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Abstract

Let p be a prime, n, r ∈ N, S ∈ Z such that (S, p) = 1. We let

Qr =
∑

1≤i≤j≤r

tijxixj ∈ Z[x1, . . . , xr]

be an integral r-dimensional quadratic form. For convenience, set e(α) = e2πı̇α, where α ∈ Q.

Denote the quadratic Gauss sum by

G(S; pn) =

pn−1
∑

x=0

e

(

Sx2

pn

)

.

The evaluation of this sum was completed by Gauss in the early 19th century. Many

proofs of Gauss’s results have subsequently been obtained through a variety of methods.

We are interested in the so called quadratic form Gauss sum, given by

G(Qr;S; p
n) =

pn−1
∑

x1,...,xr=0

e

(

S

pn
·Qr

)

Under certain assumptions on Qr, we show how we may express G(Qr;S; p
n) as a product

of quadratic Gauss sums.
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Chapter 1

Introduction

We let N,Z,Q,R,C denote the sets of natural numbers, integers, rational numbers, real

numbers and complex numbers, respectively, and we let N0 = N ∪ {0}. If x ≥ 0 then x
1
2

denotes the principal square root of x, and if x < 0 then x
1
2 denotes the root in the upper half

plane. If z is any complex number, we let ℜ(z) denote the real part of z. For any two integers

a and b, we let (a, b) denote their greatest common divisor. For notational convenience, for

any α ∈ Q we set e(α) = e2πı̇α, so that e(α+ β) = e(α)e(β). For this chapter, let q ∈ N and

S ∈ Z satisfy (S, q) = 1 and let k be an arbitrary odd positive integer. In general, we let
(

S

q

)

denote the Jacobi symbol.

The exponential sum given by

G(S; q) =

q−1
∑

x=0

e

(

Sx2

q

)

is called the quadratic Gauss sum modulo q. This sum was first studied by Gauss in the early

19th century [42], from where it gets its name. In 1811, Gauss [41] was able to determine
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the incredible formula

G(S; q) =



















































(

S

q

)

q
1
2 if q ≡ 1 (mod 4)

0 if q ≡ 2 (mod 4)

ı̇

(

S

q

)

q
1
2 if q ≡ 3 (mod 4)

( q

S

)

(1 + ı̇S)q
1
2 if q ≡ 0 (mod 4).

(1.1)

The formula for the quadratic Gauss sum is a deep theorem. There are a wide variety of

proofs which may deduce results analogous to (1.1). These methods begin with Gauss and

are still being found in the 21st century

The method used by Gauss was to study the polynomial

fz(n) =
n
∑

j=0

(−1)j

(

j−1
∏

i=1

1− zn−i

1− zi+1

)

=
n
∑

j=0

(−1)j
[

n

j

]

,

for z ∈ C with z ̸= 1. Note that the symbol

[

n

j

]

is often called the Gaussian coefficient, or

Gaussian polynomial [10, p. 42]. For p an odd prime and z = e

(

1

p

)

, Gauss showed that

G(1; p) = fz(p− 1)e

(

p2 − 1

8

)

(−1)
(p−1)(p−3)

8 . (1.2)

Gauss then used the properties of fz and (1.2) to arrive at (1.1); see, e.g. [93, pp. 177-180].

Note that it is straightforward to show |G(1; k)| = k
1
2 . Given the correct unit expression

for G(1; k), one can use elementary methods to arrive at the formula given in (1.1). Thus,

to evaluate G(S; q) it is sufficient to determine that G(1; p) = ı̇(
p−1
2 )

2

p
1
2 for p an odd prime;

see, e.g. [12, pp. 18-24].

Dirichlet, beginning in 1835, published a series of papers which reproduced Gauss’ results;

[28], [29], [30]; see also [31, pp. 287-292]. Dirichlet used a variation of the Poisson summation
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formula to show

G(1; q) =
1

2
(1 + ı̇)(1 + ı̇−q)q

1
2 . (1.3)

Due to the multiplicative structure of the quadratic Gauss sum, one can recover Gauss’

formula in (1.1) from the expression given in (1.3). A modern exposition of Dirichlet’s proof

may be found in the book by Davenport [24, pp. 13-16] and the paper by Casselman [17].

In 1840, Cauchy [18, pp. 566-572] gave a proof of Gauss’ results using the transformation

formula for the classical theta function θ(z) =
∞
∑

n=−∞

e

(

ı̇zn2

2

)

, defined for ℜ(z) > 0 [11, p.

112]. A modern exposition of Cauchy’s proof is given in the book by Chandrasekharan [19,

p. 141-144]. Additionally, in the same paper, Cauchy [18, pp. 560-565] gave an elementary

proof of (1.3). Circa 1850, Schaar used the Poisson summation formula to determine the sign

of G(1; k) [98]. Subsequently, using similar methods, Schaar developed a reciprocity formula

for the quadratic Gauss sum [99], from which one can deduce the expression given in (1.3).

This latter formula is now called Schaar’s identity [11, p. 111]. Shortly after, in 1852,

Genocchi [44] used the Abel-Plana summation formula to deduce Gauss’ results. Later, in

1889, Kronecker [69] used contour integration to develop a general reciprocity formula for a

generalized quadratic Gauss sum, of which Schaar’s identity is a special case. This method of

proof can be found in the books by Apostol [5, pp. 195-200] and Berndt, Evans and Williams

[12, pp. 13-14]. Kronecker was quite taken with the quadratic Gauss sum, as earlier he gave

an elementary proof determining the sign of G(1; k) [67], as well as a refinement of Cauchy’s

methods for theta functions [68] and a discussion of Dirichlet’s method [70]; see also the

books by Krazer [65, pp. 183-193], Bellman [8, pp. 38-39] and Eichler [34, pp. 44-48]. Near

the end of the century, in 1896, Mertens [86] gave an elementary proof establishing the sign

of G(1; k).

More methods of proof and refinements of these methods would follow in the 20th century.

In 1903, Lerch [75] further simplified and generalized the theta function approaches of Cauchy
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and Kronecker. In 1918, Mordell [89] simplified Kronecker’s contour integration method to

arrive at the expression given in (1.3). Shortly thereafter, in 1921, Schur [100] used the

determinants of certain matrices to evaluate G(1; k). The proofs of Mertens, Schur and the

contour integration proof of Kronecker are given in the book by Landau [71, pp. 203-218].

In 1945, Estermann [35] gave a very elegant proof determining the sign of G(1; k). Later, in

1958, Shanks [102] gave an elementary evaluation of G(1; k) using a certain product and sum

identity. Shortly after, in 1960, Siegel [104] gave a proof of (1.3) using a similar approach

to Mordell, as well as a generalized reciprocity theorem. In the same year, Mordell [91]

gave an elementary proof of the sign of G(1; k). A similar method to that of Schur would

follow in 1966 by Carlitz [16]. Waterhouse [110], in 1970, would simplify Schur’s method to

determine the sign of G(1; k). In 1973, Berndt [9] used contour integration to develop a very

general reciprocity theorem, of which Siegel’s result follows. A more general theorem would

follow by Berndt and Schoenfeld [13] in 1975, using the Poisson summation formula. In

1981, Bressoud [15] follows the method of Gauss using a certain q-series identity, to deduce

the value of G(1; k). More recently, in 1995, Sczech [101] was able to deduce the value of

G(1; k) using Jacobi’s triple product identity. One can consult the survey by Berndt and

Evans [11] as well as the book by Berndt, Evans and Williams [12, pp. 50-54] for detailed

developments of these results.

New methods for Gauss’ results are still being discovered in the 21st century. In 2000,

Danas [23] was able to determine the value of G(1; p), for p an odd prime, using a circulant

matrix with Legendre symbol entries. In 2010, Gurevich, Hadani and Howe [48] have been

able to determine the sign of G(1; k) using the finite Weil representation. A 2014 paper by

Grant [47] demonstrates a wide variety of elementary proofs of G(1; p), for p an odd prime.

We mention that we have restricted the scope of our discussion specifically to the quadratic

Gauss sum. The quadratic Gauss sum will generalize to a certain type of character sum over

a ring of integers [5, p. 165], as well as an exponential sum over a finite field [12, p. 9].

Indeed, the quadratic Gauss sum is only a particular type of exponential sum, of which there
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are a wide variety [12, p. 55]. We will discuss these generalizations in our final chapter.

We are interested in extending the quadratic Gauss sum over multiple variables using a

quadratic form argument. Let r ∈ N. We let Qr denote an arbitrary r-dimensional integral

quadratic form, given by

Qr =
∑

1≤i≤j≤r

tijxixj ∈ Z[x1, . . . , xr].

Thus, we define G(Qr;S; q) to be the exponential sum given by

G(Qr;S; q) =

q−1
∑

x1,...,xr=0

e

(

SQr

q

)

,

and we call this a quadratic form Gauss sum. For convenience, we let ti = tii for each i.

Observe that if Qr is a diagonal form, say Qr =
r
∑

i=1

tix
2
i , then our quadratic form Gauss sum

reduces to a product of quadratic Gauss sums, as

G(Qr;S; q) =

q−1
∑

x1,...,xr=0

e













S

r
∑

i=1

tix
2
i

q













=
r
∏

i=1

q−1
∑

xi=0

e

(

Stix
2
i

q

)

=
r
∏

i=1

G(Sti; q).

We will examine how we may appropriately diagonalize Qr to express the quadratic form

Gauss sum as a product of quadratic Gauss sums. In particular, we do so in an elementary

manner.

The quadratic form Gauss sum was first investigated in the 19th century. In a paper

published in 1872, H. Weber [111] investigated the sum G(Qr; 1; q) where Qr is of the form
r
∑

i=1

tix
2
i + 2

∑

1≤i<j≤r

tijxixj. His method appears to be to determine a change of variables for

which he may write Qr = Ax21 + Qr−1(x2, . . . , xr), so that an expression for the quadratic

form Gauss sum can be determined recursively. Weber first evaluates G(Qr; 1; p), for p an

odd prime, and generalizes these results using the Chinese remainder theorem. This work
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was simplified very shortly afterwards by Jordan [61], whose paper was published in 1871.

Despite the disparity in publishing dates, Jordan makes explicit reference to the paper by

Weber in his article. Additionally, the paper by Jordan does not contain any general results.

These papers were written in German and French, respectively, and an English translation

does not appear to be available. References to these papers are rare.

The quadratic form Gauss sum was then most prominently seen afterwards in the state-

ment of various reciprocity theorems. We emphasize that none of these reciprocity theorems

use the results of Weber. To limit our scope of discussion, we mention only a few related

results. In a 1912 manuscript dedicated to Weber, Krazer [66], using a multi-variable Pois-

son summation formula, develops a reciprocity theorem for a certain quadratic form Gauss

sum. The reciprocity theorem of Krazer would be generalized by Siegel [103] in 1935. Note

that this paper by Siegel is a seminal treatment in the classification of quadratic forms, and

introduces his mass formula.

More recently, in 1998, Deloup [26] and Turaev [107] establish more general reciprocity

theorems, of which Krazer’s and Siegel’s are special cases. Further, the paper of Turaev

shows that the reciprocity theorem first discovered by Kronecker is also a special case of

his formula. These generalizations are treated in the book by Polishchuk [96, pp. 58-60].

We mention that the papers by both Deloup and Turaev make reference to a preprint by R.

Dabrowski entitled Multivariate Gauss Sums, which does not appear to have been published.

This paper claims to have proven the reciprocity theorem of Krazer by use of p-adic numbers

[25, p. 71]. A paper available online by Taylor [106] gives a brief exposition which reproduces

Krazer’s results. One can consult the exhaustive work by Lemmermeyer [74] to track the

development of reciprocity theorems. They have deep connections with the quadratic Gauss

sum.

An important application of the quadratic form Gauss sums is in determining the number
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of solutions to the congruence

Qr ≡ t (mod q). (1.4)

We see that the number of solutions to this congruence is given by

1

q

q−1
∑

y=0

q−1
∑

x1,...,xr=0

e

(

y(Qr − t)

q

)

=
1

q

q−1
∑

y=0

e

(−yt
q

)

G(Qr; y; q). (1.5)

Historically, there appear to be few applications of the methods of Weber and Jordan con-

cerning this problem. In fact, Jordan investigated the number of such solutions both in 1866

[59] and 1872 [62]; see also, [60, pp. 156-161]. However, he did not use an exponential sum

method. A note by Jordan [63, p. 25] in 1881 indicates he was aware of the method given

in (1.5).

A rare reference to the quadratic form Gauss sum is given in a 1954 paper by Cohen

[22]. In this paper, Cohen uses the results of Weber [22, p. 14] in his investigation into the

number of solutions of

a1x
2
1 + · · ·+ arx

2
r ≡ t (mod q). (1.6)

However, Cohen does not use the results of Weber directly in a manner similar to (1.5). He

instead attains his results by evaluating a certain singular series. Cohens singular series is

similar to the series introduced by Hardy [54, p. 256] in a paper investigating the represen-

tation of integers as a sum of squares. There are intricate connections with these types of

singular series and the quadratic Gauss sums. Cohen [22, p. 27] himself states:

It is of interest to note that, although the Gauss sum G(1; q) is of fundamental

importance in the preceding treatment of quadratic congruences, at no point was

it necessary to use the precise evaluation of G(1; q).

Determining the number of solutions for a1 = . . . = ar = 1 in (1.6) is given as an exercise in
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[12, p. 46].

Determining the number of solutions to the congruence in (1.4) is an ongoing and ac-

tive problem. There are some recent results which use the approach given in (1.5), without

making explicit mention of the quadratic form Gauss sum. The 2004 paper of Araujo and

Fernandez [6] used a sum analogous to the quadratic form Gauss sum to investigate the

number of solutions to a diagonal quadratic form congruence, similar to that in (1.6). The

2012 paper by A. Alaca and Williams [3] and current preprint of Alaca, Alaca and Williams

[2] use explicit evaluations of quadratic Gauss sums in order to determine the number of so-

lutions to a particular quaternary form congruence. As this form is diagonal, they implicitly

use the quadratic form Gauss sum. Indeed, the paper by Alaca and Williams uses the sum

given in (1.5) in connection with Siegel’s mass formula. In this fashion, given an expression

for G(Qr;S; q), the evaluation of (1.5) will have deep results.

We look to evaluate G(Qr;S; q). To simplify our evaluation, we fix q = pn for p prime

and look to evaluate G(Qr;S; p
n). Our primary motivation is given by a recent paper by

Alaca, Alaca, and Williams [1]. In this paper, they use elementary methods to evaluate the

so-called double Gauss sum

G(Q2;S; p
n) =

pn−1
∑

x,y=0

e

(

S(ax2 + bxy + cy2)

pn

)

,

where a, b, c ∈ Z are such that (a, b, c) = 1 and 4ac − b2 ̸= 0. We give a brief overview of

their method

Observe that the quadratic form Q2 = ax2 + bxy + cy2 can be expressed as the 1 × 1

matrix product

Q2 = [x y]







a b
2

b
2

c






[x y]T .

The approach by Alaca, et al. is to determine integers ρ, σ, τ, µ such that, modulo pn, we
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have

Q2 ≡ [x y]







ρ τ

σ µ













a b
2

b
2

c













ρ τ

σ µ







T

[x y]T (mod pn).

Subsequently, they show that there exists an automorphism λ defined on Zpn × Zpn which

is given by λ(x, y) = (ρx + σy, τx + µy). Due to their choice of integers, by setting A =

aρ2 + bρτ + cτ 2, we have

Q2 ≡ Ax2 + A(4ac− b2)y2 (mod pn), (1.7)

and in particular we will have (A, p) = 1. Hence, it follows that

G(Q2;S; p
n) =

pn−1
∑

x,y=0

e

(

S(Ax2 + A(4ac− b2)y2)

pn

)

= G(SA(4ac− b2); pn)G(SA; pn). (1.8)

We mention that this will hold in general for p an odd prime. When p = 2, one must consider

certain cases with respect to the coefficients of Q2.

Our method is similar. We find a diagonalization of our quadratic form Qr which will

result in a change of variables that yields a similar congruence as seen in (1.7). Consider the

matrix







a b
2

b
2

c






=

1

2







2a b

b 2c






=

1

2
M.

Under the assumption a ̸= 0, the symmetric matrix M can be decomposed into the LDLT
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decomposition given by







2a b

b 2c






=







1 0

b
2a

1













2a 0

0 4ac−b2

2a













1 b
2a

0 1






.

Hence, we see that

ax2 + bxy + cy2 = [x y]
M

2
[x y]T = [x y]L

D

2
LT [x y]T

= [X Y ]
D

2
[X Y ]T ,

where X = x+
by

2a
and Y = y. Thus, our quadratic form can be written as a diagonal form

with rational coefficients, that is,

ax2 + bxy + cy2 = aX2 +
(4ac− b2)

4a
Y 2.

We multiply this equation by the least common denominator, to arrive at

4aQ2 = (2aX)2 + (4ac− b2)Y 2. (1.9)

Assume for the sake of discussion that p is an odd prime. As a ̸= 0 we may write 2a = pαA

for α ∈ N0 and A ∈ Z coprime to p. We then reduce the equation in (1.9) with respect to

the modulus pn+α. This yields

pαQ2 ≡ (2A)−1(pαAX)2 + (2A)−1(4ac− b2)Y 2 (mod pn+α).

It will then follow due to the structure of the quadratic Gauss sum that

G(Q2;S; p
n) =

1

p2α

pn+α−1
∑

y=0

e

(

S(2A)−1(4ac− b2)Y 2

pn+α

) pn+α−1
∑

x=0

e

(

S(2A)−1(pαAX)2

pn+α

)

.
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If we assume that (a, b, c) = 1, we can show that each of these indexed sums will be a

quadratic Gauss sum, so we may conclude that

G(Q2;S; p
n) =

1

p2α
G(2SA(4ac− b2); pn+α)G(2SAp2α; pn+α).

Due to various simplification properties inherent in the quadratic Gauss sum, this will yield

the same result as given by Alaca, et al. in (1.8). Further, our method for the even prime

case will be similar.

This procedure for a given binary quadratic form can be expanded in a similar fashion

to higher dimensional quadratic forms. Let r ∈ N and Qr an integral quadratic form in

r variables. Under certain assumptions on the coefficients of Qr, one may decompose its

associated symmetric matrix into an LDLT decomposition. From here, one can show that

CQr ≡
r
∑

i=1

τiX
2
i (mod pn)

where τi ∈ Z, C ∈ Z and Xi is an integral function of r − i + 1 variables. Assume for the

sake of discussion that C = 1. We nest our sums so that, for sufficiently large n, Xi will

behave like xi modulo pn. This diagonalization of Qr will yield

G(Qr;S; p
n) =

pn−1
∑

x1,...,xr=0

e

(

S

pn

r
∑

i=1

τiX
2
i

)

=

pn−1
∑

x1,...,xr=0

r
∏

i=1

e

(

SτiX
2
i

pn

)

=

pn−1
∑

xr=0

e

(

SτrX
2
r

pn

)

· · ·
pn−1
∑

x1=0

e

(

Sτ1X
2
1

pn

)

=
r
∏

i=1

G(sτi; p
n).

A necessary requirement for our results is that, for an integral quadratic form in r vari-

ables, the first r−1 leading principal minors of its associated symmetric matrix be non-zero.

Set ∆ to be the product of these minors, which we call the associated minor product. Un-

der the assumption ∆ ̸= 0, we will achieve our results depending on the divisibility of the
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factors of ∆. Specifically, for a prime power pn, we will attain an expression for G(Qr;S; p
n)

under the following conditions: ∆ is coprime to p, the factors of ∆ have favorable divisibility

properties, n is sufficiently large. We note that the result for each case will be the same, but

the manner in which these results were obtained will vary.

We begin in Chapter 2 by going over some basic properties and notation we’ll need to

prove our main results. In particular, we review some basic properties concerning quadratic

residues and the Legendre symbol. Chapter 3 looks at properties of the quadratic Gauss

sum. The quadratic Gauss sum will possess various cancellation properties which we will

make use of. As well, we will look at a quadratic Gauss sum with congruence conditions

imposed on the index. Chapter 4 shows how we may diagonalize a quadratic form. This will

demonstrate the necessity of the condition ∆ ̸= 0, as the diagonalization will follow after

row reducing an associated symmetric matrix to row echelon form. In Chapter 5, using what

was established in the previous two chapters, we present our main results. In particular, we

determine a complete solution for G(Q2;S; p
n) for both p odd and even. Additionally, we

give an expression for the ternary quadratic form Gauss sum G(Q3;S; p
n) under unfavorable

divisibility conditions. Finally, we present multiple methods to evaluate G(Qr;S; p
n) under

varying conditions, for which the binary and ternary forms will follow as specific examples.

In Chapter 6, we present an application of the evaluation of G(Qr;S; p
n). Specifically,

we will determine the number of solutions of the congruence Q2 ≡ k (mod pn), where Q2

is any binary quadratic form with integer coefficients, and k is any integer. Finally, we

present further avenues of research in Chapter 7. We first show how we may generalize the

quadratic form Gauss sum to an arbitrary odd positive modulus, say G(Qr;S; q). As well,

using our main results we demonstrate some obvious multiplicative properties. Subsequently,

we investigate how we might generalize the quadratic form Gauss sum to other types of

Gauss sums. Finally, we mention current applications of various Gauss sums and their

generalizations.



Chapter 2

Basic Properties

In this chapter, we review the basic notation, definitions and propositions we will be using.

2.1 Notation

As in the introduction, we let N,N0,Z and Q denote the natural numbers, the non-negative

integers, the integers and rational numbers, respectively. As well, we let (x, y) denote the

greatest common divisor of the integers x and y. For any x ∈ Q, we let [x] denote the

greatest non-negative integer less than or equal to x. For p ∈ N and q ∈ Z, we write p | q

to indicate p divides q. Otherwise, we write p - q. We write x ≡ y (mod p) to indicate

p | (x− y).

From now on, we will let p denote a prime. We let n ∈ N and S ∈ Z be such that

(S, p) = 1. Let t ∈ Z be arbitrary. In general, if t ̸= 0 we will write t = pτT , where τ ∈ N0

and T ∈ Z is such that (T, p) = 1. Our convention for integer notation is that lower case

letters will be arbitrary integers, upper case letters will be integers co-prime to p and Greek

letters will denote non-negative integers. Generally, we are concerned with the divisibility of

residues modulo a prime power. We let 1, . . . , pn denote the system of residues modulo pn.

In this fashion, for any nonzero t ∈ Z, we may write t ≡ pτT (mod pn) for some τ ∈ N0 and

1 ≤ T ≤ pn coprime to p. If t = 0, then by convention we set τ = n and T = 1.

For any α ∈ Q we write e(α) = e2πı̇α so that e(α+β) = e(α)e(β), for arbitrary α, β ∈ Q.
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Further, it is clear that

e (t) = 1, e

(

t

2

)

= (−1)t and e

(

t

4

)

= ı̇t.

For arbitrary α, β ∈ Q we adopt the convention that eβ(α) = (e(α))β = e (α · β). Note that

e

(

S

p

)

is a pth root of unity, so that e

(

t

p

)

= 1 if and only if p | t. Further, e

(

t

p

)

is

periodic with period p, that is, e

(

x+ yp

p

)

= e

(

x

p

)

, for arbitrary x, y ∈ Z. Hence, we say

that e

(

t

p

)

is periodic modulo p, and refer to p as the modulus.

Fix q ∈ N arbitrarily. We let Zq denote the commutative ring of residues modulo q

and we let Z∗
q denote the associated multiplicative group. We let ϕ(q) denote the number

of positive integers less than q which are also relatively prime to q. In such a manner, we

have |Z∗
q| = ϕ(q). The set of all residues contained in Zq is called a complete residue system

modulo q, and the set of all residues in Z∗
q is called a reduced residue system modulo q. When

q is understood, we identify every integer t with its residue t (mod q), so we may speak of

the element t of Zq. For t ∈ Z coprime to q, we identify the symbol t−1 with its positive

integer residue modulo q.

Finally, we let Z[x1, . . . , xn] denote the ring of polynomials in n variables with integer

coefficients.

2.2 Exponential Sums

Our discussion will center around the quadratic Gauss sum, a type of exponential sum. As

such, we will need the following propositions concerning various exponential sums.

Proposition 2.1 (Geometric Sum). Let k ∈ N. Then
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k−1
∑

x=0

e

(

tx

k

)

=















0 if t ̸≡ 0 (mod k)

k if t ≡ 0 (mod k).

Proof. We have that

k−1
∑

x=0

e

(

tx

k

)

= 1 + e

(

t

k

)

+ e

(

t

k

)2

+ . . .+ e

(

t

k

)k−1

. (2.1)

If t ̸≡ 0 (mod k), then e

(

t

k

)

̸= 1. Hence, we have that (2.1) becomes

e

(

t

k

)k

− 1

e

(

t

k

)

− 1

= 0.

Otherwise, if t ≡ 0 (mod k) then e

(

t

k

)

= 1 and so (2.1) evaluates to k in this case.

Proposition 2.2. Let k ∈ N. Then

k−1
∑

x,y=0

e

(

txy

k

)

= k · (t, k).

Proof. From Proposition 2.1, we have that

k−1
∑

x,y=0

e

(

txy

k

)

= k +
k−1
∑

x=1

k−1
∑

y=0

e

(

txy

k

)

= k + k

k−1
∑

x=1
tx≡0 (mod k)

1 = k

k−1
∑

x=0
tx≡0 (mod k)

1. (2.2)

If t ≡ 0 (mod k) then the statement of the proposition follows. Hence, we may assume

otherwise, and in particular, t ̸= 0. Let d = (k, t) so that k = dk1, t = dt1 for some k1 ∈ N,
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t1 ∈ Z such that (k1, t1) = 1. Hence,

k−1
∑

x=0
tx≡0 (mod k)

1 =

dk1−1
∑

x=0
t1x≡0 (mod k)1

1 =

dk1−1
∑

x=0
x|k1

1 = d,

and with (2.2), the statement of the proposition follows.

Proposition 2.3. Let α ∈ N0 and k ∈ N. Then for any prime p, we have

pn−1
∑

x=0

e

(

Spαxk

pn

)

=



















pn if α ≥ n

pα
pn−α−1
∑

x=0

e

(

Sxk

pn−α

)

if α < n.

Proof. The statement is clear when α ≥ n and so we may assume that α < n. We have

pn−1
∑

x=0

e

(

Spαxk

pn

)

=

pn−α−1
∑

x=0

e

(

Sxk

pn−α

)

+

2pn−α−1
∑

x=pn−α

e

(

Sxk

pn−α

)

+ · · ·

+ · · ·+
pn−1
∑

x=(pα−1)pn−α

e

(

Sxk

pn−α

)

. (2.3)

As e

( ·
pn

)

is periodic modulo pn, we have e

(

(x+ pn−α)k

pn−α

)

= e

(

xk

pn−α

)

. Hence, for each

sum in (2.3), we can re-index as many times as necessary by x 7→ x+ pn−α. This will result

in pα copies of the sum

pn−α−1
∑

x=0

e

(

Sxk

pn−α

)

, yielding the statement of the proposition.

Corollary 2.1. Let α ∈ N0. Then for k ∈ N we have

2n−1
∑

x=0

e

(

S2αxk

2n

)

=



































2n if α ≥ n

0 if 1 = n− α

2α
2n−α−1
∑

x=0

e

(

Sxk

2n−α

)

if 2 ≤ n− α.
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Proof. We take p = 2 in Proposition 2.3 and note that

1
∑

x=0

e

(

Sxk

2

)

= 0.

Corollary 2.2. Let α ∈ N0. Then for any prime p we have

pn−1
∑

x=0

e

(

Spαx

pn

)

=















pn if α ≥ n

0 if α < n.

Proof. This follows by taking k = 1 in Proposition 2.3, and subsequently deducing the results

for α < n from Proposition 2.1.

2.3 Residues and Congruences

Proposition 2.4. Let a, b ∈ Z. If m ≤ n, then pma ≡ b (mod pn) implies pm | b and a ≡ b

pm

(mod pn−m).

Proof. Suppose pma ≡ b (mod pn). Then there exists some integer q such that pma−b = pnq.

Hence, we manipulate this equation to find b = pm (a− pn−mq), and so pm | b. Thus, we may

write
b

pm
= c for some integer c. We have that pnq = pm(a− c) which means pn−mq = a− c

and so a ≡ c (mod pn−m).

We emphasize that Proposition 2.4 is valid for all primes p.

Proposition 2.5. Suppose that the set of integers {r1, . . . , rn} forms a complete system of

residues modulo n and {s1, . . . , sφ(n)} forms a reduced system of residues modulo n. If a ∈ Z

is such that (a, n) = 1, then for any b ∈ Z, we have that

{ar1 + b, ar2 + b, . . . , arn + b}
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is a complete system of residues modulo n and

{as1, as2, . . . , asφ(n)}

is a reduced system of residues modulo n.

Proof. First, we observe that by the pigeon-hole principle, any set of n incongruent integers

forms a complete system of residues modulo n. Hence, suppose that for some 1 ≤ j, k ≤ n,

we have that arj + b ≡ ark + b (mod n). But this implies arj ≡ ark (mod n). As (a, n) = 1,

we have a ∈ Z∗
n and hence a−1 exists modulo n. Thus, we deduce that rj ≡ rk (mod n).

But as the elements r1, . . . , rn are all incongruent, we must have that j = k. Thus, we have

shown that {ar1 + b, . . . , arn + b} contains a set of n incongruent integers and so this set

comprises a complete system of residues modulo n.

In a similar fashion, a set of ϕ(n) incongruent integers, each of which is coprime to n,

forms a reduced system of residues modulo n. If we suppose for some 1 ≤ j, k ≤ ϕ(n) we

have asj ≡ ask (mod n), then as (a, n) = 1 it will follow that sj ≡ sk (mod n) and hence

{as1, . . . , asφ(n)} will be a set of ϕ(n) incongruent residues, each coprime to n.

Proposition 2.6 (Chinese Remainder Theorem). Let m1, . . . ,mn be pairwise relatively

prime integers. Then the system of congruences

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ ar (mod mn)

has a unique solution modulo M =
n
∏

i=1

mi.

Proof. Set Mj =
M

mj

for j = 1, . . . , n and observe that (Mj,mj) = 1. Thus, for each

j = 1, . . . , n, there exists some element bj ∈ Z∗
mj

such that bjMj ≡ 1 (mod mj). We set

x =
n
∑

j=1

ajbjMj.
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Hence, for arbitrary k satisfying 1 ≤ k ≤ n we have

x ≡
n
∑

j=1

ajbjMj (mod mk) → x ≡ ak (mod mk).

It remains to show x is unique modulo M . Suppose y also satisfies y ≡ aj (mod mj) for

j = 1, . . . , n. Then we have x ≡ y (mod mj) which means mj | (x− y) for each j = 1, . . . , n.

It follows that M | (x− y) and so x ≡ y (mod M) which shows x is unique with respect to

M .

2.4 Quadratic Residues

Definition 2.1. Let q ∈ N and let t ∈ Z be such that (q, t) = 1. If there exists some integer

x such that x2 ≡ t (mod q), then t is called a quadratic residue modulo q. If no such integer

x exists, then t is called a quadratic non-residue modulo q.

As the quadratic Gauss sum is intricately linked with quadratic residues, we present a

basic proposition concerning such residues.

Proposition 2.7. Let p be an odd prime. Then there are exactly
p− 1

2
quadratic residues

and
p− 1

2
quadratic non-residues modulo p. Further, the quadratic residues are given by the

residue classes 12, 22, . . . ,

(

p− 1

2

)2

.

Proof. First, note that the numbers

1, 2, . . . ,
p− 1

2

are all distinct modulo p. Thus, suppose 1 ≤ x, y ≤ p− 1

2
and x2 ≡ y2 (mod p). In this

case, this means that

(x− y)(x+ y) ≡ 0 (mod p).
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But 2 ≤ x + y ≤ p− 1 which means we must have x− y ≡ 0 (mod p) which implies x = y.

Hence, this means that the residues

12, 22, . . . ,

(

p− 1

2

)2

(2.4)

are all distinct modulo p. Further, if 1 ≤ x ≤ p− 1

2
then (p − x)2 ≡ x2 (mod p) and so

every quadratic residue modulo p is given by exactly one number in (2.4). Thus, it follows

that there are exactly
p− 1

2
quadratic residues and hence, there are

p− 1

2
quadratic non-

residues.

For an odd prime p, the structure of the quadratic residues will be multiplicative in

various ways. This structure is generalized in the Legendre, Jacobi and Kronecker symbols.

Definition 2.2. For p an odd prime and t ∈ Z we let

(

t

p

)

denote the Legendre symbol,

given by

(

t

p

)

=































0 if p | t

1 if t is a quadratic residue modulo p

−1 if t is a quadratic non-residue modulo p.

Definition 2.3. Suppose q is an odd positive integer, such that q = pα1
1 p

α2
2 · · · pαk

k for distinct

primes p1, . . . , pk and positive integers α1, . . . , αk. Then we let

(

t

q

)

denote the Jacobi

symbol, which is given by

(

t

q

)

=

(

t

pα1
1

)(

t

pα2
2

)

· · ·
(

t

pαk

k

)

=

(

t

p1

)α1
(

t

p2

)α2

· · ·
(

t

pk

)αk

.

