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Abstract

Our goal is to give a quick exposition of model categories by hitting
the main points of the theory in the most linear fashion, only veering off
course for occasional examples. We will proceed by defining the model
categories of Daniel Quillen and give model structures on some familiar
categories. Using the devices granted by model categories, we will lay-
out a procedure of how to construct a coherent analog of the homotopy
theory from topology, during which, we will compute any implications for
our examples of interest. Moreover, we will observe that the generalized
homotopy category will reduce to the classical homotopy category when
applied to the category of topological spaces.
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1 Introduction

After a theory in mathematics has been developed, the most natural question
is whether the theory can be generalized in a manner that will produce more
results and, possibly, be applied to other fields in some reasonable sense. This
will be our task, focusing on homotopy theory, a particularly profitable theory in
Algebraic Topology, where one focuses on homotopies between continuous maps
of spaces in an attempt to gain a procedure for classifying spaces. Of course,
when generalizing this theory, the most appropriate category to work in is the
category of topological spaces, Top. With the classical notion of homotopy, we
are able to define homotopy equivalence and find homotopy invariants such as
the fundamental group and higher homotopy groups using path homotopies. As
these results have been very beneficial, we would like to be able to generalize
the theory. Furthermore, it is natural to want a category in which we can view
homotopy equivalent spaces as isomorphic. For example, S1 as a subspace of
R2 and R2 − 0 are homotopy equivalent with the inclusion map i [Fig. 1] and
a deformation retraction r [Fig. 2] as homotopy inverses, but in Top, these
spaces are obviously not isomorphic.

Fig. 1

S1
S1 ⊂ R2 − {0}

i

Fig. 2

S1
R2 − {0}

r

Thus, we would like to have a category where these two topological spaces are
in fact isomorphic with r and i as isomorphisms i.e. i◦r = idS1 and r◦i = idR2−0.
There is already a procedure for producing such a category via categorical meth-
ods. Specifically, we can localize Top at the class of homotopy inverses which
inverts all the homotopy inverses making them into isomorphisms. The result

2



is a new category where the objects remain the same, but the morphisms are
generated by the original morphisms of the category and the “extra” inverse
morphisms. Unfortunately, since this procedure relies heavily on a universal
property, there are no substantial tools for calculating the category. Thus, it is
difficult to characterize the construction. For example, it is not apparent that
the resulting localization is even a locally small category which is necessary for
most intents and purposes. Also, there are times when the notion of homotopy
equivalence is to strong and we would prefer to focus on weaker notions such as
weak homotopy equivalence. Daniel Quillen’s model categories [Qui67] are cat-
egories with the necessary structure to define a homotopy theory with respect
to a chosen class of “weak equivalences” and, furthermore, a well characterized,
homotopy category. In fact, as one would hope, this homotopy category is iso-
morphic to the localization of our model category with respect to the chosen
class of morphisms, but, in contrast, is well equipped for calculations.

A particullarly enlightening example, being of an algebraic nature, is the cat-
egory of chain complexes. Recall that homotopies of continuous maps in Top
induce homotopies of chain maps in the category of chain complexes Ch(R).
In fact, we have a notion of homotopy equivalence in Ch(R) defined com-
pletely independent of the topological notion. Possibly of more importance
than the homotopy equivalence of chain complexes is the weaker notion of
quasi-isomorphism. With a suitable model structure, we can form the homo-
topy category of Ch(R) with respect to the class of quasi-isomorphims which
is isomorphic to the derived category D(R), the localization of Ch(R) with
respect to the quasi-isomorphisms. Again, we stress that since the derived cat-
egory of chain complexes is constructed by a localization, it is not obvious that
D(Ch(R)) is locally small; however, the Quillen approach guarantees such a
claim.
We will give an overview of model categories and the construction of the homo-
topy category paying particular attention to the examplese. Then the focus will
shift to defining a proper formulation of morphisms between model categories.
For a more detailed and rigourous approach see [Hov99] and [Hir03].

2 Model Categories

For a proper definition of a model category we must understand a minimum
amount of category theory. Then, immediately, we can observe the examples
which will appear throughout the exposition. Moreover, we can even begin to
establish some topological devices without any model structure. With a basic
background in category theory and topology, one can skip the prerequisites.

2.1 Prerequisites

We begin with the usual definition of a category (without any model). To
steamline our discussion into model categories we are purposely introducing a
minimal amount of category theory. Although the minimality of this approach
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may seem unorthodox, one can enjoy some of the powerful motivations of the
theory quickly without being hindered my a mass of abstract theory. For a
much more detailed investigation of category theory, refer to [Bor94].

Definition 2.1.1. A category C consists of a class ob(C ) of objects and
a set homC (X,Y ) of morphisms from X to Y where X,Y ∈ ob(C ) such
that for A,B,C ∈ ob(C ) there is a binary operation of sets ◦ : homC (A,B) ×
homC (B,C)→ homC (A,C) called composition which satisfies:

1. Unital Condition: For each X ∈ ob(X) there is a morphism idX ∈
homC (X,X) called the identity morphism such that for any f ∈ homC (X,Y )
idX ◦ f = f = f ◦ idX .

2. Associativity Condition: For f ∈ homC (W,X), g ∈ homC (X,Y ), h ∈
homC (X,Y ), h ◦ (g ◦ f) = (h ◦ g) ◦ f .

For a morphism f ∈ homC (X,Y ), the object X is the source of f and Y the
target of f . A small category is one in which the class of objects is a set.

Remark 2.1.1. More specifically, the above definition of a category is known as
a “locally small category”. The “locally small“ pertains to the fact that the set
of morphisms are in fact sets. As categories are rarily considered without this
condition, we usually drop the “locally small”. In fact, for our purposes, we will
only be concerned with small categories.

Example 2.1.1. 1. The category of sets, denoted by Set, where the objects
are sets and the morphisms are set maps.

2. The category of groups, denoted by Grp, where the objects are groups
and the morphisms are group homomorphims.

3. The category of R-modules, denoted by RMod, where the objects are
R-modules and the morphisms are R-module homomorphims.

4. The category of chain complexes of R-modules, denoted by Ch(R), where
the objects are chain complexes and the morphisms are the chain maps.

5. The category of topological spaces, denoted by Top, where the objects
are the topological spaces and the morphisms are continuous maps.

6. The category of topological spaces with a base point, denoted by Top∗,
where the objects are the topological spaces X with a base-point x0

and the morphisms are the base-point preserving continuous maps f :
(X,x0)→ (Y, y0) i.e. f is continuous and f(x0) = y0.

Remark 2.1.2. Using other algebraic structures, one can define similar categories
to the category of groups. For example, taking objects to be rings, domains,
fields, etc. Of course, the morphisms need to be adjusted to preserve the ap-
propriate structure.
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A morphism in a category C can be visually represented by an arrow be-
tween the source and target similar to functions of set theory. Moreover, the
composition of morphisms can be represented by a diagram of appropriately
adjoined arrows which we call diagram of composition. If two diagrams of
composition are equal as morphisms in C , then we can represent there equality
visually by adjoining the diagrams at the sources and targets of the composition
morphisms. The resulting diagram representing the equality of two composi-
tions is refered to as a commutative diagram.

Example 2.1.2. For a category C , we can define a category Mor(C ) where
the objects are all the morphisms of C and a morphism between two objects
f ∈ homC (A,B) and g ∈ homC (C,D) is a commutative diagram of the form

A

f

��

// C

g

��

B // D

Furthermore, notice that the identity of f is simply the morphism represented
by the commutative diagram

A

f

��

idA // A

g

��

B
idB

// B

Composition will be an adjoining of commutative diagrams.

As one may suspect, we might want to consider a way in which to compare
categories. Comparisons of sets and other structures with an underlying set are
made by functions. Properly defined “functions” of categories must preserve
the extra data of a category. These “functions” are as follows.

Definition 2.1.2. Let C ,D be categories. Then a functor F : C → D from
C to D consists of an assignment to each object X in C an object F (X) in C
and a set function F (−) : homC (X,Y ) → homC (F (X), F (Y )) for any X,Y ∈
ob(C ) which preserves identity (F (idX) = FidX ) and preserves associativity
(F (g ◦ f) = F (g) ◦ F (f)).

Example 2.1.3. 1. The forgetful functor of groups is the functor F : Grp→
Set which sends each group to its underlying set and each group homo-
morphism to the underlying set function. Likewise, the forgetful functor
of can be defined for other categories of algebraic structures.

2. The fundamental group functor is the functor π1 : Top∗ → Grp
which sends a topological space X with base-point x0 to the fundamental
group π1(X,x0) and a morphism f : (X,x0) → (Y, y0) to the morphism
f∗ : π1(X,x0)→ π1(Y, y0) defined by f∗(γ) = f ◦ γ.
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3. The functor F0 : Ch(R) → RMod which sends a chain complex C• to
the R-module C0 and a chain map f• to the R-module homomorphism f .

