve
=+ eNi+2Vet, +e) s,

so that
I, + Vet - "< e

Therefore x'(t, + Ve) ', €L, hence x"*€ L as L is closed and so
x€L.

2.8.3. LEMMa, Let A be a C*-algebra and L a closed left ideal of A.
Then A is the closed left ideal generated by L N A*.

This follows immediately from 1.7.3.

2.9.4. LEMMA. Let A be a C*-algebra and L, L' two closed left ideals of
A such that L C L'. Suppose every positive form on A that vanishes on L
also vanishes on L'. Then L= L',

We may assume A to be unital. Let a € L'N A" and let € be >0. The
set S, of positive forms f on A such that f(I) =|fl=1 and fla)=¢€ is
weak*-compact. If fE€ S, f is not identically zero on L' and therefore
nor on L, so that there exists an x, € L such that f(x,) # 0; consequently
there is a weak*-neighbourhood U; of f in S, such that glx)#0 if
g € Uy, and, by the compactness of S,, there are a finite open covering
() aiam of S, and elements a,, ..., a, of L such that

0<|f(a)f <f(a%a) for fE U,

Hence flata,+ - +aka,)>0 for every f€ §,, and multiplying the g,
by sufficiently large scalars, we have f(a%a,+---+a*a,)=f(a) for
every f€S,. Thus f(afa,+---+alka,+e—a)=0 for every positive
form f, from which it follows that a=a%a,+:--+aka, +e (2.6.2).
Hence a € L (29.2). L and L’ thus contain the same positive elements
and are therefore equal (2.9.3).
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2.9.5.THEOREM. Let A be a C*-algebra.
(i) Let f be a positive form on A and N; the left ideal of those x € A
such that f(x*x)=0. Then N; is maximal regular if and only if f is pure.
(i) The map f— N, is a bijection from the set of pure states onlo the
set of maximal regular left ideals.
(i) Every closed left ideal of A is the intersection of the maximal
regular left ideals containing it.

(a) Let f be a positive form on A. By 2.8.4 and 2.8.5, the canonical
representation w of A in AfN; is non-trivial and algebraically ir-
reducible. There exists £ € H, = AIN; such that N; is the set of x€E A
for which #(x)¢ =0 and thus N, is a maximal regular left ideal of A.

(b) Let L be a closed left ideal of A, and let S be the set of positive
forms on A of norm =1 which vanish on L. If fE€ S, then N;DL,
because for each x€ L, x*x € L and so f(x*x)=0. By 29.4 we have
L=0N jes N Moreover S is convex and weak*-compact and is therefore
the weak*-closed convex hull of its set §' of extreme points. It follows
that if x € A satisfies f{x*x) =0 for every f € §', then also f(x*x) =0 for
each f € 8, 5o that (,es Ny = M zs N,. Finally, if f € § can be written in
the form f, + fo, for positive forms fi, f,, we have, for each x €L,

0= filx*x) + fr(x*x) = fx*x) = 0,

and so fi{x*x) = f,(x*x)=0, hence f,(x) = fi{x) =0 and hence f; € § and
£, € S. This shows that the non-zero elements of S’ are pure forms, and
by virtue of (a), the equality I = ﬂ,«es. N; proves (in).

(c) We have just seen that if L is maximal regular, and thus closed
(B 1), then L is of the form N; with f pure. Hence the map described in
(ii) is surjective. If f and f’ are pure states such that N, = N, proposition
2.9.1 shows that f and f* have the same kernel, so that f= Af' for some
A =0. Since |l =|lf]l = 1, we have f=f', which proves (ii).

(d) Finally, let f be a positive form such that N; is maximal regular.
Then N, = N, for some pure f’, and the kernel of f', which is N+ N*% =
N;+ N#%, is contained in the kernel of f (2.9.1). Hence f and f are
proportional and so f is pure. This, together with (a), proves (i).

2.9.6. Recall that two representations w,, m, of an algebra in vector
spaces E,, E, are said to be algebraically equivalent if there is an
isomorphism of E, onto E, mapping 7, to m,.
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CoroOLLARY. Let A be a C*-algebra.

(i) Every algebraically irreducible representation of the (non-in-
volutive) algebra A in a complex vector space is algebraically equivalent
to a representation of the C*-algebra A (in a Hilbert space).