Definition 2.4. Let q be a non-zero integer such that q = u2αpα1
1 · · · pαk

k , where u denotes

the sign of q, α ∈ N0, p1, . . . , pk are distinct odd primes and α1, . . . , αk ∈ N. Then we let
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(

t

q

)

denote the Kronecker symbol, which is given by

(

t

q

)

=

(

t

u

)(

t

2

)α k
∏

i=1

(

t

pi

)αi

,

where

(

t

u

)

= 1 when u = 1 and

(

t

−1

)

=















1 if t ≥ 0

−1 if t < 0,

and

(

t

2

)

=















0 if t ≡ 0 (mod 2)
(

2

|t|

)

if t ≡ 1 (mod 2).

In this thesis, we will only have occasion to evaluate the Kronecker symbol for odd

integers q. We now present some basic properties of the Legendre and Jacobi symbols.

Proposition 2.8 (Euler’s Criterion). For p an odd prime, we have that

(

t

p

)

≡ t
p−1
2 (mod p).

Proof. If p | t then the result holds. Hence, we may assume (t, p) = 1. Suppose first that t

is a quadratic residue, and that y is an integer such that y2 ≡ t (mod p). Then

t
p−1
2 ≡ yp−1 ≡ 1 (mod p).

In particular, as the polynomial x
p−1
2 −1 has at most p−1

2
solutions, we see that the congruence

x
p−1
2 ≡ 1 (mod p) is satisfied by the quadratic residues of p. Hence, if t is a quadratic non-
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residue, we must have that t
p−1
2 ̸≡ 1 (mod p). Thus, as t

p−1
2 ≡ ±1 (mod p), we must have

that t
p−1
2 ≡ −1 (mod p). The result will follow by Definition 2.2.

Proposition 2.9. Let p be an odd prime and let a, b ∈ Z. Then

(a) if a ≡ b (mod p) then

(

a

p

)

=

(

b

p

)

,

(b)

(

a

p

)(

b

p

)

=

(

ab

p

)

,

(c) if (a, p) = 1 then

(

a2

p

)

= 1,

(d) if (a, p) = 1 then

(

a−1

p

)

=

(

a

p

)

,

(e)

p−1
∑

x=1

(

x

p

)

= 0.

Proof. Part (a) is clear whenever at least one of a, b ≡ 0 (mod p). Hence, we may assume

(ab, p) = 1. Clearly, as a ≡ b (mod p), the residuacity of a will be equal to that of b, which

shows part (a). For part (b), in a similar fashion, we may assume (ab, p) = 1. Then, from

Euler’s criterion, we have

(

ab

p

)

≡ (ab)
p−1
2 ≡ a

p−1
2 b

p−1
2 ≡

(

a

p

)(

b

p

)

(mod p).

As we have a congruence of units, it follows that

(

ab

p

)

=

(

a

p

)(

b

p

)

. Part (c) is clear from

the definition. For part (d), we use parts (b) and (c), so that

(

a−1

p

)

=

(

a2

p

)(

a−1

p

)

=

(

a

p

)

.

Finally, for part (e), by Proposition 2.7, it follows that

p−1
∑

x=1

e

(

x

p

)

=

p−1
∑

x

(x
p)=1

1−
p−1
∑

x

(x
p )=−1

1 =
p− 1

2
−
(

p− 1

2

)

= 0.
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Proposition 2.10. If p is an odd prime, then (−1)
p−1
2 =

(−1

p

)

.

Proof. From Euler’s criterion, we have that

(−1

p

)

≡ (−1)
p−1
2 (mod p). As

(

−1
p

)

is either 1

or −1, this congruence will become an equality.

Proposition 2.11. If p is an odd prime, then

(

2

p

)

= (−1)
p2−1

8 =















1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8).

Proof. Consider the following congruences:

p− 1 ≡ 1(−1)1 (mod p)

2 ≡ 2(−1)2 (mod p)

p− 3 ≡ 3(−1)3 (mod p)

4 ≡ 4(−1)4 (mod p)

...

r ≡ p− 1

2
(−1)

p−1
2 (mod p),

where r is either p − p− 1

2
or

p− 1

2
depending on the residue of p modulo 4. We take the

product of these congruences to obtain

2 · 4 · · · (p− 1) ≡
(

p− 1

2

)

!(−1)1+2+···+ p−1
2 (mod p)

2
p−1
2

(

p− 1

2

)

! ≡
(

p− 1

2

)

!(−1)
(p−1)(p+1)

8 (mod p)

2
p−1
2 ≡ (−1)

p2−1
8 (mod p).

From Euler’s criterion we therefore have

(

2

p

)

≡ (−1)
p2−1

8 (mod p) and as each expression
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is ±1, equality will follow. The final equality of the proposition will follow as
(±3)2 − 1

8
is

odd and
(±1)2 − 1

8
is even.

Proposition 2.12 (The Law of Quadratic Reciprocity). Let p and q be distinct odd primes.

Then

(

p

q

)(

q

p

)

= (−1)(
p−1
2 )( q−1

2 ).

We present a proof of this in the next chapter. The law of quadratic reciprocity is a very

deep theorem, with over two hundred fifty proofs; see [73]. Our proof will depend on the

evaluation of the quadratic Gauss sum. At the moment, we generalize some of our above

propositions for arbitrary odd positive integers.

Proposition 2.13. If P is an odd positive integer, then (−1)
P−1
2 =

(−1

P

)

.

Proof. Let P = pα1
1 · · · pαk

k for distinct odd primes p1, . . . , pk and αi ∈ N for i = 1, . . . , k.

Then by Proposition 2.10, and the definition of the Jacobi symbol, we have

(−1

P

)

=

(−1

p1

)α1

· · ·
(−1

pk

)αk

= (−1)α1( p1−1
2 )+···+αk(

pk−1

2 ). (2.5)

We may write P = (1 + (p1 − 1))α1 · · · (1 + (pk − 1))αk . We examine the jth factor modulo

4. As pj is odd, we have

(1 + (pj − 1))αj ≡















1 (mod 4) if pj ≡ 1 (mod 4) or αj ≡ 0 (mod 2)

3 (mod 4) if pj ≡ 3 (mod 4) and αj ≡ 1 (mod 2)

≡ 1 + αj(pj − 1) (mod 4).
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Further, as pj − 1 is even, we have

(1 + αi(pi − 1))(1 + αj(pj − 1)) ≡ 1 + αi(pi − 1) + αj(pj − 1) (mod 4).

Hence, we deduce that

P ≡
k
∏

i=1

(1 + αj(pj − 1)) (mod 4)

≡ 1 + α1(p1 − 1) + . . .+ αk(pk − 1) (mod 4),

which, by Proposition 2.4, implies that

P − 1

2
≡ α1

(

p1 − 1

2

)

+ . . .+ αk

(

pk − 1

2

)

(mod 2).

Substituting this congruence into (2.5) yields the statement of the proposition.

Proposition 2.14 (The General Law of Quadratic Reciprocity). Let P and Q be odd,

positive integers which are coprime. Then

(

P

Q

)(

Q

P

)

= (−1)(
P−1
2 )(Q−1

2 ).

Proof. Suppose P = pα1
1 · · · pαm

m andQ = qβ11 · · · qβnn , for distinct odd primes pi, qj and positive

integers αi, βj for i = 1, . . . ,m and j = 1, . . . , n. Then from Proposition 2.12 and the

definition of the Jacobi symbol, we have

(

P

Q

)(

Q

P

)

=
m
∏

i=1

n
∏

j=1

((

pi
qj

)(

qj
pi

))αiβj

=
m
∏

i=1

n
∏

j=1

(

(−1)(
pi−1

2 )·
(

qj−1

2

)

)αiβj

=
m
∏

i=1

n
∏

j=1

(−1)

(

αi(pi−1)

2

)

·

(

βj(qj−1)

2

)
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= (−1)
∑

1≤i≤m

∑

1≤j≤n

(

αi(pi−1)

2

)

·

(

βj(pj−1)

2

)

= (−1)
∑

1≤i≤m
αi(pi−1)

2

∑

1≤j≤n

βj(qj−1)

2 (2.6)

As in the proof of Proposition 2.13, we see that

P − 1

2
≡

m
∑

i=1

αi(pi − 1)

2
(mod 2)

and

Q− 1

2
≡

n
∑

j=1

βj(qj − 1)

2
(mod 2).

Hence, substituting these congruences into (2.6) yields the statement of the general law of

quadratic reciprocity.

2.5 Unit Expressions

The evaluation of our main results and its applications will involve various imaginary unit

expressions. We determine some of these expressions to aid in our exposition.

Proposition 2.15. Let n ∈ N be odd. Then

ı̇(
n−1
2 )

2

=















1 if n ≡ 1 (mod 4)

ı̇ if n ≡ 3 (mod 4).

Proof. We see that

n− 1

2
≡















0 (mod 2) if n ≡ 1 (mod 4)

1 (mod 2) if n ≡ 3 (mod 4).

Then 02 ≡ 22 ≡ 0 (mod 4) and 12 ≡ 32 ≡ 1 (mod 4) and we deduce the statement of the
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proposition.

In particular, if p is an odd prime, we have that

ı̇

(

pn−1
2

)2

=















1 if p ≡ 1 (mod 4) or n ≡ 0 (mod 2)

ı̇ if p ≡ 3 (mod 4) and n ≡ 1 (mod 2).

Hence, we see that if m is any even integer, ı̇

(

pn±m−1
2

)2

= ı̇

(

pn−1
2

)2

. When evaluating this

imaginary unit expression, we are primarily concerned with the parity of the exponent of p.

Thus, for an arbitrary integer m, we may write ı̇

(

pn+m−1
2

)2

instead of ı̇

(

pn−m−1
2

)2

.

Proposition 2.16. Let p be an odd prime and let m,n ∈ N. Then

ı̇

(

pn−1
2

)2

ı̇

(

pn+m−1
2

)2

=

(−1

p

)(m+1)n

ı̇

(

pm−1
2

)2

.

Proof. If m is even, from Propositions 2.13 and 2.15, we see that

ı̇

(

pn−1
2

)2

ı̇

(

pn+m−1
2

)2

= (−1)

(

pn−1
2

)2

= (−1)

(

pn−1
2

)

=

(−1

p

)n

=

(−1

p

)(m+1)n

ı̇

(

pm−1
2

)2

.

Otherwise, if m is odd, then

ı̇

(

pn−1
2

)2

ı̇

(

pn+m−1
2

)2

=















ı̇

(

pn−1
2

)2

if n ≡ 1 (mod 2)

ı̇

(

pm−1
2

)2

if n ≡ 0 (mod 2)

= ı̇

(

pm−1
2

)2

=

(−1

p

)(m+1)n

ı̇

(

pm−1
2

)2

.

The following definition will be useful when considering Gauss sums with even prime
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power modulus.

Definition 2.5. For any integer t, we define the integer parity function O : Z → {0, 1} by

O(t) =
(1 + (−1)t)

2
=















1 if t even

0 if t odd.

This function will have a number of basic properties due to the structure of residues

modulo 2.

Proposition 2.17. Let m, t ∈ Z. Then O has the following properties.

(a) O(t+ 1) =















1 if t ≡ 1 (mod 2)

0 if t ≡ 0 (mod 2),

(b) O(t+m) =















1 if t ≡ m (mod 2)

0 if t ̸≡ m (mod 2),

(c) O(t) = O(t+ 2m),

(d) O(t−m) = O(t+m),

(e) O(−t) = O(t).

Proof. Part (a) follows from the definition. We see that t + m ≡ 0 (mod 2) if and only if

t ≡ m (mod 2), and so part (b) follows from part (a). Parts (c), (d) and (e) will follow as it

is clear that O is periodic modulo 2.

Proposition 2.18. If A is any odd integer, we have

ı̇
A
2 = 2−

1
2

(

2

A

)

(1 + ı̇A).
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Proof. Observe that ı̇
1
2 =

(1 + ı̇)

2
1
2

. Hence,

ı̇
A
2 = 2

−A
2 (1 + ı̇)A = 2

−A
2















(−4)4(
A−1
4 )(1 + ı̇) if A ≡ 1 (mod 4)

(−4)4(
A−3
4 )(1 + ı̇)3 if A ≡ 3 (mod 4)

= 2
−A
2















(−1)
A−1
4 2

A−1
2 (1 + ı̇) if A ≡ 1 (mod 4)

(−1)
A−3
4 2

A−3
4 (2ı̇)(1 + ı̇) if A ≡ 3 (mod 4)

= 2
−A
2















(−1)
A−1
4 2

A−1
2 (1 + ı̇) if A ≡ 1 (mod 4)

(−1)
A−3
4 2

A−1
2 (ı̇− 1) if A ≡ 3 (mod 4)

= 2
−1
2















(−1)
A−1
4 (1 + ı̇) if A ≡ 1 (mod 4)

(−1)
A+1
4 (1− ı̇) if A ≡ 3 (mod 4)

= 2
−1
2 (1 + ı̇A)















(−1)
A−1
4 if A ≡ 1 (mod 4)

(−1)
A+1
4 if A ≡ 3 (mod 4).

The result follows now by Proposition 2.11 and considering the possible values of Amodulo 8.

Proposition 2.19. Let A and B be odd integers. Then

(1 + ı̇A)(1 + ı̇AB) = 2ı̇A(
B+1
2 )

2

and

(1− ı̇A)(1− ı̇AB) = 2(−1)
B+1
2 ı̇A(

B+1
2 )

2

.
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Proof. We have

(1 + ı̇A)(1 + ı̇AB) =















































2ı̇ if A ≡ B ≡ 1 (mod 4)

2 if A ≡ 1 (mod 4), B ≡ 3 (mod 4)

−2ı̇ if A ≡ 3 (mod 4), B ≡ 1 (mod 4)

2 if A ≡ B ≡ 3 (mod 4).

Hence, when B ≡ 1 (mod 4), the product (1 + ı̇A)(1 + ı̇AB) is imaginary, with the sign

corresponding to the residue of A modulo 4. Thus, with Proposition 2.15, we deduce the

statement of the proposition for this product. For the remaining equation of the proposition,

we let A 7→ −A in 2ı̇A(
B+1
2 )

2

to arrive at the desired result.

Proposition 2.20. Let A,B and C be arbitrary odd integers. Then

(1 + ı̇AB)(1 + ı̇AC) = 2ı̇AB(
B+C

2 )
2

and

(1− ı̇AB)(1− ı̇AC) = 2(−1)
B+C

2 ı̇AB(
B+C

2 )
2

.

Proof. If A ≡ 1 (mod 4), we have

(1 + ı̇AB)(1 + ı̇AC) = (1 + ı̇B)(1 + ı̇C) =































2ı̇ if B ≡ C ≡ 1 (mod 4)

2 if B ̸≡ C (mod 4)

−2ı̇ if B ≡ C ≡ 3 (mod 4).
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Similarly, if A ≡ 3 (mod 4), we have

(1 + ı̇AB)(1 + ı̇AC) = (1− ı̇B)(1− ı̇C) =































−2ı̇ if B ≡ C ≡ 1 (mod 4)

2 if B ̸≡ C (mod 4)

2ı̇ if B ≡ C ≡ 3 (mod 4).

Our results will follow now in a similar manner as in the proof of Proposition 2.19.

Proposition 2.21. Let A and B be arbitrary odd integers. Then

1− ı̇A − ı̇B − ı̇A+B = 2(1− ı̇A)O

(

A−B

2

)

.

Proof. We see first that if A ̸≡ B (mod 4), then 1 − ı̇A − ı̇B − ı̇A+B = 0. Hence, assuming

A ≡ B (mod 4), we have A + B ≡ 2 (mod 4) so that 1 − ı̇A − ı̇B − ı̇A+B = 2(1 − ı̇A). The

proposition now follows as O(
A− B

2
) = 1 if and only if A ≡ B (mod 4).



Chapter 3

Gauss and Quadratic Exponential

Sums

The purpose of this section is to examine the quadratic Gauss sum. We will look at some

basic properties that arise due to its structure.

3.1 The Quadratic Gauss Sum

Theorem 3.1 (The Quadratic Gauss Sum). Let q ∈ N. Then for any integer S coprime to

q, we have

G(S; q) =



















































(

S

q

)

q
1
2 if q ≡ 1 (mod 4)

0 if q ≡ 2 (mod 4)

ı̇

(

S

q

)

q
1
2 if q ≡ 3 (mod 4)

(1 + ı̇S)
( q

S

)

q
1
2 if q ≡ 0 (mod 4).

Note that in G(S; q), we refer to q as the modulus of the quadratic Gauss sum. Due to

the limit of our scope, we avoid a rigorous proof of the above theorem. In addition to the

wide variety of proofs mention in the introduction, one can see the book by Berndt, Evans

and Williams [12, pp. 18-28] for an elementary proof of Theorem 3.1.

Proposition 3.1. Let m,n ∈ N be such that (m,n) = 1 and let t be an arbitrary integer.
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Then we have

G(t;mn) = G(tm;n)G(tn;m).

Proof. Observe that

(mx)2 + (ny)2 ≡ (mx+ ny)2 (mod mn).

Further, as (m,n) = 1, by the Chinese remainder theorem, there exists a unique integer

z (mod mn) such that z ≡ mx (mod n) and z ≡ ny (mod m), for arbitrary x ∈ Zn and

y ∈ Zm. Thus, as x runs through a complete residue system modulo n and as y runs through

a complete residue system modulo m, z will run through a complete residue system modulo

mn. Thus, we have that

G(tm;n)G(tn;m) =
n−1
∑

x=0

e

(

tmx2

n

)m−1
∑

y=0

e

(

tny2

m

)

=
n−1
∑

x=0

m−1
∑

y=0

e

(

t((mx)2 + (ny)2)

mn

)

=
n−1
∑

x=0

m−1
∑

y=0

e

(

t(mx+ ny)2

mn

)

=
mn−1
∑

z=0

e

(

tz2

mn

)

= G(t;mn).

With this we may present a proof of quadratic reciprocity.

Proof of Proposition 2.12. Let p and q be distinct odd primes. Then by Theorem 3.1 and

Proposition 3.1 we have

G(1; pq) = G(p; q)G(q; p) =

(

p

q

)

ı̇(
q−1
2 )

2

q
1
2

(

q

p

)

ı̇(
p−1
2 )

2

p
1
2



CHAPTER 3. GAUSS AND QUADRATIC EXPONENTIAL SUMS 34

=

(

p

q

)(

q

p

)

(pq)
1
2 ı̇(

q−1
2 )

2

ı̇(
p−1
2 )

2

. (3.1)

From Proposition 2.15 and Theorem 3.1 we have

G(1; pq) = ı̇(
pq−1

2 )
2

(pq)
1
2 . (3.2)

By equating (3.1) and (3.2), we see that

ı̇(
pq−1

2 )
2

=

(

p

q

)(

q

p

)

ı̇(
q−1
2 )

2

ı̇(
p−1
2 )

2

(3.3)

Observe that if p ≡ q (mod 4) then pq ≡ 1 (mod 4). Similarly, if p ̸≡ q (mod 4) then pq ≡ 3

(mod 4). Hence, if p ≡ q ≡ 1 (mod 4) or p ̸≡ q (mod 4), we have ı̇(
pq−1

2 )
2

= ı̇(
p−1
2 )

2

ı̇(
q−1
2 )

2

.

Thus, for these cases, (3.3) is given by

1 =

(

p

q

)(

q

p

)

. (3.4)

Otherwise, if p ≡ q ≡ 3 (mod 4), then (3.3) will reduce to

−1 =

(

p

q

)(

q

p

)

. (3.5)

As (−1)
p−1
2

· q−1
2 = −1 if and only if p ≡ q ≡ 3 (mod 4), from (3.4) and (3.5) we deduce that

(−1)(
p−1
2 )( q−1

2 ) =

(

p

q

)(

q

p

)

.
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3.2 Simplification Properties of Gauss Sums

Due to the structure of the quadratic Gauss sum, there will be some basic cancellation

properties which we review here.

Proposition 3.2 (The Reduction Property). Let α ∈ N0. Then for any prime p, we have

G(Spα; pn) =















pn if α ≥ n

pα ·G(S; pn−α) if α < n.

Proof. This follows by setting k = 2 in Proposition 2.3.

In particular, for any prime p and any α ∈ N0, we have that

G(S; pn) =
1

pα
G(Spα; pn+α). (3.6)

For the remainder of this chapter, we will assume that p is an odd prime. We examine

how the quadratic Gauss sum will act when its index is restricted to certain residues with

respect to its modulus. As such, we will consider odd prime power moduli and even prime

power moduli in turn.

Proposition 3.3. Suppose that α ∈ N0 is such that 2α ≤ n. Then for w ∈ Z, we have

pn−1
∑

x=0
x≡w (mod pα)

e

(

Sx2

pn

)

=















0 if w ̸≡ 0 (mod pα)

G(S; pn) if w ≡ 0 (mod pα).

Proof. We have that

pn−1
∑

x=0
x≡w (mod pα)

e

(

Sx2

pn

)

=

pn−1
∑

x=0

e

(

Sx2

pn

)

1

pα

pα−1
∑

y=0

e

(

y(x− w)

pα

)

=
1

pα

pα−1
∑

y=0

e

(−wy
pα

) pn−1
∑

x=0

e

(

Sx2

pn
+
yx

pα

)
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=
1

pα

pα−1
∑

y=0

e

(−wy
pα

) pn−1
∑

x=0

e

(

Sx2 + pn−αyx

pn

)

.

(3.7)

As (S, p) = 1 and p is odd, there exists some integer T such that 2ST ≡ 1 (mod pn). Hence,

(3.7) becomes

1

pα

pα−1
∑

y=0

e

(−wy
pα

) pn−1
∑

x=0

e

(

S(x2 + 2Tpn−αyx)

pn

)

. (3.8)

Observe that

x2 + 2Tpn−αyx = (x+ pn−αTy)2 − p2(n−α)T 2y2.

As 2α ≤ n, we have e

(−p2(n−α)T 2y2

pn

)

= 1. Hence, with Proposition 2.5, (3.8) becomes

1

pα

pα−1
∑

y=0

e

(−wy
pα

) pn−1
∑

x=0

e

(

S(x+ pn−αTy)2

pn

)

=
G(S; pn)

pα

pα−1
∑

y=0

e

(−wy
pα

)

.

The results will now follow by Proposition 2.1.

We have a similar proposition for the even prime case.

Proposition 3.4. Suppose that α ∈ N0 is such that 2α + 2 ≤ n. Then for w ∈ Z, we have

2n−1
∑

x=0
x≡w (mod 2α)

e

(

sx2

2n

)

=















0 if w ̸≡ 0 (mod 2α)

G(s; 2n) if w ≡ 0 (mod 2α).

Proof. Similar to Proposition 3.3, with (3.7) we deduce that

2n−1
∑

x=0
x≡w (mod 2α)

e

(

sx2

2n

)

=
1

2α

2α−1
∑

y=0

e

(−wy
2α

) 2n−1
∑

x=0

e

(

S(x2 + 2n−αTxy)

2n

)

,
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where T is an odd integer satisfying ST ≡ 1 (mod 2n). As n ≥ 2α+2, we may complete the

square as before. Thus, it follows that

2n−1
∑

x=0
x≡w (mod 2α)

e

(

sx2

2n

)

=
G(S; 2n)

2α

2α−1
∑

y=0

e

(−wy
2α

)

,

and we deduce the statement of the proposition.

We mention that Proposition 3.4. is given as Lemma 3.1. in the paper by Alaca, Alaca

and Williams [1, pp. 83-85]. There is a similar reduction property to that of Proposition 3.2

for these types of Gauss sums.

Proposition 3.5. Suppose α, β ∈ N0 are such that 2α + β ≤ n. Then for w ∈ Z, we have

pn−1
∑

x=0
x≡w (mod pα)

e

(

Spβx2

pn

)

= pβ
pn−β−1
∑

x=0
x≡w (mod pα)

e

(

Sx2

pn−β

)

.

Proof. As in the proof of Proposition 2.3, we see that

pn−1
∑

x=0
x≡w (mod pα)

e

(

Spβx2

pn

)

=

pn−β−1
∑

x=0
x≡w (mod pα)

e

(

Sx2

pn−β

)

+ · · ·+
pn−1
∑

x=(pβ−1)pn−β

x≡w (mod pα)

e

(

Sx2

pn−β

)

(3.9)

Observe that as n ≥ 2α + β ≥ α + β, we have that

x+ pn−β ≡ w (mod pα) → x ≡ w (mod pα).

Thus, we reindex each sum by setting x 7→ x+ pn−β as many times as necessary. This yields
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pβ copies of the first sum in (3.9), that is

pβ
pn−β−1
∑

x=0
x≡w (mod pα)

e

(

sx2

pn−β

)

.

Proposition 3.6. Suppose that α, β ∈ N0 are such that 2α + β + 2 ≤ n. Then for w ∈ Z,

we have that

2n−1
∑

x=0
x≡w (mod 2α)

e

(

S2βx2

2n

)

= 2β
2n−β−1
∑

x=0
x≡w (mod 2α)

e

(

Sx2

2n−β

)

.

Proof. The proof is conducted in a similar manner to that of Proposition 3.5.

We mention that the conditions in Proposition 3.6. were chosen so that we would not

run over any quadratic Gauss sums with modulus 2. Hence, by Propositions 3.3 and 3.5,

and by Propositions 3.4 and 3.6, we deduce the following corollaries, respectively.

Corollary 3.1. Suppose α, β ∈ N0 are such that 2α + β ≤ n. Then for w ∈ Z, we have

pn−1
∑

x=0
x≡w (mod pα)

e

(

Spβx2

pn

)

=















0 if w ̸≡ 0 (mod pα)

pβG(S; pn−β) if w ≡ 0 (mod pα).

Corollary 3.2. Supppose α, β ∈ N0 are such that 2α+β+2 ≤ n. Then for w ∈ Z, we have

2n−1
∑

x=0
x≡w (mod 2α)

e

(

S2βx2

2n

)

=















0 if w ̸≡ 0 (mod 2α)

2βG(S; 2n−β) if w ≡ 0 (mod 2α).
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We will have occasion to consider Gauss sums of the following forms:

pn−1
∑

x=0

e

(

Spβ(pγx+ w)2

pn

)

,
2n−1
∑

x=0

e

(

S2β(2γx+ w)2

2n

)

(3.10)

and

pn−1
∑

x=0
x≡w1 (mod pα)

e

(

Spβ(pγx+ w2)
2

pn

)

,
2n−1
∑

x=0
x≡w1 (mod 2α)

e

(

S2β(2γx+ w2)
2

2n

)

, (3.11)

where α, β, γ ∈ N0 and w,w1 and w2 are arbitrary integers. We look to mimic the proof of

Proposition 3.3 to investigate the necessary restrictions on α, β, γ.

Consider the sum given in (3.10) for an odd prime p. If β ≥ n then clearly this sum

resolves to pn. Hence, suppose that β < n. Assume without loss of generality that 0 ≤ w <

pγ. We look to reindex (3.10) by setting y = pγx+w. As x runs through a complete residue

system modulo pn, y will obtain its values over the interval [0, pn+γ − 1]. Hence, we see that

(3.10) can be written as

pn−1
∑

x=0

e

(

Spβ(pγx+ w)2

pn

)

=

pn+γ−1
∑

y=0
y≡w (mod pγ)

e

(

Spβy2

pn

)

. (3.12)

Then following the proof of Proposition 3.3, we see that (3.12) becomes

pn+γ−1
∑

y=0
y≡w (mod pγ)

e

(

Spβy2

pn

)

=

pn+γ−1
∑

y=0

e

(

Spβy2

pn

)

1

pγ

pγ−1
∑

z=0

e

(

z(y − w)

pγ

)

=
1

pγ

pγ−1
∑

z=0

e

(−wz
pγ

) pn+γ−1
∑

y=0

e

(

Sy2

pn−β
+
yz

pγ

)

. (3.13)

In order to take pn−β as a common denominator, we require that n − β ≥ γ. Under this
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assumption (3.13) becomes

=
1

pγ

pγ−1
∑

z=0

e

(−wz
pγ

) pn+γ−1
∑

y=0

e

(

Sy2 + pn−β−γyz

pn−β

)

=
1

pγ

pγ−1
∑

z=0

e

(−wz
pγ

) pn+γ−1
∑

y=0

e

(

S(y2 + 2Tpn−β−γyz)

pn−β

)

, (3.14)

where T is some integer such that 2ST ≡ 1 (mod pn−β). We may complete the square given

in the innermost sum of (3.14). We have that

y2 + 2pn−β−γTyz = (y + pn−β−γTz)2 − p2(n−β−γ)T 2z2. (3.15)

Thus, (3.15) shows that if we have n ≥ 2γ + β, we have

y2 + 2pn−β−γTyz ≡ (y + pn−β−γTz)2 (mod pn−β).

Under the assumption n ≥ 2γ + β, with Propositions 2.5 and 3.2, (3.14) becomes

=
1

pγ

pγ−1
∑

z=0

e

(−wz
pγ

) pn+γ−1
∑

y=0

e

(

S(y + 2pn−β−γTz)2

pn−β

)

=
1

pγ

pγ−1
∑

z=0

e

(−wz
pγ

)

pβ+γ
pn−β−1
∑

y=0

e

(

S(y + 2pn−β−γTz)2

pn−β

)

= pβG(S; pn−β)

pγ−1
∑

z=0

e

(−wz
pγ

)

=















0 if w ̸≡ 0 (mod pγ)

pβ+γG(S; pn−β) if w ≡ 0 (mod pγ).

(3.16)

We arrive at (3.16) under the assumptions that n satisfies n > β and n ≥ 2γ + β. In the
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case where γ = 0, the condition w ≡ 0 (mod pγ) is trivially satisfied, and we have

pn−1
∑

x=0

e

(

Spβ(pγx+ w)2

pn

)

=

pn−1
∑

x=0

e

(

Spβ(x+ w)2

pn

)

= pβG(S; pn−β),

which holds for n = β. Thus, with (3.12)-(3.14) and (3.16) we have shown the following

proposition.

Proposition 3.7. Suppose β, γ ∈ N0 are such that n ≥ 2γ + β. Then for w ∈ Z we have

that

pn−1
∑

x=0

e

(

Spβ(pγx+ w)2

pn

)

=















0 if w ̸≡ 0 (mod pγ)

pβ+γG(S; pn−β) if w ≡ 0 (mod pγ).

The even prime case will follow in a similar fashion.

Proposition 3.8. Suppose β, γ ∈ N0 are such that n ≥ 2γ + β + 2. Then for w ∈ Z, we

have that

2n−1
∑

x=0

e

(

S2β(2γx+ w)2

2n

)

=















0 if w ̸≡ 0 (mod pγ)

2β+γG(S; 2n−β) if w ≡ 0 (mod pγ).

Proof. Let T be an integer such that ST ≡ 1 (mod 2n−β). Then as in the proof of Proposition

3.7, we deduce that

2n−1
∑

x=0

e

(

S2β(2γx+ w)2

2n

)

=
1

2γ

2γ−1
∑

z=0

e

(−wz
2γ

) 2n+γ−1
∑

y=0

e

(

S(y2 + 2n−β−γTyz)

2n−β

)

. (3.17)

In order to complete the square, we require that n − β − γ ≥ 1, which follows from n ≥

2γ + β + 2. Hence, we find that

y2 + 2n−β−γTyz = (y + 2n−β−γ−1Tyz)2 − 22(n−β−γ−1)Tyz.
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Thus, as n ≥ 2γ + β + 2, we see that (3.17) is given by

1

2γ

2γ−1
∑

z=0

e

(−wz
2γ

) 2n+γ−1
∑

y=0

e

(

s(y + 2n−β−γ−1tyz)2

2n−β

)

= 2βG(S; 2n−β)
2γ−1
∑

z=0

e

(−wz
2γ

)

,

which yields the statement of the proposition.

We use these same methods to evaluate (3.11).

Proposition 3.9. Suppose α, β, γ ∈ N0 are such that n ≥ 2(α+γ)+β. Then for w1, w2 ∈ Z,

we have that

pn−1
∑

x=0
x≡w1 (mod pα)

e

(

Spβ(pγx+ w2)
2

pn

)

=































0 if w2 ̸≡ 0 (mod pγ)

0 if w2 ≡ 0 (mod pγ) and w1 ̸≡ 0 (mod pα)

pβ+2γG(S; pn−β−2γ) if w1 ≡ 0 (mod pγ) and w1 ≡ 0 (mod pα).

Proof. Similar to the proof of Proposition 3.7, we have that

pn−1
∑

x=0
x≡w1 (mod pα)

e

(

Spβ(pγx+ w2)
2

pn

)

=

pn−α−1
∑

x=0

e

(

Spβ(pα+γx+ pγw1 + w2)
2

pn

)

=

pn+γ−1
∑

x=0
x≡pγw1+w2 (mod pα+γ)

e

(

Spβx2

pn

)

. (3.18)

Set w = pγw1+w2 and let T be an integer such that 2ST ≡ 1 (mod pn−β). As n ≥ 2(α+γ)+β,

we see that we can write (3.18) as

1

pα+γ

pα+γ−1
∑

y=0

e

(−yw
pα+γ

) pn+γ−1
∑

x=0

e

(

Sx2

pn−β
+

xy

pα+γ

)
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=
1

pα+γ

pα+γ−1
∑

y=0

e

(−yw
pα+γ

) pn+γ−1
∑

x=0

e

(

S(x2 + 2Tpn−β−α−γxy)

pn−β

)

=
1

pα+γ

pα+γ−1
∑

y=0

e

(−yw
pα+γ

) pn+γ−1
∑

x=0

e

(

S(x+ pn−β−α−γTy)2

pn−β

)

=
pβ+γG(S; pn−β)

pα+γ

pα+γ−1
∑

y=0

e

(−yw
pα+γ

)

. (3.19)

Hence, the sum given in (3.19) will be non-zero whenever w = pγw1 + w2 ≡ 0 (mod pα+γ).