We now have enough machinery to begin “reinventing” topological terminol-
ogy into categorical terms. We will only define the necessary gadgets for defining
a model structure, all of which can be found in either [Hir03] or [Hov99]. For
the classical interpretations see [Hat01].

Definition 2.1.3. Let f ∈ homC (A,A′) and g ∈ homC (B,B′). Then f is a
retract of g if and only if there exists a commutative diagram

A

f

��

// B

g

��

// A

f

��

A′ // B′ // A′

such that the composition of the horizontal maps are the identity on A and A′,
respectively.

Definition 2.1.4. Given a commutative diagram in the category C of the form

A

i

��

f
// C

p

��

B
g
// D

The morphism i : A→ B is said to have the left lifting property with respect
to p and the morphism p : C → D is said to have the right lifting property
with respect to i if there is a morphism h ∈ homC (B,C) such that the diagram

A

i

��

f
// C

p

��

B
g
//

>>

D

commutes.

Remark 2.1.3. For simplicity, the liftings above are commonly denoted by LLP
or RLP, respectively.

Definition 2.1.5. A functorial factorization of a category C consists of two
functors p, i : Mor(C )→Mor(C ) such that f = p(f)◦ i(f) for all f ∈Mor(C ).

Definition 2.1.6. The maps u′, v′ in the diagram

A
u //

v

��

C

v′

��

B
u′ // D

(1)
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are called the base change of u, v along v, u, respectively. Similarly, the maps
s′, t′ in the diagram

A
s //

t

��

C

t′

��

B
s′ // D

(2)

= are called the cobase change of s, t along t, s, respectively.

2.2 General Definition

Definition 2.2.1. [Qui67] A model category is a categoryM with three closed

subclasses of morphisms that include identities: weak equivalences (
∼ // ),

fibrations ( // // ), and cofibrations (�
�

// ). These subclasses must also satisfy
the axioms MC1-MC5 below:

Note: An acyclic fibration (resp. acyclic cofribation) is a morphism which is a
fibration (resp. cofibration) and a weak equivalence.

MC1 M is complete and cocomplete.

MC2 If f, g ∈Mor(M) such that gf ∈Mor(M) and two of the three maps are
weak equivalences, then so is the third.

MC3 If f is a retract of g and g is a weak equivalence, fibration, or cofibration,
then so is f , respectively.

MC4 If f, g, i, p ∈Mor(M) such that the diagram

A

i

��

f
// C

p

��

B
g
// D

commutes, and i is a cofibration (resp. acyclic cofibration) and p is an
acyclic fibration (resp. fibration), then there exists a lift h with respect
to f, g, i, and p.

MC5 If f ∈Mor(M), then there exists functorial factorizations (α, β) and (γ, δ)
such that α(f) is a cofibration, β(f) is an acyclic fibration, γ(f) is an
acyclic cofibration, and δ(f) is a fibration.

Remark 2.2.1. A model category was originally called a “closed” model category
to emphasize it has enough structure to guarantee that any two classes of mor-
phisms determines the third, but conveniently the “closed” has been dropped.
Also, some definitions have the less stringent structure in which MC1 only re-
quires finite limits and colimits, see [Bor94], and the factorizations in MC5 do
not have to be functorial. In most cases, including ours, this has no effect.
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Proposition 2.2.1. [DS95] Let C be a category, D be the empty category,
and F : D → C the unique functor. Then lim−→ F , if it exists, is an initial object
of C and lim←− F , if it exists, is a terminal object of C .

Proof. Follows directly from the definition of colimit and limit, respectively.

Remark 2.2.2. SinceM is complete and cocomplete, this proposition guarantees
the unique existence of an initial object and terminal object in M, denoted by
∅ and ∗, respectively.

Example 2.2.1. 1. In Top, the initial object is the empty set, ∅, and the
terminal object is the one-point space,∗.

2. In Ch(R), the initial object and the terminal object are both the zero
chain complex, 0., which degree wise is the zero module. In cases when
the initial object and terminal object agree, as in this case, we call the
unique object the zero object.

Definition 2.2.2. If ∅ → X is a cofibration, then X ∈M is a cofibrant object.
If X → ∗ is a fibration, then X ∈M is a fibrant object.

Proposition 2.2.2. [Hov99] Let M be a model category.

• The fibrations (resp. acyclic fibrations) in M are the maps which have
the RLP with respect to acyclic cofibrations (resp. cofibrations).

• The cofibrations (resp. acyclic cofibrations) in M are the maps which
have the LLP with respect to acyclic fibrations (resp. fibrations).

Proof. For (i), axiom MC4 states that having the RLP is a necessary condi-
tion. Thus, we need only prove that having the RLP with respect to acyclic
cofibrations (resp. cofibrations) is a sufficient condition. Suppose we have the
map f : X → Y having the RLP with respect to acyclic cofibrations (resp.
cofibrations). Then by axiom MC5, f factors as f = p ◦ i where i : X → X ′

is an acyclic cofibration (resp. cofibration) and p : X ′ → Y is a fibration (resp.
acyclic fibration). So the diagram

X
idX //

i
��

X

��

X ′
p
// Y

commutes. Thus, by axiom MC4, there is a lift h : X ′ → X. Since the diagram

X
i //

f

��

X ′

p

��

h // X

f

��

Y
id // Y

id // Y

commutes, f is a retract of p. Hence, f is a fibration (resp. acyclic fibration).
The argument for (ii) follows by duality.

8



Proposition 2.2.3. [DS95] Let M be a model category. Then the (acyclic)
fibrations in M are stable under base change and the (acyclic) cofibrations are
stable under cobase change.

2.3 Induced Model Categories

As one might have noticed, proving that a category is a model category is
a difficult task. Thus, if we can find any shortcuts in our effort we should
definitely exploit them. Some categories are constructed from others such as
the dual category and pointed categories. As we will see, the model structures
on these categories are induced from the category used to construct them.

Suppose M is a model category.

2.3.1 Dual Model Category

When discussing categories, the opposite category usually is a handy device,
especially where contravariant functors appear. Thus, when using model cate-
gories one would prefer to have an easily accessible model structure for the dual
category. Fortunately, this model structure follows directly.

The category M induces a model category structure on Mop by defining fop :
Y → X to be a

• weak equivalence if f : X → Y is a weak equivalence

• fibration if f : X → Y is a cofibration

• cofibration if f : X → Y is a fibration.

Remark 2.3.1. Amending any property that holds for M, by simply flipping
arrows and interchanging fibrations and cofibrations, will also hold for Mop.

2.3.2 Comma Model Categories

These categories show up repeatedly and can be very useful. For example, the
category of pointed topological spaces is a comma category constructed from
Top. Like the dual category, if a model structure is known for the base category,
a model structure follows directly for the induced pointed category.

Definition 2.3.1. Let A ∈ ob(C ) be fixed. Then the coslice (or above) comma
category is the category CA where the ob(CA) are morphisms A → X where
X ∈ ob(C ) and homCA(A→ X,A→ Y ) is the set of diagrams

A

~~ ��

X // Y

that commute.
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Example 2.3.1. Letting C = Top and A be a point, the coslice comma category
CA is the category of pointed topological spaces.

The categoryM induces a model category structure onMA by defining the
commutative diagram

A

~~ ��

X // Y

to be a

• weak equivalence if f : X → Y is a weak equivalence in C

• fibration if f : X → Y is a fibration in C

• cofibration if f : X → Y is a cofibration in C .

Remark 2.3.2. The slice (or under) comma category, CA, can be constructed in
a similar manner. Moreover, C induces a model structure on CA.

2.4 Examples

Now, we give model structures on familiar categories beginning with the cate-
gory Top. We will not prove that Top is a model category, but merely use it
as an example to explore as we construct the homotopy category. As our main
interests lie in Algebra, we will prove that Ch(R) is in fact a model category.

2.4.1 Model Structure I on Top

Obviously, the roman numeral I insinuates that there is a second model structure
on Top which is in fact true and will be given below. This hints at the fact
that there might exist multiple model structures for a given category, each of
which will produce slightly different results. This first model structure on Top
will represent a more classical perspective of Homotopy Theory in Algebraic
Topology. Before we define the structure, we will recall a couple of devices from
Algebraic Topology.

Definition 2.4.1. [DS95] A map p ∈ homTop(C,D) has the homotopy lifting
property if for every A ∈ ob(Top) and every commutative diagram

A× 0 //

��

C

p

��

A× [0, 1] // D

there exists a lift h.
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Definition 2.4.2. [DS95] A morphism with the homotopy lifting property is
a Hurewicz fibration.

Definition 2.4.3. [DS95] Let A,B ∈ ob(Top) and A ⊂ B. Then a map
i ∈ homTop(A,B) has the homotopy extension property if for every Y ∈ Top
and commutative diagram

(B × 0) ∪ (A× [0, 1]) //

��

Y

��
B × [0, 1] // ∗

there exists a lift h.

