CHAPTER 13

UNITARY REPRESENTATIONS OF LOCALLY
COMPACT GROUPS

13.1. Elementary definitions concerning representations

13.1.1, DERNITION, Let G be a topological group and H a Hilbert
space. A continuous unitary representation of G in H is a morphism of
the group G into the unitary group of H which is continuous for the
strong topology.

In other words, a continuous unitary representation of G tn H is a
mapping 7 of G into the unitary group of H such that #(st) = w(s)w(f)
and such that, for every £ € H, the mapping s> w(s)¢ of G into H is
continuous (for the norm topology of H), The condition =(st)=
w($)m(t) implies that =(¢) =1 (the neutral element of the group being
studied will always be denoted by &) and w (s " = @ (s)™' = w(s)*.

The functions s = @, (s) = (7 (5)¢| n) on G (£, n being fixed elements
of H) are called the coeflicients of .

We have @g,(s)= @,:(s").

13.1.2. The strong and weak topologies coincide on the unitary group of
H. In the above, we can therefore replace the strong topology by the
weak topology throughout, On the other hand, if we were to stipulate
continuity for the norm topology, we would obtain a more restrictive
definition, of no interest for what follows. (Of course, if dim H <+, all
these notions of continuity are the same).

13.1.3. The Hilbert dimension of H is called the dimension of » and is
denoted by dim &, The space H is called the space of m, and is denoted
by H,.

By analogy with the case of involutive algebras, the following notions
are also easily defined: equivalent representations, class of represen-
tations, intertwining operator, intertwining number, direct sum of re-
presentations, multiple of a representation, subrepresentation, represen-
tation contained in a representation, cyclic vector (£ is said to be a cyclic
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vector for o if w(G)¢ is total in H,). We employ the same notation as in
the algebra case, and we have the same elementary properties; we leave
it to the reader to convince himself of this.

There is no need to define here the essential subspace of a represen-
tation. Everything proceeds as if continuous unitary representations
were automatically non-degenerate.,

13.1.4. Let = be a continuous unitary representation of G. The following
conditions are equivalent: (i) the only closed subspaces of H, invariant
under 7(G) are 0 and H ; (ii) the commutant of #(G) in £(H,) is just the
scalar operators; (iii) every non-zero vector of H, is a cyclic vector for
m. If these conditions are satisfied, and, in addition, H,# 0, then = is
said to be topologically irreducible or simply irreducible. (We will never
encounter the notion of algebraic irreducibility, except when dim# <
+%, in which case it is equivalent to topological irreducibility). We
denote by G the set of classes of irreducible representations of G.

Just as in Chapter 5, we define the terms disjoint, factor, quasi-
equivalent, of type I, II,..., multiplicity-free, of multiplicity n as
applied to representations, All the arguments and all the results of
Chapter 5 extend immediately to group representations. (We can also
make use of the correspondence between representations of G and
representations of L'(G) which will be established in 13.3, at least if gis
locally compact).

13.1.5. We are now going to define, for group representations, opera-
tions which have no meaning for representations of involutive algebras.

Let #, =’ be continuous unitary representations of G. For every s € G,
we form, in the Hilbert tensor product H_ & H,., the (unitary) operator
7(8)Q 7'(s). It is immediate that s > w(5)® #'(s) is a continuous unitary
representation of G in H_& H_., called the tensor product of 7 and »",
and denoted by = & 7.

Let 7 be a continuous unitary representation of G in H, and let H be
the Hilbert space conjugate to H. Each #(s) is a unitary operator in H,
and it is immediate that s— () is also a continuous unitary represen-
tation of G in H, called the conjugate representation of , and denoted
by &

13.1.6. Let G be a locally compact group endowed with a left Haar
measure ds. For every s € G, let A(s) be the operator in LAG) defined
by

A= f(s7'x) (FELYG).xE G).
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We immediately verify that A is a continuous unitary representation of
G in L(G), called the left regular representation.

Let A:(G — R be the modular fuuction of G. For every s € G, let p(s)
be the operator in L3 G) defined by

(P(ONx) = A(s)*f(xs) (F€ LXG).x €G).

We immediately verify that p is a continuous unitary representation of G
in LXG), called the right regular representation.

The representations A and p are injective.

For every f € LX), define f'€ LXG) by f'(x) = A(x)""*f(x™"). Then
f—f" is an isomorphism of the Hilbert space L*(G) onto itself, and we
have, for every s € G,

A Y(x)= Ax) (57 'x ) = AE)PAXS) " ((xs)™) = (p(5)f)(x).

Hence the isomorphism f — f' transforms A into p, from which it follows
that A = p. We thus speak sometimes of the “regular representation” of
G, without specifying left or right.

For every f € LAG), let f € LY(G) be the complex conjugate function.
Then f—f is an isomorphism of the Hilbert space LXG) onto the
conjugate Hilbert space which transforms A into A. Hence A = A and
similarly p = g.

13.1.7. Let a be a cardinal and H a Hilbert space of (Hilbert) dimension
a. The representation § =1 of &G in H is called the trivial representation
of G in H, or the trivial representation of G of dimension a. It is
denoted by 1, or just by 1 when there is no uncertainty as to what H is.

13.1.8. ProrosiTiON, Let G, G, be topological groups, G= G,X G,,
and o an irreducible continuous unitary representation of G. Suppose
that every continuous unitary factor representation of G, is of type I
Then there exist, for i = 1,2, an irreducible continuous unitary represen-
tation o, of G, such that o is equivalent to the representation

(51, S = o (5) @ oo(52)
in the Hilbert space H, ® H,,.

Let «; be the von Neumann algebra generated by o(G;). Then &, &,
commute with each other and generate the von Neumann algebra ¥(H,).
Every element of the centre of s, commutes with &, and with s, hence
with $(H ), and is therefore a scalar operator. Hence ¢, is a factor, of
type I by the hypothesis made about . There then exist Hilbert spaces
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H, H, such that H, may be identified with H, & H, and o, with
F(H)RC (A36). For every s, €G,, a(s) may be written o,(s)® 1,
where o(s)) is a unitary operator on H,, and &, is a continuous unitary
representation of G, in H,. The o(s,) generate the von Neumann algebra
F(H)), and s0 o, is irreducible. We have o, C C& F(H,) (A 18), hence,
for every 5,€ (., o(s,) may be written 13 oy(s,), where o, is a con-
tinuous unitary representation of G, in H,. If T € ¥(H,) commutes with
the o5(s,), then 1@ T commutes with &, and ,, and is therefore a
scalar operator; hence T is a scalar operator and o, is irreducible.

References; [995], [1108].

13.2. The involutive algebra L'(G)

13.2.1. Let G be a locally compact group and M '(G) the algebra (under
convolution) of bounded complex measures on G. This is a Banach
algebra, having as identity the Dirac measure ¢, at the point e, If, for
every u € M(G), we define u* by the relation du*(s) = dp,(s'i), it can be
checked that M'(G) becomes an involutive algebra, and that ||z *] =||x|.
Hence M'(G) is an involutive Banach algebra.