Suppose that w2 ̸≡ 0 (mod pγ). Assume, by way of contradiction, that w1 is some integer

satisfying pγw1 + w2 ≡ 0 (mod pγ+α). But this implies there exists some integer z such

that zpα+γ = pγw1 + w2 which implies pγ | w2, a contradiction. Thus, if w2 ̸≡ 0 (mod pγ),

pγw1 + w2 ̸≡ 0 (mod pγ+α) and so (3.19) is zero in this case.

Hence, suppose instead w2 ≡ 0 (mod pγ) and write w2 = pγw′
2. By Proposition 3.7, as

n ≥ 2(α + γ) + β, we have that

pn−1
∑

x=0
x≡w1 (mod pα)

e

(

Spβ(pγx+ w2)
2

pn

)

=

pn−1
∑

x=0
x≡w1 (mod pα)

e

(

Spβ+2γ(x+ w′
2)

2

pn

)

=















0 if w1 ̸≡ 0 (mod pα)

pβ+2γG(S; pn−β−2γ) if w1 ≡ 0 (mod pα).

Proposition 3.10. Suppose α, β, γ ∈ N0 are such that n ≥ 2(α + γ) + β + 2. Then for

w1, w2 ∈ Z we have

2n−1
∑

x=0
x≡w1 (mod 2α)

e

(

S2β(2γx+ w2)
2

2n

)
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=































0 if w2 ̸≡ 0 (mod 2γ)

0 if w2 ≡ 0 (mod 2γ) and w1 ̸≡ 0 (mod 2α)

2β+2γG(S; 2n−β−2γ) if w2 ≡ 0 (mod 2γ) and w1 ≡ 0 (mod 2α).

Proof. The proof follows in the same fashion as Proposition 3.10.

Proposition 3.11. For m ∈ N0, we have

(a) G(S; pn+2m) = pm ·G(S; pn),

(b) if n > 2m, G(S; pn−2m) =
1

pm
G(S; pn),

(c) if n > 2m, G(Sp2m; pn) = pm ·G(S; pn),

(d) if n > 2m, G(Sp2m; pn) = G(S; pn+2m),

(e) if n > m, pmG(S; pn−m) = G(S; pn+m).

Proof. By Theorem 3.1 and Proposition 2.15,

G(S; pn+2m) =

(

S

p

)n+2m

ı̇

(

pn+2m−1
2

)2

p
n+2m

2 = pm
(

S

p

)n

ı̇

(

pn−1
2

)2

p
n
2

= pmG(S; pn),

which shows (a). For (b), by Theorem 3.1 we see that if n > 2m,

G(S; pn−2m) =

(

S

p

)n−2m

ı̇

(

pn−2m−1
2

)2

p
n−2m

2 =
1

pm

(

S

p

)n

ı̇

(

pn−1
2

)2

p
n
2

=
1

pm
G(S; pn).

Similarly, for (c), if n > 2m, then by Proposition 3.2 and part (b) we have

G(Sp2m; pn) = p2mG(S; pn−2m) = pmG(S; pn).
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Part (d) follows immediately by equating (a) and (c). Finally, for part (e), we have

pmG(S; pn−m) = pm
(

S

p

)n−m

ı̇

(

pn−m−1
2

)2

p
n−m

2 =

(

S

p

)n+m

ı̇

(

pn+m−1
2

)2

p
n+m

2 = G(S; pn+m).

We have similar cancellation properties for the even prime case.

Proposition 3.12. For m ∈ N0, we have

(a) G(S; 2n+2m) = 2mG(S; 2n),

(b) if n > 2m+ 1 then G(S; 2n−2m) =
1

2m
G(S; 2n),

(c) if n > 2m+ 1 then G(S22m; 2n) = 2mG(S; 2n),

(d) if n > 2m+ 1 then G(S22m; 2n) = G(S; 2n+2m),

(e) if n > m+ 1, then 2mG(S; 2n−m) = G(S; 2n+m).

Proof. For part (a), by Theorem 3.1, we have

G(S; 2n+2m) =

(

2

S

)n+2m
(

1 + ı̇S
)

2
n+2m

2 = 2mG(S; 2n).

For part (b), if n > 2m+ 1, then G(S; 2n−2m) ̸= 0 and so by Theorem 3.1 we have

G(S; 2n−2m) =

(

2

S

)n−2m

(1 + ı̇S)2
n−2m

2 =
1

2m
G(S; 2n).

Similarly, for part (c), if n > 2m+ 1, then by Proposition 3.2 and part (b),

G(S22m; 2n) = 22mG(S; 2n−2m) = 2mG(S; 2n).
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Part (d) follows from parts (a) and (c). Finally, part (e) is given by

2mG(S; 2n−m) = 2m(1 + ı̇S)

(

2

S

)n−m

2
n−m

2 = (1 + ı̇S)

(

2

S

)n+m

2
n+m

2 = G(S; 2n+m).

Finally, due to the structure of our Gauss sums, we may make some simplifications for

certain coefficients.

Proposition 3.13. We have

G(S2; pn) = G(1; pn) and G(S−1; pn) = G(S; pn).

Proof. From Theorem 3.1, we have

G(S2; pn) =

(

S2

p

)n

ı̇

(

pn−1
2

)2

p
n
2 = ı̇

(

pn−1
2

)2

p
n
2 = G(1; pn).

Similarly, we have

G(S−1; pn) =

(

S−1

p

)n

ı̇

(

pn−1
2

)2

p
n
2 =

(

S2

p

)n(
S−1

p

)n

ı̇

(

pn−1
2

)2

p
n
2

=

(

S

p

)n

ı̇

(

pn−1
2

)2

p
n
2 = G(S; pn).

Proposition 3.14. We have

G(S2; 2n) = G(1; 2n) and G(S−1; 2n) = G(S; 2n).

Proof. Any odd number S satisfies S2 ≡ 1 (mod 4). Hence, by Theorem 3.1 we have

G(S2; 2n) =

(

2n

S

)2

(1 + ı̇S
2

)2
n
2 = (1 + ı̇)2

n
2 = G(1; 2n).
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Similarly, by Theorem 3.1, we have

G(S−1; 2n) = (1 + ı̇S
−1

)

(

2

S−1

)n

2
n
2 .

We observe that S ≡ S−1 (mod 4) and so we have (1 + ı̇S
−1
) = (1 + ı̇S). Further, any odd

number modulo 8 is its own inverse. Hence, by Proposition 2.11, we have S−1 ≡ S (mod 8),

which means

(

2

S−1

)

= (−1)

(

(S−1)2−1
8

)

= (−1)

(

S2−1
8

)

=

(

2

S

)

,

and hence we conclude the statement of the proposition.



Chapter 4

Diagonalization of a Quadratic Form

It is well known that under certain conditions, an integral quadratic form Qr can be expressed

as a diagonal form Qr =
n
∑

i=1

tiy
2
i where ti ∈ Q and yi ∈ Q[xi, . . . , xr]; see [27, p. 69]. Our

method is to diagonalize a quadratic form in this manner, then multiply both sides of this

equation by a common denominator to arrive at an expression with integer coefficients.

4.1 Matrix Notation

For the following two sections, we will use capital letters to denote matrices. For any matrix

M , we let MT denote its transpose. From now on we let M denote an n × n integral

symmetric matrix, and write this as

M =



















t11 t12 . . . t1n

t21 t22 t2n
...

. . .
...

t2n tn2 · · · tnn



















,

where tij = tji for all 1 ≤ i ≤ j ≤ n, and due to symmetry we label our elements using the

upper triangular notation. For convenience, we let ti = tii for each i. For i = 1, . . . , n, we
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let Mi denote the ith leading principal submatrix of M , i.e.,

Mi =



















t1 t12 . . . t1i

t12 t2 t2i
...

. . .
...

t1i t2i · · · ti



















.

The determinant of Mi is called the ith principal minor of M , and we denote this by mi =

det(Mi). For convenience, we let m0 = 1. Observe that mn is the determinant of M . We

call the product of the first n− 1 minors of M the associated minor product, and denote this

by

∆ =
n−1
∏

i=1

mi.

Observe that the associated minor product of a 1 × 1 matrix M is one. For this reason we

generally assume n > 1. Note that if N is any n × n matrix, we may write Ni to indicate

the ith principal submatrix of N .

4.2 Decomposition of a Symmetric Matrix

We look to express the matrix M as the matrix product LDLT =M , where L is unit lower

triangular and D is diagonal. As M is symmetric, we will show that such matrices exist,

and then solve for the entries recursively. Our major assumption on the matrix M is that

its associated minor product is non-zero.

Theorem 4.1. If ∆ ̸= 0, then there exists a unique diagonal matrix D and a unique unit

lower triangular matrix L such that LDLT =M .

Proof. By Theorem 3.2.1 from [45, p. 97], it is given that M has an LU factorization if

∆ ̸= 0, where L is unit lower triangular and U is upper triangular. In particular, Corollary
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2 of [32, p. 35] tells us that this LU factorization is unique. Subsequently, Algorithm 4.1.2

of [45, p. 138] tells us if M is symmetric with an LU factorization, there exists a diagonal

matrix D such that M = LDLT . Thus, we deduce that D must also be unique which shows

the theorem.

We assume from now on that ∆ ̸= 0. Hence, let L and D be matrices with rational

entries such that LDLT =M . We write D = (di) and, due to symmetry, we write L = (ℓij)

where

ℓij =































ℓji if i < j

1 if i = j

0 if i > j

.

We emphasize that ℓij ∈ Q. We first determine an expression for the elements di and

subsequently show that the elements ℓij will each have a common denominator with respect

to i.

Lemma 4.1. For i = 1, . . . , n, we have that Mi = LiDi(Li)
T .

Proof. Without loss of generality, we fix i arbitrarily such that 1 ≤ i ≤ n − 1. We may

express the decomposition M = LDLT in block matrix notation so that

M =







Mi Ai

ATi Bi






=







Li 0

Pi Qi













Di 0

0 Ci













LTi P T
i

0 QT
i






= LDLT , (4.1)

where the matrices Bi, Qi and Ci are of size n− i×n− i, and Ai and P
T
i are of size i×n− i.

In particular, Mi, Li and Di are all i× i matrices, and correspond to the ith leading principal

submatrix of their respective matrices. Hence, from (4.1) we take the block products to find







Mi Ai

ATi Bi






=







LiDiL
T
i LiDiP

T
i

(LiDiP
T
i )

T QiCiQ
T
i






.
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Thus, by equating the blocks we see that Mi = LiDiL
T
i .

Lemma 4.2. For i = 1, . . . , n, we have di =
mi

mi−1

.

Proof. From Lemma 4.1, and as L is unit lower triangular, we see that for i such that

1 ≤ i ≤ n, we have

det(Mi) = det(LiDi(Li)
T ) = det(Di) =

i
∏

k=1

dk.

Thus, for i = 1, . . . , n we have mi = d1 · · · di. Hence, for a given i, as ∆ ̸= 0 we have

di =
mi

di−1 · · · d1
= mi ·

mi−2

mi−1

· mi−3

mi−2

· · · · · m0

m1

=
mi

mi−1

.

where we have tacitly used the idea that each di is recursively generated.

Theorem 4.2. For 1 ≤ i < j ≤ n we have miℓij ∈ Z.

Proof. We have that M is a symmetric matrix with non-zero associated minor product.

Through standard Gaussian elimination, we can row reduceM to an upper triangular matrix

through the use of scalar multiplication and adding a multiple of one row to another. In this

fashion, the elements strictly above the diagonal will be integers, as they will be the result

of sums and products of integers. This standard elimination procedure will yield an upper

triangular matrix U such that the ith diagonal entry corresponds to the ith leading principal

minor of M .

If we let E1, . . . , Ek denote the elementary matrices associated with this Gaussian elimi-

nation, we have that

(Ek · · ·E1LD)LT = U.

We can write U as the product U = D′U ′, where D′ is a diagonal matrix with unit entries

along each diagonal except for the determinant mr in the nth diagonal entry, and U ′ agrees
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with the matrix U in every entry except for a 1 inserted in the nth diagonal. Hence, we

can transform U ′ into an upper triangular matrix by dividing the ith row by mi, for i =

1, . . . , n − 1. By the equation, it’s clear that this unit upper triangular matrix agrees with

LT . For 1 ≤ i < j ≤ n, let mij denote the strictly upper triangular element of U ′. Hence we

have that

ℓij =
mij

mi

.

It follows that miℓij ∈ Z for all 1 ≤ i < j ≤ n.

We note that, in light of Theorem 4.2, for 1 ≤ i < j ≤ n we let ℓij =
mij

mi

, for some

mij ∈ Z, and we refer to mij as the mixed minors of M . Using the combinatorial definition

of the determinant, it will follow from the diagonalization in Theorem 4.2 that, for 1 ≤ i <

j ≤ r, mij is the i
th leading principal minor of the matrix obtained by interchanging columns

i and j in M . In other words, if we interchange columns i and j in M , then mij will be the

determinant of the i× i leading principal submatrix of this matrix.

4.3 Diagonalization of a Quadratic Form

Let r ∈ N. We let Qr denote an integral quadratic form in r variables, given by

Qr =
∑

1≤i≤j≤r

tijxixj ∈ Z[x1, . . . , xn].
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For convenience, we let ti = tii for each i = 1, . . . , r. We letM denote the integral, symmetric

two’s in matrix associated with Qr, which we write as

M =



















2t1 t12 . . . t1n

t12 2t2 t2n
...

. . .
...

t1n t2n · · · 2tn



















.

In this fashion, Qr can be written as the 1× 1 matrix product

Qr = [x1 . . . xr]
M

2
[x1 . . . xr]

T .

As above we let m1, . . . ,mr denote the r leading principal minors of M . If mi ̸= 0 we write

mi = pαiAi for some αi ∈ N0 and Ai ∈ Z such that (Ai, p) = 1. Observe that if p = 2,

we have m1 = 2t1 = 2α1A1 so that α1 ≥ 1 in this case. Otherwise, for p odd, we have

m1 = pα1A1 where 2 | A1. For notational convenience we set m0 = pα0A0 so that α0 = 0 and

A0 = 1. As above, we let ∆ =
r−1
∏

i=1

mi, and we refer to ∆ as the associated minor product of

Qr. We will be primarily concerned with the prime divisibility of the first r − 1 minors of

Qr. Thus, if ∆ ̸= 0 we set

α =
r−1
∑

i=1

αi and A =
r−1
∏

i=1

Aj,

so that ∆ = pαA.

Hence, assume ∆ ̸= 0. By Theorems 4.1-4.3, we write M = LDLT , where D =

(

mi

mi−1

)

and for 1 ≤ i < j ≤ r we have L =

(

mij

mi

)

. By our matrix product expression for Qr, we

have

Qr = [x1 x2 . . . xr]L
D

2
LT [x1 x2 . . . xr]

T
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= [X1 X2 . . . Xr]

(

mi

2mi−1

)

[X1 X2 . . . Xr]
T ,

where

Xi = xi +
mii+1

mi

xi+1 + . . .+
mir

mi

xr

=
1

mi

(mixi +mii+1xi+1 + . . .+mirxr) .

Observe that Xr = xr. Thus, we see that

Qr =
r
∑

i=1

mi

2mi−1

X2
i =

r
∑

i=1

1

2mi−1mi

(miXi)
2. (4.2)

For i = 1, . . . , r − 1 we set

yi = miXi ∈ Z[xi, xi+1, . . . , xr]. (4.3)

With this notation, we see that (4.2) becomes

Qr =
r−1
∑

i=1

y2i
2mi−1mi

+
mrx

2
r

2mr−1

. (4.4)

We multiply (4.4) by the least common denominator 2∆ to get

2∆Qr =
r−1
∑

i=1

∆y2i
mi−1mi

+
∆rx

2
r

mr−1

,

or, with ∆ = pαA,

2ApαQr =
r−1
∑

i=1

A

Ai−1Ai
pα−αi−αi−1y2i +

Amr

Ar−1

pα−αr−1x2r. (4.5)

We have expressed our quadratic form as a diagonal form with integer coefficients. For
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i = 1, . . . , r − 1, the variable yi is a linear expression in r − i + 1 variables with integer

coefficients. Hence, we reduce (4.5) modulo a prime power to arrive at the following theorem.

Theorem 4.3. Let Qr be an integral quadratic form with associated minor product ∆ ̸= 0.

Then for n ∈ N we have

pαQr ≡
r−1
∑

i=1

(2AiAi−1)
−1pα−αi−αi−1y2i + (2Ar−1)

−1mrp
α−αr−1x2r (mod pn+α),

when p is an odd prime, and

2α+1Qr ≡
r−1
∑

i=1

(AiAi−1)
−12α−αi−αi−1y2i + (Ar−1)

−1mr2
α−αr−1x2r (mod 2n+α+1).

Proof. The statement of the theorem follows by reducing (4.5) modulo pn+α and modulo

2n+α+1, respectively.



Chapter 5

Main Results

In this chapter we present our main results. We maintain the notation previously estab-

lished. In particular, we emphasize that p will denote a prime of arbitrary parity. Further,

unconditionally, we have n, r ∈ N and S ∈ Z is such that (S, p) = 1. Additionally, recall that

for a given quadratic form in r variables, for i = 1, . . . , r, mi denotes the i
th leading princi-

pal minor of an integral symmetric matrix associated with the form. Further, the product

∆ =
r−1
∏

i=1

mi is called the associated minor product of a quadratic form. We let

Qr =
r
∑

i=1

tix
2
i +

∑

1≤i<j≤r

tijxixj ∈ Z[x1, . . . , xn]

denote an integral quadratic form with associated minor product ∆ ̸= 0. With this, we

define the quadratic form Gauss sum by

G(Qr;S; p
n) =

pn−1
∑

x1,...,xr=0

e

(

SQr

pn

)

.

We have a basic reduction property for the quadratic form Gauss sum, similar to Proposi-

tion 3.2.
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Proposition 5.1 (The Extended Reduction Property). For α ∈ N0 we have that

G(Qr;Sp
α; pn) =















pnr if α ≥ n

pαr ·G(Qr;S; p
n−α) if α < n.

Proof. If α < n, as the exponential e

( ·
pn−α

)

is periodic modulo pn−α, similar to Proposi-

tions 2.3 and 3.2, we see that

G(Qr;Sp
α; pn) =

pn−1
∑

x1,...,xr=0

e

(

SQr

pn−α

)

= (pα)r
pn−α−1
∑

x1,...,xr=0

e

(

SQr

pn−α

)

= pαrG(Qr;S; p
n−α).

Otherwise, if α ≥ n, then we have G(Qr;Sp
α; pn) =

pn−1
∑

x1,...,xr=0

1 = pnr.

Similar to (3.6), it follows that for any α ∈ N0 we have that

G(Qr; s; p
n) =

1

pαr
G(Qr; sp

α; pn+α). (5.1)

Further, we see that Proposition 3.2 is the special case of Proposition 5.1 where r = 1. In

light of Proposition 5.1, we may assume without loss of generality that the coefficients of

Qr are mutually relatively prime, that is, there is no prime number which divides every

coefficient.

We proceed by first evaluating the binary and ternary quadratic cases. These evaluations

will reveal our methods and demonstrate the difficulties in generalizing G(Qr; s; p
n) for larger

r, when the coefficients of Qr are arbitrarily chosen. The binary quadratic form Gauss sum

was recently investigated by Alaca, Alaca and Williams [1]. We show how we may attain

their results using Theorem 5.1 and 5.2 below.
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5.1 Binary Quadratic Form Gauss Sums

For this section, we assume a, b, c ∈ Z are arbitrary integers such that a ̸= 0 and (a, b, c) = 1.

Hence, we let

Q2 = ax21 + bx1x2 + cx22.

We let 2a = pαA for A ∈ Z coprime to p and α ∈ N0. Observe that if p = 2, we have α ≥ 1

in this case. Finally, we may choose our coefficients a and c such that if pm || a for some

m ∈ N0, then p
m | c.

Theorem 5.1. Let p be an odd prime. Then for n ∈ N we have

G(Q2;S; p
n) =















pn if α ≥ n

G(2SA; pn−α) ·G(2SAm2; p
n+α) if α < n.

Proof. Let β ∈ N0 and B ∈ Z be such that b ≡ pβB (mod pn+α). Suppose first that α ≥ n.

Under our assumptions, this means β = 0 and Q2 ≡ Bx1x2 (mod pn). Hence, by Proposition

2.2 we have

G(Qr;S; p
n) =

pn−1
∑

x1,x2=0

e

(

SBx1x2
pn

)

= pn.

Thus, suppose α < n. By Theorem 4.3, we have

pαQ2 ≡ (2A)−1y21 + (2A)−1m2y
2
2 (mod pn+α), (5.2)

where y1 = 2ax1 + bx2 and y2 = x2. Hence, by (5.1) and (5.2), it follows that

G(Q2;S; p
n) =

1

p2α
G(Q2;Sp

α; pn+α)
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=
1

p2α

pn+α−1
∑

x1,x2=0

e

(

SpαQ2

pn+α

)

=
1

p2α

pn+α−1
∑

x2=0

e

(

S(2A)−1m2x
2
2

pn+α

) pn+α−1
∑

x1=0

e

(

S(2A)−1y21
pn+α

)

. (5.3)

Observe that y1 ≡ pαAx1 + pβBx2 (mod pn+α). As n > α, by Proposition 3.8, the sum

indexed by x1 is non-zero if and only if pβBx2 ≡ 0 (mod pn+α). Hence, with Propositions

3.11(b) and 3.13, (5.3) will simplify to

G(2AS; pn−α)

pn+α−1
∑

x2=0
pβx2≡0 (mod pα)

e

(

S(2A)−1m2x
2
2

pn+α

)

. (5.4)

Therefore, if β ≥ α, by Proposition 3.13, (5.4) will simplify toG(2AS; pn−α)·G(2ASm2; p
n+α).

Thus, suppose β < α. This implies α ≥ 1 and so we must have β = 0 in this case. In par-

ticular, this means that (m2, p) = 1. Hence, as n > α, by Corollary 3.1, (5.4) will again

simplify to G(2AS; pn−α) ·G(2ASm2; p
n+α).

Theorem 5.1 agrees with Theorem 1.1 of Alaca, Alaca and Williams [1, p. 67] for α = 0

and 4ac − b2 ̸= 0. Under these assumptions, we have m2 = pα2A2 for some α2 ∈ N0 and

A2 ∈ Z coprime to p. Hence, along with Theorem 3.1 and Proposition 2.16, Theorem 5.1

yields

G(Q2;S; p
n) = G(2SA; pn) ·G(2SAm2; p

n)

=

(

2SA

p

)n

ı̇

(

pn−1
2

)

p
n
2 ·G(2SApα2A2; p

n)

=

(

2SA

p

)n

ı̇

(

pn−1
2

)

p
n
2 ·















pn if α2 ≥ n

p
n+α2

2

(

2SAA2

p

)n+α2

ı̇

(

pn+α2−1
2

)2

if α2 ≤ n
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=



















(

2SA

p

)n

p
3n
2 ı̇

(

pn−1
2

)2

if α2 ≥ n
(

2SA

p

)α2
(

A2

p

)n+α2

pn+
α2
2

(−1

p

)(α2+1)n

ı̇

(

pα2−1
2

)2

if α2 ≤ n.

Under our notation, we have 2a = A, and so the above expression will become

G(Q2;S; p
n) =



















(

aS

p

)n

pn
√

(−1)(pn−1)/2pn if α2 ≥ n
(−1

p

)(α2+1)n(
aS

p

)α2
(

A2

p

)α2+n

pn
√

(−1)(p
α2−1)/2pα2 if α2 ≤ n.

This corresponds exactly to the expression given by Alaca, et al. We will determine similar

explicit formulae in Corollary 5.1 below.

We look now at the case where p is a power of 2. Recall from Definition 2.5 that

O(n) =
(1 + (−1)n)

2
=















1 if n even

0 if n odd.

Theorem 5.2. For n ∈ N, we have

G(Q2;S; 2
n) =































2n if α ≥ n > 1

2(−1)cO(m2 + 1) if α = n = 1

1

4
G(SA; 2n+1−α) ·G(SAm2; 2

n+1+α) if α < n.

Proof. Recall 2a = 2αA so that α = 1 implies a is odd. As well, without loss of generality

we have 2α−1 | c. Let β ∈ N0 and B ∈ Z be such that b ≡ 2βB (mod 2n+α+1), for B odd.

Similar to the proof of Theorem 5.1, if α > n, as (a, b, c) = 1 it will follow that β = 0 and

Q2 ≡ Bx1x2 (mod 2n). Hence, by Proposition 2.2,

G(Q2;S; 2
n) =

2n−1
∑

x1,x2=0

e

(

SBx1x2
2n

)

= 2n.
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Thus, suppose that α ≤ n. By Theorem 4.3 we have that

2α+1Qr ≡ A−1y21 + A−1m2y
2
2 (mod 2n+α+1).

Hence, we deduce that

G(Q2;S; 2
n) =

1

22(α+1)

2n+α+1−1
∑

x2=0

e

(

SA−1m2x
2
2

2n+α+1

) 2n+α+1−1
∑

x1=0

e

(

SA−1y21
2n+α+1

)

. (5.5)

We would like to use Proposition 3.8 to evaluate the innermost sum of (5.5). However, the

case n = α will not satisfy the conditions of this proposition. Thus, we treat this case

separately.

Suppose α = n. By definition, we have

G(Q2;S; 2
n) =

2n−1
∑

x1,x2=0

e

(

S(2n−1Ax21 + bx1x2 + cx22)

2n

)

=
2n−1
∑

x2=0

e

(

Scx22
2n

) 2n−1
∑

x1=0

(−1)x1e

(

Sbx1x2
2n

)

=
2n−1
∑

x2=0

e

(

Scx22
2n

)







2n−1
∑

x1=0
x1 even

e

(

Sbx1x2
2n

)

−
2n−1
∑

x1=0
x1 odd

e

(

Sbx1x2
2n

)







=
2n−1
∑

x2=0

e

(

Scx22
2n

)






2

2n−1
∑

x1=0
x1 even

e

(

Sbx1x2
2n

)

−
2n−1
∑

x1=0

e

(

Sbx1x2
2n

)







=
2n−1
∑

x2=0

e

(

Scx22
2n

)









2
2n−1−1
∑

x1=0

e

(

Sbx1x2
2n−1

)

−
2n−1
∑

x1=0
bx2≡0 (mod 2n)

1









=
2n−1
∑

x2=0

e

(

Scx22
2n

)









2
2n−1−1
∑

x1=0
bx2≡0 (mod 2n−1)

1−
2n−1
∑

x1=0
bx2≡0 (mod 2n)

1









. (5.6)

Write c = 2n−1c′ for some c′ ∈ Z which means e

(

Scx22
2n

)

= (−1)c
′x2 . Hence, we write (5.6)
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as

=
2n−1
∑

x2=0
x2 even









2
2n−1−1
∑

x1=0
bx2≡0 (mod 2n−1)

1−
2n−1
∑

x1=0
bx2≡0 (mod 2n)

1









+ (−1)c
′

2n−1
∑

x2=0
x2 odd









2
2n−1−1
∑

x1=0
b≡0 (mod 2n−1)

1−
2n−1
∑

x1=0
b≡0 (mod 2n)

1









. (5.7)

If α = n = 1, then c′ = c in this case, and (5.7) simplifies to

(

2−
1
∑

x1=0

1

)

+ (−1)c






2−

1
∑

x1=0
b even

1






=















2(−1)c if b odd

0 if b even.

(5.8)

As b is odd if and only if m2 is odd, we see that (5.8) simplifies to 2(−1)cO(m2 + 1), which

agrees with the statement of the theorem. Otherwise, for α = n > 1, this implies a and c

are even, so that we must have b odd. Hence, (5.7) simplifies to

2
2n−1
∑

x2=0
x2≡0 (mod 2n−1)

2n−1 −
2n−1
∑

x2=0
x2≡0 (mod 2n)

2n = 2n · 2− 2n = 2n. (5.9)

We see that (5.9) agrees with the statement of the theorem in this case.

Thus, we now assume that n > α and in particular this means n ≥ 2. From Proposition

3.8, the sum indexed by x1 in (5.5) is non-zero whenever 2βBx2 ≡ 0 (mod 2α). Hence, by

Propositions 3.8, 3.12(b) and 3.14, (5.5) will simplify to

G(SA; 2n−α+1)

22

2n+α+1
∑

x2=0
2βx2≡0 (mod 2α)

e

(

SA−1m2x
2
2

2n+α+1

)

. (5.10)

If β ≥ α, then with Proposition 3.14, (5.10) simplifies to
1

4
G(SA; 2n−α+1) ·G(SAm2; 2

n+α+1).

Thus, suppose β < α. Observe that we must have α ≥ 1 which means β = 0 in this case.
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Hence, as α + 1 ≤ n, with Corollary 3.2, (5.10) will again simplify to
1

4
G(SA; 2n−α+1) ·

G(SAm2; 2
n+α+1).

Both Theorem 1.2 [1, p. 69] and Theorem 1.3 [1, p. 70] of Alaca, et al. will agree with

Theorem 5.2 above under certain conditions. Suppose first that 4ac − b2 ̸= 0, a is odd and

b is even. Write 4ac − b2 = 2α2A2 for α2 ≥ 2 and A2 ∈ Z odd. Observe as well that under

these assumptions, α = 1. Hence, with Theorem 3.1, Theorem 5.2 yields

G(Q2;S; p
n) =















2(−1)cO(2α2A2 + 1) if n = 1

1

4
G(SA; 2n) ·G(SA2α2A2; 2

n+2) if n > 1

=















0 if n = 1

1
4

(

2
SA

)n
(1 + ı̇SA)2

n
2 ·G(SA2α2A2; 2

n+2) if n > 1

=















































0 if n = 1

1
4

(

2
SA

)n
(1 + ı̇SA)2

n
2 · 2n+2 if α2 ≥ n+ 2

0 if n+ 1 = α2

1
4

(

2
SA

)n
(1 + ı̇SA)2

n
2 · 2n+2+α2

2

(

2
SAA2

)n+α2

(1 + ı̇SAA2) if α2 ≤ n

=















































0 if n = 1

(

2
SA

)n
(1 + ı̇SA)2

3n
2 if 2 ≤ n ≤ α2 − 2

0 if n = (α2 − 2) + 1 ≥ 2

(

2
SA

)α2
(

2
A2

)n+α2

(1 + ı̇SA)(1 + ı̇SAA2)2n+
(α2−2)

2 if n ≥ (α2 − 2) + 2.

(5.11)

We see that (5.11) agrees with Theorem 1.2 of Alaca, et al. where α2 − 2 corresponds to l

in [1, p. 69].

Suppose now that b is odd and we recall that (a, b, c) = 1 so that m2 = 4ac− b2 = A2 is
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odd. In particular, we see that A2 ≡ 3 (mod 4). Theorem 1.3 of Alaca, et al. states

G(Q2;S; 2
n) = (−1)acn2n. (5.12)

It’s clear that if α ≥ n > 1, Theorem 5.2 will agree with (5.12). If α = n = 1, then a is odd

so (−1)a = (−1) and as b is odd we have O(m2 + 1) = 1. Thus, from Theorem 5.2, we have

G(Q2;S; 2) = 2(−1)c, which agrees with (5.12). Otherwise, for α < n, along with Theorem

3.1, Theorem 5.2 yields

G(Q2;S; 2
n) =

1

4

(

2

SA

)n+1+α

(1 + ı̇SA)2
n+1−α

2 ·
(

2

SAA2

)n+α+1

(1 + ı̇SAA2)2
n+1+α

2

= 2n−1

(

2

A2

)n+α+1

(1 + ı̇SA)(1− ı̇SA)

= 2n
(

2

A2

)n+α+1

. (5.13)

If both a and c are odd, then modulo 8 we have A2 ≡ 4ac−b2 ≡ 3 (mod 8). As a is odd, α = 1

and thus

(

2

A2

)n+α+1

= (−1)n, which shows that (5.13) agrees with (5.12). Otherwise, if at

least one of a or c is even, A2 ≡ 7 (mod 8) and

(

2

A2

)

= 1. We see that (5.12) and (5.13)

will yield the same expression. Hence, regardless of parity of our coefficients, Theorem 5.2

will yield the results of Alaca, et al. We will determine explicit expressions similar to (5.13)

in Corollary 5.2 below.

We provide a brief example to demonstrate our method. Set Q2 = x21 + x1x2 + x22.

To evaluate any quadratic form Gauss sum we first look at the minors of the associated

symmetric matrix. The symmetric matrix associated with Q2 is given by







2 1

1 2






. Thus,

m1 = 2 and m2 = 3. We now proceed by specifying the prime p and express our minors

using prime power notation. As usual, S will be an arbitrary integer coprime to p.

Suppose first p is odd. Write m1 = pαA and we see that α = 0 and m1 = A in this case.
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Hence, for n ∈ N, Theorem 5.1 yields

G(Q2;S; p
n) = G(2Sm1; p

n) ·G(2Sm1m2; p
n) = G(22S; pn) ·G(22 · 3S; pn)

= G(S; pn) ·G(3S; pn),

where we have used Proposition 3.13 to simplify as needed. If we expand this using Theorem

3.1, we find that

G(3S; pn) ·G(S; pn) =















3 ·G(S; 3n−1) ·G(S; 3n) if p = 3

G(3S; pn) ·G(S; pn) if p > 3

=



















3n+
1
2

(

S

3

)

ı̇ if p = 3
(−3

p

)n

pn if p > 3.

Note that this is exactly the statement of Corollary 2.1(i) of Alaca, et al. [1, p. 75].