Definition 2.4.4. [DS95] A map i ∈ homTop(A,B) is a closed Hurewicz cofi-
bration if A is a closed subspace of B and i has the homotopy extension property.

Our first model structure is the prototypical example from topology:

Theorem 2.4.1. [Hov99] A model structure exists on Top where f ∈ homTop(X,Y )
is a

• weak equivalence if f is a homotopy equivalence

• fibration if f is a Hurewicz fibration

• cofibration if f is a closed Hurewicz cofibration.

2.4.2 Model Structure II on Top

Now, we define the more widely used model structure on Top where the weak
equivalences are “weakened” and the fibrations are Hurcewiz fibrations, but
restricted to CW-complexes. Thus, the focus is on CW-complexes.

Definition 2.4.5. [DS95] A weak homotopy equivalence is a map
f ∈ homTop(X,Y ), if for each basepoint x ∈ X the map

f∗ : πn(X,x)→ πn(Y, f(x))

is a bijection of pointed sets for n = 0 and an isomorphism of groups for n ≥ 1.

Definition 2.4.6. A Serre fibration is a map p ∈ homTop(C,D), if for each
CW-complex A and commutative diagram

A× 0 //

��

C

p

��

A× [0, 1] // D

there exists a lift h.
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The second model category structure on Top is given by the following:

Theorem 2.4.2. [Hov99] A model structure exists on Top where f ∈ homTop(X,Y )
is a

• weak equivalence if f is a weak homotopy equivalence

• fibration if f is a Serre fibration

• cofibration if f is a retract of a map X → Y ′ in which Y ′ obtained from
X by attaching cells.

Remark 2.4.1. To see that these two model structures are indeed different, notice
that the morphism from the Warsaw Circle (Fig. 3) below (the subspace of R2

obtained by connecting the interval [-1,1] on the y-axis and the curve sin(1/x)
on 0 < x ≤ 1 via an arc from the point (0,−1) to (1, sin(1))) to a point is a
weak homotopy equivalence, but not a homotopy equivalence. Thus, is a weak
equivalence in (II), but not in (I).

Fig. 3

x

f(x)

Due to the popularity of the second model structure, from this point on we will
only refer to Top with the second model structure.

Later, it will become apparent that the fibrant objects and the cofibrant objects
are the cornerstones for constructing the homotopy category. Therefore, we will
go ahead and discuss these objects in Top.

Example 2.4.1. The fibrant objects are the objects X such that the unique
map X → ∗ is a fibration. So they are precisely the objects X where every
commutative diagram of the sort

A× 0
k //

��

X

p

��
A× [0, 1] // ∗
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has a lift. Since the map k ◦ π0 : A× [0, 1]→ X where π0 is the projection onto
A is a lift for any X, every object in Top is fibrant.
The cofibrant objects are the objects X such that ∅ → X is a cofibration. These
are the objects for which the map ∅ → X is a retract of a map ∅ → ∅′ where ∅′
is the object obtained from ∅ by attaching cells. Since the intitial object in Top
is the empty set, ∅′ is just a cw-complex. Thus, X is a cofibrant object precisely
when X is a retract of some cw-complex. Moreover, since every cw-complex is
a retract of itself, all cw-complexes are cofibrant objects.

2.4.3 Chain Complexes

In order to have an idea of the generality of a model category, we step away
from the topological origins for a moment and we define a model structure on
a purely algebraic category, specifically, the category of nonnegatively graded
chain complexes over a ring R, Ch≥0(R).

Theorem 2.4.3. [DS95] A model structure exists for Ch≥0(R) where a mor-
phism f : X• → Y• is a

• weak equivalence if f is a quasi-isomorphism

• fibration if f is an epimorphism in positive degrees

• cofibration if f is a monomorphism with projective cokernel for all degrees.

This model structure is usually referred to as the projective model struc-
ture. Again, due to the importance of the fibrant and cofibrant objects, we will
examine these objects in Ch≥0(R).

Example 2.4.2. The fibrant objects are the chain complexes C• such that the
map C• → 0• is a fibration. Since the fibrations are just epimorphisms degree
wise and every map from an R-module to the zero module is an epimorphism,
every chain complex is fibrant. As for the cofibrant objects, these are simply
the chain complexes C• such that the map 0• → C• is a cofibration. Since the
cofibrations are the monomorphisms with projective cokernels and the cokernel
of the obviously injective map 0• → C• is C•, the cofibrant objects are the chain
complexes with projective R-modules in every degree.

It is worth noting that in the category of unbounded chain complexes Ch(R),
not all chain complexes with projective R-modules in every degree are cofibrant,
as the next example illustrates.

Example 2.4.3. [Hov99] Let R = k[x]/(x2), R• be the chain complex with R in
every degree where the differential is multiplication by x, S0(R) be the complex
which is R in degree 0 and the zero module in all other degrees, and S0(k) the
complex which is k in degree 0 and the zero module in all other degrees. Assume
S0(R) is cofibrant. Since R• is acyclic, ∅ → R• is an acyclic cofibration. Since
the natural map of R → k is a surjection, the induced map S0(R) → S0(k) is

13



a fibration. The surjection R → k also induces the map R• → S0(k) so the
diagram

∅ //� _

∼
��

S0(R)

����

R• // S0(k)

commutes. With the model structure defined above on Ch(R), we see by MC4
there exists a lift h : R• → S0(R), but the lift in the zeroth degree would have
to be the identity on R which is not a chain map.

The following theorem will give a description of some of the chain complexes
in Ch(R) that are cofibrant.

Theorem 2.4.4. [Hov99] Any bounded below chain complex of projective
R-modules is cofibrant.

Now, we formulate the analog model structure for the nonnegatively graded
cochain complexes which is commonly known as the injective model structure:

Theorem 2.4.5. A model structure exists for Ch≥0(R) where a morphism
f : X• → Y • is a

• weak equivalence if f is a quasi-isomorphism

• fibration if f is an epimorphism with injective kernel for all degrees.

• cofibration if f is a monomorphism in positive degrees.

Before we go any further, we will actually prove that the projective structure on
Ch≥0(R) is indeed a model category. Although, this model category structure
can be generalized to the unbounded case, we will only prove the bounded case
because the unbounded case needs constructions that are beyond the scope of
this paper. Moreover, the proof of the bounded case is quite long enough, as
you will see.

2.5 Proof of Model Structure on Ch≥0(R)

2.5.1 MC1

Since R-mod is complete and cocomplete and limits and colimits of chain com-
plexes are defined degree wise , Ch(R) is complete and cocomplete. Since limits
and colimits will be taken degree-wise, the fact that Ch(R) is complete and co-
complete implies that Ch≥0(R) is complete and cocomplete.

2.5.2 MC2

Suppose C•, D•, E• ∈ Ch≥0(R) and

14



(i) C•
∼
f
// D•

∼
g
// E• , then the induced homomorphisms f∗, g∗ are iso-

morphisms. Since

(gf)∗(f
−1
∗ g−1

∗ ) = (g∗f∗)(f
−1
∗ g−1

∗ ) = idC

and similarly
(f−1
∗ g−1

∗ )(gf)∗ = idE ,

gf is a quasi-isomorphism.

(ii) C•

∼
((∼

f
// D• g

// E• , then f∗, (gf)∗ are isomorphisms. As in part (i),

it can be shown that g−1
∗ = (gf)−1

∗ ◦ f∗. Thus, g is a quasi-isomorphism.

(iii) C•

∼
((

f
// D•

∼
g
// E• , then g∗, (gf)∗ are isomorphisms. As in part (i),

it can be shown that f−1
∗ = g∗ ◦ (gf)−1

∗ . Thus, f is a quasi-isomorphism.

2.5.3 MC3

Suppose we have

C•
q
//

f

��

C ′•
r //

g

��

C•

f

��

D•
s // D′•

t // D•

and
(i) g is a weak equivalence. Then the diagram above induces the diagram

H(C•)
q∗ //

f∗

��

H(C ′•)
r∗ //

g∗

��

H(C•)

f∗

��

H(D•)
s∗ // H(D′•)

t∗ // H(D•)

Since g∗ is an isomorphism and the composition of the top and bottom maps
are the identities on H(C•) and H(D•), respectively, it can easily be seen that
f−1
∗ = r∗g

−1
∗ s∗. Thus, f∗ is an isomorphism. Hence, f is a quasi-isomorphism.

(ii) g is a fibration. If h : D• → E• such that hnfn = 0 for n > 0, then we have
the diagram

Cn
q
//

f

��

C ′n
r //

g

��

Cn

f

�� ��
Dn

s // D′n
t // Dn

h

��

0

��

En

15



for n > 0. Since (hntn)gn = hn(tngn) = hn(fnrn) = (hnfn)rn = 0 for n > 0
and gn is an epimorphism for n > 0, hntn = 0. Moreover, hn = hnidD• =
hn(tnsn) = (hntn)sn = 0 ◦ rn = 0. Thus, fn is an epimorphism for n > 0.
Hence, f is a fibration.