13.2.2. Choose, once and for all, a left Haar measure ds on G. If, with
every f € L'(G), we associate the measure du(s) = f(s) ds € M(G), we
obtain an isometric morphism @ of the Banach algebra L'(G) into the
Banach algebra M'(G). For g € ¥(G) (the set of continuous complex-
valued functions on G with compact support), we have, denoting the
modular function of G by A,

f g(s) du*(s)= f gs Y du(s)= f g(s Y (s)ds = f 2(8)f(s ™A™ ds.

For every complex-valued function f on G, define f* by
)= F(s7Has™.

The above then shows that du*(s)=f*(s)ds. Hence f—f* is an
isometric involution on L'(G), and @ is a morphism of the involutive
algebra L'(G) into the involutive algebra M'(G). We identify L'(G) with
&(L'(G)). In general, L'(G) is not a C*-algebra.

13.2.3. For every complex-valued function f on G, we define f and f by
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f(5)=f(™, f(s)= f(s™"). We thus have f*=fA"" If a € G, put
f(s)=flas),  fo(s)=f(sa).
We have (denoting the Dirac measure at the point a by ¢,):
&xf=g1fi  fre =A@
The formula (¢, * f)* = f* % €* = f* # ¢, then gives
(of)* = Aa)(f*).

13.2.4. If G is discrete, then L'(G) has an identity. If G is separable, then
LY(G) is separable.

13.2.5. Let s € G. Let I be the family of neighbourhoods of s, ordered
by reverse inclusion. For every { €I, let u; be a positive function of
L'(G), vanishing on G\i, with integral equal to 1. We have, for every
feLG),

Ilui *f_es ="flll_)o- I'f* ui_f *eslll_)o'

[t is enough to verify this for f € #(G), and this is then immediate by
uniform continuity.] Applying this to s = e, we see that L'(G) possesses
an approximate identity.

References: [995], [1108].

13.3. Representations of G and representations of L'(G).

13.3.1. PROPOSITION. Let 7 be a continuous unitary representation of G.
Forevery u € M'(G), put w(pn) = { m(s) du(s)E L(H,). Then, p—> w(p) is
a representation of the involutive algebra M'(G) in H_, whose restriction to
LY(G) is non-degenerate.

The fact that g — w(u) is a representation of the involutive algebra
M'(G) follows from easy calculations; for example, for p € M'(G),
fEH, , nE€H, we have

(n | #(wHE) = EHE[ ) = f G IET dis)

- f (m(s)n | €) dn(s) = (m(w)n | &) = (n | 7)),

whence w(n*) = w(u)*. Moreover, let s €EG, § € H, and € > 0. With the
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notation of 13.2.5, there exists an { € I such that [Jr(s)¢ — 7(s)¢| = € for
s' €1, whence |7 (u)¢ — w(s)¢]| < e Hence

(§))] w ()= w(s)

for the strong operator topology. Applying this to s = ¢, we see that the
representation = of L(G) is non-degenerate,

13.3.2. The representations of M'(G) and L'(G) obtained above are said
to be associated with the given representation of G.

13.3.3. For s € G, we have m(e,) = w(s). Hence, if f € L(G),

w(f) = wle, * f) = w(a Vw(f),
w(f) = 7{A(@™)f * ;) =A@ Yr(f)m(a™).

13.3.4. ProrosiTiON, Let H be a Hilbert space, and = a non-degenerate
representation of the involutive algebra L'(G) in H. Then = is associated
with exactly one continuous unitary representation of G.

The uniqueness follows from formula (1) of 13.3.1. We prove the
existence. Let H' be the subspace of H generated by the w(f)H. By
hypothesis, H' is dense in H. Let & € G. With the notation of 13.2.5, we
have

lst; + f— e, + fI-0, hence la(u)m(f) — m(e, * f)] 0.

Hence #r(#;) converges, for the topology of pointwise convergence over
H', to an operator #(s) on H’, such that

) w(8)m(f) = w(e * f).

Since [l@(u)| =|lull=1, «(s) has a unique extension to a continuous
linear operator on H, which we again denote by #(s), such that |=(s)] =
1. For s,t €G and f € L'(G) we have, by (1),

a(st)m(f) = w(e, * f)
=ale, * € * f) = w(s)mle * f) = 7($)m(O)m(f)

and so w(st)==w(s)7(t) on H' and consequently on H. Equality (1)
shows that w(e)= 1, and that w(s)¢f depends continuously on s for
£€ H', and therefore for ¢ € H. Finally, since #(s) and #(s ") = &(s)"'
are both norm-reducing, #(s) is unitary, which proves that o« is a
continuous unitary representation of G.

We now show that the associated representation of L'(G) is just the
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original representation with which we started. Let f, g € L'(G). Since

fxg= ff(s)(e, * g)ds
in L'(G), we have

m(f)w(g)=w(f * g)= If(S)w(es * g)ds

= [ rrmrmter as = ([ 163w d5) w0

hence w(f)=f f(s)ar(s) ds.

13.3.5. Propositions 13.3.1 and 13.3.4 establish a bijective correspon-
dence between the continuous unitary representations of G and the
non-degenerate representations of L'(G). Let 7 be a continuous unitary
representation of G and #' the associated representation of L'(G). The
closed subspaces invariant under #(G) and #'(L'(G)) are the same and
the cyclic vectors for w(G) and #'(LYG)) are the same (in fact, by
formula (1) of 13.3.1). Hence w(G) and #'(L.'(G)) have the same com-
mutant and generate the same von Neuwmann algebra. In particular, the
topological irreducibility of = is equivalent to that of o. We have thus
established a bijective correspondence between the irreducible con-
tinuous unitary representations of G and the topologically irreducible
representations of L'(G). Similarly, to say that = is a factor represen-
tation, is of type I,...is equivalent to saying that «' is a factor
representation, is of type I,.... If &, are continuous unitary re-
presentations of G and =), = the associated representations of L'(G),
then the intertwining operators for 7, and 7, are the same as those for
oy and 5, we have 7} O m5= (7, B m) etc. Henceforth, we will denote
by the same letter a continuous unitary representation of G and the
associated representation of L'(G).

13.3.6. Let A be the left regular representation of G in LXG). If
f € L'(G), then A(f) is the operator g— f # g in LX(G). This represen-
tation A of L'(G) is called the left regular representation of L'(G) in
LYG). If A(f)=0, we have f * g =0 for every g €¥(G), and hence
f =0 by 13.2.5. Hence the left regular representation of L'(G) in L(G)
is injective.

If G is commutative, and if G denotes the dual group of G, the
Plancherel isomorphism of LXG) onto LX) transforms A(f) into the
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operator of multiplication by Ff (the Fourier transform of f) in L¥G).
We therefore have

IAGEH = sup [(FF)e)]-
red

In general, [|f(s)| ds # sup |Ff|, and so A is not isometric (from which it
follows that L'(G) is not a C*-algebra).

References: [995], [1108].

13.4. Positive forms on L'(G) and positive-definite functions

13.4.1. Section 13.3 leads us to the study of the representations of
L'(G), or, which amounts to the same thing, the continuous positive
forms on L'(G). Now a continuous linear form on L'(G) is defined by an
element of L"(G). This leads to the introduction of certain bounded
functions on G.