For Theorem 5.2, we observe that as m1 = 2, we have α = 1 and A = 1 in this case.

Assume for the sake of discussion that n > 1. Thus, Theorem 5.2 yields

G(Q2;S; 2
n) =

1

4
G(SA; 2n+1−α) ·G(SAm2; 2

n+2) =
1

4
G(S; 2n) ·G(3S; 2n+2).

As before, if we expand this using Theorem 3.1, we have that

1

4
G(S; 2n) ·G(3S; 2n+2) =

1

4

(

2

S

)n

(1 + ı̇S)2
n
2 ·
(

2

3S

)n

(1 + ı̇3S)2
n+2
2

= 2n−1

(

2

3

)n

(1 + ı̇S)(1− ı̇S) = 2n(−1)n.

This agrees with Corollary 3.2(i) of Alaca, et al. [1, p. 89]. One can recover the remaining

cases of Corollary 3.2 given by Alaca, et al. using Theorem 5.2.

Continuing in this manner, we now use Theorem 3.1 to derive exact formulas for the
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binary quadratic form Gauss sums.

Corollary 5.1. Let p be an odd prime. Let δ ∈ N0 and D ∈ Z be such that (D, p) = 1 and

pδD ≡ m2 (mod pn+α). Then for α < n, we have

G(Q2;S; p
n) =















p
3n+α

2

(

2SA
p

)n+α

ı̇

(

pn+α−1
2

)2

if δ = n+ α

pn+
δ
2

(

2SA
p

)δ (
D
p

)n+α+δ (
−1
p

)(δ+1)(n+α)

ı̇

(

pδ−1
2

)2

if δ < n+ α.

Proof. By Theorem 3.1 and Theorem 5.1, we have that G(Q2;S; p
n) is given by

G(2SADpδ; pn+α) ·G(2SA; pn−α) = G(2SADpδ; pn+α) ·
(

2SA

p

)n+α

ı̇

(

pn+α−1
2

)2

p
n−α
2 . (5.14)

If δ = n+ α, then by Proposition 3.2, (5.14) will simplify to

p
3n+α

2

(

2SA

p

)n+α

ı̇

(

pn+α−1
2

)2

.

Otherwise, if δ < n+ α, by Proposition 3.2 and Theorem 3.1, we have

G(2SADpδ; pn+α) = pδG(2SAD; pn+α−δ)

= pδ
(

2SAD

p

)n+α+δ

ı̇

(

pn+α+δ−1
2

)2

p
n+α−δ

2

= p
n+α+δ

2

(

2SAD

p

)n+α+δ

ı̇

(

pn+α+δ−1
2

)2

. (5.15)

We substitute (5.15) into (5.14), which yields

pn+
δ
2

(

2SA

p

)δ (
D

p

)n+α+δ

ı̇

(

pn+α−1
2

)2

ı̇

(

pn+α+δ−1
2

)2

. (5.16)

Thus, with Proposition 2.16, (5.16) will simplify to the statement of the corollary.

As mentioned previously, this agrees with Theorem 1.1 given by Alaca, et al. [1, p. 67]
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under the condition that α = 0. Further, under the conditions that n = 1 and α = δ = 0,

the statement of the corollary agrees with the results given by Weber [111, p. 26].

Corollary 5.2. Let δ ∈ N0 and D ∈ Z be such that D is odd and 2δD ≡ m2 (mod 2n+α+1).

Then for α < n, we have

G(Q2;S; 2
n) =































2
3n+α−1

2

(

2
SA

)n+α+1
(1 + ı̇SA) if δ = n+ α + 1

0 if δ = n+ α

2n+
δ
2

(

2
SA

)δ ( 2
D

)n+α+δ+1
ı̇SA(

D+1
2 )

2

if δ < n+ α.

Proof. By Theorems 3.1 and 5.2, we have

G(Q2;S; 2
n) =

1

4
G(SA; 2n+1−α) ·G(SAm2; 2

n+1+α)

= 2
n−α−3

2

(

2

SA

)n+1+α

(1 + ı̇SA) ·G(SAD2δ; 2n+1+α). (5.17)

Subsequently, by Theorem 3.1 and Proposition 3.2, we have

G(SAD2δ; 2n+1+α) =































2n+1+α if δ = n+ 1 + α

0 if δ = n+ α

2
n+1+α+δ

2

(

2
SAD

)n+1+α+δ
(1 + ı̇SAD) if δ < n+ α.

(5.18)

Combining (5.17) and (5.18) for δ = n+1+α or δ = n+α will clearly yield the statements

of the corollary. Hence, suppose δ < n + α, and combining (5.17) and (5.18), along with

Proposition 2.19 yields

2n+
δ
2

(

2

SA

)δ (
2

D

)n+1+α+δ

ı̇SA(
D+1
2 )

2

,

which agrees with the remaining statement of the corollary.
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As mentioned above, Corollary 5.2 will agree with Theorems 1.2 and 1.3 [1, pp. 69-70]

of Alaca, et al. depending on the parity of b. Observe as well that the results of Weber [111,

p. 49] agree with Corollary 5.2.

5.2 Ternary Quadratic Form Gauss Sums

For this section, we let

Q3 = t1x
2
1 + t2x

2
2 + t3x

2
3 + t12x1x2 + t13x1x3 + t23x2x3,

for ti, tij ∈ Z which are mutually relatively prime, that is, no prime divides every coefficient

ti, tij. With this notation, we have m1 = 2t1 and m2 = 4t1t2 − t212, and we assume that

∆ = m1m2 ̸= 0. Due to our assumptions, there exist α1, α2 ∈ N0 and A1, A2 ∈ Z such that

(A1A2, p) = 1 and m1 = pα1A1,m2 = pα2A2 and ∆ = pαA = pα1+α2A1A2.

Our aim in this section is to introduce a method which can generalize to quadratic forms

of an arbitrary number of variables. For notational convenience for this section and the next,

we set

αij = max(αi − αij, 0),

for 1 ≤ i < j ≤ r. In this fashion, we have 0 ≤ αij ≤ αi. Similarly, for i = 1, . . . , r, we

set α0i = 0 for convenience. Recall from section 4.2 that mij denotes an integer obtained in

diagonalizing our quadratic form, which we refer to as a mixed minor.

Theorem 5.3. Let p be an odd prime. Let α3 ∈ N0 and A3 ∈ Z be such that (A3, p) = 1 and

pα3A3 ≡ m3 (mod pn+α). Similarly, for 1 ≤ i < j ≤ 3 we let αij ∈ N0 and Aij ∈ Z satisfy

(Aij, p) = 1 and pαijAij ≡ mij (mod pn+α). Without loss of generality, we may assume that
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α12 ≤ α13. If n ≥ α and n ≥ α3 − α2 + 2(max(α23, α13)) we have

G(Q3;S; p
n) =

1

p3α

3
∏

i=1

G(2SAiAi−1p
α+αi−αi−1 ; pn+α).

Proof. By Theorem 4.3, we have that

pαQ3 ≡
2
∑

i=1

(2AiAi−1)
−1pα−αi−αi−1y2i + (2A2)

−1m3p
α−α2x23 (mod pn+α).

Hence, by (5.1) and in light of Proposition 3.13, we have that

G(Q3;S; p
n) =

1

p3α

pn+α−1
∑

x3=0

e

(

2SA3A2p
α3+α1x23

pn+α

) pn+α−1
∑

x2=0

e

(

2SA2A1y
2
2

pn+α

)

×
pn+α−1
∑

x1=0

e

(

2SA1p
α2y21

pn+α

)

. (5.19)

By (4.3), it follows that

y1 ≡ pα1A1x1 + pα12A12x2 + pα13A13 (mod pn+α).

As n ≥ α ≥ α1, by Proposition 3.7, the sum indexed by x1 in (5.19) will be non-zero if and

only if

pα12A12x2 + pα13A13 ≡ 0 (mod pα1)

pα12x2 ≡ −A−1
12 A13p

α13x3 (mod pα1)

x2 ≡ −A−1
12 A13p

α13−α12x3 (mod pα12).

Thus, (5.19) will simplify to

1

p3α
pαG(2SA1; p

n+α1)

pn+α−1
∑

x3=0

e

(

2SA3A2p
α3+α1x23

pn+α

)
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×
pn+α−1
∑

x2=0
x2≡−A−1

12 A13pα13−α12x3 (mod pα12 )

e

(

2SA2A1y
2
2

pn+α

)

. (5.20)

Note that y2 ≡ pα2A2x2 + pα23A23x3 (mod pn+α). If α1 ≤ α12, then as n ≥ α2 − α1, we may

use Proposition 3.7 to evaluate the sum indexed by x2 in (5.20). Otherwise, if α12 ̸= 0, as

n ≥ α−2α12, we may use Proposition 3.9 to evaluate (5.20). Further, Proposition 3.7 can be

seen as a special case of Proposition 3.9, so we may use this latter proposition unreservedly.

In order for the sum indexed by x2 in (5.20) to be non-zero, x3 must satisfy the congruence

conditions

pα23A23x3 ≡ 0 (mod pα2) → x3 ≡ 0 (mod pα23)

and

−A−1
12 A13p

α13−α12x3 ≡ 0 (mod pα12) → x3 ≡ 0 (mod pα13), (5.21)

where we have used the fact that α12 − (α13 − α12) = α13. Hence, by Proposition 3.9 and

(5.21), (5.20) can be written as

1

p3α
·pαG(2SA1; p

n+α1) · p2α2G(2SA2A1; p
n+α−2α2)

×
pn+α−1
∑

x3=0
x3≡0 (mod pmax(α23,α13))

e

(

2SA2A3p
α+α3−α2x23

pn+α

)

. (5.22)

Finally, due to our assumption that n ≥ α3 − α2 + max(α23, α13), by Corollary 3.1, (5.22)

will simplify to

1

p3α
· pαG(2SA1; p

n+α1) · p2α2G(2SA2A1; p
n+α−2α2) · pα+α3−α2G(2SA2A3; p

n−(α3−α2)). (5.23)
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To achieve the statement of the theorem, we simplify the Gauss sums given in (5.23) by

Proposition 3.11. Hence, we have that

pαG(2SA1; p
n+α1) = pα+α1G(2SA; pn−α1) = G(2SApα+α1 ; pn+α),

p2α2G(2SA1A2; p
n+α−2α2) = pα+α2−α1G(2SA1A2; p

n+α−(α+α2−α1))

= G(2SA1A2p
α+α2−α1 ; pn+α),

pα+α3−α2G(2SA2A3; p
n+α−(α3+α1)) = G(2SA2A3p

α+α3−α2 ; pn+α),

so that (5.23) will simplify to the statement of the theorem.

We mention that Theorem 5.3 will be valid for m3 = 0 under certain conditions. Suppose

m3 = 0. By convention, we have α3 = n+ α. Thus, the condition of the theorem pertaining

to n and α3 will simplify to

n ≥ α3 − α2 + 2max(α23, α13)

0 ≥ α1 + 2max(α23, α13).

Hence, Theorem 5.3 will be valid for a ternary quadratic form with zero determinant if α1 = 0

and α2 ≤ α23. We provide an example of such a case.

Let Q3 = x21 + 2x22 + x23 + x1x2 + 2x1x3 + x2x3 which has associated symmetric integral

matrix













2 1 2

1 4 1

2 1 2













. It follows that m1 = 2,m2 = 7 and m3 = 0. From Theorem 4.2, we see

that m12 = 1 and m13 = 2. Recall that m23 is the determinant of the 2× 2 leading principal

submatrix of the matrix with columns 2 and 3 interchanged. Hence, m23 = 0. Suppose p = 7

and n ∈ N. Writing mi ≡ 7αiAi (mod 7n+α) and mij ≡ 7αijAij (mod 7n+α) we see that

α1 = 0, α2 = α = 1, α3 = n+ α = n+ 1, α23 = n+ α = n+ 1,
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and

A1 = 2, A2 = 1, A3 = 1.

In particular, we have α2 ≤ α23 and α1 = 0 which satisfies the conditions of Theorem 5.3.

Hence, Theorem 5.3 yields

G(Q3;S; 7
n) =

1

73
G(2S · 7n+1; 7n+1) ·G(22S · 72; 7n+1) ·G(22S · 71; 7n+1)

= 7n−2 · 72G(S; 7n−1) · 7G(S; 7n)

= 7n+1G(S; 7n−1)G(S; 7n).

If we expand this using Theorem 3.1, we find that

G(Q3;S; 7
n) = 7n+1 ·

(

S

7

)n+1

ı

(

7n−1−1
2

)2

7
n−1
2 ·

(

S

7

)n

ı(
7n−1

2 )
2

7
n
2

= 72n+
1
2 ı = 72n

√
−7.

For p odd and p ̸= 7, we can not evaluate G(Q3;S; p
n) using Theorem 5.3.

Next, we have a similar theorem for the even prime case.

Theorem 5.4. Let α3 ∈ N0 and A3 ∈ Z be such that (A3, 2) = 1 and 2α3A3 ≡ m3

(mod 2n+α+1). Similarly, for 1 ≤ i < j ≤ 3 we let αij ∈ N0 and Aij ∈ Z satisfy (2, Aij) = 1

and 2αijAij ≡ mij (mod 2n+α+1). Without loss of generality, we may assume that α12 ≤ α13.

Then for n ≥ α + 1 and n ≥ α3 − α2 + 2max(α13, α23) + 1, we have

G(Q3;S; 2
n) =

1

23(α+1)

3
∏

i=1

G(SAiAi−12
α+αi−αi−1 ; 2n+α+1).

Proof. The proof follows in the same manner as in the proof of Theorem 5.4. From Theorem
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4.3 and Proposition 3.14, we deduce that

G(Q3;S; 2
n) =

1

23(α+1)

2n+α+1−1
∑

x3=0

e

(

SA3A22
α3+α1x23

2n+α+1

) 2n+α+1−1
∑

x2=0

e

(

SA2A1y
2
2

2n+α+1

)

×
2n+α+1−1
∑

x1=0

e

(

SA12
α2y21

2n+α+1

)

. (5.24)

We now simplify these sums using Proposition 3.8, Proposition 3.10 and Corollary 3.2,

respectively, in the same manner as we did in Theorem 5.3. In order to use these propositions,

we note that

n ≥ α + 1

which allows us to use Proposition 3.8. Next, the condition on n necessary for Proposition

3.10 is

n+ α + 1 ≥ 2(α12 + α2) + 2.

Thus, we see that

n ≥ α + 1 ≥ max(α2 − α1 + 1, α + 1− 2α12),

so we may use Proposition 3.10. Finally, our last condition on n will be given by

n+ α + 1 ≥ α3 + α1 + 2max(α13, α23) + 2

which simplifies to the assumption given in the statement of the theorem. Hence, (5.24) will
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simplify to

1

23(α+1)
· 2αG(SA1; 2

n+α1+1) · 22α2G(SA2A1; 2
n+α1−α2+1) · 2α3+α1G(SA3A2; 2

n+1−(α3−α2)).

(5.25)

Finally, with Proposition 3.12, we simplify the Gauss sums in (5.25). We have that

2αG(SA1; 2
n+α1+1) = 2α+α1G(SA1; 2

n−α1+1) = G(SA12
α+α1 ; 2n+α+1),

22α2G(SA2A1; 2
n+α1−α2+1) = G(SA2A12

α+α2−α1 ; 2n+α+1),

2α3+α1G(SA3A2; 2
n+1−(α3−α2)) = G(SA3A22

α+α3−α2 ; 2n+α+1),

so (5.25) will simplify to the statement of the theorem.

We end this section with a curious example. Let Q3 = x21 + 2x22 + x23 + 2x1x2 which has

associated matrix













2 2 0

2 4 0

0 0 2













. It follows that

m1 = 2, m2 = 4, m3 = 8, m12 = 2 and m13 = m23 = 0.

Hence, for any odd prime p and n ∈ N, the conditions of Theorem 5.3 are trivially satisfied

so that

G(Q3;S; p
n) = G(26S; pn) ·G(24S; pn) ·G(22S; pn) = G(S; pn)3.

Suppose now p = 2. Writing mi = 2αiAi and mij ≡ 2αijAij (mod 2n+α+1) we have

α1 = 1, α2 = 2, α3 = 3, α = α1 + α2 = 3,

α12 = 1, α13 = n+ α + 1 = n+ 4, α23 = n+ α + 1 = n+ 4,



CHAPTER 5. MAIN RESULTS 75

and

A1 = A2 = A3 = 1.

Observe that we have α12 ≤ α13. Further, we have

α23 = max(α2 − α23, 0) = 0 = max(α1 − α13, 0) = α13.

Thus, if n ≥ 4, the conditions of Theorem 5.4 are satisfied, so that

G(Q3;S; 2
n) =

1

212
G(24S; 2n+4) ·G(24S; 2n+4) ·G(24S; 2n+4) = G(S; 2n)3.

It is interesting to note that in this case, for p arbitrary, G(Q3;S; p
n) = G(S; pn)3.

5.3 General Quadratic Form Gauss Sums

For this section, we let

Qr =
r
∑

i=1

tix
2
i +

∑

1≤i<j≤r

tijxixj (5.26)

denote an r-dimensional quadratic form. Further, we may assume that the coefficients of Qr

are mutually relatively prime. Recall that mi denotes the i
th leading principal minor of the

integral symmetric matrix associated with Qr, and the associated minor product of Qr is

given by ∆ =
r−1
∏

i=1

mi. Finally, we assume that the associated minor product ∆ is non-zero.

As ∆ ̸= 0, there exist αi ∈ N0 and Ai ∈ Z such that (Ai, p) = 1 and pαiAi = mi, for each

i = 1, . . . , r − 1. We set

∆ = pαA = pα1+α2+···+αr−1

(

r−1
∏

i=1

Ai

)

.
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We extend this notation to the determinant mr and the mixed minors mij, so that

mr ≡















pαrAr (mod pn+α)

2αrAr (mod 2n+α+1)















and mij ≡















pαijAij (mod pn+α)

2αijAij (mod 2n+α+1)















.

From the previous section, we see that the divisibility of the coefficients will affect how

we can evaluate the quadratic form Gauss sum. We present our main results repeatedly,

with an increasing number of conditions on the coefficients.

Theorem 5.5. Let p be an odd prime. If (∆, p) = 1 then

G(Qr;S; p
n) = G(2SmrAr−1; p

n)
r−1
∏

i=1

G(2SAiAi−1; p
n).

Proof. If (∆, p) = 1, this means αi = 0 and mi = Ai for each i. Hence, Theorem 4.3 states

that

Qr ≡
r−1
∑

i=1

(2AiAi−1)
−1y2i + (2Ar−1)

−1mrx
2
r (mod pn).

In light of Proposition 3.13, it follows that

G(Qr;S; p
n) =

pn−1
∑

xr=0

e

(

2SmrAr−1x
2
r

pn

)

· · ·
pn−1
∑

x1=0

e

(

2SA1A0y
2
1

pn

)

. (5.27)

Consider y1 = A1x1 +
r
∑

j=2

A1jxj. By Proposition 2.5, as x1 runs through a complete residue

system modulo pn, so does y1. This means the sum indexed by x1 in (5.27) will resolve

to G(2SA1A0; p
n). By similar reasoning, the sums indexed by x2, . . . , xr−1 in (5.27) will

simplify in the same manner. Finally, the sum indexed by xr in (5.27) is a quadratic Gauss
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sum, so that (5.27) becomes

G(2SmrAr−1; p
n)

r−1
∏

i=1

G(2SAiAi−1; p
n).

Corollary 5.3. Let p be an odd prime. If (∆mr, p) = 1 then

G(Qr;S; p
n) =

r
∏

i=1

G(2SAiAi−1; p
n).

Proof. If (mr, p) = 1 then mr ̸= 0 and mr ≡ Ar (mod pn). Hence, the corollary follows from

Theorem 5.5.

We emphasize that Corollary 5.3 agrees with the results of Weber [111] as stated by

Cohen [22, p. 14] for S = 1 and Qr a Gaussian form. Indeed, this implies 2r | mr. Hence,

under these assumptions, Corollary 5.3 states

r
∏

i=1

(

2AiAi−1

p

)

G(1; pn) =

(

2rmr

p

)

G(1; pn)r,

which corresponds to (2.16) of [22]. Further, one can use the multiplicative properties of

quadratic Gauss sums to arrive at a similar expression for arbitrary odd positive modulus.

We will discuss this further in Chapter 7.

We have a similar theorem for the even prime case. However, as 2 | ∆, this theorem is

conditional upon every mixed term of Qr being even. Hence, for the following theorem, we

assume Qr is of the form

Qr =
r
∑

i=1

tix
2
i + 2

∑

1≤i<j≤r

t′ijxixj. (5.28)

Note that (5.26) and (5.28) agree under the notation t′ij =
tij
2
. These types of quadratic
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forms are sometimes called Gaussian forms [83].

Consider the matrix M representing the integral matrix associated with Qr. As every

non-diagonal term is divisible by 2, we can extract 2 as a scalar factor. Thus, we have

M = 2M ′.

We emphasize that M ′ is an integral matrix. As ∆ ̸= 0, there exists non-zero integers m′
i,

such that

mi = det(Mi) = det(2M ′
i) = 2i det(M ′

i) = 2im′
i

for each i = 1, . . . , r − 1. We modify our notation in this fashion, so that

mij ≡ 2im′
ij (mod 2n+α+1)

and 2rm′
r ≡ mr (mod 2n+α+1). We define

∆′ =
r−1
∏

i=1

m′
i

and we may refer to ∆′ as the associated Gaussian minor product.

Theorem 5.6. If ∆′ is odd, then

G(Qr;S; 2
n) = G(Sm′

rAr−1; 2
n)

r
∏

i=1

G(SAiAi−1; 2
n).

Proof. As ∆′ is odd, we have that

∆ =
r−1
∏

i=1

mi =
r−1
∏

i=1

2αiAi =
r−1
∏

i=1

2im′
i = 21+2+···+r−1∆′ = 2αA.
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Thus, αi = i for i = 1, . . . , r − 1 and α =
r(r − 1)

2
. Further, this means that Ai = m′

i for

i = 1, . . . , r − 1. By Theorem 4.3, we have

2α+1Qr ≡
r−1
∑

i=1

(AiAi−1)
−12α−i−(i−1)y2i + (Ar−1)

−1m′
r2
α+r−(r−1)x2r (mod 2n+α+1).

In light of Proposition 3.14, it follows that

G(Qr;S; 2
n) =

1

2r(α+1)

2n+α+1−1
∑

xr=0

e

(

Sm′
rAr−12

α+1x2r
2n+α+1

)

· · ·
2n+α+1−1
∑

x1=0

e

(

SA12
α−1y21

2n+α+1

)

. (5.29)

For i = 1, . . . , r − 1, we have that

yi ≡ mixi +
r
∑

j=i+1

mijxj ≡ 2i

(

Aixi +
r
∑

j=i+1

m′
ijxj

)

≡ 2iy′i (mod 2n+α+1).

By Proposition 2.5, as xi runs over a complete residue system modulo 2n+α+1, so does y′i.

Hence, with Proposition 3.2, the summands of (5.29) indexed by x1, . . . , xr−1 will simplify

to

2n+α+1−1
∑

xi=0

e

(

SAiAi−12
α−i−(i−1)yi

2n+α+1

)

=
2n+α+1−1
∑

xi=0

e

(

SAiAi−12
α+1y′i

2n+α+1

)

= G(SAiAi−12
α+1; 2n+α+1)

= 2α+1G(SAiAi−1; 2
n). (5.30)

With Proposition 3.2, the sum indexed by xr in (5.29) is given by

G(SAr−1m
′
r2
α+1; 2n+α+1) = 2α+1G(SAr−1m

′
r; 2

n). (5.31)
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Thus, with (5.30) and (5.31), (5.29) becomes

1

2r(α+1)

(

r−1
∏

i=1

2α+1G(SAiAi−1; 2
n)

)

2α+1G(SAr−1m
′
r; 2

n)

= G(SAr−1m
′
r; 2

n)
r−1
∏

i=1

G(SAiAi−1; 2
n).

We note that an equivalent condition to ∆′ being odd is that αi = i, for each i =

1, . . . , r − 1. Similarly, it would be sufficient to require 2i || mi for each such i.

Corollary 5.4. If 2i || mi for i = 1, . . . , r, then

G(Qr;S; 2
n) =

r
∏

i=1

G(SAiAi−1; 2
n).

Proof. If 2r || mr, then m
′
r = Ar and the corollary follows from Theorem 5.6.

The previous two theorems have what could be called the best divisibility conditions.

That is, each minor is coprime to the given modulus, or has a favorable divisibility, depending

on the parity. The following two theorems will relax these divisibility conditions somewhat,

but not completely.

Theorem 5.7. Let p be an odd prime. Suppose that αi ≤ αij for all 1 ≤ i < j ≤ r. Then

G(Qr;S; p
n) =

1

prα

r
∏

i=1

G(2SAiAi−1p
α+αi−αi−1 ; pn+α).

Proof. By Theorem 4.3, (5.1) and considering Proposition 3.13 we have

G(Qr;S : pn) =
1

prα

pn+α−1
∑

xr=0

e

(

2SArAr−1p
α+αr−αr−1x2r

pn+α

)

· · ·
pn+α+1−1
∑

x1=0

e

(

2SA1p
α−α1y21

pn+α

)

.

(5.32)



CHAPTER 5. MAIN RESULTS 81

For each i = 1, . . . , r − 1 we have

yi ≡ pαiAixi +
r
∑

j=i+1

pαijAijxj ≡ pαi

(

Aixi +
r
∑

j=i+1

pαij−αiAijxj

)

≡ pαiy′i (mod pn+α).

By Proposition 2.5, as xi runs through a complete residue system, so does y′i. Hence, each

of the sums indexed by x1, . . . , xr−1 in (5.32) will be given by

pn+α−1
∑

xi=0

e

(

2SAiAi−1p
α+αi−αi−1y′2i

pn+α

)

= G(2SAiAi−1p
α+αi−αi−1 ; pn+α).

As the sum indexed by xr in (5.32) is a quadratic Gauss sum, we arrive at the statement of

our theorem.

Theorem 5.8. Suppose that αi ≤ αij for all 1 ≤ i < j ≤ r. Then

G(Qr;S; 2
n) =

1

2r(α+1)

r
∏

i=1

G(SAiAi−12
α+αi−αi−1 ; 2n+α+1).

Proof. The proof will follow entirely in the same manner as Theorem 5.10. We mention that

we will use Theorem 4.3, (5.1) and Propositions 3.14 and 2.5.

In light of Theorems 5.3 and 5.4, it is clear that we can achieve our results, regard-

less of the coefficients of Qr, for sufficiently large n. Hence, for notational convenience in

the remaining theorems, we will assume the coefficients of Qr satisfy favorable divisibility

conditions.

Theorem 5.9. Let p be an odd prime. Suppose that we may permute the coefficients of Qr

so that for each i = 1, . . . , r − 1 we have

αi(i+1) ≥ α(i−1)i,
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and for every i, j, k satisfying 1 ≤ i < j ≤ k ≤ r we have

αij ≤ αik.

If n ≥ 2α(i−1)i + αi − αi−1 for each i = 1, . . . , r, then

G(Qr;S; p
n) =

1

prα

r
∏

i=1

G(2SAiAi−1p
α+αi−αi−1 ; pn+α).

Proof. By assumption, ∆ ̸= 0, and so by Theorem 4.3 we have

G(Qr;S; p
n) =

1

prα

pn+α−1
∑

xr=0

e

(

S(2Ar−1)
−1Arp

α+αr−αr−1x2r
pn+α

)

× · · ·

×
pn+α−1
∑

xi=0

e

(

S(2AiAi−1)
−1pα−αi−αi−1y2i
pn+α

)

× · · ·

×
pn+α−1
∑

x1=0

e

(

S(2A1A0)
−1pα−α1−α0y21
pn+α

)

. (5.33)

Observe that y1 = pα1A1x1 +
r
∑

j=2

m1jxj. By Proposition 3.7, as n ≥ α1, the sum indexed by

x1 in (5.33) is non-zero if

r
∑

j=2

pα1jA1jxj ≡ 0 (mod pα1). (5.34)

For convenience, we set

Ci ≡ −A−1
(i−1)i

(

r
∑

j=i+1

pα(i−1)j−α(i−1)iA(i−1)jxj

)

(mod pα(i−1)i),

for i = 2, . . . , r − 1. Thus, the congruence given by (5.34) becomes

x2 ≡ −A−1
12

(

r
∑

j=3

pα1j−α12A1jxj

)

(mod pα12)
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x2 ≡ C2 (mod pα12). (5.35)

If we suppose that x2, . . . , xr satisfy the congruence given by (5.35), by Propositions 3.2, 3.7

and 3.11, the sum indexed by x1 in (5.33) will simplify to

pαG(2SA1; p
n+α1) = pα+α1G(2SA1; p

n−α1) = G(2SA1p
α+α1 ; pn+α). (5.36)

It follows that (5.33) is non-zero whenever x2, . . . , xr satisfy the congruence conditions given

in (5.35). Hence, we may write the sum indexed by x2 in (5.33) as

pn+α−1
∑

x2=0
x2≡C2 (mod pα12 )

e

(

S(2A2A1)
−1pα−α2−α1y22
pn+α

)

. (5.37)

Regardless of the congruence condition imposed on the index of x2 in (5.37), by Proposition

3.9, as

n ≥ 2α12 + α2 − α1,

if the sum given in (5.37) is non-zero, it must happen that y2 ≡ 0 (mod pα2). This means

we must have

r
∑

j=3

pα2jA2jxj ≡ 0 (mod pα2)

x3 ≡ −A−1
23

(

r
∑

j=4

pα2j−α23A2jxj

)

(mod pα23)

x3 ≡ C3 (mod pα23).

We continue in this fashion. As we have

n ≥ 2α(i−1)i + αi − αi−1,
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for each i = 2, . . . , r, we may use Proposition 3.9 to deduce that for i = 2, . . . , r − 1, the ith

term will be given by

pn+α−1
∑

xi=0

xi≡Ci (mod p
α(i−1)i )

e

(

S(2AiAi−1)
−1pα−αi−αi−1y2i
pn+α

)

, (5.38)

and the final term will be given by

pn+α−1
∑

xr=0

xr≡0 (mod p
α(r−1)r )

e

(

S(2Ar−1)
−1Arp

α+αr−αr−1x2r
pn+α

)

. (5.39)

We now move back up our series of nested sums. Hence, suppose xr ≡ 0 (mod pα(r−1)r) and

we write xr = pα(r−1)rx′r. We see then that as α(r−1)r ≥ α(r−2)(r−1), Cr−1 can be written as

xr−1 ≡ −A−1
(r−2)(r−1)

(

pα(r−2)r−α(r−2)(r−1)A(r−2)r(p
α(r−1)rx′r)

)

(mod pα(r−2)(r−1))

xr−1 ≡ 0 (mod pα(r−2)(r−1)).

Continuing in this manner, as we have assumed αi(i+1) ≥ α(i−1)i for i = 2, . . . , r− 1, for each

such i the condition Ci will be given by

Ci ≡ 0 (mod pα(i−1)i),

and so each of the sums given in (5.38) can be written as

pn+α−1
∑

xi=0

xi≡0 (mod p
α(i−1)i )

e

(

S(2AiAi−1)
−1pα−αi−αi−1y2i
pn+α

)

. (5.40)

But as n ≥ 2α(i−1)i + αi − αi−1 for i = 2, . . . , r − 1, by Propositions 3.9 and 3.11, each sum
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in (5.40) is given by

pα−αi−αi−1+2αiG(2SAiAi−1; p
n+α−(α−αi−αi−1)−2αi)

= pα+αi−αi−1G(2SAiAi−1; p
n+α−(α+αi−αi−1))

= G(2SAiAi−1p
α+αi−αi−1 ; pn+α). (5.41)

We note that we evaluate these sums in the nested manner as seen in (5.33), so that the

sum indexed by x2 is considered first, and subsequently x3, and so on in this manner until

we arrive at the final sum indexed by xr−1. Thus, remaining now in (5.33) is the final sum

given in (5.39). As n ≥ 2α(r−1)r + αr − αr−1, by Corollary 3.1, (5.39) is given by

pα+αr−αr−1G(2SArAr−1; p
n+α−(α+αr−αr−1))

= G(2SArAr−1p
α+αr−αr−1 ; pn+α). (5.42)

Hence, with (5.36), (5.41) and (5.42), (5.33) is given by

1

prα

r
∏

i=1

G(2SAiAi−1p
α+αi−αi−1 ; pn+α).

The even prime case will follow in a similar manner.

Theorem 5.10. Suppose that we may permute the coefficients of Qr so that for all 1 ≤ i <

j ≤ k ≤ r we have

αij ≤ αik

and for each i = 2, . . . , r − 1 we have

αi(i+1) ≥ α(i−1)i.
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If n ≥ 2α(i−1)i + αi − αi−1 + 1 for i = 1, . . . , r, then

G(Qr;S; 2
n) =

1

2r(α+1)

r
∏

i=1

G(SAiAi−12
α+αi−αi−1 ; 2n+α+1).

Proof. The proof is conducted in the same manner as in the proof of Theorem 5.10, where

our conditions on n are given by Propositions 3.8, 3.10. and Corollary 3.2. This requires,

respectively,

n ≥ α1 + 1,

n ≥ 2α(i−1)i + αi − αi−1 + 1 for i = 2, . . . , r − 1,

n ≥ 2α(r−1)rαr − αr−1 + 1,

which will be satisfied given the requirements of n in the statement of the theorem.