(iii) g is a cofibration. If h : B• → C• such that fh = 0, then we have the
diagram

B•

��

h

��

0

��

C•
q
//

f

��

C ′•
r //

g

��

C•

f

��

D•
s // D′•

t // D•

Since g(qh) = (gq)h = (sf)h = s(fh) = 0 and g is a monomorphism, qh = 0.
Moreover, h = idC•h = (rq)h = r(qh) = r◦0 = 0. Hence, f is a monomorphism.
We also must show that it has a projective cokernel in each degree. By the
universal property of cokernels we have the diagram

C•
q

//

f

��

C ′•
r //

g

��

C•

f

��

D•
s //

��

D′•
t //

��

D•

��

coker(f)•
u // coker(g)•

v // coker(f)•

Suppose k : A• → B• is an epimorphism and there exists a map h : coker(f)• →
B•. Since hv maps coker(g)• to B• and coker(g)• is projective, there exists a
map m : coker(g)• → A•. Thus, we have the diagram

C•
q

//

f

��

C ′•
r //

g

��

C•

f

��

D•
s //

��

D′•
t //

��

D•

��

coker(f)•
u // coker(g)•

v //

m

��

coker(f)•

h

��

A•
k // // B•

Since ts = idD• , vu = idcoker(f)• . Thus, hvu = h and mu : coker(f)• → A• is
the desired lift. Hence, coker(f)• is projective in each degree.
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2.5.4 MC4

(i) Suppose we have the diagram

A•
g
//

� _

i

��

C•

p∼
����

B•
h // D•

Since p is a fibration, pk is an epimorphism for k > 0. We now show that since
p is also a weak equivalence, p0 is actually an epimorphism. Since p is a weak
equivalence, p0 is a quasi-isomorphism. Thus, we have the diagram

C1
d1 //

p1

��

C0
//

p0

��

C0/Im(d1) //

p0∗

��

0

��

D1
// D0

// D0/Im(d1) // 0

where p1, p0∗ are epimorphisms and the zero map is a monomorphism. Thus,
the five lemma implies that p0 is an epimorphism. Moreover,

0 // ker p // C• // D• // 0

is exact. Thus, we are guaranteed a long exact sequence of homology groups.
Since H(C•) ∼= H(D•), H(ker p) ∼= 0 i.e. the chain complex ker p is acyclic. We
will use this fact shortly. To prove MC4 (i), we must construct a chain map
that lifts the diagram above. To do this, we first construct a map f0 : B0 → C0

and then use induction to define fn. Since i0 is a cofibration and P0 := coker(i0)
is projective, we have the diagram

A0
g0 //

� _

i0

��

C0

p0∼
����

A0 ⊕ P0
h0 // D0

Since P0 naturally maps into A0 ⊕ P0, composition with h0 is a map into D0.
Since p0 is an epimorphism and P0 is projective, there exists a map l0 : P0 → C0.
Thus, we have the lift

A0
g0 //

� _

i0

��

C0

p0∼
����

A0 ⊕ P0
h0 //

f0

::

D0

where f0 = g0 ⊕ l0. For 0 < k < n, assume fk has the properties

1. ∂fk = fk−1∂

17



2. pkfk = hk

3. fkik = gk

Now, construct f̃n the same way as f0. Notice that f̃n has the properties 2 and
3, but not necessarily property 1. Define ε : Bn → Cn−1 by ε = ∂f̃n−fn−1∂. We
show that ε induces a map ε∗ : Pn → Zn−1(ker p). Since pn−1ε = pn−1(∂f̃n −
fn−1∂) = pn−1∂f̃n − pn−1fn−1∂ = ∂pnf̃n − hn−1∂ = ∂pnf̃n − ∂hn = 0, by the
universal property of kernels there exists a map ε1 such that the diagram

ker pn−1

jn−1

��

Bn

ε1

;;

ε // Cn−1

pn−1

��

Dn−1

commutes. Since εin = (∂f̃n−fn−1∂)in = ∂f̃nin−fn−1∂in = ∂gn−fn−1in−1∂ =
gn−1∂ − gn−1∂ = 0, ε = jn−1ε1 and jn−1 is injective, ε1in = 0. Since Pn is the
cokernel of in, by the universal property of cokernels there exists ε2 such that
the diagram

An

in

��

Bn
ε1 //

πn

��

ker pn−1

Pn

ε2
::

commutes. By the induction hypothesis, ∂fn−1 = fn−2∂. So ∂ε = ∂(∂f̃n −
fn−1∂) = 0 − (∂fn−1)∂ = −fn−2∂∂ = 0. Since ε1 = ε2πn, jn−2∂ε2πn =
∂jn−1ε2πn = ∂jn−1ε1 = ∂ε = 0. Since jn−2 is injective and πn is surjective,
∂ε2 = 0. Thus, ε2 : Pn → Zn−1(ker p). Since ker p is acyclic, the map ker pn →
Zn−1(ker p) is a surjection. Moreover, there exists a map ε∗ such that the
diagram

ker pn

����

Pn

ε∗
99

ε2 // Zn−1(ker p)

since Pn is projective. Finally, let fn = f̃n− ε∗. Since ε∗ maps into the kernel of
pn, ε∗ does not affect property 2. Since in injects onto the direct summand An,
ε∗ does not affect property 3. By construction, it is now clear that fn satisfies
all three properties above. Hence, we have constructed our lift.

MC4 (ii) Before we can prove this axiom we must introduce some intresting
terminology and prove a couple lemmas.
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Definition 2.5.1. The n-disk chain complex of a R-module A is defined by

Dn(A)k =
{

0 k 6=n, n−1
A k=n, n−1

for n ≥ 1 where the boundary map is the identity in the nth degree and the
zero map every where else.

Although, we will not need this next object at the moment, we will go ahead
and define it due to its direct relation to the n-disk chain complex.

Definition 2.5.2. The n-sphere chain complex of a R-module A is defined by

Sn(A)k =
{

0 k 6=n
A k=n

for n ≥ 0.

Lemma 2.5.1. Let A ∈ R−mod and M• ∈ Ch(R). Then

homCh(R)(D
n(A),M)

∼→ homR(A,Mn)

under the map f 7→ fn.

Proof. The map f 7→ fn is easily seen to be bijective.

Corollary 2.5.1. If A is projective, then

homCh(R)(D
n(A),M) ∼= homR(A,Mn)→ homR(A,Nn) ∼= homCh(R)(D

n(A), N)

is surjective.

Lemma 2.5.2. Suppose P• ∈ Ch(R) is acyclic with Pn projective. Then
Zn(P•) is projective and P• ∼= ⊕n≥1D

n(Zn−1(P•)).

Proof. For k ≥ 1 let P (k) be the subcomplex of P• such that P
(k)
n is Pn if n ≥ k,

Bn−1(P•) if n = k− 1 and 0 if n < k− 1. Since P• is acyclic, Bn(P•) ∼= Zn(P•).
Moreover, Pn/Bn(P•) ∼= Pn/Zn(P•) ∼= Bn−1(P•), by the first isomorphism the-
orem. Thus,

P (n)/P (n+1) ∼= . . .→ P (n+1)/P (n+1) → P (n)/Bn(P•)→ Bn−1(P•)/0→ 0→ . . .
∼= . . .→ 0→ Bn−1(P•)→ Bn−1(P•)→ 0→ . . .
∼= . . .→ 0→ Zn−1(P•)→ Zn−1(P•)→ 0→ . . .
∼= Dn(Zn−1(P•))

Since P• is acyclic, P0 = Z0(P•) and

0→ Z1(P•)→ P1 → P0 → 0

= 0→ B1(P•)→ P1 → Z0(P•)→ 0
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is exact. Since P0 = Z0(P•) is projective, P1
∼= B1(P•)⊕ Z0(P•). Thus,

P = . . .→ P2 → P1 → P0 → 0→ . . .

= . . .→ P2 → P1 → Z0(P•)→ 0→ . . .

= . . .→ P2 → B1(P•)⊕ Z0(P•)→ Z0(P•)→ 0→ . . .

∼= P (2) ⊕D1(Z0(P•))

where D1(Z0(P•)) has a projective module in each degree. Since any direct
factor of a projective R-module is projective, P (2) is projective in each degree.
Moreover, P (2) is acyclic and 0 in degree zero. So we can repeat the argument
above for P (2), but starting in degree one. Thus, P (2) ∼= P (3) ⊕ D2(Z1(P•)).
Repeating in this way we will construct the desired factorization of P•.

