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Summary

The aim of this dissertation is to describe in detail some of the
connections between simplicial sets, bisimplicial sets, simplicial
groupoids and crossed complexes. The work is more a survey than a
piece of original research, since bits of it are known to different
people, and the reduced/group case is already well known.

In the introduction, we set out some of the notation we will use, and
follow with a brief history of the origins of higher homotopy, some of
the milestones in its development, mentioning in fuller detail more
recent developments that have taken place.

Chapter one describes in detail the Joyal-Tierney loop-groupoid
functor, and its adjoint. Chapter two gives some technical results on
the nature of simplicial groupoids and their classifying spaces. In
chapter three we construct the codiagonal functor from bisimplicial
sets to simplicial sets as the adjoint of a cotriple resolution. In
chapter four we construct a left adjoint to the nerve functor from
simplici;l groupoids to bisimplicial sets. In chapter five we
describe Kan’s right adjoint to the Joyal-Tierney loop groupoid
functor as the composition of the nerve and the codiagonal, while in
chapter six we explain how the composition of the cotriple resolution
and the left adjoint to nerve fails to be the loop groupoid functor.
Chapter seven 1s concerned with the Moore complex of a simplicial
groupoid, its homology, and its failure to be a crossed complex. In
chapter eight we describe the semidirect decomposition of a simplicial
groupoid. In chapter nine we reexamine Ashley’s work on
simplicial-T-complexes, crossed complexes and group-T-complexes,
extending some of his results from the group to the groupoid case. In
chapter ten we describe the functor from simplicial groupoids to

crossed complexes.
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0. Introduction

Notation

We will use the following notation:

¥¥, the category of simplicial sets and simplicial maps;

¥¥., the category of reduced simplicial sets;

e, the category of simplicial groups and simplicial group
homomorphisms;

SGpdo, the category of simplicial groupoids and simplicial groupoid
morphisms;

Bi¥¥ the category of bisimplicial sets and bisimplicial maps;

Then, we have the following subcategories:

0 c PP Xe $9/0 &= X =0, and f e ¥270(X,Y) & fo = idg

Gpdo, < PEpda: G e #Gpdo, if and only if the simplicial set of

objects is constant.
¥Cpda/0 < fGpdo,: G e Epda/0 = ob(G) = 0, and
f € fGpdos/O(G, H) < f,obG = id ;:

BiSP, € BiPYP: Ya » € Bi¥Y, iff the simplicial set Yo, « is constant.

BLPP/0 c Bivy,: Yo o € BiFPP/0 = Yo,» =0 and

f € BLPP/O(X,Y) e fo o = id

By a k-box in X," we shall mean a set of elements of X,,
Xo,'",Xk_l,xk¢1,°",xn,1, such that leJ = dj_lxi for i< j,

i,j # k: we shall sometimes refer to this in general as "a compatible

set in X,".




History
The fundamental group as an invariant of homotopy type was already
well known when, in 1932, Cech prepared a paper on higher homotopy to
present to the International Congress of Mathematicians. It was an
idea he attributed to Dehn, who never published it (see [Br.2] for
references).
However, the paper was never presented, and only a small note appeared
in the proceedings; Alexander and Hopf persuaded him to withdraw the
paper, on the grounds that higher homotopy groups were abelian, and
therefore must be homology - also already well known to topologists.
This caused at least Hopf some embarrassment, as he commented much
later to Dyer. Hopf had shown as early as 1929 that there was a
2

nontrivial morphism from s to s , thus making n3(Sz) nontrivial,

whereas Hm(Sn) is trivial unless m=n or O.

Work on higher homotopy was taken up by Hurewicz, although he never
published proofs for his four notes on Aomotopy groups (1935,1936).
Feldbau worked on homotopy with Ehresmann in the early 1940's, and is
said to have provided proofs for some of Hurewicz’ results, but if he
did, these (along with much of his work) were never published. He was
deported to Germany where he died. Certainly, the first published

proof of the Homotopy Addition Lemma was in [Hu] - as late as 1953.

The study of abstract homotopy theory began with Kan. He showed (in
[K.1] and [K.2]) that homotopy could be defined purely simplicially.
In [K.1], Kan first defined the loop-group functor, G, from reduced
simpliclial spaces to simplicial groups, and then extended this to

simplicial spaces in general, by taking a maximal tree. He also

defined the right adjoint to G, the classifying space functor W.




J.Milnor, in an unpublished paper called "On the Construction of FK"
(lecture notes from Princetown, 1956 - see [A]) commented that the
loop-group functor gives a simplicial group which is homotopically
equivalent to the loop space of the original simplicial set, so long
as it 1is a Kan complex. For the singular simplicial set of a
topological space, this holds true.

It was not until 1984 that Dwyer and Kan proved that there was an
adjunction between simplicial spaces and simplicial groupoids
(see [D-K]) generalising the loop-group functor and the classifying
space functor constructed so long before by Kan.

This 1s surprising, as one of the original objections to higher
homotopy groups was that they were abelian, and so (in some sense)
less complex than the fundamental group, rather than more. Working
with groupoids rather than groups gets round this, as higher homotopy
groupoids do have the non-commutativity that mathematicians had

expected in higher homotopy.

It was clear from an early stage that groups were insufficient to
model all homotopy types, and there resulted two distinct approaches.
One was to study the homotopy groups of specific types of space. For
example, Eilenberg and Maclane found that the n®? homotopy group
functor, m,, is an equivalence between the category of groups and the
category of connected CW-complexes with only the n*? homotopy group
non-trivial.

Further, the group of homotopy classes of continuous maps from an
aspherical space, X, to a connected CW-complex, Y, with only the

th

n homotopy group non-trivial is modeled by the n*? cohomology

group, that is [X,Y] = H" (mX,n,Y). (A space is said to be aspherical

if it has all homotopy groups trivial except the fundamental group.)




The second was to develop algebras to model the homotopy of larger
classes of spaces: crossed modules, (which Whitehead defined in the
early forties) form a model for the homotopy type of spaces with all
but the first two homotopy groups trivial.
A more general structure was the n-fold groupoid (see [Eh]). This is
a set with n compatible groupoid structures, where compatibility
means that two distinct compositions, +; and +;, satisfy the usual
interchange law:-
(a +; b) +; (c +y d) = (a +; b) +; (c +; d)

whenever this is defined.
In 1948, (see [Bl]) Blakers used what we now call reduced crossed
complexes to study how the homotopy and homology of pairs of spaces
related. A reduced crossed complex is a chain of groups:-

ccor=—=>Cp = 3y > Choq ™+ —>C — 39 > Cp
where C; 1s abelian for i 2 2, there is an action of Cy on C;
(VW i 2 1) which the 3d; respect, and C; — 39 — Co is a crossed
module. Blakers called them "broup Systems" and credited Eilenberg
with suggesting he use them. He constructed a functor from reduced
crossed complexes to simplicial sets; much later it was shown that the
functor was to a subcategory of simplicial sets - namely,
simplicial~T-complexes, (see [As]).
Whitehead picked up reduced crossed complexes (see [W.1] and [W.2]),
considering those with certain freeness conditions in each dimension,
called them "homotopy systems" and linked them to chain complexes with
operators - his prime example of a homotopy system was the fundamental
reduced crossed complex of the skeletal filtration of a CW-complex.
Brown and Higgins generalised these ideas to define a crossed complex,

as a model for homotopy: it 1s from this definition that the older

concept gains the name reduced crossed complex.




A crossed complex is a chain

***=> Cph — 3.1 = Choy > > C; — 39 — C,,

where Co 1is a groupoid; for i 2 1, Cy is a family of groups
indexed by obCq; for i 22 and p € obCqy, each C;(p) 1is abelian;
there is an action of Cy on C€; (for i 2 1), such that for

g 3oh, _

g € Colp,q), h e Cy(p) and c € Cy(q), then c e Cy(p),

aohc -1

for i 2 2, and = hch for i =1. Further, the 3 respect

the action.

Brown and Higgins defined the fundamental crossed complex of a
filtered space, X = {X,}, to be m(X;,Xo) at the base, and to be

Ty (Xn,Xn-1,P) (p € Xo) for the families of groups at higher levels.

They further proved that the fundamental crossed complex functor, m,
from filtered CW-complexes, B¥, to crossed complexes, BC, had a
right adjoint, B, called the classifying space functor. However, for

X € ob(E¥), BnX 1is not (in general) homotopically equivalent to X.

Rather than using simplices as the basis for homotopy, they used
cubical complexes with connections; connections are essentially
additional degeneracies (see [B-H.1] and [B-H.2]).

With this extra structure, they defined w-groupoids as functors from a
canonical cubical complex with connections to the category of
groupoids. These have an infinite number of compatible groupoid

structures, and so generalise n-fold groupoids.

There is an equivalence between the categories of crossed modules,

w-groupoids and w-groupoids (in an w-groupoid, there is a hierarchy

of groupoid structures).




Alongside and  underlying this work is a large body of
techniques and abstract theory. The main milestone in abstract

homotopy was Quillen’s "Homotopical Algebra" ([Q]). He showed that
many of the constructions of topological homotopy theory could be
mimicked in any category with a certain structure: these are the

closed model categories.

The axioms for a model category require finite completeness and
cocompleteness, the existence of three specified collections of maps -
called weak equivalencies, fibrations and cofibrations (in analogy to
such structures in topological spaces) - and interrelations between
them. The model category becomes closed when any two of the specified

collections of maps will give the third by certain specified means.

Quillen showed that many categories of simplicial algebras (for
example simplicial groups and simplicial Lie algebras) supported this

structure.

The case for simplicial groups was already well known, having been
studied by Moore, as well as various students of Kan. They worked
with absolute homotopy groups, calculating them via the homology of

the Moore complex.

In order to prove that the homotopy of simplicial sets was equivalent
to that of simplicial groupoids, Dwyer and Kan proved that Gpdo  was
a closed model category in the sense of Quillen, and that there was a
pair of adjoint functors between the two categories. This adjunction

was found independently by both Joyal and Tierney, but they never

published it. We construct it in detail later in the paper.




Working with relative homotopy groups/groupoids and with n-skeletons
is significantly easier than dealing with complete simplicial sets and
absolute homotopy; Carrasco (see [Ca]) used skeleta to obtain a
crossed complex from a simplicial group, and Whitehead’s original
construction of a crossed module was as 3:mp(X,4,x) — my(4,x) where
@ 1s the boundary map.

For a pair of spaces, X and A4, with x e A c X, the nth relative
homotopy group is homotopy classes of maps from an n-simplex to X,
where the boundary is mapped to 4, and all but one face of the

boundary is mapped to the base point and the homotopies are relA.

Illusie (in [I.2]) defined the functors Dec and Total Dec. The
functor "Dec" takes a simplicial set, X, to the simplicial set
Yo, where Y; = X;,,, and dy,sy on Y, are dj.1,S1+41 on Xp.1;
this is the functor we refer to as P later in the paper. "Total

" is then the bisimplicial set with n*P column Dec"X; we

Dec
construct this as P* later in the paper. The origins of Illusie’'s

work go back to Deligne and Verdier, among others.

The nerve of a small category is a simplicial set, where the
O-simplices are the objects, the l-simplices are the morphisms, and
the n-simplices are chains of length n of composible morphisms. It
is a well known result that Ner(C) 1is a Kan complex if and only if
C 1is a groupoid. However, the nerve of a groupoid is more than a Kan
complex.

In 1975 Dakin, working with the nerves of groupoids, defined the
concept of a T-complex. This 1s a simplicial complex, Xe, with
specified subsets, T,, for each n (called the thin elements), such

that: -

.
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1) every box in X, has a unique filler in Th.1,

2) all degenerate elements are in T, and

3) the thin filler of a thin box has a thin 1lid.

Nerves of groupoids are T-complexes where the thin elements are
generated by the degenerate elements, and the n-simplices for n 2> 2
are all thin.