Given a quadratic form Qr, one can determine which theorem to use to evaluate the

quadratic form Gauss sum based on the minors of Qr. Let M be the integral symmetric

matrix associated with Qr, with leading principal minors m1, . . . ,mr and associated minor

product ∆ =
r−1
∏

i=1

mi. Further, for 1 ≤ i < j ≤ r, we recall the mixed minors mij, which

can be shown to be the determinant of the i × i leading principal submatrix of the matrix

obtained by interchanging columns i and j inM . The evaluation of G(Qr;S; p
n) will depend

on the parity of p and the divisibility of the minors mi and mij.

Suppose that p is an odd prime. If we have (∆, p) = 1 then we use Theorem 5.5 to

evaluate G(Qr;S; p
n). If, in addition, we have also (mr, p) = 1, then G(Qr;S; p

n) is given by

Corollary 5.3. Suppose that at least one minor mi is divisible by p, for some i = 1, . . . , r−1.

In this case, we consider the divisibility of each mixed minor mij ≡ pαijAij (mod pn+α).

If, for each such divisible minor mi, we have αi ≤ αij for each j = i + 1, . . . , r, then we

can evaluate G(Qr;S; p
n) using Theorem 5.7. Otherwise, one must be able to permute the

coefficients in such a fashion that, given n sufficiently large, we may appeal to Theorem 5.9
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to evaluate G(Qr;S; p
n).

Suppose now that p = 2. If each mixed coefficient of Qr is divisible by 2, and 2i || mi

for each i = 1, . . . , r− 1, then G(Qr;S; 2
n) is given by Theorem 5.6. Additionally, if we also

have 2r || mr, then G(Qr;S; 2
n) is given by Corollary 5.4. If instead we have, say, 2i+1 | mi,

we must determine the greatest prime power of 2 dividing mij ≡ 2αijAij (mod 2n+α+1).

Similar to the odd prime case, if we have αi ≤ αij for every such minor mi, then we

evaluate G(Qr;S; 2
n) using Theorem 5.8. If for some i and j satisfying 1 ≤ i < j ≤ r, we

have αi > αij, then assuming a favorable permutation of the coefficients, we may evaluate

G(Qr;S; 2
n) using Theorem 5.10, taking n sufficiently large.

We present an example to emphasize the algorithmic nature of determining which theorem

to use to evaluate G(Qr;S; p
n). For what follows, we mention that we use Propositions 3.13

and 3.14 to simplify the expression of various quadratic Gauss sums. Let

Q4 = x21 + x22 + x23 + x24 + x1x2.

This has associated symmetric matrix



















2 1 0 0

1 2 0 0

0 0 2 0

0 0 0 2



















, from which we may determine that

m1 = 2, m12 = 1, m13 = m14 = 0,

m2 = 3, m23 = m24 = 0,

m3 = 6, m34 = 0,

m4 = 12 and ∆ = m1 ·m2 ·m3 = 36.

For p > 3 prime, we have that (∆m4, p) = 1, which satisfies the conditions of Corollary 5.3.



CHAPTER 5. MAIN RESULTS 88

Thus, for n ∈ N, we obtain

G(Q4;S; p
n) = G(2Sm4m3; p

n) ·G(2Sm3m2; p
n) ·G(2Sm2m1; p

n) ·G(2Sm1; p
n)

= G(144S; pn) ·G(36S; pn) ·G(12S; pn) ·G(4S; pn)

= G(S; pn)3 ·G(3S; pn).

One can then determine a specific formula using Theorem 3.1.

Suppose now p = 3 and write mi = 3αiAi and mij ≡ 3αijAij (mod 3n+α). We see that

α1 = 0, α12 = 0, α13 = n+ α, α14 = n+ α,

α2 = 1, α23 = α24 = n+ α,

α3 = 1, α34 = n+ α,

α4 = 1, and A1 = 2, A2 = 1, A3 = 2, A4 = 4.

Note also that α = 2 in this case and we have αi ≤ αij for all 1 ≤ i < j ≤ 4. Therefore, by

Theorem 5.7, we have

G(Q4;S; 3
n) =

1

38
G(2SA4A3 · 32+α4−α3 ; 3n+2) ·G(2SA3A2 · 32+α3−α2 ; 3n+2)

×G(2SA2A1 · 32+α2−α1 ; 3n+2) ·G(2SA1 · 32+α1 ; 3n+2)

=
1

38
G(16S · 32; 3n+2) ·G(4S · 32; 3n+2) ·G(4S · 33; 3n+2) ·G(4S · 32; 3n+2)

=3G(S; 3n)3 ·G(S; 3n−1),

where we have used Proposition 3.2 to simplify prime powers.

Finally, suppose p = 2. Write mi = 2αiAi and mij ≡ 2αijAij (mod 2n+α+1). Hence, we

have

α1 = 1, α12 = 0, α13 = n+ α + 1, α14 = n+ α + 1,
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α2 = 0, α23 = 1, α24 = n+ α + 1,

α3 = 1, α34 = n+ α + 1,

α4 = 2, and A1 = 1, A2 = 3, A3 = 3, A4 = 3.

Observe also that in this case α = 2. Hence, as α1 > α12, we must look to Theorem 5.10

to evaluate G(Q4;S; 2
n). First, note that αij ≥ αik for all 1 ≤ i < j ≤ k ≤ 4. Recall that

αij = max(αi − αij, 0) and for convenience α0j = 0. We see that

α12 = 1 and αij = 0 otherwise.

Thus, the condition αi(i+1) ≥ α(i−1)i is not satisfied for i = 2. Hence, we look to permute the

coefficients of the quadratic form to obtain more favorable divisibility properties. Consider

instead

Q′
4 = x21 + x22 + x23 + x24 + x3x4,

obtained by, say, x1 ↔ x3 and x2 ↔ x4. This has associated symmetric matrix



















2 0 0 0

0 2 0 0

0 0 2 1

0 0 1 2



















,

and thus we have that

m1 = 2, m12 = m13 = m14 = 0,

m2 = 4, m23 = m24 = 0,

m3 = 8, m34 = 4, and m4 = 12.
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Writing mi = 2αiAi and mij ≡ 2αijAij (mod 2n+α+1) as before yields

α1 = 1, α12 = α13 = α14 = n+ α + 1,

α2 = 2, α23 = α24 = n+ α + 1,

α3 = 3, α34 = 2,

α4 = 2 and A1 = A2 = A3 = 1, A4 = 3.

Observe that α = 6 in this case. Note also that with this notation, we have αij ≤ αik as

before as well as

α1j = 0, α2j = 0, α34 = 1.

Thus, αi(i+1) ≥ α(i−1)i for i = 2, 3 which means that the conditions of Theorem 5.10 are

satisfied for n sufficiently large. We require that n satisfies n ≥ 2α(i−1)i + αi − αi−1 + 1 for

i = 1, . . . , 4. Hence, we have that

2α34 + α4 − α3 + 1 = 2,

2α23 + α3 − α2 + 1 = 2,

2α12 + α2 − α1 + 1 = 2,

2α01 + α1 − α0 + 1 = 2,

where α0 = 0. Thus, if n ≥ 2, Theorem 5.10 states

G(Q′
4;S; 2

n) =
1

228
G(SA4A3 · 26+α4−α3 ; 2n+7) ·G(SA3A2 · 26+α3−α2 ; 2n+7)

×G(SA2A1 · 26+α2−α1 ; 2n+7) ·G(SA1 · 26+α1 ; 2n+7)

=
1

228
G(3S · 25; 2n+7) ·G(S · 27; 2n+7)3

=
1

22
G(3S; 2n+2) ·G(S; 2n)3,
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where as before we have used Proposition 3.2 for simplification. This re-indexing method

suggests that the coefficient conditions as stated in Theorem 5.10 can be improved.

5.4 Explicit Formula for General Quadratic Form Gauss

Sums

We would like to give a general expression for G(Qr;S; p
n). We will use Theorems 5.5-5.11

to deduce these formulas. We begin with the odd prime cases first, and subsequently the

even prime case.

Theorem 5.11. Let p be an odd prime and Qr satisfy the conditions of Theorem 5.5. Then

G(Qr;S; p
n) =

(

2S

p

)nr+αr
(

Ar−1

p

)αr
(

Ar
p

)n+αr

p
nr+αr

2 ı̇
(r−1)

(

pn−1
2

)2

ı̇

(

pn+αr−1
2

)2

.

Proof. From Theorems 3.1 and 5.5, we have

G(Qr;S; p
n) = G(2SmrAr−1; p

n)
r−1
∏

i=1

G(2SAiAi−1; p
n)

= G(2SArAr−1p
αr ; pn)

r−1
∏

i=1

(

2SAiAi−1

p

)n

p
n
2 ı̇

(

pn−1
2

)2

= G(2SArAr−1p
αr ; pn)

(

2S

p

)(r−1)n(
Ar−1

p

)n

p
(r−1)n

2 ı̇
(r−1)

(

pn−1
2

)2

. (5.43)

If αr < n, from Theorem 3.1 and Proposition 3.2, we have

G(2SAr−1Arp
αr ; pn) = pαrG(2SAr−1Ar; p

n−αr) = p
n+αr

2

(

2SAr−1Ar
p

)n+αr

ı̇

(

pn+α−1
2

)2

.

(5.44)

Combining (5.43) and (5.44) will yield the statement of the theorem. Otherwise, if αr = n,
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G(2SAr−1Arp
αr ; pn) = pn and in this case (5.43) becomes

(

2S

p

)(r−1)n(
Ar−1

p

)n

p
(r+1)n

2 ı̇
(r−1)

(

pn−1
2

)2

,

which will simplify to the statement of the theorem.

If the determinant of the quadratic form is non-zero and coprime to p, we have the

following obvious corollary.

Corollary 5.5. Let p be an odd prime and Qr satisfy the conditions of Theorem 5.5. Then

if (mr, p) = 1 we have

G(Qr;S; p
n) =

(

(2S)rAr
p

)n

p
nr
2 ı̇

r
(

pn−1
2

)2

.

Proof. This follows from Theorem 5.14 with αr = 0.

Theorem 5.12. Let p be an odd prime and let Qr satisfy the conditions of Theorem 5.10.

Then if n ≥ αi − αi−1 for each i = 1, . . . , r, G(Qr;S; p
n) is given by

p
rn+αr

2

(

2S

p

)rn+αr
(

Ar
p

)n+αr+αr−1 r−1
∏

i=1

(

Ai
p

)αi−1+αi+1

×
(−1

p

)

∑

1≤i≤r−1 αi(1+αi+1)















(

−1
p

)n(αr+
r
2
)

ı̇

(

pαr−1
2

)2

if r ≡ 0 (mod 2)

(

−1
p

)n( r−1
2

)

ı̇

(

pn+αr−1
2

)2

if r ≡ 1 (mod 2).

Proof. From Theorem 3.1, Proposition 3.2 and Theorem 5.10, we have that

G(Qr; s; p
n) =

1

prα

r
∏

i=1

G(2SAiAi−1p
α+αi−αi−1 ; pn+α)

=
1

prα

r
∏

i=1

pα+αi−αi−1G(2SAiAi−1; p
n−(αi−αi−1))
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=
r
∏

i=1

p
n+αi−αi−1

2

(

2SAiAi−1

p

)n+αi+αi−1

ı̇

(

p
n+αi+αi−1−1

2

)2

=p
rn+αr

2

r
∏

i=1

(

2SAiAi−1

p

)n+αi+αi−1

ı̇

(

p
n+αi+αi−1−1

2

)2

. (5.45)

Thus, we examine in turn the factors in the product expression of (5.45). First, observe that

r
∏

i=1

(

2SAiAi−1

p

)n+αi+αi

=

(

r
∏

i=1

(

2SAiAi−1

p

)n
)(

r
∏

i=1

(

2SAiAi−1

p

)αi+αi−1
)

=

(

2S

p

)nr (
Ar
p

)n(
2S

p

)αr
(

Ar
p

)αr+αr−1 r−1
∏

i=1

(

Ai
p

)αi−1+αi+1

=

(

2S

p

)rn+αr
(

Ar
p

)n+αr+αr−1 r−1
∏

i=1

(

Ai
p

)αi−1+αi+1

. (5.46)

It remains to evaluate
r
∏

i=1

ı̇

(

p
n+αi+αi−1−1

2

)2

. We assume that r is sufficiently large so we may

deduce a pattern from this expression. Using Proposition 2.16, we have that

r
∏

i=1

ı̇

(

p
n+αi+αi−1−1

2

)2

= ı̇

(

pn+α1−1
2

)2

ı̇

(

pn+α1+α2−1
2

)2 r
∏

i=3

ı̇

(

p
n+αi+αi−1−1

2

)2

=

(−1

p

)n(α2+1)+α1(α2+1)

ı̇

(

pα2−1
2

)2

ı̇

(

pn+α3+α2−1
p

)2 r
∏

i=4

ı̇

(

p
n+αi+αi−1−1

2

)2

=

(−1

p

)n+
∑

1≤i≤2 αi(αi+1+1)

ı̇

(

pn+α3−1
2

)2

ı̇

(

pn+α3+α4−1
2

)2 r
∏

i=5

ı̇

(

p
n+αi+αi−1−1

2

)2

=

(−1

p

)nα4+
∑

1≤i≤3 αi(αi+1+1)

ı̇

(

pα4−1
2

)2

ı̇

(

pn+α4+α5−1
2

)2 r
∏

i=6

ı̇

(

p
n+αi+αi−1−1

2

)2

=

(−1

p

)

∑

1≤i≤4 αi(αi+1+1)

ı̇

(

pn+α5−1
2

)2

ı̇

(

pn+α5+α6−1
2

)2 r
∏

i=7

ı̇

(

p
n+αi+αi−1−1

2

)2

.

(5.47)

Continuing in this fashion we see that this product will depend on the residue class of r
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modulo 4. Hence, we see that (5.47) is given by

(−1

p

)

∑

1≤i≤r−1 αi(αi+1+1)















































(

−1
p

)n(αr+1)

ı̇

(

pαr−1
2

)2

if r ≡ 2 (mod 4)

(

−1
p

)n

ı̇

(

pn+αr−1
2

)2

if r ≡ 3 (mod 4)

(

−1
p

)nαr

ı̇

(

pαr−1
2

)2

if r ≡ 0 (mod 4)

ı̇

(

pn+αr−1
2

)2

if r ≡ 1 (mod 4).

=

(−1

p

)

∑

1≤i≤r−1 αi(αi+1+1)















(

−1
p

)n( r−1
2

)

ı̇

(

pn+αr−1
2

)2

if r ≡ 1 (mod 2)

(

−1
p

)n(αr+
r
2
)

ı̇

(

pαr−1
2

)2

if r ≡ 0 (mod 2).

(5.48)

Hence, with (5.45), (5.46) and (5.48) we arrive at the statement of the theorem.

Finally, we have similar theorems for the even prime cases.

Theorem 5.13. Let Qr satisfy the conditions of Theorem 5.6 and let mr ≡ 2r · 2α′
rA′

r

(mod 2n+α+1). If α′
r ≥ n, then G(Qr;S; 2

n) is given by

2
(r+1)n

2

(

2

S

)(r−1)n(
2

Ar−1

)n



























r−1
2
∏

i=1

2ı̇
SA2i−1A2i

(

A2i−2+A2i
2

)2

if r ≡ 1 (mod 2)

(1 + ı̇SAr−1Ar−2)

r−2
2
∏

i=1

2ı̇
SA2i−1A2i

(

A2i−2+A2i
2

)2

if r ≡ 0 (mod 2)

If α′
r < n, then G(Qr;S; 2

n) is given by

2
nr+α′

r
2

(

2

S

)rn+α′
r
(

2

Ar−1

)α′
r
(

2

Ar

)n+α′
r

×



























r
2
∏

i=1

2ı̇
SA2i−1A2i

(

A2i−2+A2i
2

)2

if r ≡ 0 (mod 2)

(1 + ı̇SArAr−1)

r−1
2
∏

i=1

2ı̇
SA2i−1A2i

(

A2i−2+A2i
2

)2

if r ≡ 1 (mod 2).
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Proof. We write αr = α′
r + r. In this fashion, we have

mr ≡ 2rm′
r ≡ 2r+α

′
rAr ≡ 2αrAr (mod 2n+α+1).

Hence, by Theorem 5.6, we have

G(Qr;S; 2
n) = G(SAr−1Ar2

α′
r ; 2n)

r−1
∏

i=1

G(SAiAi−1; 2
n)

= G(SAr−1Ar2
α′
r ; 2n)

r−1
∏

i=1

(

2

SAiAi−1

)n

(1 + ı̇SAiAi−1)2
n
2

= G(SAr−1Ar2
α′
r ; 2n)2

(r−1)n
2

(

2

S

)(r−1)n(
2

Ar−1

)n r−1
∏

i=1

(1 + ı̇SAiAi−1). (5.49)

If α′
r ≥ n, then G(SAr−1Ar2

α′
r ; 2n) = 2n. By Proposition 2.20, we have that

r−1
∏

i=1

(

1 + ı̇SAiAi−1
)

=



























r−1
2
∏

i=1

(

1 + ı̇SA2i−1A2i−2
) (

1 + ı̇SA2i−1A2i
)

if r ≡ 1 (mod 2)

(1 + ı̇SAr−1Ar−2)

r−2
2
∏

i=1

(

1 + ı̇SA2i−1A2i−2
) (

1 + ı̇SA2i−1A2i
)

if r ≡ 0 (mod 2).

=



























r−1
2
∏

i=1

2ı̇
SA2i−1A2i

(

A2i−2+A2i
2

)2

if r ≡ 1 (mod 2)

(1 + ı̇SAr−1Ar−2)

r−2
2
∏

i=1

2ı̇
SA2i−1A2i

(

A2i−2+A2i
2

)2

if r ≡ 0 (mod 2).

(5.50)

Thus, with (5.49) and (5.50), we arrive at the first statement of the theorem in this case.

Otherwise, for α′
r < n, by Theorem 3.1 and Proposition 3.2, we have

G(SAr−1Ar2
α′
r ; 2n) = 2α

′
rG(SAr−1Ar; 2

n−α′
r)

= 2
n+α′

r
2

(

2

SAr−1Ar

)n+α′
r r
∏

i=1

(1 + ı̇SAiAi−1). (5.51)
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By similar reasoning to (5.50), it follows that

r
∏

i=1

(1 + ı̇SAiAi−1)

=



























r
2
∏

i=1

2ı̇
SA2i−1A2i

(

A2i−2+A2i
2

)2

if r ≡ 0 (mod 2)

(1 + ı̇SArAr−1)

r−1
2
∏

i=1

2ı̇
SA2i−1A2i

(

A2i−2+A2i
2

)2

if r ≡ 1 (mod 2).

(5.52)

We combine (5.49), (5.51) and (5.52) to arrive at the remaining statement of the theorem.

Corollary 5.6. Let Qr be a quadratic form satisfying the conditions of Theorem 5.6 and

suppose 2r || mr. Then

G(Qr;S; 2
n) = 2

nr
2

(

2

(S)rAr

)n



























r
2
∏

i=1

2ı̇
SA2i−1A2i

(

A2i−2+A2i
2

)2

if r ≡ 0 (mod 2)

(1 + ı̇SArAr−1)

r−1
2
∏

i=1

2ı̇
SA2i−1A2i

(

A2i−2+A2i
2

)2

if r ≡ 1 (mod 2).

Proof. This will follow from Theorem 5.16 with α′
r = 0.

Theorem 5.14. Let Qr be a quadratic form satisfying the conditions of Theorem 5.11. If

n ≥ αi − αi−1 + 1 for i = 1, . . . , r, then G(Qr; s; 2
n) is given by

2
r(n−1)+αr

2

(

2

S

)r(n+1)+αr
(

2

Ar

)n+1+αr+αr−1 r−1
∏

i=1

(

2

Ai

)αi−1+αi+1

×



























r
2
∏

i=1

2ı̇
SA2i−1A2i−2

(

A2i−2+A2i
2

)2

if r even

(1 + ı̇SArAr−1)

r−1
2
∏

i=1

2ı̇
SA2i−1A2i−2

(

A2i−2+A2i
2

)2

if r odd.

Proof. Observe that as n ≥ αi−αi−1+1, none of the Gauss sums in the statement of Theorem

5.11 will have a modulus congruent to 2 (mod 4). Thus, from Theorem 3.1, Proposition 3.2
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and Theorem 5.11 we have

G(Qr;S; 2
n) =

1

2r(α+1)

r
∏

i=1

G(SAiAi−12
α+αi−αi−1 ; 2n+α+1)

=
1

2r(α+1)

r
∏

i=1

2α+αi−αi−1G(SAiAi−1; 2
n+1−αi+αi−1)

=
1

2r

r
∏

i=1

2
n+αi−αi−1+1

2

(

2

SAiAi−1

)n+αi+αi−1+1

(1 + ı̇SAiAi−1)

= 2
r(n−1)+αr

2

r
∏

i=1

(

2

SAiAi−1

)n+αi+αi−1+1

(1 + ı̇SAiAi−1). (5.53)

We examine the factors of (5.53) individually. First, we have

r
∏

i=1

(

2

SAiAi−1

)n+αi+αi−1+1

=

(

2

S

)r(n+1) r
∏

i=1

(

2

S

)αi+αi−1 r
∏

i=1

(

2

AiAi−1

)n+1 r
∏

i=1

(

2

AiAi−1

)αi+αi−1

=

(

2

S

)r(n+1)+αr
(

2

Ar

)n+1+αr+αr−1 r−1
∏

i=1

(

2

Ai

)αi−1+αi+1

. (5.54)

Finally, by Proposition 2.20 and similar to the proof of Theorem 5.16, we deduce that

r
∏

i=1

(1 + ı̇SAiAi−1) =



























r
2
∏

i=1

2ı̇
SA2i−1A2i−2

(

A2i−2+A2i
2

)2

if r even

(1 + ı̇SArAr−1)

r−1
2
∏

i=1

2ı̇
SA2i−1A2i−2

(

A2i−2+A2i
2

)2

if r odd.

(5.55)

Hence, with (5.53), (5.54) and (5.55) we arrive at the statement of the theorem.



Chapter 6

Applications

In this chapter, we will use our results for the binary quadratic form Gauss sum to determine

the number of solutions to a binary quadratic form congruence. Thus, for this chapter, we

let a, b, c ∈ Z be such that a ̸= 0 and (a, b, c) = 1. For now, we let p denote an arbitrary

prime, S ∈ Z will be coprime to p and we let n ∈ N arbitrarily. We emphasize that S is

coprime to the modulus, as we will use s for indexing. For k ∈ Z, we will determine the

number of solutions to the congruence

ax2 + bxy + cy2 ≡ k (mod pn). (6.1)

If we let Npn(a, b, c; k) denote the number of solutions to the congruence given in (6.1), then

we have

Npn(a, b, c; k) =
1

pn

pn−1
∑

s=0

pn−1
∑

x,y=0

e

(

s(ax2 + bxy + cy2 − k)

pn

)

. (6.2)

By evaluating the sum given in (6.2) we can determine the values of Npn(a, b, c; k). We have

the following theorem to aid in this evaluation.

98
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Theorem 6.1. Let p be any prime and n ∈ N. Then for k ∈ Z we have that

Npn(a, b, c; k) = pn









1 +
n
∑

t=1

1

p2t

∑

S<pt

(S,p)=1

e

(

S(−k)
pt

)

G(Q2;S; p
t)









.

Proof. From (6.2), we have

Npn(a, b, c; k) =
1

pn

pn−1
∑

s=0

pn−1
∑

x,y=0

e

(

s(ax2 + bxy + cy2 − k)

pn

)

. (6.3)

We break up this sum by isolating the index position s = 0, and hence (6.3) becomes

1

pn

pn−1
∑

x,y=0

1 +
1

pn

pn−1
∑

s=1

pn−1
∑

x,y=0

e

(

s(ax2 + bxy + cy2 − k)

pn

)

= pn +
1

pn

pn−1
∑

s=1

e

(

s(−k)
pn

)

G(Q2; s; p
n)

= pn +
1

pn

n−1
∑

t=0

pn−1
∑

s=1
pt||s

e

(

s(−k)
pn

)

G(Q2; s; p
n)

= pn +
1

pn

n−1
∑

t=0

pn−1
∑

ptS=1
(S,p)=1

e

(

ptS(−k)
pn

)

G(Q2;Sp
t; pn)

= pn +
1

pn

n−1
∑

t=0

∑

S<pn−t

(S,p)=1

e

(

S(−k)
pn−t

)

p2tG(Q2;S; p
n−t).

We re-index this sum by sending t 7→ n − t and collect the common factor pn to arrive at

the statement of the theorem.

From now on, p will denote an odd prime. We proceed to determine the number of

solutions to the congruence given by (6.1) by considering the odd prime case and subsequently

the even prime case. We will have some preliminary results for both cases to aid in these
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evaluations.

6.1 Sums of Legendre Symbols

Evaluating the number of solutions N2n(a, b, c; k) will depend on the value of the quadratic

Gauss sum. Each non-zero quadratic Gauss sum with prime power modulus will contain

a Legendre symbol in its explicit formula. By Theorem 6.1, we see that we will need to

consider sums of Legendre symbols. We have various propositions to aid in this evaluation.

Proposition 6.1. We have G(1; p) =

p−1
∑

x=1

e

(

x

p

)(

x

p

)

.

Proof. We have that

G(1; p) =

p−1
∑

x=0

e

(

x2

p

)

= 1 +

p−1
∑

x=1

e

(

x2

p

)

= 1 + 2

p−1
∑

x=1
x is a quadratic residue

e

(

x

p

)

= 1 + 2

p−1
∑

x=1

e

(

x

p

)

· 1
2

(

1 +

(

x

p

))

= 1 +

p−1
∑

x=1

e

(

x

p

)

+

p−1
∑

x=1

(

x

p

)

· e
(

x

p

)

=

p−1
∑

x=0

e

(

x

p

)

+

p−1
∑

x=1

e

(

x

p

)(

x

p

)

=

p−1
∑

x=1

e

(

x

p

)(

x

p

)

.

The preceding proposition is a common generalization of the quadratic Gauss sum, which

we will need in our evaluation of Npn(a, b, c; k). We now turn to sums of Legendre symbols.

We must differentiate between the even and odd prime cases.

Definition 6.2. Let u, v ∈ N0. For p an odd prime and S ∈ Z coprime to p, we define

Hp(S; u, v) =
v
∑

x=u

(

S

p

)x

.
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The following sums occur quite frequently in our evaluation of the number of solutions

for the odd prime case.

Proposition 6.2. Let u, v ∈ N0 be such that u ≤ v. Then

Hp(S; u, v) =



















[

v − u+ 1

2

]

+

(

S

p

)[

v − u+ 2

2

]

if u odd
[

v − u+ 2

2

]

+

(

S

p

)[

v − u+ 1

2

]

if u even.

Proof. By Definition 6.2,

Hp(S; u, v) =
v
∑

x=u

(

S

p

)x

=
v
∑

x=u
x even

1 +

(

S

p

) v
∑

x=u
x odd

1. (6.4)

If u is even, then we map x 7→ x+ u in each sum given in (6.4) to obtain

v−u
∑

x=0
x even

1 +

(

S

p

) v−u
∑

x=0
x odd

1.

Subsequently, we map x 7→ 2y in our first sum, and x 7→ 2y + 1 in our second sum, which

yields

[ v−u
2 ]
∑

y=0

1 +

(

S

p

) [ v−u−1
2 ]
∑

y=0

1 =

[

v − u

2

]

+ 1 +

(

S

p

)([

v − u− 1

2

]

+ 1

)

,

which will simplify to the statement of the proposition. If u is odd, we map x 7→ x + u− 1

in each sum in (6.4) as before to get

v−u+1
∑

x=1
x even

1 +

(

S

p

) v−u+1
∑

x=1
x odd

1.
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We map x 7→ 2y and x 7→ 2y + 1 as before and our sum becomes

[ v−u+1
2 ]
∑

y=1

1 +

(

S

p

) [ v−u
2 ]
∑

y=0

1 =

[

v − u+ 1

2

]

+

(

S

p

)([

v − u

2

]

+ 1

)

,

which simplifies to the statement of the proposition.

It will be convenient to establish the following proposition.

Proposition 6.3. For u, v ∈ N0 the following hold:

(a) Hp(S; u, v) = 0 if u > v,

(b) Hp(S; u, v) =

(

v − u+ 1

2

)(

1 +

(

S

p

))

if u ̸≡ v (mod 2) and u ≤ v,

(c) Hp(S; u, v) =

(

v − u

2

)(

1 +

(

S

p

))

+

(

S

p

)u

if u ≡ v (mod 2) and u ≤ v,

(d) Hp(S; u, v) ≥ −1 if u ≤ v.

Proof. For part (a), as u > v we have v − u ≤ −1 which means

0 ≤
[

v − u+ 1

2

]

≤
[

v − u+ 2

2

]

≤
[

1

2

]

= 0.

Thus, by Proposition 6.2 we will deduce our result for (a).

For (b), by Proposition 6.2, regardless of the parity of u, if u ̸≡ v (mod 2) we have

Hp(S; u, v) =

(

v − u+ 1

2

)(

1 +

(

S

p

))

.

Next, for (c), assume that u ≡ v (mod 2). By Proposition 6.2, if u is odd we have that

Hp(S; u, v) =

(

v − u

2

)(

1 +

(

S

p

))

+

(

S

p

)

.
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Otherwise, if u is even we have

Hp(S; u, v) = 1 +

(

v − u

2

)(

1 +

(

S

p

))

.

Based on the parity of u we arrive at the expression for (c). Finally, for (d), we note that
(

1 +
(

S
p

))

≥ 0. Hence, from (c) we have Hp(S; u, v) ≥
(

S
p

)

≥ −1.

The above proposition will not only be notationally convenient, but will also allow us to

show that the expressions for the number of solutions yield non-negative integer values. We

introduce similar notation for the even prime case.

Definition 6.3. Let u, v ∈ N0. Then for S ∈ Z odd we define

PS(u, v) =
v
∑

t=u

(

2

S

)t

We have some propositions to aid in evaluation of this expression.

Proposition 6.4. Let u, v ∈ N0 be such that u ≤ v. Then

PS(u, v) =

[

v + 2

2

]

−
[

u+ 1

2

]

+

(

2

S

)([

v + 1

2

]

+
[u

2

]

)

.

Proof. By Definition 6.3, we have

PS(u, v) =
v
∑

t=u

(

2

S

)t

=
v
∑

t=u
t even

1 +

(

2

S

) v
∑

t=u
t odd

1

=

[ v2 ]
∑

t=[u+1
2 ]

1 +

(

2

S

) [ v−1
2 ]
∑

t=[u2 ]

1

=
[v

2

]

−
[

u+ 1

2

]

+ 1 +

(

2

S

)([

v − 1

2

]

+
[u

2

]

+ 1

)

=

[

v + 2

2

]

−
[

u+ 1

2

]

+

(

2

S

)([

v + 1

2

]

+
[u

2

]

)

.
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Proposition 6.5. For u, v ∈ N0, the following hold:

(a) PS(u, v) = 0 if u > v,

(b) PS(u, v) =

(

2

S

)v

+

(

v − u

2

)(

1 +

(

2

S

))

if u ≡ v (mod 2), u ≤ v,

(c) PS(u, v) =

(

v − u+ 1

2

)(

1 +

(

2

S

))

if u ̸≡ v (mod 2), u ≤ v,

(d) PS(u, v) ≥ −1.

Proof. For (a), as u > v, by Definition 6.3 this will be an empty sum. Thus, we may assume

now that u ≤ v. Next, for (b), suppose first that u ≡ v (mod 2) and u is even. Then from

Proposition 6.4, we have

PS(u, v) =
v + 2

2
−
(u

2

)

+

(

2

S

)

(v

2
− u

2

)

= 1 +

(

v − u

2

)(

1 +

(

2

S

))

.

Otherwise, for u ≡ v (mod 2) and v odd, we have

PS(u, v) =
v + 1

2
−
(

u+ 1

2

)

+

(

2

S

)(

v + 1

2
−
(

u− 1

2

))

=

(

2

S

)

+

(

v − u

2

)(

1 +

(

2

S

))

.

Due to the parity of v, the statement of the proposition for (b) will hold.

Suppose now that u ̸≡ v (mod 2). If v is even, we have

PS(u, v) =
v + 2

2
−
(

u+ 1

2

)

+

(

2

S

)(

v

2
−
(

u− 1

2

))

=

(

v − u+ 1

2

)(

1 +

(

2

S

))

.

Otherwise, for v odd and u even we have

PS(u, v) =
v + 1

2
−
(u

2

)

+

(

2

S

)(

v + 1

2
−
(u

2

)

)

=

(

v − u+ 1

2

)(

1 +

(

2

S

))

,
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which is given by case (c). Finally, from (b) and (c) we may deduce that

PS(u, n) ≥
(

2

S

)

≥ −1.

6.2 Number of Solutions: Odd Prime

Let Q2 = ax2 + bxy + cy2. With respect to the symmetric integral matrix associated with

Q2, we have m1 = 2a and m2 = 4ac − b2. Let α ∈ N0 and A ∈ Z be such that 2a = pαA.

Similarly, we let δ, ω ∈ N0 and D,K ∈ Z be such that (DK, p) = 1 and

m2 ≡ pδD (mod pn+α),

k ≡ pωK (mod pn).

Further, we may permute a and c as necessary so that without loss of generality we may

assume that pα | c. In particular, as (a, b, c) = 1 if α ≥ 1 we have δ = 0.

Theorem 6.4. The numbers of solutions Npn(a, b, c; k) are given according to the following

cases.