Now to prove MC4 (ii), suppose we have the commutative diagram

A•
g
//

� _

i ∼

C•

p

����

B•
h // D•

Let P• = coker(i). Since

0→ A• → B• → P• → 0

is a short exact sequence of complexes, we get a long exact sequence of homology.
Since A and B are quasi-isomorphic, the long exact sequence shows that P• is
acyclic. So by the previous lemma, we can write P• ∼= ⊕n≥1D

n(Zn−1(P•))
where Zn−1(P•) is projective and Dn(Zn−1(P•)) is a projective in each degree.
Since B• ∼= A• ⊕ P• and p is a fibration, there exists a lift l such that the
diagram

C•

p

����

P•

l

55

// A• ⊕ P•
h // D•

commutes, by the corrollary of the first lemma. Hence, g ⊕ l is our desired lift.

2.5.5 MC5

(i)

Lemma 2.5.3. The map q : Q• → N• is a fibration if and only if q has the
RLP with respect to the maps 0→ Dn(R) for n > 0.

Proof. Recall from the proof of MC4 (ii),

homCh(R)(D
n(R), N•) ∼= homR(R,Nn) ∼= Nn.

The lemma follows directly.
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Define P (N•) = ⊕n>0 ⊕n∈Nn D
n(R) and p : P (N•)→ N• as the evaluation

map. Then the diagram

0 //

��

P (N•)

p

��

Dn(R)

l

::

// N•

commutes where l is the natural map into the direct sum. By the lemma above,
p is a fibration. Since p is an epimorphism in each degree, the map f ⊕ p such
that the diagram

M

i

&&

f

%%

M• ⊕ P (N•)
f⊕p

// N•

P (N•)

88

p

99

commutes is an epimorphism in each degree. Since

Hn(M ⊕ P (N•)) ∼= Hn(M)⊕Hn(P (Nn))
∼= Hn(M)⊕Hn(⊕n>0 ⊕n∈Nn D

n(R))
∼= Hn(M)⊕ [⊕n>0 ⊕n∈Nn Hn(Dn(R))]
∼= Hn(M)

and the natural map i in the diagram above is by definition a monomorphism
with projective cokernel, i is an acyclic cofibration. Hence, for every morphism
f : M → N we have the factorization

M•

f

%%
� �

i

∼ // M• ⊕ P (N•) p
// // N•

MC5 (ii) Suppose we have the map f : M• → N•.

Lemma 2.5.4. [GS07] The map f is an acyclic fibration if and only if

Mn → Zn−1(M•)×Zn−1(N•) Nn

is an epimorphism for n ≥ 0.
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By the universal property of fiber products, we have the commutative dia-
gram

Nn

&&

Mn

f
//

h//

//

Zn−1(Q•)×Zn−1(N•) Nn

55

))

Zn−1(N•)

Zn−1(Q•)

88

Thus, we have a factorization of f . By the lemma above, if we can show that h
can factor degree wise as a monomorphism with projective cokernel followed by
a fibration, the proof will be completed. We prove this by induction. Assume
for 0 ≤ k ≤ n− 1 there exists Qk ∈ R−mod with the map ∂ : Qk → Qk−1 such
that ∂2 = 0, the chain maps i : Mk → Qk, p : Qk → Nk such that pi = f and i
is injective with projective cokernel and the map Qk → Zk−1(Q•)×Zk−1(N•)Nk
is an epimorphism. Let Tn = Zn−1(Q•) ×Zn−1(N•) Nn. We know by the proof
of MC5 (i) that we can factor h as

Mn
i // Mn ⊕ P (T•)k

p
// Tn

Setting Qn = Mn ⊕ P (T•)n we have completed the induction step and hence
found our desired factorization.

We have now completed the proof in entirety.

3 Homotopy Category

For any model category, we will define the devices needed to construct a ho-
motopy theory by defining a generalization of homotopy from topology using
the machinery granted by the model structure. Then we will construct the ho-
motopy category and compare it to a purely theoretical definition which was
introduced in the introduction. The theoretical definition is much simpler, but
lacks the geometrical intuition that guides us in the prior construction and does
not come with the devices that we would like to have. Moreover, the theoretical
definition does not give any implication that the resulting homotopy category
is a locally small category.

To begin, let M be a model category.

3.1 Homotopies

For an appropriate generalization of homotopy to the categorical setting, there
are necessary characterizations of homotopy in topology which guide our intu-
ition on how to define homotopy of a model category. We will first characterize
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what it means for a model category to have “path” and “cylinder” objects. At
which point, the notion of right homotopy and its dual, left homotopy become
apparent. Homotopies will be where these notions overlap. All of which give
even the most algebraic settings a nice geometrical interpretation.

3.1.1 Cylinder and Path Objects

The following definition is a bit of categorical language, but the name should
be reminiscent of a common construction.

Definition 3.1.1. Given Y ∈ ob(M), the diagonal map is the map ∆ : Y →
Y
∏
Y which makes the diagram

Y

Y
∆ //

idY
//

idY //

Y
∏
Y

π0

<<

π1

""
Y

commute.

Remark 3.1.1. The diagonal map as stated here is actually a result of the uni-
versal property of a product of category theory. In fact, since M is complete,
this map is guaranteed to exist.

Definition 3.1.2. [DS95] A path object of Y ∈ ob(M) is any object PY such
that there is a commutative diagram

Y

∆

!!
∼
i
// PY p

// Y
∏
Y

where i is a weak equivalence. A path object PY is a good path object if p is a
fibration and a very good path object if p is a fibration and i is a cofibration.

Remark 3.1.2. The path object is by no means unique nor does it have to be
the path space of some object as one might guess. However, the path space in
Top is in fact a path object as we will now see.

Example 3.1.1. 1. Let Top be the model category with the second model
structure and Y ∈ ob(Top). Then the path space, Y I , is a path object in
Top. This can be seen by the commutative diagram

Y

∆

!!
∼
i
// Y I

p
// Y

∏
Y
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where i is the map that sends each point to the constant path at that point
and p is the map that sends each path to its end points. This obviously
factors the diagonal map.

2. Let Ch≥0(R) be the model category given and M. ∈ Ch≥0(R). Then by
the proof of MC5 (i), the object M. ⊕ P (M.

∏
M.) is a very good path

object in Ch≥0(R).

Now, we define the dual of path object and right homotopy. We call on a
bit more categorical language, but again the name hopefully is recognizable.

Definition 3.1.3. Given X ∈ ob(M), the folding map is the map ∇ :
X

∐
X → X in the diagram

X
j0

##

idX

!!

X
∐
X
∇ // X

X

j1

;;

idX

>>

given by the universal property of coproducts.

Remark 3.1.3. Again, in our model category M, this morphism is guaranteed
to exist by the universal property of coproducts since M is complete and .

Definition 3.1.4. [DS95] A cylinder object of X is any object CX such that
there is a commutative diagram

X
∐
X

∇

!!

i
// CX

∼
p
// X

where p is a weak equivalence. A cylinder object CX is a good cylinder object
if i is a cofibration and a very good cylinder object if i is a cofibration and
p is a fibration.

Example 3.1.2. 1. Let Top be the model category with the second model
structure and X ∈ ob(Top). Then X

∐
X = X∪̇X the disjoint union and

the folding map maps both parts identically onto X. Since this map is
obviously factored as

X∪̇X

∇

""i // X × I
p
// X
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where I is the closed unit interval, i maps each X of the disjoint union to
an end of X × I, and p is the projection of X × I onto X, the geometrical
cylinder X × I defines a cylinder object as it should. Also, note that p is
a weak equivalence since it is a homotopy equivalence which implies it is
a weak homotopy equivalence.

2. Let Ch≥0(R) be the model category of chain complexes given above, M. ∈
Ch≥0(R) and idM. : C. → C. be the identity chain map. Then the homo-
logical mapping cylinder, cyl(M.) defined by cyl(M.)n = Mn⊕Mn−1⊕Mn

with boundary ∂n((m0,m1,m2)) = (∂m0 + m1,−∂m1, ∂m2 + m1), is a
cylinder object of M.. If we define i : M. ⊕M. → cyl(M.) by (m0,m1) 7→
(m0, 0,m1) and p : cyl(M.) → M. by (m0,m1,m2) 7→ m0 + m2, then i, p
are chain maps such that the diagram

X ⊕X
i
//

∇

$$

cyl(M.) p
// M.

commutes. Consider the map q : M. → cyl(M.) defined by q(m) =
(0, 0,m). Then obviously pq = idM.

. A priori, pq is chain homotopic
to idM. . Define a chain homotopy {sn} by s((m0,m1,m2)) = (0,m0, 0).
Then with a little calculation, we see that
id((m0,m1,m2)) − qp((m0,m1,m3)) = ∂s + s∂. Thus, qp is chain ho-
motopic to idcyl(M.). Thus, the induced homomorphism p∗ on homology
groups is an isomorphism. Thus, p is a quasi-isomorphism. Hence, cyl(M.)
is a cylinder object.