Ashley noted that if a simplicial group was a group-T-complex, then
the thin elements were precisely the ones generated by degenerate
elements, and that a necessary and sufficient condition for a group
complex to be a T-complex was that the intersection of the degenerate

subgroups with the Moore complex should be trivial.

The two different approaches to homotopy (cubical or simplicial) are
linked by the concept of a T-complex, since both the categories of
T-complexes and of w-groupoids are equivalent to the category of

crossed complexes, see [As] and [B-H.1] and [B-H.2]).

For a simplicial group, G, Conduché has used a decomposition of G,
as Kerd, x sp.1Gh-1, and from this Gn may be decomposed into
semidirect products of the Moore complex terms, NGy, and their
degeneracies (for Ni < n). He went on to define a concept of
2-crossed modules, which are equivalent to simplicial groups whose
Moore complex is trivial above the second term, (that is, has three
non-trivial terms).

Carrasco (in [Ca]) has developed a concept of hypercrossed complex,
which is a non-abelian chain complex with the additional information
required (in the form of structure maps) to rebuild a simplicial group

from it. In this case, the simpliclial group will be a T-complex if

and only if certain of the structure maps are trivial.




Using hypercrossed modules and the definition of the fundamental
crossed complex, Carrasco and Cegarra have shown that any simplicial

group will yield a crossed complex if you take as the nth term the

(NG)
(NG, n Dp)8 (NGpe1 N Dpat)’

restrictions of dg to this quotient, and the action to be based on

quotient

define the @ maps to be the

conjugation by elements of (sq)"Go. A direct proof that this is
indeed a crossed complex has been given by Porter ([P]).

Since NGg = Gg, and Kerdy n D; =1, the term ln the crossed complex

NG,

in dimension 0 will be Gy, while the first will be 3o (NG n D3)°

—S—>
It is well known that for a graph in §aoupo, [01 —i— Co}, to form
—t—>

a crossed module Kers —t— Cg, the necessary and sufficient
condition is £hat [Kers,Kert] is trivial. Brown and Loday showed
that for simplicial groups [Kerd},Kerdé] = do(Kerdf n Kerdg n Dy).
Porter (in [P]) noted that (NG, n D,)3(NG,,y N Dn.1) = [NG,,K,] where
Kn = Ker (G, — mgGe]. He was working with simplicial groups over a
fixed'group, commenting that Quillen worked with simplicial algebras
over a fixed algebra.

In 1982, in [L], Loday first used the concept of Cat"-group as an
algebraic model for n-truncated homotopy types: a gap in the proof of
his main theorem was filled by Steiner. Gilbert (in [(G])
redescribed the functor between n-cubes of spaces and Cat"-groups,
while Ellis (see [E], also [E-S]), defined crossed-n-cubes, and
showed that the category of crossed-n-cubes is equivalent to the

category of Catn—groups.

The history and survey goes well beyond the scope of the dissertation:
it will not touch on Cat"—groups and crossed-n-cubes. Instead, it is

restricted to generalising results known for reduced simplicial sets

and simplicial groups to simplicial sets and simplicial groupoids.




1.The G, W adjunction

We construct the functor G:¥$/0 —— #Gpdo/0 (usually called the
Joyal-Tierney 1loop groupoid functor, which generalises Kan’'s
G-functor (G:#P, — #§) ) and its right ad joint
W: Epda/0 —— ##/0. This construction was first written in a paper
of Dwyer and Kan, [D-K], but we have taken the liberty of correcting
what we believe to be typing errors in their text, as well as changing
certain of the conventions to give, what is for us, a more natural

construction (which is of course a matter of taste!).

A simplicial groupoid, §, with fixed object set O - i.e. an object in

fGpda/0 - is a set of groupoids {c‘}i together with face and

e N
degeneracy morphisms, 8;:8n — Bn-1» ©1:%n — Gn+1 (0<i<n), (which
obey the usual simpliclial identities). Further, ob§, = 0 is the same

for all n, and the face and degeneracy morphisms are the identity on

the object set.

Let K be a simplicial set, with vertex set Ky. Then, construct a
simplicial groupoid as follows:- let (GK) be a groupoid with

object set {x:x € Ko} and morphisms generated by

y:dids. .dpe1y — doda. -dpe1y, for all y € Kne1, with relations
S0z = idgTTa = for all z € K.

We see immediately that the groupolds so defined are free, as the
relations precisely kill off the Oth-degeneracy elements, which are

generators in the free groupoid.

We then have face and degeneracy operators in the usual manner,

defined as follows: -

10




Sox = (d1x)(dox) ™"

81; =dje1x for i >0

¢1X = S;,1% for i20
These definitions are the same as for the reduced simplicial
set/simplicial group case. The definition of 8y models a twisting
function
Lemma 1.1
The face and degeneracy morphisms defined above are the identity on
objects.

Proof:

Since dldz..dnd1+1x = dldz..d1¢1d1¢1d1*3..dn¢1X = dldz..dn+1x, and

dodz..dndi+1x = dodz..d1¢1d‘+1di¢3..dn+1x = dodz..dn+ix,

8; will not change the source or target of any map for i > O.

Further, the source of dyx 1is d;d,..d,dix which is

d1d2..dn_1d1dn+1x = d1d1d3..dn,1x = d1d2d3..dn¢1X

and the target of dyx 1is dgd,..dpd;jx which is

dodz..dn-1d1dns1X = dodyd3. . dpe1x

then (dox) ' has source dgdg..d.dgx which is

=2
dodz..dn-ldodn+1x = dod3..dn*1x = dod1d3..dn,1x

and target dydy. .dpdox which is

dldz..dn_ldodn,1x = dodz..dn+lx
Thus the composite (dlx)(dox)-1 has source d;d,..d,,1x and target
dodz. .dp4+1X, which means that &3 does not change the source or

target (as for &y, i 2 1).

For oy if i < n-1, 51,1X:d1..dn+1sl+1x — dodz..dn+1$141x

Then dl..dn+1s1+1x = d1..dn$1+1dnx

= d1..d1,1d1,2$1¢1d1¢2..dnx = dl..dnx,

11




and similarly doda. .dpe1Si+1X = dodz. .dpx.
We mention briefly the cases o,.; and ¢, (0o, has been dealt with

by the preceding equations); it is clear that ¢, and o,.; are

degenerate cases, as dp.1Sp = dpn+1Spns1 = id. Thus, ¢; does not
change the object set either. u
Lemma 1.2

o; and 8; obey the simplicial identities.

Proof:
T10)JX = S1415)41X = Sj.25141X = 0)410;X, (i < j),
818;x = dy,1dy.1x = dydj41x = 8;_18,% (0 < i < j)
sydy1X = ¢y 18X (0 <ic<j)
810yx = dy,15je1x =4 Idx = X (i = j,j+1, i > 0)
5y41d1X = 038y _1X (j+1 < 1)

SQUJ; = (dISJ,1X)(do$J¢1X)-1 = (SJd1X)(SJd0X)-1 = @J-ISOE (j > 0)

800X = (d151%) (dos1x) ' = (X)(Sgdox) ™) =X%.e = %

805‘,; = (dldj+1x)(dodjq.1X)‘1 = (de].x)(deOX)-l = 8)..180; (j>1)

8080X = 80((d1x) (dox)™!) = 84(d1x) (80(dgx)) !
= (d1d;x) (dod1x) ™" ((d1dox) (dgdox) ™M) ?
= (dldIX)(dodoX)-l(dodo)(d1doX)-1 = (dldIX)(d1d0X)-1
= (d1d2X)(dod2X)-1 = SO(E;;) = 8081; ]
Theorem 1.3 GX 1is a simplicial groupoid. |

If, further, f:R — T 1is a map of simplicial sets, then we define Gf
as the simpliclal groupoid morphism which naturally extends f; that
is Gf(rilr32..r&m) = (£ry)%1(£r2)%2.. (£r,)%n. This 1s of course

possible as GR 1is a free groupoid. Thus G 1is a well defined

functor.

12




We now proceed to the generalisation of the W construction for
simplicial groups. We construct ¥ explicitly here (working from
[D-X]), but W may be given as a composite functor, as we show in

subsequent sections.

Let X € #Gpdo/0; we construct a simplicial set WX as follows:-
(WX)o = O,
(WX)n = {(gn-1,..80):8; € arrX,, domg, = codg;,i} for n > 0,
defining 8,:(WG), — (WG),., by:-
Sn(gn-1,..80) = (dn-18n-1,..d12;)

So(gn_l,..go) = (gn-z,..go), and for 0 < i < n,

8;(gn-1,.-80) (d1-18n-1,--do8n-1-8n-1-1,--80).
and ¢y: (WG),.y — (WG), by:-
d'o(gn-l,..go) = (idxn,gn-l,..go), and for i > 0,

@i (gn-1,..80) = (S1-18n-1.--S08n-1, idy _ +8&n-1-1,-.80),

where x; = codg;, and where Xn = domg,_q.

We can consider this construction in a more pictorial way: each

n-simplex of (WX) 1s a string of maps: -

&n-1 8n-2 &go
Xn »Xn-1 S AT LRERRE Xy—Xo, where g, € X;, x; = 0.
8n-1 &n-2 &go
So 81 (Xn —> Xp.q4 — Xpn-2° Xy — Xo)
di-18n-1 dogn-1-8n-1-1 8o
= Xp ——> Xn-1°"""Xp_141 > Xp-1-1"""X1 — Xg
En-1 &n-2 go 8n-2 go

Solxy —> Xpy — xp.5°° %3 —> X0) = Xpo1 — Xp_3°° Xy, —> X,

&n-1 &n-2 go dn-18n-1 digy
SnlXn —> Xpy — Xp-2° %y — xg) = Xn —— Xpo1°"° Xp— X;.

&n-1 &n-2 go
Oy (Xn — Xpy — Xp_3' Xy —> x4) is
S1-18n-1 S0&n-1 idy | &n-1-1 8o

¥n = Xn-1"""Xn-y+1 —> Xp.y — Xpoy —> Xp_1-1°°X; — Xg).

13
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Thus, if we call the vertex x,.; the i vertex, the i face

map may be considered as deleting the ith vertex, and the i

th
degeneracy may be considered as doubling up the ith vertex.

We must check that the 8, and o obey the usual simplicial
identities. Firstly, 8;8;:-

Consider 1 < i+l < j < n,

5155(gn-1,--80) = 81(dy-18n-1,--d0&n-3-&n-3-1,--&0)

= (dy-1dy.18n-1,.. (dodj-18n-1). (dj-1-18n-1-1),.. (dogn-3)-8n-j-1,--&0)

(dy_2dy-1(gn-1),..d5-1-1(do(gn-1)-8n-1-1),..do(gn-3) . &n-3-1...80)

8y-1(dy-18n-1,-.d08n-1-8&n-1~1++-8n-18n=j-1,--£0)

8;-18;(gn-1,.-..80)

Then for 0 < i < n-1,

8181+1(8n-1,""",80) = 8;(d1gn-1,""",d08n-1-1-8n-1-2-"""»&0)
= (dy-1d18n-1,"**dod18n-1-d08n-1-1-8n-1-2, """+ £0)

2
(dy-18n-1,""*,do(dogn-1-8n-1-1)-8n-1-2-"""+&0)

2
= 8;(dy-18n-1,""",d08n-1-8n-1-1,8n-1-2,""",80) = 81(&n-1,""",&0)

Further, for n> i > 0

8081 (gn-1,""",80) = 80(dy-18n-1,""",do8n-1-1-8&n-1-2,"""»&0)

(dy-28n-2,""",d08n-1-1-8n-1-2,"""»80) = 81-1(gn-2,"*",8&0)

81-180(gn-1,""",80)

and
818,(gn-1,""",80) = 81(dpn-18n-1,""",d181)

(dy-1dn-18n-1,""*»dodn-18n-1-dn-1-18n-1-1,""*,d1&1)

(dn-2d1-18n-1,""*»dn-1-1(dogn-1-8n-1-1)> " *,d181)

Sn-1(d1-18n-1,""",d08n-1-&n-1-1-"""»&0)

81-180(gn-1,""",&0)

[

finally
80%n(gn-1,""",80) = 80(dn-18n-1,""",d181) = (dpn-28n-2," " *,d181)

= 84-1(&n-2,""",80) = 8,-180(gn-1,""".&0)-
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The special cases involving &8y and 8, are far simpler than the
general cases, and so from now on we leave these (and cases involving

og) to the reader.

