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Abstract

Existence of closed geodesics on compact manifolds was first proved

by Lyusternik and Fet in [44] using Morse theory, and the corre-

sponding problem for orbifolds was studied by Guruprasad and

Haefliger in [33], who proved existence of a closed geodesic of

positive length in numerous cases.

In this thesis, we develop an alternative approach to the problem

of existence of closed geodesics on compact orbifolds by study-

ing the geometry of group actions. We give an independent and

elementary proof that recovers and extends the results in [33]

for developable orbifolds. We show that every compact orbifold

of dimension 2, 3, 5 or 7 admits a closed geodesic of positive

length, and we give an inductive argument that reduces the ex-

istence problem to the case of a compact developable orbifold

of even dimension whose singular locus is zero-dimensional and

whose orbifold fundamental group is infinite torsion and of odd

exponent.

Stronger results are obtained under curvature assumptions. For

instance, one can show that infinite torsion groups do not act

geometrically on simply connected manifolds of nonpositive or

nonnegative curvature, and we apply this to prove existence of

closed geodesics for compact orbifolds of nonpositive or nonneg-

ative curvature.

In the general case, the problem of existence of closed geodesics

on compact orbifolds is seen to be intimately related to the group-
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theoretic question of finite presentability of infinite torsion groups,

and we explore these and other properties of the orbifold funda-

mental group in the last chapter.
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Introduction

An orbifold is perhaps the simplest case of a singular space; it is a topological

space which is locally modeled on quotients of open subsets in Euclidean

space by linear actions of finite groups. Each point of an orbifold carries

additional data, that of a finite isotropy group, and the orbifold structure

encodes this information. Orbifolds were first introduced in the 1950’s, by

Satake [57], [58], in the context of Riemannian geometry under the name of V -

manifolds. Later, in the 1970’s, Thurston [66] rediscovered and renamed them

in his studies of hyperbolic structures of 3-manifolds. During this period,

orbifolds were regarded as a natural generalization of manifolds to singular

spaces. Early results on orbifolds were motivated by an attempt to adapt and

generalize all notions and techniques from the classical theory of manifolds

to this more general setting.

Orbifolds arise naturally throughout geometry and one reason for the

interest in orbifolds is that they exhibit geometric properties similar to man-

ifolds. The specific problem that we take up in this thesis has to do with

the existence of geodesics on compact Riemannian orbifolds. Every compact
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manifold contains a closed geodesic [41], and a beautiful and elegant proof

of this fact is presented in [47], where Morse theory is applied to the en-

ergy functional on the loop space to prove existence of closed geodesics on

compact manifolds. The corresponding problem for orbifolds was studied by

Guruprasad and Haefliger in [33], which adapts the Morse theoretic approach

to the orbifold setting and proves the existence of closed geodesics on com-

pact orbifolds whenever (1) the orbifold is not developable, or (2) the orbifold

is developable and its orbifold fundamental group is finite or contains an ele-

ment of infinite order. Despite this progress, the general problem of existence

of closed geodesics on compact orbifolds remains open.

In this thesis we investigate the problem of existence of closed geodesics

on compact orbifolds and employ a geometric approach that recovers and

extends the results of [33] for the developable case. Our results are established

by using the geometry of the universal cover and properties of the orbifold

fundamental group.

For instance, we show in Theorem 4.3 that a compact developable orb-

ifold Q admits a closed geodesic of positive length whenever the orbifold

fundamental group contains a hyperbolic element, or equivalently whenever

Q admits an intermediate manifold cover. Because infinite order elements

in πorb1 (Q) are always hyperbolic, this result implies, but is strictly stronger

than, the result in [33] for developable orbifolds. This same result is proved

by Alexandrino and Javaloyes in [6, Theorem 2.17], and both proofs are ele-

mentary and based on [8, Lemma 6.5].

2
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On the level of the orbifold fundamental group, our first existence result

reduces the problem to compact orbifolds Q with πorb1 (Q) an infinite group

of finite exponent and with finitely many conjugacy classes (cf. Propositions

5.2, 5.3, 5.4). We further reduce the existence problem by noticing that in

a general orbifold, the singular locus contains preferred components which

form a totally geodesic suborbifold whose singular locus is zero-dimensional.

This observation allows us to establish existence of closed geodesics in many

situations, as summarized in Proposition 4.7. In particular we obtain exis-

tence for closed geodesics on all compact orbifolds of dimension 2, 3, 5 or 7

(cf. Remark 4.2 and Corollary 4.10).

An interesting question related to all of this is whether an infinite torsion

group can act geometrically on a simply connected complete Riemannian

manifold M (cf. Question 4.6). While we are not able to rule out such actions

in the general case, we are able to show that such actions cannot occur if M is

assumed to carry a metric of nonpositive or nonnegative sectional curvature

(see Proposition 4.13 and Proposition 4.15). As a consequence we conclude

that any compact orbifold of nonpositive or nonnegative curvature admits a

closed geodesic of positive length (see Corollary 4.14 and Corollary 4.16).

The outline of the thesis is as follows. In the first chapter we collect some

standard background material on metric spaces and groups actions on metric

spaces and smooth manifolds.

The second chapter introduces orbifolds and the necessary notions for

understanding their geometry. We review the notion of a tangent space to

3
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an orbifold and give the definition of a Riemannian metric on an orbifold;

we define orbifold paths and describe the orbifold fundamental group, a true

invariant of the orbifold structure. Along the way, we particularize these

notions for the case of developable orbifolds and we conclude the chapter

with a series of examples.

In the third chapter we take a closer look at the natural stratification by

orbit type of a Riemannian orbifold. We notice that the orbifold decomposes

into pieces which are totally geodesic, and use this decomposition to show

the existence of closed geodesics of positive length which are contained in the

singular locus. This result allows us to reduce the problem of existence of

closed geodesics to the particular case of a compact orbifold with only zero

dimensional singular locus.

In the fourth chapter we present elementary proofs for the existence of

closed geodesics for a large class of compact developable orbifolds and we

recover as a particular case the results in [33]. We also show that all 3, 5 and 7-

dimensional orbifolds admit closed geodesics of positive length. Furthermore,

we reduce the existence problem to a very specific case: that of an even-

dimensional compact developable orbifold with finitely many orbifold points.

Further we show that one can assume that the orbifold fundamental group

is infinite and contains only elliptic isometries. In particular it is torsion

and has odd exponent. More existence results are obtained under additional

geometric conditions on the universal cover of the orbifold. For example, we

show that if the universal cover admits a metric of nonpositive or nonnegative

4
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sectional curvature, then the orbifold fundamental group cannot be infinite

torsion.

In the last chapter, we summarize properties of the orbifold fundamental

group where existence of closed geodesics does not follow by the methods

developed previously. The orbifold fundamental group Γ exhibits two seem-

ingly incompatible properties. On the one hand, Γ must be finitely presented,

while on the other hand, it can be assumed to be an infinite group of bounded

exponent. While examples of infinite torsion groups which are finitely gener-

ated and even of finite exponent are known to exist, there are no examples

known to be finitely presentable. Finitely generated infinite torsion groups

are the object of an important problem in group theory, known as the Burn-

side problem, and the last chapter presents a brief summary on the questions

of Burnside and others, along with several other group-theoretic questions

motivated by the problem of existence of closed geodesics on orbifolds.

The chapters are reasonably self-contained, and readers familiar with the

basic material of group actions on metric spaces and orbifolds may prefer to

begin with chapters 3 and 4, which contain the new results, and to refer back

to the earlier chapters as necessary.
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Chapter 1

Background

This chapter contains the basic definitions and results on metric spaces and

actions by discrete groups. Of particular interest is the case of a Riemannian

manifold, and in the last section, we develop the theory in the general context

of a smooth manifold and group acting smoothly.

1.1 Metric Spaces

This section is concerned with metric spaces. The presentation is mainly

descriptive and we chose not to insist on all the aspects of the theory, but

rather to briefly include only the definitions and properties that we will use in

this work. For this reason we chose not to label the results or the definitions

and also not to include proofs. The material contained in this section is

standard and there are many excellent references. With little exceptions, our

7
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notations and presentation follow mainly the ones in [11].

Basic Definitions and Facts

A metric space is a pair (X, d), where X is a space and d is a metric (or

distance function) on X. That is, d is a real-valued function d : X ×X → R

satisfying the following two axioms for all x, y, z ∈ X:

i. d(x, y) = 0 if and only if x = y

ii. d(x, z) ≤ d(x, y) + d(z, y).

Aa a direct consequence of the two axioms d is also non-negative (d(x, y) ≥ 0

for all x, y) and symmetric (d(x, y) = d(y, x) for all x, y).

If (X, d) is a metric space and x ∈ X we define open ball of radius r > 0

about x as the set B(x, r) := {y ∈ X | d(x, y) < r} and the closed ball of

radius r > 0 about x to be B(x, r) := {y ∈ X | d(x, y) ≤ r}.

Every metric space (X, d) has a natural topology induced by the metric:

the topology generated by the set of open balls B(x, r). A metric space is

called proper if every closed ball B(x, r) is compact in this topology.

The diameter of a metric space (X, d) is the value in [0,∞) ∪ {∞} given

by diam(X) := sup{d(x, y) | x, y ∈ X}.

Suppose (X, d) is a metric space and let C ⊂ X be a subset of X. For

ε > 0 we denote by

Vε(C) = {x ∈ X | d(x, y) < ε for some y ∈ C}

8
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the ε-neighbourhood of C in X. Given two sets C1, C2 ⊂ X the Hausdorff

distance between them is defined by

dH(C1, C2) = inf{ε | C1 ⊆ Vε(C2) and C2 ⊆ Vε(C1)}.

A sequence (xn) of points in X is said to converge to x ∈ X if and only if

for every r > 0 there exists a natural number N = Nr such that d(xn, x) < r

for all n ≥ N . Clearly the metric convergence defined above is equivalent to

the convergence in the induced topology. Note also that the properties of d

forces the limits to be unique, thus every metric space is Hausdorff. A metric

space is said to be complete if every Cauchy sequence is convergent.

Isometries

An isometry between two metric spaces (X, d) and (X ′, d′) is a bijection

f : X → X ′ such that d′(f(x), f(y)) = d(x, y) for all x, y ∈ X. Every

isometry is a homeomorphism and the composition of two isometries is again

an isometry. The set of all isometries from a metric space (X, d) to itself,

together with the composition of maps, form a group denoted Isom(X). It is

a subgroup of Homeo(X), the group of homeomorphisms of X.

If γ is an isometry of (X, d) and x ∈ X, it is often convenient to denote the

point γ(x) ∈ X by γ.x (or γx) and to refer to it as the translate of x by γ. The

displacement function of γ is the function dγ : X → R+ defined by dγ(x) =

d(x, γx). The translation length of γ is the number |γ| := inf{dγ(x) | x ∈ X}.

9
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The minimal set of γ, denoted Min(γ) := {x ∈ X | dγ(x) = |γ|}, is the set of

points where the displacement function attains this infimum. An isometry γ

is called semi-simple if Min(γ) is non-empty.

We can use the displacement function to classify the isometries of a metric

space. An isometry γ of X is called:

(i) elliptic if γ has a fixed point (i.e. there exists x ∈ X so that γx = x),

(ii) hyperbolic if its displacement dγ attains a strictly positive minimum

(i.e. there exists x0 ∈ X such that 0 < dγ(x0) = d(x0, γx0) ≤ d(x, γx)

for all x ∈ X),

(iii) parabolic if dγ does not attain a minimum, i.e. Min(γ) is empty.

Each isometry of a metric space belongs to one of the above disjoint classes

and an isometry is semi-simple if and only if it is elliptic or hyperbolic.

Moreover, if two isometries are conjugate in Isom(X), then they have the

same translation length and belong to the same class.

Geodesics

Let (X, d) be a metric space.

A geodesic path joining two points x and y in X is a map c : [0, a] → X

such that c(0) = x, c(a) = y and d(c(t), c(s)) = |t − s| for all t, s ∈ [0, a].

In particular, d(x, y) = a which implies that geodesics minimize distance

globally. The image c([0, a]) ⊂ X is called a geodesic segment with endpoints

x and y.

10
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A local geodesic in X is a map c from an interval I ⊆ R to X with the

property that for every t ∈ I there exists a neighbourhood J ⊆ I of t such

that d(c(s′), c(s′′)) = |s′ − s′′| for all s′, s′′ ∈ J .

A geodesic line in X is an isometric embedding of the real line R in X,

i.e. a map ` : R→ X such that d(`(t), `(s)) = |t− s| for all t, s ∈ R.

A metric space (X, d) is said to be a geodesic space if every two points in

X can be connected through a geodesic, and is said to be uniquely geodesic

if there is exactly one geodesic between any two points in X.

A subset C of a metric space is said to be convex if every pair of points

x, y ∈ C can be connected by a geodesic in X and the image of every such

geodesic is contained in C.

A geodesic ray in X is a map r : [0,∞) → X such that d(r(t), r(s)) =

|t− s| for all t, s ≥ 0. The point r(0) is called the origin of the ray r. Given

two geodesic rays r, r′ : [0,∞)→ X and in X, we say that r′ is a subray of r

if there exists t0 ≥ 0 such that r′(t) = r(t+ t0) for all t ≥ 0.

Note that there are no geodesic rays in a metric space of finite diameter.

However, if X is a complete geodesic space of infinite diameter, then every

point in X is the origin of a geodesic ray.

1.2 Group Actions

In this section we briefly recall some terminology and general remarks con-

cerning discrete group actions on topological spaces. Particular attention will

11
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be given to proper actions and actions by isometries on metric spaces. Our

definitions and notations follow mainly [11]. For a more detailed introduction

to actions of discrete groups the reader may consult [9].

Basic Definitions and Notations

We will begin with some formal definitions. Suppose Γ is a group and X is

a space.

An action of Γ on X is a map Γ ×X → X, (γ, x) 7→ γ.x such that, for

all x ∈ X

(i) (γ · δ).x = γ.(δ.x) for all γ, δ ∈ Γ, and

(ii) 1.x = x, where 1 is the identity element of Γ.

The space X with an action by the group Γ is called a Γ-space.

Given an action Γ × X → X, for each γ ∈ Γ, we have a function Φγ :

X → X, defined by

Φγ(x) := γ.x, for all x ∈ X.

Using the defining properties of the action we can easily see that each of

the functions Φγ is a bijection with inverse Φγ−1 , and that Φγ ◦ Φδ = Φγδ.

Thus the map γ 7→ Φγ defines a group homomorphism from Γ to Sym(X),

the symmetric group of X (i.e. the group of bijections from X to itself).

Conversely, any group homomorphism Φ : Γ → Sym(X) yields an action of

Γ on X defined by γ.x = Φ(γ)(x).

12
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Thus, an action of a group Γ on a space X can be thought of as a ho-

momorphism Φ : Γ→ Sym(X). If the space X has additional structure, say

X is a smooth or a Riemannian manifold, then we distinguish several types

of actions of a group Γ by letting Φ have its image in various subgroups of

symmetries that preserve the extra structure. For instance, we say that Γ

acts on X by homeomorphisms (or diffeomorphisms, or isometries) if the im-

age of the homomorphism Φ is contained in Homeo(X) (resp. Diffeo(X) or

Isom(X)). That is, for each γ ∈ Γ the map x 7→ γ.x is a homeomorphism

(reps. diffeomorphism or isometry) of X.

Given two Γ-spaces X and Y , a function f : X → Y is said to be Γ-

equivariant if it “commutes with the action”, i.e. if for all x ∈ X and all

γ ∈ Γ, we have f(γ.x) = γ.f(x).

There are some other standard notions associated with the action of a

group Γ on a space X.

The orbit of a point x ∈ X is the set Γ.x = {γ.x | γ ∈ Γ} ⊆ X. The

action of Γ induces an equivalence relation on X defined by x ∼ y if and only

if x and y belong to the same orbit. The space of equivalence classes is called

the space of orbits and will be denoted X/Γ (we agree to denote it like this

even if the action here is considered from the left).

The elements of Γ which leave an element x ∈ X fixed form a subgroup

Γx = {γ ∈ Γ | γ.x = x} called the isotropy group (or stabilizer group) at

x. It is easy to see that if x and y are on the same orbit, say y = γ.x, then

their isotropy groups are conjugate: Γy = γ.Γx.γ
−1; and in fact any conjugate

13
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subgroup to Γx occurs as an isotropy group Γy of some element y in the orbit

of x. If Γx = Γ, then x is said to be a fixed point of the action. The set of

all fixed points of the action is often denoted XΓ. A subset Y ⊂ X is called

Γ-invariant if it is left invariant by the action of Γ, i.e. γ.Y = Y for every

γ ∈ Γ.

The action of Γ on X is said to be effective if no element of the group,

besides the identity element, fixes all the elements of the space, i.e. if γ.x = x

for all x ∈ X implies γ = 1. Equivalently, the group Γ acts effectively if the

representation Φ : Γ → Sym(X) is an injective homomorphism. In this

case, by identifying Γ with its image Φ(Γ) ⊂ Sym(X) we can regard Γ as a

subgroup of symmetries of X.

The action of Γ on X is called free if no point of M is fixed by an element

of Γ other than the identity, i.e. Γx = {1}, for all x ∈ X.

Assume Γ acts effectively on X. A point x ∈ X is called a singular point

of the Γ-action if the isotropy group Γx at x is non-trivial. The collection of

all singular points in X is denoted ΣΓ and is called the singular set of the Γ

action on X. Thus

ΣΓ = {x ∈ X | γ.x = x, for some γ ∈ Γ, γ 6= 1} =
⋃

γ∈Γ,γ 6=1

Σγ,

where Σγ = Xγ denotes the set of points in X fixed by γ. Note that if the

action is free, then ΣΓ = ∅.

14
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Proper Actions

Let X denote a topological space and Γ a group acting by homeomorphisms

on X. Let Φ : Γ→ Homeo(X) denote this action. We say that the action of

Γ on X is discrete if Φ(Γ) is a discrete subgroup of Homeo(X) endowed with

the compact-open topology. The action is said to have discrete orbits if every

x ∈ X has a neighbourhood U that contains only finitely many translates of

x, i.e. the set {γ ∈ Γ | γ.x ∈ U} is finite.

The action of Γ on X is called discontinuous at a point x ∈ X if there

exists a neighbourhood U of x such that the set {γ ∈ Γ | γ.U ∩ U 6= ∅} is

finite. The action of Γ is said to be properly discontinuous at a point x in X,

if there exists a neighbourhood U of x which is nice, i.e. all the nontrivial

element γ ∈ Γ move U outside itself: γ.U ∩ U = ∅.

The action of Γ on X is said to be discontinuous (resp. properly discon-

tinuous) if it is discontinuous (resp. properly discontinuous) at every point

x ∈ X. Note that properly discontinuous actions are necessarily free.

If the action of Γ on X is discontinuous, then the orbits of the action have

no accumulation points: for any sequence of elements γn ∈ Γ and any point

x ∈ X, the sequence γn.x has no limit points in X. If X is locally compact,

then the converse holds as well.

The action of Γ on X is said to be proper (alternatively, “Γ acts properly

on X”) if the map Γ×X → X ×X, (γ, x) 7→ (γ.x, x) is proper. Recall that

a map is proper if the preimages of compact sets are compact; and recall also
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that a proper map between locally compact Hausdorff spaces is closed. Thus,

if Γ is endowed with the discrete topology, the action of Γ on X is proper if

and only if for any compact sets K1, K2 in X, the set {γ ∈ Γ | γ.K1∩K2 6= ∅}

is finite.

Note that on a locally compact space any proper action is discontinuous

and any discontinuous action has discrete orbits, but the converses are not

true in general.

The following characterization for proper actions will be useful (see also

[11, Excercise (2), page 132]). Here we do not require that X is a Hausdorff

space.

Proposition 1.1. The action of a discrete group Γ on a locally compact

topological space X is proper if and only if all of the following hold:

(i) the space of orbits X/Γ is Hausdorff with the quotient topology;

(ii) each x ∈ X has finite isotropy group;

(iii) each x ∈ X has a Γx-invariant neighbourhood U such that

{γ ∈ Γ | γ.U ∩ U 6= ∅} = Γx.

Proof. (⇒) (i) The orbit equivalence relation is the image of the map Γ×X →

X ×X, hence it is closed. Since the projection X → X/Γ is open, it follows

that the quotient space X/Γ is Hausdorff (see [40, Theorem 11, page 98]).
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(ii) follows directly from the definition by letting K1 = K2 = {x}.

(iii) Let K1 = {x} and K2 be a compact neighbourhood of x. Since the

action is proper, the set {γ ∈ Γ | γ.x ∈ K2} is finite and contains Γx. Thus

we can find a compact neighbourhood of x, say K ′2, such that {γ ∈ Γ | γ.x ∈

K ′2} = Γx. Consider now the set K =
⋃
γ∈Γx

γ.K ′2. Then K is a compact

Γx-invariant neighbourhood of x. Applying the definition for K1 = K2 = K,

the set {γ ∈ Γ | γ.K ∩K 6= ∅} is finite and contains Γx. Then we can find

a neighbourhood of x in K, say U ′, such that {γ ∈ Γ | γ.U ′ ∩ U ′ 6= ∅} = Γx

and by taking U =
⋃
γ∈Γx

γ.U ′ we obtain the Γx-invariant neighbourhood

satisfying (iii).

(⇐) By (i), if x, x′ ∈ X do not belong to the same orbit, then we can

find neighbourhoods U for x and U ′ for x′ and x′, such that γ.U ∩U ′ = ∅ for

all γ ∈ Γ. Assume now that x and x′ belong to the same orbit, say x = δ.x′

for some δ ∈ Γ r Γx. Let U be a neighbourhood of x as given by (iii) and

let U ′ = δ.U . Then {γ ∈ Γ | γ.U ∩ U ′ 6= ∅} = {γ ∈ Γ | γ.U ∩ δ.U 6= ∅} =

{γ ∈ Γ | U ∩ (γ−1 · δ).U 6= ∅} = δ.Γx which by (ii) is finite. Thus, for any

x, x′ ∈ X we can find neighbourhoods U and U ′ such that {γ | Γ.U ∩U ′ 6= ∅}

is at most finite. Let now K be a compact set in X. Then K×K is compact

in X ×X and thus it has a finite cover with sets of the form U × U ′ where

{γ | Γ.U ∩ U ′ 6= ∅} is finite. Hence the set {γ ∈ Γ | Γ.K ∩K 6= ∅} is finite,

i.e. the action is proper.

Remark 1.2. If in the above proposition the action is free, then the quotient

17
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map X → X/Γ is a covering map and the group of automorphisms of the

covering is Γ itself: Aut(X → X/Γ) = Γ. If in addition X is assumed to be

connected and simply connected, then π1(X/Γ) ∼= Γ.

Proposition 1.3 (Armstrong, [7]). Let Γ act properly by homeomorphisms

on a connected, simply connected, locally compact metric space X, and let Γ′

be the normal subgroup of Γ generated by the elements which have fixed points

in X. Then the fundamental group of the orbit space X/Γ is isomorphic to

the factor group Γ/Γ′.

The idea of the proof is a s follows. Note first that the action of Γ on X

factors into an action by Γ′ on X followed by a free action of Γ/Γ′ on X/Γ′.

Using that Γ′ is generated by the elements having fixed points, the author

shows that the quotient X/Γ′ is simply connected. Furthermore, since Γ/Γ′

acts freely on X/Γ, it follows that π1(X/Γ) ∼= π1((X/Γ′)/(Γ/Γ′)) ∼= Γ/Γ′.

Proper Actions by Isometries

In the next two propositions we collect some facts about proper actions

by isometries on metric spaces (see [11, Proposition I.8.5 and Proposition

II.6.10]).

Proposition 1.4. Suppose that the group Γ acts properly by isometries on a

metric space (X, d). Then

(i) for each x ∈ X there exists ε > 0 such that if γ.B(x, ε) ∩ B(x, ε) 6= ∅

then γ ∈ Γx;
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(ii) the orbit space X/Γ is naturally a metric space;

(iii) if a subspace X ′ of X is invariant under the action of a subgroup Γ′ of

Γ, then the action of Γ′ on X ′ is proper.

Proof. (i) Let x ∈ X. Since Γ acts by isometries, any ball B(x, r) centred at

x is Γx-invariant. Then, the claim follows from Proposition 1.1 (iii).

(ii) The function d′(Γ.x,Γ.y) = inf{d(x′, y′) | (x′, y′) ∈ Γ.x× Γ.y} on X/Γ×

X/Γ defines a pseudometric on the orbit space. For d′(·, ·) to be a metric on

X/Γ it suffices to show that it is positive definite. Assume d′(Γ.x,Γ.y) = 0.

Then for any n > 0 there exists γn ∈ Γ such that d(x, γny) < 1/n. Since the

action is proper, there exists γ ∈ Γ such that γn = γ for all n larger then

some n0. In particular γ.y = x, i.e. Γ.x = Γ.y.

(iii) follows from the definition.

Recall that the action of a group Γ on X is called cocompact if there exists

a compact set K ⊆ X such that X = Γ.K.