3.1.2 Right and Left Homotopy

Definition 3.1.5. The maps f, g : X → Y are right homotopic, f ' r g, if
for some path object PY of Y , there exists a map H : X → PY such that the
diagram

PY

p

��

X
f
∏
g
//

H

<<

Y
∏
Y

commutes. The map H is said to be a right homotopy from f to g. If H : X →
PY is a right homotopy and PY is a (very) good path object, then the map
H is a (very) good right homotopy.

Lemma 3.1.1. [DS95] If Y is fibrant and PY is a good path object for Y , then
the maps π0 ◦ p, π1 ◦ p : PY → Y , where π0, π1 : Y

∏
Y → Y are the natural

projections, are acyclic fibrations.
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Proof. Since PY is a good path object, we have the commutative diagram

Y

Y

idY
//

idY //

∼
i
// PY p

// // Y
∏
Y

π0

<<

π1

""
Y

Since the identity maps on Y are obviously weak equivalences, π0 ◦ p, π1 ◦ p are
weak equivalences by MC2. Since Y

∏
Y is defined by the diagram

Y
∏
Y

π0 //

π1

��

Y

p0

��
Y

p1 // ∗

and Y is fibrant, π0, π1 are fibrations by 2.2.3. Since p is a fibration, π0◦p, π1◦p
are fibrations by composition. Hence, π0 ◦ p, π1 ◦ p are acyclic fibrations.

Lemma 3.1.2. [DS95] If f 'r g : X → Y , then there exists a good right
homotopy from f to g. If in addition X is cofibrant, then there exists a very
good right homotopy from f to g.

Proof. Since f 'r g : X → Y for some path object PY , there exists a right
homotopy H : X → PY . By MC5, there exists a factorization of p such that
the diagram

PY

p

��

� � ∼
i′
// P ′Y

p′||||

X
f
∏
g
//

H

<<

Y
∏
Y

(3)

commutes. Thus, we have the diagram

Y
∼
i
//

∆

&&

PY
� � ∼

i′
// P ′Y

p′
// // Y

∏
Y (4)

where i′ ◦ i is a weak equivalence by composition and p′ is a fibration. Thus, P ′Y
is a good cylinder object. Moreover, since the diagram (1) commutes, i′ ◦H is
the required right homotopy. Hence, there exists a good right homotopy from f
to g.
As for the second part, suppose X is cofibrant. By the first part, there exists a
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good path homotopy H between f and g with a good path object PY . Thus,
by MC5, we have the commutative diagram

Y
∼
i
//

∆

!!

� o

∼
i′ ��

PY
p
// // Y

∏
Y

P ′Y

p′

OOOO

Since p ◦ p′ is a fibration by composition, P ′Y is a very good path object for Y .
Furthermore, p′ is acyclic by MC2. Since X is cofibrant and the diagram

∅ //� _

��

P ′Y

p′∼
����

X
H // PY

commutes, there exists a lift H ′ : X → P ′Y by MC4. Thus, the diagram

P ′Y

p′

��

PY

p

��

X

H′

EE

H

<<

f
∏
g
// Y

∏
Y

commutes and H ′ is the required right homotopy. Hence, there exists a very
good right homotopy.

Theorem 3.1.1. [Hir03] Let X,Y ∈ ob(M) where Y is fibrant. Then the
relation ' r is an equivalence relation on
homM(X,Y ).

Now, we define left homotopy, the dual of right homotopy. As all of the
results of right homotopy have dual results for left homotopy, we will merely
mention the main results needed to move on.

Definition 3.1.6. [GS07] The maps f, g : X → Y are left homotopic, f ' l g,
if for some cylinder object CX of X, there exists a map H : CX → Y such that
the diagram

X
∐
X
f
∐
g
//

i

��

Y

CX

H

<<

27



commutes. The map H is said to be a left homotopy from f to g. If H : CX → Y
is a left homotopy and CY is a (very) good cylinder object then the map
H is a (very) good left homotopy.

Example 3.1.3. 1. Let X, Y ∈ Top and f, g : X → Y . Then f ' g in
the classical sense if and only if there exists a map F : X × I → Y such
that F (x, 0) = f(x) and F (x, 1) = g(x) which is equivalent to saying the
diagram

X

i0
��

f

""
X × I F // Y

X

i1

OO
g

<<

(5)

commutes. This is equivalent to the definition that f ' l g.

2. A very similar argument shows that the classical notion of homotopy in
Homological algebra is equivalent to left homotopy. The only difference is,
you must show this degree wise and make sure that everything coummutes.

The following lemma follows by a similar procedure as for right homotopy.

Theorem 3.1.2. [Hir03] Let X,Y ∈ ob(M) where X is cofibrant. Then the
relation ' l is an equivalence relation on
homM(X,Y ).

3.1.3 Homotopy

Definition 3.1.7. LetM be a model category. Two maps f, g ∈ homM(X,Y )
are homotopic, denoted by f ' g, if f ' l g and f ' r g.

Theorem 3.1.3. [Hir03] LetM be a model category and X,Y ∈ ob(M) where
X is cofibrant and Y is fibrant. Then the relation ' is an equivalence relation
on homM(X,Y ).

Proof. Since X is cofibrant and Y is fibrant, 'l and 'r are equivalence relations
on homM(X,Y ). Homotopy is an equivalence relation follows immediately.

Theorem 3.1.4. [DS95] LetM be a model category and f, g ∈ homM(X,Y ).

• If X is cofibrant and f ' l g, then f ' r g.

• If Y is fibrant and f ' r g, then f ' l g.

Proof. We prove the second claim and the first follows by duality. Since f ' r g,
there exists a good right homotopy H : X → PY where PY is a good path object
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for Y (Lemma 3.1.2) such that the diagram

Y

∆

!!
∼
i
// PY p

// // Y
∏
Y

commutes. Since Y is fibrant and PY is a good path object, π0 ◦ p is an acyclic
fibration where π0, π1 : Y

∏
Y → Y are the natural projections (Lemma 3.1.1).

By using MC2 and MC5, we can find a good cylinder object for X such that
the diagram

X
∐
X

∇

!!
� �

i′
// CX

∼
p′
// X

commutes. Since the diagram

X
∐
X
H

∐
(i◦f)
//

� _

i′

��

PY

π0◦p∼
����

CX
f◦p′

// Y

commutes, there exists a lift h : CX → PY . Moreover, π0 ◦ p ◦ h is the required
left homotopy by the uniqueness of the universal property of products.

Corollary 3.1.1. Let M be a model category and X,Y ∈ ob(M) where X is
cofibrant and Y fibrant, then the quotients homM(X,Y )/ 'r, homM(X,Y )/ 'l,
and homM(X,Y )/ ' are in bijective correspondence.

Given a model category M, there is a category Mcf where the objects are
the objects of M which are both fibrant and cofibrant and the morphism sets
are the same as the morphism sets in M. Thus, the category Mcf is just the
category M restricted to the objects which are both fibrant and cofibrant. So
there is a full “embedding”1 of categories of Mcf into M.

Since every object of Mcf is both fibrant and cofibrant, homotopy is an
equivalence relation on all hom sets. Moreover, as shown in [Hir03], we have
the following:

Theorem 3.1.5. LetM be a model category. Then there is a category πMcf ,
referred to as the classical homotopy category of M, where the objects are the
objects of M which are both fibrant and cofibrant and the morphisms are the
homotopy classes of the morphisms inM. Composition of morphisms is induced
by composition of morphisms in M.

A particularlly interesting class of homotopies is the following class.

1Categorically, a functor which is injective on the set of objects and fully faithful. Such
functors can be seen as the categorical analog of set inclusions.
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Definition 3.1.8. A morphisms f : X → Y in a model category M is a
homotopy equivalence if there exists a morphism g : Y → X such that
gf ' idX and fg ' idY .

Now with these morphisms in mind, the following theorem gives a plausible
reason for wanting to call the category above, the homotopy category.

Theorem 3.1.6. [Hov99] Let X,Y ∈ ob(M) such that they are both fibrant
and cofibrant. Then a morphism f : X → Y is a weak equivalence if and only
if f is a homotopy equivalence.

Unfortunately, in the process of defining πMcf , we have omitted quite a
few objects, a cost which is unnecessary as we will see. In fact, we are not far
though from the answer, we just need to refine the process.

Remark 3.1.4. Although, πMcf may not be the right choice for the homotopy
category of M, we point out that all the weak equivalences were inverted and
only the weak equivalences were inverted. Moreover, since a quotient of a set by
an equivalence relation is still a set, indeed, πMcf is a locally small category.

3.2 Ho(M)

3.2.1 Constructive Homotopy Category

By now, it may have become apparent that objects that are fibrant and cofibrant
have very nice properties. Unfortunately, not all the objects of a model category
are of the sort. We will now analyze a procedure in which we can always replace
an object with one which is fibrant and cofibrant.

Definition 3.2.1. For every object X ∈ ob(M), the fibrant replacement of
X is the object RX in the diagram

X //� p

∼

!!