Case 1: If α = 0 and δ = n,

Npn(a, b, c; k) =































pn+[
n
2 ] if ω = n

pn+
ω
2

(

1 +
(

2AK
p

))

if ω < n, ω ≡ 0 (mod 2)

0 if ω < n, ω ≡ 1 (mod 2).
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Case 2:If α = 0 and δ < ω = n,

Npn(a, b, c; k) =















pn+
δ−1
2 if δ ≡ 1 (mod 2)

pn+
δ
2
−1 (p+ (p− 1)Hp(−D; δ + 1, n)) if δ ≡ 0 (mod 2).

Case 3: If α = 0 and ω < n,

Npn(a, b, c; k)

= pn















































0 if ω < δ, ω ≡ 1 (mod 2)

p
ω
2

(

1 +
(

2AK
p

))

if ω < δ, ω ≡ 0 (mod 2)

p
δ−1
2

(

1 +
(

2AK
p

)(

D
p

)ω)

if ω ≥ δ, δ ≡ 1 (mod 2)

p
δ
2
−1

(

p−
(

−D
p

)ω+1

+ (p− 1)Hp(−D; δ + 1, ω)

)

if ω ≥ δ, δ ≡ 0 (mod 2).

Case 4: If α ̸= 0,

Npn(a, b, c; k)

= pn−1































p+ (p− 1)(α +Hp(−D; 1, n− α)) if ω = n,

(ω + 1)(p− 1) if ω < α ≤ n

p−
(

−D
p

)ω+α+1

+ (p− 1)(α +Hp(−D; 1, ω − α)) if α ≤ ω < n.

Proof. By Theorem 6.1, we have

Npn(a, b, c; k) = pn
{

1 +
n
∑

t=1

1

p2t

∑

S<pt

(S,p)=1

e

(

S(−k)
pt

)

G(Q2;S; p
t)
}

. (6.5)

We will proceed by evaluating the sum indexed by t in (6.5) for the following three cases:

1. α = 0, δ = n,
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2. α = 0, δ < n,

3. α ̸= 0.

First, let us assume that α = 0. From Theorem 5.1 and Corollary 5.1, for a positive

integer t, we have that

G(Q2;S; p
t) = G(2SA; pt)G(2SADpδ; pt)

=

(

2SA

p

)t

ı̇

(

pt−1
2

)2

p
t
2G(2SADpδ; pt)

=



















p
3t
2

(

2SA

p

)t

ı̇

(

pt−1
2

)2

if δ ≥ t

pt+
δ
2

(

2SA

p

)δ (
D

p

)t+δ (−1

p

)t(δ+1)

ı̇

(

pδ−1
2

)2

if δ < t.

(6.6)

Thus, we proceed first under the assumption that δ = n. We substitute the appropriate

value from (6.6) into the sum indexed by t in (6.5), which yields the expression

n
∑

t=1

1

p2t

∑

S<pt

(S,p)=1

e

(−Sk
pt

)(

2SA

p

)t

ı̇

(

pt−1
2

)2

p
3t
2

=
n
∑

t=1

p−
t
2

(−2A

p

)t

ı̇

(

pt−1
2

)2
∑

S<pt

(S,p)=1

e

(

Sk

pt

)(

S

p

)t

, (6.7)

where by Proposition 2.5 we may map S 7→ −S without altering the index of summation.

We now re-index the inner sum by mapping S 7→ u + pv where u runs from 1 to p − 1 and

v runs from 0 to pt−1 − 1. Thus, our expression given in (6.7) becomes

=
n
∑

t=1

p
−t
2

(−2A

p

)t

ı̇

(

pt−1
2

)2 p−1
∑

u=1

pt−1−1
∑

v=0

e

(

(u+ pv)k

pt

)(

u+ pv

p

)t

=
n
∑

t=1

p
−t
2

(−2A

p

)t

ı̇

(

pt−1
2

)2 p−1
∑

u=1

e

(

pωKu

pt

)(

u

p

)t p
t−1−1
∑

v=0

e

(

pωKv

pt−1

)

(6.8)
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We now evaluate this sum based on the size of ω.

Assume first that ω = n. Then with Proposition 2.9 (e), (6.8) will reduce to

n
∑

t=1

p
−t
2

(−2A

p

)t

ı̇

(

pt−1
2

)2 p−1
∑

u=1

(

u

p

)t p
t−1−1
∑

v=0

1 = (p− 1)
n
∑

t=1
t≡0 (mod 2)

p
t
2
−1

=
(p− 1)

p

[n2 ]
∑

t=1

pt = p[
n
2 ] − 1. (6.9)

Suppose now that ω < n. From Corollary 2.2, the sum indexed by v in (6.8) will be

non-zero if and only if ω ≥ t− 1. Hence, with Propositions 2.1, 2.5, 2.9(e), 2.10 and 6.1, and

Theorem 3.1, we see that (6.8) can be written as

ω+1
∑

t=1

p
−t
2

(−2A

p

)t

ı̇

(

pt−1
2

)2 p−1
∑

u=1

e

(

pωKu

pt

)(

u

p

)t

pt−1

=
ω
∑

t=1

p
t
2
−1

(−2A

p

)t

ı̇

(

pt−1
2

)2 p−1
∑

u=1

(

u

p

)t

+ p
ω−1
2

(−2A

p

)ω+1

ı̇

(

pω+1−1
2

)2 p−1
∑

u=1

e

(

uK

p

)(

u

p

)ω+1

=
ω
∑

t=1
t≡0 (mod 2)

p
t
2
−1(p− 1) + p

ω−1
2

(−2AK

p

)ω+1

ı̇

(

pω+1−1
2

)2 p−1
∑

u=1

e

(

uK

p

)(

uK

p

)ω+1

=p[
ω
2 ] − 1 +



















p
ω−1
2

p−1
∑

u=1

e

(

uK

p

)

if ω ≡ 1 (mod 2)

p
ω−1
2

(−2AK

p

)

ı̇(
p−1
2 )

2

G(1; p) if ω ≡ 0 (mod 2)

=p[
ω
2 ] − 1 +















−pω−1
2 if ω ≡ 1 (mod 2)

p
ω
2

(

2AK

p

)

if ω ≡ 0 (mod 2).

=















−1 if ω ≡ 1 (mod 2)

p
ω
2 (1 +

(

2AK
p

)

)− 1 if ω ≡ 0 (mod 2).

(6.10)

Hence, (6.5) along with (6.9) and (6.10) will allow us to deduce the statement of the theorem

for case 1.
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Next, we assume that δ < n. We see that with (6.6), the sum indexed by t in (6.5)

becomes

=
δ
∑

t=1

1

p2t

∑

S<pt

(S,p)=1

e

(−Sk
pt

)(

2SA

p

)t

ı̇

(

pt−1
2

)2

p
3t
2

+
n
∑

t=δ+1

1

p2t

∑

S<pt

(S,p)=1

e

(−Sk
pt

)

pt+
δ
2

(

2SA

p

)δ (
D

p

)t+δ (−1

p

)t(δ+1)

ı̇

(

pδ−1
2

)2

. (6.11)

From (6.7)-(6.10), we deduce that the first term of (6.11) can be written as































p[
δ
2 ] − 1 if ω ≥ δ

p
ω
2

(

1 +
(

2AK
p

))

− 1 if ω < δ, ω even

−1 if ω < δ, ω odd.

(6.12)

We now look to examine the second term of (6.11). By Proposition 2.5 we may re-index by

S 7→ −S, and subsequently we map S 7→ u+ pv as before so that the second term of (6.11)

becomes

=

(−2AD

p

)δ

ı̇

(

pδ−1
2

)2 n
∑

t=δ+1

p
δ
2
−t

(

D

p

)t(−1

p

)t(δ+1)
∑

S<pt

(S,p)=1

e

(

Sk

pt

)(

S

p

)δ

=

(−2AD

p

)δ

ı̇

(

pδ−1
2

)2 n
∑

t=δ+1

p
δ
2
−t

(

D

p

)t(−1

p

)(δ+1)t p−1
∑

u=1

e

(

pωuK

pt

)(

u

p

)δ p
t−1−1
∑

v=0

e

(

pωvK

pt−1

)

.

(6.13)

From here we proceed by making assumptions on the prime divisibility of k.

Suppose ω = n. Then with Proposition 2.9(e), (6.13) becomes

=

(−2AD

p

)δ

ı̇

(

pδ−1
2

)2 n
∑

t=δ+1

p
δ
2
−t

(

D

p

)t(−1

p

)(δ+1)t p−1
∑

u=1

(

u

p

)δ

pt−1
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=



















0 if δ ≡ 1 (mod 2)
n
∑

t=δ+1

p
δ
2
−1

(−D
p

)t

(p− 1) if δ ≡ 0 (mod 2)

=



















0 if δ ≡ 1 (mod 2)

p
δ
2
−1(p− 1)

n
∑

t=δ+1

(−D
p

)t

if δ ≡ 0 (mod 2)

=















0 if δ ≡ 1 (mod 2)

p
δ
2
−1(p− 1)Hp(−D; δ + 1, n) if δ ≡ 0 (mod 2).

(6.14)

Suppose now that ω < n. From Corollary 2.2, the sum indexed by v in (6.13) will be

non-zero if and only if ω ≥ t − 1. As δ ≤ t − 1 ≤ n − 1, we see that (6.13) will reduce to

zero if ω < δ. Hence, suppose δ ≤ ω and so by Corollary 2.2, (6.13) will simplify to

=

(−2AD

p

)δ

ı̇

(

pδ−1
2

)2

p
δ
2
−1

ω+1
∑

t=δ+1

(

D

p

)t(−1

p

)(δ+1)t p−1
∑

u=1

e

(

uK

pt−ω

)(

u

p

)δ

=

(−2ADK

p

)δ

ı̇

(

pδ−1
2

)2

p
δ
2
−1

(

ω
∑

t=δ+1

(

D

p

)t(−1

p

)(δ+1)t p−1
∑

u=1

(

uK

p

)δ

+

(

D

p

)ω+1(−1

p

)(δ+1)(ω+1) p−1
∑

u=1

e

(

uK

p

)(

uK

p

)δ
)

(6.15)

If δ is odd, then with Propositions 2.5, 2.9(e), 2.10 and 6.1, and Theorem 3.1, (6.15) resolves

to

(−2ADK

p

)

ı̇(
p−1
2 )

2

p
δ
2
−1

(

D

p

)ω+1

G(1; p) = p
δ−1
2

(

2AK

p

)(

D

p

)ω

. (6.16)

Otherwise, for even δ, with Proposition 2.1, (6.15) is given by

p
δ
2
−1

(

(p− 1)
ω
∑

t=δ+1

(−D
p

)t

−
(−D

p

)ω+1
)
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= p
δ
2
−1

(

(p− 1)Hp(−D; δ + 1, ω)−
(−D

p

)ω+1
)

. (6.17)

Hence, with (6.5) and (6.11)-(6.14), if δ < ω = n, then Npn(a, b, c; k) is given by

pn









p[
δ
2 ] +















0 if δ ≡ 1 (mod 2)

p
δ
2
−1(p− 1)Hp(−D; δ + 1, n) if δ ≡ 0 (mod 2)









= pn















p
δ−1
2 if δ ≡ 1 (mod 2)

p
δ
2
−1 (p+ (p− 1)Hp(−D; δ + 1, n)) if δ ≡ 0 (mod 2).

(6.18)

It’s clear that (6.18) corresponds to the statement of case 2.

Next, if ω < n, then with (6.5), (6.12), (6.13) and (6.15)-(6.17), Npn(a, b, c; k) is given by

pn















































p[
δ
2 ] if ω ≥ δ

p
ω
2

(

1 +
(

2AK
p

))

if ω < δ, ω ≡ 0 (mod 2)

0 if ω < δ, ω ≡ 1 (mod 2)

+































0 if ω < δ

p
δ−1
2

(

2AK
p

)(

D
p

)ω

if ω ≥ δ, δ ≡ 1 (mod 2)

p
δ
2
−1((p− 1)Hp(−D; δ + 1, ω)−

(

−D
p

)ω+1

) if ω ≥ δ, δ ≡ 0 (mod 2)

















= pn















































0 if ω < δ, ω ≡ 1 (mod 2)

p
ω
2

(

1 +
(

2AK
p

))

if ω < δ, ω ≡ 0 (mod 2)

p
δ−1
2

(

1 +
(

2AK
p

)(

D
p

)ω)

if ω ≥ δ, δ ≡ 1 (mod 2)

p
δ
2
−1

(

p−
(

−D
p

)ω+1

+ (p− 1)Hp(−D; δ + 1, ω)

)

if ω ≥ δ, δ ≡ 0 (mod 2).

It’s clear these values correspond to case 3 of the theorem.

Finally, we deal with the case where α ̸= 0. Observe that as (a, b, c) = 1 we must have
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δ = 0. Hence, from Theorem 5.1 and Corollary 5.1, for t ∈ N we have that

G(Q2;S; p
t) =















pt if α ≥ t

G(2SA; pt−α)G(2SAD; pt+α) if α < t

=















pt if α ≥ t

pt
(

−D
p

)t+α

if α < t.

. (6.19)

Thus, with (6.19), and following the mappings −S 7→ S 7→ u+ pv as before, we see that the

sum indexed by t in (6.5) becomes

α
∑

t=1

1

p2t

∑

S<pt

(S,p)=1

e

(−Sk
pt

)

pt +
n
∑

t=α+1

1

p2t

∑

S<pt

(S,p)=1

e

(−Sk
pt

)(−D
p

)t+α

pt

=
α
∑

t=1

p−t
p−1
∑

u=1

e

(

upωK

pt

) pt−1−1
∑

v=0

e

(

vpωK

pt−1

)

+
n
∑

t=α+1

p−t
(−D

p

)t+α p−1
∑

u=0

e

(

upωK

pt

) pt−1−1
∑

v=0

e

(

vpωK

pt−1

)

. (6.20)

As before, we now specify the prime divisibility of k. If ω = n, then with Proposition 6.3

(a) and by mapping t 7→ t+ α in the second term, (6.20) will simplify to

=
α
∑

t=1

p−t
p−1
∑

u=1

pt−1−1
∑

v=0

1 +
n
∑

t=α+1

p−t
(−D

p

)t+α p−1
∑

u=1

pt−1−1
∑

v=0

1

=
(p− 1)

p

α
∑

t=1

1 +
(p− 1)

p

n−α
∑

t=1

(−D
p

)t

=
(p− 1)

p















α if α = n

α +Hp(−D; 1, n− α) if α < n.

=
(p− 1)

p
(α +Hp(−D; 1, n− α)) . (6.21)

Suppose now that ω < n. Observe that by Corollary 2.2, the sum indexed by v in each
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term of (6.20) will be non-zero if ω ≥ t−1. In other words, the index t will reach a maximum

value of ω + 1 and the rest of this expression will vanish.

Suppose first that α = n. Then with Proposition 2.1, (6.20) will be given by

n
∑

t=1

p−t
p−1
∑

u=1

e

(

upωK

pt

) pt−1−1
∑

v=0

e

(

vpωK

pt−1

)

=
1

p

ω+1
∑

t=1

p−1
∑

u=1

e

(

upωK

pt

)

=
1

p

ω
∑

t=1

(p− 1) +
1

p

p−1
∑

u=1

e

(

uK

p

)

=
ω(p− 1)

p
− 1

p
=
ω(p− 1)− 1

p
. (6.22)

Hence, suppose now that α < n. We proceed to evaluate (6.20) based on the relation of

ω to α. If we first assume that ω < α, then with Corollary 2.2, (6.20) becomes

ω+1
∑

t=1

p−t
p−1
∑

u=1

e

(

upωK

pt

)

pt−1 =
1

p

ω
∑

t=1

p−1
∑

u=1

1 +
1

p

p−1
∑

u=1

e

(

uK

p

)

=
1

p
(ω(p− 1)− 1)

=
ω(p− 1)− 1

p
. (6.23)

Next, if ω = α, then with Proposition 2.1 and Corollary 2.2, (6.20) becomes

=
ω
∑

t=1

p−t
p−1
∑

u=1

e

(

upωK

pt

)

pt−1 + p−(ω+1)

(−D
p

) p−1
∑

u=1

e

(

uK

p

)

pω

=
1

p

α
∑

t=1

(p− 1)− 1

p

(−D
p

)

=
1

p

(

α(p− 1)−
(−D

p

))

. (6.24)

Finally, if ω > α then with Proposition 2.1 and Corollary 2.2, we find that (6.20) simplifies

to

=
α
∑

t=1

p−t
p−1
∑

u=1

e

(

upωK

pt

)

pt−1 +
ω+1
∑

t=α+1

p−t
(−D

p

)t+α p−1
∑

u=1

e

(

upωK

pt

)

pt−1
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=
(p− 1)α

p
+

(p− 1)

p

ω
∑

t=α+1

(−D
p

)t+α

− 1

p

(−D
p

)ω+1+α

=
(p− 1)

p

(

α +
ω−α
∑

t=1

(−D
p

)t
)

− 1

p

(−D
p

)ω+α+1

=
(p− 1)

p
(α +Hp(−D; 1, ω − α))− 1

p

(−D
p

)ω+1+α

. (6.25)

Hence, with (6.5), (6.20) and (6.21), if ω = n then Npn(a, b, c; k) is given by

pn−1 (p+ (p− 1)(α +Hp(−D; 1, n− α))) . (6.26)

As α ≥ 1 from Proposition 6.3(d), we see Npn(a, b, c; k) ≥ 0 for ω = n.

Otherwise, if ω < n, from (6.5), (6.20) and (6.22)-(6.25), and with Proposition 6.3(a),

Npn(a, b, c; k) is given by

pn−1































p+ ω(p− 1)− 1 if ω < α

p+ α(p− 1)−
(

−D
p

)

if ω = α

p+ (p− 1)(α +Hp(−D; 1, ω − α))−
(

−D
p

)ω+1+α

if ω > α

= pn−1















(ω + 1)(p− 1) if ω < α

p+ (p− 1)(α +Hp(−D; 1, ω − α))−
(

−D
p

)ω+1+α

if ω ≥ α.

(6.27)

Hence, we see that (6.26) and (6.27) will yield case 4 of the theorem.
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6.3 Preliminary Results: Powers of 2

We now proceed in a similar manner to determine the number of solutions for a power of 2.

By Theorem 6.1, the number of solutions to the congruence

ax2 + bxy + cy2 ≡ k (mod 2n)

is given by

N2n = 2n









1 +
n
∑

t=1

1

22t

∑

S<2t

S≡1 (mod 2)

e

(−kS
2t

)

G(Q2;S; 2
t)









. (6.28)

By Theorem 5.2, for any t ∈ N, we have

G(Q2;S; 2
t) =































2n if α ≥ t > 1

2(−1)cO(m2 + 1) if α = t = 1

1

4
G(SA; 2t+1−α)G(SAm2; 2

t+1+α) if α < t.

(6.29)

This means the sum in (6.28) will depend on two cases of α. Either we have α = 1 or α > 1.

Regardless, for the remainder of this chapter, we let δ, ω ∈ N0 and D,K ∈ Z be such that

(DK, 2) = 1 and

2δD ≡ m2 (mod 2n+α+1),

2ωK ≡ k (mod 2n).



CHAPTER 6. APPLICATIONS 116

By Theorem 3.1 and Proposition 2.3 we have

G(SAD2δ; 2t+1+α) =































2t+1+α if δ ≥ t+ 1 + α

0 if δ = t+ α

2δG(SAD; 2t+1+α−δ) if δ ≤ t+ α− 1

(6.30)

Suppose for the moment that α = 1. With (6.29) and (6.30), the bracketed expression in

(6.28) is given by

1 +
1

22
e

(−k
2

)

G(Q2; 1; 2) +
δ−2
∑

t=2

1

2t

∑

S<2t

S≡1 (mod 2)

e

(−kS
2t

)

G(SA; 2t)

+
n
∑

t=max(2,δ)

2δ

22t+2

∑

S<2t

S≡1 (mod 2)

e

(−kS
2t

)

G(SA; 2t)G(SAD; 2t+2−δ). (6.31)

Otherwise, if α > 1 we have δ = 0. In this case, the bracketed expression in (6.28) is given

by

1 +
α
∑

t=1

1

2t

∑

S<2t

S≡1 (mod 2)

e

(−kS
2t

)

+
n
∑

t=α+1

1

22t+2

∑

S<2t

S≡1 (mod 2)

e

(−kS
2t

)

G(SA; 2t+1−α)G(SAD; 2t+1+α). (6.32)

This necessitates the following definitions.

Definition 6.5. Let A,D and K be arbitrary odd integers and let α, ω and δ ∈ N0. Then

for t ∈ N, t ≥ 2 we define

E(A, 2ωK; t) =
∑

S<2t

S≡1 (mod 2)

e

(−2ωKS

2t

)

G(SA; 2t).
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Further, if α < t and δ ≤ t, we define

F (2αA, 2δD, 2ωK; t) =
∑

S<2t

S≡1 (mod 2)

e

(−2ωKS

2t

)

G(SA; 2t+1−α)G(SAD; 2t+1+α−δ).

When the contexts of our variables are clear, we may simplify our notation by writing

E(A, 2ωK; t) = E(t) and F (2αA, 2δD, 2ωK; t) = F (t). Thus, with Definition 6.5 and (6.31),

if α = 1, N2n(a, b, c; k) is given by

2n







1 +
1

22
e

(

k

2

)

G(Q2; 1; 2) +
δ−2
∑

t=2

1

2t
E(t) +

n
∑

t=max(2,δ)

2δ

22t+2
F (t)







, (6.33)

and for α > 1, with (6.32), N2n(a, b, c; k) is given by

2n















1 +
α
∑

t=1

1

2t

∑

S<2t

S≡1 (mod 2)

e

(−kS
2t

)

+
n
∑

t=α+1

1

22t+2
F (t)















. (6.34)

We now look to evaluate these sums.

Proposition 6.6. If α = 1, we have that

1

4
e

(

k

2

)

G(Q2; 1; 2) =















0 if δ ≥ 1

(−1)c+2ω

2
if δ = 0.

Proof. From Theorem 5.2, when α = 1, we have G(Q2; 1; 2) = 2(−1)cO(2δD + 1). In

particular, this is non-zero if and only if δ = 0. Thus, if δ = 0, we multiply G(Q2; 1; 2) by

(−1)2
ωK

4
to yield the statement of the proposition.
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Proposition 6.7. We have

E(2) =































22(−1)
A−K

2 if ω = 0

−22 if ω = 1

22 if ω ≥ 2.

Proof. By Definition 6.5 and Theorem 3.1, we have

E(A, 2ωK; 2) = 2
∑

S<4
S≡1 (mod 2)

e

(−2ωKS

4

)(

2

SA

)2

(1 + ı̇SA)

= 2
∑

S<4
S≡1 (mod 2)

e

(

2ωKS

4

)

(1− ı̇SA)

= 2

(

e

(

2ωK

4

)

(1− ı̇A) + e

(

3 · 2ωK
4

)

(1 + ı̇A)

)

= 2ı̇2
ωK
(

1− ı̇A + (−1)2
ω

(1 + ı̇A)
)

= 2ı̇2
ωK















−2ı̇A if ω = 0

2 if ω ≥ 1















=































−22(−1)
A+K

2 if ω = 0

−22 if ω = 1

22 if ω ≥ 2.

We see that the ω = 0 case will simplify to the statement of the proposition.

Proposition 6.8. Suppose t ≥ 3. Then

E(t) =































































0 if ω + 3 < t

2
3ω
2
+4
(

2
AK

)

O(ω)O(A−K
2

) if ω + 3 = t

2
3ω
2
+2O(ω)(−1)

A−K
2 if ω + 2 = t

−2
3ω+1

2 O(ω + 1) if ω + 1 = t

2
3t
2
−1O(t) if ω ≥ t.
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Proof. By Theorem 3.1, we have

E(t) =
∑

S<2t

S≡1 (mod 2)

e

(−2ωKS

2t

)(

2

SA

)t

(1 + ı̇SA)2
t
2

= 2
t
2

(

2

A

)t
∑

S<2t

S≡1 (mod 2)

e

(

2ωKS

2t

)(

2

S

)t

(1− ı̇SA). (6.35)

As t ≥ 3, we may break up the sum in (6.35) according to its residues modulo 8. This yields

2
t
2

(

2

A

)t















∑

S<2t

S≡1 (mod 8)

e

(

2ωSK

2t

)

(1− ı̇A) + (−1)t
∑

S<2t

S≡3 (mod 8)

e

(

2ωSK

2t

)

(1 + ı̇A)

+(−1)t
∑

S<2t

S≡5 (mod 8)

e

(

2ωSK

2t

)

(1− ı̇A) +
∑

S<2t

S≡7 (mod 8)

e

(

2ωSK

2t

)

(1 + ı̇A)















(6.36)

Each of these sums in (6.36) can be re-indexed by S 7→ 8u + ζ, where u = 0, . . . , 2t−3 − 1

and ζ is the corresponding odd residue modulo 8. Hence, (6.36) becomes

2
t
2

(

2

A

)t 2t−3−1
∑

u=0

e

(

2ωKu

2t−3

){

e

(

2ωK

2t

)

(1− ı̇A) + (−1)te

(

2ω3K

2t

)

(1 + ı̇A)

+(−1)te

(

2ω5K

2t

)

(1− ı̇A) + e

(

2ω7K

2t

)

(1 + ı̇A)

}

= 2
t
2

(

2

A

)t 2t−3−1
∑

u=0

e

(

2ωKu

2t−3

){

(1− ı̇A)e

(

2ωK

2t

)(

1 + (−1)te

(

2ωK

2t−2

))

+(1 + ı̇A)e

(

2ω3K

2t

)(

e

(

2ωK

2t−2

)

+ (−1)t
)}

= 2
t
2

(

2

A

)t 2t−3−1
∑

u=0

e

(

2ωKu

2t−3

)

e

(

2ωK

2t

)(

1 + (−1)te

(

2ωK

2t−2

))

×
(

1− ı̇A + (−1)te

(

2ωK

2t−1

)

(1 + ı̇A)

)

. (6.37)

We now simplify based on ω. By Proposition 2.1, whenever ω < t− 3, the sum indexed by
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u in (6.37) will vanish. Hence, suppose now ω = t− 3. Substituting this into (6.37) yields

2
ω+3
2

(

2

A

)ω+1

2ωe

(

K

8

)(

1 + (−1)ω+1e

(

K

2

))(

1− ı̇A + (−1)ω+1e

(

K

4

)

(1 + ı̇A)

)

= 2
3ω+3

2

(

2

A

)ω+1

ı̇
K
2 (1 + (−1)ω)

(

1− ı̇A − ı̇K − ı̇A+K
)

= 2
3ω+5

2

(

2

A

)

O(ω)

(

2
−1
2

(

2

K

)

(1 + ı̇K)

)(

2O(
A−K

2
)(1− ı̇K)

)

= 2
3ω
2
+4

(

2

AK

)

O(ω)O(
A−K

2
),

where we have used Propositions 2.18 and 2.21 in this evaluation.

Suppose now that ω = t− 2. We substitute this into (6.37) which gives the expression

2
ω+2
2

(

2

A

)ω

2ω−1e

(

K

4

)

(1 + (−1)ω)

(

1− ı̇A + (−1)ωe

(

K

2

)

(1 + ı̇A)

)

= 2
3ω
2
+1O(ω)ı̇K(1− ı̇A − (1 + ı̇A))

= −2
3ω
2
+2O(ω)(−1)

A+K
2 = 2

3ω
2
+2O(ω)(−1)

A−K
2 .

Next, if ω = t− 1, substituting this into (6.37) yields

2
ω+1
2

(

2

A

)ω+1

2ω−2e

(

K

2

)

(

1 + (−1)ω+1
) (

1− ı̇A + (−1)ω+1(1 + ı̇A)
)

= 2
3ω−3

2 (−1)K · 2O(ω + 1) · 2

= −2
3ω+1

2 O(ω + 1).

Finally, for ω ≥ t, the expression in (6.37) becomes

2
t
2

(

2

A

)t

2t−3(1 + (−1)t)(1− ı̇A + 1 + ı̇A) = 2
3t
2
−1O(t).
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Proposition 6.9. For α = 1 and δ ≤ 2, we have

F (2) = F (2A, 2δD, 2ωK; 2) =































25−
δ
2 (−1)

A−K
2 O(D−1

2
) if ω = 0

−25−
δ
2O(D+1

2
) if ω = 1

25−
δ
2O(D+1

2
) if ω ≥ 2.

Proof. By Definition 6.5, Theorem 3.1 and Proposition 2.19,

F (2A, 2δD, 2ωK; 2)

=
∑

S<4
S≡1 (mod 2)

e

(−2ωKS

4

)

G(SA; 22)G(SAD; 24−δ)

=
∑

S<4
S≡1 (mod 2)

(

2ωKS

4

)

·
(

2

SA

)2

(1− ı̇SA)2 ·
(

2

SAD

)4−δ

(1− ı̇SAD)2
4−δ
2

= 23−
δ
2

(

2

AD

)δ
(

ı̇2
ωK

∏

j=1,D

(1− ı̇Aj) + (−1)δ ı̇2
ω3K

∏

j=1,D

(1 + ı̇Aj)

)

= 24−
δ
2

(

2

AD

)δ

ı̇A(
D+1
2 )

2

ı̇2
ωK
(

(−1)
D+1
2 + (−1)2

ω+δ
)

. (6.38)

As δ ≤ 2, we must have that δ is even. Hence, (6.38) simplifies to

24−
δ
2 ı̇A(

D+1
2 )

2

ı̇2
ωK(−1)

D+1
2

(

1 + (−1)2
ω+D+1

2

)

. (6.39)

When ω = 0, (6.39) becomes

24−
δ
2 ı̇A(

D+1
2 )

2

ı̇K(−1)
D+1
2 (1 + (−1)

D−1
2 )

= 25−
δ
2O(

D − 1

2
)(−1)ı̇A+K = 25−

δ
2 (−1)

A−K
2 O(

D − 1

2
).
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When ω = 1, (6.39) simplifies to

24−
δ
2 ı̇A(

D+1
2 )

2

(−1)K(−1)
D+1
2 (1 + (−1)

D+1
2 ) = −25−

δ
2O(

D + 1

2
).

Finally, for ω ≥ 2, (6.39) becomes

24−
δ
2 ı̇A(

D+1
2 )

2

(−1)
D+1
2 (1 + (−1)

D+1
2 ) = 25−

δ
2O(

D + 1

2
).

Proposition 6.10. Suppose t ≥ 3. Then for α < t and δ ≤ t, we have

F (t) =































































0 if ω + 3 < t

22(ω+3)+ 1−δ
2 O(δ + 1)

(

2
ADK

) (

2
D

)ω+α
(−1)(

A−K
2 )(D+1

2 ) if ω + 3 = t

22ω+5− δ
2O(δ)O(D−1

2
)
(

2
D

)ω+α+1
(−1)

A−K
2 if ω + 2 = t

−22ω+3− δ
2O(δ)O(D+1

2
)
(

2
D

)ω+α
if ω + 1 = t

22t+1− δ
2O(δ)O(D+1

2
)
(

2
D

)t+1+α
if ω ≥ t.