DEFINITION. A continuous complex-valued function ¢ on G is said to
be positive-definite if, for any elements s,,...,5, of (, the matrix
(@(57'$)) (aijun 18 positive hermitian.

In other words, for any s,,....5,€G and «,,...,a, €C, we have
.3
) > ad@plsi's) =0.
iLj=1
13.4,2. The sum of two positive-definite continuous functions is posi-
tive-definite. If ¢ is positive-definite continuous and if A =0, then Ag is

positive-definite. For examples of positive-definite continuous functions,
cf. 13.63.

13.43. In (1), put n =2, s,= ¢, 5= 5 € G. The matrix
(tp(e) qo(S))

e(s™) ole)
must be positive hermitian. This implies that
o(s™) = o(s)

lp(s)] < p(e)
for every s € G. In particular, ¢ is bounded, and [l¢|l.. = ¢(€).

13.4.4. PROPOSITION. Let ¢ be a continuous complex-valued function
on G. Then the following conditions are equivalent:
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(i) ¢ is positive-definite;
(ii) ¢ is bounded and, for every bounded complex-valued measure p
on G, we have {p, u* * pu)y=0, in other words

II e(y'2) du(y) du(z) = 0;

(iii) for every f EX(G), we have {p,f* * f}= 0, in other words

IJ e ' Df(Nf(z) dydz = 0.

(ii) = (i): Suppose condition (i) is satisfied. Let s,...,5,€G,
&g, ..., €C, and p be the measure on G defined by masses «; at the
points s, We have

0 sf f o(y7'2) dp(y) dp(z) = X dap(si's),

ii=1
and so ¢ is positive-definite.

() = (ii1): Suppose ¢ is positive definite. Let f €%(G). The function
(y, 2)= o(y '2)f(¥)f(2) on G X G is continuous and of compact support,
S: S is contained in a set K X K, for K some compact subset of . The
measure induced on K by the Haar measure is the weak*-limit of
positive measures v; of finite support which are norm-bounded; hence
the measure induced on K X K by the Haar measure of G X G is the
weak*-limit of the »,® v. Now, if »; is defined by masses 8,,...,B, at
the points s,,..., s, we have

I j oy " F N (2) du(y) du(z) = 2, (7 s)F(sf (BB = 0
i
and, in the limit, § J o(v '2)f(¥)f () dy dz = 0.

(iii) = (ii); Suppose condition (iii) is satisfied. Let g be a complex-
valued measure on G with compact support. For every f€ X (G), p * f
is an element of X(G), hence

O(e.f**p**suxf)
=I I f I @ Cxyz)f*(X)f (1) dx dt du*(y) dp(2)

= j f dp*(y) du(z) f f o (xyzt)f *(x)f (¢) dx dt.
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Taking f = 0, with integral equal to 1, and with support contained in a
smaller and smaller neighbourhood of e, [ [ o(xyzt)f*(x)f(¢) dx dt con-
verges to ¢(yz) uniformly over every compact subset of G X G. We thus
find that, in the limit, {p, u* * p)=0. Reasoning as in (ii) = (i), we at
once see that ¢ is positive-definite, and therefore bounded. Now let i be
an arbitrary bounded measure on (. Then p is the norm-limit of
measures with compact support ». Since ¢ is bounded, (@, u* * u} is the
limit of {¢, ¥* * »), and is therefore =0, by the above.

13.4.5. THEOREM. (i) Let ¢ € L(G), and w be the continuous linear
form on L'(G) defined by ¢. Then w is positive if and only if ¢ is equal,
locally almost everywhere, to a continuous positive-definite function,
(i) A complex-valued function  on G is continuous positive-definite
if and only if there exists a continuous unitary representation w of G and
an £ € H_ (which we can suppose is a cyclic vector for =) such that

$(s) = (7 (s)¢| ).

We then have |¢]..= (£ ).

Gii) Let w and 7' be continuous unitary representations of G, and ¢
(resp. &) a cyclic vector for w (resp. w'). If (w(s)E| &)= (w'(s)E'| &) for
any s € G, there exists an isomorphism of H, onto H . which transforms
winto 7" and £ into £

Suppose that ¢ is equal, locally almost everywhere, to a continuous
positive-definite function. Then, for every f € L'(G), we have

I p(s)f* * f)(s)ds =0

by 13.4.4. Hence w is a positive form on L'(G). Conversely, suppose
that @ = 0. Form the representation «, of LYG) and the vector £, By
13.3.4, =, is associated with a continuous unitary representation of G in
the space of m,, which we again denote by =_. Then, for any f € LYG),
we have

fqo(S)f(S) ds = (f) = (7, (f)E, | &) = I (m.($)E, | £.)f(s) ds,

and so

) e(s) = (m,(8)&, | £)

locally almost everywhere. If ¢ is continuous, equality (1) holds every-
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where, since the right-hand side is a continuous function of s. To
accomplish the proof of (i) and (i), it is enough to prove that, if # isa
continuous unitary representation of G, and if £€H,, then s—
(w(s)¢| £) is positive-definite. Now, if u € M'(G), we have

o<l ()l = (r(u® * w)E| &) = f (m($)E| & din* * p)(s),

whence our assertion, by 13.4.4,
We now adopt the hypothesis and notation of (iii). We have

(w()E1 &) =(x'()E| &) for every f € LY(G).

Hence there exists an isomorphism & of H_ onto H_. which transforms ¢
into &, and w(f) into #'(f) for every f € L'(G) (2.4.1 (ii})). By 13.3.4, &
transforms #(s) into #'(s) for every s € G.

13.4.6. Let 7 be a continuous unitary representation of G, and let
£ € H_. We say that the function s— (w(5)¢] §) is the positive-definite
function defined by w and £ For = fixed and £ varying in H,, we obtain
the positive-definite functions associated with 7. If § is a set of
representations of G, the positive-definite functions associated with S
are just the positive-definite functions associated with the various ele-
ments of S.

Let ¢ be a continuous positive-definite function on G. It defines a
positive form « on L'(G), and therefore a pair (r,, £), where =, can be
regarded as a continuous unitary representation of G. This pair is also
denoted by (7, £,) and is said to be defined by ¢. It is characterised, up
to isomorphism, by the fact that ¢(s) = (7, (5)E, | £,) for every s € G and
that £, is a cyclic vector for =,.

13.4.7. PROFOSITION. Let ¢ be a continuous pogsitive-definite function
on G. If s,t € G, we have

lo(s) = e(* < 2¢(e)e(e) —Re o(s7'1)).
In fact, let w = 7, £ =&, We have

lo(s)— @) = [((wr(s) — w(NE | OF <GPl = (s)E — w ()&
= p(e)|lm ()& + lm()el — 2 Re(ar( )€ | w(2)€))
= o(e) Q&P — 2Re(n(s'1)€ | £)) = 2¢(e)(p(e) — Re o(s7'1)).
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13.4.8. ProproSITION. Every translate of a continuous positive-definite
function is a linear combination of four continuous positive-definite
functions.