(ii) Let m, =’ be two irreducible representations of the C*-algebra A in
Hilbert spaces H, H'. If w and =’ are algebraically equivalent, then = and
' are equivalent in the sense of 2.2.1,

If = is a non-zero algebraically irreducible representation of A in a
complex vector space, there is a maximal regular left ideal L of A such
that  can be identified with the regular represemtation of A in A/L.
There then exists (2.9.5) a pure positive form f on A such that L =N,
and AfL can be given a Hilbert space structure such that 7 is a
representation of the C*-algebra A in this Hilbert space. Hence (i).

Now let 7, n' be two non-zero irreducible representations of the
C*.algebra A in the Hilbert spaces H, H'. Let £, £ be unit vectors in H,
H' respectively and L, L’ be the sets of x € A such that #(x)£ =0 and
7' ()& = 0 respectively, Put

=& €,  fl)=(x(x)¢]8).

Then L and L' are the sets of x € A such that f(x*x) =0 and f'(x*x)=0
respectively. If o and o’ are algebraically equivalent, £ and £ can be
chosen so that L = L'. Then f=f (2.9.5), so that # = #' (2.4.1) and (i)
“ollows.

It thus makes sense to speak henceforth of classes of irreducible
representations of a (*.algebra, without specifying whether the
equivalence is purely algebraic or unitary.,

2.9.7. Recall that a two-sided ideal of an algebra A is said to be primitive
if it is the kernel of a non-zero algebraically irreducible representation of
A in a vector space. We denote by Prim{A) the set of all primitive
two-sided ideals of A.

TuECOREM. Let A be a C*-aigebra.

(i) The primitive two-sided ideals of A are just the kernels of the
non-zero topologically irreducible representations of A in a Hilbent
space.

(ii) Every closed two-sided ideal of A is the intersection of the
primitive two-sided ideals containing it,

(i) follows from 2.8.4 and 2.9.6 (i).
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Let f be a closed two-sided ideal of A, so that A/l is a C*-algebra
(1.8.2). There therefore exists a family (7;) of non-zero irreducible
representations of A, vanishing on I, such that the intersection of the
kemnels, Ker m;, is exactly I (2.7.3). Moreover, for each i, Kerm is
primitive.

Theorem 2.9.7 defines a canonical mapping

A - Prim(A)

which is surjective. We shall encounter (4.3.7) a great variety of cases
where this map is in fact bijective,

References: [604], [849], [893], [1323], [1456].

2.10. Extension of representations of C*-algebras

2.10.1. LEMMa. Let A be a unital C*-algebra, and B a self-adjoint
subspace of A such that 1€ B. Let F be the set of linear forms g on B
stch that g{x*)=g(x) for x€B, g(x)=0 for xEBN A" and g()=1,
Then

(i) Every element of F can be extended to a state of A.

(i) Every extreme point of F can be extended to a pure state of A.

(iii) Let g be an extreme point of F. If there is exaclly one pure stale f
of A extending g, then f is the only state of A which extends g, and, for
every hermitian element x € A, we have

fxy= sup g(y).
y=y*EB, y=x

Let A,, B, be the sets of hermitian elements in A, B respectively. Let
g € F and let g’ be its restriction to B, which is real-valued and =0 on
BN A*. The element 1 of B, is an interior point of the cone A, and so
(B 6) g’ can be extended to a real linear form f* on A, which is =0 on
A™. Then f' extends to a hermitian linear form f on A, and f is a state of
A. The forms g and f | B coincide on B,, and therefore on B, +iB, = B.
This proves {i).

Now let g be an extreme point of F, and let K be the set of states of A
that extend g K is non-empty by (i), and is clearly convex and
weak*-compact. We can therefore take f to be an extreme point of K
and we shall see that f is then a pure state. Indeed, suppose f,, f, are
states of A such that f=4(f, +£,); then g =3((f,| B)+(f,| B)) and as g is
extreme in F, we have f,|B=f,|B=g Hence f,, €K and as f is
extreme in K, f=f,=f,. This proves {(ii).
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Now let g be an extreme point of F and suppose there is exactly one
pure state f of A which extends g. By the above argument, f is the only
extreme point of K and so K={f}. Let x€ A;, x& B and put

a= sup g(y).
YE By, yBX

There is exactly one linear form g, on B +Cx extending g such that
g(x)=ea. Clearly, g(y")=g,(y) for yE B+Cx, and if y+Ax=0 (ye
B, A €R) then g,(y + Ax) = 0: this is obvious if A =0; if A >0, we have
—-A7'y<x, so that g(-A"'yY)<e, and Aa+g(¥)=0, while if A <O,
—A7'y = x, and s0 g(—A7'y) = & and again Aa + g(y) = 0. By the above,
g, extends to a state of A which must coincide with f. Thus f(x)=
g =a.