For o0y, consider 1 < i < j,

0105(gn-1,""",80) = ¢1(Sj—1gn-1»‘"-Sogn-j,idxn_j»gn-j-1’"‘»go)

(31-155-1gn-1»"‘,Sosj-xgn-i»idxn_i-"'.Sogn-j'idxn_j»"',go)

(5151-1gn-1."'.Sj-1¢1sogn-1-idxn_1-"'vsogn-j'idxn_J""»go)

05+1(51-1gn-1,"'»Sogn-ixidxn_1:gn-1-1»"'.go) = 054101 (gn-1,""",80)

For &0y, consider 0 < i < j:

810y(gn-1,""",80) = 81(Sj-18n-1,""",508n-y,idx__ +&n-3-1,""",&0)
n-j

(dl-lsj-lgn-lr""dosj-lgn-l-sj-l-lgn-l-l:'"rsogn-j»idxn_Jv""gO)

(SJ-Zdi-lgn-l"'"sj—i-l(dogn-i-gn-l-l)""’Sogn-jnidxn » s 80)

-J

03-181(8n-1,""",80)
then n > i > j+l1:
8i0y(gn-1,""",80) = 81(sj-lgn—lo'"vsogn-j-idxn_Jrgn-j-lv'":go)

= (dl-lsj-lgn-lr"':dl-jsogn—J'idxn » " *,do8n-1+1-8n-1»""",&0)

-J

(sj-1di-28n-1,"""+S0d1-y-18n-J> 1dx_

_jt'"’dOgn-l+l-gn—l""’gO)

o5(di-28n-1>"""»d1-3-18n-3,d1-j-28n-3-1>""*+d08n-1+1-8&n-1»"""»&0)

0385-1(gn-1,""",80)

Finally, consider 0 < i < n:

5101 (gn-1,""*,80) = 81(S1-18n-1,""",508n-1,1dx__ +&n-1-1,""",&0)

= (d1-.151-18n-1,""",d0S08n-1- 1dx__ +&n-1-1,""",&0) = (gn-1,""",80)
and 0 < i < n-1:

81+191(gn-1,"""180) = 8141(51-18n-1,"""+508n-1,1dx__ +&n-1-1,"" ", &0)

= (dy51-18n-1.""*+d1508n-1,1dx__, -&n-1-1,""">80) = (&n-1.""".&0)
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If we have a morphism of simplicial groupoids ¢:X — Y, then o
from WX to WY 1is defined in the obvious way, remembering that
morphisms in any simplicial category commute with the face and
degeneracy maps. We now check that the two functors we have defined
are adjoint. |

For R e ob(#£/0) define ng:R — WGR by ns(x) = (%,dx, - -+, a0 Ix)

for x € R,. This has the required property that the vertices of x

are the domains and codomains of the morphisms },dox,---,dg-lx and it

is straightforward to check that domdéx = coddé-lx. It is further

clear that {ng} 1is a natural transformation from 1 — WG, since
face operators commute with simplicial maps. The claim is that N is

the unit of the adjunction W ~ G.

We make the further claim, that the counit of the adjunction,

ex:GWX — X, is given by ey: (x5-q, -, Xq) > Xn.1; again, this is
clearly a natural transformation from GW¥W —» 1.
To prove these claims, we need only check that:-

(1) W(ex).ngx = 17y, and (11) €¢s.Glng) = 14s.

(1) Consider (gn-y,°:-,80) € WX; then

V(ex)nwx(gn-lt °t »gO)

ﬁ(ex)((gn-1,'°',g07,(gn_z,-'-.gaj}'--.(go))

= (gn-1,""",&0) as required.

(1) Consider r € R,; then

gcs-Gng) (r) = egs(r,dor,---dy 'r) = T, as required.
From these we can form the bijection $: Gpda/0(GR, X) — #9/0(R,WX),
as for f:GR — X, and g:R — WX, ¢(f) = W(f).ng, and

o g = €x.G(g).
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2.Properties of a simplicial groupoid and of its classifying space

It is well known that a simplicial group is a Kan complex, and it is
fairly trivial to show that the same is true of a simplicial groupoid:
the proofs are the same, except that in the groupoid case, we need to
check that various composites are well defined. While this proof
naturally comes here, it is also important in section 9. For this
reason, we will restate it there as Lemma 9.1. The proof is

essentially from Ashley [As] (though it is doubtless much older).

First some notation; D, 1is the subgroupoid of G, generated by the

degenerate elements.

Proposition 2.1
A simplicial groupoid is a Kan complex, and furthermore, for any

k-box in Gp_.; there is a filler in Dy.

Proof

We construct degenerate elements as follows: -

If 0<k<n, then define wp = soxg and w; = wl_l(sld,wl_l)'isiyi
for 0<ig<k-1, then Wn = Wyeeg (Sno1dawyo1)  Sno1¥n and
wy = wj,l(sj-idjwj*1)-1sj_1yj for k+1 < j < n

The wj; are well defined, as all the ¥y have the same source and
target (as the d, preserve objects), and so the wy all have the

same source and target. They are also clearly degenerate.

Considering the original box again, then for J < k,
-1 -1
djw_, = dj(wj-l(sjdjwj+1) SJY)) = djwj-i(djwj+1) Yy =¥ and for

. -1 -1
k<o dywy =djlwye(syoqdywyeg)” sjoy)) = dywy,(dywy) ly) = ;.
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Further, if we assume that w; has been defined, and that for all
Jj "up to" i, dyw; =y, then:-

for Jj < i<k, dywy,q = Yj(sl_idt_1YJ)_1SI_1djy1 =Y (since
di-1yy = dj¥y1),

for Jj > 1>k, dywi-q = YJ(Sl-ldXYJ)-1sl—1dj-IYI =y; (as before),

and lastly, for j < k < i, djwyj.y = y,(s,-2d1_1y1)-lsi_zdjy, =Y¥j.

Thus, if we have a box missing the k" face, then wy,; has faces
which match up with the elements of the box, and thus the wy,; 1is a

filler. Further, wy,; 1is degenerate.

The cases k=0 and k = n are similar:-

If k =0, then define w, = s _1y,, and w; = w,,1(sj_1djwj,1)-lsj-1yj
for 1< j<n In this case, w; fills the box.

If k = n, then define wg = sgxg and w; = wi_l(s,d,wl-l)-lsiyl for

0 < i< n-1. In this case, wj.; fills the box. s

It is also true that WG 1is a Kan complex (a property it obtains from
the groupoid @G). This, too, is fairly straightforward to check, with

the exception of one case, where the calculations are slightly messy.

Proposition 2.2

Let G be a simplicial groupoid, then WG is a Kan complex.

Proof

We proceed by induction: for (WG)gy a compatible set is a single
element (an object of Gg), and the filler is the identity at that
object; for (WG); we have three cases:-

1) dgxo = doxy, the filler here is (sqo(x;.%o 1),%o) € (WG),

1i) dyxg = doxz, the filler here is (soxa,xo) € (WG); and
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111) dyxq = dyxp, the filler here is (sgxs, X3 .%;) € (WG),

We remark that in all cases the x;’s are in the same hom-set, and so
the elements are well defined elements of (WG);.

We now assume that we have the extension condition satisfied for all
compatible sets in (WG); for i <n. Let Wg,* ", Wx-1,Wke1s"""»Wnet

be a compatible set in (WG),. We shall consider three cases.

The case k = 1. Let wg,wz,°°*,wh.; be a compatible set in (WG),.

Then, if v 1is a filler, 8gv =wg, and so v must have the form
(y,wg) for y € G,. If we have such a v,
8;v = (dy-1y,81-1wg) = (dyj-1y,80w;) for i 22. For v to be a
filler, we require &;v = wy;. Since 8y deletes the first term, this
will be satisfied if d;_;y = piwy.

Define X1-1 = p1Wy for i22. Then, for 0< i<,
dixy = dyp1Wjye1 = P18141Wjye1 = P183Wi4q = dj_1p1Wyisy = dj-1Xy, and so
the x; form a compatible set in Gp.; for i 2 2. Thus there is a
filler, which we will cali ¥, such that dyy =x;y for n21i2 1.

This is clearly the y we require.

The case k 2 2. We have wq,wy, ", Wg_1,Wkat,'"",Wne1 a compatible

set in (WG),. As before, v must be of the form (y,wg) to be a

filler and we define x; = pywy+q, 1 #* k-1, and x = pywp.

Now, 8;v = (doy.x,80wg) = (doy.x,80w1), while for iz 2,

5;v = (dy-1y,81-1wg) = (dy-.1y,80w;), thus for v to be a filler, we

require y to be a filler for the set {xo.x-l} v {xy s.t. 121}
-1

where we consider xg.x to be the zero face of the box. All we

require for such a y to exist, is for the set to be a (k-1)-box.

For 0 < 1 <}, compatibility follows from the last section, so we
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need only check that dox; = dy_;(xg.x 1).

-1 -1
So doxy = (P181Wi41)(Pawie1) = py((83wy41) (Bgwyeq) ™)

= p1((81w1)(81wo)_1) = dl-l(xo.x-l) as required.

The case k = 0. We have a set of compatible elements in (We),,

Wi, , Wnet- We write wy = (xo,y,v) and wy = (X3.3,¥1-2,V;-2)
(for 12 2) where x; € Gy.q, .Yy € Go-2 and v,v; € (WG),_;.
Since 81wy = 8,wy for i > 1, we have doxXg.y = doX1.¥o and
di.2Xg = doXj{-1-Yi-2 for 3< i< n-1, by equating the first
projections, and thus yo.y ' = dglx; '.xo) and ¥i = doXya1.d1Xo
1< i< n-1. Further, we note that dixy =dj.qxy for 0< i< j

from the compatibility conditions on the wy, J > 2.

Now, if we have a filler w € (WG),,;, then 8g°w = 5¢8;w = oWy, SO
we may write w = (a,b,y,v) where ae€G,, beG,.; (and y and v
are already defined). Then, 81w = (doa.b,y,v) So we require
doa.b = xqo; 8w = (dja,dob.y,v) so we require v = vy, dgob.y = yg,
and dja = x;; and for 3 < i< n+l, 8w = (dy-,a,d;.2b,8;_5(y,v))

so we require 38;y_,(y,v) = vy_3, dy_2b =y;_, and dy.;a = x;_;.

Firstly, 81-2(¥,v) = 8128wy = 808y.1w; = 8081w; = 82wy = V.o,
for 2 < i< n+l. Then, we recall that yo.y ' = dg(x; ‘x,) and
Y1 = doXy41.diXg 1 < i € n-1, so we wish to define b € Gn-1 Wwith
dib = dox;31.diXo 1< i< n-1, and dob = yo.y ' = dolx; .x0), and

of course for such a b, codb = cod(d;b) = cod(d;xq) = codxq = domy.

We define functions (not morphisms) on each G, as follows:-

g1x x‘l(sldlx) (0< i< n), fox = (sodox)-lx and

(sid;x)x” " (1< i< n). We note the following properties of

flx
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fy and gy :-

1) dyfy(x) = fy_q(dyx) 0 < i< j 2) dofix = foldex) ™!

3) dyyyfy(x) = dyx.dyyx ] 0< i 4) dyfox = (dox) '(dyx)

5) dyfy(x) = £y(dyx) 1> j+1 >0 6) dyfi(x) =1 =dyg;(x)
7) digy(x) = gyoq(dyx) i< j 8) dy.181(x) = dyerx t.dyx
9) djgy(x) = gyldyx) i > j+1

10) gyx and fox are loops at codx V j, and

11) fyx is a loop at domx V i >0

Define b = (fp-2--*(foxn)). (fao3 - (foXn-1)). . (fox2).X1 %o Since
doXg.yY = doX1.Yo and dixy; = dj_1x; for 0 <i«<j we have
domx; = domxgo and codx; = codx Vijz21 and so b is well
defined in G,.;.

