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Dyadic spaces I (see Problems 4.5.9-4.5.11)

3.12.12. A compact space X is called a dyadic space (Alexandroff [1936]) if X is a continuous
image of the Cantor cube D™ for some m > Ro.

(a) (Marczewski [1941], Tukey [1941]) Note that for every dyadic space X we have
¢(X) = Ro and deduce that A(m) is not a dyadic space if m > Ro.

Hint. See Theorem 2.3.17.

(b) (Sanin [1948] (announcement {1946b])) Show that a dyadic space of weight m > Ro
is a continuous image of D™.

Hint (Engelking and Pelczyfiski [1963]). Apply Exercise 3.2.H(d).

(c) (Engelking and Pelczyfiski [1963]) Prove that for every continuous real-valued func-
tion f: X — R defined on a dyadic space X there exists a compact space Xo C X of weight
Ro such that f(Xo) = f(X).

" Note that R can be replaced by any Tychonoff space of weight Ro.

(d) (Engelking and Pelczyfiski [1963]) Deduce from (c) that the two arrows space is
not dyadic and that if the Cech-Stone compactification of a space X is dyadic, then X is
pseudocompact.

Hint. Show that SR is not a dyadic space and observe that any non-pseudocompact
Tychonoff space can be continuously mapped onto a dense subset of R.

() (Esenin-Volpin [1949]) Show that for every dyadic space X we have w(X) = x(X)
(cf. parts (g) and (h) below).

Hint. Prove a counterpart of Problem 2.7.14(a) for a space Y whose one-point subsets
are intersections of m > Ry open sets.

(f) (Sanin [1948] (announcement [1946b])) Prove that every linearly ordered dyadic
space is second-countable.

Hint. Apply (e) and Problem 3.12.4(a).

(g) (Efimov [1963a]) Prove that if x(z, X) < m > R for every z in a dense subset of a
dyadic space X, then w(X) < m.

Hint (E. Pol and R. Pol [1976]). Let x(z,X) < m for every z in a set B dense in
X. Consider a mapping f: D* — X of a Cantor cube D" = [],cs D, onto X and for every
a € A= f~}(B) choose an S(a) C S such that pg(la)ps(a)(a) = f~!f(a) and {S(a)| < m.
Define inductively increasing sequences S; C Sz C ... and A; C Az C ... of subsets of § and
A tespectively, such that |S;| < m, |4;] <m,

ps(4) Cps,(A) and Sy =5;U|J{S(a) :a € A}

Observe that for So = |Ji2, S; and Ao = UJi2; A; we have ps,(A) C ps,(A4o) and f(pgolpso {a))=
f(a) for every a € A. Consider the set A' = pg,(4) x[[,es\s,{as}, wherea, = 0fors € S\ So,
and show that f(A') = X.

(h) (Arhangel’skif and Ponomarev [1968]) Prove that for every dyadic space X we have
w(X) = r(X).

Hint (Arhangel’skil [1969]). Consider a mapping f: D™ — X onto X and the set
L, C D™, where n = 7(X), consisting of those points of D™ which have at most n coordinates
distinct from zero; show that f(X,) = X and note that it suffices to prove that d(X) < n.
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Making use of Theorem 2.3.15 observe that for every k > n and a set A C X of cardinality
< expk there exists a set B C X such that A C B and |B| < k. Applying three times this

observation and using Theorem 1.5.3 show that [X| < expexpn (to this end, consider a set-

A C X such that |A| < exp exp expn), applying it twice more prove that d(X } <n.

(i) (Engelking [1965]; for m of the form Ra41, Efimov [1965a]) Prove that if X is a
dyadic space and x(zo, X) = m > Ro, then X contains a subspace M homeomorphic to
D(m) such that M U {zo} is homeomorphic to A(m).

Hint. Consider a mapping f:[],cs Ds — X onto X, the fiber A = f~!(zo) and the set
So C § consisting of those s € S for which one can find points a(s) € A and b(s) ¢ A such
that ps(a(s)) = ps(b(s)) for &' # s; for every s € Sy choose a(s) and b(s) with the above
properties. Prove that A = pg, (4) x HaeS\So D, and deduce that |Sp} > m. Observe that
fibers of the function b from Sp to B = b(S)) are finite and deduce that |B| > m; verify that
all accumulation points of B belong to A and let M = f(B).