Proof. From Definition 6.5 and Theorem 3.1,

F (2αA; 2δD; 2ωK; t)

=
∑

S<2t

S≡1 (mod 2)

e

(

2ωKS

2t

)(

2

SA

)t+1+α

(1− ı̇SA)2
t+1−α

2

(

2

SAD

)t+1+α+δ

(1− ı̇SAD)2
t+1+α−δ

2

= 2t+1− δ
2

(

2

AD

)δ (
2

D

)t+1+α
∑

S<2t

S≡1 (mod 2)

e

(

2ωKS

2t

)(

2

S

)δ
∏

j=1,D

(1− ı̇SAj). (6.40)

Similar to the proof of Proposition 6.8, we re-index this sum according to its residue modulo

8 and map S 7→ 8u+ ζ for u = 0, . . . , 2t−3 − 1 and ζ the corresponding odd residue. Hence,
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we write (6.40) as

2t+1− δ
2

(

2

AD

)δ (
2

D

)t+1+α 2t−3−1
∑

u=0

e

(

2ωKu

2t−3

)

×
{

e

(

2ωK

2t

)

∏

j=1,D

(1− ı̇Aj) + (−1)δe

(

2ω3K

2t

)

∏

j=1,D

(1 + ı̇Aj)

+(−1)δe

(

2ω5K

2t

)

∏

j=1,D

(1− ı̇Aj) + e

(

2ω7K

2t

)

∏

j=1,D

(1 + ı̇Aj)

}

. (6.41)

We look to simplify the bracketed expression in (6.41). By Proposition 2.19, this expression

becomes

e

(

2ωK

2t

)

∏

j=1,D

(1− ı̇Aj)

(

1 + (−1)δe

(

2ωK

2t−2

))

+ e

(

2ω3K

2t

)

∏

j=1,D

(1 + ı̇Aj)

(

e

(

2ωK

2t−2

)

+ (−1)δ
)

= e

(

2ωK

2t

)(

1 + (−1)δe

(

2ωK

2t−2

))

(

∏

j=1,D

(1− ı̇Aj) + (−1)δe

(

2ωK

2t−1

)

∏

j=1,D

(1 + ı̇Aj)

)

= e

(

2ωK

2t

)(

1 + (−1)δe

(

2ωK

2t−2

))

· 2ı̇A(D+1
2 )

2

(−1)
D+1
2

(

1 + (−1)δ+
D+1
2 e

(

2ωK

2t−1

))

(6.42)

Combining (6.41) and (6.42) means that F (t) can be written as

2t+2− δ
2

(

2

AD

)δ (
2

D

)t+1+α 2t−3−1
∑

u=0

e

(

2ωKu

2t−3

)

× e

(

2ωK

2t

)(

1 + (−1)δe

(

2ωK

2t−2

))

ı̇A(
D+1
2 )

2

(−1)
D+1
2

(

1 + (−1)δ+
D+1
2 e

(

2ωK

2t−1

))

(6.43)

Due to the geometric sum indexed by u in (6.43), this expression vanishes for ω + 3 < t.
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Thus, we take ω + 3 = t in (6.43). With Proposition 2.18, we see that F (ω + 3) is given by

2ω+5− δ
2

(

2

AD

)δ (
2

D

)ω+α

2ω ı̇
K
2 (1 + (−1)δ+1)ı̇A(

D+1
2 )

2

(−1)
D+1
2 (1 + (−1)δ+

D+1
2 ı̇K)

= 22ω+6− δ
2O(δ + 1)

(

2

AD

)(

2

D

)ω+α

2−
1
2

(

2

K

)

(1 + ı̇K)ı̇A(
D+1
2 )

2

(−1)
D+1
2

× (1 + (−1)
D−1
2 ı̇K)

= 22ω+6−
(δ+1)

2 O(δ + 1)

(

2

ADK

)(

2

D

)ω+α

ı̇A(
D+1
2 )

2

(−1)
D+1
2

× (1 + (−1)
D−1
2 ı̇K). (6.44)

If O(
D + 1

2
) = 1, then (6.44) becomes

22ω+6−
(δ+1)

2 O(δ + 1)

(

2

ADK

)(

2

D

)ω+α

(1 + ı̇K)(1− ı̇K)

= 2ω+6+ 1−δ
2 O(δ + 1)

(

2

ADK

)(

2

D

)ω+α

. (6.45)

Otherwise, for O(
D − 1

2
) = 1, (6.44) is given by

22ω+6−
(δ+1)

2 O(δ + 1)

(

2

ADK

)(

2

D

)ω+α

(−1)ı̇A(1 + ı̇K)2

= −22ω+6+ 1+δ
2 O(δ + 1)

(

2

ADK

)(

2

D

)ω+α

ı̇A+K

= 22ω+6+ 1+δ
2 O(δ + 1)

(

2

ADK

)(

2

D

)ω+α

(−1)
A−K

2 . (6.46)

Hence, with (6.45) and (6.46) we have

F (ω + 3) = 22(ω+3)+ 1−δ
2 O(δ + 1)

(

2

ADK

)(

2

D

)ω+α

(−1)(
A−K

2 )(D+1
2 ).
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Next, suppose ω + 2 = t. Substituting this into (6.43) yields

2ω+4− δ
2

(

2

AD

)δ (
2

D

)ω+α+1

2ω−1e

(

K

4

)

(1 + (−1)δ)ı̇A(
D+1
2 )

2

(−1)
D+1
2

× (1 + (−1)
D+1
2 e

(

K

2

)

)

= 22ω+4− δ
2O(δ)

(

2

D

)ω+α+1

ı̇K ı̇A(
D+1
2 )

2

(−1)
D+1
2 (1 + (−1)

D−1
2 )

= −22ω+5− δ
2O(δ)O(

D − 1

2
)

(

2

D

)ω+α+1

ı̇A+K

= 22ω+5− δ
2O(δ)O(

D − 1

2
)

(

2

D

)ω+α+1

(−1)
A−K

2 .

Continuing, we let ω + 1 = t and substitute this into (6.43). Hence, F (ω + 1) is given by

2ω+3− δ
2

(

2

AD

)δ (
2

D

)ω+α

2ω−2e

(

K

2

)

(1 + (−1)δ)ı̇A(
D+1
2 )

2

(−1)
D+1
2 (1 + (−1)

D+1
2 )

= −22ω+3− δ
2O(δ)O(

D + 1

2
)

(

2

D

)ω+α

.

Finally, for ω ≥ t, (6.43) becomes

2t+2− δ
2

(

2

AD

)δ (
2

D

)t+1+α

2t−3(1 + (−1)δ)(1 + (−1)
D+1
2 )

= 22t+1− δ
2O(δ)O(

D + 1

2
)

(

2

D

)t+1+α

.

Proposition 6.11. Let t ∈ N. Then

∑

S<2t

S≡1 (mod 2)

e

(−2ωKS

2t

)

=































0 if ω < t− 1

−2ω if ω = t− 1

2t−1 if ω > t− 1.
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Proof. By Proposition 2.5, we have

∑

S<2t

S≡1 (mod 2)

e

(−2ωKS

2t

)

=
∑

S<2t

S≡1 (mod 2)

e

(

2ωKS

2t

)

=
2t−1−1
∑

u=0

e

(

2ωK(2u+ 1)

2t

)

= e

(

2ωK

2t

) 2t−1−1
∑

u=0

e

(

2ωK

2t−1

)

=



















0 if ω < t− 1

e

(

2ωK

2t

) 2t−1−1
∑

u=0

1 if ω ≤ t− 1

=































0 if ω < t− 1

−2ω if ω = t− 1

2t−1 if ω > t− 1.

Proposition 6.12. For α > 1,

α
∑

t=1

1

2t

∑

S<2t

S≡1 (mod 2)

e

(−2ωKS

2t

)

=















α
2

if ω + 1 > α

ω−1
2

if ω + 1 ≤ α.

Proof. From Proposition 6.11, we have

α
∑

t=1

1

2t

∑

S<2t

S≡1 (mod 2)

e

(−2ωKS

2t

)

=
α
∑

t=1

1

2t































0 if ω < t− 1

−2ω if ω = t− 1

2t−1 if ω > t− 1.

(6.47)

Hence, if ω + 1 > α, then (6.47) is given by

α
∑

t=1

1

2t
(2t−1) =

α

2
.
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Otherwise, for ω + 1 ≤ α, (6.47) resolves to

ω
∑

t=1

1

2t
(2t−1) +

1

2ω+1
(−2ω) =

1

2
(ω − 1).

From (6.33) and (6.34), to complete the evaluation of N2n(a, b, c; k), we must examine

the sums
δ−2
∑

t=2

E(t)

2t
and

∑ 2δF (t)

22t+2
. The following corollaries all follow from the previous

propositions, and will be used in the evaluation of N2n(a, b, c; k).

Corollary 6.1. We have that

E(2)

4
=































(−1)
A−K

2 if ω = 0

−1 if ω = 1

1 if ω ≥ 2.

Proof. The result is immediate upon multiplying the statement of Proposition 6.7 by
1

4
.

Corollary 6.2. We have, for t ≥ 3,

E(t)

2t
=































































0 if ω + 3 < t

2
ω
2
+1
(

2
AK

)

O(ω)O(A−K
2

) if t = ω + 3

2
ω
2 O(ω)(−1)

A−K
2 if t = ω + 2

−2
ω−1
2 O(ω + 1) if t = ω + 1

2
t
2
−1O(t) if t ≤ ω.

Proof. We obtain our results by multiplying Proposition 6.8 by
1

2t
and considering the various

cases.

We introduce some notation to aid in our evaluation.
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Definition 6.6. Suppose t ≥ 3. Then we set

U1(ω) =
E(ω + 3)

2t
+
E(ω + 2)

2t

U2(ω) =
E(ω + 2)

2t
+
E(ω + 1)

2t

U3(ω) =
E(ω + 3)

2t
+
E(ω + 2)

2t
+
E(ω + 1)

2t
.

Corollary 6.3. For t ≥ 3, we have

U1(ω) = 2
ω
2 O(ω)

[

2

(

2

AK

)

O(
A−K

2
) + (−1)

A−K
2

]

,

U2(ω) = 2[
ω
2 ]
[

O(ω)(−1)
A−K

2 −O(ω + 1)
]

,

U3(ω) = 2[
ω
2 ]
[

O(ω)

(

2

(

2

AK

)

O(
A−K

2
) + (−1)

A−K
2

)

−O(ω + 1)

]

.

Proof. We group together the appropriate terms using Corollary 6.2.

Corollary 6.4. For ω and δ − 2 ≥ 3, we have

ω
∑

t=3

E(t)

2t
= 2[

ω
2 ] − 2 and

δ−2
∑

t=3

E(t)

2t
= 2[

δ−2
2 ] − 2.

Proof. From Corollary 6.2, we have

ω
∑

t=3

E(t)

2t
=

ω
∑

t=2

2
t
2
−1O(t) =

1

2

ω
∑

t=3
2|t

2
t
2 =

ω−2
∑

t=1
2|t

2
t
2 =

[ω−2
2 ]
∑

t=1

2t

= 2

[ω−2
2 ]−1
∑

t=0

2t = 2
(

2[
ω−2
2 ] − 1

)

= 2[
ω
2 ] − 2.
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By similar reasoning we deduce the result for
δ−2
∑

t=3

E(t)

2t
.

Thus, the evaluation of
δ−2
∑

t=2

E(t)

2t
will vary based on the choice of ω. We deduce similar

corollaries now for
∑ 2δF (t)

22t+2
. The expression for F contains additional terms, and will be

dependent on both ω and δ.

Corollary 6.5. For α = 1 and δ ≤ 2, we have

2δF (2)

26
= 2

δ
2
−1































(−1)
A−K

2 O(D−1
2

) if ω = 0

−O(D+1
2

) if ω = 1

O(D+1
2

) if ω ≥ 2.

Proof. The results are obtained by multiplying the statement of Proposition 6.9 by 2δ−6.

Corollary 6.6. Let t ≥ 3. Then for α < t and δ ≤ t we have

2δ−2F (t)

22t
=































































0 if ω + 3 < t

2
δ−3
2 O(δ + 1)

(

2
ADK

) (

2
D

)ω+α
(−1)(

A−K
2 )(D+1

2 ) if ω + 3 = t

2
δ
2
−1O(δ)O(D−1

2
)
(

2
D

)ω+α+1
(−1)

A−K
2 if ω + 2 = t

−2
δ
2
−1O(δ)O(D+1

2
)
(

2
D

)ω+α
if ω + 1 = t

2
δ
2
−1O(δ)O(D+1

2
)
(

2
D

)t+1+α
if ω ≥ t.

Proof. The proof results from multiplying Proposition 6.10 by 2δ−(2t+2) and simplifying ac-

cording to each case.

We introduce some notation to keep track of these sums.

Definition 6.7. For t ≥ 3 and δ ≤ t we let

T1(ω, δ) =
2δF (ω + 3)

22t+2
+

2δF (ω + 2)

22t+2
,
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T2(ω, δ) =
2δF (ω + 2)

22t+2
+

2δF (ω + 1)

22t+2
,

T3(ω, δ) =
2δF (ω + 3)

22t+2
+

2δF (ω + 2)

22t+2
+

2δF (ω + 1)

22t+2
.

Corollary 6.7. For t ≥ 3,

T1(ω, δ) =2[
δ−3
2 ]
(

2

D

)ω+α+1(

O(δ + 1)

(

2

AK

)

(−1)(
A−K

2 )(D+1
2 ) +O(δ)(−1)

A−K
2 O(

D − 1

2
)

)

T2(ω, δ) =2
δ
2
−1O(δ)

(

2

D

)ω+α+1(

O(
D − 1

2
)(−1)

A−K
2 −

(

2

D

)

O(
D + 1

2
)

)

T3(ω, δ) =2[
δ−3
2 ]
(

2

D

)ω+α+1(

O(δ + 1)

(

2

AK

)

(−1)(
A−K

2 )(D+1
2 )

+ O(δ)

[

O(
D − 1

2
)(−1)

A−K
2 −O(

D + 1

2
)

(

2

D

)])

.

Proof. We combine the appropriate sums using Corollary 6.6.

Corollary 6.8. Let u, v ∈ N be such that 3 ≤ u ≤ v. Then,

v
∑

t=u

2δ

22t+2
F (t) = 2

δ
2
−1

(

2

D

)α+1

PD(u, v)O(δ)O(
D + 1

2
).

Proof. With Corollary 6.6 and Definition 6.3, we have

v
∑

t=u

2δ

22t+2
F (t) =

v
∑

t=u

2
δ
2
−1O(δ)O(

D + 1

2
)

(

2

D

)t+1+α

= 2
δ
2
−1O(δ)O(

D + 1

2
)

(

2

D

)α+1 v
∑

t=u

(

2

D

)t

= 2
δ
2
−1

(

2

D

)α+1

PD(u, v)O(δ)O(
D + 1

2
).
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6.4 Number of Solutions: Even Prime

With the preliminary steps out of the way, in order to evaluate N2n(a, b, c; k), we must

consider various cases with respect to α, δ, ω and n. We divide our cases according to α.

Hence, we proceed first under the assumption that α = 1. We consider N2n(a, b, c; k) under

the cases

(I) n = 1,

(II) n ≥ 2, δ ≤ 2,

(III) n ≥ 2, δ = 3,

(IV) 4 ≤ δ ≤ n,

(V) 4 ≤ n+ 1 ≤ δ ≤ n+ 2.

In light of (6.33) and Proposition 6.6, we have that

N2n(a, b, c; k) = 2n







1 +O(2δ + 1)
(−1)2

ω+c

2
+

δ−2
∑

t=2

E(t)

2t
+

n
∑

t=max(2,δ)

2δF (t)

22t+2







. (6.48)

Hence, we use (6.48) to give similar expressions for our five cases.

Case I: n = 1;

N2n(a, b, c; k) = 2

{

1 +O(2δ + 1)
(−1)2

ω+c

2

}

. (6.49)

Case II: n ≥ 2, δ ≤ 2;

N2n(a, b, c; k) = 2n

{

1 +O(2δ + 1)
(−1)2

ω+c

2
+

n
∑

t=2

2δF (t)

22t+2

}

. (6.50)
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Case III: n ≥ 2, δ = 3;

N2n(a, b, c; k) = 2n

{

1 +
n
∑

t=3

2δF (t)

22t+2

}

. (6.51)

Case IV: 4 ≤ δ ≤ n;

N2n(a, b, c; k) = 2n

{

1 +
δ−2
∑

t=2

E(t)

2t
+

n
∑

t=δ

2δF (t)

22t+2

}

. (6.52)

Case V: 4 ≤ n+ 1 ≤ δ ≤ n+ 2;

N2n(a, b, c; k) = 2n

{

1 +
δ−2
∑

t=2

E(t)

2t

}

. (6.53)

We now proceed to evaluate these sums using the material from the previous section. These

sums will be broken up into further cases depending on certain variables. However, the first

case is straightforward.

Theorem 6.8 (Case I). Let α = n = 1. Then

N2(a, b, c; k) = 2 + (−1)2
ω+cO(2δ + 1) =















2 if δ ≥ 1

2 + (−1)2
ω+c if δ = 0.

Proof. This is easily deduced from the equation given in (6.49).

Theorem 6.9 (Case II). Let α = 1, n ≥ 2 and δ ≤ 2. If n = 2, then N4(a, b, c; k) is given

by

4 + 2(−1)2
ω+cO(2δ + 1) + 2

δ
2
+1































(−1)
A−K

2 O(D−1
2

) if ω = 0

−O(D+1
2

) if ω = 1

O(D+1
2

) if ω ≥ 2.
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If n ≥ 3, N2n(a, b, c; k) is given by

2n + 2n−1(−1)2
ω+cO(2δ + 1)

+ 2n−1+ δ
2































































































(−1)
A−K

2 O(D−1
2

) if ω = 0, n ≥ 3

−O(D+1
2

) +O(D−1
2

)
(

2
D

)

(−1)
A−K

2 if ω = 1, n = 3

O(D+1
2

)
(

1−
(

2
D

))

if ω = 2, n = 3

O(D+1
2

)
(

1−
(

2
D

))

+ (−1)
A−K

2 O(D−1
2

) if ω = 2, n ≥ 4

O(D+1
2

) (PD(3, n) + 1) if ω ≥ n ≥ 3

O(D+1
2

)
(

PD(3, ω) + 1−
(

2
D

)ω+1
)

if 3 ≤ ω = n− 1

O(D+1
2

)
(

PD(3, ω) + 1−
(

2
D

)ω+1
)

+ (−1)
A−K

2 O(D−1
2

) if 3 ≤ ω ≤ n− 2.

Proof. From (6.50), we see that

N2n(a, b, c; k) = 2n

{

1 +
(−1)2

ω+c

2
O(2δ + 1) +

2δF (2)

26
+

n
∑

t=3

2δF (t)

2t+2

}

. (6.54)

From (6.54) and Corollary 6.5, the first three terms in the bracketed expression of (6.54) are

given by

1 +
(−1)2

ω+c

2
O(2δ + 1) + 2

δ
2
−1































(−1)
A−K

2 O(D−1
2

) if ω = 0

−O(D+1
2

) if ω = 1

O(D+1
2

) if ω ≥ 2.

(6.55)

Hence, when n = 2, N2n(a, b, c; k) is given by (6.55).

Suppose now that n ≥ 3. We consider
n
∑

t=3

2δF (t)

2t+2
for various n and ω. Observe that as
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δ ≤ 2, we must have δ even. By Proposition 6.10 and Definition 6.7, we have

n
∑

t=3

2δF (t)

22t+2
=











































































































0 if ω = 0, n ≥ 3

2δF (ω + 2)

22(3)+2
if ω = 1, n ≥ 3

2δF (ω + 1)

22(3)+2
if ω = 2, n = 3

T2(2, δ) if ω = 2, n ≥ 4
n
∑

t=3

2δF (t)

22t+2
if ω ≥ n ≥ 3

ω
∑

t=3

2δF (t)

22t+2
+

2δF (ω + 1)

22(ω+1)+2
if 3 ≤ ω, n = ω + 1

ω+1
∑

t=3

2δF (t)

22t+2
+ T2(ω, δ) if 3 ≤ ω ≤ n− 2.

(6.56)

Combining (6.55) and (6.56) and using Corollaries 6.6, 6.7 and 6.8, we see the bracketed

term of (6.54) is given by

1 +
(−1)2

ω+c

2
O(2δ + 1)

+ 2
δ
2
−1































































































(−1)
A−K

2 O(D−1
2

) if ω = 0, n ≥ 3

−O(D+1
2

) +O(D−1
2

)
(

2
D

)

(−1)
A−K

2 if ω = 1, n = 3

O(D+1
2

)
(

1−
(

2
D

))

if ω = 2, n = 3

O(D+1
2

)
(

1−
(

2
D

))

+ (−1)
A−K

2 O(D−1
2

) if ω = 2, n ≥ 4

O(D+1
2

) (PD(3, n) + 1) if ω ≥ n ≥ 3

O(D+1
2

)
(

PD(3, ω) + 1−
(

2
D

)ω+1
)

if 3 ≤ ω = n− 1

O(D+1
2

)
(

PD(3, ω) + 1−
(

2
D

)ω+1
)

+ (−1)
A−K

2 O(D−1
2

) if 3 ≤ ω ≤ n− 2.

(6.57)

Hence, we multiply (6.57) by 2n and simplify to arrive at the statement of the theorem.
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Theorem 6.10 (Case III). Let α = 1, n ≥ 2 and δ = 3. Then N2n(a, b, c; k) is given by

2n















1 if ω + 3 > n

1 +
(

2
D

)ω ( 2
AK

)

(−1)(
A−K

2 )(D+1
2 ) if ω + 3 ≤ n.

Proof. From (6.51), we have that

N2n(a, b, c; k) = 2n

{

1 +
n
∑

t=3

2δF (t)

22t+2

}

. (6.58)

We look for a similar expression to that in (6.56), except now we have that δ is odd. Hence,

by Proposition 6.10 and Definition 6.7, we have

n
∑

t=3

2δF (t)

22t+2
=











































































































































































0 if n = 2

2δF (ω + 3)

22t+2
if ω = 0, n ≥ 3

2δF (ω + 2)

22t+2
if ω = 1, n = 3

T1(1, δ) if ω = 1, n ≥ 4

2δF (ω + 1)

22t+2
if ω = 2, n = 3

T2(2, δ) if ω = 2, n = 4

T3(2, δ) if ω = 2, n ≥ 5
n
∑

t=3

2δF (t)

22t+2
if 3 ≤ n ≤ ω

ω
∑

t=3

2δF (t)

22t+2
+

2δF (ω + 1)

22t+2
if 3 ≤ ω = n− 1

ω
∑

t=3

2δF (t)

22t+2
+ T2(ω, δ) if 3 ≤ ω = n− 2

ω
∑

t=3

2δF (t)

22t+2
+ T3(ω, δ) if 3 ≤ ω ≤ n− 3.

(6.59)
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As δ is odd, with Corollaries 6.6-6.8, (6.59) simplifies to















































































































0 if n = 2

(

2
AK

)

(−1)(
A−K

2 )(D+1
2 ) if ω = 0, n ≥ 3

0 if ω = 1, n = 3

(

2
AK

) (

2
D

)ω
(−1)(

A−K
2 )(D+1

2 ) if ω = 1, n ≥ 4

0 if ω = 2, n = 3, 4

(

2
AK

)

(−1)(
A−K

2 )(D+1
2 ) if ω = 2, n ≥ 5

0 if 3 ≤ n− 2 ≤ ω

(

2
D

)ω ( 2
AK

)

(−1)(
A−K

2 )(D+1
2 ) if 3 ≤ ω ≤ n− 3.

(6.60)

Hence, with (6.58) and (6.60), when ω + 3 ≤ n, we have

N2n(a, b, c; k) = 2n
{

1 +

(

2

D

)ω (
2

AK

)

(−1)(
A−K

2 )(D+1
2 )
}

,

and when ω + 3 > n, we have

N2n(a, b, c; k) = 2n.

Theorem 6.11 (Case IV). Let α = 1 and 4 ≤ δ ≤ n. Then N2n(a, b, c; k) is given according

to the following cases.
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If ω ≡ δ ≡ 0 (mod 2) and D ≡ 1 (mod 4),

N2n(a, b, c; k) = 2n































































2
ω
2
+1O(A−K

2
)
(

1 +
(

2
AK

))

if ω + 5 ≤ δ

2
δ
2
−1O(A−K

2
) if ω + 4 = δ

2
δ
2O(A−K

2
) if ω + 2 = δ

2
δ
2
−1 if δ ≤ n− 1 ≤ ω

2
δ
2O(A−K

2
) if δ ≤ ω ≤ n− 2.

If ω ≡ δ ≡ 0 (mod 2) and D ≡ 3 (mod 4),

N2n(a, b, c; k) = 2n































































2
ω
2
+1O(A−K

2
)
(

1 +
(

2
AK

))

if ω + 5 ≤ δ

2
δ
2
−1O(A−K

2
) if ω + 4 = δ

2
δ
2
−1 if ω + 2 = δ

2
δ
2
−1 (1 + PD(δ, n)) if δ ≤ n ≤ ω

2
δ
2
−1
(

2−
(

2
D

)

+
(

ω−δ
2

) (

1 +
(

2
D

)))

if δ ≤ ω ≤ n− 1.

If ω ≡ 1 (mod 2), δ ≡ 0 (mod 2) and D ≡ 1 (mod 4),

N2n(a, b, c; k) = 2n+
δ
2
−1































0 if ω + 3 ≤ δ

1 if δ ≤ n− 1 ≤ ω or δ = ω + 1 = n

1 + (−1)
A−K

2

(

2
D

)

if δ ≤ ω ≤ n− 2 or δ = ω + 1 ≤ n− 1.
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If ω ≡ 1 (mod 2), δ ≡ 0 (mod 2) and D ≡ 3 (mod 4),

N2n(a, b, c; k) = 2n+
δ
2
−1































0 if ω + 1 ≤ δ

(

ω−δ+1
2

) (

1 +
(

2
D

))

if δ ≤ ω ≤ n− 1

1 + PD(δ, n) if δ ≤ n ≤ ω.

If ω ≡ 0 (mod 2) and δ ≡ 1 (mod 2),

N2n(a, b, c; k) = 2n































2
ω
2
+1O(A−K

2
)
(

1 +
(

2
AK

))

if ω + 5 ≤ δ

2
δ−3
2

(

1 + (−1)(
A−K

2 )(D+1
2 ) ( 2

AK

)

)

if 5 ≤ δ ≤ ω + 3 ≤ n

2
δ−3
2 if n < ω + 3.

If ω ≡ δ ≡ 1 (mod 2),

N2n(a, b, c; k) = 2n+
δ−3
2































0 if ω + 3 < δ

1 +
(

2
AKD

)

(−1)(
A−K

2 )(D+1
2 ) if δ < ω + 3 ≤ n

1 if ω + 3 > n.

Proof. From (6.52), we have

N2n(a, b, c; k) = 2n

{

1 +
E(2)

4
+

δ−2
∑

t=3

E(t)

2t
+

n
∑

t=δ

2δF (t)

22t+2

}

. (6.61)

From Corollary 6.1, we see that the first two terms of the terms inside the brackets in (6.61)
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are given by

1 +































(−1)
A−K

2 if ω = 0

−1 if ω = 1

1 if ω ≥ 2































=































2O(A−K
2

) if ω = 0

0 if ω = 1

2 if ω ≥ 2.

(6.62)

From Proposition 6.8, the third term within the brackets of (6.61) is given by

δ−2
∑

t=3

E(t)

2t
=















































































































































































0 if δ = 4

E(ω + 3)

2t
if ω = 0, δ ≥ 5

E(ω + 2)

2t
if ω = 1, δ = 5

U1(ω) if ω = 1, δ ≥ 6

E(ω + 1)

2t
if ω = 2, δ = 5

U2(ω) if ω = 2, δ = 6

U3(ω) if ω = 2, δ ≥ 7

δ−2
∑

t=3

E(t)

2t
if 3 ≤ δ − 2 ≤ ω

ω
∑

t=3

E(t)

2t
+
E(ω + 1)

2ω+1
if 3 ≤ ω = δ − 3

ω
∑

t=3

E(t)

2t
+ U2(ω) if 3 ≤ ω = δ − 4

ω
∑

t=3

E(t)

2t
+ U3(ω) if 3 ≤ ω ≤ δ − 5.

(6.63)
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From Corollaries 6.2, 6.3 and 6.4, (6.63) will simplify to















































































































































0 if δ = 4

2
(

2
AK

)

O(A−K
2

) if ω = 0, δ ≥ 5

0 if ω = 1, δ ≥ 5

0 if ω = 2, δ = 5

2(−1)
A−K

2 if ω = 2, δ = 6

2
(

2
(

2
AK

)

O(A−K
2

) + (−1)
A−K

2

)

if ω = 2, δ ≥ 7

2[
δ−2
2 ] − 2 if 3 ≤ δ − 2 ≤ ω

2[
ω
2 ] − 2− 2

ω−1
2 O(ω + 1) if 3 ≤ ω = δ − 3

2[
ω
2 ] − 2 + 2[

ω
2 ]
(

O(ω)(−1)
A−K

2 −O(ω + 1)
)

if 3 ≤ ω = δ − 4

2[
ω
2 ] − 2 + 2[

ω
2 ]O(ω)

(

2
(

2
AK

)

O(A−K
2

) + (−1)
A−K

2

)

− 2[
ω
2 ]O(ω + 1) if 3 ≤ ω ≤ δ − 5.

(6.64)
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Thus, by combining (6.62) and (6.64), the first three terms of (6.61) are given by















































































































































































2O
(

A−K
2

)

if δ = 4, ω = 0

0 if δ = 4, ω = 1

2 if δ = 4, ω = 2

2O(A−K
2

)
(

1 +
(

2
AK

))

if ω = 0, δ ≥ 5

0 if ω = 1, δ ≥ 5

2 if ω = 2, δ = 5

22O(A−K
2

) if ω = 2, δ = 6

22O(A−K
2

)
(

1 +
(

2
AK

))

if ω = 2, δ ≥ 7

2[
δ−2
2 ] if 3 ≤ δ − 2 ≤ ω

2[
ω
2 ] (1−O(ω + 1)) if 3 ≤ ω = δ − 3

2[
ω
2 ]
(

1 +O(ω)(−1)
A−K

2 −O(ω + 1)
)

if 3 ≤ ω = δ − 4

2[
ω
2 ]
[

1 +O(ω)
(

(−1)
A−K

2 + 2
(

2
AK

)

O(A−K
2

)
)

−O(ω + 1)
]

if 3 ≤ ω ≤ δ − 5.

(6.65)

It is clear that if ω is odd and satisfies ω ≤ δ− 3, the first three terms of (6.61) will be zero.

Further, from (6.65), we see that if ω is even, the first three terms of (6.61) are given by















































2[
δ−2
2 ] if ω ≥ δ − 2 ≥ 2

2
ω
2 if ω = δ − 3

2
ω
2
+1O(A−K

2
) if ω = δ − 4

2
ω
2
+1O(A−K

2
)
(

1 +
(

2
AK

))

if ω ≤ δ − 5.

(6.66)
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Next, we look at
n
∑

t=δ

2δF (t)

22t+2
. From Proposition 6.8 and Definition 6.4, we have that

n
∑

t=δ

2δF (t)

22t+2
=















































































































































































0 if ω + 3 < δ

2δF (ω + 3)

2t
if ω + 3 = δ

2δF (ω + 2)

2t
if ω + 2 = δ = n

T1(ω, δ) if ω + 2 = δ ≤ n− 1

2δF (ω + 1)

2t
if ω + 1 = δ = n

T2(ω, δ) if ω + 1 = δ = n− 1

T3(ω, δ) if ω + 1 = δ ≤ n− 2
n
∑

t=δ

2δF (t)

22t+2
if δ ≤ n ≤ ω

ω
∑

t=δ

2δF (t)

22t+2
+

2δF (t)

22t+2
if δ ≤ ω = n− 1

ω
∑

t=δ

2δF (t)

22t+2
+ T2(ω, δ) if δ ≤ ω = n− 2

ω
∑

t=δ

2δF (t)

22t+2
+ T3(ω, δ) if δ ≤ ω ≤ n− 3.

(6.67)

We now simplify (6.67) based on the parity of δ. First, suppose δ is even. Then by Corollaries
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6.6, 6.7 and 6.8, (6.67) simplifies to

2
δ
2
−1































































































0 if ω + 3 ≤ δ

O(D−1
2

)
(

2
D

)ω
(−1)

A−K
2 if ω + 2 = δ

−O(D+1
2

)
(

2
D

)ω+1
if ω + 1 = δ = n

(

2
D

)ω
O(D−1

2
)(−1)

A−K
2 −

(

2
D

)ω+1
O(D+1

2
) if ω + 1 = δ ≤ n− 1

PD(δ, n)O(D+1
2

) if δ ≤ n ≤ ω

O(D+1
2

)
(

PD(δ, ω)−
(

2
D

)ω+1
)

if δ ≤ ω = n− 1

O(D+1
2

)
(

PD(δ, ω)−
(

2
D

)ω+1
)

+
(

2
D

)ω
(−1)

A−K
2 O(D−1

2
) if δ ≤ ω ≤ n− 2.

(6.68)

Otherwise, if δ is odd, with Corollaries 6.6, 6.7 and 6.8, (6.67) reduces to















0 if ω + 3 < δ or ω + 3 > n

2
δ−3
2

(

2
AK

) (

2
D

)ω
(−1)(

A−K
2 )(D+1

2 ) if δ ≤ ω + 3 ≤ n.

(6.69)

Hence, we see that N2n(a, b, c; k) will depend on the parity of both δ and ω. Suppose first that

δ ≡ ω ≡ 0 (mod 2). By combining (6.66) and (6.68), we see that the bracketed expression

in (6.61) is given by















































































2
ω
2
+1O(A−K

2
)
(

1 +
(

2
AK

))

if ω + 5 ≤ δ

2
δ
2
−1O(A−K

2
) if ω + 4 = δ

2
δ
2
−1
(

1 + (−1)
A−K

2 O(D−1
2

)
)

if ω + 2 = δ

2
δ
2
−1
(

1 +O(D+1
2

)PD(δ, n)
)

if δ ≤ n ≤ ω

2
δ
2
−1
(

1 +O(D+1
2

)
[

PD(δ, ω)−
(

2
D

)])

if δ ≤ ω = n− 1

2
δ
2
−1
(

1 +O(D+1
2

)
[

PD(δ, ω)−
(

2
D

)]

+ (−1)
A−K

2 O(D−1
2

)
)

if δ ≤ ω ≤ n− 2.

(6.70)
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We proceed by considering the residues of D modulo 4. If D ≡ 1 (mod 4), then by (6.61)

and (6.70), N2n(a, b, c; k) is given by

2n































































2
ω
2
+1O(A−K

2
)
(

1 +
(

2
AK

))

if ω + 5 ≤ δ

2
δ
2
−1O(A−K

2
) if ω + 4 = δ

2
δ
2O(A−K

2
) if ω + 2 = δ

2
δ
2
−1 if δ ≤ n− 1 ≤ ω

2
δ
2O(A−K

2
) if δ ≤ ω ≤ n− 2.

(6.71)

Otherwise, for D ≡ 3 (mod 4), by (6.61), (6.70) and Proposition 6.5(b), we have that

N2n(a, b, c; k) is

2n































































2
ω
2
+1O(A−K

2
)
(

1 +
(

2
AK

))

if ω + 5 ≤ δ

2
δ
2
−1O(A−K

2
) if ω + 4 = δ

2
δ
2
−1 if ω + 2 = δ

2
δ
2
−1 (1 + PD(δ, n)) if δ ≤ n ≤ ω

2
δ
2
−1
(

2−
(

2
D

)

+
(

ω−δ
2

) (

1 +
(

2
D

)))

if δ ≤ ω ≤ n− 1.