Now dib = dy((fioq " (foX141))). (Fioz -~ (fodixy)). --.dyx; .dixo and
dy (fyoq- - (Foxyay)) = dyoq((Fyoz + (FoXyag))). (Fyop - (FodyXyaeq)) .
This process continues, so that we get a term:-

(doXyv1) TdyXyeq. (FodaXier) b (F1fodaxyar) v (£ (FodiXier)) "
and since we have d;x; = &J_lxl for 0 < i < j this becomes
(doxye1) tdyxy. (Fodixa) b (Fyfodixa) tovoe . (Fy-a-- (fodyxy))” '  and so
dib = (doxi,i)_l(dlxo) as required.

Now, we require to construct a € Gp, remembering that we need
dia = x;y and dga.b = xg, so dga = xo.b'l. Note, as b 1is defined
in terms of x;’s terminating in x,, that dga 1s defined in terms
of xy’s for i > 0, and so we need a to be dependant only on these
xy’s. Define a = (sgx1).g81(sox2)." "+ .8n-1("-g1(s0x,)), well defined
in G, as codxy = codxy V i,j21, and g;x 1is a loop at codx.
For i2 2, dia = (sqdy-1x%1).81(sody-1%3).---.di(g1-1(--g1(sox1)))
and as before we can rewrite d;(g;-1(--g1(sox,))) as:-
(g1-20-g1(50d1-1%1-1))) 1(g1-3( g1 (Sody-1X;-2))) " -+ (sody-1%1) " xy

and so dja = xy for i 2 2.
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The case i=1 is simpler still; dia = dysox; = X;.

Lastly, doa = xy.(gox2). *-. (gn-2(--(gox,)). Now,
(1“ox)'1 = ((sc,t:lc,:;r)-lx')'1 = x-l(sodox) = goX, and for i>o,
(Ffix" )t = ((sydyx" D)™t = x Y(sydyx) = gix, and so dga = xg.b

as required. This completes the proof. n

These two together show that if we consider the full subcategory of
Kan complexes, then the adjunction W - G that we constructed in
%1 restricts to an adjunction between the category of Kan complexes
and the category of simplicial groupoids. If we are considering the
singular simplicial set of a topological space, then we will always be

working within this subcategory of L.
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3.The P*, V adjunction

The work in the next four sections is based on (and would have been
impossible without) the notes which Prof.J.Duskin and Prof.D.Van Osdol
kindly sent to me and for which I am extremely grateful. The notation

used here is largely theirs.

We define Del to be the category of finite ordinals, ( that is
[n] = {0,1,---,n}) with morphisms the order preserving maps, and
Dety to be the wide subcategory of Det where the morphisms fix the
zero. Then, in:Dety — Def 1is the inclusion functor, and
b:Def — Dely is defined by: -
b: [n] » [n+1] on objects,
bf(0) = 0, and bf(i) = f(i-1)+1 for i > O where f:[n] — [m].
Now, b -« in, as there is a bijection
8:Dely([n+1], [m]) — Def(I[n], (m]) defined by:-

e8(f)(i) = f(i+1), with inverse

o7 (£)(4) = {g“;g e te

Let ¥ ©be a complete and cocomplete category (which we will often
refer to as a category of "spaces"). We define ¥# to be the category
of contravariant functors from Qgg to #: this is usually known as
the category of simplicial spaces; and we define CfP to be the
category of contravariant functors from gggg to ¥: this category is
usually known as the category of contractible simplicial spaces.
Then, for any X e ¥¥, there is a composite functor Xin e G¥¥ and so
we can define a functor in':gz — C#¥, which is composition with in.

Similarly, there is a functor b*:8¥ — ¥¥ which is composition with

b. Then, we can define a functor P = b'in':gg — PP
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Proposition 3.1

If Xe 1is a Kan complex, then so is PX, and further, my(PX) = Xo-
Proof

Let Wos " s Wika1sWkatls " " »Wnet be a k-box in (PX)q,. Then,
wy € Xny1 V I # k. We have dywy; =dy_,wy for i< j, i,j# k for
dy in (PX),. This means that in X,,,, dys1wy = dywy, i+l < j,
i+1,j # k.

So, rename w; = v;,;, and we have Vis " Vi Viks2, """y Vne1 € Xnots
and dyvy =dyqvy for 0< i < j, i,j# k+l. Define Xy-q1 = dovy,
0<1i<n, i# k+1, then xi, I # k form a k-box in X, since
dyxy = dydgVj.; = dody+1Vjer = dodjvyey = dj-1dovi+r = djogXy. Then
call the filler vg € X,,1, and we have dyvg = x; = dgoVy,q i = k.
Thus, we can extend our set vy, i =0,k by an element Vo, and the
set is still compatible in X,.;, and so has a filler in X,,,. This
element is therefore a filler in (PX),,; for the original set, as
required.

Now, the morphism dy:(PX)g — Xo weakly coequalises the two maps
dy,do: (PX)y — (PX)g, that is dj,dy:X3 — X;. Thus, by the universal
property of coequalisers, there is a unique map f:mg(PXe) — Xo,
which takes [x] — dyx.

This is well defined, as x =y in (PX)g iff 3z e X, and
d2z = x, diz = y, and thus dyx = dydyz = dlzz = dyy. However, since
X 1is Kan, if x,y € X;, and d;x = dyy, then there is a filler, =z
s.t. dyz=y and dyz =1x, and so [x] =1[y]. Thus, f is a

bijection, and mg(PXs) = X,. n

Since Def and Def, are small, and (as we have required) Z is

both complete and cocomplete (as in the case of where ¥ is Yeto or

gpdo), then each functor T:Dety — ¥ (l.e. T e &#¥), has both right

24




and left Kan extensions along in, and every functor T:Del — ¥
{i,e. Te gg) has right and left Kan extensions along b. That is,
both b* and in* have both left and right adjoints. Since
b* 4 in*, then we have C and W such that C — b* < in* - W.
We will not make use of C and W here, and mention them only for

the sake of completeness.

Consider the adjunction b* - in®*. It has unit sy and counit dj
(where sg 1is in C¥¥ and dg 1is in {Z). This means that the
cotriple P = b*in* has counit dg, and comultiplication sg3. Thus
for a simplicial space X, we have a simplicial object P*X, where
do:P’X — PX is do, and dy:P°X — PX 1is Pdg = d;. Similarly,
So:PX — P%x Is s, and since Psyp =s; we will be able to obtain

n+1

sy for higher levels of the simplicial object. Thus, (P*X), =P X

and the simplicial maps are precisely the simplicial maps of X.
Since each P™*'X is itself a simplicial space, we have, in P*X, a
bisimplicial set. This bisimplicial set 1is wusually called the

cotriple resolution of P(X). We have drawn a section of it below: -

— 4. — dy —
X1 o XZ <_—d1_ XI(—-——
dl— (———dz—
T 7 T 7 T 1
dy da dy da dy d;
|1 | | e=do—
X2 do X3(—d1-— Xa(-—
dl_ (——dz—
1T 11 ™1
d, dz dj didads didad3
|11, — | le=do—1 11
X3 do X4(-——d1— X3(———-
(——-d1—
0 r e d— o

We clearly have the object part of a functor P*:# — 8i¥P, and P*

can easily be extended to morphisms by P*(f)n o = fpemer-
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We now consider a different functor, or‘:g — Biy¥, which we will

prove to be equal to P*. Firstly, we define or:0ef x Deft — Del.

This is the functor ordinal sum, defined on objects by: -
or: ([n], [m]) » [n+m+1],

and on arrows by: -
or: (f,g) = (f+g),

where for (f,g): ([n],[m]) — ([n’],[m]),
(f+g): [n+m+1] — [n’ +m’ +1],

and (f+g) 1is defined as follows: -

(£+g)(1) = {;gzn-lhn'ﬂ ?zé ; f ?n+m+1
Now, consider i":[n-11 = [n] and i*: (n+1] = [n] where
ro =, HIEE we rm-fl, ifL
These are the morphisms which become the ith face and degeneracy
maps (respectively) of a simplicial set. For a bisimplicial set,

X: (Det x Det)°’ — Pets, the maps X(i*,1) and X(i*,1) are d"

and s? (the i*®™  horizontal face and degeneracy maps), while

X(1,i") and X(1,i") are di and s, (the i*® vertical face and

degeneracy maps).

(i if j< i

L+ .
Then, (i +1)(j) -1 if i < j < n+m+2

]
e

} = i": [n+m+2] — [n+m+1],

(j  if j < i

and (0 =45, 15 T ¢ j<ne

1]
b

m} = i-: [n+m] - [n+m*'1].

Also, (1+i")(})

it
o

(j  if j € n+i+l
J=1 if n+i+1 < j < n+m+2

= (n+i+1)": [n+m+2] — [n+m+1]

v oo [J0 1f J < nrivl = i)
and (1+1i ) (J) {j+1 if neiel € < n+m} (n+i) :[n+m] — (n+m+1].
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Thus, (or*X)n, m = Xnemet»

dt: (or*X)n. m — (0or*X)n-1,m 1S di:Xnemse1 — Xnem

S?: (OF‘X)n,n - (or"X)nu,n is sy:Xpem+e1t — Xnems2s
dy: (or*X)pn,a — (or*X)p m-1 15 disn+e1:Xnem — Xneme1 and

v
sy:(or*X) g, m — (or*X)n, me1 1S Sien+1:Xnems1 = Xnsmea2-

Thus, as claimed, P* = or*, and since Del x Del is a small
category, we have left and right adjoints for P*, (the Kan extensions
along or).

From now on, we will consider ¥ to be the category JYeto.

We now proceed to construct a right adjoint to the functor or* = P*,
which we will call V:8{#¥ — ¥#f. Recall that for a simplicial set
X, the cotriple resolution of P(X) 1is the bisimplicial set P*(X).
We redraw it below, with its augmentation (that is dg:P*X — X )
bracketed in the left hand column. There is a similar augmentation

which is the row above the diagram, where the map is dj,g¢:P*X — X.

— dog —

1 XO < dQ — X,_ - d1 . XZ & -
T 7 T1
do dy Clil d, d, di
de ——

X1 — do —_— X2 : d:.) . x3 .
TTT TTT T
do Tildz dy Tzlda dz d3|d4

da —
XZ e do —— X3 : d? . X4 [
T H T
- 4

If we have a bisimplicial set, Ye o, and a simplicial set, Xe, then
we want  BUPP(P*X,Y) = #¥(X,VY). Now, (P*X)p,q = Xp+q+1» SO a
morphism f: (P*X) — Y is a family of morphisms,
fp,q: Xpsq+1 — Yp,q» With the property that:-

difpe1,q = fp,qdt = fp,qdy (for 0 < i< p+l),
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dyfp,qe1 = £p,qd) = fp, qdjapes (for 0 € j < qe+1)

h

S1fp-1,q = fp,qSt = £p.q51 (for 0 i< p-1)

Sifp,a-1 = £p,q5) = fp,qSy4p (for 0 < j < q-1)

Thus, we have (fo,n.f1,n-1.‘".fn-1,1:fn,o)=xh+1 — Yo,n X " x Yn, o0,
a family of maps with the above conditions. The only constraints they
impose is dlff‘p,q = fpo1,qd; = dr-pfp-i,q+1 when O0< i< p and
0 < i-p < g+l and so this only holds when i=p, so
dgi"p,q = dgfp-l,q+1. So we define (VY), to be the subobject of
(Yo,n x -+ x Yn,0) for which these relations hold, thus it is the
equaliser of the two maps: -~

(d;Pi.dgpz»"'»dBPn)iyo,n Xttt X Yn,0 = Yo,no1 X 50 x Ypog g and
(d?Pz,dgpa»"',d:Pn+1)=Yo,n X "t X Yn,0 = Yo,n-1 X “r x Yp_y o,

where p; 1is the itr projection map.