Remark. As proved by Hagler in [1975], Gerlits in [1976] and Efimov in [1977], every
dyadic space of a regular weight m contains a subspace homeomorphic to D™ (the last two
papers discuss also the case when the weight is non-regular). A similar result was obtained
for Tychonoff cubes by S€epin in [1979]: every Hausdorff space that is a continuous image of
a Tychonoff cube and whose weight m is regular contains a subspace homeomorphic to I™.

(j) Verify that the following diagram (cf. Problem 1.7.12(a)) contains all equalities and
inequalities between the cardinal functions appearing in it which hold in the class of all dyadic
spaces (the symbol k(X) denotes here the cadinality of X; from part (a) it follows that for
every dyadic space X we have ¢(X) = Ry, and clearly I(X) = e(X) = Ry).

nw=w=hd=hl=he¢
I

X=¢=r1

(k) (Efimov [1963a]) Prove that every hereditarily normal dyadic space is second-
countable.

Hint. Consider a mapping f: D™ — X onto X and a I-product £(a) C D™. Show that
if f(2(a)) = X, then w(X) < Ry (cf. Problem 3.12.24(f)). To this end, observe that every
separable subspace of X is second-countable and so is every subspace of cardinality < ¢; then
apply (i) and (e). In the case when f(X(a)) # X, take a point z € X \ f(£(a)) and show —
applying (i) and Theorem 3.10.21 ~ that the space X \ {z} is not normal.
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(b) (Montgomery [1935]) Show that if every point in a subset A of a metrizable space
X has a neighbourhood U in the space X such that the intersection AN U is a set of the
multiplicative class o > O (the additive class a) in the subspace U of X, then A is a set of
the same class (cf. Problem 2.7.1).

Hint (Michael [1954}). Apply (a) and the fact that X has a o-locally finite base.

(c) (Montgomery [1935]) Prove that if X and Y are metrizable spaces and f: X — Y is
a measurable mapping of class a, then the graph G(f) is a set of the multiplicative class o
in the Cartesian product X X Y.

Hint (Engelking [1967]). Show that for any base {B;}:cs for the space Y there exists a
family {As}ses of open subsets of Y such that (X x Y)\ G(f) = U,es(f ' (4s) x Bs). Apply
(a) and the fact that ¥ has a o-locally finite base.

Dyadic spaces II (see Problem 3.12.12)

4.5.9. (a) (Sierpifiski {1928]) Show that every non-empty closed subset A of the Cantor set
C is a retract of C.
Hint (Halmos [1963]). Check that the metric o on the set D¢, defined by letting

oo

olmy) =Y sele—wl for z={z}, v={u}

=1
induces the topology of the Cartesian product. Observe that if o(z,y) = o(z, 2), then y = 2
and deduce that for every z € D¢ there exists exactly one point a € A such that o(z,a) =
o{z, A).

(b) (Alexandroff [1927] (announcement {1925]), Hausdorff [1927]) Observe that from (a)
and Theorem 3.2.2 it follows that every non-empty compact metrizable space is a continuous
image of the Cantor set, i.e., is a dyadic space (cf. Theorem 3.2.2 and Problem 3.12.12(a)).

4.5.10 (Efimov [1963]). Show that every non-empty closed Gs-set F C D™ is a retract of
D™. Deduce that dyadicity is hereditary with respect to non-empty closed Gs-sets.

Hint (Engelking and Pelczyfiski [1963]). Take a function f: D™ — R such that F =
f~1(0), apply Exercise 3.2.H(a) and Problem 4.5.9(a).

4.5.11 (Efimov [1963a]). Show that every dyadic compactification ¢X of a metrizable space
X is second-countable, i.e., is metrizable.

Hint (Engelking and Pelczysiski [1963]). Observe first that the space X is separable,
then apply Exercise 3.5.F and Problem 3.12.12(c).

One can also apply Problem 3.12.12(g) and Exercise 2.1.C(a).

T-products III (see Problems 2.7.14, 2.7.15, 3.12.24 and Exercise 3.10.D)

4.5.12. (a) (Gul’ko [1977], M. E. Rudin [1977]) Let ¥(a) be a E-product of metrizable spaces
{Xs}ses, where a = {a,} € [],c5 Xe. Prove that for every discrete family 7 of closed subsets
of (a) there exists an open o-locally finite cover U of L(a) such that the closure of each
member of U intersects at most one member of 7.

Hint. For each intersection U = £(a) N [, Us of £(a) and a member [[,. ¢ Us of the
canonical base B for the Cartesian product [[,c5 X, let S(U) = {s € § : U; # X,}, for each
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