Proposition 1.5. Suppose Γ acts properly and cocompactly by isometries on

the metric space X. Then

(i) there are finitely many conjugacy classes of isotropy subgroups in Γ;

(ii) every element of Γ is a semi-simple isometry of X;

(iii) the set of translation distances {|γ| | γ ∈ Γ} is a discrete subset of R.
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Proof. (i) Let K ⊆ X be a compact set such that X = Γ.K. Since the action

is proper, the sets S = {γ ∈ Γ | γ.K∩K 6= ∅} is finite. In particular, Γx ⊆ S

for all x ∈ K. Since for each y ∈ X there exists γ ∈ Γ such that γ.y ∈ K, we

have that γΓyγ
−1 = Γγ.y ⊆ S.

(ii) Fix γ ∈ Γ. We will show that Min(γ) 6= ∅ (see 1.1 for definitions). Let

(xn)n∈N be a sequence of points in X such that dγ(xn)→ |γ| as n→∞. Since

Γ.K = X, for each xn there exists γn ∈ Γ such that yn = γn.xn ∈ K. Note

that dγ(xn) = d(γγ−1
n .yn, γ

−1
n .yn) = dγnγγ−1

n
(yn)→ |γ| as n→∞. Since yn ∈

K and K is compact, any point x ∈ K is within finite distance from yn. It

follows that d(γnγγ
−1
n .x, x) is finite for all x ∈ K and all n. In particular, the

sequence γnγγ
−1
n .x is bounded and therefore it has a convergent subsequence

which we will continue indexing by n. Using the properness of the action,

there exists δ ∈ Γ such that δ = γnγγ
−1
n for all n. On the other hand,

since the sequence (yn) ⊂ K, and K is compact, we can assume (eventually

passing to a subsequence) that yn → y ∈ K, as n → ∞. But dγ(γ
−1
n .y) =

d(γ−1
n .y, γγ−1

n .y) = dδ(y) = lim
n→∞

dδ(yn) = lim
n→∞

dγ(xn) = |γ|, which implies

that γ−1
n .y ∈ Min(γ) for all n, i.e. Min(γ) 6= ∅.

(iii) Assume that the set of translations of Γ has an accumulation point.

That is, there exists a ≥ 0 and a sequence γn of elements of Γ such that

|γn| 6= |γm| for all n 6= m and |γn| → a as n → ∞. By (ii), since all the

elements of Γ are semi-simple, Min(γn) 6= ∅ for all n. Thus we can choose

xn ∈ Min(γn). Replacing γn by a suitable conjugate we can assume that all

the xn are contained in K. Since K is compact, it is bounded, say contained
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in a ball B(x, r). It follows that γn.B(x, r+a+1)∩B(x, r) 6= ∅ for arbitrarily

large n and this contradicts the properness of the action.

Recall that a presentation of a group Γ is a pair 〈A | R〉 that consists of

a set of generators A and a subset R ⊂ F (A) of the free group on A, such

that Γ is isomorphic to F (A)/〈〈R〉〉, the factor group of F (A) by the normal

closure of R in F (A). A group Γ is said to be finitely generated if it admits a

presentation 〈A | R〉 such that the set of generators A is finite; and Γ is said

to be finitely presented if both the sets A and R can be taken to be finite.

The following result gives necessary and sufficient conditions for a group

acting on a metric space to be finitely presented:

Proposition 1.6 ([11, Corollary I.8.11]). A group is finitely presented if and

only if it acts properly and cocompactly by isometries on a simply connected

geodesic space.

A presentation for the group Γ can be given as follows (for details see the

proof of [11, Corollary I.8.11]). Using the fact that Γ acts cocompactly on

X, we can find a compact set K ⊂ X such that Γ.K = X. Let U = B(x, r)

denote an open ball in X containing K and let

S = {γ ∈ Γ | U ∩ γ.U 6= ∅} ⊂ Γ.

Since Γ acts properly on X the set S is finite, and since X is connected, S

generates Γ. Let now A be a set of symbols aγ indexed by γ ∈ S, and let R
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be the finite subset of the free group on A given by

R = {aγ1aγ2a
−1
γ3
| γ1, γ2, γ3 ∈ S;U ∩ γ1.U ∩ γ3.U 6= ∅; γ1γ2 = γ3 in Γ}.

Since both U and X are connected and X is simply connected, 〈A | R〉 is a

presentation for Γ, and this presentation is finite.

1.3 Riemannian Manifolds

In the first part of this section we present some basic notions from Rieman-

nian geometry with an emphasis on the metric viewpoint. A classic reference

on the background material for Riemannian geometry is [20]. The second part

of this section contains some results concerning finite actions by diffeomor-

phisms on smooth manifolds. As we will see in the next chapter, these results

play an important role in understanding the local properties of orbifolds.

Riemannian Manifolds as Metric Spaces

Let M denote a connected smooth manifold. Recall that a Riemannian

metric on M is a map ρ that assigns to each x ∈ M an inner product ρx on

the tangent space TxM which varies smoothly from point to point: for any

open subset U of M and for any pair of tangent smooth vector fields X and

Y on U , the map ρ : U → R given by x 7→ ρx(X (x),Y(x)) is smooth. The

pair (M,ρ) will denote the manifold M with a given Riemannian metric ρ.
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For a differentiable path t 7→ c(t) on M , we write ċ(t) ∈ Tc(t)M for the

velocity vector at t, and |ċ(t)| = ρc(t)(ċ(t), ċ(t))
1/2 for its norm with respect

to the given inner product on Tc(t)M . The Riemannian length of a piecewise

smooth path c : [a, b]→M , is defined by `ba(c) =
∫ b
a
|ċ(t)|dt.

We introduce a distance function d on the Riemannian manifold (M,ρ)

in the following way: for any two points x, y ∈ M we define d(x, y) (the

distance from x to y) to be the infimum of the Riemannian length of all

piecewise smooth paths c : [a, b]→M with c(a) = x and c(b) = y.

Using this definition of distance, a Riemannian geodesic is a differentiable

path c : I ⊆ R → M which is locally distance-minimizing in the following

sense: there exists a constant v ≥ 0 such that for any interior point t of I there

exists a neighbourhood J ⊆ I of t such that `s
′
s (c) = d(c(s), c(s′)) = v|s− s′|

for all s, s′ ∈ J . We say that the geodesic c : I → M is normalized (or

has unit speed) if v = 1, and that it is minimal if the above holds for all

s, s′ ∈ I. In particular, the length of a minimal geodesic segment is equal to

the distance between its endpoints.

In general, a minimal geodesic between two points if it exists, needs not

be unique. For example, given two antipodal points on the round 2-sphere,

the unit speed parametrization of an arc of any great circle connecting the

two points is a minimal geodesic.

It is important to notice that Riemannian geodesics need not be geodesics

in the metric sense; in general they are only local geodesics in the sense de-

fined in the previous section and, a Riemannian geodesic is a metric geodesic
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if and only if it is minimal. Note also that given two points on a connected

manifold M , it may be possible that there is no minimal geodesic connecting

them or even no geodesic at all containing them. For example, if we consider

the Euclidean space with the origin removed then there are no geodesics con-

taining antipodal points. Another situation is that of two points x and y

on the round unit sphere which are not antipodal. Then there are infinitely

many unit speed Riemannian geodesics connecting them: any unit speed path

starting at x and ending at y and whose image is contained in the great circle

through x and y (possibly going more than once around the sphere). Among

these geodesics there is only one minimal geodesic (which is the unique path

with length smaller than π). If we remove a point z of the great circle through

x and y such that d(x, z) + d(z, y) < π, then on S2 r {z} there is a unique

geodesic connecting x to y and this geodesic is not minimal.

Any point x of a Riemannian manifold M has a neighbourhood (called

normal neighbourhood) U such that for any y ∈ U there exists a unique

minimal geodesic from x to y. Even more is true. At any point x ∈ M we

can find a neighbourhood W (called totally normal neighbourhood) such that

any two distinct points in W can be connected through a unique minimizing

geodesic. A consequence of the existence of normal neighbourhoods at each

point of M is that the topology induced by the distance d coincides with the

original topology on M .

Recall that a manifold is said to be geodesically complete if any geodesic

segment can be extended indefinitely. By the Hopf-Rinow theorem [20, Theo-
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rem 7.2.8], a manifold M is geodesically complete if and only if it is complete

(as a metric space). An important consequence of this is that every complete

connected Riemannian manifold M is a geodesic metric space, i.e. any two

points M can be connected through a minimal geodesic.

A Riemannian isometry of a Riemannian manifold M is, by definition,

a diffeomorphism of M whose differential preserves the inner product on

each tangent space. From the definition of the distance d it is clear that

any Riemannian isometry is an isometry of the associated metric structure

(M,d). If the Riemannian metric is smooth (or at least C2) then the converse

holds, and in that case we denote by Isom(M) the group of isometries of M .

Let now (M,ρ) be a Riemannian manifold and N ⊆ M a smoothly em-

bedded submanifold. The restriction to TxN of the given inner product ρx

on TxM , defines an inner product on the tangent space TxN at each point

x ∈ N . Thus N inherits a Riemannian structure from M which we denote by

ρ|N . Then the distance dN on N associated to ρ|N coincides with the induced

distance on N by the distance on M associated to ρ.

A submanifold N is said to be totally geodesic if any geodesic in N is

also a geodesic in M . Note that a totally geodesic submanifold need not be

(metrically) convex. For example, on the round unit sphere any arc of a great

circle which has length at least π is totally geodesic but not convex. However,

if the manifold M has unique geodesic property, then a submanifold is totally

geodesic if and only if it is (metrically) convex.
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Finite Group Actions on Smooth Manifolds

Let M be a smooth manifold and Γ a group acting effectively by diffeomor-

phisms on M . It is convenient to regard Γ as a subgroup of Diffeo(M). The

action of Γ on M induces an action on the tangent bundle TM given by

γ.v := (dγ)x(v) ∈ Tγ.xM,

for any γ ∈ Γ, x ∈M and v ∈ TxM . In particular, for any x ∈M there is an

induced action of the isotropy group Γx of x on the tangent space TxM at x.

By definition, the action of Γx on TxM is linear and let dx : Γx → Aut(TxM)

denote the homomorphism associated to this action.

Proposition 1.7. Suppose M is a connected, paracompact smooth manifold

and Γ is a finite subgroup of Diffeo(M). Then the homomorphism dx : Γx →

Aut(TxM) is injective for every x ∈M .

The proof of the above proposition relies on the following simple lemma:

Lemma 1.8. If M and Γ are as in Proposition 1.7, then M admits a Γ-

invariant Riemannian metric.

Proof. Since the manifold M is connected and paracompact, it admits a

Riemannian metric, say g. Since Γ is finite we can obtain a Γ-invariant

Riemannian metric ρ by averaging g over Γ. That is, for every x ∈ M and
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every v, w ∈ TxM define

ρx(v, w) =
1

|Γ|
∑

γ∈Γ

gγ.x(γ.v, γ.w),

where |Γ| denotes the order of Γ. Clearly ρ is Γ-invariant.

Proof. (Prop. 1.7) Let ρ denote a Γ-invariant Riemannian metric on M given

by lemma 1.8, and consider the exponential map associated with this metric.

Fix x ∈ M and let ε > 0 and U ⊆ M an open neighbourhood of x, such

that expx : B(0, ε) ⊂ TxM → U is a diffeomorphism. Since the metric is Γ-

invariant, the induced action of Γx on TxM is by orthogonal transformations.

In particular, U is Γx-invariant and the exponential map is Γx-equivariant:

expx ◦(dγ)x = γ ◦ expx for all γ ∈ Γx. If we assume that γ ∈ Ker(dx),

then (dγ)x = I ∈ Aut(TxM) and the equivariance of expx implies that the

restriction γ|U is the identity on U . Since M is connected it follows that γ is

the identity on M . To see this, let A := {y ∈M | γ.y = y and γ ∈ Ker(dy)}.

Then, A 6= ∅ (since x ∈ A) and it is obviously closed. Let now y ∈ A. The

condition γ.y = y implies that γ ∈ Γy and the condition that γ ∈ Ker(dy)

implies that the restriction of γ to an open neighbourhood V of y is the

identity. Thus V ⊆ A and A is open. Since M is connected, A = M and

since the action is effective γ is the identity on M .

Corollary 1.9. The only diffeomorphism of finite order on a connected, para-

compact smooth manifold which fixes an open set is the identity.
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Another consequence of Proposition 1.7 is the following result concerning

the singular set.

Proposition 1.10. Suppose M is a connected, paracompact, smooth mani-

fold and Γ a finite subgroup of Diffeo(M). Then ΣΓ is closed and nowhere

dense in M .

Proof. The set ΣΓ is obviously closed as it is the finite union ∪γ 6=1Σγ and each

of Σγ is closed. To see that ΣΓ has empty interior let x ∈ ΣΓ and assume

that there exists an open neighbourhood U of x which is contained in ΣΓ.

Since Γ is finite and ΣΓ = ∪γ 6=1Σγ, the neighbourhood U has to be in one of

the Σγ’s. Thus there exists γ 6= 1 such that the restriction γ|U = 1. Since

M is connected, by Corollary 1.9, γ has to be the identity on the whole M ,

a contradiction. Thus ΣΓ has empty interior and the proof is complete.

As we will see in the next chapter, the following proposition plays an

important role in the definition of the orbifold structure.

Proposition 1.11. Suppose M is a connected, paracompact, smooth mani-

fold and Γ is a finite subgroup of Diffeo(M). Let V 6= ∅ be a connected open

subset of M and f : V → M be a diffeomorphism onto its image such that

ϕ◦f = ϕ|V , where ϕ : M →M/Γ is the natural projection. Then there exists

a unique γ ∈ Γ such that f = γ|V .

Proof. Consider on M a Γ-invariant Riemannian metric ρ as given by Lemma

1.8. Then Γ acts by isometries on (M,ρ). By Proposition 1.10, the regular

set M0 = M r ΣΓ is open and dense in M .
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Let x ∈ V ∩M0. Since Γx is trivial, by Proposition 1.1 there exists a

connected neighbourhood U of x contained in V ∩M0 such that γ.U ∩U = ∅

for all γ 6= 1. Then the condition ϕ ◦ f = ϕ|V implies that there is a unique

γ ∈ Γ such that f(x) = γ.x and on U . In particular we have (df)x = (dγ)x

and f |U is a Riemannian isometry. By Corollary 1.9 f = γ on the whole

connected component of V ∩M0 containing x.

If the codimension of ΣΓ in M is at least two, then M0 is connected and

so is V ∩M0. Moreover, since V ∩M0 is dense in V , by continuity f = γ|V .

Assume now that ΣΓ has components of codimension one, and let Σ′ be

such a component that intersects V . Let V1 and V2 be two neighbouring

connected components of V rΣ′. Then, as before, for V1 and V2 there exists

two unique elements γ1 and γ2 in Γ such that f = γ1 on V1 and f = γ2 on

V2. We want to show that γ1 = γ2.

First note that by continuity γ1 = γ2 on Σ′∩V . Let now z ∈ Σ′∩V . Since

Σ′ has codimension one and the action of Γ is by isometries, the isotropy group

of z is generated by an element of order two (the reflection in the hyperplane

TzΣ
′ ⊂ TzM).

Denote by δ the generator of Γz and let U ⊆ V be a δ-invariant totally

normal neighbourhood of z.

Let U1 = U ∩ V1 and U2 = U ∩ V2. Then U1 and U2 are nonempty , open

and connected and δ.U1 = U2 (and of course δ.U2 = U1). Let now x ∈ U1

and let c : [0, 1]→M be the unique geodesic connecting x ∈ U1 to δ.x ∈ U2.

Then c(1/2) ∈ Σ′ ∩ V is the unique point where the geodesic c intersects Σ′
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and notice that c is perpendicular to Σ′ at this point.

Since γ1 and γ2 are isometries, the translates γ1.c and γ2.c of c are

geodesics and moreover they are both perpendicular to γ1.Σ
′ = γ2.Σ

′ at

the same point γ1.c(1/2) = γ2.c(1/2). Therefore the two geodesics γ1.c and

γ2.c must have the same image. There are only two possibilities for the end

points to match: either γ1.x = γ2.x or γ1.x = γ2δ.x. Using our assumption

that f = γ1 on U1 3 x and f = γ2 on U2 3 δ.x, the later equality rewrites:

f(x) = f(δ.x). Since x 6= δ.x ∈ U ⊆ V it contradicts the fact that f is

a diffeomorphism on V . Thus γ1.x = γ2.x and since x was an arbitrary

point in U1, it follows that γ1|U1 = γ2|U1 . Furthermore, since U1 is open and

connected, by Corollary 1.9 we have that γ1 = γ2 on M and the proof is

complete.

As the next result shows, the fixed point set of a family of isometries of a

Riemannian manifold has a nice geometric structure.

Proposition 1.12 ([42, Theorem 5.1]). Suppose M is a Riemannian man-

ifold and G is a set of isometries of M . Let F be the set of points of M

which are fixed by all elements of G. Then each connected component of F is

a closed totally geodesic submanifold of M .
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Chapter 2

Orbifolds

This chapter gives a detailed introduction to the foundational material on

orbifolds, including orbifold structures, isotropy groups, H-paths, covering

spaces of orbifolds, orbifold fundamental groups, tangent bundles and Rie-

mannian structures for orbifolds, and geodesics on orbifolds. The last section

presents several illustrative examples of low-dimensional orbifolds where these

concepts can be worked out in detail.

The material in this chapter is well-known and there are many excellent

sources. Besides the original work of Satake [57] and Thurston [66], other

good introductions to the classical theory of orbifolds include [1, Chapter

1], [11, Appendix G.1], [38, Chapter 6] and [50, Section 2.4]. A great deal

of information on the differential geometry of orbifolds can be found in the

appendix of [17], and a detailed presentation of the geometric structure of

2-dimensional orbifolds is provided in [60].
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2.1 The Orbifold Structure

We begin with the formal definition of a smooth (C∞-differentiable) orbifold

structure as given in [1] and [51] and which is equivalent to the ones given in

[17] and [57].

The Orbifold Atlas

Let Q denote a paracompact Hausdorff topological space and let U = {Ui}i∈I
be an open cover of Q which is closed under finite intersections. Fix a non-

negative integer n.

Definition 2.1. (orbifold chart) An n-dimensional smooth orbifold chart

(also called smooth uniformizing system) associated to an open set Ui ∈ U is

given by a triple (Ũi,Γi, ϕi) where

• Ũi is a connected open subset of Rn,

• Γi is a finite group acting smoothly by diffeomorphisms on Ũi, and

• ϕi : Ũi → Ui is a continuous surjective map that induces a homeomor-

phism from Ũi/Γi onto the open set Ui.

If Γi acts effectively on Ũi, then the orbifold chart is said to be reduced.

Let now Ui and Uj be two open subsets such that Ui ⊆ Uj and let

(Ũi,Γi, ϕi) and (Ũj,Γj, ϕj) be orbifold charts over Ui and Uj, respectively.
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Definition 2.2. (embeddings of charts) An embedding between such

charts is a pair

(ϕ̃ij, λij) : (Ũi,Γi, ϕi) ↪→ (Ũj,Γj, ϕj)

consisting of a smooth embedding ϕ̃ij : Ũi ↪→ Ũj and a monomorphism λij :

Γi ↪→ Γj such that ϕ̃ij is λij-equivariant. Furthermore, if the charts are not

reduced, we require that λij induces an isomorphism from

Ki := ker(Γi → Diff(Ũi)) to Kj := ker(Γj → Diff(Ũj)).

Remark 2.3. It is important to note that the maps ϕ̃ij (resp. the morphisms

λij) are defined up to composition (resp. conjugation) with an element of Γj,

in the following sense. Given two embeddings

(ϕ̃ij, λij), (ψ̃ij, µij) : (Ũi,Γi, ϕi) ↪→ (Ũj,Γj, ϕj),

between reduced orbifolds charts, there exists a unique γj ∈ Γj such that

ψ̃ij = γj · ϕ̃ij and µij = γjλijγ
−1
j .

In particular if i = j then ϕ̃ii is an element γi ∈ Γi and λii is conjugation by

γi (see [1], [51]).

For reduced charts, the existence and uniqueness of the element γj ∈ Γj

above follows directly from Proposition 1.11. To see this, let Ũ ′i = ϕ̃ij(Ũi) ⊆

33



Ph.D. Thesis - George C. Dragomir McMaster - Mathematics and Statistics

Ũj and Ũ ′′i = ψ̃ij(Ũi) ⊆ Ũj. Since ϕ̃ij and ψ̃ij are diffeomorphisms onto

their images, the composition f := ψ̃ij ◦ ϕ̃−1
ij : Ũ ′i → Ũ ′′i is a diffeomorphism.

Moreover, since the embeddings ϕ̃ij and ψ̃ij are λij and µij-equivariant, it

follows that f ◦ ϕj = ϕj|Ũ ′i . Then by Proposition 1.11, there is a unique

element γj ∈ Γj such that γj|Ũ ′i = f = ψ̃ij ◦ ϕ̃−1
ij , i.e. ψ̃ij = γj.ϕ̃ij.

If the orbifold charts are not reduced, then the uniqueness in the above

property holds up to composition (resp. conjugation) with elements of Kj

(which, by definition, is isomorphic to Ki).

Remark 2.4. Another important technical point regarding the embedding

between reduced charts is the following: given an embedding (ϕ̃ij, λij) as in

Definition 2.2, if γj ∈ Γj is such that ϕ̃ij(Ũi) ∩ γj.ϕ̃ij(Ũi) 6= ∅, then there

exists a unique γi ∈ Γi such that γj = λij(γi). As before, this follows from

Proposition 1.11 and Remark 1.9.

It is easy to see that the composition of any two embeddings of charts

is again an embedding. However, it is worth noticing that it is not true in

general that if Ui ⊆ Uj ⊆ Uk then ϕ̃ik = ϕ̃jk ◦ ϕ̃ij, but there exists an element

γ ∈ Γk such that γ ◦ ϕ̃ik = ϕ̃jk ◦ ϕ̃ij and γ ◦ λik ◦ γ−1 = λjk ◦ λij.

Definition 2.5. (orbifold atlas) An orbifold atlas A on Q associated to

U is a collection of orbifold charts {(Ũi,Γi, ϕi)} which are locally compatible

in the following way: given any two charts (Ũi,Γi, ϕi) and (Ũj,Γj, ϕj), there

exists an open set Uk ⊆ Ui ∩ Uj and an associated orbifold chart (Ũk,Γk, ϕk)

that embeds in both (Ũi,Γi, ϕi) and (Ũj,Γj, ϕj).
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If U ′ is another open cover for Q that refines U , we say that the associated

orbifold atlas A′ refines A if every orbifold chart in A′ can be embedded in

some orbifold chart in A. Two orbifold atlases are equivalent if they have a

common refinement.

Definition 2.6. (orbifold) A smooth n-dimensional orbifold Q is a space

Q as above together with an equivalence class of orbifold atlases A on it.

We will denote the orbifold structure on Q by the calligraphic Q. The

topological space Q is called the underlying topological space of the orb-

ifold Q. Similar to the manifold case, where it is possible to have non-

diffeomorphic smooth structures on a fixed topological manifold, there may

be more than one (non-equivalent) orbifold structures on the same topolog-

ical space Q (see Examples 2.34 – 2.37). It is also important to notice that

except for dimension 2, the underlying topological space Q of a smooth orb-

ifold Q need not have the structure of a topological manifold (see Example

2.38).

Note that if all the groups Γi are trivial, or if they act freely on the Ũi’s,

then Q has the structure of a smooth manifold.

Remark 2.7. (gluing charts) Similar to the manifold case, given an orb-

ifold atlas A it is sometimes useful to describe the gluing maps (or transition

functions) between charts.

Given two orbifold charts (Ũi,Γi, ϕi) and (Ũj,Γj, ϕj) and a point x ∈ Ui∩

Uj, by definition there exists a third orbifold chart (Ũk,Γk, ϕk) uniformizing
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an open set Uk ⊆ Ui ∩ Uj containing x; together with embeddings of charts

(Ũi,Γi, ϕi)
(ϕ̃ki,λki)←−−−−− (Ũk,Γk, ϕk)

(ϕ̃kj ,λkj)−−−−−→ (Ũj,Γj, ϕj).

The maps ϕ̃ki and ϕ̃kj are diffeomorphisms onto their images and are equiv-

ariant with respect to the injective homomoprhisms λki : Γk → Γi and

λkj : Γk → Γj. The groups λki(Γk) and λkj(Γk) are isomorphic to Γk, and the

maps

Ũi ⊇ ϕ̃ki(Ũk)
ϕ̃ki←−− Ũk

ϕ̃kj−−→ ϕ̃kj(Ũk) ⊆ Ũj

can be regarded as equivariant diffeomorphisms of Γk-manifolds. Moreover,

the composition

(
ϕ̃ki(Ũk), λki(Γk), ϕi|ϕ̃ki(Ũk)

) (ϕ̃kj ϕ̃
−1
ki ,λkjλ

−1
ki )−−−−−−−−−−→

(
ϕ̃kj(Ũk), λkj(Γk), ϕj |ϕ̃kj(Ũk)

)

gives an isomorphism between the induced uniformizing systems for Uk.

Thus the transition functions ϕ̃kjϕ̃
−1
ki are Γk-equivariant differentiable

maps and we can use them to recover the underlying topological space from

the orbifold atlas. We glue the spaces Ũi/Γi and Ũj/Γj by identifying the

points ϕi(ỹ) ∼ ϕj(z̃) whenever ỹ ∈ ϕ̃ki(Ũk) ⊆ Ũi and z̃ ∈ ϕ̃kj(Ũk) ⊆ Ũj

satisfy ϕ̃kjϕ̃
−1
ki (ỹ) = z̃. Denote by

Y =
⊔

Ũi∈U

(Ũi/Γi)/ ∼
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the space obtained by performing these gluing. The maps ϕi : Ũi → Q induce

a homeomorphism φ : Y → Q.