There is a special case, namely n =0, In this case we take
(vy), = Yo,0. Now, VY is a simplicial set, and so we must find it’s

faces and degeneracies. For clarity, let us call them oy and §,.

As we have already said, for every map fe «:P*X — Y, there must be a
unique map ¢«:X — VY. We will construct this at the same time as

the faces and degeneracies.

For the O-simplices, we require ¢g5:X5 — Yo,0. Now fo,0:X; — Yo, o0,
so if we set $0 = fo,059, we will have a well defined map
$0:Xo — Yo, 0. There is, in fact, no sensible alternative! Since
simplicial maps commute with the face and degeneracy maps, we require
that 814y = ¢;.1d;, and Cofj-1 = $3Sg. At the level J =1, this

means that 81¢1 = ¢0d1, and 0‘°¢o = ¢150.
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This means that fo,0S0do = fo,0dos; = dofy, 0S1, and
fo,080d1 = fo,0d2Sg = d1fo, 150. Thus, ¢4:X; — (VY), must be
(fo,150,f1,051) and so 8p: (VY)y — (VY)y must be dgpa and 8,
must be djp;. Then, (fo,150,f1,051)s0 = (fo,lsg,fl,os1so) and
§18g9 = sg. and fo,lsg = fo,1515¢0 = s;fo,oso, while

f1,05150 = f1,°s§ = sgfo,oso, so that ¢q = (sg,sg):(VY)o — (VY),.

For n =2, we have 8i¢9> = ¢$4d;, and CiP1 = 9254, So
$1do = (fo,150do, f1,051do) = (fo, 1dos1, 1, 0doS2) = (d8f1,1$1-dgfz,osz)
$1dy = (fo,150d1,f1,051d1) = (fg,1d250, 1, 0d152) = (d;fo,zso.d?fz,osz)
and

$1d2 = (fo,150d2,f1,051d2) = (fo,1d350,f1, 0d2s0) = (dafo,250,d1f1,151)
This gives us 8g = (dgpz,d3p3), 8, = (dei,d?p3) and

82 = (dzp1,d;1p2), while ¢, = (fo,250,f1,151,f2,052).

Further, ¢ssg = (fo,250,f1,151,F2, 052)s0
= (fo,251$o-f1,1Sg.fz,ososx) = (ngo,xso»sgfo,150»53f1,051) and,
$25s1 = (fo,250,f1,151,f2,082)sy = (fo,zszso.f1,15231-f2,o$f)
= (Son,150’53f1,oso»3?f1,051). so,

oo = (SoP1,SoP1,SoP2) and oy = (sypy,SoP2,SoP2).

Then, 1in general, $n = (f0,nS0:f1,n-151,"""»Fr n-rSr»""*,fn, 0Sn),
¢y = (S{P1,S1-1P2," 1 SoP1+1+S1P1+1s" "> S Pne1)s for 0<i<n
8y = (dip1,dy-1P2, " *,d1P1,diP1a2, **,d Pnet),

80 = (dopz,dops***,doPnv1)  and 8, = (dnpy,dy-1pa,--,d}py).  This

follows by induction!
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If fe e:Ye ¢ — Zs », then (Vf),:(VY), — (VZ), 1is defined by the
restriction to the equaliser of the two maps above of the map
(fo,n»f1,n-1»""*+fn-1,1,fn,0), as might reasonably be expected! This
map has domain the corresponding equaliser in (VZ), because the face
and degeneracy maps of a (bi)simplicial set commute with

(bi)simplicial maps.

We should also check the simplicial identities. For 1 < i+l < j < n,
h h h h
(drplndr-ipz:"’dgpl»dlpi+2n"»dlpn)(djplrdj-IPZa"’d¥PJ'din+2:"vden+1)

h h h_h h_h
(drd}plo"'»d:d}-l+lpi»dld}—l-lpi+2:""dld:pj:didjpj¢2:"'vdidjpn+1)

h h h _h h h
(d§—1dYP1»",d}-1d¥P1.d}-i-1d1P1+z.",d:dipj»dj-1dipj+2,"vdj-1d1Pn+1)

h h h h
(d}-1P1»'".d¥P1—1’dJ-1PJ+1»"'»dj-1Pn)(dYP1,‘".dYPi»d1P1+2»"‘,d1Pn+1)

and so 818} = 85_181.

In the case 1 < i+l = j<n, 8;8;,y = 8;8;, Dbecause
h h h h
(d{p1,-*-.d1p1,dyPrez, " ", d1Pn) (dia1P1, -1 d1P1s1,d1e1P1+3s " »d1e1Pne1)

v h .h h ,h
(didy+1p1, " ,d1d3p1,d1dse1P1e3, " *»d1dy+1Pna1)

h_h h b
(didypy, - ,dydypy,d1diPy+3, -, did;Pnaer)

h h h h
(dyplv""d:pl'dlpl+2"'°»dlpn)(drplv°"'d¥p1'dlpl¢2r"'vdlpn¢1)

h h h h h_h
Further, 808y = (dody-1P2,""*,dod1Py,dodiP1+2,"**»dodsPasr)

v h h h  _h h h
= (dy-1doPz2, " **,d1dopy,d1-1doPy+2, " **»dy-1doPns1) = 81-180,

h h
and 8,8, = (d{dpp1,di-1dn-1P2," " *>d1dn-1+1P1,didn_1-1P1+2, " *,d1d}Py)
h h
= (dn-1diP1,"**,dn-1d1P1,dn-1-1d1P1+2, " *,d1d1Py) = 8,18,
S v v h h v v h h
ince (S1P1," "+ S0P1+1>S1P1+1:""»S1Pn+1)(SjP1, ", S0Pj+1,S)Pje1s""»SPn)

v v v v h v h v h_ h h_h
(s1SyP1, ", 50S§-1P1+1,S1S)-1P1+1+"" "+ 51S§P}j+1,S1SjPj+1," " *»S15jPn)
_ v v v v h v h v h h h h
= ($j+15:P1»'-51-1+150P1+1,Sj-1+151P1+1.',SJ+151PJ+1,53*1$1P1+1,'»SJ+1$1Pn)

v v h h v v h h
(Sj+1P1,° " +S0Pj+2:5j+1P)+2> """ +S5)+1Pn+1) (S{P1, ", S0P1+1,S1P1+1, """+ 51Pn)
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then 0'10"1 = 0']..,10‘1.

Further, if 0< i € j, then 8;05 = 0;.18; because
h h h_h h_h
(drsjp1»"'»4:5}-1¢1P1,d15}-1-1pt+z’"‘,dtS;PJ+1-41$JP1+1:"’-dxsan)

v h v _,h h h h h
= (5;—1drp1:""5}-1d¥P1:SJ-1-1d1P1+2»"'.Sod1PJ+1'sj-1d1P1+1,“'»SJ-1dan)'

Also, for j+1 £ i £ n, we have 81005 = ¢;8;.1, because
h h h_h h_h
(dYS}Plr"'de-jszpj#l»dr-j-lsjpj+1v""d:sjpl-ltdisjpl+lr"'vdlsjpn)

v v .V h ,v h ,v h ,h h ,h
= (S;d1—1p1,".Sodi—j-1pj+1.dex-j-1Pj+1.",de1P1-1.55d1-1P1+1.--.dei-zpn)

h h h h
Lastly, (dypl."'-d¥P1:d1P1+z»"'»d1Pn+1)(SrP1n“‘»S;P1+1»31P1+1»"‘:$1Pn+1)
= (dfsrpl,---,dIs:pi,de?p,,l,-'~,d?s?pn) = id = 8;0y. There are more cases

to check, but they are fairly simple to write down from those above.

So, the simplicial identities hold, and thus we have a well defined

functor V:8i¥y — Zz.

Now we have V:Bivy — ZZ, we need to construct the adjunction,
P* 4V. We have already seen, that given f € Bi¥P(P*X,Y) we can

construct a morphism ¢:X — VY, where ¢, = (fg,nS0,""",fn,0Sn)-

For 0<r< n-
h h
fron-r ® fr n-rdr+e1Sprs1 = dr+1fre1,n-rSre1 = dre1Pre2Pn+1s and also
fron-r = fr n-rdesp = dzfr,n+1-r$r = dzpr+1¢n*1- Now, 1if we start
with a morphism ¢:X — VY, we can construct a morphism fe o by
h

letting f4, a: (P.X)n,m — ¥n,m be d;Pn+1¢n+m+1 = dn+1Pn+2Pn+m+1, (as
vy is the coequaliser of (doP1,dopa, - - »doPn) and

h h h
(dip2,d2p3, " *,dnPns1) ).
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By considering the identity map 1:P*X — P*X, we see the unit of the
n+1

adjunction, nx:X — VP*X, is (sq,s1,°°*,Sp): X, -—)iI_IIXMl, for each

n. Considering 1:9Y — VY, we find the (rz,m)t’h component of the

counit of the adjunction, (ey)n,n: (P*VY)n 0 — Yo, s is

v h
doPn+1 = dn+e1Pne+2-
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4.The Ner, F adjunction

To save possible confusion, we state here that Y, 5, 1is the term of a

bisimplicial set in the mth column and n"" row.

Now, consider Ner:¥#{pdo - Bi¥¥ - this takes a simplicial groupoid,

Xs, to the bisimplicial set with the n*® row the nerve of Xn.
That is it takes X, to the simplicial set of composible strings -
i.e. Ner(X,)p = {(xy,%5,-°-Xxp):domx; = codx;.y, Xx; € X,}, and
Ner(X,)o = obX,.

Then the horizontal face maps are: -

for m=1, d?(x) = domx and dg(x) = codx,

for m > 2, dg(xl,xz,---xm) = (X3,X3," " " Xa),

. d:(xi,xz,..xm) = (Xy1,X3," " *Xp-1)> and

d?(xl,xz,---xn) = (Xy,X3,""",X{.Xy41,""",Xg) for 0 < i < m

The horizontal degeneracy maps are: -

for m =0, sgt 1y (for t = obX,), and if m 2 1,

(xq,°°°,%y,1¢,X141,°**,Xy) where t = codx;.

s?(xl,xz,~~~,xn)
The vertical face and degeneracy maps for the o™  column are the
m-fold products Tldy and [Isy.

The simplicial identities trivially follow from this.

If Ner 1is to have a left adjoint, F, then for G e ¥gpdo  and
Y € 8, gu,n:Yu,n —> (NerGly n S Gn, we must be able to construct

a unique ¢(g)n: (FY), > G,.

Let G be a groupoid. Consider (x3,x3,-°-,x,) € (NerG),. This

element can be written as an element of G° as follows:-
(x9,%2,°"*Xp) = (xq,1,--°,1)(1,x5,1,---,1)---(1,---,1,x,)

This is then a word 1in degenerate elements of (NerG),, as

(1)..')1|xi’1,.",1) = (sn'..si¢1)(so)l‘1xl'
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It is then reasonable to consider that a left adjoint to nerve would
be based on just the 1l-skeleton of a simplicial set and thus the
analogous result for bisimplicial sets would be based on the
horizontal 1-skeletons of the bisimplicial set.

With this in mind, the most natural construction for F would be a
free construction on the graph Y; , > Yo, ,, where the identity is
sg, and the source and target maps are d? and dg respectively.

The face and degeneracy maps would then be the extensions of the
vertical face and degeneracy maps.

In fact, this is insufficient, as the composition in G has been
neglected, and when considering morphisms fiFY - ¢ (whatever FY

turns out to be) we need the relations f(xy) = f(x)f(y). This turns

out to be all the relations we need, as we now show.

—d; >
Define (FY), as the groupoid generated by [Y1,n ¢~ Sqg — YO,n]
- dg —

with relations generated by ((d?z) = (dgz)(dgz): zZ € Yy ph.

Note that for y;,y; € Yy, ,, that if y, is homotopic to y,, (that
is d?yl = d?yz (i =0,1) and 3z e Y, , with doz = sedgy;,
diz = y; and dzz = yj5), then y; = y> in the specified quotient

groupoid (since sqg is the identity operator in the groupoid).