2.10.2. ProrosITiON. Let A be a C*-algebra, B a sub-C*-glgebra of A
and p a represeniation of B in a Hilbert space K. Then there is a Hilbert
space H containing K as a subspace stich that the norm of H induces the
original norm on K, and a representation = of A in H such that
p(x)= w(x)| K for each x € B. If p is irreducible, = can be chosen to be
irreducible.

Let A be the C*-algebra obtained by adjoining an identity to A. Let B
be the sub-C*-algebra B +C - 1 of A. The representation p has a unique
extension to a representation 5 of B such that g(1)=1, and 5 is
irreducible if and only if p is irreducible. We can thus confine attention
to the case where A is unital and 1 € B. Furthermore, we can assume by
2.2.6 and 2.2.7 that p admits a cyclic vector £ If we put g(x) = (p(x)£| &)
for x € B, thex g is a state of B which is pure if p is irreducible. Let f be
astate of A extending g, pure if p is irreducible (2.10.1). Let 7 = TN =§
and let H,= w(B)nC H,. For each x € B, let #'(x) be the restriction of
w(x) to H,. Then =" is a representation of B in Hy, 7 is a cyclic vector
for «' and for each x € B, we have

(7' [ 1) = f(x) = g(x) = (p(x)¢ | &).

There thus exists an isomorphism from K onto H, which maps £ to ¢
and p to 7’ (2.4.1), and so we may identify K with H, and p with #'.
Finally, if p is irreducible, f is a pure state by construction, and so = is
irreducible,

2.10.3. LEMMA. Let A be a C*-algebra, I a closed two-sided ideal of A,
T a representation of A in H, and H' a closed (vector) subspace of H
invariant under w(I). For each x €1, let p(x)= w(x)| H’, and suppose
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that the representation p of I in H' is non-degenerate. Then

(i) H' is invariant under w(A), and if 7' denotes the subrepresentation
of «w defined by H', then

(i) =D} is strongly dense in 7'(A).

Let (&) be an approximate identity in the C*-algebra I. Since g is
non-degenerate, p(u,) tends strongly to 1 (2.2.10). If x€ A, xu, €1,
hence for each £ € H',

m(x)p( )¢ = w(x)mw(u )¢ = w(xu,)E = p(xw))E € H,

so that, in the limit, #(x)¢ € H'. This proves (i). Moreover, we see that
#'(x) is the strong limit of #'(xu,) from which {i1) follows.

2.10.4, ProrosITION. Let A be g C*-algebra, I a closed two-sided ideal
of A and p a non-degenerate representation of I in H. Then
(1) There is exactly one representation w of A in H which extends p.
(1) p (I} is strongly dense in 7 (A).

By (2.10.2) there is a Hilbert space H' D H and a representation ; of
A in H' such that p(x)=m,(x)| H for each x€l. By 2.103, H is
invariant under (A}, and taking for = the subrepresentation of m,
defined by H, we have the existence statement of (i) while (i) follows
from 2.10.3(ii). Finally let » be another representation of A in H which
extends p, and let (&) be an approximate identity of I. For each x € A,
p(xu,) tends strongly to «(x) and to »(x), hence «(x) = wv(x).

References: [590], [630], [1101], [1455].

2.11. Passage to an ideal and to a guotient algebra

Let A be a C*-algebra. We shall see that any c}osed two-sided ideal of
A leads to a decomposition of the sets P{A), A and Prim{A).

2.11.1. LeMMA. Let A be a C*-algebra, I a closed two-sided ideal of A,
@ a representation of A in a Hilbert space H, K the essential subspace of
7 | I and B the strong closure of m{(A). Then
(i) PheBNE'
(1i) The subrepresentation of n defined by H © K vanishes on L
(i) If ' is the subrepresentation of w defined by K, then ='(I) is
strongly dense in w'( A).
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The operator Py is in the strong closure of x(I), so that Py € B. By
2.10.3, K is invariant under w(A), and so Py € B'. Statement (ii) is
obvious and (i) follows from 2.10.3.