Let ¢ be a continuous positive-definite function on G, # =7, £ =§,
a,b€G. Put w(a)é=n, w(b)'£ =, Then
dp(bsa) = 4(mw(bsa)e | &) = Hm(s)n | Q)
=(m@@+ )0+ - (@O -DIn—0)
+i(w(s)n +i) | 9 +iD —i(w () —id) | n —iQ).
13.4.9. ProPosITION. Let ¢, ¢ be t'wo continuous positive-definite
functions on G. Then oo’ is positive-definite. More precisely, let = =7,
E=bn T =7, E=¢,. Then
(B B)=(m @ mYNERQ EN | ER &).
In fact,
(7 R@FIHERENERQEN=(7()ERQ T (S)E | ER &)
=(m(8)¢| ' ()¢ | €)= 9 (8)9"(s).
13.4.10. ProPOSITION. Let ¢ be a continuous positive-definite function

on G, ahd w=m, Then every continuous positive-definite function
associated with =7 is the uniform limit over G of functions of the form

5= E AAp(s;'ss;), where, s5,,....5,€G, Ap,..., A EC.
ij=il

Let ¢=¢,n€H, and €>0. There exXist $,...,5 €0 and
AL ..., A, EC such that

= €.

| n- 2 Am(s)é

i=1

Then, for every s € G, we have

s Im - (w(6)(Z amisre) ’ 3 Am(s)¢)

Now the left-hand side may be written

< e|n|| + ellnll + €).

l(ar(S)n lm-2 AEXJ‘(D(S;ISSE)' .

ij=1
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13.4.11. Let f € L3(G). If A denotes the left regular representation of G,
we have

(A(S)f|f)=ff(3"r)f(f) dt =If(t)f(r"5) de = (f * )(s).

Hence f *fisa continuous positive-definite function associated with A.
If f € X(G), then f * f € X(G); passing to the limit, if f € L*(G), then
f # f is the uniform limit of functions of X' (), i.e. it vanishes at infinity.

References: [620], [635], [818], [1101], [1454], [1455].

13.5. Weak*-convergence and compact convergence of continuous
positive-definite functions

13.5.1. LEMMA. Let A be a bounded set in L™(G). Let f € L\(G). If
¢ € A weak*-converges 1o oo € A, then f * @ converges to f * ¢, for the
topology of compact convergence.

In fact,

¢ * o)s) = f FOo(s) dt = f £ () dt = (b, ).

When ¢ weak*-converges to ¢, while remaining in A, (¢, g) converges to
{&o, £) uniformly over every compact subset of L'(G). Now, when s
runs through a compact subset of G, the set of the f is norm-compact in
LY(G), since the mapping s— f of G into L'(G) is norm-continuous.

13.5.2. THEGREM. Let P, be the set of continuous positive-definite func-
tions ¢ on G such that ¢le)=1. On P, the weak*-topology
o(L.7(G), L(G)) coincides with the topology of compact convergence.

Since |l¢).= 1 for every ¢ € P, it is clear that, on P, the topology of
compact convergence is finer than the weak™*-topology.

Now let ¢, € Py, K be a compact subset of G, and € > (). We are going
to prove that, if ¢ € P, is in a suitable weak®-neighbourhood of ¢,, we
have |@(s)— @o(s)] < € + 4Ve for every s € K. This will finish off the
proof,

There exists a compact neighbourhood V of ¢ in G such that

leols)— 1] = |@o(8) — @o(€)) <€ for every sE V.

Let x¥ be the characteristic function of V, and a > 0 the measure of V.
Let ¥ be the weak*-neighbourhood of ¢, in P, defined by the condition
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[{¢ — @o. x)| < €a, i.e. by the condition

= &d,

| f(@(S)— ¢(($)) ds
v

For ¢ € ¥, we have

f (1- p(s)) ds| < | f (1= gols)) ds'+ | j ()~ el ) dsl <2ea.
v v Vv

Moreover, for ¢ €7 and s € G, we have

l(a™'x * o)3)— ()= Ia"fx(t)¢(r"s) dt — o(s)

a"f p(t7's) dt—a"j o(s) dtl

s v

<g”! J' le(t™5)~ ¢(s)] dt.
Vv

In view of 13.4.7, this is dominated by

12 12
a"f\/Z(l—Re o))" dts\/Za"(f(l—Re () dr) U 1 -dr)
v v v
<v/2a7\/(2ea)VvVa = /e

Now, there exists (13.5.1) a weak®-neighbourhood ¥ of ¢, in P, such
that ¢ € ¥ implies

lta™'x * e)(s)—(a™"'x * p)s)| <€ for every sEK.
Then, for ¢ € ¥ N ¥, we have
lo(s) — @o(s)| < € +4+/e for every s €K.
References: [1309], [1867].

13.6. Pure positive-definite functions

13.6.1. DEFINITION. A continuous positive-definite function ¢ on G is
said to be pure if =, is irreducible.
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13.6.2. This amounts to saying that the positive form defined on L(G)
by ¢ is pure (2.5.4). In view of 13.4.5, this again amounts to saying that,
in every decomposition ¢ = ¢, + ¢, of ¢ into a sum of two continuous
positive-definite functions, ¢, and ¢, are proportional to ¢.

13.63. If G is commutative, the irreducible continuous unitary re-
presentations of G are the characters of G. The pure continuous
positive-definite functions on G are therefore the functions of the form
Ay (A =0, y a character of G).

13.6.4. THEOREM. Let ¢ be a continuous positive-definite function on G
such that p(e)=1. Then ¢ is the limit, for the topology of compact
convergence, of functions of the form ¢+ -+ A P, where ¢y, ..., o,
are pure continuous positive-definite functions equal to 1 at e, and where
Ay ... s A, are non-negative numbers such that A +-- -+, =1,

The positive form ¢ on L'(G) defined by ¢ is the weak*-limit of
conveX combinations ¢ of pure states of A and of 0 (2.5.5). Since
lim|lgsll =l = 1 and &l < 1, we can even suppose, multiplying the &
by suitable scalars, that ||¢s]| = 1. Then o is the positive form on LY(G)
defined by a function A+ +A,p, (¢1.....¢, pure continuous
positive-definite functions, e e)=---=¢de)=1, A, =0,...,A, =0,
A+ +A,=1). It is now enough to apply 13.5.2,

13.6.5. CoROLLARY. Every continuous complex-valued function on G is
the limit, for the topology of compact convergence, of linear com-
binations of pure positive-definite functions.

It is clearly enough to prove the corollary for a function f of H(G).
Now such a function is the uniform limit over G of functions f » g, with
g2 € X(G). Moreover,

f rg=(f+g)>(f+g) —-(-g)=(f—-3g)y
+i(f +ig) * (f +ig)" —i(f—ig) * (f—ig)".

Lastly, each function of the form & = i~, where h € #((3), is continuous
positive-definite (13.4.11), and 13.6.4 can be applied to it.

13.6.6. CoroLLARY. For every s € G different from e, there exists an
irreducible continuous unitary representation m of G such that w{(s)# 1.

There eXists a continnous complex-valued function on G taking
different values at s and at ¢, hence (13.6.5) a pure continuous positive-
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definite function ¢ on G taking different values at s and at e. We have

(m, (), | €)= 0(8) # 0(€) = (£, | &),
hence = (s)# 1, and 7, is irreducible.