The face and degeneracy maps are the natural extensions of the
m

+ ~

vertical face and degeneracy maps. Then, if w = 1g1x;1 e (FY),,
+

dyw = ?(d;xi)'l which has source d?djxi = d?d:xl and target

h v 1
dodjxy. Similarly s;w = 1Hij,.

This construction will extend to a functor F:8i¥Y — fLpda  where

f(f)n is the extension of f; , on arrows, is fg,, on objects and

the extension of f,,, on relations.
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Let gs»,+:Y — NerG. We define ¢:8L¥P¥(Y,NerG) — fﬁpdo(?Y,G) by
o(g)y = El,n:(?Y)n —> arrG,, where g; , 1is the extension of g;, ,
to words in Y n. This restricts on object sets to gg,n. So,

we must consider how g,,n, relates to ¢(g),.

Since morphisms of bisimplicial spaces commute with the bisimplicial
maps, we have that: -

g1, n(d0) a1 dh = (@) dYu1 - cdga, n: Y, n — (NerGy)y = G,
but (dg)J-Id?,l---d::(Nean). — (NerG,); picks out the j"h term
of (g1,82,""",8n)-

h h h_h h h.m-1
Thus, ga,n = (gi,ndZ'"dm-gl,ndOdB"'dmv""gl,n(do)m ).

Consider m = 2. Let g3 ,y = (x1,x3), then gl,ndgy = dggz,ny = X4,
h h h h .
g1,ndoy = do82,nY = X2, and g1,nd1Y = d182,aY = X1X2, that 1is

g1.ndly = (g1, nd3y) (g1, nddy) = Z1,n((d3y)(djy)),  because of  the

relations we imposed on F(Y),. Now for m > 2, let y e Ya,n and
consider: -
h  _h h,h  h hym-1
Em,nY = (gl,ndz"dmy’gl,ndOdS"dm.Yv"'»gl,n(dO)m y).

Now, d?gm,ny = g,_l,nd?. This will follow naturally from simplicial

identities except for the ith component where (using the identity

above) we get

hy1-1_h h hyi1-1_h h hyi_h h
g1,n(do) “dis1c-cdp-1d1y = (81,n(do)" "dis1dny)g1,aldo) dis2r-dny)

Using simplicial identities, we obtain

h,i-1 h h hyi-1_h h
(do)  "dy+1°°da-1d1y = di(dg) "dis+2"dny
and @it - --dly = dB@) T al., - -dly,  so If we write

(d3)''d}.a - +day = z, the equation is gy,.d1z = (g1,ad22)(g1,nd02)

which is already satisfied because of the relations from Y; ,. Thus

¢: Bir¥ (Y, NerG) — ?deo(fY.G) is a well defined function.
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Further, if we have
by 8(f)n,m = (foda
well defined. That

trivially from our

fn: (f'Y),, — G,, we can construct o(f):Y — NerG

h

ceedl Fodbddedh, oo £a (@)™ 1Y), Which is clearly

6 and ¢ are mutually inverse bijections follow

earlier analysis of

adjunction F —Ner.
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5. W as VNer

Let G be a simplicial groupoid, and consider NerG. Then, we have a
two dimensional array, which has at the (p,q)*" lattice point, the
set Gg - that is the set of chains of composible arrows in Gg of

length p. Now, we consider a square in the lattice:-

p+1 h P
Gq+1 ———dl————9 Gq¢1
v v
dy dy
¥ ¥
p+l h . P
Gq dy > Gq

this diagram commutes because the d: commute with the d?:GiH — Gi
for all i, as the d? form a simplicial set map for all i and as
the dr are just the face maps of G, and as such are groupoid

morphisms - so (dlgj)(dlgj+1) = dl(gjgj+1)°

We now restrict our attention to ¥gpdo,. Certainly Ner 1is still
well defined on this subcategory, but it is significant that we are in
the subcategory and so we will use Ner, to denote the restriction of
Ner to the subcategory. So, let G € #fpdo, and consider V(Ner,G).
The product Yo,nx *°* x Yn,0 becomes the product
O x Gaoy X *++ x Gy 'x G), where O 1is the object set (of all the

groupoids}.

Because we must consider the equaliser of the maps

(d‘c;Phd‘éPz.'",d;Pn)=Yo,n X = X Yn,o — YO,n-l X *** X Yn-l,O

h h h
and (dypa,dap3, °*,dnPn+1):Yo,n X **° X Yq,0 = Yo,n-1 X *°° X Yn-1,0
we find that if (g;,82," ' ,8p-1) € Ghpsy and (hy,hz,--+,hy) € Ghop
are two consecutive components of an element in

0 x G;_1 X X G?'lx Gy, then as Pp Picks out (g1,82,°"°.8p-1)
and Pp+1 picks out (hy,ha, -, hp) we have

h
d‘(')(girgZ"°'vgp-1) = dp(hl;hz»"'-hp)-
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v

Using the definitions of d and d this yields

(dog1,d082, "+ dogp-1) = (hy,ha, -+, hp_q).

What this tells wus is that much of the 1information in
0 x G;-l X X G?-lx Gg becomes redundant when we pass to the
equaliser we want, and that the only component of
(hy,hz,---,hy) € Ga_p that is not determined by
(81,82, "",8p-1) € cﬁ:;,1 is the last, namely h,. When p =1, this
translates that the O-component in the element is the domain of the
Gp-1-component of the element - and as such, the O-component is also

redundant.

Discarding redundant information, and noting that
dom(h,) = cod(hp_y) = cod(dogp-1) = cod(gp-.1), we find that we have,
in effect, an element (8n-1,""",81,80) of the set
Gn-1 X *** x Gy x Gg, where the source of g; 1is the codomain of

gi1+1- This is precisely the definition of W(G),.

Let us consider the simplicial maps of VNer,G. Consider an element
of (VNer,G),, that is (O,gn-i,(gn-zi,gn-gz)."',(goi,goz."'gon))
which we have shown can be reduced to (gn-l,gn-zz,'°',gon).

First, we deal with the case n. For v,
8, = (d;pl,d;_lpz,---,den).Now, df sends each term of each
component to its ith face, and so combining this with the

projection, and throwing away redundant information (as we did above)

we find that

Sn(gn—l»gn-za» tt .gon) > (dn—lgn-ltdn—zgn-zzr e ’dlgln)-
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Next, we consider &g = (dgpz,dgp3,---,dgpn+1). Now, dg deletes the
first term of each component, excepting the G,_,-component, which it
takes to its codomain. Thus,

80(0,8n-1, (8n-2,,8n-2,)s" ", (&0, .80, " "&0_))

= (codgn-1,8n-2,,"", (80,,"*,80_)) = (domgn-2,,8n-2,, ", (80,:" ", 80 ))
(as domgn_z2 = codgn-21 = cod(dgogn-1) = cod(dogn-1)), which reduces

to (8n—22rgn-33""»gon) as we would expect.

Lastly, for the general case, 8y: (VNer ,G), — (VNer,G),_-4 is
8, = (dip1.d}-1P2, - *,d1P1,diPrsz, **,d1Pae1) Where dj is "compose
the i*"™ and (i+1)th components” and d: takes each component to
its i'" face.

In the first i components, we see that, after reduction, we will get
(dy-18n-1,d1-28n-2, """ »d18n-141, _,» """ ). In the (i+2)""
component of (VNer,G), we have a string of i+l elements. Now, d?
composes the last two elements ;f this, so in the (i+1)"" component,

we will reduce to &n-1-1,-8n-1-1 However, gn-1-1, = dogn_‘l

1+1°
and so the (i+1)th component will become dogn-ll-gn-1-11,1- Then,
the d? for the subsequent components will combine the ith and
(i+1)*®  terms, which will not effect the last term. Thus, when we
reduce, we will simply have gn-JJ and gathering all this information

together, we have Si(gn_i,gn-zz.-".gon)

= (di-18n-1,d1-28n-2,,"""»d18n-1+1,_,>908n-1,-En-1-1-8n-1-2,"""»80_)-

This is precisely what we would get from W¥. It is also transparent
that VNer, = ¥ on morphisms, and thus V{(Ner,G), = W(G),.
It is important to note that W 1is defined only on #Epdo, and so

while VNer exists, we have only that VNer, = W.
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6. G = FP*

Now, we look to P* and compose with F  and see if we get the

Joyal-Tierney loop-groupoid functor G. The functor P* gives us an

array
dn —
X1 :df_X2 «
T T 17
P, T
d
Xz :df—X3 «
TT7 TT7T
TEE P
de —
X3 : d? Xy
T T

What we want for (GX),;.; 1is the free groupoid generated on the set
of arrows X;, with objects Xg, with séXo as the identities, and
dydz---dy and dody---dy -as the source and target maps.

Clearly P* will not yield this, because we have no Xo-

Consider the following diagram: -

Zpdo, — i —> Gpdo «— i — ¥Epdo,

11 I 1 I 1

W G Ner F Ner, F,
L Lo Lo
£ g""*wvu—i BLPP,

We use (-), to denote the restriction of the functor (-) to the
relevant subcategory. The failure of FP* to be G 1is precisely

here. We require a left adjoint to the inclusion Gpdo, — i > FGpde.

Let X e ZZ then: -
fGpdo, (GX,GX) = #(X,WGX) = PP(X,UNeriGX)

% BiPP(P*X,NeriGX) = #Epda(FP*X, iGX).
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Thus, there is a canonical morphism in #Epdo between FP*X and iGX
which is the result of mapping lgx by the composite of the natural
bijections of the adjunctions in the sequence above. This is as good

as we can get.
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7.The Moore Complex of a simplicial groupoid

The following definition is due to Brown and Higgins, and generalises
a similar definition due to Whitehead. We place it here, as is needed
in this section, but properly it comes in section 9.

A crossed complex over a groupoid, C, 1is a sequence

3n 34 30

e 4 Cn+1 > Cn r R > CZ > 01 > Co
where (i) Co 1is a groupoid, (we write Cg(a) for Cgpla,a)l,
a € obCqp)

(11) C, 1is a family of groups {C,(a)} for n21,

a € ObCo
(iii) Cp(a) 1is abelian for n 2 2, a € obCqy
(iv) Co acts on Cn on the left for all nx>1, by
(h,g) & hg
where g € C,(a), h e Cq(b,a), hg € Ch(b) and the usual action laws
hold
(v) the 3, are all groupoid morphisms which preserve the
action
dox -1
(vi) if x,y € Cy(a), then y = xyx , and 34Cy(a) acts
trivially on C,(b) for n 2 2 for all a,b € obCq

(vii) 8,9n-1 is trivial for n2 1

n
Now let G be a simplicial groupoid. Define (NG), :=11 Kerd; and
1=1

3,: (NG)y — (NG)p.y by 3, :=d3}(m)n. This is of course the
standard definition of the Moore Complex of a simplicial group applied
to a simplicial groupoid.

Since we are working with simplicial groupoids over a fixed object
set, we have that the face and degeneracy maps are the identity on
objects. So, for n 2 1, each Kerd? (and hence (NG),) will be a

totally disconnected, normal, wide subgroupoid of G.
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Further 8,.18, = dg 'dg = d3 'd]. Thus 8,.,3, maps (NG), to the
discrete groupoid on obG,. This gives us a chain complex of
groupoids, over a fixed object set. Since each of the groupoids
(NG), 1is totally disconnected and the morphisms 3 are the identity
on objects, what we have, to be more precise, is a family of chain

complexes of groups, together with a groupoid at the base.