Isotropy Groups

To each point x of an orbifoldQ we can associate a finite group Γx well-defined

up to isomorphism in the following way. Let (Ũi,Γi, ϕi) be an orbifold chart

at x. For a fixed x̃ ∈ Ũi such that ϕi(x̃) = x, we denote by Γix̃ the isotropy

group of x̃ in Γi. The isomorphism class of Γix̃ is independent of the lift x̃ of x

in Ũi. Moreover, if (Ũj,Γj, ϕj) is another orbifold chart at x with embedding

(ϕ̃ji, λji) : (Ũj,Γj, ϕj) → (Ũi,Γi, ϕi), then λji maps Γix̃ isomorphically into

Γjϕ̃ji(x̃). Thus, for a given x ∈ Q the isomorphism class of the isotropy groups

Γix̃ is independent on both the orbifold chart at x and its lift within the

orbifold chart. We will denote this isomorphism class by Γx and we will refer

to it as the isotropy group of x.

An orbifold Q is said to be effective (or “reduced”) if each of the orbifold

charts (Ũi,Γi, ϕi) is reduced, i.e. each action Γi on Ũi is effective. Given a

noneffective orbifold Q we can always associate to it an effective one denoted

Qeff , by redefining the groups in each orbifold chart (Ũi,Γi, ϕi) to be Γi/Ki.

A singular point x of an orbifold Q is a point whose isotropy group Γx is

nontrivial with respect to the orbifold structure of Qeff . A nonsingular point

is also called a regular point. For an orbifold Q, we denote by Σ the collection

of its singular points, and by Qreg the set of the regular ones. If Σ = ∅ then

the orbifold Q is in fact a manifold.
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Proposition 2.8. The singular set of an effective orbifold is closed and

nowhere dense.

Proof. Let (Ũ ,Γ, φ) be any orbifold chart over an open set U which has

nonempty intersection with the singular set. Then

Σ ∩ U = {x ∈ U | Γx 6= 1}

= {x ∈ U | ∃γ ∈ Γ, γ 6= 1 such that γ.x̃ = x̃ for some x̃ ∈ ϕ−1(x) ⊂ Ũ}

=
⋃

x̃∈Ũ

{ϕ(x̃)| ∃γ ∈ Γ, γ 6= 1 such that γ.x̃ = x̃}

= ϕ(
⋃

x̃∈Ũ

{x̃| ∃γ ∈ Γ, γ 6= 1 such that γ.x̃ = x̃})

= ϕ(ΣΓ).

By Proposition 1.10 ΣΓ is closed and has empty interior. Since ϕ is a

homeomorphism , ΣΓ∩U is closed and has empty interior. Hence Σ is closed

and since Q is locally compact and Hausdorff, Σ =
⋃
i Σ ∩ Ui has empty

interior.

For an effective orbifold, it is easy to see that the regular set, Qreg = QrΣ

is a dense open set in Q which has the structure of a smooth manifold. From

the definition, we can see that any orbifold is locally compact. If we further

assume that the codimension of the singular locus is at least two, then the

regular set is also locally path connected. In this case the orbifold is connected

if and only if its regular set is path connected.
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Unlike the regular set, in general, the singular locus of an orbifold is not

a manifold and it may have several components of different dimensions. We

will return to describing in more detail the structure of the singular locus in

section 3.1.

Remark 2.9. Each point x ∈ Q has an open neighbourhood Ux (called fun-

damental neighbourhood at x) such that the group of the associated orbifold

chart can be chosen to be the isotropy group Γx of x. We will denote such

chart by (Ũx,Γx, ϕx) and will refer to it as the fundamental chart at x.

From the compatibility condition of charts it follows that the isotropy

group of any point y ∈ Ux is isomorphic to a subgroup of the isotropy group

Γx of x. Moreover, a fundamental chart (Ũy,Γy, ϕy) at y can be chosen such

that Ũy ⊂ Ũx, Γy ≤ Γx and ϕy = ϕx|Ũy
. In particular, note that any point

contained in a fundamental neighbourhood of a regular point is again regular.

2.2 Developable Orbifolds

Proposition 2.10 ([66, Proposition 13.2.1]). Let Γ be a discrete group act-

ing properly on a manifold M . Then the quotient space M/Γ has a natural

orbifold structure.

Proof. Let Q denote the quotient space M/Γ. Since the action by Γ is proper,

by Proposition 1.1 (i), Q is Hausdorff. We will now construct an orbifold atlas

on Q.
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Let π : M → Q denote the quotient map and let x ∈ Q. Choose x̃ ∈ M

such that π(x̃) = x and let Γx̃ = {γ ∈ Γ| γ.x̃ = x̃} denote the isotropy group

of x̃. By Proposition 1.1 (iii), there exists an open connected neighbourhood

Ũx̃ of x̃, which is invariant to Γx̃ and disjoint from all its translates by elements

of Γ not in Γx̃. Let Ux := π(Ũx̃) ⊆ Q. Then the restriction π|Ũx̃
: Ũx̃ → Q

induces a homeomorphism between Ũx̃/Γx̃ and Ux.

Consider now an open cover Ũ of M associated to a maximal manifold

atlas for M . Without loss of generality we may assume that all the elements

of Ũ are simply connected and by eventually shrinking Ũx̃, we can assume

that Ũx̃ ∈ Ũ . Then {Ux | x ∈ Q} is an open cover for Q and each Ux has

associated an orbifold chart (Ũx̃,Γx̃, π|Ũx̃
) as in Remark 2.9. In order to get

a suitable cover of Q we augment the cover {Ux| x ∈ Q} by adjoining finite

intersections. Let now x1, . . . , xk ∈ Q such that the corresponding sets Uxi

as above satisfy Ux1 ∩ . . . ∩ Uxk 6= ∅. Since Γ acts by permutations on the

set of connected components of π−1(Ux1 . . . ∩ Uxk), there exist γ1, . . . , γk ∈ Γ

such that γ1.Ũx̃1 ∩ . . .∩ γk.Ũx̃k 6= ∅, where Ũx̃i denote Γx̃i-neighbourhoods of

x̃i ∈ π−1(xi). This intersection may be taken to be

˜Ux1 ∩ . . . ∩ Uxk

which is clearly invariant to the action by the finite subgroup

γ1 · Γx̃1 · γ−1
1 ∩ . . . ∩ γk · Γx̃k · γ−1

k .
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In this way we obtain a cover U of Q which is closed under finite intersections

elements and satisfies the conditions in Definition 2.1.

We will next show the local compatibility of these charts. Let U and U ′

be two open sets in U satisfying U ′ ⊆ U . Let x ∈ U ′ and fix x̃ ∈ π−1(x) ⊂M .

For x and U , consider Ũx̃ and Γx̃ as above and choose Ũ ′x̃ such that it contains

x̃. In order to prove that there is an embedding between the two charts, it

suffices to prove that Ũ ′x̃ is contained in Ũx̃. To see this, assume there exists

a point ỹ ∈ Ũ ′x̃r Ũx̃. Then there should exist γ ∈ Γx̃ such that γ.ỹ ∈ Ũ ′ ∩ Ũ ,

since π(ỹ) = y ∈ U ′ ⊂ U . But both Ũ ′x̃ and Ũx̃ are Γx̃-invariant and hence

so is Ũ ′x̃ ∩ Ũx̃. This means that ỹ ∈ Ũ ′x̃ ∩ Ũx̃ which contradicts the fact that

ỹ ∈ Ũ ′x̃ r Ũx̃ and proves that Ũ ′x̃ ⊂ Ũx̃.

Finally, notice that the orbifold structure on Q = M/Γ is natural in the

sense that it depends only on the action of the group Γ and not on the choice

of the atlas Ũ on M .

The orbifold Q = M/Γ is called the orbifold quotient of M by the proper

action of Γ.

Definition 2.11. (developable orbifolds) An orbifold is called devel-

opable if it arises as the global quotient by a discrete group acting properly

on a manifold. Orbifolds that are developable are sometimes called good, and

those that are not are called bad.

Remark 2.12. In Definition 2.1 we can require that the uniformizing charts

Ũi have the structure of simply connected smooth n-manifolds instead of be-
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ing open subsets of Rn. By Proposition 2.10 we obtain equivalent definitions.

We can also replace the condition on the Γi’s to be finite by requiring instead

that they act properly on the Ũi’s such that the maps ϕi induce homeomor-

phisms between Ũi/Γi and Ui. In this case a connected orbifold is developable

if and only if can be defined by an atlas consisting of a single orbifold chart

(see also [11, Definition III.G.1.1, Remark III.G.1.6(1)]).

2.3 The Pseudogroup of Change of Charts

Recall that a pseudogroup of local diffeomorphisms of a differentiable manifold

X is a collection H of diffeomorphisms h : V → W of open sets of X such

that:

(i) H contains the identity map 1X : X → X;

(ii) the restriction of an element of H to any open subset of X belongs to

H;

(iii) H is closed under taking inverses, compositions (whenever possible) and

unions of its elements.

Given a family H of local diffeomorphisms of a manifold X containing the

identity of X, we can form the pseudogroup generated by H which is obtained

by taking the restrictions of the elements in H to open subset of X, together

with their inverses, compositions and unions.
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Two points x, y ∈ X are said to belong to the same orbit of H if there

exists an element h ∈ H such that h(x) = y. This defines an equivalence

relation on X whose classes are called the orbits of H. The quotient of X by

this equivalence relation, with the quotient topology is denoted by H\X.

Two pseudogroups H1 and H2 of local diffeomorphisms of differentiable

manifolds X1 and X2, respectively, are said to be equivalent if there exists a

pseudogroup H of local diffeomorphisms of the disjoint union X = X1 tX2

whose restriction to Xj is equal to Hj and such that the inclusion of Xj ↪→ X

induces a homeomorphism Hj\Xj → H\X, j = 1, 2.

Let now Q be an orbifold and let A = {(Ũi,Γi, ϕi)}i∈I an orbifold atlas

on Q. We define the pseudogroup of change of charts of the orbifold atlas

A. Following [33] (see section 2.1.2), we denote by X the disjoint union of

the Ũi and define ψ : X → Q to be the union of the maps ϕi : Ũi → Q. A

diffeomorphism h from an open set V of X into an open subset of X which

satisfies ψ ◦ h = ψ|V is called a change of chart (see also Remark 2.7). The

collection of change of charts of the atlas A generates a pseudogroup H of

local diffeomorphisms of X.

The pseudogroup H obtained in this way is called the pseudogroup of

change of charts of the orbifold atlas A. It contains in particular all the

elements of the groups Γi: if V is a connected open set of a component Ũi of

X and h is a change of chart defined on V such that h(V ) ⊂ Ũi, then h is the

restriction to V of an element of Γi (cf. Remark 2.3). The map ψ induces a

homeomorphism from the orbit space H\X to Q.
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As before, the pseudogroups of change of charts of two equivalent orb-

ifold atlases on Q are equivalent. Thus the orbifold structure on Q gives an

equivalence class of pseudogroups of local diffeomorphisms of a manifold.

More generally, if a pseudogroup H of local diffeomorphisms of a differ-

entiable manifold X is such that

(i) each point x of X has an open neighbourhood V such that the restric-

tion of H to V is generated by a finite group ΓV of diffeomorphisms of

V , and

(ii) the quotient space H\X is Hausdorff,

then the quotient space H\X has a natural smooth orbifold structure whose

pseudogroup of change of charts is equivalent to H.

In particular, an orbifold Q is developable if and only if there exists a

manifold M and a subgroup Γ of the group of diffeomorphisms of M such

that the pseudogroup H of change of charts of an orbifold atlas A of Q is

generated by Γ.

2.4 Orbifold Paths

We begin by defining the notion of smooth maps between orbifolds.

Definition 2.13. (orbifold map) A smooth map between two orbifolds P

and Q is a continuous map f : P → Q between their underlying topological
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spaces, such that for each point x ∈ P and y = f(x) ∈ Q there are coordinate

charts (Ṽx,Γ
∗
x, ϕ

∗
x) and (Ũy,Γy, ϕy) with the property that f maps Vx = ϕ∗x(Ṽx)

into Uy = ϕy(Ũy) and can be lifted to a smooth map f̃xy : Ṽx → Ũy such that

ϕ∗ ◦ f̃ = f ◦ ϕ.

We will denote by f̃ : P → Q an orbifold map whose underlying contin-

uous map is f : P → Q. As noted in [17] (Example 4.1.6b), it is possible for

non-isomorphic orbifold maps to have the same underlying continuous map.

The real line R as a smooth manifold has naturally a trivial orbifold struc-

ture. The smooth orbifold maps f̃ : P → R are called smooth functions on

the orbifold P . Note that an orbifold function f̃ with underlying continuous

map f : P → R is smooth if and only if the map f ◦ ϕ∗ is smooth for any

orbifold chart (Ṽ ,Γ∗, ϕ∗) in an orbifold atlas of P . For a developable orbifold

Q = M/Γ the smooth orbifold functions on Q are precisely the Γ-invariant

smooth functions on M .

Definition 2.14. A path on an orbifold Q is an orbifold map from R (or an

interval I) with the trivial orbifold structure into the orbifold Q.

A more concrete way of describing paths on orbifolds can be given using

the pseudogroup of change of charts of the orbifold.

Let Q be a connected orbifold and let H be the pseudogroup of change of

charts of an orbifold atlas A = {(Ũi,Γi, ϕi)}i∈I of Q as defined in the section

2.3. Let X =
⊔
I Ũi and let x and y be two points in X.
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Definition 2.15. A continuous H-path from x to y over a subdivision 0 =

t0 ≤ t1 ≤ · · · ≤ tk = 1 of [0, 1] is a sequence c̃x,y = (h0, c̃1, h1, . . . c̃k, hk)

where:

• each c̃i : [ti−1, ti]→ Ũj is a continuous map into some Ũj,

• h1, . . . , hk are elements of H defined on neighbourhoods Vi of c̃i(ti) such

that hi(c̃i(ti)) = c̃i+1(ti) for each i = 1, 2, . . . , k − 1 and hk(c̃k(tk)) = y;

and h0 is defined on a neighbourhood V of x such that h0(x) = c̃1(0).

x

y

c̃1

c̃2

c̃k−1

c̃k

h0

h1
· · ·

h2

hk−1

hk

hk−2

Figure 2.1: An H-path joining x to y.

Among the H-paths from x to y parametrized on [0, 1] we can define an

equivalence relation given by the following operations:

(i) Given a H-path c̃x,y = (h0, c̃1, h1, . . . , c̃k, hk) over the subdivision 0 =

t0 ≤ t1 ≤ · · · ≤ tk = 1, we can add a new point t′ ∈ (ti−1, ti) together

with the identity map h′ = 1Ũi
to get a new sequence, replacing c̃i in
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c̃ by c̃′i, h
′, c̃′′i , where c̃′i and c̃′′i are the restriction of c̃i to the intervals

[ti−1, t
′] and [t′, ti] respectively. See figure 2.2 below.

x y

c̃1

c̃k

h0

h1

hk−1 hk

hi−1 hi

c̃i

c̃�i
c̃��i

h� = 1�Ui

�Ui

...
...

Figure 2.2: Equivalent H-paths joining x to y obtained by adding a point to
the subdivision.

(ii) Replace the H-path c̃x,y by a new one c̃′x,y = (h′0, c̃
′
1, h
′
1, . . . , c̃

′
k, h

′
k) over

the same subdivision as follows (figure 2.3 below): for each i = 1, . . . , k

choose gi ∈ H defined in a neighbourhood of the paths c̃i such that

• gi ◦ c̃i = c̃′i for i = 1, . . . , k,

• h′i◦gi and gi+1◦hi have the same germ at c̃i(ti) for i = 1, . . . , k−1,

• h′0 and g1 ◦ h0 have the same germ at x,

• h′k ◦ gk and hk have the same germ at c̃k(1).

Remark 2.16. (a) If two H-paths on different subdivisions are equivalent,

then we can pass from one to another first by considering their equiv-
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x y

c̃1
c̃k

h0
hk

c̃i−1

c̃i

hi−1

c̃�1
c̃�i−1

c̃�i

c̃�k

h�
k

h�
i−1

g1 gi−1 gi
gk

h1

hi−2

... hi

hk−1

...

h�
1 h�

i−2

... h�
i

h�
k−1

...

Figure 2.3: EquivalentH-paths from x to y defined over the same subdivision.

alent paths by (i) on a suitable common subdivision, and then by an

operation similar to (ii).

(b) Note that two equivalent H-paths have the same initial and terminal

point.

(c) For any H-path c̃x,y = (h0, c̃1, h1, . . . , c̃k, hk) from x to y, we can find

equivalent paths c̃′x,y = (h′0, c̃
′
1, h
′
1, . . . , c̃

′
l, h
′
l) such that h′0 or h′l are iden-

tity maps.

(d) The germs of the maps gi in (ii) above are uniquely defined by c̃x,y and

c̃′x,y.

(e) If a H-path c̃x,y is such that all the c̃i’s are constant, then the equiva-

lence class of c̃x,y is completely characterized by an element h ∈ H such

that h(x) = y.
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The equivalence class of a H-path c̃x,y between two points x and y in X

will be denoted by [c̃]x,y. Clearly any H-path c̃x,y from x to y projects via

ψ : X → Q to a continuous map c : [0, 1] → Q from p = ψ(x) to q = ψ(y).

The underlying map c depends only on the equivalence class [c̃]x,y and not

the particular choice of c̃x,y ∈ [c̃]x,y.

We note Ωx,y(H) the set of equivalence classes of H-paths joining x to y,

and write Ω(H) for the union of all Ωx,y(H), with (x, y) ∈ X ×X.

Remark 2.17. If H is the pseudogroup of change of charts of an developable

orbifold Q = M/Γ, then any H-path (h0, c̃1, h1 . . . , c̃k, hk) between two points

x and y in M is equivalent to a unique H-path (c̃x, γ), where c̃x : [0, 1]→M

is a continuous path with c̃x(0) = x, and γ ∈ Γ satisfies γ.c̃x(1) = y. Indeed,

since H is generated by Γ, from Proposition 1.11 it follows that for each

hi there exists an unique element γi ∈ Γ such that hi is the restriction of

γi to the domain of hi. Define c̃x(t) = γ0 . . . γi−1.c̃i(t) for t ∈ [ti−1, ti] and

γ = γ0 . . . γk. It is easy to see that c̃x and γ satisfy the required properties

and that the given H-path is equivalent to the H-path (c̃x, γ).

Before giving the definition of paths on orbifolds (that agrees with Defi-

nition 2.14) we will introduce the following relation on Ω(H).

Let x, y ∈ X and c̃x,y = (h0, c̃1, h1, . . . , c̃k, hk) be a H-path joining x to y.

Suppose x′ and y′ are two points in theH-orbits through x and y, respectively,

and let g0 and g1 be elements of H such that g0(x′) = x and g1(y) = y′. Then

c̃x′,y′ = (g0 ◦ h0, c̃1, h1, . . . , c̃k, g1 ◦ hk) is a H-path joining x′ to y′.
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If c̃′x′,y′ is another H-path from x′ to y′, we say that c̃x,y and c̃′x′,y′ are

equivalent as H-paths in Ω(H) if and only if c̃x′,y′ and c̃′x′y′ belong to the same

equivalence class as H-paths joining x′ to y′, i.e. if and only if c̃x′,y′ ∈ [c̃′]x′,y′ .

Given a H-path c̃x,y we denote by c̃ its equivalence class in Ω(H). As

before, the projection ψ : X → Q gives rise to a continuous path c : [0, 1]→

Q, which we will refer to as the underlying path of c̃.

Finally, if H and H′ are two equivalent pseudogroups of local diffeomor-

phisms of differentiable manifolds X and X ′, then there is a one-to-one cor-

respondence between the set of equivalence classes of Ω(H) and Ω(H′). In

particular this is true when H and H′ are the pseudogroups of change of

charts of two atlases defining the same orbifold structure Q on Q. Thus we

can give the following definition.

Definition 2.18. Let Q be a connected orbifold and let p and q be two points

in Q. Suppose H is the pseudogroup of change of charts of an orbifold atlas

A for Q. An orbifold path joining p to q is an equivalence class of H-paths

c̃ on [0, 1] such that the underlying map c : [0, 1] → Q satisfies c(0) = p and

c(1) = q.

For a developable orbifold Q = M/Γ, the orbifold paths on Q are in one-

to-one correspondence with equivalence classes of pairs (c̃, γ), where c̃ is a

path in M and γ ∈ Γ. Two pairs (c̃, γ) and (c̃′, γ′) are equivalent if and only

if there exists an element δ ∈ Γ such that c̃′ = δ.c̃ and γ′ = δ−1γδ.

Similarly, a loop on the developable orbifold Q = M/Γ is the equivalence
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class of a pair (c̃, γ) as before with c̃ : [0, 1] → M and γ ∈ Γ such that

γ.c̃(1) = c̃(0). An interesting situation is that of orbifold loops that project

to a point in Q. Given p ∈ Q, a constant orbifold loop at p is represented

by a pair (x, γ), where x is a point in the fiber above p and γ an element

of Γx the isotropy group at x. The set of constant orbifold loops at p is in

one-to-one correspondence with the conjugacy classes of Γp.

2.5 Orbifold Fundamental Group

The Fundamental Group π1(H, x)

Inverse H-paths. Let x, y ∈ X and c̃x,y = (h0, c̃1, h1, . . . , c̃k, hk) be a H-

path from x to y, defined over the subdivision 0 = t0 ≤ t1 ≤ · · · ≤ tk = 1.

We can define the inverse of c̃ to be the H-path from y to x given by

c̃y,x = c̃−1
x,y = (h′0, c̃

′
1, h
′
1, . . . , c̃

′
k, h

′
k)

defined over the subdivision 0 = t′0 < t′1 < · · · < t′k = 1, where for each

i = 0, . . . , k we have t′i = 1 − tk−i, h
′
i = h−1

k−i and c̃′i(t) = c̃k−i(1 − t) for

t ∈ [t′i−1, t
′
i] and i = 1, . . . , k.

It is easy to see that the inverses of equivalent H-paths are equivalent.

Composition of H-paths. Given two H-paths c̃x,y = (h0, c̃1, h1, . . . , c̃k, hk)

over a subdivision 0 = t0 < t1 ≤ · · · ≤ tk = 1 and c̃′y,z = (h′0, c̃
′
1, h
′
1, . . . , c̃

′
k′ , h

′
k′)

over 0 = t′0 ≤ t′1 ≤ · · · ≤ t′k′ = 1, we can define their composition (or con-

51



Ph.D. Thesis - George C. Dragomir McMaster - Mathematics and Statistics

catenation) to be the H-path

c̃x,y ∗ c̃′y,z = c̃′′x,z = (h′′0, c̃
′′
1, h

′′
1, . . . , c̃

′′
k, h

′′
k)

over a subdivision 0 = t′′0 ≤ t′′1 ≤ · · · ≤ t′′k+k′ = 1, where

t′′i =





ti
2

i = 0, . . . , k

1+t′i−k

2
i = k + 1, . . . , k + k′

c̃′′i (t) =





c̃i(t/2) i = 1, . . . , k

c̃′i−k(2t− 1) i = k + 1, . . . , k + k′

h′′i =





hi i = 0, . . . , k − 1

h′0hk i = k

h′i−k i = k + 1, . . . , k + k′.

Again, if c̃x,y is equivalent to c̃′x,y and c̃y,z is equivalent to c̃′y,z, then the

composition c̃x,y ∗ c̃y,z is equivalent to c̃′x,y ∗ c̃′yz.

Homotopies of H-paths. An elementary homotopy between two H-paths

c̃x,y = (h0, c̃1, h1, . . . , c̃k, hk) over 0 = t0 ≤ t1 ≤ · · · ≤ tk = 1 and c̃′x,y =

(h′0, c̃
′
1, h
′
1, . . . , c̃

′
k, h

′
k) over 0 = t′0 ≤ t′1 ≤ · · · ≤ t′k = 1, is a family of H-paths

joining x to y parametrized by s ∈ [s0, s1],

c̃sx,y = (hs0, c̃
s
1, h

s
1, . . . , c̃

s
k, h

s
k)
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over 0 = ts0 ≤ ts1 ≤ · · · ≤ tsk = 1, where tsi , c̃
s
i and hsi depend continuously on

the parameter s, hs0 and hsk are independent of s and c̃s0x,y = c̃x,y, c̃
s1
x,y = c̃′x,y.

We say that two H-paths are homotopic (relative to their end points) if

one can be obtained from the other by a finite sequence of equivalence of

H-paths and elementary homotopies.

The homotopy class of a H-path c̃x,y will be denoted by [c̃x,y]. Given two

composable H-paths c̃x,y and c̃′y,z, the homotopy class [c̃x,y∗ c̃′y,z] depends only

on the homotopy classes [c̃x,y] and [c̃′y,z] and will be denoted [c̃x,y] ∗ [c̃′y,z]. If

c̃x,y, c̃
′
y,z and c̃′′z,w are composable H-paths, then

[c̃x,y ∗ c̃′y,z] ∗ [c̃′′z,w] = [c̃x,y] ∗ [c̃′y,z ∗ c̃′′z,w] = [c̃x,y] ∗ [c̃′y,z] ∗ [c̃′′z,w].