2.11.2. ProprosSITION, Let A be a C*-algebra, I a closed two-sided ideal
of A and A, and A’ the sets of w € A such that #(I)=0 and =(I)#0
respectively. Then

(i) foreachm € A, let ' bethe quotient representation of wof All, Then
m— ' is a bijection from A, onto (Afl)".

(i) The map =— = |1 is a bijection from A’ onto |

Statement (i) is clear, and we pass to (ii). Let = € A" In the notation
of 2.11.1, we have K # {0} and so K = H as = is irreducible. 2.11. I{iii)
then shows that # | [ is irreducible (cf. also 2.11.3), and the map 7 — 7 |1
of AT into [ is bijective by 2.10.4.

2.11.3. LEMMA. Let A be an algebra over a (commutative) field, and o
an irreducible representation of A in a vector space E. Then
) If Iis a two-sided ideal of A and w(I) #0, then = | I is irreducible.
D) If 1, I, are two-sided ideals of A with 7(1) # 0 and =(I,) # 0, then
a(l, 1) #0.

The set of elements of E on which (1) vanishes is invariant under
7(A) and is not the whole of E, and therefore consists of the zero vector
alone. Hence if £ is any non-zero element of E, then w([)£# 0, and since
w(I)¢ is invariant under w(A), we have w(I)¢ = E, which proves (i).
Moreover, the preceding work shows that #(I)E=E and
a{l)) #(I)E = E, hence #(l,- L) #0.

2.11.4. LEmMMa. Let [, 1, be two-sided ideals of the algebra A and I a
primitive ideal of A. If I DI, - I, (in particular if I 2 I, N L), then either
IDLorIDL.

Suppose IZ I and [Z I,. By 2.11.3(ii) applied to an irreducible re-
presentation = of A with kernel I, we have #(l, - I)# 0 and hence
[2 I] * [2.

2.11.5. PrOPOSITION. Letf A be a C*-algebra, I a closed two-sided ideal
of A and Prim;(A) and Prim’(A) the sets of primitive two-sided ideals of A
containing I and not containing I respectively. Then

(i) The map J > JiI is a bijection of Prim;(A) onto Prim{AfI).

(iily The map J—J N1 is a bijection of Prim'(A) onto Prim([).
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Statement (i) is obvious, so we prove (ii). If J € Prim'(A), then J is
the kernel of an irreducible representation & of A such that #(I)#0,
hence w|I€l (2.112) and JNI= Ker(qr|f)€ Prim{l). If F'e
Prim(I), there exists 7' € [ such that J' = Ker o and then there is = € A
such that 7' = 7 | I (2.10.4), from which it follows that J'=(Ker w)N I
and the map described in (ii) is surjective. Let J,, J,€ Prim’'(A) and
suppose that iNI=5LNI; then /25 NI and J, 21, so that .2 J,
(2.11.4) and similarly J, 2 J,. Thus J, =J, and the map given in (i) is
injective,

2.11.6. Before obtaining a result analogous to propositions 2.11.2 and
2.11.5 for pure states, we establish several properties of general positive
forms.

Let A be a C*-algebra, [ a closed two-sided ideal of A and w: A— Af]
the canonical morphism. Since w(A")=(A/I)", the map k—»k ° w is a
bijection of the set of positive forms on A/I onto the set of positive
forms on A that vanish on I It follows from general properties of
Banach spaces, that this bijection is norm-preserving and is bicontinuous
for the weak*-topologies.

2.11.7. PROPOSITION. Let A be a C*-algebra, I a closed two-sided ideal
of A and f a positive form on A. Then

(i) There exists a unique decomposition f=f+f, where f.f, are
positive forms on A such that ||f|=|f,| | end f,(I)=0

(i) The pair (m, &) may be identified with (m D m, &+ &) =,
vanishes on I and m | I is non-degenerate.

Put ;= m. Let K, be the essential subspace of # | I, K,= H, & K,,
& =Py &= Py, and 7 and 7, the subrepresentations of « defined
by K, and K, (2.11.1(3})]. Then £ is a cyclic vector for «, and so if
fi=wy o m, (m, &) may be identified with (7, §) (2.4.6). 7(I)=0, and
so f»(I) =0. The representations , and , | I are non-degenerate, and so

IFc LI =N &l = A,

by 2.4.3. The relation & = £, + &, implies f = f, + f,. In particular, f,=0 if
£ =1If i 1.