13.6.7. Corollary 13.6.6, due to Gelfand and Raikov, expresses the fact
that a locally compact group admits “enough’ irreducible continuous
unitary representations. This corollary would have been false, had we
been limited to finite-dimensional continuous unitary representations.
This justifies the study of infinite-dimensional continuous unitary re-
presentations. '

13.6.8. We saw in 13.6.4 how to recover all continuous positive-definite
functions using the pure continuous positive-definite functions. We are
going to give a result in the same spirit, but in an integral form.
Suppose that G is separable. Let B be the conveXx set of continuous
positive-definite functions on G whose value at ¢ is =1. This is a
compact set for the weak*-topology, separable, because L(G) is se-
parable (B 7). For every s € G, the function ¢ — ¢(s) on B, which is
bounded in absolute value by 1, is Borel, being the limit of a sequence of
continuous functions ¢ — [ @(2)f,(t) dt (take the f, in X(G), =0, with
integral equal to 1, and with supports lying within smaller and smaller
neighbourhoods of s). Moreover, the set P of pure continuous positive-
definite functions equal to 1 at ¢ is the set of extreme points of B, less 0
(2.5.5), and is therefore a G; set in B (B 13). This established, we have:

PROPOSITION, Let ¢ be a continuous positive-definite function on G
such that ¢(e) = 1. Then there exist a pogitive measure of norm 1 on B,
concentrated on P, such that ¢(s) = Jp {(s) dp(¢) for every s€G.

There exists a positive measure g of norm 1 on B, concentrated on
P U {0}, such that ¢ = fpum ¢ du (), the integral being taken in the weak
sense (B 13). We can clearly suppose that p({0}) =0, hence that p is
concentrated on P. Let f € L'(G). We have

(0 I@(S)f(s)ds =Idu(s')f§(3)f(s) ds.

& B &
The function (¢, s)—£(s) is continuous on P X G by 13.5.2, and is
therefore measurable on B X G for the product measure du () ds; it is,
on the other hand, bounded in absolute value by 1. Hence (Z, 5)—
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£(s)f(s) is integrable for du({) ds and (1) can be written

I@(S)f(s)ds =If(s)dSI§(s)du(Q.
G B

o
Hence

() e(s) =I€(S) du(f)
8

almost everywhere on G. Moreover, if (50, $2,...) is a sequence of
elements of G converging to s, we have 7(s,) > £(s) for every { € B, and
50

fcuaman»fzwnmwx
B

B

by Lebesgue’s theorem, Hence J'B {(8) du(¢) depends continuously on s,
from which it follows that (2) holds everywhere on G.

References: [620], [635], [638], [1101], [1455], [1868].

13.7. Positive-definite measures

13.7.1. DEFINITION. A complex-valred measure x on G is said to be
positive-definite if

m w.f*H=0
for every f € ¥(G). We then write g = 0.

13.7.2. If 0, we have u* = u. In fact,
W frH=w G+ H)=(ufxH=@.f+H

for every f € #(G); hence, by polarisation, {(u*,f * gy={u,f * g} for
any f,g € ¥(G); hence, passing to the limit, {u&*, h)= (u, h} for any
h € H((G).

13.7.3. Relation (1) of 13.7.1 may be written

f FFfE's)dsdu @)= 0



296  UNITARY REPRESENTATIONS OF LOCALLY COMPACT GROUPS [CH. 13, §7
for every f € ¥(G), or again, changing f into f,
[ ot as=o

for every f € X(G).

13.7.4. Suppose that p is bounded. If A is the left regular representation
of G, we can form A(u). By 1373, to say that u » 0 means that
W) | =0 for every f &€ X(G). Since X(G) is dense in LA(G), we
have

p =20 A(p)=10.

13.7.5. Let 4 be the modular function of G, and f € (). We have

(f * FH(s)A(s)"* = f FO(s DA DAY di

- If(‘)ﬁ(I)mf(-f_lf)ﬁ(s"f)m dr =((fA") + FA'" " )s)
Condition (1) of 13.7.1 can thus also be expressed, changing f into fA'7,

by
(A"u, f*+ %Y= 0 for every f€ H(G).

13.7.6. DEFINITION. A locally integrable function ¢ on G is said to be
positive-definite if the measure 4 (s)o(s) ds on G is positive-definite.
We then write ¢ 3 0.

By 13.7.5, this may be expressed by
{o.f *f*=0 for every f € X(G).

For continuous ¢, we just recover the previous notion (13.4.4).
If ¢ and ¢ are two locally integrable functions on G such that
¢ — ¢ &0, we write > o

13.7.7. If ¢ 0, we have the following equality of measures:
A5 p(s) ds = (A7(s)p(s) ds)* = A" (5)@ (s~ ") d(s™")
= A™2(5)(s™") ds,

and so
¢ =¢ locally almost everywhere,

13.7.8. Let ¢ be a complex-valued function on G such that 4~2p €
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LYG). By 13.7.4, ¢ =0 if and only if A(47"%p)= 0, where A denotes the
left regular representation of G.

13.7.9. Let u be a positive-definite measure on G. For f, g € ¥(G), put

Flen=(ug = f f )2 di duas).

H(G) then becomes a pre-Hilbert space. Let H, be the (Hausdorff)
Hilbert space which is the completion of this pre-Hilbert space. For
s EG, fEX(G), put

o(s)f = (& * )A"(s),

(a()fNx) = f(s'x)A"(s).
We have

let)fl3 = f f (o ()N No () )t u) dt dpnlu)
= ” FsTYA Y ) (s 7' w)A P (s) dt dp(u)
= ” FEOHFE WA AGs)™ dt du(u)

- f f FG Y u) de dyaar) = |2

Hence o(s) defines a unitary operator on H,. that we again denote by
o(s). Itis clear that & is a unitary representation of G in H,. Moreover,
when s — s, o(s)f converges uniformly to o(s,)f, and its support remains
within a fixed compact set, from which we easily deduce that the unitary
representation o is continuous,

13.7.10. ProrosITION, Let V be a neighbourhood of e, and p. a positive-
definite measure on G such that

M w.f e nek(f f dx)z

for all non-negative f in H(G) which vanish outside V (K denotes a
number that does not depend on f). Then du(s)= o(s)A™"(s) ds, where
@ is a continuous positive-definite function.
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There exists a net (f;) of non-negative functions of ¥((G) vanishing
outside V such that f f,(x) dx =1, and such that

ffs(x)g(x) dx—>g(e) for every g EX(G).

By (1), we have |[f||; < K for every i. Moreover, for every g € ¥(G), we
have

(filg), = ff ZeOfi(e sy de du(s)

=Idn(8)f§(t"S")ﬁ(r“) dr—>I§(S“) dp(s).

Hence, if A denotes the canonical mapping of ¥(G) into H,, Af;
converges weakly to an element € of H,, such that

@ (e148)= [ 2 ducs)
for every g € ¥(G). Put ¢(s) = (o(s)e| €) for every s€ G. Then ¢ is a

continuous positive-definite function on G (13.4.5). Moreover, (2} im-
plies, for every t € (G, that

(o(t)e| Ag)=(e| o(t™)Ag)
=I (o(t Dg)s™) du(s)= I (s~ HAT() duls)
hence, for every f &€ ¥(G),

f feXa(t)e | Ag) dt =f I F(OF(ts HAT(e) dt du(s)
= f f FEEE s AT () dt du(s)

= f f EUNFU' AT (s dt du(s)

= (u, & * (A" =(4"f | g),.