Definition 2.19. The set of homotopy classes of H-loops based at a point

x ∈ X together with the operation induced by the composition of H-paths,

forms a group π1(H, x) called the fundamental group of the pseudogroup H

based at x.

Similar to topological spaces, if y is different point in X and ãx,y is a

H-path joining x to y, then the map that associates to each H-loop c̃x based

at x the H-loop ã−1
x,y ∗ c̃x ∗ ãx,y based at y, induces an isomorphism from

π1(H, x) to π1(H, y). Thus, if the orbit space H\X is connected, then up to

isomorphism the fundamental group π1(H, x) is independent of the choice of

base point. In this case we will write π1(H) for the isomorphism class of the

fundamental group of H.
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Definition 2.20. If Q is a connected orbifold and H the pseudogroup of

change of charts of an orbifold atlas for Q, we define πorb1 (Q), the orbifold

fundamental group of Q to be the fundamental group π1(H) of the pseu-

dogroup H.

An orbifold is called simply connected if it is connected and has trivial

orbifold fundamental group.

It is important to note that in general, the orbifold fundamental group

πorb1 (Q) is not the same as π1(Q) the fundamental group of its underlying

topological space (see Proposition 1.3 and section 2.7 Examples).

As for topological spaces, a useful result for computing the orbifold fun-

damental group is the Seifert van Kampen theorem

Theorem 2.21 ([34]). Let Q be a connected orbifold and let Q1 and Q2 be

open connected suborbifolds such that

• Q = Q1 ∪Q2

• Q1 ∩Q2 is connected

• the closures of Q1 and Q2 are suborbifolds with boundary in Q such

that the boundary of Qi equals the frontier of Qi in Q.

Then

πorb1 (Q) ∼= πorb1 (Q1) ∗πorb
1 (Q1∩Q2) π

orb
1 (Q2)

is the amalgamated free product of the orbifold fundamental groups of Q1 and

Q2 over the orbifold fundamental group of the intersection Q1 ∩Q2.
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Orbifold Covers

Orbifold covering spaces are defined similarly to the ones for topological

spaces. Given two orbifolds Q and Q′, an orbifold projection p : Q′ → Q is

called a covering map if it satisfies the condition that, for each point x ∈ Q,

there exists a neighbourhood U uniformized by (Ũ ,Γ, ϕ) such that for each

connected component Ui of p−1(U) in Q′, the uniformizing systems of Ui is

(Ũ ,Γi, ϕ
′
i) for some subgroup Γi ≤ Γ. Note that the underlying space Q′ is

not generally a covering space of Q.

The universal covering p : Q̃ → Q of a connected orbifold Q is the initial

object in the category of orbifold coverings, i.e. it is a covering such that

for any other covering p′ : Q′ → Q there exists a covering p : Q̃ → Q′ such

that p = p′ ◦ p. If p : Q̃ → Q is is the universal covering then Q̃ is called the

universal covering space of Q.

Thurston proved that each orbifold Q has a universal cover (see Proposi-

tion 13.2.4 in [66]) and also defined the orbifold fundamental group πorb1 (Q)

as the group of deck transformations of its universal covering.

In the case of a developable orbifold, the quotient M → M/Γ can be

regarded as an orbifold covering with Γ as the group of deck transformations.

Similarly, any subgroup Γ′ induces an intermediate orbifold covering M/Γ′ →

M/Γ. On the other hand, any manifold covering M̃ → M gives an orbifold

covering by composing with the quotient map M →M/Γ. In particular, the

universal covering of M gives rise to a universal orbifold covering of Q, and
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the orbifold fundamental group belongs in a short exact sequence

1→ π1(M)→ πorb1 (Q)→ Γ→ 1.

Note that an orbifold is developable if and only if its universal covering space

is a manifold.

As mentioned before, the orbifold fundamental group of an orbifold Q is

different from the fundamental group of the underlying topological space Q.

For a developable orbifold Q = M/Γ, with M simply connected, the orbifold

fundamental group πorb1 (Q) ∼= Γ while, by Proposition 1.3, the fundamental

group of the topological quotient π1(Q) ∼= Γ/Γ0, where Γ0 is the normal

subgroup generated by all the elements of Γ which act non freely on M .

2.6 Riemannian Orbifolds

The Tangent Bundle

We start with a differentiable developable n-orbifold Q = M/Γ. Since the

action of Γ on M is smooth, it can be extended to an action on the tangent

bundle TM of M by setting γ.(x̃, v) :=
(
γ.x̃, d(γ)x̃(v)

)
, for all γ ∈ Γ and

(x̃, v) ∈ TM , and where d(γ)x̃ : Tx̃M → Tγx̃M denotes the differential of γ

at x̃. It is easy to see that this action is proper and therefore, by Proposition

2.10, the quotient of TM by this action inherits a natural orbifold structure.

In this case, we define the tangent bundle T Q of the orbifold Q to be the
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2n-orbifold obtained as the quotient TM/Γ. The underlying space of T Q

will be denoted by TQ. As before, the space TQ is generally not a manifold.

Unlike for the tangent bundle of manifolds, the fibers of the orbifold

tangent bundle T Q need not have the structure of a vector space. Let x be

a point in Q and let x̃ ∈M denote one of its lifts. By taking the differentials

(dγ)x̃ : Tx̃M → Tx̃M of the elements γ in the isotropy group Γx̃ of x̃, we

obtain a new group which acts linearly on the fiber Tx̃M . By Proposition 1.11

this new group is naturally isomorphic to Γx̃, and since up to isomorphism

this group is independent of the choice of the lift we will denote it by Γx.

The fiber in T Q above x ∈ Q is then is isomorphic to Tx̃M/Γx. We denote

this fiber by TxQ and refer to it as the tangent cone to Q at x. It has the

structure of a vector space if and only if x is a regular point in Q.

Since any orbifold is locally good, the construction above gives a local

way to work with tangent cones to orbifolds.

For any differentiable n-orbifoldQ with an orbifold atlasA = {(Ũi,Γi, ϕi)},

given an open set Ui ⊆ Q uniformized by an orbifold chart (Ũi,Γi, ϕi) we

can form the tangent bundle T Ũi/Γi over Ui. By patching together these

bundles we obtain a 2n-dimensional orbifold T Q with an atlas given by

{(TŨi,Γi, ψi)}. As in Remark 2.7, we can use the transition functions of

this orbifold atlas to obtain a space TQ the underlying topological space of

T Q. The natural projection p : TQ → Q defines a smooth orbifold map,

with fibers p−1(x) ' Tx̃Ũ/Γx (see [1, Proposition 1.21]).
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Riemannian Metrics on Orbifolds

LetQ be a smooth orbifold and let U = {(Ũi,Γi, ϕi)}i∈I be a maximal orbifold

atlas on Q.

Definition 2.22. A Riemannian metric on the orbifold Q is a collection

ρ = (ρi), where each ρi is a Γi-invariant Riemannian metric on Ũi and

such that any embedding φ̃ij coming from an injection between orbifold charts

(Ũi,Γi, ϕi) ↪→ (Ũj,Γj, ϕj) is an isometry as a map from (Ũi, ρi) to (Ũj, ρj).

An orbifold with such a Riemannian metric is called a Riemannian orbifold.

Remark 2.23. Note that the Riemannian metrics ρi on Ũi are Γi-invariant,

so locally, Riemannian orbifolds look like the quotient of a Riemannian man-

ifold by a (finite) group of isometries (see also Remark 2.12) . By a suitable

choice of coordinate charts it can be assumed that the local group actions are

by finite subgroups of O(n) for a general n-dimensional Riemannian orbifold,

and by finite subgroups of SO(n) for orientable Riemannian n-orbifolds.

As in the manifold case, the following proposition holds.

Proposition 2.24. Any smooth orbifold admits a Riemannian metric.

Proof. Let Q be an orbifold and let {(Ũi,Γi, ϕi)}i∈I denote an orbifold at-

las on it. Since the underlying topological space Q is paracompact we may

assume that the cover {Ui}i∈I is locally finite. We can define a ‘smooth’

partition of unity {fi : Ui → R}, subordinate to the cover {Ui} in the fol-

lowing way: on each Ũi choose a Γi-invariant, non-negative smooth function
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h̃i : Ũi → R such that the functions hi = h̃i ◦ ϕi can be extended over Q

by zero and such that {supp(hi) ⊂ Ui : i ∈ I} still covers Q. The func-

tion h(x) =
∑

i∈I hi(x) is non-zero on Q and we define fi := hi/h. Then

{fi : i ∈ I} is a smooth partition of unity subordinate to the cover Ui.

Consider now an arbitrary Riemannian metric gi on each Ũi. By Lemma

1.8 there exists a Γi-invariant Riemannian metric αi on each Ũi obtained from

gi by averaging over Γi. For any i ∈ I, define a new Riemannian metric ρi

on Ũi as follows:

(ρi)x̃
(
v, w

)
:=
∑

j∈I

fj(ϕi(x̃))(αj)ϕ̃ij(x̃)

(
d(ϕ̃ij)x̃(v), d(ϕ̃ij)x̃(w)

)

for any x̃ ∈ Ũi and any v, w ∈ Tx̃Ũi and where φ̃ij is an embedding coming

from an injection between (Ũi,Γi, ϕi) and any (Ũj,Γj, ϕj), j ∈ I. Then,

Lemma 1.8 together with the second part of the Remark 2.3 guarantee that

the Riemannian metric defined in this way is well defined, i.e. it is inde-

pendent of the choice of the embedding between the uniformizing charts. It

is also easy to check that each embedding is an isometry, hence the collec-

tion ρ = (ρi) is defines a Riemannian metric in the sense of the definition

above.

Remark 2.25. It follows from the definition, that the change of charts of

an orbifold atlas of a Riemannian orbifold Q are isometries. As in Remark

2.3, the collection of change of charts of an orbifold atlas {Ũi,Γi, ϕi)} on Q
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generates a pseudogroup H of local isometries of the Riemannian manifold

X =
⊔
i Ũi. The map ψ : X → Q given by ψ = tiϕi induces a homeomor-

phism between the quotient space H\X and the underlying topological space

Q of Q.

Alternatively, a Riemannian orbifold can be defined as an equivalence

class of pseudogroups H of local isometries of a Riemannian manifold X,

satisfying: (i) the quotient space H\X is Hausdorff; (ii) each point x ∈ X

has an open neighbourhood V such that the restriction H|V is generated by

a finite group ΓV of isometries of V .

If Q = H\X is a Riemannian orbifold and c̃x,y = (h0, c̃1, h1, . . . , c̃k, hk)

is a piecewise differentiable H-path (i.e. each of the paths c̃i is piecewise

differentiable) then we define its length `(c̃x,y) to be the sum of the lengths

of the paths c̃i. It depends only on the equivalence class c̃ of c̃x,y.

Given two points p, q ∈ Q we define the distance d(p, q) to be the infimum

of the lengths of all piecewise differentiable H-paths c̃ whose underlying con-

tinuous path c joins p to q. This distance defines a metric on the underlying

topological space Q.

Definition 2.26. We say that the Riemannian orbifold Q is complete if

(Q, d) is complete as a metric space.
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Geodesics on Orbifolds

Let Q be a connected Riemannian orbifold and let H be the pseudogroup of

change of charts of an atlas {(Ũi,Γiϕi)} as described in Remark 2.25. Since

Q is connected, the Riemannian manifold X =
⊔
i Ũi is H-path connected.

That is, for any two points x, y ∈ X there exists a H-path c̃x,y joining them.

Definition 2.27. Given two points x, y ∈ X, a geodesic H-path joining x to

y is an H-path c̃x,y = (h0, c̃1, h1, . . . , c̃k, hk) over some subdivision 0 = t0 ≤

t1 ≤ · · · ≤ tk = 1 of [0, 1] such that:

(i) each c̃i : [ti−1, ti]→ Ũj is a constant speed geodesic segment in some Ũj;

(ii) the differential d(hi)c̃i(ti) : Tc̃i(ti)Ũi → Tc̃i+1(ti)Ũi+1 maps the velocity

vector ˙̃ci(ti) to the vector ˙̃ci+1(ti).

Since any H-path which is equivalent to a geodesic H-path is also a

geodesic, in the vein of Definition 2.18 we define an orbifold geodesic in Q as

the equivalence class c̃ of a geodesic H-path as above.

The projection ψ : X → Q associates to each equivalence class of geodesic

H-paths c̃ parametrized over [0, 1] a continuous path c : [0, 1] → Q. When

there is no place for confusion, we will also refer to the image c([0, 1]) as of a

geodesic on the orbifold.

Note that since on smooth manifolds geodesics are uniquely determined

by the tangent vector at one of its points, each of the geodesic segments c̃i+1

depends only on the tangent vector ˙̃ci+1(ti), which in turn, by Definition 2.27
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(ii), depends only on the vector ˙̃ci(ti) and the germ of the isometry hi at

c̃i(ti). It follows that the vector ˙̃c1(0) is an invariant of the equivalence class

c̃ of the geodesic H-path c̃x,y.

The image of ˙̃ci(t) under the projection Tc̃i(t)Ũi → Tc̃i(t)Ũi/Γc(t) is inde-

pendent of the choice of H-path in the equivalence class c̃. We denote this

image by ċ(t). It belongs to the fiber of the tangent bundle over the point

c(t). It is easy to see that the norm |ċ(t)| is constant in t. The vector ċ(0) is

called the initial vector of the geodesic H-path c̃.

Let now x be a point in X and TxX be the tangent space at x to the

manifold X. Suppose h0 is an element of H defined on a neighbourhood

of x. For any vector v ∈ TxŨi there exists ε0 > 0 and a geodesic H-path

c̃x = (h0, c̃1) on [0, ε0) issuing from x and which satisfies ˙̃ci(0) = d(h0)x(v).

If y = c̃1(t1) for 0 < t1 < ε0) and h1 ∈ H is a local isometry defined in

a neighbourhood of y, then as above, there exists ε1 > 0 and a geodesic

H-path c̃y = (h1, c̃2) on [0, ε1) issuing at y and such that the differential of

h1 at y maps the tangent vector ˙̃c1(t1) to the vector ˙̃c2(0). It is easy to see

that the concatenation of the two geodesic H-paths gives a geodesic H-path

issuing at x and with initial vector v. We can continue this process until we

obtain a geodesic H-path defined on a maximal interval [0, ε) issuing at x

and with initial velocity v. Passing to equivalence classes of H-paths we have

the following:

Proposition 2.28. If Q is a Riemannian n-orbifold, then for any point
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p ∈ Q and any vector v ∈ TpQ ' Rn/Γp in the tangent cone at p to Q there

exists a maximal parametrized orbifold geodesic c̃ : (−ε′, ε) → Q such that

c(0) = x and ċ(0) = v.

Definition 2.29. We say that a Riemannian orbifold Q is geodesically com-

plete if ε = ε′ =∞ for all p ∈ Q.

Just as for manifolds, one can prove that a connected Riemannian orbifold

is complete if and only if it is geodesically complete (see [21]). For manifolds,

this result is known as the Hopf-Rinow Theorem ([20]). Also, given any two

points p and q in a connected complete Riemannian orbifold Q there is an

orbifold geodesic c̃ connecting them. Moreover, the geodesic c̃ can be chosen

such that it is of minimal length among all the piecewise differentiable orbifold

paths joining the two points. We call such geodesic a minimal geodesic. Note

that the underlying path of a minimal geodesic realizes the distance between

the end points, and thus it is a minimal geodesic in (Q, d).

We will now define the closed geodesics on an orbifold.

Definition 2.30. An H-loop c̃x = (h0, c̃1, h1, . . . , c̃k, hk) based at x represents

a closed orbifold geodesic c̃ on Q if in addition to (i) and (ii) in Definition

2.27 it satisfies that the differential of h0◦hk at c̃k(1) maps the velocity vector

˙̃ck(1) to the vector ˙̃c1(0).

For a developable orbifold Q = M/Γ obtained as the quotient of a con-

nected Riemannian manifold M by the proper action of discrete subgroup
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Γ ⊂ Isom(M), a closed geodesic on Q is represented by a pair (c̃, γ), where

c̃ : [0, 1]→M is a geodesic in M and γ is an element of Γ such that the dif-

ferential of γ at c̃(1) maps the velocity vector ˙̃c(1) to ˙̃c(0). Another such pair

(c̃′, γ′) represents the same closed geodesic if and only if there is an element

δ ∈ Γ such that c̃′ = δ.c̃ and γ′ = δ−1γδ.

The underlying map c : [0, 1] → Q of a minimal orbifold geodesic c̃ is a

geodesic in the metric sense on Q with respect to d(·, ·) the induced length

metric by the Riemannian structure on Q.

2.7 Examples

We will now exhibit some of the notions introduced in this chapter through

some simple and well known examples of orbifolds.

Example 2.31. We begin by noticing that any manifold M is naturally an

orbifold, where all points have trivial isotropy.

When M is an n-manifold with boundary ∂M , then it can be also given

the structure of an n-orbifold without boundary, which we will denote byM.

If x ∈ Int(M) is an interior point, then a manifold chart at x becomes an

orbifold chart with trivial local group. If y ∈ ∂M is a boundary point, then

an orbifold chart at y is given by (Rn,Z2, ϕ), where the local group Z2 is

generated by the reflection in the hyperplane corresponding to the tangent

space to boundary Ty∂M . Thus the singular locus ofM is the boundary ∂M
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and every singular point has isotropy Z2. The manifold DM := M
⋃
∂M

M ,

obtained as the double of M along its boundary is a cover for the orbifold

M. Thus M is a developable orbifold, with universal cover D̃M .

If (M,∂M) is a compact Riemannian manifold with boundary, then M

can be given the structure of a compact Riemannian orbifold. It follows

directly from the definition that any smooth closed geodesic contained in

Int(M) or ∂M is also a closed geodesic in M. Recall that an geodesic

chord in (M,∂M) is a geodesic segment c : [a, b] → M such that c(]a, b[) ⊂

Int(M) and c(a), c(b) ∈ ∂M . A geodesic cord is said to be orthogonal if

ċ(a+) ∈ (Tc(a)∂M)⊥ and ċ(b−) ∈ (Tc(b)∂M)⊥, where ċ(·±) denote the lat-

eral derivatives and (Ty∂M)⊥ is the orthogonal complement of Ty∂M in

TyM . Any orthogonal geodesic chord c : [a, b] → M gives rise to a closed

geodesic of positive length c̃ in M in the sense of Definition 2.30 by letting

c̃c(a) = (1c(a), c, δ, c
−, γ), where c− denotes the geodesic obtained from c by re-

versing the orientation, and δ and γ are the generators of the isotropy groups

at c(b) and c(a), respectively. Note that the double Dc of c in DM is the

image of a smooth closed geodesic in DM that projects to c̃ via the orbifold

covering map DM →M.

Example 2.32. The only 1-dimensional compact connected effective orb-

ifolds are the circle S1 and the ‘mirrored interval’, i.e. the orbifold I associ-

ated to a compact interval I as in the previous example, or equivalently, as

the quotient of the circle by an orientation-reversing involution.
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S1

Z2 Z2

I
Figure 2.4: 1-dimensional orbifolds.

Example 2.33. [The cone ] Let Γ = Zn be the cyclic group of order n acting

on the Euclidean plane R2 by rotations of angle 2π/n about the origin. The

quotient space R2/Zn is topologically R2, but metrically it is the flat cone

with angle 2π/n at the vertex. R2/Zn has a natural orbifold structure with

one singular point (the cone point) with isotropy Zn.

Clearly the orbifold R2/Zn is developable: its universal cover is R2 and

its orbifold fundamental group is isomorphic to Zn. Note that the orbifold

R2/Zn admits no closed geodesics of positive length (see Remark 4.4).

Example 2.34. [The Zn-football ] Let S2 = {x2 +y2 +z2 = 1 | (x, y, z) ∈ R3}

be the unit sphere in R3, and let Γ = 〈γ〉 ∼= Zn be the cyclic group of order

n generated by

γ =




cos(2π/n) − sin(2π/n) 0

sin(2π/n) cos(2π/n) 0

0 0 1



,
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the rotation of angle 2π/n around the z-axis. The quotient space S2/Γ has

S2

Zn

N

S
Q = S2/Zn

2π/n

�N

�S

Figure 2.5: The Zn-football orbifold

a natural orbifold structure Q. The singular locus ΣQ = {N,S} consists of

two isolated singular points with isotropy Zn (see Figure 2.5). The fiber of

the tangent bundle T Q over each of the singular points is isomorphic to the

cone R2/Zn of angle 2π/n (see the previous example), and it is isomorphic

to R2 over the regular points.

The sphere S2 is the universal orbifold cover of Q and the orbifold fun-

damental group is the cyclic group of order n: πorb1 (S2/Γ) = Γ ∼= Zn. The

underlying topological space Q of Q is homeomorphic to the 2-sphere, thus

π1(S2/Γ) = 1.

Since the round metric on the sphere S2 is Γ-invariant, the quotient S2/Γ

has the structure of a Riemannian orbifold as in Definition 2.22. Any closed

geodesic on the sphere S2 projects to a closed geodesic on the orbifold S2/Γ.
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Such a geodesic homotopically trivial, and if it is not the constant loop, then

its length is an integral multiple of 2π. We can find closed geodesics of positive

length in every homotopy class of free loops on S2/Γ. For instance, given an

integer k which is not a multiple on n, a closed geodesic in the homotopy

class of γk ∈ Γ is represented by a pair (c, γk), where c : [0, 1] → S2 is

either the constant map to N or S, or is a geodesic arc on the equator

{(x, y, 0) ∈ R3 | x2 + y2 = 1} of length 2(m− k
n
)π, with m ∈ Z, m ≥ 1.

T2

p q

rs

Z2

Q = T2/Z2

p̃

q̃

r̃

s̃

Figure 2.6: The pillowcase orbifold

Example 2.35. [The pillow case ] Consider the 2-torus T2 embedded in R3

together with the action by the group Γ = 〈γ〉 ∼= Z2, where γ is the rotation

of angle π around one of the axis of T2 as in Figure 2.6. The quotient space

T2/Γ is an orbifold Q whose underlying space is homeomorphic to the 2-

sphere and whose singular locus Σ consists of four singular points {p, q, r, s},

each with isotropy Z2.
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The universal cover R2 → T2 is also the orbifold universal cover for Q.

Thus the orbifold fundamental group is a semi-direct product: πorb1 (T2/Z2) ∼=

Z2 o Z2.

Example 2.36. [The Zn-teardrop ] Let n be an integer, n > 1. The Zn-

teardrop orbifold has the 2-sphere as the underlying space and one singular

point O with isotropy Zn (see Figure 2.7). Let U = {U1, U2} be an open

�U2

U2

U1

�U1

ϕ1

ϕ2

O

2π/n

Zn

{{
Figure 2.7: The Zn-teardrop orbifold.

cover of the sphere. The orbifold atlas for the teardrop orbifold Q associated

to U consists of two orbifold charts (R2, 1, ϕ2) over U2, and (R2,Zn, ϕ1) over

U1, where the group Zn acts on R2 by rotations of angle 2π/n around the

origin, and ϕ1(0) = O.
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To compute the orbifold fundamental group we use Theorem 2.21. Let Q1

and Q2 denote the suborbifolds obtained by restricting the orbifold structure

on Q to the open sets U1 and U2, respectively. Then

πorb1 (Q1) ∼= πorb1 (R2/Zn) = Zn,

πorb1 (Q2) ∼= πorb1 (R2) = π1(R2) = 1, and

πorb1 (Q1 ∩Q2) ∼= πorb1 (S1 × (0, 1)) = π1(S1 × (0, 1)) = Z.

By Theorem 2.21

πorb1 (Q) ∼= Zn ∗Z 1 = 1,

which shows that the Zn-teardrop orbifold is simply connected and therefore

it is its own orbifold universal cover. In particular, the Zn-teardrop orbifold

is not developable.

Example 2.37. [The Zm-Zn-football ] Let n,m ∈ Z, n,m > 1. The Zm-Zn-

football orbifold Q is the 2-sphere with two cone points (N and S in Figure

2.8) with isotropy Zn and Zm, respectively. Note that for n = m we obtain the

global quotient orbifold in example 2.34 above. However, if n 6= m, then the

orbifold Q is not developable. To see this we can proceed as in the previous

example and compute the orbifold fundamental group of the Zm-Zn-football:

πorb1 (Q) ∼= Zn ∗Z Zm ∼= Zd,
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�U2

U2

U1

�U1

ϕ1

ϕ2

2π/n

Zn

Zm

2π/m

S

N

{ {
Figure 2.8: The Zm-Zn-football orbifold.

where d = gcd(m,n). Thus the universal orbifold covering of Q is the Zp-Zq-

football orbifold with p = m/d and q = n/d, which is a manifold if and only

if p = q = 1 (or equivalently m = n).

Example 2.38. Let M = R3 and Γ = Z2 acting by the antipodal map

x 7→ −x. The quotient R3/Z2 is a 3-dimensional orbifold whose underlying

topological space is a cone over RP2 and therefore fails to be a manifold at

the singular point.
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Chapter 3

Closed Geodesics

As we have seen in the previous chapter, the orbifold structure induces a

natural stratification of the underlying topological space: the stratification

by orbit type, where strata correspond to the conjugacy classes of isotropy

groups. An important geometric feature of this stratification is that the strata

are totally geodesic (Proposition 3.4). In this chapter we study the existence

of closed geodesics on compact orbifolds by considering the structure of the

singular locus. For example, we will show that every compact orbifold whose

singular locus contains a connected component of dimension one admits at

least one closed geodesic of positive length.