It remains to prove the uniqueness statement in (i), so let fi, f3 be
positive forms on A such that f= fi+f3, [|fil =|fi| I|| and f5(I)=0. The
above argument, applied to f{ instead of f, shows that ;| I is non-
degenerate; thus if (&,) is an approximate identity of I we have fi(x)=



CH. 2. §11] PASSAGE TO AN IDEAL AND TO A QUOTIENT ALGEBRA 63

lim fi(xu,) for every x € A and similarly f,(x) =lim f(x%,). f, and f}
therefore coincide on I since f5(I) = fi{I)=0 and thus f} = f, and fi=Ff,.

2.11.8. PROPOSITION. Let A be a C*-algebra, I a closed two-sided ideal
of A, and P,(A) and P’'(A) the sets of pure states of A which vanish on I
and which do not vanish on I respectively. Then

() If, for each f € Pi{A), f' denotes the positive form on All obtained
from f by passing to the quotient, then f - f is a bijection of Pi(A) onto

P(A/D.
(i) The map f—flI is a bijection of P'(A) onto P(I).

Let f € P;{A), and let w denote the canonical morphism of A onto
AfL If f dominates a positive form g’ on A/l, then f dominates
g=g o and so g=Af with 0=<A =1, g'=Af" from which it follows
that f € P(A/D). It is clear that the map f— f is injective, so we have
only to show that it is surjective. Thus, let A€ P(AlDand f=h - . If f
dominates a positive form g, then g vanishes on I" and therefore on I,
and so g can be written k » @ where k is a positive form dominated by
h. Hence k= Xxh, with 0= =<1, so that g =Af and f€& P,(A). Since
h =f, we have indeed shown that the map f— f is surjective,

Now let f € P'(A). In the decomposition f=f,+ f> of 2.11.7, f, and f,
are proportional to f. Now f, vanishes on I and f does not vanish on [ so
that f,=0and f = f,. Hence |f | I =||fl = 1, from which it follows that f| I
is a state of I. By 2.10.3 and 2.11.7Gii), =, is irreducible and so
flI€ P(I). Let f, ff € PI(A); if f| I =f|I, there is an isomorphism of
H, onto H, ., which maps &, (i.e. &) into &, (i.e. &) and ), into apyy,
and therefore a; into 7, (2.10.4). Thus f = f', and the map f—f| I of (ii)
is injective. Finally, if g € P(I), the irreducible representation r, of I
can be extended to an irreducible representation « of A (2.10.4). Since
I =1, f=w,, o « is a pure state of A extending g, and thus f € P/(A)
with f| I = g, which shows that the map f—f| I of (ii) is surjective.

2.119, The six bijections of propositions 2.11.2, 2.11.5 and 2.11.8 are
said to be canonical.
To sum up, we have the following diagram of canonical maps:

P(AI) - P(A) <« P()

b i !
A" - A <« f
) ! ]

Prim{A/I}) — Prim(A) « Prim({)
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The vertical arrows represent surjective maps, and on each line, the two
horizontal arrows represent injections of complementary subsets into
the middle set. It is easily checked that this diagram is commutative.

References: [508], [819], [896]. [1456].

2.12, Addenda

2.12.1. Let A be a unital C*-algebra and f, g pure states of A such that
If — gl <2. Then m =~ =, [633].

2.12.2. Let A be a unital C*-algebra, E(A) the set of states of A, and
f € E(A). Then the following conditions are equivalent:

(i) for every neighbourhood U of f in E(A),thereisad>0anda € A
withO0=sa=1, fla)=1 and g(a)<1-8 for g€ E(A)- U;

(i) for every closed &; set § of E{A) containing f, thereis an a € A
such that ||a||=|f(a)] and S contains the set of g€ E(A) for which
lall = |e(a);

(iii) f is a pure state. [631].

2.12.3. Let A be a C*-algebra and K, the set of states f of A such that
dim m;=n (< +=), Then P(A)N K, is an open subset of K,. [638].

2,124, Let A be a von Neumann algebra, & its centre and 2 the
spectrum of &. For each w €42, let I, be the norm-closed two-sided
ideal of A generated by Kerw, and for each TE A, let T, be the
canonical image of T in A/l,. Then

(a) If f is a pure state of A, then f[% is an element » of £ and f
vanishes on [

(b) For every T € A, the function @ —|T,|| is continuocus on £2.