From this we deduce that

ff(t)(o(t)é | e) dt = (4" | &),
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i.e., in view of (2) and the fact that p* = p,
[ 1000 a0 = [ 4767 aaeor - [ a7@rsee) auco

Since this holds for every f&€ ¥((), we conclude that
du(t)= A" (Ne(t) dt.

13.7.11. CoroLLARY. Let ¢ be a continuous positive-definite function,
and ¢ a locally integrable positive-definite function such that o ® .
Then ¢ is equal locally almost everywhere to a continuous positive-
definite function.

In fact, for every f& H(G), we have

f $()AT (K * f(s) ds = f @ ()A(s)F * f)(s) ds.

If f& X(G) is non-negative and vanishes outside a compact symme-
tric neighbourhood V of e, the right-hand side is dominated by

sup lp(s)A™"(s)| f I feDf¢ sy de ds

SEV

2
= suple()a™ o) sup )| £o) )

seV ey

and it suffices to apply 13.7.10.
References: [620], [635].

13.8. Square-integrable positive-definite functions

13.8.1. Throughout 13.8, we will denote by A the left regular represen-
tation of G. Let f € LYG). For every g € #(G), we have A(g)f € LYG).
If there exists a finite constant M such that [[A(g)f], = M||g|, for every
£ € H(G), we will say that f is a moderated element of L*(G). The
mapping g = A(g)f then extends uniquely to a continuous linear operator
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on LAG). which we will denote by p(f). For every g € ¥(G), we have
C212=0@f 18- [ @ * DNsrets) ds

= [f BOf('s)g(s) ds dt = {f. g* * g).
Hence £ 0 if and only if p(f)=0 (13.7.6).

13.8.2. Now let f be an element of L*(G), positive-definite but not
necessarily moderated. The operator g —A(g)f, defined on H(G) and
with values in L%(G), is =0 by the same calculation as in 13.8.1. We will
denote by p(f) its Friedrichs extension (B 23), which is self-adjoint and
2 0. When f is moderated, we recover the operator p(f) defined in 13.8.1.

13.8.3. LEMMA. Let f be a positive-definite element of LY(G).

(1) For every s € G, p(f) commutes with A(s).

(ii) If h belongs to the domain of definition D of p(f), we have
pf)h=h * f.

For g € ¥(G) and s € G, we have
€*g€X(G) and e*x(@*f)=(e *xg)*/,
in other words A(s)p(f)g = p(f)A(s)g. Hence
p(f) | X(G) = A(p(NAGY | H(G)

and, consequently, p(f) = A(s)p(HA(s) (B 23).
Moreover, p(f) coincides on I3 with the adjoint of p(f) | X (G) (B 23).
Hence, if h € D and g € ¥(G), we have

(N (ptHh | g)=(h|ptflg)= f h(s) dSI ZWF('s) dt.

Now h(s)g()f(t™'s) is ds dt-measurable on G X G, and zero outside a
countable union of ds dt-integrable sets; moreover,

* * *
I dsf [R{(s)g(2)f (t™'s)| dt SI [a(s)|((g] * [fI(s)) ds < 4=,

because [#| € LY(G) and |g| * |[f| € LXG). Hence h(s)g(t)f(¢ 's) is ds dt-
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integrable, and (1) may be written

ehhlg)= [ [[ oo ds| a0 ar= [ o« poreco a,

whence p(f)kh = h * f almost everywhere.

13.8.4. LEMMA. Let a, b be two moderated positive-definite elements of
LY G) such that p(a) and p(b) commute. Then a * b is a continuous
positive-definite function, and is a moderated element of LY(G). We have
pla * b)Y=p(a)p(b), and (a |b)=0. If, further. a €b, we have

15 - ali <l13 - llalls

The convolution product of two functions of L¥(G) is a continuous
function on G. Let (a,) be a sequence of functions of X(G) converging
to a in LYG). Then a, * b = p(b)a, converges to p(b)a in LYG).
Moreover,

la, * b —a * b|.—0, and so a * b=p(bla € LYG).

Let f € #((G). We have
f * aﬂ EW(G)’

and f=*a, converges to f*a in LXG), hence (f *xa,) *xb=
p(b)(f * a,) converges to p(b)f * a)= p()p(a)f in LYG). Moreover,
f * (a, * b) converges to f * (a * b) in LYG). Hence

f *(a * b)=p(d)p(a)f = pla)p(b)f for every f € H(G),

which proves that a * b is moderated and that p(a * b) = p(a)p(b).
Since p(a), p(b) are positive and commute, p(a)p(b) is positive, and so
a * b is positive-definite. We have

(a |b)=Ia(s)b(s Yds=(a * b)e)=0.

Finally, if a €b, let c = b —a® 0; ¢ is moderated, and, by the above

(ala)y<(a|a)+(alc)=(alb),
hence
6 — al=I6I* + lal* - 2(a | ) < (b - lal.

13.8.5. LEMMa. Let a|, a,, ... be moderated positive-definite elements of
LXG), such that a,<a,<---, and the p(a;) commute pairwise. If
sup [la;|; <+, the a; have a norm-limit in LX(G).
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By 13.8.4, the |a), form an increasing, and therefore convergent,
sequence. Applying 13.8.4 again, we then see that the a; form a Cauchy
sequence.

13.8.6. THEOREM. Let ¢ be a square-integrable continuous positive-
definite function on G. Then there exists a square-integrable positive-
definite function ¥ on G such that ¢ = * fr=1o * ifs.

Suppose, to begin with, that ¢ is moderated. We can suppose, mul-
tiplying ¢ by a constant >0, that 0= p(¢)=<1. Let (p,(2), p,(t),...) be an
increasing sequence of non-negative polynomials on [0, 1], vanishing at
0, which converges uniformly to v/t over [0, 1]. Thanks to 13.8.4, we can
form ¢, =ple), 2= pAe),... (using convolution for the multipli-
cation); these elements are in LY G) and are moderated, and we have

p(d)=pdp(e)), el =piple),....

We see that O0=p(p)=p(d)<---, hence 0y, <€, € - -; also, the
p(¥,) commute pairwise. Since pX(1) <t on [0, 1], we have p(y, Y <p(eo),
hence o, * ¥, €¢, and so (¢, * ¥.)(¢) = ||’ < o(e). Hence the ¢,
converge in norm to an element ¢ of LX(G) (13.8.5). At the same time,
p(#,) = p.(p(¢)) converges in norm to p(e)”. For f € H(G), f * ¢, =
p(¢,)f converges in LXG) to f * ¢ on the one hand, and to p(¢)"*f on
the other hand. Hence ¢ is moderated and positive-definite, and p(y) =
p(). This implies that p(¢) = p(¥)° = p(¢ * ), whence ¢ = ¢ * .