We begin by giving a description of this stratification from a slightly

different perspective, which was also used by Seaton in [61].
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3.1 Stratification by Singular Dimension

Let Q be a n-dimensional effective smooth orbifold and let T Q denote its

tangent bundle. As noted in section 2.6, the fiber TxQ above a point x ∈ Q

is not in general a vector space.

If (Ũ ,Γx, ϕ) is a fundamental chart at x and x̃ = ϕ−1(x) (see Remark

2.9), then TxQ is the quotient of the n-dimensional vector space Tx̃Ũ by the

linear action of the isotropy group Γx. Denote by Tx̃Ũ
Γx the vector subspace

of Tx̃Ũ fixed by Γx. It is easy to see that up to isomorphism, the subspace

Tx̃Ũ
Γx is independent of the choice of the chart at x. We denote by TxQΓx

the isomorphism class of this vector subspace and, as in [61], we will refer

to it as the space of tangent vectors at x. Thus TxQΓx depends only on the

point x and the action of its isotropy group Γx.

Definition 3.1. The singular dimension of a point x of an effective orbifold

Q is the dimension of TxQΓx, the space of tangent vectors at x.

For each k = 0, 1, . . . , n, denote by Σk the set of points in Q with singular

dimension k. Thus the underlying space is the disjoint union Q =
n⊔
k=0

Σk.

Example 3.2. Let Γ = 〈γ, δ〉 act on R3, where

γ =




cos(2π/3) − sin(2π/3) 0

sin(2π/3) cos(2π/3) 0

0 0 1



,
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denotes the rotation of angle 2π/3 about the z-axis in R3 and

δ =




1 0 0

0 1 0

0 0 −1



,

is the reflection in the xy-plane. Clearly γ3 = δ2 = 1 and γδ = δγ, thus

Γ ∼= Z6 = Z3 × Z2. The 3-dimensional orbifold Q obtained as the quotient

R3/Γ is geometrically a cone over the closed 2-disk (see figure 3.1 below).

Σ0

Σ1

Σ2

Z3 = �γ�

Z2 = �δ�
0

o
ϕo

R3 R3/Γ

Σ3

Figure 3.1: Stratification by singular dimension.

In this case Q =
3⊔

k=0

Σk, where Σ0 = {o} is the vertex of the cone with

isotropy Z6; the set Σ1 ' R is a line whose points have isotropy Z3, the set

Σ2 ' R × S1 has points with isotropy Z2; and Qreg = Σ3 ' R × (0, 1) × S1

consists of points with trivial isotropy.
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Example 3.3. Let Γ be the subgroup of O(6) generated by two elements δ

and γ given by:

δ =




0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0




and γ =




0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0



.

Note that δ2 = γ2 = (δγ)3 = 1 and γδ 6= δγ. Thus Γ ∼= S3 is the symmet-

ric group of degree 3. Γ has one normal subgroup of order 3 generated by δγ,

and three subgroups of order 2 with generators δ, γ and δγδ, respectively.

Note that the three subgroups of order two are conjugate in Γ.

Let Γ act on the unit sphere S5 = {x ∈ R6 | x2
1 +x2

2 +x2
3 +x2

4 +x2
5 +x2

6 = 1}

and let Q denote the orbifold quotient S5/Γ. Let π : S5 → Q be the quotient

map. Corresponding to each of the subgroups of Γ the action has the following

fixed point sets:

Σ̃0 := (S5)Γ = S5 ∩ {x ∈ R6 | x1 = x2 = x3 = x4 = x5 = x6} ' S0

Σ̃1 := (S5)〈δγ〉 = S5 ∩ {x ∈ R6 | x1 = x2 = x3; x4 = x5 = x6} ' S1

Σ̃2 := (S5)〈δ〉 = S5 ∩ {x ∈ R6 | x1 = x4; x2 = x6; x3 = x5} ' S2

Σ̃′2 := (S5)〈γ〉 = S5 ∩ {x ∈ R6 | x1 = x6; x2 = x5; x3 = x4} ' S2

Σ̃′′2 := (S5)〈δγδ〉 = S5 ∩ {x ∈ R6 | x1 = x5; x2 = x4; x3 = x6} ' S2.

Thus the fixed point set of the Γ-action consists of three embedded two-
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spheres and one circle, all meeting at the two antipodal points in Σ̃0.

In this case Q = Qreg

⊔
Σ, where the singular locus Σ =

2⊔
k=0

Σk has

components of singular dimension 0, 1 and 2. Thus Σ3 = Σ4 = ∅.

The stratum Σ2 consists of one connected component homeomorphic to

a 2-sphere with two points deleted, and it corresponds to the conjugacy class

of the subgroups of order two in Γ. The isotropy groups at points in Σ2 are

cyclic of order two. The preimage π−1(Σ2) ⊂ S5 is the disjoint union of three

two-spheres each having two points deleted:

π−1(Σ2) = (Σ̃2 r Σ̃0) t (Σ̃′2 r Σ̃0) t (Σ̃′′2 r Σ̃0).

The stratum Σ1 has two connected components, both homeomorphic to

the interval (0, 1). The isotropy groups of points in Σ1 are cyclic of order

three, and both the connected components of Σ1 correspond to the fixed

point set of the normal subgroup generated by δγ. The preimage π−1(Σ1) in

S5 is a circle with two pints deleted:

π−1(Σ1) = Σ̃1 r Σ̃0.

Finally, the zero-dimensional stratum Σ0, consists of two points, corre-

sponding to the two antipodal points in Σ̃0, both having isotropy Γ ∼= S3.

The following proposition shows that the sets Σk have a particularly nice

structure (see also [39] and [61]).
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Proposition 3.4. Suppose Q is an effective n-orbifold without boundary.

Then for each k = 0, . . . , n, the set Σk has naturally the structure of a k-

dimensional manifold without boundary. The tangent space TxΣk at a point

x ∈ Σk is canonically identified with TxQΓx, the space of tangent vectors at x.

Furthermore, if Q is a Riemannian orbifold, then each connected component

of Σk is totally geodesic in Q.

Proof. Let x be a point in Q and (Ũx,Γx, ϕx) a fundamental chart at x. Since

the orbifold Q is assumed to be effective, the preimage of x by ϕx consists of

a single point x̃ = ϕ−1
x (x) ∈ Ũx.

If x ∈ Qreg is a regular point, then the isotropy group Γx at x is trivial

and the map ϕx : Ũx → Q gives a homeomorphism from Ũx onto its im-

age ϕx(Ũx) ⊆ Qreg. The space of tangent vectors at a regular point x is

isomorphic to Tx̃Ũx and has dimension n. Thus Qreg ⊆ Σn.

If x ∈ Σ is a singular point, then the isotropy group Γx is non-trivial and

acts effectively on Ũx. By Proposition 1.7, the induced Γx-action on Tx̃Ũx

is effective and the space Tx̃Ũ
Γx
x of the tangent vectors at x has dimension

k < n. This implies that the singular locus Σ is contained in
n−1⊔
k=0

Σk. In

particular, Σn contains no singular points and thus

Qreg = Σn and Σ =
n−1⊔

k=0

Σk.

To show that Σn is a smooth manifold, note first that any atlas A defining

the orbifold structure on Q, can be refined to an equivalent orbifold atlas A′
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that contains only fundamental charts. It is easy to see that the restriction

of such an atlas A′ to the regular part gives Qreg = Σn the structure of a

smooth n-manifold without boundary.

IfQ is a Riemannian orbifold, thenQreg inherits the Riemannian structure

from Q, and the maps ϕx : Ũx → ϕx(Ũx) are isometries. If c : [0, 1] → Qreg

is a parametrized geodesic in Qreg, then for each t ∈ [0, 1] the local lift

c̃t = ϕ−1
c(t) ◦ c of c in a chart (Ũc(t), 1, ϕc(t)) at c(t) is a geodesic in Ũc(t). This

shows that any geodesic c in Qreg defines an orbifold geodesic in Q, and hence

Qreg is totally geodesic in Q.

Fix now k such that 0 ≤ k ≤ n − 1. Let x ∈ Σk be a point of singular

dimension k. Denote by Σ̃Γx the set of points in Ũx fixed by Γx. Clearly

x̃ = ϕ−1
x (x) ∈ Σ̃Γx and since (Ũx,Γx, ϕx) is a fundamental chart at x, the set

Σ̃Γx is connected. By Theorem 1.12, Σ̃Γx has the structure of a closed totally

geodesic submanifold of Ũx. Also, if V is a neighbourhood of the origin in

tangent space Tx̃Ũx such that the exponential map expx̃ |V : V → Ũx is a

diffeomorphism, then

Σ̃Γx ∩ expx̃(V ) = expx̃
(
V ∩ Tx̃ŨΓx

x

)
.

This shows that the tangent space Tx̃Σ̃Γx = Tx̃Ũ
Γx , and hence dim(Σ̃Γx) = k.

If k = 0 then Σ̃Γx = {x̃} and the open set ϕx(Ũx) ⊆ Q contains x as the

only point with singular dimension zero. Thus Σ0 is a discrete set in Q and

clearly has the structure of a 0-manifold.
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Assume k ≥ 1. Since the map ϕx : Ũx → Q is injective on Σ̃Γx , the re-

striction ϕx|Σ̃Γx
of ϕx to Σ̃Γx induces a homeomorphism between Σ̃Γx and the

open neighbourhood Σk∩ϕx(Ũx) of x in Σk. It is clear from the construction

that such neighbourhoods exists for any point x ∈ Σk. Given two points

x, y ∈ Σk and fundamental charts (Ũx,Γx, ϕx) and (Ũy,Γy, ϕy) such that

Σk ∩ ϕx(Ũx) ∩ ϕy(Ũy) 6= ∅,

the local groups Γx and Γy are isomorphic and the transition map between the

two orbifold charts (as defined in Remark 2.7) is an equivariant differentiable

map that induces a diffeomorphism between Σ̃Γx ⊆ Ũx and Σ̃Γy ⊆ Ũy. The

collection of all neighbourhoods {Σk∩ϕx(Ũx)}x∈Σk
together with the induced

transition functions as above give the desired manifold atlas on Σk.

Thus Σk has the structure of a differentiable k-manifold, and for each

x ∈ Σk there is a natural diffeomorphism Σk ∩ ϕx(Ũx) ' Σ̃Γx . In particular,

by Proposition 1.12, the connected components of Σk have no boundary.

It is easy to see that if Q is a Riemannian orbifold, then the manifold

Σk inherits a Riemannian structure such that for all x ∈ Σk the maps Σk ∩

ϕx(Ũx) ' Σ̃Γx are isometries. To show that Σk is totally geodesic in Q, let

c : [0, 1]→ Σk be a parametrized geodesic contained in one of the connected

components of Σk. Since, for each t ∈ [0, 1], the restriction ϕ|Σ̃Γc(t)
: Σ̃Γc(t)

→

Σk defined as above is an isometry, the local lifts c̃t := ϕ−1
c(t) ◦ c|It is a geodesic

in Σ̃Γc(t)
. Here It denotes an open connected subinterval of [0, 1] such that
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c(It) ⊆ Σk ∩ ϕc(t)(Ũc(t)). Using the fact that Σ̃Γc(t)
is a totally geodesic

submanifold of Ũc(t), the lift c̃t is also a geodesic in Ũc(t). As this holds for all

t ∈ [0, 1], the path c : [0, 1] → Σk is a geodesic in Q and thus Σk is totally

geodesic in Q.

Remark 3.5. (a) Note that in general, the components of Σk need not be

compact (see Examples 3.2 and 3.3).

(b) Letting Γx denote the isotropy group at x ∈ Q, then the isomorphism class

of Γx is constant along the connected component of Σk containing x. For a

developable orbifold Q = M/Γ, this isomorphism class is just the conjugacy

class of Γx in Γ.

(c) Suppose Q is an effective n-orbifold and x ∈ Σ`. Let U be a fundamental

neighbourhood of x with uniformizing chart (Ũ ,Γx, ϕx), where Ũ is the n-

disk Dn and Γx acts linearly and orthogonally on Dn (cf. Remark 2.23).

To each connected component in Σk ∩ U with k ≥ `, one can associate a

conjugacy class of subgroups of Γx (see also Remark 2.9), and if Γ′x is such a

subgroup, then its fixed point set (Ũ)Γ′x will have dimension k. In particular,

the smooth points in U correspond to a full orbit, and the singular points are

those with nontrivial isotropy. Moreover, for each subgroup Γ′x of Γx with

fixed point set (Ũ)Γ′x having dimension k and different from that of Γx, the

corresponding component of Σk ∩U will have dimension k ≥ ` and will have

x in its closure (see also Example 3.3).

The following is a direct consequence of the Remark 3.5(b):
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Corollary 3.6. If c : [0, 1]→ Σk is a smooth parametrized geodesic contained

in a connected component of Σk, then the parametrized orbifold geodesics

c̃ : [0, 1]→ Q covering c are in one-to-one correspondence with the conjugacy

classes of elements in Γc(0). In particular, for each parametrized geodesic

c : [0, 1] → Qreg there exists a unique orbifold geodesic c̃ : [0, 1] → Q with

underlying path c.

It is clear that the manifolds Σk need not be connected. The follow-

ing proposition shows that in a compact orbifold the number of connected

components of each of the manifolds Σk is finite.

Proposition 3.7. If Q is an effective compact connected n-orbifold, then for

each k = 0, . . . , n, the manifolds Σk have finitely many connected components.

Proof. Note first that it follows from the proof of Proposition 3.4 that Σ0 is

a discrete subset of Q. Since Q is compact, Σ0 consists of a finite collection

of points.

Let now U = {Ux | x ∈ Q} be an open cover of Q by fundamental

neighbourhoods Ux at points x ∈ Q (see Remark 2.9). Using the compact-

ness of Q there exists a finite collection of points x1, . . . , xj ∈ Q such that

Q ⊆ Ux1 ∪ · · · ∪ Uxj and each Uxi is uniformized by a fundamental chart

(Ũxi ,Γxi , ϕxi) at xi. Note in particular that Σ0 ⊆ {x1, . . . , xj}.

In each Uxi the number of connected components of Σk ∩ Uxi is bounded

from above by the number of conjugacy classes of subgroups of Γxi for k ≥ 2,
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and by twice this number when k = 1. Since each of the isotropy groups Γxi

is finite, this number is finite and the conclusion of the lemma follows.

3.2 Closed Geodesics in the Singular Locus

In general, the connected components of the singular locus Σ need not be

manifolds. If S is a connected component of Σk for some k > 0, we define

the frontier of S to be the set fr(S) consisting of points in Q r S which

are the limit points of sequences in S; and the closure of S to be the union

cl(S) = S ∪ fr(S).

Remark 3.8. It is important to note that the points in the frontier of an open

connected component of Σk belong to singular strata of singular dimension

strictly less than k, and also that the intersection of the closures of two

connected components Σk and Σk′ belongs to the disjoint union
⊔

j<min(k,k′)

Σj.

Together with Proposition 3.4 this implies the following.

Proposition 3.9. Let Q be a compact connected Riemannian n-orbifold.

Suppose that there exists a connected component S ⊂ Σk for some 0 < k ≤ n

such that S = cl(S) is closed. Then there exists a closed geodesic of positive

length in Q.

Indeed, since Q is compact, any closed component S as in the above

proposition has the structure of a compact manifold and therefore by Fet’s

result in [44] it admits closed geodesics of positive length. Since S is totally
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geodesic in Q, any of these closed geodesics in S gives rise to closed orbifold

geodesics of positive length in Q.

A particular situation when the conditions of Proposition 3.9 are met is

when there are no points of singular dimension zero. In this case if k > 0 is the

minimal singular dimension such that Σk is nonempty, then every connected

component S of Σk is necessarily closed. Thus we have:

Corollary 3.10. Suppose Q is a compact connected Riemannian effective

n-orbifold such that Σ0 = ∅. Then there exists at least one closed geodesic

of positive length in Q.

Another direct consequence of Proposition 3.4 is that for an orbifold Q

with Σ1 6= ∅, constant speed parametrizations of the connected components

of Σ1 are orbifold geodesic paths in Q. As the following proposition shows, if

the orbifold Q is compact, then the closure of Σ1 contains a totally geodesic

compact 1-orbifold. In particular, Q contains a closed geodesic of positive

length.

Proposition 3.11. Suppose Q is a compact effective Riemannian orbifold

with Σ1 6= ∅. Then there exists at least one closed geodesic of positive length

in Q contained in the closure cl(Σ1) of Σ1.

Proof. Let S 6= ∅ be a connected component of Σ1. By Proposition 3.4,

S has the structure of a 1-dimensional manifold without boundary which is

totally geodesic in Q. If S is compact, then it is diffeomorphic to a circle
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and as in Proposition 3.9, any non-zero constant speed parametrized orbifold

path whose image is contained in S gives a closed geodesic of positive length

in Q.

If S is not compact, then it is diffeomorphic to the open interval (0, 1).

Choose an orientation for S and let c : (0, 1) → S be a smooth orienta-

tion preserving parametrization of S. Without loss of generalization we can

assume that c has constant speed.

The frontier fr(S) of S consists of two points defined by c(0) = lim
t→0

c(t)

and c(1) = lim
t→1

c(t). Clearly the frontier of S is contained in Σ0 and the

points c(0) and c(1) could map either to two distinct points or to same point

in Q. Assume the former, and let x, y ∈ Q such that c(0) 7→ x and c(1) 7→ y.

Let (Ũx,Γx, ϕx) be a fundamental chart at x and choose c̃ to be a local

lift of c to Ũx. That is, c̃ : [0, ε0) → Ũx be such that c̃(0) = x̃ = ϕ−1
x (x) and

ϕx ◦ c̃ = c|[0,ε0), for some 0 < ε0 < 1. Since the image of c|(0,1) is contained in

Σ1, there exists a proper subgroup Γ0 ≤ Γx which fixes c̃ pointwise. Note that

c̃ is a geodesic path starting at x, and therefore it is uniquely determined by

its initial vector v = ˙̃c(0) ∈ Tx̃Ũx. Since the the induced action of Γ0 on Tx̃Ũx

is linear and fixes v, Γ0 fixes the 1-dimensional vector subspace V spanned

by v. Thus V = (Tx̃Ũx)
Γ0 and the geodesic c̃ : [0, ε0) → Ũx can be extended

through x̃ to a Γ0-invariant geodesic c̃ : (−ε′0, ε0)→ Ũx for some ε0 > 0.

We distinguish two possible situations. The first one is when there exists

a subgroup Γ′0 ≤ Γx that leaves invariant the subspace spanned by v. This

happens precisely when there exists an element γ ∈ ΓxrΓ0 of order two and
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such that γ.v = −v. Then Γ′0 is an extension of order two of Γ0, and thus

Γ0 / Γ′0 ≤ Γx. Note that in this case

ϕx(c̃(t)) = ϕx(c̃(−t)) = c(t) for all 0 ≤ t ≤ min(ε0, ε
′
0),

i.e. in the underlying topological space the image of c(0, 1) ⊂ Σ1 terminates

at the left at x = c(0). In this case we will say that x is an end of c.

The second possible situation is of course when there are no elements

γ ∈ Γx r Γ0 of order two which satisfy γ.v = −v; or equivalently when Γ0 is

the only subgroup of Γx that leaves invariant the subspace spanned by v in

Tx̃Ũx. In this case for each 0 < t < min(ε0, ε
′
0) we have

ϕx(c̃(t)) 6= ϕx(c̃(−t)),

which implies that there exists a connected component S ′ ⊂ Σ1 containing

(ϕx ◦ c̃)(−ε′0, 0), which is different that S and which ‘extends’ c(0, 1) to the

left beyond x = c(0) ∈ Σ0. Note that the isomorphism class of the isotropy

groups of the components S and S ′ are the same.

Similarly, at y = c(1), we have one of the two possible situations: either y

is an end of c, or c(0, 1) can be ’extended’ to the right beyond y = c(1) ∈ Σ0

to a component S ′′ of Σ1 which is different than S (but possibly the same as

S ′ above).

Consider now the case when c(0) = c(1) = x, and let (Ũx,Γx, ϕx) be a
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fundamental chart at x. Let c̃ : [0, ε0)→ Ũx and c̃′ : (1− ε1, 1]→ Ũx be lifts

to Ũx of c|[0,ε0) and c|(1−ε1,1], respectively. Here, for Ũx small enough we can

assume that 0 < ε0 < 1 − ε1 < 1. Let Γ0 and Γ1 be the subgroups of Γx

that fix the vector subspaces in Tx̃Ũx spanned by ˙̃c(0) and ˙̃c′(1), respectively.

Although the groups Γ0 and Γ1 are isomorphic (see Remark 3.5(b)), in general

they need not be conjugate in Γx. Note that Γ0 = γΓ1γ
−1 for some γ ∈ Γx if

and only if γ satisfies γ. ˙̃c′(1) = ˙̃c(0).

The possible situations described above apply to this situation and con-

sequently, x can be either be an end point for c at both sides or just one of

the sides of c.

Finally, note that by Proposition 3.7, the process of ‘extending’ the com-

ponent S within cl(Σ1) terminates after finitely many steps. Denote by S

the maximal closed extension of S in cl(Σ1) ⊆ Σ1 ∪Σ0. It is clear that S can

only have either two ends or no end, and as we will now show, in either case,

S contains a closed geodesic of positive length in Q.

Let a, b ∈ R with a ≤ 0 and 1 ≤ b and such that c : [a, b] → Q is the

parametrization of S that extends the parametrization c : (0, 1) → Q of S.

Then c([a, b]) ⊆ Σ1 ∪ Σ0, and let a = s0 < s1 < · · · < sm = b be such that

c(si) ∈ Σ0 for i = 0, . . . ,m are the points of singular dimension zero along

the image c([a, b]). Note that if S has no ends, then c(a) = c(b).

The image of the restrictions ci = c|(si,si+1) for i = 0, . . . ,m − 1 are

constant speed parametrizations of connected components Si of Σ1 and by

Proposition 3.4, there exist orbifold geodesic paths c̃i : (si, si+1)→ Q whose
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underlying paths are the maps ci : (si, si+1)→ Q. For each i = 0, . . . ,m− 1,

let si = ti0 ≤ ti1 ≤ · · · ≤ tiki = si+1 be a subdivision of the interval [si, si+1]

and let c̃i = (hi0, c̃
i
1, h

i
1, . . . , c̃

i
ki
, hiki) be a H-path representing the orbifold

geodesic c̃i. For simplicity, we can assume that hi0 and hiki are identity maps

(see Remark 2.16 (c)).

Clearly, for each i = 0, . . . ,m−1, the points c̃iki(si+1) and c̃i+1
0 (si+1) belong

to the H-orbit above c(si+1) and since each Si+1 is an extension of Si, there

exist elements gi ∈ H such that gi(c̃
i
ki

(si+1)) = c̃i+1
0 (si+1) and the differential

of gi at c̃ik+i(si+1) maps the tangent vector ˙̃ciki(si+1) to the vector ˙̃ci+1
0 (si+1).

Thus the H-path

(h0
0, c̃

0
1, . . . , h

0
k0−1, c̃

0
k0
, g1, c̃

1
1, . . . , h

1
k1−1, c̃

1
k1
, g2, c̃

2
1, . . . , h

m
km−1, c̃

m
km , h

m
km)

defined over the subdivision of [a, b] obtained as the union of the subdivisions

of the intervals [si, si+1], is a geodesic H-path. Denote by c̃ : [a, b] → Q the

orbifold geodesic given by the equivalence class of this geodesic H-path. Note

that c̃ has the path c : [a, b]→ Q as its underlying continuous map.

If S has no ends, then the component S0 is an extension of the component

Sm and hence there exists an element gm ∈ H such that gm(c̃mkm(b)) = c̃0
1(a)

and the differential of gm at c̃mkm(b) maps the vector ˙̃cmkm(b) to ˙̃c0
1(a). Thus the

orbifold path c̃′ : [a, b]→ Q represented by the H-path

(h0
0, c̃

0
1, h

0
1, . . . , c̃

0
k0
, g1, c̃

1
1, . . . , h

m
km−1, c̃

m
km , gm)
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is a closed geodesic of positive length in Q. Note that c̃′ is obtained as the

composition of the orbifold paths c̃∗ [gm], where [gm] denotes the equivalence

class of the H-path of length zero (1c̃mkm (b), c̃
m
km

(b), gm).

If S has two ends, then there exist elements of order two g0 and gm in H

fixing c̃0
1(a) and c̃mkm(b) respectively, and such that the differential of g0 maps

˙̃c0
1(a) to − ˙̃c0

1(a) and the differential of gm maps ˙̃cmkm(b) to − ˙̃cmkm(b). Let c̃′′ be

the orbifold path obtained as the composition

c̃ ∗ [gm] ∗ c̃−1 ∗ [g0],

where [g0] and [gm] denote the equivalence classes of theH-paths (1c̃01(a), c̃
0
1(a), g0)

and (1c̃mkm (b), c̃
m
km

(b), gm), respectively; and c̃−1 denotes the inverse path of c̃.

Then c̃′′ is a closed orbifold geodesic whose length is twice the length of c̃.