(c) In All,, the product of two non-zero two-sided ideals is non-zero.
[6301].

2.12.5. Let A be an involutive unital Banach algebra. Suppose that for
every continuous hermitian linear form f on A, there exist (wo positive
forms g, & such that f=g—h and ||f|=|g|+|#]. Then A is a C*-
algebra. [681]. ’

*2.12.6. Let A,, A, be unital C*-algebras, and P{A4;) the weak*-closure
of P(A;) in the dual of A, Let % be the set of functions f— f(x) on
P(A;) (x € A). If there is a homeomorphism of P(A,) onto P{A,) which
maps £, into Z,, then there is a bijective linear isometry p: A, — A, such
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that p(x*) = p(x)* for each x € A, and p(x") = p(x)" for each hermician x
in A, {cf. 1.9.10). [839].

2.12.7. Let A be a unital C*-algebra, P(A) the weak*-closure of P{A)in
the dual of A and 2 the set of functions f — f(x) on P (A) (x € A). If the
product of two elements of & is again in Z, A is commutative. [839].

2.12.8. Let A be a unital C*-algebra, f astate of Aand N thesetof x€ A
such that f(x*x)=0. If Ker f= N+ N*, then { is pure. [849].

*2.12.9. For a unital C*-algebra A to be isomorphic (o a von Neumann
algebra, it is necessary and sufficient that it satisfies the following
conditions:

(i) every increasing family of hermitian elements of A that is bounded
above has a least upper bound;

(ii) for every non-zero x € A", there is a state f of A with f(x)#0,
such that for every increasing family (y,) in A* with least upper bound
y € A7, f(y) = sup f(y)). [849], [1590], [1591].

*2.12.10. Let A be a unital C*-algebra and X the compact space P(A).
For each x € A, let ¢, be the function f— f(x) on P (A) and let £ be the
set of all the ¢.’s for x € A. Each state g of A goes over, viax—>¢,.10a
positive linear form on %, and this form can be extended, in infinitely
many ways in general, to a positive measure on X; the collection of
those subsets of X which are of measure zero for all these measures will
be denoted by N,.

Now let 7 be a representation of A, and denote by N, the intersection
of the N,,. as h varies through the set of normal states in the weak*-
closure of w(A).

Let H be a separable Hilbert space, A a sub-C*-algebra of ¥(H)
containing 1, B the weak closure of A and 7 a representation of A in a
separable Hilbert space. Then & can be extended to an ultraweakly
continuous representation of B in H, if and only if N, D N,, where ¢
denotes the identical representation of A. [848).

2.12.11. Let A be a C*-algebra and G a topological group. For each
g£€G, let {, be an automorphism of A. Suppose that g—> ¢, is a
representation of G and that £, (x) is a continuous function of g for each
X € A, A state f of A is said to be stationary for { if f({,(x)) = f(x) for
each x€ A and g €G. Suppose f satisfies this. Then there exists a
unique continuous unitary representation p of G in H, such that: (1)
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m (&, (X)) = p(@)m(x)p(g ") for each x € A and g €G; (2) if n denotes
the canonical map of A into H,, then n({,(x)) = p(g)n(x) foreach x € A
and g € G. [1460].

2.12.12. Let A be a unital C*-algebra, x a normal element of A and
A € Sp x. Then there is an irreducible representation of A and a non-zero
£in H, such that 7(x)¢ = A& (Apply 2.10.2 to the sub-C*-algebra B of A
generated by 1 and x and to the character of B which takes the value A
at x.) [1455].

2.12.13. Let A be a non-unital C*-algebra. Then C is in the weak*-
closure of P(A).[Let x,,...,x, € A" and € > 0; we have to construct an
f € P(A) such that f(x)),..., f(x,)<e€; replacing x,, ..., x, by x,+- -+
X, we can assume n = | and using 2.5.5, it is enough to construct a state
g of A such that g(x,) = ¢; realizing A in a Hilbert space H by means of
a non-degenerate representation, x, is not invertible in A+C -1 and
therefore not invertible in £(H); hence there is a unit vector ¢ of H
such that (x,£ | £) < e: take g = w,.] This was communicated to me by J.
Glimm.

