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Feynman’s proof of the Maxwell equations, discovered in 1948 but never published, is here put on
record, together with some editorial comments to put the proof inte its historical context.

I. THE PROO¥F

As I mentioned in.my talk at the Feynman Memorial
Session of the AAAS meeting in San Francisco,' Feynman
showed me in October 1948 a proof of the Maxwell equa-
tions, assuming only Newton's law of motion and the com-
mutation relation between position and velocity for a single
nonrelativistic particle. In response to many enquiries, I
here publish the proof in a form as close as 1 can come to
Feynman's 1948 exposition. Unfortunately, I preserved
neither Feynman’s manuscript nor my original notes,
What follows is a version reconstructed at some unknown
time from notes which I discarded.

Assume a particle exists with position x; (f = 1,2,3) and |

velocity X, satisfying Newton's equation

mx;, = Fi(x,x,1), (n
with commutation relations

[xx.] =0, (2)

m[ x5, ] = i#i 5. (3)

Then there exist fields E(x,#) and H(x,) satisfying the
Lorentz force equation

.F} = E_,i + ejkka‘Hh (4)
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and the Maxwell equations

divH =0, (5)
Q‘-H—+cur1E:0. (6)
at

Remark: The other two Maxwell equations,

div £ = 47p, (7
%‘?-curlff:%lfrj, (8)

merely define the external charge and current densities p
and j.
Proof: Equations (1) and (3) imply

[x,F.] +m[x;%.] =0. 9
The Jacobi identity

[x, [ 1] + [5[50% 1] + [Fo [%0% 1] =0

(19)

with (3) and (9) implies

[*/[x;,F]] =0 (11)
Equation (9) also implies

[%:F] = = [xF,), (12)
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and therefore we may write
[x‘ka = - (fﬁ/m)fk;H; (13)
Equation (13} is the definition of the field &, which would
in general depend on x, x, and . But Eq. (11} says
[x ! ,H m } = 0,
which means that A is a function of x and £ only.
Next we satisfy (4) by assuming it to be the definition of

the field £. Again, £ will in general depend on x, %, and ¢,
but Egs. (3), (13}, and (14) imply

(14)

[xmij] =0, (15)
which says that E is a function of x and ¢ only.
The definition {13) of H may be written

by virtue of (9}. Another application of the Jacobi identity
gives

Epr [ %[ X2 ] ] =0 (7
Equations (16) and (1?) 1mply
[x,H;] =0, (18)

which is equivalent to (5). It remains to prove the second
Maxwell equation (6).
Take the total derivative of Eq. (16) with respect to
time. This gives
aH.; . 3H; fmz
+ i — = —
at ax,, fi
Now by (1) and (4), the right side of (19) becomes
~ (im/ A€ | E; + €muXmH %0 ]
= — (m/M(eu[Ex.] + [XH 1 ] — [%:Hx ] )
8E, _ oH,  dH,
= €y + X —X;
Ix, ax, %,
+ (im/RYH, [ %%, }. (20)
On the right side of Eq. (20), the last term is zero by sym-
metry because of (16}, the third term is zero because of
(5), and the second term is equal to the second term on the
left of (19). The remaining terms in Eqgs. (19) and (20)
give
aH, aE;
— _— 21
at i ax, 2D
which is equivalent to (6). End of proof.

(19)

€ [ %54 ]

IL. EDITORIAL COMMENT

When I show this proof to young physicists educated in
the 1980s, their response is usually disparaging. They say
the result is trivial and the proof unnecessarily complicat-
ed. It is therefore incumbent on me to explain why the
result is not trivial and why Feynman chose to prove it the
hard way. To understand the motivation for the proof, it is
essential to put it into a historical context. The young phy-
sicists of today are as far removed from the Feynman of
1948 as Feynman was then removed from Planck and Ein-
stein.

The argument of the young physicists is simple.? We
know, they say, the commutation relation between position
and momentum:

[X.p] =it 8y. (22)

210 Am, ]. Phys., Vol. 58, No. 3, March 1990

If we define a vector potential 4, by

P =mx, + A4, (23)
then the two commutation relations (3) and (22} together
give

[x;4] =0 (24)
Therefore, the vector potential 4, is independent of veloc-
ity, and depends only on x and 7.

We also know, they say, that the momentum and veloc-
ity of a particle are related by the equations of Lagrange:

oL

- , 25
P a0, (25
. aL
26
b= 6xk (26)
where
L = L(x.X,t) (27

is the Lagrangian. If we integrate (25) using (23), the re-
sultis

L= imxkxk + xkAk 4+ @ (28)

where @ is also independent of velocity. The scalar poten-
tial @ is defined by (28). If we now differentiate (23) using
(26) and (28), the result is Newton’s equation (1) with the
Lorentz force (4), the fields E and H being defined by the
standard expressions

H = curl 4, E=gradqo—%. (29)
The Maxwell equations (3) and (6) follow trivially from
(29). End of proof. So, the young physicists say, whatis the
big deal? From a modern point of view, the assumption of
Feynman’s commutation rule {3} implies immediately the
existence of a vector potential, and as soon as you have a
vector potential you also have a Maxwell field.