Example 3.12. Suppose the singular locus of a 3-orbifold Q is as in Figure

3.2, where the set Σ1 of points of singular dimension 1 consists of three con-

nected components S, S ′ and S ′′, each of which is homeomorphic to the open

interval (0, 1); and the set Σ0 of points of singular dimension zero consists of

two points x and y.

Assume that a fundamental neighbourhood Ux at x is uniformized by an

orbifold chart (Ũ ,Γx, ϕx), where Ũ is a ball in R3 centred at the origin, and

Γx is the subgroup of SO(3) generated by a rotation γ of angle 2π/3 around

the axis 0x3 and a rotation δ of angle π around the axis 0x1. We can easily see

that the isotropy group Γx has the presentation 〈γ, δ|γ3 = δ2 = γδγ−1δ = 1〉
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Figure 3.2: Closed geodesics contained in cl(Σ1).

and thus it is isomorphic to D3, the dihedral group with six elements. The

group Γx has four proper subgroups: one subgroup Γ = 〈γ〉 of order 3, and

three subgroups of order two Γ0 = 〈δ〉, Γ1 = 〈γδ〉 and Γ2 = 〈γ−1δ〉, which are

conjugate to each other: Γ0 = γΓ1γ
−1 = γ−1Γ2γ.

If Σ̃Γ denotes the one dimensional subspace fixed by Γ, then the action

by each of the elements of order two in Γx leaves the subspace Σ̃Γ invariant

and maps any vector v ∈ Σ̃Γ into −v. Thus Σ̃Γ ∩ Ũx projects via ϕx to
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{x}∪ (S ∩Ux) and we can see that x is an end of the component S. Let now

Σ̃Γi
be the one dimensional vector subspace fixed by Γi, for i = 0, 1, 2. Note

that Σ̃Γ1 = γΣ̃Γ0 and Σ̃Γ2 = γ−1Σ̃Γ0 . Since ϕx(Σ̃Γ0 ∩ Ũx) = ϕx(Σ̃Γ1 ∩ Ũx) =

ϕx(Σ̃Γ2 ∩ Ũx) = ((S ′ ∪ S ′′) ∩ Ux) ∪ {x}, the point x ∈ Σ0 is not an end of

either S ′ or S ′′, i.e. the component S ′ extends S”′ through x and vice-versa.

Assume that a fundamental neighbourhood Uy at y is also modeled on an

orbifold chart as above. Then just as before y is an end of the component S

of Σ1 and the components S ′ and S ′′ are each-others extensions through y.

The closure cl(S) = S ∪{x, y} has the structure of a compact one dimen-

sional orbifold with orbifold points x and y with isotropy Z2. To obtain a

closed geodesic contained in cl(S) consider a constant speed parametrization

of cl(S) that starts at x goes along S toward y, gets reflected at y by the ele-

ment of order two in its isometry group, travels then along S in the reversed

orientation towards x where again gets reflected by the element of order two

in the isotropy group at x.

We can distinguish another closed geodesic in the closure cl(Σ1). The

union S ′ ∪ S ′′ ∪ {x, y} is a totally geodesic embedded circle. Any constant

speed parametrization of a path going around S ′ ∪ S ′′ ∪ {x, y} gives a closed

geodesic of positive length in Q.

Example 3.13. In Figure 3.3 assume that x is a singular point in a 3-orbifold

as in the example 3.12, and that the isotropy group at y is the Klein group

of four elements, Z2 × Z2, which acts on R3 by rotations of angle π around
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Figure 3.3: Examples of closed geodesics contained in cl(Σ1).

the three orthogonal axes. As in the previous example, x ∈ fr(S) ∩ fr(S ′) is

not an end for either S or S ′ and the components S and S ′ extend each other

through x. However, this time the point y is an end of both S and S ′. The

union S ∪ S ′ ∪ {x, y} has the structure of a 1-orbifold with underlying space

homeomorphic to [0, 1], and gives rise to a closed geodesic of positive length.

It is clear by now that in general, the singular locus of an orbifold need

not have the structure of an orbifold. However, as we have already seen in

Proposition 3.11, it is possible to put an orbifold structure on the union of

some of the components in the singular locus. In the next proposition we
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see that this is always the case when we consider the components of minimal

singular dimension.

Proposition 3.14. Let Q be a compact effective n-orbifold and suppose k ≥ 2

is the minimal positive dimension such that Σk 6= ∅. Then the closure cl(S)

of each of the connected component S ⊆ Σk has a natural structure of a

compact orbifold S such that the associated effectve orbifold Seff has only zero-

dimensional singular locus or is a smooth manifold. If Q is a Riemannian

orbifold, then S is totally geodesic in Q.

Proof. Note that if k = n is the minimal positive dimension such that Σk 6=

∅, then the conclusion follows trivially with S = Qreg and S = Q.

Assume that 2 ≤ k ≤ n − 1 and let S ⊆ Σk be a connected component

of singular dimension k. If S = cl(S) is closed, then by Proposition 3.4, S

has the structure of a k-dimensional manifold, which is compact since Q is

compact. If Q is a Riemannian orbifold, then S is totally geodesic in Q.

Assume now that S 6= cl(S) is not closed. Then any point x ∈ fr(S) in

the frontier of S belongs to a singular stratum of dimension strictly less than

k. In our case, since k is the smallest positive singular dimension, any such

point x would belong to Σ0. Since Q is compact, the set Σ0 of singular points

of zero singular dimension is finite. Thus fr(S) = cl(S) r S ⊆ Σ0 is finite.

Fix x ∈ fr(S) and let (Ũx,Γx, ϕx) be a fundamental orbifold chart at x.

Let x̃ = ϕ−1
x (x) ∈ Ũx be the preimage of x by ϕx and Ux be the image ϕ(Ũx).

Denote by S◦x = S ∩ Ux and let Sx = S◦x ∪ {x}. Since k ≥ 2, S◦x is connected
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(S◦x is homeomorphic to a punctured k-disk). For any y ∈ S◦x the isotropy

group Γy is isomorphic to a proper subgroup of Γx (see Remark 2.9).

Choose ỹ ∈ Ũx such that ϕx(ỹ) = y. Denote by S̃◦ỹ ⊂ Ũx the connected

component of ϕ−1
x (S◦x) containing ỹ and let Γỹ ≤ Γx be the isotropy group

of ỹ. Of course Γỹ ∼= Γy. Let S̃ỹ = S̃◦ỹ ∪ {x̃}. Clearly S̃ỹ = Ũx ∩ Σ̃Γỹ
has

the structure of a k-dimensional totally geodesic submanifold of Ũx. Denote

by Γ′ỹ the maximal subgroup of Γx that leaves S̃ỹ invariant. The restriction

of the action of Γ′ỹ to S̃ỹ is Γỹ and hence Γỹ E Γ′ỹ ≤ Γx. Consequently, the

restriction of ϕx to S̃ỹ gives a continuous surjective map ϕ′x : S̃ỹ → Sx which

in turn induces a homeomorphism between S̃ỹ/Γ
′
ỹ and the open set Sx.

Thus, the point x ∈ cl(S) is an orbifold point with isotropy group Γ′x
∼= Γ′ỹ

and fundamental uniformizing chart (S̃ỹ,Γ
′
x, ϕ

′
x) over the open set Sx ⊂ cl(S).

Note that the construction of the orbifold chart at x over Sx is independent

of the choice of the lift of y in Ũ . If ỹ′ ∈ ϕ−1
x (y) is a different such choice, then

ỹ′ = γỹ for some γ ∈ ΓxrΓỹ. In the same way as before we obtain an orbifold

chart (S̃ỹ′ ,Γ
′′
x, ϕ

′′
x) over Sx, where Γ′′x

∼= Γ′ỹ′ and ϕ′′x = (ϕx)|S̃ỹ′
: S̃ỹ′ → Sx.

Since Γ′ỹ′ = γΓ′ỹγ
−1 and S̃ỹ′ = γS̃ỹ, we can see that γ induces an isomorphism

between the charts (S̃ỹ,Γ
′
x, ϕ

′
x) and (S̃ỹ′ ,Γ

′′
x, ϕ

′′
x) at x ∈ cl(S).

We can proceed as in the proof of Proposition 3.4 to obtain an orbifold

structure S on cl(S), by augmenting the atlas defining the manifold structure

on S with the orbifold charts at points in the frontier fr(S). Moreover, from

the construction of the charts it follows that if Q is a Riemannian orbifold,

then S is totally geodesic in Q.
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It is clear that if k < n then the orbifold S is not effective. However, since

S is connected, by Remark 3.5(b), there is a finite group ΓS such that the

isotropy group Γy of each point y ∈ S is isomorphic to ΓS. If x ∈ fr(S), then

ΓS is isomorphic with a normal subgroup of the isotropy group Γ′x of x in S

as above. Therefore, in the associated effective orbifold Seff of S, we have

that S ⊆ (Seff)reg and the singular locus of Seff , ΣS ⊆ fr(S) ⊆ Σ0. Note that

if Γ′x
∼= ΓS then x is actually a regular point in the effective orbifold Seff .

Proposition 3.14 holds for complete orbifolds. In that case, the orbifold S

given in the proposition is not necessarily compact, but a complete orbifold.

Remark 3.15. An important consequence of Proposition 3.14 is that we

can reduce the problem of existence of closed geodesics of positive length on

compact orbifolds to the case of orbifolds with only zero dimensional singular

locus. Note also that throughout this section the orbifold Q has not been

assumed to be developable.
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Chapter 4

Geodesics on Developable

Orbifolds

This chapter presents geometric proofs of the existence of closed geodesics of

positive length for a large class of compact developable orbifolds. The first

proves existence whenever the orbifold fundamental group is finite or con-

tains a hyperbolic isometry. The second, applying the techniques developed

in the previous section for general compact orbifolds (see Remark 3.15), re-

duces the problem to even-dimensional developable compact orbifolds with

only finitely many orbifold points and with orbifold fundamental group in-

finite torsion of odd exponent. Further existence results are obtained under

the assumption that the orbifold admits a metric satisfying various curva-

ture conditions, and these are established by showing that an infinite torsion

group cannot act properly and cocompactly by elliptic isometries on a com-
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plete simply connected Riemannian manifold whose sectional curvature is

everywhere nonpositive (or nonnegative).

4.1 The Setup

Let Q be an effective n-dimensional compact connected developable Rieman-

nian orbifold (with a fixed Riemannian structure of class at least C2).

We write Q as the orbifold quotient M/Γ, where M denotes the universal

covering of Q and Γ = πorb1 (Q) is the orbifold fundamental group. Thus M

is a connected, simply connected complete Riemannian manifold (with the

natural Riemannian structure pulled back from Q) and Γ is a discrete sub-

group of the group Isom(M) acting properly and cocompactly by isometries

on M . In short, we will say that Γ acts geometrically on M . We denote by

Q the underlying topological space of Q and let π : M → Q be the natural

projection map.

Our requirement on the differentiability of the Riemannian metric on

M allows us to identify the Riemannian isometries of M with the metric

isometries of (M,d), where d denotes the induced length metric on M . Since

Γ acts geometrically on M , by Proposition 1.5 (ii), every element of Γ is a

semi-simple isometry ofM (see also section 1.1). We distinguish two classes of

elements in Γ: the elliptic elements, which are the isometries with nonempty

fix point set in M , and the hyperbolic elements which are the semi-simple

isometries that act on M without fixed points.
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Figure 4.1: Examples of closed geodesics in Q = M/Γ.

As in Definition 2.30, the closed geodesics of positive length on the de-

velopable orbifold Q are in one-to-one correspondence with the equivalence

classes of pairs (c̃, γ), where c̃ : [0, 1]→M is a non-constant geodesic segment

in M and γ ∈ Γ is an isometry of M such that:

γc̃(1) = c̃(0) and γ ˙̃c(1) = ˙̃c(0)

(see Figure 4.1). Two pairs (c̃, γ) and (c̃′, γ′) are equivalent if and only if

there is an element δ ∈ Γ such that c̃′ = δ.c̃ and γ′ = δγδ−1.
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4.2 Existence Results I

In this section we present an elementary proof of an existence result for

closed geodesics on developable orbifolds that implies part (b) of the following

theorem of Guruprasad and Haefliger in [33].

Theorem 4.1 ([33, Theorem 5.1.1]). Let Q be a compact connected Rieman-

nian orbifold. There exists at least one closed geodesic on Q of positive length

in the following cases:

(a) Q is not developable,

(b) Q is developable and the fundamental group of Q has an element of

infinite order or is finite.

We begin by noticing that it follows easily from the definition of closed

geodesics on developable orbifolds that any nontrivial closed geodesic c̃ in the

universal covering M gives rise to a closed geodesic of positive length on Q

represented by the pair (c̃, 1), where 1 denotes the identity of Γ. Fet’s result

[44] on the existence of closed geodesics on compact manifolds can be used

to show the existence of a closed geodesic of positive length in the case when

the universal cover M of Q is compact. This is precisely the case when the

orbifold fundamental group Γ is finite.

For compact developable orbifolds Q with infinite fundamental group, the

result of Fet can still be successfully employed whenever the orbifold Q has
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a compact intermediate manifold cover M ′. Using the one-to-one correspon-

dence between the covers of Q and the subgroups of the fundamental group

(see section 2.5, page 55), the existence of an intermediate compact manifold

cover for Q is equivalent to the existence of a finite index subgroup Γ′ ≤ Γ

which acts freely on the universal covering M . Indeed, in this case since Γ′ is

of finite index in Γ and acts freely on M , the quotient M ′ = M/Γ′ is a com-

pact manifold. Since π1(M ′) ∼= Γ′, there exists a nontrivial closed geodesic

on M ′ in the free homotopy class of each nontrivial element of π1(M ′). Thus

if γ ∈ Γ′ is not the identity and c̃′ : [0, 1] → M ′ is a closed geodesic in [γ],

then for any x ∈M with π(x) = π′(c̃′(0)), the unique lift c̃ : [0, 1]→M at x

is a geodesic and the pair (c̃, γ) represents a closed geodesic in Q.

Remark 4.2. This happens, for instance, whenever Γ is a virtually torsion

free group (i.e. has a torsion free finite index subgroup), for any semi-simple

isometry which has infinite order is hyperbolic. According to a result by

Malćev [46] and Selberg [62] and known as “ the Selberg lemma”, any finitely

generated matrix group with entries in a field is virtually torsion free, and

thus it is either finite or contains an element of infinite order.

As noted in [60] the orbifold fundamental group of any compact devel-

opable 2-dimensional orbifold can be realized as a finitely presented subgroup

of PSL(2,R) and therefore is virtually torsion free. Thus any compact con-

nected developable 2-orbifold is finitely covered by a manifold [60, Theorem

2.5]. This argument shows that all compact developable 2-dimensional orb-
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ifolds admit at least one closed geodesic of positive length.

In general, for Γ infinite, one cannot expect the existence of closed geodesics

on M (as M is not compact) or that of a compact intermediate manifold cover

(which at the level of the orbifold fundamental group is equivalent to the pres-

ence of a virtually torsion free subgroup). However, as we will next show,

the existence of closed geodesics of positive length in Q follows whenever the

orbifold Q admits a nontrivial intermediate manifold cover M ′ which is not

necessarily compact. This is precisely the case when the orbifold fundamen-

tal group Γ of Q contains an element γ which acts without fixed points on

M . In this case the intermediate manifold cover M ′ is the quotient M/Γ′ of

the universal cover M by the free action of the subgroup Γ′ ≤ Γ generated

by γ.

The idea of the proof for this case follows that of [8, Lemma 6.5]. Let

γ ∈ Γ be a hyperbolic isometry of M . By definition (see section 1.1) the

minimal set Min(γ) is non-empty. Let x ∈ Min(γ). Since Min(γ) is γ-

invariant (Proposition 1.5), the translate γx of x belongs to Min(γ). Let

now c̃ : [0, 1]→ M be a minimizing geodesic in M connecting x to γx (such

geodesic exists since M is complete) and denote by y ∈M the midpoint of c̃

(i.e. y = c̃(1/2)). Then the translate γc̃ is a minimizing geodesic connecting

γx to γ2x, and γy is the midpoint of γc̃ (see Figure 4.2 below).

From the triangle inequality we have that

0 < d(y, γy) ≤ d(y, γx) + d(γx, γy) = d(x, γx) = |γ|,
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x

γx

γ2x

c̃

γc̃y γy

Figure 4.2: Midpoint argument.

which implies that y ∈ Min(γ) or equivalently that d(y, γy) = |γ|. Since

the distance between y and γy measured along c̃ and then γc̃ is also |γ|, it

follows that the concatenation of the two geodesics is a smooth geodesic, i.e.

γ. ˙̃c(0) = ˙̃c(1). Thus the pair (c̃, γ) represents a closed geodesic of positive

length in Q.

We have thus proved the following existence result:

Theorem 4.3. A developable compact connected Riemannian orbifold Q has

a closed geodesic of positive length if the orbifold fundamental group πorb1 (Q)

is finite or if it contains a hyperbolic element.

We would like to mention that this result is more general than the one in

[33] in the following sense. As we have seen earlier, if a semi-simple isometry

has infinite order then it is hyperbolic. In general, the converse is not nec-

essarily true, as it is possible for hyperbolic isometries to have finite order.

Therefore, by our theorem the existence of closed geodesics of positive length

follows whenever Γ has an element that acts without fixed point, which can be
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of finite order. Examples of complete Riemannian manifolds with hyperbolic

isometries of finite order can be found in section 4.4.

Remark 4.4. It is easy to see that the translate γc̃ of a geodesic c̃ : [0, 1]→

M by an isometry γ ∈ Γ, is again a geodesic. Given a pair (c̃, γ) representing

c̃

γ
c̃(1)

˙̃c(1)γc̃

c̃(0) = γc̃(1)

˙̃c(0) = γ ˙̃c(1)

γc̃(0) = γ2c̃(1)

γ ˙̃c(0) = γ2 ˙̃c(1)

Figure 4.3: Collinear geodesics.

a closed geodesic in Q, the condition that γc̃(1) = c̃(0) implies that in M

the two geodesic segments c̃ and γc̃ have the point c̃(0) in common; and

the condition that γ ˙̃c(1) = ˙̃c(0) implies that the union of the two geodesic

segments is smooth at this point.

If (c̃, γ) represents a closed geodesic with γ of finite order, say γk = 1, then

the path c̃(k−1) := c̃ ∗ γc̃ ∗ . . . ∗ γk−1c̃, obtained by successively concatenating

the translates of c̃ by γ, is a smooth closed geodesic in M (see Figure 4.4).

The only situation not covered by Theorem 4.3 is when Γ is infinite and

each of its elements is an elliptic isometry. Since elliptic isometries have

finite order, Γ is an infinite torsion group. Moreover, since the action is
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c̃

γ

γc̃

γ2c̃ γk−1c̃

γ2

γ3

γ3c̃

· · · γk−1 c̃
γc̃

γ2c̃
γ

c̃(0)

γ

γ

(a) (b)

Figure 4.4: Closed geodesic in the universal cover.

cocompact, by Proposition 1.5, Γ is finitely presented and also has finitely

many conjugacy classes of isotropy groups.

Remark 4.5. An important consequence of the fact that each of the elements

of Γ is elliptic, is that Γ has to have finite exponent. This follows from the

fact that each of the elements of Γ is in one of the isotropy groups, and

these groups are finite. Then the least common multiple of the orders of

the isotropy groups (which clearly are preserved under conjugation) gives an

upper bound for the exponent of Γ. Note that one cannot deduce that Γ has

finite exponent from the results of [33].

While examples of infinite torsion groups that are finitely generated and

even of finite exponent are known to exist, there are no examples known to be

finitely presentable (as also noted in [33, Remark 5.1.2]). The existence prob-
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lem for closed geodesics of positive length on compact orbifolds is therefore

intimately related (but not equivalent) to the following question:

Question 4.6. Can an infinite torsion group Γ act properly and cocompactly

by elliptic isometries on a complete simply connected Riemannian manifold

M?

Clearly, a negative answer to this question would imply the existence of

closed geodesics on all compact orbifolds. On the other hand, if such actions

were to exist, then by Remark 4.4, the existence of a closed geodesic on M/Γ

would be equivalent to the existence of a closed smooth geodesic in M . How-

ever, there are many examples of complete simply connected non-compact

manifolds that are uniquely geodesic and thus have no closed geodesics (e.g.

Euclidean space, simply connected manifolds of nonpositive curvature, or

more generally any simply connected Riemannian manifold without conju-

gate points). An interesting problem is then, whether any of these spaces can

admit geometric actions as in Question 4.6, for an affirmative answer would

give rise to a compact orbifold with no closed geodesics of positive length.

We will return to this problem in section 4.4.

We would like to mention, however, that if such an action were to ex-

ist, then the quotient space would be a compact orbifold Q = M/Γ with

πorb1 (M/Γ) ∼= Γ nontrivial, but whose underlying topological space Q has

trivial π1(Q) (see Proposition 1.3). In particular, if M were contractible,

and every simply connected manifold with the unique geodesic property is
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contractible, then Q would be an aspherical orbifold, namely a developable

orbifold with contractible universal cover (cf. [19, Lecture 5]).

As a special case of Question 4.6 one could ask whether there exist com-

pact aspherical orbifolds with infinite torsion fundamental group. As noted

before, the orbifold universal cover of an orbifold Q need not be a covering for

the underlying topological space Q. In particular, the underlying topological

space of an aspherical orbifold need not be aspherical (or contractible). For

example the pillowcase orbifold in Example 2.35 is aspherical but has un-

derlying topological space homeomorphic to the two sphere. An interesting

related problem is to construct an aspherical orbifold Q whose underlying

topological space Q is contractible, or to show that such examples do not

exist.

4.3 Existence Results II

Throughout this section Q will denote an effective compact connected de-

velopable Riemannian n-orbifold with universal cover M and orbifold funda-

mental group πorb1 (Q) = Γ. As noted in section 3.1, the orbifold structure

on Q induces a natural stratification Q =
n⊔
k=0

Σk, where each Σk inherits

naturally the structure of a k-dimensional manifold without boundary. Since

Q is developable, each of the connected components of Σk is covered by

k-dimensional submanifolds of M whose connected components are totally

geodesic in M (see also Proposition 1.12).
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In the following theorem we compile a series of conditions on the structure

of the singular locus in a developable orbifold Q that give the existence of at

least one closed geodesic of positive length on Q. Many of these conditions

have already been used in Chapter 3 for general compact orbifolds.

Theorem 4.7. Suppose Q is a compact connected effective Riemannian de-

velopable n-orbifold, and let Q =
n⊔
k=0

Σk be the natural stratification by sin-

gular dimension induced by the orbifold structure. There exists at least one

closed geodesic of positive length on Q in any of the following situations:

(i) there exists 0 < k ≤ n such that Σk has a compact connected component;

(ii) Σ0 = ∅;

(iii) n is odd and Σk = ∅ for all 0 < k < n;

(iv) Σn−1 6= ∅ and Σk = ∅ for all 0 < k < n− 1;

(v) the smallest positive singular dimension ` such that Σ` 6= ∅ equals 2 or

is an odd number;

(vi) Q has only zero-dimensional singular locus and πorb1 (Q) contains an

element of order two.

Remark 4.8. Note that if Σ0 = ∅, then the set Σ` in part (v) of the

above theorem has the structure of an `-manifold (possibly disconnected).

Otherwise, it is an `-orbifold with only zero-dimensional singular locus.
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Proof. (i) This is Proposition 3.9. Note that k = n if and only if Q is

a manifold and the existence of closed geodesics follows from the classical

result of Lyusternik and Fet [44]. Assume k < n and let S be a compact

connected component contained in Σk. We will next exhibit an equivalence

class of pairs (c̃, γ) representing a closed geodesic in Q.

Assume first that S is not simply connected and let c : [0, 1] → S be a

closed geodesic in the free homotopy class of a nontrivial element δ ∈ π1(S).

Let γ ∈ Γ be the image of δ by i∗ : π1(S)→ Γ. If γ is trivial then any lift c̃

of c in M is closed, and since it is contained in π−1(S) whose components are

totally geodesic, it is also a geodesic. Thus c̃ is a closed geodesic in M and

therefore (c̃, 1) is a closed geodesic in Q. If γ is nontrivial then γc̃(0) = c̃(1)

for some lift c̃ : [0, 1]→M of c. As before, c̃ is a geodesic and since it projects

to a smooth closed curve in Q, we have γ ˙̃c(0) = ˙̃c(1). Thus the pair (c̃, γ)

represents a closed geodesic in Q.

If S is simply connected, then each of the connected components of

π−1(S) ⊂M is diffeomorphic to S and has the structure of a closed (compact

without boundary) totally geodesic submanifold of M . Any closed geodesic

c in π−1(S) (or equivalently in S) is again a closed geodesic in M which

projects to a closed geodesic in Q in the equivalence class of (c, 1).

(ii) This is Corollary 3.10 and also a direct consequence of (i) above, since

in this case, the components of smallest singular dimension in Q are closed

and thus have the structure of a compact manifold.
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(iii) If Σ0 = ∅, then Q is a compact manifold and therefore contains closed

geodesics of positive length. Otherwise Q is an odd-dimensional compact

orbifold with only zero-dimensional singular locus. Using the fact that at

each singular point x ∈ Σ0, the isotropy group Γx acts orthogonally and freely

on the unit sphere in the tangent space Tx̃M , together with the assumption

that Q is odd-dimensional (i.e. the unit tangent sphere is even-dimensional),

it follows that all isotropy groups Γx are cyclic of order two. If we further

assume that the orbifold fundamental group Γ contains only elliptic elements

(by Theorem 4.3), then it has exponent two (cf. Remark 4.5). In particular

Γ is abelian and since it is finitely generated it must be finite. The existence

of closed geodesics follows then from Theorem 4.3.