We now pass to the general case. Let p(¢) = [ { dE; be the spectral
decomposition of p(¢). The projections E, commute with the A(s)}{(s &€
G) by 13.8.3(i). Let ¢, = Eqp. For every g € #(G), we have

(g * p)(t)= j g($)@ sty ds = fg(s)@(r"s) ds
=gl ®Ep)=(Eg|A(t)e) = I (Eg)(s)@(t 's) ds

- f (Eg)s)eol(s™'1) ds = (Eig * ¢)(©)

and this is equal to (p(@)Eg)(t) by 13.8.3 (ii). Hence ¢, is moderated and
p(¢;) = p(@)E; =0, hence ¢, = ¢; ® 0. Besides, p(¢;) <ple), and 50 ¢; <€
@, hence ¢, is continuous (13.7.11). By the first part of the proof, there
exists a moderated positive-definite element «; such that ¢; = w; * w,
Take, in particular, { =1.2,....n,.... The p(¢,) commute pairwise and
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increase with n, and hence the same is true of the p(w,) = p(e,)"”. Hence
w € w,<€ - - -. Moreover |lw,|’ = ¢,(e) =< ¢(e), and hence the w, have a
norm-limit w =0 (13.8.5). Then ¢,, i.. w, * w,, converges uniformly on
G to @ * @; on the other hand, ¢, = E,¢ converges in norm to ¢ in
LXG). Hence ¢ = * w.

Reference: [635].

13.9. The C*-algebra of a locally compact group

13.9.1. Since L'(G) is an involutive Banach algebra with an approximate
identity, we can form its enveloping C*-algebra (2.7.2). This C*-algebra
is called the C*-algebra of G and is denoted by C*(G).

For f€ L'(G), put |f| = sup =Nl =|fll;, where = runs through the
set of non-degenerate representations of L'(G), or, which amounts to
the same thing, the set of contintous unitary representations of G. Then
f=IIfI is a seminorm on L'(G) (2.7.1), and, indeed, a norm, since L'(G)
admits an injective representation (13.3.6). The C*-algebra of G is just
the completion of L'(G) for this norm.

139.2. If G is discrete, C* &) admits an identity element. If G is
separable, C*(() is separable (13.2.4).

13.93. By 274 and 13.3.5, there exists a bijective correspondence
between continuous unitary representations of G and non-degenerate
representations of C*(G). Everything that was said in 13,3.5 is still valid
when L'(G) is replaced by C*(G).

To the left regular representation of G, corresponds a representation
of C*(G) called the left regular representation of C*(G) in LYG).

13.9.4. The group G is said to be liminal, postliminal, antiliminal, of type
I, if C*(G) is liminal, postliminal, antiliminal, of type I

(G is liminal if and only if, for every irreducible continuous unitary
representation = of G and every f € L(G), w(f) is compact.

Suppose that G is postliminal; then, for every irreducible continuous
unitary representation = of G, the norm-closure of #(L'(G)) contains
FPE(H,) (4.3.7). The converse is true if G is separable (9.1) (and even in
general: cf. 9.5.9).

G is of type 1 if and only if, for every continuous unitary represen-
tation of G, the von Neumann algebra generated by «(G) is of type L. If
(G is postliminal, G is of type I (5.5.2). If ¢ is separable (and even in
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general: cf. 9.5.9), the following conditions are equivalent: (1) G is of
type I: (2) for every continuous unitary factor representation 7 of G, the
factor generated by «w(G) is of type I; (3) G is postliminal (9.1).

References: [582], [896].

13.10. The Hilbert algebra of a unimodular locally compact group

13.10.1. For the convolution product and the involution f — f*, X (G is
an involutive algebra. We endow () with the scalar product (f |g) =
T f(8)g(s) ds. It is easy to see that H(G) then becomes a Hilbert algebra;
the completed Hilbert space is just L(G). The full Hilbert algebra A of
bounded elements (A 57) is called the Hilbert algebra of G, we have
H(G)C AC LXG). It is clear that A is closed under the mapping f— f,
and also, therefore, for the mapping f— f = (H)*.

13.10.2. A continuous linear operator on LXG) commutes with the
left-translation operators if and only if it commutes with the operators of
left-convolution by the elements of H(G) (this follows, for example,
from 13.3.5 applied to the left regular representation of ). Hence % (A)
is the von Neumann algebra generated by the left-translation operators
on LXG). Similarly, ¥'(A) is the von Neumann algebra generated by the
right-translation operators on LY G).

13.10.3. If f € A, recall that U}, V; denote the continuous linear opera-
tors on L% G) which extend left- and right-multiplication by f in A. If
f € A and g € LYG), we have Ug =f * g (and similarly Vg =g # f). In
fact, suppose to start with that g € X(G); let (f,) be a sequence of
elements of X(G) converging to f in the L’-sense; then V. f,=f, * g
converges to V,f=Ug in the L>sense, and also to f * g, so that
Ug =f * g In the general case, let (g,) be a sequence of elements of
X(G) converging to g in the L-sense: then U, converges to Ug in the
L-sense, and f * g, converges to f * g uniformly over G; since Ug, =
f * g, by the first part of the proof, we have Ug=f # g.

13.10.4. Recall that the mapping f — f* commutes with every hermitian
element of #%(A) N ¥ (A) (the common centre of U{A) and ¥(A)) (A 54).
Recall also that each of #(A), ¥(A) is the commutant of the other, and
that each is a semi-finite von Neumann algebra (A 60).

tThroughout this section, G denotes a unimodular locally compact group.
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13.10.5. PrRoPOSITION. Let G be a unimodular locally compact group,
and A its Hilbert algebra. Then the following conditions are equivalent:
(i) (resp. (iY) The von Neumann algebra U(A) (resp. V(A)) is a finite
von Neumann algebra;
(ii) There exists in G a base of compact neighbourhoods of e invariant
under the inner automorphisms of G.

Conditions (i) and (i') are equivalent for every Hilbert algebra (A 63).

Suppose that there exists a base of compact neighbourhoods (V) of
¢ invariant under the inner automorphisms of . Let f; be the charac-
teristic function of V. The f; are central elements of A (they belong to
the centre of L'(G)). Moreover, every f € LX(G) is in the norm-closure
of the set of the f; * f. Hence the characteristic projection of A is 1
(A 62). Hence @%(A) and ¥(A) are finite von Neumann algebras (A 63),

Suppose that 4%(A) and ¥{A) are finite von Neumann algebras. The
characteristic projection of A is 1 (A63). Let s be an element of G
different from e. The operator f — f on L) is not the identity; now it
commutes with right-translations, and the set of right-translations by the
elements of LAG) central relative to A is total in LX(G) (A 62). Hence
there exists an f € L% G) central relative to A and such that f is distinct
from f, Since f is central, we have ,f = f, forevery t EG (A62),and so f
is invariant under the inner automorphisms of (G. Consider the function
t->g(t)=(f|f) on G. It is continuous, invariant under inner automor-
phisms, vanishes at infinity, and g(s) # g(e). If W is a compact neigh-
bourhood of g(e) in C containing neither 0 nor g(s). the relation
g(t) € W defines a compact neighbhourhood of e, invariant under inner
axtomorphisms, and not containing s. Hence the intersection of all the
compact neighbourhoods of ¢ invariant under irner axtomorphisms is
just {e}. Every neighbourhood of e therefore contains a compact neigh-
bourhood invariant under inner automorphisms.