2.12.14. Let A be a C*-algebra, I and J closed two-sided ideals of A
and h astate of A that vanishes on I N J. Then f = Af + ug where A =0,
@220, A+ pu =1 and where f, g are states of A which vanishon I and J
respectively. (It is enough to consider the case where I NJ =0. Then
m,|I and =, |J have orthogonal essential subspaces. Apply 2.11.7.)
[1456].

2.12.15. Let A and B be C*.algebras, 7, 7' injective representations of
A and p, p' injective representations of B, Let D and DY be the
C*.algebras of operators on H,®@ H, and H,® H, respectively
generated by the w(x)® p(¥) and ='(x)® p'(y) respectively where
X € A, y € B. There is a unique isomorphism of D onto LY which maps
7(x) @ p(y)into 7'(x) @ p'(y) for any x € A, y € B. Thus D, regarded as
an abstract C*-algebra, depends only on A and B and is called the
C*-tensor product of A and B. [692], [701], [1613], [1614], [1620], [1728].
(17291, [1731], [1847].

*2.12.16. (a) Let A and B be C*-algebras and g a linear map from A
into B. u is said to be positive if u{A")C B*. Now let A™ be the
C*-algebra of (n X n) matrices with entries in A Applying p to each
element of such a matrix we obtain a map ™ from A®™ into B, and p
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is said to be completely positive if 1 is positive for each n. In general,
complete positivity is a more restrictive condition than positivity, al-
though the two notions are equivalent if A is commutative.

(b) Let A be a unital C*-algebra, H a Hilbert space and g a linear
map from A into Z(H) such that u(1) = L. Then there is a Hilbert space
K containing H as a subspace and a morphism p from A into £(K) such
that p(x)=Ppp(x)| H for each x € A if and only if & is completely
positive. [1506].

2.12.17. Let A be a C*-algebra, A’ the Banach dual of A and A, and A}
the hermitian parts of 4 and A’, which are partially ordered vector
spaces. Then the following conditions are equivalent: (1) A4, is a lattice;
(2) Aj is a lattice; (3) A is commutative. [606].

2.12.18. Let A be a C*.algebra, f a pure state of A and N; the set of
x €A such that f(x*x)=0, so that A/N, endowed with the scalar
product derived from f(y*x) is a Hilbert space. Then the norm on this
space is equally the quotient norm of the Banach space A/N,. [1612].

*2.12.19. Let A be a unital C*-algebra and f a positive form on A.

(a) Let E; be the set of linear forms on A of the type x - f(xoxx¥)
where x, € A. Let F; be the closure (in the norm topology) of E; in the
dual A’ of A. Then if g is a positive form on A, the following conditions
are equivalent: (i) g € Fy; (i) m, < m;; (iii) there is a £ in the space of
such that g(x) = (m{(x)¢| &) for each x € A,

(b) If f is pure, then F, = E.

(¢) Let Ej be the set of positive forms on A dominated by a multiple
Af of f (where A = 0). Let F}be the closure (in the norm topology) of E}
in A". Then F}is the set of forms

x—=(mix)n|n) on A, where 1 € m{AYE [852],

2.12.20. Let A be an involutive Banach algebra with an approximate
identity and f a continuous positive form on A. Let L¥f) denote the set
of g € A’ such that

sup  |g(o)|f(x*x) ™ < + o0,
XEA, flx¥x)s0

Let H; be the space of 7, and #; the canonical map of A into H, Then
taking the transpose {; of n, we have a map of H; into A’ such that
(GH(&), xy=(nlx) | §) for any £ € H; and x € A. The map ¢, is a conjugate
linear bijection of H; onto L*(f) which maps £, into f. For each x € A, let
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7'(x) be the transpose of left-multiplication by x in A, which is a
continuous linear operator on A". Then ¢ maps m{x) into #'(x*) | LX(f).
Finally, ¢ is isometric when L%(f) is endowed with the norm

lelcg = sup  [gClf(x*x)™"
xe A, fix*x)s

2,12.21. If A is a C*-algebra in which the only nilpotent element is 0,
then A is commutative. [Let x, y € A with x = x* and f, g be continuous
functions on Sp' x with fg = 0: then (f(x)yg(x))* = 0, hence f(x)yg(x)=0
and so f(x(x))Tg(w(x)) =0 for every irreducible representation « of A
and every T € ¥(H,), therefore w(A) is scalar] (I. Kaplansky, un-
published; communicated to me by R. V. Kadison.)