Feynman’s point of view was quite different. In 1948 he
was still doubting all the accepted dogmas of quantum me-
chanics. He was exploring possible alternatives to the stan-
dard theory. His motivation was to discover a new theory,
not to reinvent the old one. He was well aware that, if he
assumed the existence of a momentum p, satisfying the
commutation rule (22) in addition to (3), he would only
recover the standard formalism of electrodynamics. That
was not his purpose. His purpose was to explore as widely
as possible the universe of particle dynamics. He wanted to
make as few assumptions as he could. In particular, he
wanted to avoid assuming the existence of momentum and
Lagrangian related by (25) and (26). He chose his starting
assumptjons (1), (2}, and (3) because they appeared to be
less restrictive than the standard assumptions (22), (25},
and (26). He hoped that by going along this road he might
be led to new physics. He hoped to find physical models

that would not be describable in terms of ordinary Lagran-
gians and Hamiltonians.

Feynman in 1948 was not alone in trying to build theo-
ries outside the framework of conventional physics. At that
time many of the greatest physmsts, including Yukawa,’
Born,* and Heisenberg,® were pursuing programs for the
radical reform of physics. All these radical programs, in-
cluding Feynman’s, failed. But Feynman was the only one
who thoroughly tesied his program before rushing into
print. His proof of the Maxwell equations was a demonstra-
tion that his program had failed. The proof showed him
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that his assumptions (1), (2), and (3) were not leading to
new physics. The road that he had been exploring was a
dead end. From Feynman’s point of view, the proof was a
failure, not a success. That is why he was not interested in
publishing it.

I venture to disagree with Feynman now, as I often did
while he was alive. T still believe that his proof is worth
publishing. It is not only a historical relic of a failed pro-
gram. It also raises some new questions. The Maxwell
equations are relativistically invariant, while the Newtoni-
an assumptions (1), (2}, and (3), which Feynman used
for his proof, are nonrelativistic. The proof begins with as-
sumptions invariant under Galilean transformations and
ends with equations invariant under Lorentz transforma-
tions. How could this have happened? After all, it was the
incompatibility between Galilean mechanics and Maxwell
electrodynamics that led Einstein to special relativity in
1905, Yet here we find Galilean mechanics and Maxwell

equations coexisting peacefuilly. Perhaps it was lucky that
Einstein had not seen Feynman’s proof when he started to
think about relativity.
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A student experiment is described for studying persistent currents in a commercially obtained
ring of the “123” superconducting material at liquid-nitrogen temperature. The currents are
easily detected with a standard analog Hall probe. From observations extended over a 3-week
period, an upper limit on the possible resistance of one such ring was set at about 2 X 10~ '® . For
the rings studied, the induced current saturated at about 2 A as the applied flux change was
increased. An ac technique for checking the continuity of the superconducting path around the
ring is also described. These experiments provide an interesting supplement for topics in first-year
electricity and magnetism. The effects are striking and easily discussed at an introductory level.
For example, the current induced by turning the ring over in the Earth’s field is readily seen.

L. INTRODUCTION

The superconducting ring experiment of H. Kamerlingh
Onnes' is a landmark in the physics of the last 100 years.
With the discovery®* of the new high-T,, superconductors,
the experiment is easily adapted for classroom use. The
“persistent current” effect is certainly the most sensitive
indicator of the perfect conductivity—a fact which can be
well appreciated by first-year students. It is a useful supple-
ment to basic treatments of electromagnetism as it empha-
sizes fundamental principles such as Faraday induction
and Lenz’ law, conductivity, inductance, and the Biot-Sa-
vart law. At the same time, it is exciting, as it deals with
materials and to an extent with issues currently under
study around the world.

The ring experiment has the advantage of nof requiring
an extensive background in superconductivity, although
for those who wish to learn more, many general references
are available such as the books by Schoenberg? and Tink-
ham.’ The technical literature dealing with the new materi-
als has also been reviewed recently.®
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Our philosophy has been to provide an approach that is
as simple and generally doable as possible. The “ring”
(with its drilled hole) was provided to us commercially’
out of the “123" ceramic (Y ,Ba,Cu,0,_,}. The ring di-
mensions’ (0.82-in. outer diameter, 0.26-in. hole diame-
ter) were dictated by the practical requirement that it be
possible to drill the hole without cracking the outside.
Hence, the radial ring width was about equal to the hole
diameter. In most of our experiments, the “ring current”
was detected through the magnetic field it produced at 2
point 7.7 mm below the ring center. Since the form of the
current distribution over the ring was not known, the ratio
of the measured field to the total ring current could not be
calculated very accurately, although it could be estimated
rather well, The technique should then be described as *'se-
miquantitative.”

Section II describes qualitative observations of the ring
current. These experiments are striking, easily followed at
an introductory level, and can be done either as lecture
demonstrations or by small student groups in the laborato-
ry. This provides an exciting accompaniment to standard
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