References: [639], [641], [1036], [1037], [1457], [1458].

13.11. Addenda

13.11.1. Let G be a locally compact group, and f € L'(G). If f(s)=0 for
every s € G, the norm of f in L'(G) and in C*(G) is the same. (Consider
the trivial 1-dimensional representation of ). [582],
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13.11.2, Let G be a locally compact group, # a contintous unitary
representation of G, § a set of continuous unitary representations of G,
and K the set of £€ H, such that the function s - (#(s)¢| &) is the
uniform limit over every compact set of sums of positive-definite func-
tions associated with S. Then K is a closed subspace of H, invariant
under #{(G). [587].

13.11.3. Let G be a locally compact group, A the left regular represen-
tation of G, and 7 a continuous unitary representation of G. Then
A ® m = (dim w) - A. (Consider the isomorphism of LAG)® H, onto
LZ(G)®H,=L§,'(G) which transforms f&® £ into the function s—
f($)m(sHE). [585).

13.11.4. Let G be the locally compact group of affine transformations of
R, G' the — normal closed subgroup of translations. If # is a continuous
unitary representation of G and if y is a non-trivial character of G'. then
m | G' does not contain x. (If »|G' contained x, then = |G' would
contain all the non-trivial characters of G' by the action in G’ of the
inner automorphisms of G; the corresponding subspaces of H, would be
mutually orthogonal). Deduce from this that a non-trivial character of G’
cannot be extended to a continuous positive-definite function on G.
{Douady, unpublished.)

13.11.5. Let G be a locally compact group, and 4 its modular function.
If a continuous positive-definite function on G is integrable for
A(s)"? ds, it is square-integrable for ds. [635].

*13.11.6. Let G be a locally compact group, and E the set of linear
combinations of continuous positive-definite functions. For ¢ € E, let
Kl(resp. K;) be the closed convex hull of the set of left- (resp. right-)
translates of ¢ in the space of continuous complex-valued functions on
G endowed with the uniform norm. Then K and K both contain the
same single constant M{¢). M{¢@) = 0 for a continuous positive-definite
function ¢ if and only if w, does not admit any non-zero finite-
dimensional subrepresentation. [635].

13.11,7. Let G, G, be two topological groups.
(a) Let m, be an irreducible continwous unitary representation of G,
and =, and 7} continuous unitary representations of G, If the re-
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presentations
(5, 8)=>m(5)QmiAsy) and (515> 7 {(5)® 7H§s,).

are equivalent, then 7, and 7} are equivalent.

(b) Let 7 be a continuous unitary representation of G, X G,. If 7 is a
factor representation, then 7 | G, and 7 | G, are factor representations.

(c) Let 7 be a continuous unitary representation of G,x G,, = =
7| G, and 7,= 7 | G,. Suppose that , is a factor representation of type
I. Then there exist w{= @, w}= m, such that & is equivalent to the
representation (s, ) — wi(s,) & wi(s,).

(d) If G, and G, are of type I, then G, X G, is of type L. [1005].

13.11.8. Let G be a locally compact group, and # a unitary represen-
tation of G. Suppose that, for all £ n€ H = H,, the function s>
(m(s)¢ | n) is measurable for the Haar measure on G. We can define
7(f)=J f(s)m(s) ds for every f€ LY(G). Let KC H be the essential
subspace for the representation w of L'(G). Then K and H & K are
invariant under w(G), The representation s—>a(s)|K of G is con-
tinwous. For § nE€ HGSK, we have (w(s)&|n)=0 locally almost
everywhere on G. The space H © K is either zero or non-separable. It
can happen that it is non-zero. [1473].

13.11.9, Let G be a topological group. Let = be a contintous unitary
representation of G. In H, @ H, & - - @ H_ (n factors), the symmetric
tensors generate a closed subspace K invariant under p=
7@7 X - @mw The subrepresentation py of p is called the n™
symmetric tensor power of 7. The antisymmetric tensor powers are
defined analogously.

*13.11.10. Let G be a connected real Lie group, and = a unitary
representation of G, continuous for the norm topology of operators and
irreducible. Then # is finite-dimensional. [1484).

13.11.11, Let G be a topological group. A unitary representation = of G
is said to be real if there exists a closed rea! subspace K of H, such that
H, is the direct sum of K and of iK, the scalar product is real on K, and
@(G) leaves K invariant (in other words, H, is the Hilbert space which
is the complexification of a real Hilbert space K, and r is the com-
plexification of a representation of G in K). It comes to the same thing
to say that there exists an involution J of H commuting with #(G). If
is real, we have 7 = 7, but the converse is not true.



308 UNITARY REPRESENTATIONS OF LOCALLY COMPACT GROUPS [CH. 13, §11

*13.11.12. Semisimple connected real Lie groups and nilpotent con-
nected real Lie groups are liminal (cf. 15.5.6). A real algebraic linear
group is postliminal. Large classes of postliminal solvable Lie groups are
known, but Mautner has given an example of a non-postliminal solvable
Lie group. The non-commutative, 2-dimensional, solvable, connected,
real Lie group is postliminal but not liminal. A countable discrete group
is of type 1 if and only if it is the extension of a finite group by a
commutative group. Problems: is a p-adic algebraic group postliminal?
Does the C*-algebra of a liminal real Lie group have generalised
continuous trace? [439], [441], [448], [586], [758]), [903], [922]. [1507], [ 1608],
[1774].

*13.11.13. Let G be a locally compact group, and # an irreducible
continuous unitary representation of G. Then #(L.'(G)) is not algebraically
itreducible in general,

13.11.14. (a) Let G be a discrete group, A its Hilbert algebra, ¥ =
%%(A), which is a finite von Neumann algebra, and f the natural trace on
%" defined by A. Since the operator 1 € % corresponds to the charac-
teristic function of ¢, we have ni; = n, = 4, and every element of ¥ is of
the form U,, where x& LY G). We will still denote by f the linear
extension of f to U If U, € % with x € LYG), we have f(UJ,) = x(e).

(b) Let E, (resp. E;) be the greatest projection of the centre of %
such that the corresponding algebra induced by ¥ is of type I; (resp. of
type 1) (i takes the values 1, 2,...). We have E; +Z E; =1. Put
f(Ey)=r, f(E;)=r, whence r+Zn=1.

(c) Let C be the group of commutators of G. Let ¢ be the charac-
teristic function of C. If C is infinite, then r,=0. If C is finite, then
r,=(Card C)™", and e, is the element of % defined by the function
(Card C) '¢- on G.

(d) If G is infinite, and if C coincides with the centre of G and is of
prime order p, then % is the product of a commutative von Neumann
algebra and p — 1 factors of type II,. We have r,=1/p, r=(p — 1)ip.

(e) Let (G;) be an infinite family of non-commutative finite groups.
Let G be the set of elements of IT G; all but a finite number of whose
components are equal to e. Regard (G as a discrete group. Then % is of
type II,.

{f) Let G be a discrete group, and G, the subgroup of G which is the
union of the finite classes of G. If G/G, is infinite, then ¥ is of type II,.
If G,={e}, and G is infinite, then % is a factor of type II,. [897], [1006].
[1035], [1039].