(iv) If Σ0 = ∅ then each connected component of Σn−1 has the structure of a

compact manifold and therefore admits a closed geodesic of positive length.

Assume then that Σ0 6= ∅. We will show that the connected components of

Σn−1 are closed.

Assume to the contrary that there exists a component S ⊆ Σn−1 which

is not closed, and let x ∈ fr(S) ⊆ Σ0. Let x̃ ∈ π−1(x) be a lift of x in M

and denote by S̃ ⊂ M the closure in M of a lift of S such that x̃ ∈ S̃. Let

Γx denote the isotropy group at x and let Γ′x be the maximal subgroup of

Γx that fixes S̃. Then Γ′x is a cyclic group generated by an element γ of

order two which is given by the reflection in the hyperplane Tx̃S̃ ⊂ Tx̃M (see

Proposition 3.4 and Remark 3.5). More precisely, γ satisfies γw = w for all
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w ∈ Tx̃S̃ and γv = −v for v ∈ (Tx̃S̃)⊥. Note that the subgroup Γ′x is normal

in Γx. Otherwise if δ ∈ Γx r Γ′x is such that δ−1Γ′xδ 6= Γ′x, then the fixed

point set S̃ ′ of δ−1Γ′xδ has codimension one and the intersection S̃ ′ ∩ S̃ gives

rise to a component in Σn−2 and contradicts the assumption that Σk = ∅ for

all 0 < k < n− 1.

Let δ ∈ Γx r Γ′x. Since δ leaves invariant the subspace Tx̃S̃ = (Tx̃M)γ,

the fixed point set of the restriction of δ to Tx̃S̃ is a local model for the

fixed point set in M of the subgroup generated by δ and γ. The latter set

necessarily sits in Σk with k < n − 1, and by hypothesis, it follows that the

restriction of δ to Tx̃S̃ has the zero vector as fixed point set. Note now that

if v ∈ (Tx̃S̃)⊥, then δ must map v to −v, since otherwise δ would fix (Tx̃S̃)⊥

and then the fixed point set in M of the subgroup of Γx generated by δ would

have dimension one and contradict the assumption that Σ1 = ∅. This also

shows that δ has order two and since it has zero-dimensional fixed point set,

δ is the inversion in the origin in Tx̃M . But then δγv = v if v ∈ (Tx̃S̃)⊥ and

δγw = −w for w ∈ Tx̃S̃, which shows that the subgroup generated by δγ

has one-dimensional fixed point set, contradicting again the assumption that

Σ1 = ∅.

This shows that Γx = Γ′x and thus fr(S) = ∅. The conclusion then follows

from the part (i) of the theorem.

(v) The case ` = 2 follows from Remark 4.2 together with Proposition 3.14.

For ` > 1 odd, the conclusion follows from (iii) and Remark 4.8 above. The
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case when ` = 1 is Proposition 3.11. We include the proof for this latter case.

Let q ∈ Σ1 and fix q̃ ∈ π−1(q). Denote by Γ′ the isotropy group at q̃ (that

is, the image of Γq into Γ by the natural homomorphism). The fixed point

set of Γ′ is a closed totally geodesic embedded 1-dimensional submanifold N

of M containing q̃. Then N is either homeomorphic to the circle or to the

real line, and any path with constant speed parametrization whose image is

N , is a geodesic in M . If N is homeomorphic to the circle, then it is a closed

geodesic; and if it is homeomorphic to the real line, it is a geodesic line in M .

Assume the latter and let r : R → M be a constant speed parametrization

it. If the projection of r onto Q is entirely contained in Σ1, then its image is

a compact component of Σ1 and as above it is a closed geodesic in Q.

Assume now that the projection of r contains points of zero singular

dimension. There are two possible situations that can happen at a point p

in the closure of a component S of Σ1: either S ‘terminates’ at p or it can be

extended beyond p to another component of Σ1. In the former case we will

refer to p as of the end of S.

To see this, let S and p as above and let (Ũ ,Γp, ϕp) be a fundamental

orbifold chart at p. We can shrink U if necessarily so that the restriction of

the exponential map at p̃ ∈ π−1(p) ∩ Ũ to a ball centred at 0 ∈ Tp̃Ũ is a

diffeomorphism onto its image. Moreover we can assume that q̃ ∈ Ũ . Then

Γ′ is isomorphic to a proper subgroup of Γp̃. For simplicity assume Γ′ ≤ Γp̃.

Let v ∈ Tp̃Ũ be a nonzero vector such that expp̃(v) = q̃. Clearly v spans

the one-dimensional subspace fixed by Γ′. The two possible situations are as
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follows. If there exists γ ∈ Γp̃ r Γ′ such that γv = −v (in particular this

implies that γ has order two), then the projection of expp̃(εv) for ε ∈ [−1, 1]

is contained in S, i.e. S ‘terminates’ at p. If γv 6= −v for all γ ∈ Γp̃rΓ′, then

the point q̃′ = expp̃(−v) is fixed by Γ′ and projects to a point q′ ∈ Q r S.

Then there exists a unique extension of S beyond p to a component of Σ1

that contains q′; namely the projection of expp̃(εv) for ε ∈ [−1, 0).

Using the fact that each Σk has only finitely many components the pro-

jection of N onto Q has either 0 or 2 ends.

Assume first that π(N) has no ends, and let q ∈ π(N) ∩ Σ1. Choose two

points q̃1 = r(t1) and q̃2 = r(t2) in π−1(q) such that t1 < t2. Since q̃1, q̃2 ∈ N

they are both fixed by Γ′, and since q̃1 and q̃2 are in the same orbit, there

exists δ ∈ Γ such that δq̃1 = q̃2. Moreover, δΓ′δ−1 = Γ′ and thus δr ⊂ N .

Since δ : Tq̃1N → Tq̃2N , there are two possibilities: either δṙ(t1) = ṙ(t2) or

δṙ(t1) = −ṙ(t2). In the first case (r|[t1,t2], δ) is a closed geodesic in Q. In the

second case, since δr ⊂ N , δ fixes the midpoint of m̃ = r([t1, t2]), has order

two and the projection m = π(m̃) ∈ Q is an end point. This contradicts the

assumption that the projection of N has no ends.

If π(N) has two ends, say p1 and p2 in Σ0 (not necessarily distinct), then

we can use two reflecting elements in the isotropy groups of two lifts of p1

and p2 to construct a closed geodesic in Q.

(vi) Again by Theorem 4.3, we could further assume that the orbifold funda-

mental group Γ is infinite and contains only elliptic isometries. Since Γ has an
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element of order two, Γ is torsion and of finite even exponent. Let γ ∈ Γ be

an element of order two. Then there exists δ ∈ Γ such that δx 6= x (otherwise

Γ would be finite) and δ has odd order (otherwise Γ would have exponent

two and therefore would be abelian, thus finite). Assume that x ∈M is fixed

by γ. As before consider two cases: one when γ fixes δx (i.e. [γ, δ]x = x, or

even stronger condition when γ and δ commute) and the case when γ does

not fix δx (i.e. [γ, δ]x 6= x, or more generally when γ and δ do not commute).

In the first case, consider any geodesic segment c : [0, 1]→M connecting

x to δx and its translate γ.c by γ. The concatenation of the two geodesic

segments, one of which is to be considered with the reversed orientation is a

smooth closed geodesic in M , that projects to a closed geodesic of positive

length in Q.

In the second case let c : [0, 1]→M be a geodesic segment connecting x to

δx and let c′ : [0, 1]→M be a reparametrization of the concatenation γc−∗c.

Then c′ is a smooth geodesic segment connecting γδx to δx and passing

through x; and which has as initial vector ċ′(0) = −γċ(1) and ċ′(1) = ċ(1).

Note that the commutator [δ−1, γ] takes γδx to [δ−1, γ]γδx = δγδ−1γγδx = δx

and ċ′(0) to

[δ−1, γ].ċ′(0) = [δ−1, γ].(−γċ(1)) = −δγδ−1γγċ(1) = −δγδ−1ċ(1) = ċ(1)

since δγδ−1 ∈ Γδx and has order two. Thus, the pair (c′, [δ−1, γ]) represents

a closed geodesic of positive length.
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Remark 4.9. (a) In the proof of (v) and (vi) above we used that an orthog-

onal involution that does not fix a nontrivial vector subspace is an inversion

in the origin, i.e. it maps v 7→ −v for any v.

(b) The construction in the proof of (vi) above gives a closed geodesic in

any compact developable orbifold Q having an isolated singular point whose

isotropy group has even order. In particular, any odd-dimensional compact

developable orbifold with at least one isolated singular point admits a closed

geodesic of positive length.

As a direct application of the Theorem 4.7 we obtain the existence of

closed geodesics on compact developable orbifolds in dimension 3, 5 and 7.

Together with the result of [33] for non-developable orbifolds, this implies:

Corollary 4.10. If Q is a compact orbifold with dim(Q) equal to 3, 5 or 7,

then Q admits a closed geodesic of positive length.

Proof. By Lyusternik and Fet [44], we can assume that the singular locus is

nonempty, so Σ 6= ∅, and by part (a) of Theorem 4.1 of Guruprasad and

Haefliger [33, Theorem 5.1.1], we can assume that Q is developable. Let

Q =
n⊔
k=0

Σk be the natural stratification by singular dimension. By part (ii)

of Theorem 4.7, we can assume that Σ0 6= ∅.

Suppose firstly that dim(Q) = 3. By part (v) of Theorem 4.7, we can

assume that Σ` = ∅ for ` = 1, 2, and now the conclusion follows from part

(iii) of Theorem 4.7.
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Now suppose dim(Q) = 5. Applying part (v) of Theorem 4.7, we can

assume that Σ` = ∅ for ` = 1, 2, 3 and the conclusion follows from part (iv)

of the Theorem 4.7 if Σ4 6= ∅ and from part (iii) otherwise.

Lastly, suppose dim(Q) = 7. Let ` > 0 denote the smallest positive

singular dimension such that Σ` 6= ∅. We first explain how to deduce the

conclusion from Theorem 4.7 when ` 6= 4. For example, if ` = 7 then Σ = Σ0

and we apply part (iii). If ` = 6, we apply part (iv). Otherwise, if ` = 1, 2, 3

or 5, we apply part (v).

The only remaining case is therefore when ` = 4, and the proof is similar

to that of part (iv) in Theorem 4.7. We will show that if Σk = ∅ for

0 < k < 4 and Σ4 6= ∅, then each connected component of Σ4 is closed.

Then, the conclusion follows from part (i) of Theorem 4.7.

Note first that the condition Σk = ∅ for k = 1, 2, 3 together with the

Remark 3.8 implies that the points in the frontier of the components in

Σ4 have singular dimension zero. In particular, if Σ0 is empty, then each

connected component of Σ4 is closed. Assume then that Σ0 6= ∅ and let S

be a connected component in Σ4. Assume further that S is not closed and

let x ∈ fr(S) ⊆ Σ0. Let Γx denote the isotropy group at x and let Γ′x be the

maximal subgroup of Γx that fixes Tx̃S̃, where S̃ ⊂ M denotes the closure

in M of a lift of S (see Remark 3.5). The subgroup Γ′x is normal in Γx, for

otherwise, the fixed point set of the conjugate δ−1Γ′xδ, with δ ∈ Γx r Γ′x, is

again a 4-dimensional submanifold S̃ ′ ⊂M and the intersection S̃ ∩ S̃ ′ gives

rise to a component of singular dimension at least one, which contradicts
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the assumption that Σk = ∅ for all 0 < k < 4. Note that the orthogonal

complement (Tx̃S̃)⊥ in Tx̃M is invariant under Γ′x, and in fact Γ′x restricted

to (Tx̃S̃)⊥ has isolated fixed point at zero. In particular, Γ′x induces a free

orthogonal action on the unit sphere in (Tx̃S̃)⊥, and thus Γ′x is the cyclic

group of order two, whose generator γ satisfies γw = w if w ∈ Tx̃S̃ and

γv = −v if v ∈ (Tx̃S̃)⊥.

Note now that while all the elements in ΓxrΓ′x leave Tx̃S̃ invariant, there

has to be at least one element that does not fix Tx̃S̃. Otherwise the fixed

point set of Γx would have dimension 4 and would therefore contradict our

assumption that x ∈ fr(S) ⊂ Σ0. Let δ ∈ Γx r Γ′x be an element that does

not fix Tx̃S̃ and let k < 4 be the dimension of the fixed point set of δ in Tx̃S̃.

This implies that the fixed point set in M of subgroup of Γx generated by δ

and γ has dimension equal to k, and since there are no components in Q of

singular dimension 1, 2 or 3, we conclude that k has to equal zero. This shows

that the restriction of δ to Tx̃S̃ has only the zero vector as fixed point, and

we will see that this is actually true for the restriction of δ to the orthogonal

complement (Tx̃S̃)⊥ in Tx̃M as well. Indeed, if δ had nontrivial fixed point set

in (Tx̃S̃)⊥, then the fixed point set of the the group generated by δ would have

dimension k for some 0 < k ≤ 3 = dim(Tx̃S̃)⊥, and this would contradict the

assumption that Σk = ∅ for such k. Since dim(M) = 7, we see that δ must

be an inversion in the origin, i.e. that δv = −v for v ∈ Tx̃M , and it follows

that δγ satisfies δγw = −w for w ∈ Tx̃S̃ and δγv = v for v ∈ (Tx̃S̃)⊥. But

this would imply that the fixed point set of the subgroup generated by δγ
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has dimension 3, in contradiction to our assumption that Σ3 = ∅.

This shows that if S ⊂ Σ4, then fr(S) = ∅. Hence S has the structure of

a compact manifold and the conclusion then follows from part (i) of 4.7.

Remark 4.11. The simplest example not covered by the above theorem is

that of a connected compact developable 4-dimensional orbifold Q with zero-

dimensional singular locus, and Γ ∼= πorb1 (Q) is an infinite torsion group of

odd exponent whose action on the universal cover M satisfies the property

that each element γ ∈ Γ has nonempty fixed point set. Note that in this

case, each isotropy group admits a free action on the three sphere and thus

it must be cyclic (see also Remark 5.16).

4.4 Geometric Conditions

In this section we continue to denote by Q a compact connected Riemannian

developable orbifold, obtained as the quotient M/Γ of a simply connected

manifold M by the geometric action of a discrete group Γ ⊂ Isom(M).

As noted at the beginning of section 4.2, any closed geodesic of positive

length in M projects to a closed geodesic of positive length in the quotient

Q. Thus the existence of closed geodesics on compact developable orbifolds

can be reduced to the case when M has no closed geodesics. On the other

hand, as we have seen in Remark 4.4, any closed geodesic of positive length

(c̃, γ) in Q = M/Γ for which γ ∈ Γ has finite order gives rise to a closed

geodesic in M .
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A particularly interesting situation is when the orbifold fundamental group

Γ is infinite torsion and the universal covering M is a manifold without closed

geodesics. For such manifolds M , the existence of closed geodesics on any

compact orbifold quotient of M would follow if one could show that infinite

torsion subgroups of Isom(M) cannot act properly and cocompactly on M

(see Question 4.6). Clearly, if a discrete infinite torsion group Γ acts on

such a manifold geometrically, then the orbifold quotient Q = M/Γ does not

contain a closed geodesic of positive length.

Note that in dimension two it follows directly from the Selberg lemma that

infinite torsion groups cannot act properly and cocompactly by isometries on

simply connected manifolds without closed geodesics (see Remark 4.2). In

dimensions 3, 5 and 7, the same conclusion follows from Corollary 4.10. Thus

the following partial result holds:

Proposition 4.12. Suppose M is a simply connected complete Riemannian

manifold without closed geodesics and let Γ ⊂ Isom(M) be a discrete group

of isometries of M acting properly and cocompactly on M . If the dimension

of M is 2, 3, 5 or 7, then Γ contains at least one element of infinite order.

If one believes that compact orbifolds are similar to manifolds, then the

existence of closed geodesics would suggest that infinite torsion groups do not

act properly and cocompactly by isometries on simply connected manifolds

without closed geodesics in all the dimensions. The purpose of this section

is to study certain similar situations and to show that such actions cannot
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exist under the assumption of certain curvature conditions.

There are many examples of complete, connected, simply connected Rie-

mannian non-compact manifolds that do not admit closed geodesics. Exam-

ples include manifolds with positive curvature and manifolds with the unique

geodesic property (e.g. Hadamard manifolds, the Euclidean space, manifolds

without conjugate points). In general, there are no topological restrictions

(like on homotopy or homology groups) that are independent of the dimension

of the manifold and that can be forced upon a complete manifold to obtain

the existence of closed geodesics with respect to all Riemannian metrics.

For instance, given any (non-compact) complete Riemannian manifold N ,

the product M = R×N with the (complete) metric

〈X, Y 〉 = xy + er〈X∗, Y ∗〉∗,

where X = (x,X∗) and Y = (y, Y ∗) are in T(r,p)(R×N), and 〈·, ·〉∗ denotes the

metric on N , has no closed geodesics of positive length. This holds regardless

of whether the factor N has closed geodesics or not.

However, not all simply connected manifolds can be realized as the uni-

versal cover of a compact orbifold. In other words not all simply connected

complete Riemannian manifolds admit geometric actions by discrete (infi-

nite) groups of isometries. In particular, product manifolds as above cannot

be the universal cover of a compact orbifold.

To see this, assume Γ ⊂ Isom(M) acts geometrically on M = N × R
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and let K ⊂ M be a fundamental domain for the action. Since Γ acts

cocompactly, the set K is compact and of course M = Γ.K. Then any point

x ∈ M has a neighbourhood Ux ∈ M which is isometric (via an element

γ ∈ Γ) with a neighbourhood of the point γ−1x ∈ K. If M has the above

metric, we can see that two points (r1, p) and (r2, q) cannot be in the same

orbit of an isometry, provided r1 6= r2.

This shows in particular that the universal cover of a compact connected

orbifold has in some sense bounded and uniform geometry.

Constant Sign Curvature

Of some interest are manifolds with sectional curvature κ of constant sign.

Given a Riemannian orbifold Q and a point x ∈ Q, we define the sectional

curvature κx at x to be the sectional curvature κx̃ at one of its lifts x̃ in a

orbifold chart at x. Furthermore, we say that the orbifold Q is of positive

(resp. nonnegative, zero, negative, nonpositive) sectional curvature if the

sectional curvature κx at any point x ∈ Q has the appropriate sign.

Proposition 4.13. (a) If Q is a compact connected Riemannian devel-

opable orbifold of positive sectional curvature, then the orbifold funda-

mental group πorb1 (Q) cannot be an infinite torsion group.

(b) If Q is a compact connected Riemannian orbifold of negative sectional

curvature, then the orbifold fundamental group πorb1 (Q) cannot be an

infinite torsion group.
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Corollary 4.14. If Q is a compact connected developable orbifold with Rie-

mannian metric of positive or negative sectional curvature, then Q admits a

closed geodesic of positive length.

Positive curvature. In the case when Q has positive sectional curvature, its

universal cover M is a complete connected and simply connected manifold of

positive sectional curvature. The classical Bonnet–Meyer theorem states that

if the curvature ofM is bounded from below by a positive constant ε > 0, then

M is compact (see [52] for the stronger form involving the Ricci curvature).

In this case the orbifold fundamental group πorb1 (Q) is necessarily finite. In

particular M and therefore Q admit closed geodesics of positive length.

If the curvature is not bounded away from zero, M needs no longer be

compact. However, in this case, by a well known theorem of Gromoll and

Meyer, the full group Isom(M) of isometries of M is compact (see [30, The-

orem 3]). Any discrete group that acts by isometries on M is finite and the

action is necessarily non-free. The latter claim follows from the fact any com-

plete open manifold of positive curvature is contractible (see [30, Theorem

2]). Thus any quotient by a group of isometries of a complete non-compact

manifold of positive curvature is a non-compact orbifold (which is not a man-

ifold, i.e. has nonempty singular locus).

In conclusion, if a compact orbifold has positive sectional curvature, then

either it is not developable or if developable then its universal covering is

a compact manifold of positive curvature. In either case such an orbifold
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admits closed geodesics of positive length. This follows in the developable

case by using the result of Lyusternik and Fet [44] for the compact universal

cover and in the non-developable one by using part (a) of Theorem 4.1.

Negative curvature. Orbifolds of negative sectional curvature are developable

and their universal cover is diffeomorphic to Rn, where n is the dimension

of the orbifold. Although the fundamental group on such orbifolds is always

infinite, they cannot be torsion (see for instance [22, Theorem 3.4.1 and

Example 2.5.12]).

Proposition 4.15. (a) If Q is a compact connected Riemannian orbifold

of nonpositive sectional curvature, then the orbifold fundamental group

πorb1 (Q) cannot be an infinite torsion group.

(b) If Q is a compact connected developable Riemannian orbifold of nonneg-

ative sectional curvature, then the orbifold fundamental group πorb1 (Q)

cannot be an infinite torsion group.

Corollary 4.16. If Q is a compact connected developable orbifold with Rie-

mannian metric of nonpositive or nonnegative sectional curvature, then Q

admits a closed geodesic of positive length.

Nonpositive curvature. It is well known that all orbifolds of nonpositive cur-

vature are developable [11]. If Q is such an orbifold, then its universal cover

M is a Hadamard manifold. That is, a simply connected complete manifold

of nonpositive curvature.
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If M is a Hadamard manifold, then M with the length metric induced

by the Riemannian structure is a Hadamard space. In fact, a Riemannian

manifold is a Hadamard manifold if and only if the associated metric space

is a Hadamard space. It was shown by Swenson in [64] that infinite torsion

groups cannot act geometrically on Hadamard spaces.

Remark 4.17. If Q has zero curvature, i.e. M is the Euclidean space Rn,

then the fact that Γ cannot be infinite torsion follows directly from a cele-

brated theorem of Bieberbach [10] (see also [14]). According to this theorem

any discrete group of isometries of the Euclidean space Rn with compact fun-

damental domain is virtually abelian. Thus, if Γ is the orbifold fundamental

group of a compact flat orbifold then Γ is virtually abelian. Since Γ is also

finitely generated (finitely presented), it cannot be torsion.

Nonnegative curvature. Assume now that Q is a compact developable orb-

ifold of nonnegative sectional curvature. As before, its universal cover M

is a complete simply connected manifold of nonnegative curvature. Unlike

the positive curvature case, if M is non-compact, then its isometry group

Isom(M) needs not be compact and there are compact manifolds of non-

negative curvature whose universal cover is not compact. Thus, if Q is a

compact developable orbifold of nonnegative curvature, then it is possible for

its universal cover to be non-compact.

A key result concerning the manifolds of nonnegative curvature is the To-

ponogov Splitting Theorem [67], that states that any complete manifold M
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of nonnegative sectional curvature may be written uniquely as the isometric

product M × Rk, where Rk has the standard flat metric and M has non-

negative sectional curvature and contains no line (that is, a normal geodesic

c̃ : (−∞,∞) → M , any segment of which is a minimal geodesic). Further-

more, Cheeger and Gromoll showed in [16] that if the isometry group of a

manifold M of nonnegative sectional curvature is not compact, then M con-

tains at least a line. In consequence, any complete manifold M of nonnegative

curvature admits a unique isometric splitting M = M × Rk such that the

isometry group of M is compact, and Isom(M) = Isom(M)×Isom(Rk). Note

that cf. [15] the same results hold in the more general case of manifolds with

nonnegative Ricci curvature.

If Γ is a discrete group acting geometrically on M , then Γ = Γ′×Γ′′, where

Γ′ and Γ′′ are discrete subgroups of Isom(M) and Isom(Rk), respectively.

Since Isom(M) is compact, the factor Γ′ is necessarily finite. Note that if M

is not compact then Γ cannot act cocompactly on M . On the other hand, the

group Γ′′ acts geometrically on the Euclidean factor Rn and therefore Γ′′ has

elements of infinite order (see Remark 4.17). This implies that Γ contains

elements of infinite order, and so it cannot be torsion.

In conclusion, if Q is a compact developable orbifold of nonnegative sec-

tional curvature, then its orbifold fundamental group is either finite or con-

tains elements of infinite order. By Theorem 4.3, Q admits closed geodesics

of positive length.
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Chapter 5

Infinite Torsion Groups

As we have seen in the previous chapter, the problem of existence of closed

geodesics of positive length on compact developable orbifolds reduces to a

particular class of orbifolds that satisfy a number of restrictions regarding

both their geometry and topology. Perhaps the biggest challenge in com-

pletely solving this problem is the lack of examples of orbifolds that satisfy

these conditions and, as formulated in Question 4.6, especially those condi-

tions regarding the orbifold fundamental group.

In this section, we deal exclusively with compact developable orbifolds Q

for which the existence of closed geodesics is not covered by the results in the

previous chapter, specifically Theorems 4.3 and 4.7, and we investigate the

various group-theoretic properties that one can assume about the orbifold

fundamental group Γ = πorb1 (Q) of such orbifolds. Along the way, we present

an idiosyncratic summary of the Burnside problem, including variants of
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the original problem, progress made, and open questions on infinite torsion

groups related to the problem of existence of closed geodesics for compact

orbifolds.

Restrictions on the Orbifold Fundamental Group

We first recall a fundamental property concerning the orbifold fundamental

group of a general compact connected developable orbifold.