∗

RX

== ==

guaranteed by the functorial factorization (γ, δ) of MC5.
Similarly, for every object X ∈ ob(M), the cofibrant replacement of X is the
object QX in the diagram

∅ //� p

  

X

QX

∼

== ==

guaranteed by the functorial factorization (α, β) of MC5.
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Example 3.2.1. [GS07] It is worth noting that in Ch≥0(R), if S0(M) is the chain
complex that has the R-module M in degree zero and the trivial R-module in
all other degrees, then the cofibrant replacement of S0(M), Q(S0(M)) given by

0. //� r

i
$$

S0(M)

Q(S0(M))

∼
p

99 99

is a projective resolution of M . To see this, note Q(S0(M)) is of the form

. . . // P2
// P1

// P0
// 0 // . . .

where Pi ∈ R-Mod. Since cofibrations in Ch≥0(R) are injective chain maps
with projective cokernel and the cokernel of i is Q(S0(M)), Pi is projective for
all i ≥ 0. Since Q(S0(M)) is quasi-isomorphic to S0(M), Hn(Pn) ∼= Hn(0) = 0
for all n > 0. So QM [0] is exact for n > 0. Moreover, since M = H0(S0(M)) ∼=
H0(Q(S0(M))) = P0/B0(P1), coker(P1 → P0) = P0/Im(P1) = M . Hence,
Q(S0(M))→M is a projective resolution.

Lemma 3.2.1. [DS95] For every map f : X → Y there exists a map f∗ :
QRX → QRY such that f is a weak equivalence if and only if f∗ is a weak
equivalence. The map f∗ is unique up to homotopy.

Theorem 3.2.1. The fibrant-cofibrant replacement map QR :M→Mcf/ '
definied by X 7→ QRX for every X ∈ ob(M) and for every f ∈ homM(X, Y )
f 7→ [f∗] ∈ homMcf

(QRX, QRY ) is a functor.

Definition 3.2.2. Given a model category M the homotopy category of M is
the category Ho(M) where

ob(Ho(M)) = ob(M)

and
homHo(M)(X,Y ) = homM(QRX,QRY )/ ' .

Theorem 3.2.2. Let HM : M → Ho(M) be defined by X 7→ X for all
X ∈ ob(M) and f 7→ QR(f) for all f ∈ Mor(M). Then HM is a functor.
Furthermore, H(f) is an isomorphism if and only if f is a weak equivalence.

3.2.2 Non-constructive Homotopy Category

Now we formally define the theoretical definition of the homotopy category that
was introduced in the introduction. To do this, we will now define a localization
of a category with respect to a specific class of morphisms.

Let C be a category and W ⊂Mor(C ).

Definition 3.2.3. [KS06] A localization of C with respect to W is the data of
a big category W −1C and a functor F : C → W −1C satisfying:
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1. F (w) is an isomorphism for all w ∈ W ,

2. for any big category D and any funtor G : C → D such that G(w) is an
isomorphism for all w ∈ D , there exists a functor U : W −1C → D such
that the diagram

C
G //

F
��

D

W −1C

U

;;

commutes up to isomorphism,

3. if U1, U2 are two objects of W −1C D then the natural map

homDW−1C (U1, U2)→ homDC (U1 ◦ F,U2 ◦ F )

is bijective.

Now, the theoretical definition of the homotopy category in the introduction
is simply the localization of the category with respect to the weak equivalences
i.e. W = the class of weak equivalences of C .

Example 3.2.2. As an example in Homological Algebra, the localization of
Ch(R) with respect to the class of quasi-isomorphisms is the derived category
D(R).

3.2.3 Equivalence

For model categories to fulfill their purpose, the homotopy category constructed
from a model category must be isomorphic to the localization of the model
category with respect to the class of weak equivalences. With a quick result
about the functor HM discussed above we will see that this is in fact true.

Lemma 3.2.2. [DS95] Given f ∈ Mor(M), f is a weak equivalence in M if
and only if H(f) is an isomorphism in Ho(M).

Theorem 3.2.3. [DS95] The functor HM given above is a localization of M
with respect to the class of weak equivalences W .

Thus, by the universal property of localizations, Ho(M) ∼= W −1M where
W is the class of weak equivalences.

Example 3.2.3. Since the derived category D(R) of chain complexes over R
is a localization of CH(R) with respect to the class of quasi-isomorphisms,
D(R) ∼= Ho(Ch(R)).
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4 Morphisms

Now that we have the desired categories in which to work, we would like to find
the appropriate morphisms between them. These morphisms follow immediately
after a little excursion into the construction of left and right derived functors.
As their name may suggest, they root from the subject of Homological Algebra
as we will see. After a discussion of their existence, we wil see how they lead
directly to the definition of our morphisms of model categories which we will
call Quillen Functors.

4.1 Derived Functors

Definition 4.1.1. Let C be a model category, F : C → D be a functor and
HC : C → Ho(C ) be the natural functor of C into its homotopy category. Then
a left derived functor of F is a pair (LF , l) such that the diagram

C
F //

HC ""

D

Ho(C )

l

KS

LF

<<

commutes and if (G, l′) is any other such pair, there exists a natural transfor-
mation t : G→ LF such that l ◦ (t ◦ idHC ) = l′ where here idHC is taken to be
the identity natural transformation on H.
Similarly, a right derived functor of F is a pair (RF , r) such that the diagram

C
F //

HC ""

r

��

D

Ho(C )

RF

<<

commutes and if (G, r′) is any other such pair, there exists a natural transfor-
mation t : RF → G such that (t ◦ idHC ) ◦ r = r′.

Remark 4.1.1. [Hir03] As dealing with all the compositions of natural transfor-
mations may seem difficult, Hirschhorn gives a plausible figurative understand-
ing of the universal properties of left and right derived functors. The left derived
functor is a functor that is the closest to F on the left and the right derived
functor is the closest functor to F on the right.

Remark 4.1.2. It is also worth noting that the universal properties imply that a
left or right derived functor are unique up to unique isomorphism. Thus, from
this point foward we will refer to the left and right derived functor.

After defining left and right derived funtors, we naturally lead to a discussion
of total left and total right derived functors, as they are a particularly important
case of left and right derived functors, respectively.
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Definition 4.1.2. Let C , D be model categories and F : C → D a functor.
Then the total left derived functor (LF , l) is simply the left derived functor of
the composition HD ◦F : C → Ho(D). Similarly, the total right derived functor
(RF , r) is simply the right derived functor of the composition HD ◦ F .

If we think of the derived category as the analog of the homotopy category,
then one might begin to see the relevance of the terminology since the purpose
of the total left and right derived functors in Homological Algebra are to extend
a functor to derived categories. In our case, we are extending a functor between
model categories to the their respecitve homotopy categories. Now, our mission
is to find sufficient conditions for the left and right derived functor to exist. In
order to do this, we will first prove two lemmas.

Lemma 4.1.1. [Hir03] Let C be a model category and F : C → D be a
functor.

1. Let X,Y be cofibrant objects in C and the map f : X → Y be a weak
equivalence. Then f factors as

X
f

//� p

∼
i   

Y

X ′

∼
p

>> >>

and there exists an acyclic cofibration q : Y → X ′ such that pq = idY .

2. Let X,Y be fibrant objects in C and the map f : X → Y be a weak
equivalence. Then f factors as

X
f

//� p

∼
i   

Y

X ′

∼
p

>> >>

and there exists an acyclic fibration q : X ′ → X such that qi = idX .

Proof. We will prove the first part and the second follows by duality. Since X,Y
are cofibrant, we have the commutative diagram

∅ �
�

//� _

��

X

j0

��

Y
j1 // X

∐
Y

Thus, j0, j1 are acyclic cofibrations by proposition 2.2.3. By MC5, we have the
factorization

X
∐
Y

g
∐
idY

//
� q

k
""

Y

Z

∼
l

?? ??
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Since cofibrations are closed under composition, k ◦ j0, k ◦ j1 are cofibrations.
Since g, l, idY are weak equivalences and g = l ◦ (k ◦ j0), idY = l ◦ (k ◦ j1),
k ◦j0, k ◦j1 are weak equivalences by MC2. Hence, letting i = k ◦j0, p = l, q =
l ◦ (k ◦ j1) and X ′ = Z, we have the desired claim.

Corollary 4.1.1. [Hir03] Let C be a model category and F : C → D be a
functor.

1. If F maps acyclic cofibrations between cofibrant objects in C to isomor-
phisms, then F maps weak equivalences between cofibrant objects in C to
isomorphisms.

2. If F maps acyclic fibrations between fibrant objects in C to isomorphisms,
then F maps weak equivalences between fibrant objects in C to isomor-
phisms.