We check that 3,(NG), 1is normal in (NG)n-y. Let g e (NG), for

n _n-1

n21 with domg = codg = x, and h € Gn-1(x,y). Then, dgsg h = h.
n _n-1 n _n-1

So h(3,8)h"" = (dgsp 'h)(dlg) (dBs3 'h)™! = do((sp ™ 'h)g(s3 h) ™Y,

n
So 3,(NG), 1is normal in G,.,, and hence in (NG)n-1 and N Kerdj.
1=0

Now, we want to investigate the properties of the chain:-

*t=—> NG, — 3, — NGp.q —> ++++— NG, — 3; — Gp. We define an
action of Go on the chain by hg = ((so)nh)g((so)nhf1 (for
h € NGy, g € NG,). This action is a well defined action, which the 23

respect (i.e a("g) = (ag)).

The chain with this action is not a crossed complex (after
Brown-Higgins), however, it does have some of the properties. By
definition, G, 1is a groupoid, and all the NGy are families of
groups, indexed by the objects of Go. The 3 are all groupoid
morphisms (and the identity on objects), and the composite 9n9n+1
is trivial for all n.

However, for g,h e NG, (x), algh * ghg.1 in general; the NG, are
not families of abelian groups for i 2 2, and the action of 3, (NG),
is not trivial on (NG); for i 2 2. We will discuss this further
later, but for now we move on to consider other properties of this

chain complex.
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Consider the homology of the Moore complex of the groupoid, that is:-
n
N Kerd}

Ha(NG) = 5 Ker:g = 1=0 5//n+1 i
n+1 n+l1 n[ n Kerdi]

i=1

Let us consider what this represents. The groupoid used to quotient
Kerd, is in fact the subgroupoid of G, consisting of those elements
which are homotopic to an identity. Kerd, itself is the subgroupoid
of G, whose elements have trivial boundary. This, means that the
homology of the Moore complex of a simplicial groupoid describes the

relative homotopy groupoids of the simplicial groupoid:-

~ Kerd,
1, (G, 0bGg) = 3 (NG

This is, of course, analogous to the homotopy groups of a simplicial

group, which are also described by the homology of the Moore complex.

The case n =0 1is worth special mention. For a simplicial object
Xs, noXs is the coequaliser of the pair d,,dp:X; — Xg, and so

no(G,obG) will be the coequaliser of the pair d;,dg:G; — Gop.

Define ¢q:Gq — mg(Gg,0bG) to be the canonical quotient map, and so
qdix = qdox ¥ x € Go. Thus, q((dyx) (dox) 1) = 1. We would
therefore want that do(Kerdy) = {(dox)(dlx)-1 : x € Gg}. For

convenience, we call this latter set Q.

Certainly, (dlx)(dox)-1 = do((sodlx)x-l) and (sodlx)x-1 € Kerd;, so
that Q S doKerd,. Further, if x € Kerdq, then setting
y = x M (sodox), we obtain doy = 1, diy = dox, and so
(diy)(doy)™' = dox and dgKerd; S Q. Therefore Q = doKerd;, and so

Ho (NG) = HQ(GQ, ObG) .
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8.The semidirect decomposition of a simplicial groupoid

The Dold-Kan theorem states that the Moore complex functor from
simplicial abelian groups to chain complexes of abelian groups is an
equivalence of categories. The quasi-inverse to the Moore functor

involves (at the n'P level) the direct sum of terms of the chain

complex up to the nth level. We refer the reader to [P], for a

description.

We now consider the decomposition of a simplicial groupoid in terms of
the semidirect product, which is due (in the group case) to Conduché.
He, among others (Ashley, Carrasco and Cegarra) have investigated
non-abelian generalisations of the Dold-Kan Theorem. Ashley (see
[As]) shows an equivalence between simplicial-T-complexes and crossed
complexes, while Conduché (see [Col) considers simplicial groups
whose Moore complex is trivial in dimensions 2 and allies them with a
construct he calls a "2-crossed mo&ule". Carrasco considers the
multiplication in the simplicial group under this decomposition, and
makes precise the structure needed to reconstruct the simplicial group

(up to isomorphism) from the Moore complex.

We wish to show that Gp = Kerd: x s::iGn_i, where the action of

g 1

Shi1Gnoy on  Kerdp is k = gkg~ for g e sh_iGn_q(b,a)

k € Kerdp(a) and trivial otherwise.

This result was proved for simplicial groups by Conduché, and the

isomorphism in that case is:-

n-1_.n

0:2 > (gsn_ldng'l,s::§d:g), with inverse ¢: (k,g) > kg.
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That @ and ¢ are inverse functions is clear, and both 6 and ¢

are homomorphisms since: -

8(g)0(h) = (gsn-1dng ', Sn-1dng) (hSp_1dah™ L, s4-1doh)
= (gsn-idng-l(sn-ldng)hsn-ldnh-l(Sn-ldng)—lvsn-ldngsn-ldnh)
= (ghsp.1dy(gh) ™!, sp_1dngh) = 6(gh)

and: - $((k,g)(1,h)) = (kglg ', gh) = kglh = ¢(k,g)(1,h)

To generalise this to groupoids, we require some concept of a
semidirect product for groupoids. In groups, we have that
GxH={(gh):geGhel  and  (g1,hy)(g2,h) = (g1 gy, hyhy)
where hg is the action of H on G (usually conjugation).
Normally, the semidirect product will be between two subgroups of a

group, where one of them (G here) 1is normal.

The following construction is essentially that of [Br.1] chapter 9:
the differences between the definitions of action and semidirect
product there and those here are merely matters of convention and

convenience.

Suppose we have a morphism of groupoids (where obG 1is considered as
a discrete groupoid) w:T — obG, then define an action of G on T via

w as follows. For each g € G(x,y), and 7 € w '[y] ¢ T there is an

element gv € wlxl; further, if h € G(z,x), then
h-(g-7) = (hg-7), lyy =¥ and if 8 is defined for some
8 e wllyl then (g-7)(g-8) is defined in w 'ix], and
g (¥8) = (g-¥)(g-3). Clearly, the action takes 1identities to

identities (or objects to objects).
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Now, suppose we define T x G as having object set obll, and arrows
(r,8):x — y where g € G(ux,wy) and 7 € I'(x,g'y). Further, if we
take (n,h):y — 2z, where h € G(wy,wz) and 1 € I'(y,h-z) then we have

(7,8)(n,h) = (y(g'n),gh):x — z.

Note that this requires that U S u-lfuy], therefore that
g ne w 'lox] and therefore that 7 € 0 wx]. Further, it requires
that dom(g-m) = cody = g-y, that dom(y(g-7m)) = x and

cod(y(g-m)) = gh-z. Observation will show that these requirements are

met. Similarly, observation will show that the identities are
(1x,14x), and that the inverse to (7,g) is ((g-1°7-1),g_1).

. D q _)
Now consider a split epimorphism in Gpdoa/0, X — e — H, where
qc = 1y. Since cq:Kerq — c(obH) = 0, if we set w = quKerq’
Kerg =T, and cH =G, we have w:I' — G as above, with an action
ch-k = (ch)k(ch)™' for he H(x,y), ke q lyl.

Thus, we have the groupoid Kerq x cH, which has objects 0, and
arrows (k,ch) where k € X(x,x) and h € H(x,y) for x,y € 0. We
note that o 1is the lidentity on objects (as are both ¢ and gq).
Obviously, (ky,chy) and (kp,chy) will be composible if and only if

domh = codhy, and then (kq,chy)(ky,chy) = (k1(chl)kz(ch1)-1,c(h1h2))

Now, let us define a morphism of groupoids ¢:Kerg x cH — X by
¢: (k,h) +— kh where k € Kerq(x,x) and h € cH(x,y). This is well
defined as

¢((ky,hy)(kz,hz)) = ¢(kyhikoh', hihp) = kyhikahs = ¢(ky, hy)é(ks, ha).

Clearly, ¢ 1is identity on objects.
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We define a groupoid morphism 6:X — Kerq x cH by:-

8:g - (glcqg)™ !, cqg).

Now, since qc = 1y, qlgleqg)™) = (qg)(geqg)™ = (ge)(ge)™! =1, so
g(cqg)-1 € Kerq and clearly, c¢qg € cH. Further, 6 1is identity on

objects, and is well defined since: -

8(g,)0(g2) = (g1(cqgy) t, cqey) (g2(cqga) ™', cqga)

(g1(cqgy) ' cqgy) (g2(cqga) ) (cqgy) ™, cqg182)

(8182(Cq(8182))-1.81gz) = 0(g182).

Since qc =1y, if h e cH, then h = chy for some h; € H, and so

cgh = cqchy = c¢hy = h. Also, if k € Kerg, then cgk = 1, for

domk = x. Then, 8¢(k,h) = 68(kh) = (kh(cq(kh)™ ', cq(kh)) = (k, h).

Further, pa(g) ¢(g(ng)-1.ng) = g.

Thus, © and ¢ are mutually inverse, and Kerqg x cH = X.

n
dn —

Now, since G, Gh-1 1is a split epimorphism, we have that

— sn:1 N

n n-1
Kerdn x Sn_lcn_l = Gn.

Now, we repeat this process as often as necessary to obtain each of
the G, as a multiple semidirect product of degeneracies of terms in

the Moore complex. To do this, we define K., a simplicial

n-1

subgroupoid of G,, by Kn-y = Kerd:, 83 = d?lKerdn and
n
n-1 _ n
o1 = Stlgerad:

n-1.n

Since d::id? =dy dya Vi< n-1l, Kerd: is mapped to Kerd::} by all
the morphisms &) 1 < n-1. Further, dhtis? = st 'dn, i < n-2, thus
we have that 0?*1 maps Kerd, to Kerd::}. We can generalise this

n
to form a simplicial subgroupoid K,[m] where Kn_p-1(ml =1 Kerd? -

j=n-m
in this notation, K, becomes K,[0]. Clearly,
m+l
Kolml = N Kerd*' = NGp,y.
J=1
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We can then decompose G, as follows:-

Gn % NG, % soNGp_1 % S1NGh_1 x S1S5oNGp_2 % s2NGL_.1 %" - "X sq.1° " 50Go,

where the products of s; are in lexicographic order -

that is @; 0; 1; 1,0; 2; 2,0; 2,1; 2,1,0; etc. The number of terms
n

will be 2, and the bracketing of terms is firstly into pairs, then

in pairs of pairs, etc.

To give some 1idea of this, we will explicitly give the first few
levels of the decomposition. Firstly, we know that Go = NGq.

Further

0
o
I

= NG]_ x SoGo,

Q
N
!

% (NG; x soNGy) x s,(NGy x 5¢Gp),

Q
W
[

= ((NG3 x SQNGZ) X Sq (NGZ x SoNGi)) x

x Sz((”Gz X SQNG1) X Sq (N61 x SoGo))

Now, NG; (for all i > 0) is totally disconnected (it is a family of
groups indexed by the object set of the bo) and the elements of one
vertex group have no effect on the elements other vertex groups,
(either by multiplication or by action in the semidirect product).
Thus G» 1is determined by the simplicial groups NG{(p) for p € obGe

and the action of Gy on them.
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9.Groupoid-T-complexes and Crossed complexes over groupoids

This chapter stems from the work of Ashley (see [As]). He goes into
great detail about simplicial-T-complexes, and as we are only
interested in groupoid-T-complexes here, we have (in places) taken
different (and somewhat shorter) paths to the results we generalise.
However, the three results (Lemmas 9.1,9.2 and theorem 9.3) are
essentially his (the only difference being that we extend them to

cover groupoids).

Now recall the definition of a T-complex (due to Dakin [D]). A
T-complex, (K,T), is a Kan complex, K, with special elements in each
dimension, T,, called thin elements, together with the following
axioms: -

T.1. Every degenerate element is thin

T.2. Every "box" has a unique thin filler

T.3. The thin filler of a thin box has a thin "1id"

We recall that:-

a "box" in K,, we mean a set of elements xg,X%X;,°°",Xj-1,X14+1,%Xp
such that xj; € Kp-y (for j = i) and dyxy; =dj.yxx for (j >k,
J. k= 1).

a "filler" 1is an element y =K, s.t. dy =x; for j=# i, and

the “1id" 1is d;y.