Property 5.1. The orbifold fundamental group of a compact connected de-

velopable orbifold is finitely presented.

Proof. Let Q be a compact connected developable orbifold, and let M be

its universal cover. Then M is a simply connected manifold on which the

orbifold fundamental group πorb1 (Q) acts properly and cocompactly. Let ρ be

a Riemannian metric on the orbifold Q obtained as in Proposition 2.24. The

pullback of ρ by the covering map gives a natural Riemannian metric ρ̃ on

the universal cover M , and πorb1 (Q) acts as a group of isometries in M . Let

d denote the distance on M induced by the Riemannian metric ρ̃. Since Q is

compact, (M,d) is a complete metric space and by the Hopf-Rinow theorem

any two points in M can be connected through a minimizing geodesic. Thus

(M,d) is a geodesic space. Finally note that any Riemannian isometry of M

is also a metric isometry of the space (M,d), and therefore, by Proposition

1.6, the group πorb1 (Q) is finitely presented.
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Hereforth, justified by Theorem 4.3, we make the following assumptions

on the orbifold Q and the orbifold fundamental group Γ = πorb1 (Q):

Assumption A. Q is a compact Riemannian orbifold obtained as the quo-

tient Q = M/Γ, where M is a complete connected and simply connected

Riemannian manifold and Γ ⊂ Isom(M) is an infinite discrete subgroup con-

sisting entirely of elliptic isometries.

The following group-theoretic properties of Γ are a direct consequence of

Assumption A. To begin, we have:

Property 5.2. Γ is an infinite torsion group.

Combined with the fact that each element of Γ is an elliptic isometry of

M , we deduce that:

Property 5.3. Γ has only finitely many conjugacy classes of elements.

To see this, recall first that a group that acts properly and cocompactly by

isometries on a simply connected geodesic space has only finitely many con-

jugacy classes of isotropy groups (see Proposition 1.5). Denote by Γ1, . . . ,Γk

the representatives up to conjugacy of the isotropy groups of Q in Γ (i.e. the

isotropy types of Q). Since each of the isotropy groups Γi is finite, the union

Γ1 ∪ . . .∪Γk is a finite set. Furthermore, since each element γ ∈ Γ is elliptic,

it is conjugate to an element in Γ1 ∪ . . . ∪ Γk. Thus Γ has only finitely many

conjugacy classes of elements.
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Recall that a torsion group G is said to have finite (or bounded) exponent,

if there exists a positive integer n such that gn = 1 for all g ∈ G, and in this

case, the exponent of the group G is defined to be the smallest positive such

n. Otherwise the group G is said to have unbounded exponent. Clearly, if

a torsion group G has exponent n, then n is the least common multiple of

the orders of all elements in G. In particular, if G is a finite group, then its

exponent is a divisor of the order of G.

Using now Property 5.3 we can further conclude that:

Property 5.4. Γ has finite exponent.

Indeed, since each element of Γ has finite order and the order of an element

is preserved under conjugation, the exponent of Γ is finite and equal to the

least common multiple of the orders of all elements in Γ1 ∪ . . . ∪ Γk.

As it turns out, from the perspective of our work, Property 5.1 is the

most stringent condition that Γ has to satisfy, in the sense that for all the

latter properties (5.2, 5.3, 5.4) in this section, examples of finitely generated

groups can be found, but none of them is known to be finitely presented.

The Burnside Problem and its Variants

The Burnside problem is an old and influential question in group theory and

concerns finitely generated groups. The original problem dates back to the

beginning of the twentieth century, when William Burnside [12] posed two

questions, the first of which is known today as the general Burnside problem
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and asks:

Question 5.5. Is every finitely generated torsion group finite?

It is an easy exercise to see that any finitely generated abelian torsion

group is finite. The quotient group Q/Z shows the necessity of the condition

that G be finitely generated, since it is an example of an infinite torsion group

which is abelian but not finitely generated.

The general Burnside problem was answered in the negative in 1964 by

Golod and Shafarevich [25], and Golod provided in [24] the first example of a

finitely generated infinite torsion group. Golod showed that for each prime p

there exists a residually finite infinite p-group that can be generated by three

elements.

Later more examples of finitely generated infinite torsion groups with un-

bounded exponent were found by Aleshin [5], Grigorchuk [27], and Gupta and

Sidki [32]. These groups, known as the Grigorchuk type groups, are examples

of residually finite infinite p-groups generated by two elements of prime odd

order p. They are realizable as subgroups of the automorphism group of a reg-

ular tree of degree p. Grigorchuk’s group in [27] is a residually finite 2-group

with three generators that can be presented as a group of automorphisms of

an infinite binary rooted tree. Using these examples Rozhkov constructed in

[55] a two generator torsion group that contains elements of order n for each

natural number n.

Grigorchuk type groups play an important role in geometric group theory.

131



Ph.D. Thesis - George C. Dragomir McMaster - Mathematics and Statistics

Recall that for a finitely generated group G, the growth function of G is

defined to be the function k 7→ βG(k), where βG(k) is the number of different

elements of G that can be represented as a product of at most k of generators

(we assume here that the generating set is symmetric, i.e. if g belongs to the

generating set, then so does its inverse g−1). The group G has polynomial

growth of degree d if there exists a constant C such that βG(k) ≤ Ckd for

all k ≥ 1; and G has exponential growth if there exists C > 0 such that

βG(k) ≥ eCk, for large k > 1. Finally, the group G has intermediate growth

if the function βG(k) grows faster than any polynomial in k and slower than

any exponential in k.

Note that every finitely generated group has at most exponential growth,

and that every free group of finite rank ≥ 2 has exponential growth. More-

over, Wolf [70] showed that every finitely generated nilpotent group has poly-

nomial growth. Milnor posed the following question in [49]:

Question 5.6. Is there a finitely generated group of intermediate growth?

An important contribution to this problem is the celebrated result of

Gromov [31], which states that a finitely generated group has polynomial

growth if and only if it is virtually nilpotent, that is it has a nilpotent finite

index subgroup. But virtually nilpotent finitely generated torsion groups are

finite. One easy way to see this is by using the fact that nilpotent groups

are solvable, and finitely generated solvable torsion groups are indeed finite:

the commutator subgroup [G,G] of a finitely generated torsion group G is
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of finite index, as the quotient G/[G,G] is finitely generated, abelian and

torsion. Using then that the derived series of G is finite, it follows that G

itself is finite. Thus, in light of Gromov’s result and the fact Golod’s group

has exponential growth, it is natural to ask whether there exists a finitely

generated infinite torsion group of intermediate growth. Grigorchuk showed

in [28] and [29] that the group constructed in [27] has sub-exponential growth,

providing thus the first example of a finitely generated group of intermediate

growth.

None of these infinite torsion groups is finitely presented and so far there

is no general idea how to prove or disprove that such groups exist. However,

it is conjectured that there are no finitely presented groups of intermediate

growth [26].

The second problem posed by William Burnside in [12] and known today

as the bounded Burnside problem is the following:

Question 5.7. Is every finitely generated group of finite exponent finite?

As before, the condition for the group to be finitely generated is essential.

The additive group Z2[x] of all polynomials with Z2 coefficients is an example

of an infinite group of exponent 2 which is not finitely generated (as it is

abelian). In fact it is easy to see that any group of exponent 2 is abelian,

thus all finitely generated groups of exponent 2 are finite.

Recall that the free Burnside group B(m,n) of rank m and exponent n is

the quotient Fm/F
n
m of the free group Fm on m generators by the subgroup F n

m
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generated by the n-th powers of all the elements in Fm. Thus, B(m,n) can be

regarded as the universal group G with m generators in which gn = 1 holds

for all g ∈ G, and consequently, any other group generated by m elements

and of exponent n can be obtained as a factor of the group B(m,n). With

this notation, the bounded Burnside problem asks: are the groups B(m,n)

finite for all pairs (m,n)?

The initial results pointed toward a positive answer to the bounded Burn-

side problem. In his paper [12], Burnside showed that B(1, n) is cyclic for all

n and that the groups B(m, 2) and B(m, 3) are finite for all m ≥ 1. Burnside

also showed in [13] that finitely generated subgroups of GL(k,C) of finite

exponent are finite, a result which was soon generalized by Schur [59] by re-

moving the finite exponent condition and showing that all finitely generated

torsion subgroups of GL(k,C) are finite. The groups B(m, 4) and B(m, 6)

with m ≥ 1 were also known to be finite by [56] and [35], respectively.

By far the most significant contribution to the bounded Burnside problem

came in 1968 with the result of S.I. Adian and P.S. Novikov in [53], which

states that the groups B(m,n) are infinite for all m > 1 and all n odd, n ≥

4381; and thus providing a negative answer to the bounded Burnside problem.

Later the bound on the exponent n was improved by Adian [3] to n odd,

n ≥ 665. Although the work of Adian and Novikov suggested that the groups

B(m,n) are infinite for sufficiently large exponent n regardless of its parity,

it was not until 1992 that S. Ivanov [37] and I. Lysenok [43] (independently)

announced that B(m,n) are infinite for some large even exponents.
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Adian provided a series of remarkable results concerning the (infinite)

free Burnside groups B(m,n) with m > 1 and n odd, n ≥ 665. For instance

all the finite subgroups and all the abelian subgroups of B(m,n) are cyclic

and their orders divide the exponent n. In particular, the groups B(m,n)

have trivial center. He also showed [2] that the infinite free Burnside group

B(m,n) contains infinite decreasing and infinite increasing chains of embed-

ded subgroups, so it does not satisfy the minimal and maximal conditions.

The groups B(m,n) contain infinite decreasing and infinite increasing

chains of embedded normal subgroups if either m > 1 and n = rs, where

r ≥ 665 is odd and s > 1, or m ≥ 66 and n ≥ 665 is prime (see [4]). In

particular, these free Burnside groups admit infinitely many non-isomorphic

factor groups.

The infinite free Burnside groups B(m,n) with m > 1 and odd n ≥ 665

have exponential growth, and do not admit a finite presentation.

The question of existence of an infinite finitely presented group of bounded

exponent is attributed to P.S. Novikov. To date there is no known finitely

presented infinite torsion group (of bounded exponent or not). A possible

way to obtain a finitely presented group is by using the Higman embedding

theorem [36]. That is, a finitely generated group G embeds in a finitely pre-

sented group if and only if it is recursively presented. Since the free Burnside

groups B(m,n) with m > 1 and odd n ≥ 665 are recursively presented, they

embed in a finitely presented group. However, all the known constructions

of such embeddings involve using HNN extensions and amalgamated prod-
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ucts, and these methods do not provide torsion groups, as they require the

introduction of elements of infinite order. It is also known that finitely gen-

erated infinite torsion groups satisfy Serre’s (FA) property and therefore are

both indecomposable (i.e. not a free product of two groups) and strongly

indecomposable (i.e. not an amalgam) [63].

In 1950 a solution to the bounded Burnside problem was not yet known

and Magnus [45] proposed another problem closely related to the Burnside

problem, which he called the restricted Burnside problem:

Question 5.8. Is there a maximal finite group with m generators and a given

exponent n?

This hypothetical group, denoted R(m,n), is then a maximal finite quo-

tient of the free Burnside group B(m,n). That is, R(m,n) is the quotient of

B(m,n) by a minimal normal subgroup N0 of finite index in B(m,n). Note

that N0 can be obtained as the intersection of all normal subgroups of finite

index in B(m,n). Note also that such minimal normal subgroup need not

exist. For instance for a residually finite group, the intersection of all the

normal subgroups of finite index is trivial. A reformulation of the restricted

Burnside problem is whether the free Burnside group B(m,n), for a fixed

(m,n), has a minimal normal subgroup of finite index.

In [72] and [73], Zel′manov provides a positive solution to the restricted

Burnside problem.
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Further Restrictions on the Orbifold Fundamental Group

Using the results in Theorem 4.7 we see that the problem of existence of

closed geodesics on compact developable orbifolds can be reduced to those

orbifolds that in addition to the conditions stated in the Assumption A satisfy

the following assumption:

Assumption B. Q is a compact developable orbifold such that

(i) the singular locus Σ has dimension zero;

(ii) the dimension dim(Q) ≥ 4 and is even;

(iii) Γ = πorb1 (Q) contains no element of order two.

The condition (iii) in Assumption B above, together with Properties 5.2

and 5.4, imply that the group Γ is an infinite torsion group of odd exponent.

Thus Γ is a factor of the free Burnside group B(m,n) for some m > 1 and

large odd n� 1. Note that since these infinite free Burnside groups are not

finitely presentable, Γ is necessarily a proper quotient of B(m,n). Using the

positive solution to the restricted Burnside problem for odd exponent [72],

we can further assume that:

Property 5.9. Γ has no non-trivial finite-index subgroups.

Proof. Suppose that Γ has m generators and exponent n, with n odd and

sufficiently large so that Γ is infinite. Then Γ is isomorphic to the quotient

B(m,n)/〈〈R〉〉 of the free Burnside group of rank m and exponent n by the
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subgroup 〈〈R〉〉 normally generated by a set of relations R. Since the normal

subgroups of Γ are in one-to-one correspondence with the normal subgroups

of B(m,n) containing 〈〈R〉〉, there exits a minimal normal subgroup of finite

index Γ0 of Γ (which is unique up to isomorphism), corresponding to the

minimal finite index normal subgroup N0 of B(m,n). Note that N0 has

to contain the subgroup 〈〈R〉〉 in order for Γ to be infinite. Then Γ0 is a

finitely generated infinite torsion group of odd exponent which has no normal

subgroups of finite index. (Indeed, if H would be a normal subgroup of Γ0 of

finite index, then H would also be a subgroup of finite index in Γ, although

not necessarily normal. However, we can find a normal subgroup K of Γ of

finite index which is contained in H, and use then the minimality of Γ0.)

Finally, note that any proper subgroup H of finite index in Γ always contains

a normal subgroup N (the normal core of H) which is also normal and of finite

index in Γ. Thus no normal subgroups of finite index implies no subgroups

of finite index.

We will now see that this assumption on Γ is still relevant to our prob-

lem (that of describing the properties of the orbifold fundamental group of

compact orbifolds for which the existence of closed geodesics is not known),

in the sense that we can replace Γ with the subgroup Γ0. First, using the

one-to-one correspondence between the normal subgroups of Γ = πorb1 (Q) and

the regular orbifold covers of Q, we can associate a finite orbifold cover Q0

of Q to the subgroup Γ0 of Γ. Thus Q0 is a compact developable orbifold

and the existence of a closed geodesic in Q0 implies the existence of a closed
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geodesic in Q as well. Note now that a compact developable orbifold with

fundamental group consisting only of elliptic elements has a closed geodesic

of positive length if and only if the universal cover has a closed geodesic of

positive length (see Remark 4.4 and the discussion following Question 4.6).

Note also that this closed geodesic in the universal cover will push down

as a closed geodesic to any quotient, compact or not. Thus we can reduce

the existence of closed geodesics problem to those compact orbifolds whose

orbifold fundamental group satisfies (in addition to all previously mentioned

properties) the condition that it has no proper subgroup of finite index.

Using now Property 5.9 we can easily deduce that:

Property 5.10. Γ is perfect and not residually finite.

To see that Γ is perfect, let Γ′ = [Γ,Γ] denote the commutator subgroup

of Γ. Since the factor group Γ/Γ′ is finitely generated, abelian and torsion,

it is finite. Hence Γ′ is a normal subgroup of finite index in Γ. But Property

5.9 implies that Γ′ = Γ, i.e. Γ is perfect.

Recall that a group is residually finite if and only if the intersection of

all its subgroups of finite index is trivial. By Property 5.9, since Γ has no

proper subgroup of finite index, this intersection is the whole group. Thus Γ

is not residually finite. This also implies that Γ is not solvable.

Remark 5.11. It follows directly from the positive solution to the restricted

Burnside problem that the free Burnside groups are not residually finite. The
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fact that finitely generated solvable groups of finite exponent are finite was

first proved by P. Hall.

Define the FC-center of a group G to be the set

FC(G) = {g ∈ G | [G : C(g)] <∞},

where C(g) denotes the centralizer of g in G. Since for any element g ∈ G,

the map h 7→ hgh−1 gives a bijective correspondence between the set of right

cosets of C(g) and the set of all conjugates of g, the set FC(G) consists of all

elements in G with finitely many conjugates. Note that FC(G) is a normal

subgroup of G that contains Z(G), the center of G. A group with trivial

FC-center is called an icc-group (infinite conjugacy classes).

Property 5.9 shows that Γ does not contain any proper subgroup of finite

index, and this implies that FC(Γ) = 1. Thus Γ is an icc-group, and in

particular Γ is centerless.

A threading set for a group G is defined to be a set {g1, g2, . . .} ⊂ G such

that for any nontrivial element g ∈ G there exists n such that gn is conjugate

to one of the elements gi. We say that the group G has a treading tuple if

G has a finite threading set {g1, . . . , gk}. Furthermore, we say that a group

G has a strong threading tuple if there exists a set {g1, . . . , gk} ⊂ G such

that any nontrivial g ∈ G is conjugate to one of the elements gi. Note that,

in general G having a threading tuple does not imply that G has a strong

threading tuple. Note also that any group with finitely many conjugacy
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classes of elements has a strong threading tuple. In this case, a minimal

strong threading tuple can be obtained by choosing one representative for

each nontrivial conjugacy class.

It follows from Property 5.3 that the group Γ has a strong threading

tuple. Together with the fact that Γ has trivial FC-center, this implies the

following:

Property 5.12. Γ has no finite normal subgroups and no infinite normal

series.

Proof. Let {γ1, . . . , γk} be a strong threading tuple for Γ. Without loss of

generality we can assume that this set is minimal. For any normal subgroup

H ≤ Γ, we have H∩{γ1, . . . , γk} 6= ∅ and if H were finite, then any threading

element contained in H would have finite conjugacy class. This contradicts

the fact that Γ has trivial FC-center.

It is easy to see that Γ has only finitely many normal subgroups (up

to isomorphism) since the normal subgroups of Γ can be indexed by their

intersection with the threading set, which is finite. Note that a group cannot

be the union of two normal subgroups whose intersection is the trivial group.

Thus, if H is a proper normal subgroup of Γ such that H ∩ {γ1, . . . , γm} =

{γ1, . . . , γj}, then there is no normal subgroup whose intersection with the

threading tuple is {γj+1, . . . , γm}.

Examples of finitely generated infinite torsion groups with finitely many

conjugacy classes were constructed by Ol′shanskii in [54]. These so-called
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Tarski monsters are infinite simple groups which are finitely generated (gen-

erated by any two non-commuting elements) and satisfy the property that

every proper subgroup is a cyclic group of large prime order p. Ol′shanskii

also showed that for each prime p > 1075 there are continuum-many non-

isomorphic Tarski p-groups. To date it is not known whether or not finitely

presented Tarski monsters exist.

We will now see that the conditions in Assumption B allows us to deter-

mine a presentation for the isotropy groups of Q. Let N = dim(Q).

Note first that since the orbifold Q is compact, the condition (iii) of

Assumption B implies that the singular locus Σ consists of a finite collection

of points, say Σ = {x1, . . . , xl}. For each i ∈ {1, . . . , l}, let Γxi denote the

isotropy group at xi ∈ Σ. If x̃i ∈ M is a lift of xi in M , then the isotropy

group Γx̃i ≤ Γ at x̃i is naturally isomorphic to Γxi . The local action of Γx̃i

at x̃i ∈M induces a free orthogonal action on the unit sphere in the tangent

space Tx̃iM at x̃i. Since N = dim(M) is even, the isotropy group Γx̃i acts

freely and orthogonally on the odd-dimensional sphere SN−1. Note now that

that condition (i) implies that the isotropy group Γx̃i has odd order. Since

by Feit-Thompson Theorem [23], any finite group of odd order is solvable,

the group Γx̃i is solvable.

Thus each of the isotropy groups Γxi of Q is solvable, has odd order and

admits a free orthogonal action on SN−1.

The problem of classifying the finite groups that admit orthogonally free
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actions on spheres, known as the Clifford-Klein spherical space problem, has

been settled mainly in the works of H. Zassenhaus [71] (1935), G. Vincent

[68] (1947), and J.A. Wolf [69] (1972).

It is known (cf. [69, Theorem 5.3.1]) that every finite group G which

acts orthogonally on a sphere without fixed points satisfies the so-called pq-

condition. That is, for p and q primes, not necessarily distinct, any subgroup

of G of order pq is cyclic. Zassenhaus showed that the converse of the above

statement holds as well when restricting to the class of solvable groups: any

finite solvable group that satisfies the pq-conditions acts orthogonally freely

on some sphere.

Thus, if Q is an orbifold with only zero dimensional singular locus, then

each of its isotropy groups satisfies the pq-condition.

Zassenhaus, Vincent and Wolf also gave a complete classification of the

finite solvable groups that satisfy the pq-condition (see [69, Theorem 6.1.11]).

Accordingly a finite group G of odd order satisfies the pq-condition if and only

if G is of type I and has the following presentation:

(5.1) 〈α, β | αm = βk = 1, βαβ−1 = αr〉

where,

(a) k,m ≥ 1 are odd;

(b) gcd (k(r − 1),m) = 1 and rk ≡ 1(mod m);
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(c) if d is the order of r in the multiplicative group of residues modulo m,

of integers prime to m, then d divides k and k/d is divisible by every

prime divisor of d.

The group G given by the presentation (5.1) above, is a semidirect product

Zk n Zm, and thus it has order km. The condition (a) guarantees that G

has odd order. Note then that d must also be odd. The condition (b) alone

implies, that any abelian subgroup of G is cyclic. It is a necessary condition

for a finite group to act topologically freely on some sphere. The condition

(c) is required for the action to be orthogonally free. Any group G satisfying

(b) and (c) admits an orthogonally free action on a sphere S2sd−1, with s ≥ 1.

Note that in the presentation (5.1) if k = 1, then G = 1 is trivial; whereas

if m = 1, then G ∼= Zk is the cyclic group of order k. Notice that if d = 1,

then r ≡ 1(mod m) and by condition (b), m = 1.

Property 5.13. Suppose Q satisfies the conditions of the Assumption B and

let N = dim(Q). Then each of the isotropy groups of Q has the presentation

(5.1) for some (k,m, r) with km odd and d a divisor of N/2.

We note the following simple fact:

Proposition 5.14. [69, 7.4.14] Suppose a finite group G acts freely and

orthogonally on SN−1. If the order of G is relatively prime to N , then G is

cyclic.

Proof. If N is odd, then N − 1 is even and G is either trivial or it is cyclic of

order two. If N is even, then the order of G is odd and therefore G admits a
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presentation (5.1) for some k,m, r. Such groups act freely and orthogonally

on spheres S2sd−1 of dimension 2sd − 1, so N = 2sd and we can see that d

divides both N and k. The coprime condition implies that d = 1, and it

follows that G must be cyclic of order k.

Corollary 5.15. Suppose Q is an orbifold satisfying both the Assumptions

A and B above, and let N = dim(Q). If the exponent of Γ is relatively prime

to N , then all the isotropy groups of Q are cyclic.

Indeed, in this case N is relatively prime to the order of any finite sub-

group of Γ, and in particular to the order of the isotropy subgroups.

Remark 5.16. The case N = 4 in Proposition 5.14 was first proved by Hopf

(see for instance [48, Theorem 2]), and the case N = 2`, ` ≥ 2 by Vincent in

[68]. Note that in all these cases, the isotropy groups of Γ are cyclic.

We conclude this chapter with a list of group theoretic questions which

are related to or motivated by the problem of the existence of closed geodesics

on compact orbifolds. While some of these questions are well known open

questions, some even with a long history, other questions just arise naturally

(or so we believe) with each of the properties that Γ = πorb1 (Q) has to satisfy,

as we have seen in this chapter.

1. Does there exist an infinite group with finite exponent that is finitely

presented? Note that such a group would be a factor of a free Burnside

group B(m,n) for some m > 1 and n� 1.
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2. Given two positive integersm and n, are there only finitely many finitely

presented groups with m generators and exponent n? An equivalent

formulation is: For a fixed pair (m,n), do the free Burnside groups

B(m,n) admit finitely many finitely presented factors? Note that by

Zel′manov’s solution to the restricted Burnside problem, the answer to

this question is yes if the previous question has a negative answer.

3. Assume that both questions 1 and 2 have a positive answer. Is there an

order on the set of all finitely presented factors of B(m,n), for a given

pair (m,n)? Is there a maximal finitely presented quotient of B(m,n)?

4. Is it true that any finite subgroup of Γ satisfies the pq-condition? Note

that for m > 1 and n ≥ 665, every finite subgroup of the free Burnside

group B(m,n) is cyclic. The answer is yes if any finite subgroup of Γ

is isomorphic to a (subgroup of) an isotropy group.

5. Suppose Γ1 and Γ2 are isotropy groups in Γ = πorb1 (Q) corresponding

to two distinct points in Q. In particular this implies that Γ1 and Γ2

are not conjugate in Γ. Let γ1 ∈ Γ1 and γ2 ∈ Γ2 be non-trivial elements

and assume that γ1 is not conjugate to γ2. Can the subgroup 〈γ1, γ2〉

of Γ generated by γ1 and γ2 be finite?

We can assume that γ1 and γ2 are not conjugate in Question 5 since

otherwise, by [33, Remark 5.1.3], one can show that Q admits a closed

geodesic of positive length.
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