(6.72)

Both (6.71) and (6.72) agree with the statement of the theorem.

Suppose now that ω is even and δ is odd. Then with (6.61), (6.66) and (6.69), we see

that N2n(a, b, c; k) is given by

2n































2
ω
2
+1O(A−K

2
)
(

1 +
(

2
AK

))

if ω + 5 ≤ δ

2
δ−3
2

(

1 + (−1)(
A−K

2 )(D+1
2 ) ( 2

AK

)

)

if 5 ≤ δ ≤ ω + 3 ≤ n

2
δ−3
2 if n < ω + 3.

(6.73)

Finally, when ω is odd, from (6.65), the first three terms of the bracketed expression in
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(6.61) are given by















0 if ω + 3 ≤ δ

2[
δ−2
2 ] if δ − 2 ≤ ω.

(6.74)

Hence, we combine (6.68), (6.69) and (6.74), depending on the parity of δ, and multiply by

2n to arrive at an expression for N2n(a, b, c; k). Note that by Proposition 6.5(c), if ω odd and

δ even, we have

PD(δ, ω) =

(

ω − δ + 1

2

)(

1 +

(

2

D

))

. (6.75)

Hence, for ω odd and δ even, and with (6.75), N2n(a, b, c; k) is given by

2n+
δ
2
−1































































































0 if ω + 3 ≤ δ

1−O(D+1
2

) if ω + 1 = δ = n

1 + (−1)
A−K

2

(

2
D

)

O(D−1
2

)−O(D+1
2

) if ω + 1 = δ ≤ n− 1

1 + PD(δ, n)O(D+1
2

) if δ ≤ n ≤ ω

1 +O(D+1
2

)
[(

ω−δ+1
2

) (

1 +
(

2
D

))

− 1
]

if δ ≤ ω = n− 1

1 +O(D+1
2

)
[(

ω−δ+1
2

) (

1 +
(

2
D

))

− 1
]

+ (−1)
A−K

2

(

2
D

)

O(D−1
2

) if δ ≤ ω ≤ n− 2.

(6.76)

We simplify based on the residue class of D modulo 4. For D ≡ 1 (mod 4), (6.76) simplifies

to

2n+
δ
2
−1































0 if ω + 3 ≤ δ

1 if δ ≤ n− 1 ≤ ω or δ = ω + 1 = n

1 + (−1)
A−K

2

(

2
D

)

if δ ≤ ω ≤ n− 2 or δ = ω + 1 ≤ n− 1.

(6.77)
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Otherwise, for D ≡ 3 (mod 4), (6.76) reduces to

2n+
δ
2
−1































0 if ω + 1 ≤ δ

(

ω−δ+1
2

) (

1 +
(

2
D

))

if δ ≤ ω ≤ n− 1

1 + PD(δ, n) if δ ≤ n ≤ ω.

(6.78)

Finally, for δ ≡ ω ≡ 1 (mod 2), from (6.61), (6.69) and (6.74), N2n(a, b, c; k) is given by

2n+
δ−3
2































0 if ω + 3 < δ

1 +
(

2
AKD

)

(−1)(
A−K

2 )(D+1
2 ) if δ < ω + 3 ≤ n

1 if ω + 3 > n.

(6.79)

We see that (6.77), (6.78) and (6.79) agree with the statement of the theorem.

Theorem 6.12 (Case V). Let α = 1, δ ≥ 4 and either δ = n + 1 or δ = n + 2. Then

N2n(a, b, c; k) is given according to the following cases.

If δ = n+ 1 and ω ≡ 0 (mod 2),

N2n(a, b, c; k) = 2n















































































2O(A−K
2

) if ω = 0, n = 2

2 if ω = 2, n = 2

2[
n−1
2 ] if ω ≥ n− 1 ≥ 2

2
n−2
2 if ω = n− 2 ≥ 2

2
n−1
2 O(A−K

2
) if ω = n− 3 ≥ 0

2
ω
2
+1O(A−K

2
)
(

1 +
(

2
AK

))

if 0 ≤ ω ≤ n− 4.
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If δ = n+ 2 and ω ≡ 0 (mod 2),

N2n(a, b, c; k) = 2n















































2
n
2 if ω = n ≥ 2

2
n−1
2 if ω = n− 1 ≥ 2

2
n
2O(A−K

2
) if ω = n− 2 ≥ 0

2
ω
2
+1O(A−K

2
)
(

1 +
(

2
AK

))

if 0 ≤ ω ≤ n− 3.

If δ = n+ 1 and ω ≡ 1 (mod 2),

N2n(a, b, c; k) = 2n















2[
n−1
2 ] if 3 ≤ n− 1 ≤ ω

0 if ω ≤ n− 2.

If δ = n+ 2 and ω ≡ 1 (mod 2),

N2n(a, b, c; k) = 2n















2[
n−1
2 ] if ω = n

0 if ω ≤ n− 1.

Proof. From (6.53), we have that

N2n(a, b, c; k) = 2n

{

1 +
E(2)

4
+

δ−2
∑

t=3

E(t)

2t

}

. (6.80)

From the proof of Theorem 6.11, we see that the bracketed expression of (6.80) is given by

(6.65) and (6.66). We proceed by considering the parity of ω and by specifying the value of

δ. First suppose n = 2. Then δ − 2 < 3 regardless, and from (6.80) we have

N22(a, b, c; k) = 22
{

1 +
E(2)

4

}

=































23O(A−K
2

) if ω = 0

0 if ω = 1

23 if ω = 2.

(6.81)
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Thus, we may assume n ≥ 3 for the remaining cases. If δ = n+1 and ω is even, from (6.66)

and (6.80), N2n(a, b, c; k) is given by

2n















































2[
n−1
2 ] if ω ≥ n− 1 ≥ 2

2
n−2
2 if ω = n− 2 ≥ 2

2
n+1
2

−1O(A−K
2

) if ω = n− 3 ≥ 0

2
ω
2
+1O(A−K

2
)
(

1 +
(

2
AK

))

if 0 ≤ ω ≤ n− 4.

(6.82)

Combining (6.81) and (6.82) will yield the statement of the theorem in this case. Otherwise,

for ω odd, from (6.65) we deduce that

N2n(a, b, c; k) = 2n















2[
n−1
2 ] if 3 ≤ n− 1 ≤ ω

0 if ω ≤ n− 2.

(6.83)

Now suppose that δ = n+ 2. By (6.66) and (6.80), if δ = n+ 2 and ω is even, N2n(a, b, c; k)

is given by

2n















































2[
n
2 ] if ω = n ≥ 3

2
n−1
2 if ω + 1 = n

2
n
2O(A−K

2
) if ω + 2 = n

2
ω
2
+1O(A−K

2
)
(

1 +
(

2
AK

))

if ω + 3 ≤ n.

(6.84)

We combine (6.81) and (6.84) to arrive at the statement of the theorem in this case. Other-

wise, for ω odd, with (6.81) and (6.65), N2n(a, b, c; k) is given by

2n















2[
n−1
2 ] if ω = n

0 if ω ≤ n− 1.

(6.85)
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It now remains to consider the cases when α > 1. Recall that we must have δ = 0 in this

case. We consider N2n(a, b, c; k) under the cases

(VI) 1 < α < n,

(VII) 1 < α = n.

By (6.34), we see our cases are given by the following sums.

Case VI: 1 < α < n;

N2n(a, b, c; k) = 2n















1 +
α
∑

t=1

1

2t

∑

S<2t

S≡1 (mod 2)

e

(−2ωKS

2t

)

+
n
∑

t=α+1

F (t)

22t+2















. (6.86)

Case VII: α = n > 1;

N2n(a, b, c; k) = 2n















1 +
n
∑

t=1

1

2t

∑

S<2t

S≡1 (mod 2)

e

(−2ωKS

2t

)















. (6.87)

Theorem 6.13 (Case VI). Let 1 < α < n. Then N2n(a, b, c; k) is given according to the

following cases.

If D ≡ 1 (mod 4),

N2n(a, b, c; k) = 2n−1















































































ω + 1 if ω + 2 ≤ α

α + (−1)
A−K

2 if ω + 1 = α ≤ n− 1

α + 2 if ω = α = n− 1

α + 2 + (−1)
A−K

2

(

2
D

)

if ω = α ≤ n− 2

α + 2 if α + 1 ≤ n− 1 ≤ ω

α + 2 + (−1)
A−K

2

(

2
D

)ω+α+1
if α + 1 ≤ ω ≤ n− 2.



CHAPTER 6. APPLICATIONS 150

If D ≡ 3 (mod 4),

N2n(a, b, c; k) = 2n−1































































ω + 1 if ω + 2 ≤ α

ω + 1 if ω + 1 = α ≤ n− 1

α + 1 if ω = α ≤ n− 1

α + 2 +
(

2
D

)α+1
PD(α1, n) if α + 1 ≤ n ≤ ω

α + 2 +
(

2
D

)α+1
(

PD(α + 1, ω)−
(

2
D

)ω+1
)

if α + 1 ≤ ω ≤ n− 1.

Proof. From Proposition 6.12, we have that

1 +
α
∑

t=1

1

2t

∑

S<2t

S≡1 (mod 2)

e

(−2ωKS

2t

)

=















α
2
+ 1 if ω ≥ α

ω+1
2

if ω ≤ α− 1.

(6.88)
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Subsequently, as α + 1 ≥ 3, from Proposition 6.10 and Definition 6.7, we have that

n
∑

t=α+1

F (t)

22t+2
=















































































































































































0 if ω + 3 < α + 1

F (ω + 3)

22t+2
if ω + 3 = α + 1

F (ω + 2)

22t+2
if ω + 2 = α + 1 = n

T1(ω, 0) if ω + 2 = α + 1 ≤ n− 1

F (ω + 1)

22t+2
if ω + 1 = α + 1 = n

T2(ω, 0) if ω + 1 = α + 1 = n− 1

T3(ω, 0) if ω + 1 = α + 1 ≤ n− 2
n
∑

t=α+1

F (t)

22t+2
if α + 1 ≤ n ≤ ω

n
∑

t=α+1

F (t)

22t+2
+
F (ω + 1)

22t+2
if α + 1 ≤ ω = n− 1

n
∑

t=α+1

F (t)

22t+2
+ T2(ω, 0) if α + 1 ≤ ω = n− 2

n
∑

t=α+1

F (t)

22t+2
+ T3(ω, 0) if α + 1 ≤ ω ≤ n− 3.

(6.89)
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Hence, from Corollaries 6.6, 6.7 and 6.8, and as δ = 0, (6.89) simplifies to

1

2

(

2

D

)α+1















































































































0 if ω + 3 ≤ α + 1

(−1)
A−K

2 O(D−1
2

)
(

2
D

)ω
if ω + 2 = α + 1 ≤ n

−O(D+1
2

)
(

2
D

)ω+1
if ω + 1 = α + 1 = n

(−1)
A−K

2 O(D−1
2

)
(

2
D

)ω −O(D+1
2

)
(

2
D

)ω+1
if ω + 1 = α + 1 ≤ n− 1

PD(α + 1, n)O(D+1
2

) if α + 1 ≤ n ≤ ω

O(D+1
2

)
(

PD(α + 1, ω)−
(

2
D

)ω+1
)

if α + 1 ≤ ω = n− 1

O(D+1
2

)
(

PD(α + 1, ω)−
(

2
D

)ω+1
)

+ (−1)
A−K

2 O(D−1
2

)
(

2
D

)ω
if α + 1 ≤ ω ≤ n− 2.

(6.90)

Thus, with (6.86), (6.88) and (6.90), we have that N2n(a, b, c; k) is given by

2n−1















































































































ω + 1 if ω + 2 ≤ α

ω + 1 + (−1)
A−K

2 O(D−1
2

)
(

2
D

)ω+α+1
if ω + 1 = α ≤ n− 1

α + 2−O(D+1
2

)
(

2
D

)ω+α
if ω = α = n− 1

α + 2 + (−1)
A−K

2 O(D−1
2

)
(

2
D

)ω+α+1 −O(D+1
2

)
(

2
D

)ω+α
if ω = α ≤ n− 2

α + 2 +
(

2
D

)α+1
O(D+1

2
)PD(α + 1, n) if α + 1 ≤ n ≤ ω

α + 2 +
(

2
D

)α+1
O(D+1

2
)
(

PD(α + 1, ω)−
(

2
D

)ω+1
)

if α + 1 ≤ ω = n− 1

α + 2 +
(

2
D

)α+1
O(D+1

2
)
(

PD(α + 1, ω)−
(

2
D

)ω+1
)

+ (−1)
A−K

2 O(D−1
2

)
(

2
D

)ω+α+1
if α + 1 ≤ ω ≤ n− 2.

(6.91)

By simplifying (6.91) according to the residue class ofD modulo 4, we arrive at the statement

of the theorem.
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Theorem 6.14 (Case VII). Suppose α = n ≥ 2. Then

N2n(a, b, c; k) = 2n−1















n+ 2 if ω ≥ n

ω + 1 if ω ≤ n− 1.

Proof. Similar to the proof of Theorem 6.13, from Proposition 6.12, we see that

1 +
n
∑

t=1

1

2t

∑

S<2t

S≡1 (mod 2)

e

(−2ωKS

2t

)

=















n
2
+ 1 if ω ≥ n

ω+1
2

if ω ≤ n− 1.

(6.92)

Hence, by (6.87) and (6.92), we deduce that

N2n(a, b, c; k) = 2n−1















n+ 2 if ω ≥ n

ω + 1 if ω ≤ n− 1.



Chapter 7

Conclusion

7.1 Future Reseach

For the sake of discussion, for this chapter we let Qr be a non-singular r-dimensional integral

quadratic form. We recall the notation introduced in Chapter 4, where M denotes the r× r

symmetric integral matrix associated with Qr, andmi denotes the i
th leading principal minor

of M , for i = 1, . . . , r. Let q ∈ N be an arbitrary integer, and let S ∈ Z be co-prime to q.

We may use the methods developed to evaluate G(Qr;S; q). As Qr is non-singular, we can

follow the steps leading up to Theorem 4.3 to deduce the equation

Qr =
r
∑

i=1

y2i
2mi−1mi

.

For this discussion we set ∆ =
r
∏

i=1

mi. If q is odd and (∆, q) = 1 it follows that

G(Qr;S; q) =

q−1
∑

x1,...,xn=0

e

(

S

q

r
∑

i=1

(2mi−1mi)
−1y2i

)

=
r
∏

i=1

G(2Smi−1mi; q)

=

(

2S

q

)r (
mr

q

)

G(1; q)r.

Note that as 2r | mr, the formula above agrees with the results of Weber [22, p. 14], [111, p.

23], when S = 1.
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As the quadratic Gauss sum possesses certain multiplicative properties, we can deduce

some multiplicative properties of G(Qr;S; q). Suppose q = p1p2 for two odd, distinct primes

and (∆, p1p2) = 1. Then by Proposition 3.1, we have

G(2Smi−1mi; p1p2) = G(2smi−1mip1; p2)G(2smi−1mip2; p1).

This means,

G(Qr;S; p1p2) =
r
∏

i=1

G(2smi−1mip1; p2)G(2smi−1mip2; p1) = G(Qr; p1S; p2)G(Qr; p2S; p1).

Suppose now that q = pα1
1 · · · pαn

n , for distinct odd primes p1, . . . , pn and positive integers

α1, . . . , αn. Set Pi =
q

pαi

i

for i = 1, . . . , n. By similar reasoning to the above, if (∆, q) = 1,

we can deduce that

G(Qr;S; q) =
n
∏

i=1

G(Qr;PiS; p
αi

i ).

This shows we can describeG(Qr;S; q) for all odd positive integers q, provided that (∆, q) = 1.

Evaluating G(Qr;S; 2
σq), for σ ∈ N will require more study. Even given favorable di-

visibility properties, there will be a factor of 2 which prevents the use of Proposition 3.1.

Suppose for the moment that mi = 2im′
i for i = 1, . . . , r and m′

i coprime to q. Then by

Corollaries 5.3 and 5.4, and with Proposition 3.12, we have

G(Qr; qS; 2
σ)G(Qr; 2

σS; q) =
r
∏

i=1

G(qSm′
im

′
i−1; 2

σ)G(2σSmimi−1; q)

=
r
∏

i=1

1

2i+1
G(qSm′

im
′
i−1; 2

σ+2i+2)G(2σSmimi−1; q)

=
r
∏

i=1

1

2i+1
G(2qSmimi−1; 2

σ)G(2σSmimi−1; q).

However, this suggests that similar multiplicative properties exist for the quadratic form
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Gauss sum with even modulus, up to a factor of a power of 2. The challenge when evaluat-

ing G(Qr;S; 2
σq) is in detecting those cases where the modulus is congruent to 2 (mod 4).

Because of this difficulty, one must consider various cases in the evaluation of G(Qr;S; 2
σq).

These results seem attainable, but still require further study. We add that a translation of

the papers of Weber [111] and Jordan [61] into English would be very valuable with regards

to this question.

Extending our main results is the most obvious next step. However, we mention that

in the development of G(Qr;S; p
n), we did not use any particularly noteworthy theorems

pertaining to quadratic forms. Our diagonalization of Qr needed only the existence of an

LDLT decomposition. The decomposition itself used basic linear algebra. In particular, we

did not use the idea of equivalent quadratic forms.

Roughly speaking, two quadratic forms Qr and Q
′
r are equivalent if one is obtained from

the other by a linear, invertible change of variables over Z. One can show that equivalent

forms represent the same integers. Assume for the sake of discussion that p is an odd prime

and mi = pαiAi. If we are to consider our original diagonalization, it is of the form

Qr(x1, . . . , xr) =
r
∑

i=1

miX
2
i

2mi−1

= Q′
r(X1, . . . , Xr)

→ pαQr ≡
r
∑

i=1

2AiAi−1p
α+αi−αi−1X2

i (mod pn+α).

If the forms Qr and Q
′
r are equivalent, one can show that as xi runs over a complete residue

system, so does Xi and hence it is immediate that

G(Qr;S; p
n) =

1

prα

r
∏

i=1

G(2SAiAi−1p
α+αr−αr−1 ; pn+α).

Observe that the change of variables xi 7→ Xi is described by the ith row of L. Hence, L

describes the change of variables from Qr to Q
′
r, and this map is invertible over Z. However,

as we are evaluating Qr modulo pn+α, we must have Qr and Q
′
r equivalent over Zpn+α , which
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means we must have L invertible over Zpn+α . This is equivalent to (∆, p) = 1 or pαi | mij

for all i < j. These conditions are given in Corollary 5.3 and Theorem 5.7, respectively. We

have similar conclusions for p even. Due to the vastness of the field, one might be able to

use various ideas from the theory of quadratic forms to extend this approach.

Our approach when the minors of Qr were divisible by p, was to consider Gauss sums of

the form

pn−1
∑

x=0
x≡w (mod pm)

e

(

Sx2

pn

)

, (7.1)

for n ≥ 2m. These restrictions will necessitate the size restrictions on n in the statement of

Theorems 5.9 and 5.10. For this reason, we would like to study these Gauss sums for small

n. For example, consider the sum in (7.1) for m ∈ N satisfying m < n < 2m, and w ∈ Z. It

can be shown that

pn−1
∑

x=0
x≡w (mod pm)

e

(

Sx2

pn

)

=
G(S; pn)

pm

pm−1
∑

y=0

e

(−pn−mST 2y2 − wy

pm

)

, (7.2)

where T is an integer such that 2ST ≡ 1 (mod pn). Hence, if w ≡ 0 (mod pm), (7.1) will

reduce to

1

pm
G(S; pn)G(−St2pn−m; pm) = pn−m

pm
G(S; pn)G(−S; p2m−n)

=
pn−m

pm

(

S

p

)n

ı̇

(

pn−1
2

)2

p
n
2

(−S
p

)n

ı̇

(

pn−1
2

)2

p
2m−n

2 = pn−m.

Thus, we deduce that

pn−1
∑

x=0
x≡0 (mod pm)

e

(

Sx2

pn

)

=































1 if m ≥ n

pn−m if m < n < 2m

G(S; pn) if 2m ≤ n.

. (7.3)
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For arbitrary w, the evaluation of (7.2) will mean considering sums of the form

pn−1
∑

x=0

e

(

x2 + x

pn

)

.

For p odd, we have

pn−1
∑

x=0

e

(

x2 + x

pn

)

= e

(−1

4pn

) pn−1
∑

x=0

e

(

(x− 2−1)2

pn

)

= e

(−1

4pn

)

G(1; pn).

Preliminary research suggests that the sum indexed by y in (7.2) will be of the form

ϵ (S,w, pn)G(1; pn), where |ϵ (·) | = 1;

see [49], [92]. Hence, (7.1) will behave similarly to the quadratic Gauss sum, with a root of

unity as a factor. As such, further investigation is required. Additionally, similar study is

needed for sums of the form
2n−1
∑

x=0
x≡w (mod 2m)

e

(

Sx2

2n

)

.

7.2 Possible Applications of the Quadratic Form Gauss

Sum

In light of Chapter 6, it’s clear that one may use the quadratic form Gauss sum to determine

the number of solutions to a congruence of the form

Qr ≡ k (mod pn), (7.4)
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given that Qr satisfies certain conditions with respect to pn. Similar to Theorem 6.1, one

can show that the number of solutions to the congruence given in (7.4) is given by

p(r−1)n















1 +
n
∑

t=1

1

prt

∑

S<pt

(S,p)=1

e

(−kS
pt

)

G(Qr;S; p
t)















. (7.5)

If we suppose for convenience that p is an odd prime, r is even and k ≡ 0 (mod pn), then by

Corollary 5.5, we deduce that (7.5) can be written as

p(r−1)n−1

{

p+ (p− 1)
n
∑

t=1

(−∆

p

)t

pt(1−
r
2)

}

. (7.6)

The sum
n
∑

t=1

(−∆

p

)t

pt(1−
r
2) will be straightforward to evaluate, similar to Definition 6.2.

Hence, the expression in (7.6) is a tractable expression to determine the number of solutions

to Qr ≡ 0 (mod pn). Current research is directed towards estimates of the number of such

solutions within a certain range; see, e.g. [20], [50], [51]. One might be able to use these

results along with symmetric arguments to achieve similar results.

We turn now to more abstract applications. As mentioned in the introduction, the

quadratic Gauss sum is a generalization of a particular exponential sum. We present the

following definition to highlight some different types of Gauss sums. For what follows, let

q ∈ N be a positive integer, and S ∈ Z is coprime to q.

Definition 7.1. Let χ be a Dirichlet character defined on Zq (see, e.g. [5, p. 138]). Then

we define the Gauss character sum by

Gχ(S; q) =

q−1
∑

x=0

χ(x)e

(

Sx

q

)

.

Suppose for q odd, we let χ denote a quadratic character modulo q. Then it can be shown
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that

Gχ(S; q) =

q−1
∑

x=0
(x,q)=1

χ(x)e

(

Sx

q

)

=

q−1
∑

x=0

e

(

Sx2

q

)

= G(S; q).

This is shown for q an odd prime in Proposition 6.1. Thus, a Gauss character sum can be

seen as a generalization of the quadratic Gauss sum. One can view the exponential term with

modulus q of Gχ(S; q) as an additive character. In this fashion, the Gauss character sum is

related to both multiplicative and additive number theory. In particular, Gauss character

sums are of great interest due to their connections with Dirichlet L-functions; see, e.g. [5,

pp. 262-263].

Definition 7.2. Let q = pn be a prime power, and let χ be a multiplicative character defined

on Fq (see, e.g. [78, p. 191]) and let σ ∈ Fq. The finite field Gauss sum with respect to χ is

given by

Gχ(σ; q) =
∑

x∈Fq

χ(x)e

(

T (σx)

p

)

,

where T is the field trace from Fq onto Fp and the character χ has been extended to all of

Fq by setting

χ(0) =















1 if χ is trivial,

0 otherwise.

Similarly, for q = pn, for a positive integer m and σ ∈ Fq, the sum given by

Gm(σ; q) =
∑

x∈Fq

e

(

T (σxm)

p

)

is called an mth power Gauss sum over the finite field Fq.
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We emphasize that we use the terms principal character and trivial character interchange-

ably. These two finite field Gauss sums are related by the formula

Gm(σ, q) =
m−1
∑

j=1

Gχj(σ; q),

where χ is a character of order m on Fq and σ ∈ F∗
q [12, p. 11]. Moreover, the finite field

character sum and the Gauss character sum are equivalent in a certain case. When q = p is

an odd prime, the trace function on Fq will be the identity map. Thus, for χ a non-trivial

character, we have that

Gχ(σ; p) =
∑

x∈Fp

χ(x)e

(

σx

p

)

= Gχ(σ; p).

Given these generalizations of the quadratic Gauss sum, one naturally wonders if such

generalizations exist for the quadratic form Gauss sum. As it happens, such a generalization

will be difficult to obtain. The Gauss character sum has, as summand, the product of

an additive character and a multiplicative character. When the multiplicative character

is quadratic, the Gauss character sum will simplify to a sum of additive characters. This

simplification will not hold in general for an arbitrary character χ of order greater than 2.

Indeed, the product of two Gauss character sums is difficult to evaluate. If χ and ψ are two

characters modulo q, then

Gχ(1; q) ·Gψ(1; q) =
∑

x∈Z∗
q

χ(x)e

(

x

q

)

∑

y∈Z∗
q

ψ(y)e

(

y

q

)

=
∑

x,y∈Z∗
q

χ(x)ψ(y)e

(

x+ y

q

)

. (7.7)

Suppose that Q2 is a binary quadratic form such that m1 and m2 are coprime to q = pn.

Then for p odd we have

G(Q2;S; q) = G(2Sm1; q)G(2Sm1m2; q).
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We may consider a product of Gauss character sums with similar coefficients. For χ and ψ

modulo q, we have

Gχ(2Sm1; q)Gψ(2Sm1m2; q) =
∑

x∈Z∗
q

χ(x)e

(

2Sm1x

q

)

∑

y∈Zq∗

ψ(y)e

(

2Sm1m2y

q

)

=
∑

x,y∈Z∗
q

χ((2Sm1)
−1x)ψ((2Sm1m2)

−1y)e

(

x+ y

q

)

= χψ((2Sm1)
−1)ψ(m−1

2 )
∑

x,y∈Zq∗

χ(x)ψ(y)e

(

x+ y

q

)

,

where we have used the fact that Gχ(S; q) = χ−1(S)G(1; q). Hence, evaluating the product

of the Gauss character sum will require studying sums of the form seen in (7.7).

There is current research containing products of Gauss character sums where an exact

formula would be valuable. Consider the generalized Gauss character sum, for k ∈ N, given

by

Gk(S, χ; q) =

q−1
∑

x=0

χ(x)e

(

Sxk

q

)

,

where χ is a Dirichlet character modulo q. Historically, research efforts have been focused

on determining upper bounds for |Gk(S, χ; q)|. Famously, A. Weil [112] showed that for p an

odd prime,

|Gk(S, χ; p)| ≤ Sp
1
2 ,

where S denotes the positive integer residue of S modulo p. More recently, Cochrane and

Zheng [21] have shown that for any positive integer q ≥ 3 and (S, q) = 1, we have

|Gk(S, χ; q)| ≤ (4k)ω(q)q1−
1

k+1 , (7.8)

where ω(q) denotes the number of distinct prime divisors of q.
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Current research has focused on exact formulas for the 2mth power mean of the generalized

Gauss character sum, given by

∑

χ mod q

|Gk(S, χ; q)|2m. (7.9)

Determining an exact expression for (7.9) was first investigated by Zhang [121], in 2002.

Zhang determined exact expressions for

∑

χ mod p

|G2(S, χ; p)|4 and
∑

χ mod p

|G2(S, χ; p)|6,

where p is an odd prime. These expressions determined by Zhang arose as a byproduct

of his investigation into sums of the form given in (7.9) weighted by Dirichlet L-functions

[121, pp. 305-306]. Subsequently, in 2005, W. Zhang and H. Liu [124] investigated the sum

(7.9) directly. They determined exact expressions for
∑

χ mod p

|G3(S, χ; p)|4 for p ≡ 1 (mod 3),

and
∑

χ mod q

|Gk(S, χ; q)|4, for q ≥ 3 a square-full number, and (Sk, q) = 1. In 2009, Yuan

He and Q. Liao [56] determined formulas for
∑

χ mod p

|G2(S, χ; p)|6 and
∑

χ mod p

|G2(S, χ; p)|8.

In a similar vein, in 2011, Yanfeng He and W. Zhang [55] have determined formulas for
∑

χ mod q

|G2(S, χ; q)|6 and
∑

χ mod q

|G2(S, χ; q)|8, where q is a square-full number and (S, q) = 1.

Most recently, in 2012, F. Liu and Q. H. Yang [79] have shown that

∑

χ mod q

|G2(S, χ; q)|2m = 4(m−1)ω(q)qm−1ϕ2(q), (7.10)

for q ≥ 2 odd and square-full. This formula can be compared with the upper bound of

Cochrane and Zheng given in (7.8).

We emphasize that these results take advantage of the property

|Gk(S, χ; q)|2 = Gk(S, χ; q)Gk(S, χ; q).
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Thus, this research is preoccupied with the product of Gauss character sums. Given an exact

formula for a product of such sums, one might be able to deduce a formula for

∑

χ mod q

|Gk(S, χ; q)|2m.

Given that a majority of efforts have been to find upper bounds of Gk(S, χ; q), this is likely

a very difficult problem. The current use of these 2mth power mean formulas is to determine

asymptotic formula for weighted sums, mostly involving L-fuctions; see, e.g., [81], [94], [118],

[120], [122], [123]. Hence, such an exact formula would likely lead to improvements in these

asymptotic formulas, and may yield interesting connections with the given weighted sum.

Our emphasis has been on the generalization of the quadratic form Gauss sum to an

expression involving Gauss character sums. Both the quadratic Gauss sum and the Gauss

character sum run over a ring of integers, which leads to the natural generalization question.

However, one would also like to generalize the quadratic form Gauss sum to the finite field

Gauss sum. Similar difficulties will exist with this generalization, as our Gauss sum is

with respect to a multiplicative character χ. However, we would be interested in such a

generalization, as there is a well known exponential sum which makes use of a product of

finite field Gauss sums. Let q be a prime power and consider the so-called Jacobi sum, given

by
∑

α∈Fq

χ(α)ψ(1−α) for characters χ, ψ defined on Fq. It can be shown that if the character

given by χψ is nontrivial, then

∑

α∈Fq

χ(α)ψ(1− α) =
Gχ(1; q)Gψ(1; q)

Gχψ(1; q)
,

see, e.g. [12, p. 59]. One notes that the restriction of χψ nontrivial, means the above

equation will not hold for two quadratic characters. Thus, one would expect to generalize

the Gauss character sum before attempting a similar generalization for the finite field case.
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7.3 Current Applications

Finally, we mention briefly the usage of Gauss sums in the current literature. This list is not

exhaustive, but serves to demonstrate the wide variety of applications of Gauss sums.

As mentioned in the previous section, the Gauss character sum has various connections

with Dirichlet L-functions [4], [125]. As well, this Gauss sum can be used to estimate

various character sums [33], [53], [58], [80], [108]; estimate the number of solutions for certain

congruences [52], [109]; and has applications for the number of representations of an integer

as a sum of primes [72].

The finite field Gauss sum has applications in many finite field problems. One sees their

use in coding theory [37], [116]; point counting on elliptic curves [97], [117]; determining the

number of solutions to polynomial equations [7], [95]; determining the value of cyclotomic

numbers [114]; constructing difference sets [39]; and the evaluation of various related func-

tions [85]. In particular, the finite field Gauss sums are widely used in the construction of

Cayley graphs [38], [40], [43], [87], [88], [113], [115].

In addition, Gauss sums have been generalized over various algebraic structures, including

various types of groups [46], [64], [76], [77] [82] ; rings [36], [105], [119]; and fields [14], [57],

[84], [90]. Regardless of the generalization, the Gauss sum can be used for additive or

multiplicative problems.

Due to the wide variety of Gauss sums, its generalizations and applications, it seems likely

that the quadratic form Gauss sum will have other, unforseen applications. The quadratic

Gauss sum possesses a very interesting structure, with many deep connections to other

branches of mathematics. Due to the similarity in structure in the quadratic form Gauss

sum, it is certain that this sum will contain many deep connections as well. As the results

of Weber and Jordan have been forgotten over time, we hope to see further study of the

quadratic form Gauss sum.
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[28] P. G. L. Dirichlet. Über eine neue Anwendung bestimmter Integrale auf die Sum-
mation endlicher oder unendlicher Reihen. Abhandlungen der Königlich Preussischen
Akademie der Wissenschaften, pages 391–407, 1835.

[29] P. G. L. Dirichlet. Sur l’usage des intégrales définies dans la sommation des séries
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leurs solutions. Journal de mathematiques pures et appliquees, 17:368–402, 1872.

[63] C. Jordan. Notice sur les travaux de M. Camille Jordan. Gauthier-Villars, Paris, 1881.

[64] D. S. Kim. Codes Associated with O+(2n, 2r) and Power Moments of Kloosterman
Sums. Integers, 12:237–257, 2012.

[65] A. Krazer. Lehrbuch der Thetafunktionen. B. G. Teubner, 1903.

[66] A. Krazer. Zur Theorie der mehrfachen Gaußschen Summen. In Festschrift Heinrich
Weber zu seinem siebzigsten Geburtstag am 5. März 1912. AMS Chelsea Publishing,
1971.

[67] L. Kronecker. Sur une formule de Gauss. Journal de mathématiques pures et appliquées,
série 2, 1:392–395, 1856.
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