We recall the definition of a crossed complex from section 7, and
remark that T-complexes are equivalent to crossed complexes over

groupoids (see [As]).
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A groupoid-T-complex, (G, T) is a T-complex where G, is a
groupoild and T, 1is a subgroupoid for all n, and the simplicial
maps are groupoid morphisms. In a group-T-complex (with the obvious
definition!) the thin elements of a group~T-complex are precisely the
elements of the subgroups generated by the degenerate elements at each

level (again, see [As]). The groupoid case is similar.

We define D = {D,},>0 to be the graded subgroupoid of G generated

n
by the degenerate elements in each level, 4y = Kerdj, 4" =U A}
J*1 1=0

and 4 = {An}n>0

Lemma 9.1

Let G be a simplicial groupoid with constant object of objects. Let
X0, 1X1-1,X141," ", Xn € Gh-q, such that dyxy =dy.1x5 for j <k
and j,k = i, (i.e. a box in G,), then there is a filler for the box
in D,.

This is a restatement of Proposition 2.1, and we refer the reader to

it for the proof. =

Lemma 9.2

If (G,T) 1is a groupoid-T-complex, then T = D.

Proof

Certainly, D& T, by axiom T1 for a T-complex. Then, if t = T,
the box dyt,dat,---,dyt has a filler in D,: call this d. Thus,
as de€ D, it is thin, so it is the unique thin filler for the box.
But, t also clearly fills the box, and is thin, so d =t. Thus,

all thin elements are in D, and so T = D. B
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Theorem 9.3

If G 1is a simplicial groupoid, then (G,D) 1is a groupoid-T-complex
if and only if D n A 1is trivial.

Proof

If (G,D) 1s a groupoid-T-complex, then for x € A? n D,, there is a
box dox,*:*,dj-1%,d1+1X,°°*,dpx - all of which are an identity - so
the box is filled by an identity in D,, but it is also filled by x,
so by uniqueness, x = 1. Since this holds for all i and n, we

have D n A 1is trivial.

Conversely, (G,D) satisfies T1, and the existence part of T2. If
Dn A is trivial, then consider a box yg,**°,¥i-1,Y1+1s" " »Y¥n,» With
filler y € D. Define vy, =y 'w;,; where w;,; € D 1is the filler
constructed in lemma 9.1. In the case I < n, Viet fills the
trivial box (the box with all faces an identity), so v,,; € D, n A4},
and thus vy,y =1, that is y = w;,;, so the D-filler 1is unique.

The case i = n 1is similar.

Lastly, the D-filler of a box in D will have two levels of

degeneracy by construction, and so its 1id will also be in D. ]

Recall from section 7 that the Moore complex of a simplicial
groupoid failed to be a crossed complex in three ways - that for
n2z2 and a € obGy, NG, (a) was not abelian, the action of
3,NG;(a) on it was not trivial, and the action of 3,NGy;(a) on
NG, (a) was not conjugation. In the case that G is a
simplicial-T-groupoid, these three stumbling blocks are removed by the

following lemma, which is really three technical lemmas.
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Lemma 9.4

Let (G,D) 1is a groupoid-T-complex, then the following hold for any

a € ob(G): -
(1) Elements of NG,(a) commute with elements of Kerd, n G,(a),
for n2 2.
(11) 31Xy = ((s1)" 'O((s1)” ') for any x € NGy(a) and
y € NG,(a).
(111) For n2 i, Vks.t. i>k21, for any x € G,-y+1(a) and
y € NG,(a),

(s5 's170p(s5 s 0T = (sos1 T T x(sesy T i)
Proof:
(1) Let n2 2, x € Kerdn n G,(a) and y € NG,(a), and
consider g = (s1%) (spy) (510) M say) 1.

Then, g € D,,;, and hence is thin.
Also, djg =1 for n-12 j21 and for j = n+l, and
dog = (sodox)(s:,,_ldoy)(sod(,x)°1(sn_lcio).')"1 € D,.
Thus {depg,1l,---,1,-,1} is a thin box (which is missing the n*?
face), and so it has a thin 1lid. But the 1id is

1

dog = xyx 'y ! e Dhp n NG,, and as (G,D) 1is a groupoid-T-complex,

D, n NG, = 1. Hence xyx 'y ! =1.

So elements of NG,(a) commute with elements of Kerdn n G,(a), for

(i1) Now let x € NGy(a) and y e NG,(a), and consider
((50)"don)¥((s0)"dox) ™ ((s)" ')y ™ ((s1)" ') 7 .
We can rewrite it as
do(((sy )" 0)s0y((51)™0)  H(so(s1)™ 1x) (soy) " (s0(sy )n-lx)-l) .
Set g = (((s1)™0soy((s1)"0) (051" ) (s0y) " Hs0(s1)" ' 0)7")

and note g € Dp.q.
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Then, dig = (((s1)" ' Ox((s)" DT Ty T (s 0T = 1,
and (for 12 2) dysgy = sodi-1¥Y =1, and therefore d;jg =1 for
i 2 1. Then, g 1is the unique degenerate filler for the trivial box
(where the 0" face is missing), and so g = 1.

Thus dog = ((sg)ndgx)y((so)"dox)'l((sl)“'lx)y'l((sl)“"lx)'1 =1, and

so  ((50)"doy((s0)"dox)™ ! = 2%y = ((s))* '0y((s)" '0™Y). o

(i1i1) Let x € Gp-1+1(a) and y € NG,(a), where n2 i 2 1.
Consider
k -k k -k -1 k+1 1-k-1 -1 k+1 1-k-1 -1
g = (sgs1 ) (sey)(sos: x) (so is1  W(sey) (sol siT x0T,

where (i-1) 2 k2 1 and so g € Dp,q.

[
[y
-

Now, for 0 < j < k djSky = sk_ldjy =

and for k+l < j € n+l djsky skdj-ly =1,
so dyg =1 for j = 0,k k+1.
We note at this point, since 1 < k, that these three cases are always

distinct, and further, that dgg 1is clearly degenerate (always).

Now, dy.;ss'lsi™® 'x = d,,,s6si %x since dy.1S6 = sedy, and thus
dx+12& = 1. Thus we have a box in G,, with the k" face missing,
and all other faces the Iidentity, except the Oth which 1is

degenerate. Thus, g 1is the unique degenerate filler, and the lid is
thin, that is dgg € D,.

k {-k-1 k 1-k-1 -1
x)

k-1 _1-k k-1 _1-k_,-1 -1
But dyg = (so s1 0y(sp s1 x) (sgs1 x)y (sos1 € NG,

and so dyg € NG, n D, and must be the identity. Thus, as required

k-1 _i-k k-1 _i-k_ -1 kK _1-k-1 kK 1-k-1_.-1
(so s1 MN¥(sg sy x) = (so51 x)y(sosy x) . L]

Theorem 9.5
If G 1is a simplicial-T-groupoid, then its Moore complex, NGe, 1is a

crossed complex.
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Proof:

We need only show that the three axioms which fail to be satisfied in
general are satisfied for the T-groupoid case.

(i) From 9.4 (i), elements of NG,(a) commute with elements of
Kerdp n Gp(a) for n2 2. But, NG,(a) € Kerdp n Gp(a), and so
NG(a) 1is abelian for n 2 2. u]
(1) From 9.4 (i1), 1%y = ((s1)" '0y((s1)" '07!)  for any

x € NG,(a) and y € NG,(a). For the case n =1, this yields that

alxy = xyx-l, that is, 9;NG; acts on NG, by conjugation. a

(111)  From 9.4 (11), 2y = (s '0x((s1)* '0™Y)  for any
91X _ , n-1 n-1_,-1

x € NG;(a) and y e NG,(a), and so y = (sy x)y(sy x) . Fron,

9.4 (iii), for n2x22, Yk n>k21, for x e Gy(a) and for

y € NGo(a), (s§ sy ™ 0y(st st 0! = (sks? * Topshst )7t
Thus, °%y = (s} hp(s] IO = (sbst P 0nshsy 20
= (s551 7 0x(sasT 0T = - = (55725 0x(sD 2507
= (sp ')y(ss 07,
Define h = (spx)(say)(sax) " (spy) ™' € Dpey. As dp.i55 = spdy, and

x € NGy, then dj,ith=1. For 0< i <n as d;spy = Sp-1dyy =1,
n-1 n-1 -1 -1

then dih =1 and dgh = (SQ X)(Sn-idoy) (50 x) (Sn-ldQY) € D,.

Thus, we have a box with nth-face missing, and all other faces

identity or degenerate. Thus h 1is the thin filler of a thin box,

1 61x 1

and dp,h € D,. But, d,h = (s§ ‘x)y(sy 'x) 'y = y.y = € NG,, thus

d,h € NG, n D, = 1, and so alxy.y-x, or aixy = y. Thus the action
of 3,NG; on the groups NG,(a) for n 2 2 1is trivial.
Therefore, if (G,D) 1is a groupoid-T-complex, the Moore complex of

G, NG, 1is a crossed complex. =
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10. The Crossed complex associated to a Simplicial Groupoid

As we have seen, NG is a crossed complex when (G,D) is a
groupoid-T-complex , and the necessary and sufficient condition for
this to hold is NG, n D, 1is trivial. Thus, if we are to obtain a
crossed complex from NG we will have to quotient it by some
subgroupoid containing NG, n D,. However, the naive approach of
ﬁaggﬁ‘ﬁg for the n'® term will not suffice,

since NG, n D, 1is not (in general) normal in NG,, and further,

taking the quotient

do(NGhsq1 N Dpeq1) 1is not necessarily contained in (NG, n D,).

Now, if G 1is a simplicial group, then we can form a reduced crossed

} (NG),
2 = NG, n Dp)do(NGpey N Dpat)

complex by taking C This was proved
by Carrasco and Cegarra [Ca], using the theory of hypercrossed

complexes. There is also a direct proof (by Porter [P]).

We shall do the same with the groupoid case, and show that C. is a

- (NG)
crossed complex, where C, = NG A D.)do (NG A Davy)

We first note that NGy n Dy = 1. Any element of D; has the form
sox for x e Gy, and so if y e€ NGy n Dy, then y = sox for some
x € Go. Then, 1, =d;y =dysox =x, and so x =1, and therefore

y € 1, for some a € obG.

Secondly, since the NGy are totally disconnected, so will

(NG, n Dy)3(NGhyq N Dyyy) be, and so C, will be

¢ (NG),(a) )
(NG, n D,)dg(NG,,1 N Dp.1)(a) a € obG
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So, for each a, we are in the reduced case: that is, Cs 1is a family
of reduced crossed complexes together with an action of Gg. Thus, we
have already that C, 1is a family of groups for n 2 1, and that for
n 2 2, these are abelian. Further, we have that the action of NG,

on NG; 1is trivial for i 2 2, and conjugation for i = 1.

Thus we require only that there be an action of Gy on each C(C,(a)
such that, for x € Gg(b,a) and y € Cp(a), *y e Cn(b), and that

3, *y) = *a,y).

We have the action of Gy, on NG,, so define *tyl := *y] for
(NG),(a)

x € Go(b,a) and [yl € pe——p g tye——p (@) 7 € ¥Ga)-

Let g € (NG, n D,)(a), h € (NGy,qy N Dyeq)(a), and consider

(sax)gdoh(shx)™! (clearly gdoh € (NG, n Dy)do(NGneq N Dpsy)(a)).

Now,  (spx)gdoh(shx)™! = (shx)g(spx) tdo((s5 ' x)n(sh  x)”Y), and so
(sPx)gdoh(shx)™! € (NG, n Dy)dg(NGuey N Dueq)(b)  and thus  *[gdohl
is trivial.

So if y’ € [yl, then [1p] = [(spx)y(y') '(spx)™'1 = *1y1¥1y* "1 and
since  *[y7'1 = [(sox)y ! (s5x) 7] = [((sox)y(sh0) )T = (FlyDT!,  we
have (Cly'D™ = X1y 7'1 = *lyD™', so [yl 1is well defined.

Since the action of Gg on NG, has the property an(xy) = x(any),

then this will pass to the quotient groups as well. This completes

the proof. |
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