Proof. Let X, Y be cofibrant objects and f : X → Y be a weak equivalence.
Then f factors as

X
f

//� p

∼
i   

Y

X ′

∼
p

>> >>

and there exists an acyclic fibration q : X ′ → X such that qi = idX by the
lemma above. Since i, q are acyclic cofibrations and X ′ is cofibrant, F (i), F (q)
are isomorphisms. Hence, F (f) = F (q)−1Fi is an isomorphism.

Theorem 4.1.1. [Hir03] Let C be a model category and F : C → D a functor.

1. If F maps acyclic cofibrations between cofibrant objects to isomorphisms
in D , then the left derived functor (LF, s) of F exists. Moreover, if X is
cofibrant, sX is an isomorphism.

2. If F maps acyclic fibrations between fibrant objects to isomorphisms in
D , then the right derived functor (RF, s) of F exists. Moreover, if X is
fibrant, sX is an isomorphism.

Proof. Let D : C → D be defined by D(X) = F (QX) and D(f) = F (Q(f))
where Q is the cofibrant replacement functor and f ∈ homC (X, Y ). Since
D is a composition of functors, D is a functor. If f : X → Y is a weak
equivalence in C , then Q(f) is a weak equivalence between cofibrant objects.
Thus, there is a unique functor LF : Ho(C ) → D by the universal property of
localizations. Notice how we conveniently denoted this functor by LF . Define
a natural transformation s : LF ◦HC → F by s(X) = F (iX) where iX is the
natural weak equivalence between QX and X. Since F (iX) : F (QX) → F (X)
and F (QX) = D(X) = LF ◦HC , s(X) is in fact a natural transformation from
LF ◦HC to F . Now, suppose (G, s′) is a similar pair such that G : Ho(C )→ D
and s′ : G ◦HC → F . We need to find a natural transformation t : G ◦HC →
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LF ◦ HC such that s ◦ (t ◦ idHC ) = s′. Since s′ is a natural transformation,
F (QX) = LF ◦HC and F (iX) = s(X), we have the commutative diagram

(G ◦HC )(QX)
s′(QX)

//

(G◦HC )(iX)

��

(LF ◦HC )(X)

s(X)

��

(G ◦HC )(X)
s′(X)

// F (X)

Since iX is a weak equivalence, (G ◦ HC )(iX) is an isomorphism. Thus, let
t = s′(QX)◦((G◦HC )(iX))−1. Since iX is an acyclic cofibration, by hypothesis
F (iX) is an isomorphism. Thus t must be unique.

Corollary 4.1.2. Let C ,D be model categories and F : C → D a functor.

1. If HD ◦ F maps acyclic cofibrations between cofibrant objects to isomor-
phisms in Ho(D), then the total left derived functor (LF, s) of F exists.

2. If HD ◦F maps acyclic fibrations between fibrant objects to isomorphisms
in Ho(D), then the total right derived functor (RF, s) of F exists.

To further the relevance between the left and right derived functors of model
categories and the left and right derived functors in Homological Algebra we
apply our new terminology to the tensor functor.

Example 4.1.1. Let Ch(R) and Ch(Z) have the usual model structures and
M ∈ mod−R. Then we have the functor

Ch(R)
M⊗R−// Ch(Z)

H // Ho(Ch(Z))

We first show that there exists the total left derived functor L(H ◦M⊗R−). By
the corollary 4.1.2, we need only show that H◦M⊗R− maps acyclic cofibrations
between cofibrant objects to isomorphisms in Ho(Ch(Z)). Suppose i : A. → B.
is an acyclic cofibration in Ch(R). Since i is injective degreewise, we have the
short exact sequence

0 // A. // B. // B/A // 0

Thus, we have a long exact sequence of homology groups. Since i is a quasi-
isomorphism, B/A is acyclic. Also, since i is injective with projective cokernel
for n ≥ 0, (B/A)n is projective for all n ≥. By lemma 2.5.2, Zn(B/A) is
projective and

B/A ∼= ⊕n≥1D
n(Zn−1(B/A)).

Thus,
B ∼= A⊕B/A ∼= A⊕ (⊕n≥1D

n(Zn−1(B/A))).

Since M ⊗R − commutes with direct sums,

(M ⊗R −)(B) ∼= (M ⊗R −)(A)⊕ (⊕n≥1(M ⊗R −)Dn(Zn−1(B/A))).
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Since (M ⊗R−)Dn(Zn−1(B/A)) is acyclic and homology commutes with direct
sum, H((M ⊗R −)(B)) ∼= H((M ⊗R −)(A)). Thus, (M ⊗R −)(i) is a weak
equivalence. Since H maps weak equivalences to isomorphisms, H ◦(M⊗R−)(i)
is an isomorphism. Hence, L(H ◦M ⊗R −) exists.
Since the cofibrant replacement of S0(N) is a projective resolution P. of N and
S0(N) is weakly equivalent to P., we have

L(M ⊗R −)(S0(N)) ∼= L(M ⊗R −)(P.) ∼= M ⊗R P.

Thus,
Hi(L(M ⊗R −)(S0(N)) ∼= Hi(M ⊗R P.) = TorRi (M,N)

Theorem 4.1.2. [DS95] Let C ,D be model categories and

C
F // D
G
oo

be an adjoint pair. That is, F is a left adjoint to G. If F preserves cofibrations
and G preserves fibrations, then

Ho(C )
LF // Ho(D)
RG
oo

are adjoints. Moreover, if for every cofibrant object X ∈ ob(C ) and every
fibrant object Y ∈ ob(D), F (X) → Y is a weak equivalence if and only if
its adjoint morphism X → G(Y ) is a weak equivalence, then LF and RG are
inverse equivalences of categories.

4.2 Quillen Functors

Since the weak equivalences in a model category are precisely the isomorphisms
in the homotopy category, it is quite easy to see that the best choice of mor-
phisms between model categories would be precisely the ones that hold this
structure. Moreover, these morphisms should certainly preserve constructions
dependent on the model category structure such as cylinder objects, path ob-
jects, and homotopies. Furthermore, an “isomorphism” should be a functor on
model categories that induces an equivalence of homotopy categories. As of
which, theorem 4.1.2 gives a complete description of such functors which we
will now formally define.

Definition 4.2.1. [GS07] Let C , D be model categories and

C
F // D
G
oo

be an adjoint pair. Then F (resp. G) is a left (resp. right) Quillen functor
if F (resp. G) preserves cofibrations (resp. fibrations) and weak equivalences
between cofibrant (resp. fibrant) objects. The pair (F , G) is called a Quillen
pair.

37



Lemma 4.2.1. [Hir03] Let C ,D be model categories and

C
F // D
G
oo

be an Quillen pair.

1. If X is a cofibrant object of C and CX is a cylinder object of X, then
F (CX) is a cylinder object for FX.

2. If Y is a fibrant object of D and PY is a path object of Y , then G(PY )
is a path object for GY .

Lemma 4.2.2. [Hir03] Let C ,D be model categories and

C
F // D
G
oo

be an Quillen pair.

1. If f, g : X → Y are left homotopic maps in C , then F (f) and F (g) are
left homotopic in D .

2. If f, g : X → Y are right homotopic maps in D , then G(f) and G(g) are
right homotopic in C .

Theorem 4.2.1. [Hir03] Let C ,D be model categories and

C
F // D
G
oo

be an Quillen pair. If X is a cofibrant object of C and Y is a fibrant object of
D , then the isomorphism

homD(FX, Y ) ∼= homC (X,GY )

induces an isomorphism

homD(FX, Y )/ ' ∼= homC (X,GY )/ ' .

Now, we give the definition of the functors that give what we would like
“isomorphisms” to be of model categories. Again, this definition follows from
theorem 4.1.2.

Definition 4.2.2. [Hir03] Let C ,D be model categories and

C
F //D
G
oo

be an Quillen pair. Then F (G) is a left (right) Quillen equivalence if for every
cofibrant object X ∈ ob(C ) and every fibrant object Y ∈ ob(D) F (X) → Y is
a weak equivalence if and only if its adjoint morphism X → G(Y ) is a weak
equivalence. The pair (F , G) is called a Quillen equivalence.
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As the next theorem is truely a restatement of theorem 4.1.2, we state it
anyhow for definiteness.

Theorem 4.2.2. [Hir03] Let C ,D be model categories and

C
F //D
G
oo

be an Quillen pair. If (F , G) is a pair of Quillen equivalences, then the induced
adjoint pair

Ho(C )
LF //Ho(D)
RG
oo

form an equivalence of homotopy categories.

Example 4.2.1. [GS07] Let f ∈ homCRings(R,S) and resf be the restriction of
scalars functor. Then

Ch(R)
S⊗R−//Ch(S)
resf
oo

is a Quillen pair. Moreover, if R = S, then this is a Quillen equivalence.

Example 4.2.2. [GS07] Let | − | be the geometric realization functor and S(−)
be the singular set functor. Then

sSets
|−|
// CGH

S(−)
oo

is a Quillen equivalence where CGH is the category of compactly generated
weak Hausdorff spaces.
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