
Semantic Lego

David A� Espinosa

Submitted in partial ful�llment of the
requirements for the degree
of Doctor of Philosophy

in the Graduate School of Arts and Sciences�

COLUMBIA UNIVERSITY
����

c� ����
David A� Espinosa

ALL RIGHTS RESERVED

ABSTRACT

Semantic Lego

David A� Espinosa

Denotational semantics �Sch��� is a powerful framework for describing program	

ming languages
 however� its descriptions lack modularity� conceptually independent

language features inuence each others� semantics� We address this problem by pre	

senting a theory of modular denotational semantics�

Following Mosses �Mos���� we divide a semantics into two parts� a computation

ADT and a language ADT �abstract data type�� The computation ADT represents

the basic semantic structure of the language� The language ADT represents the

actual language constructs� as described by a grammar� We de�ne the language ADT

using the computation ADT
 in fact� language constructs are polymorphic over many

di�erent computation ADTs�

Following Moggi �Mog��a�� we build the computation ADT from composable parts�

using monads and monad transformers� These techniques allow us to build many

di�erent computation ADTs� and� since our language constructs are polymorphic�

many di�erent language semantics�

We automate these ideas in Semantic Lego �SL�� a modular language construc	

tion set written in Scheme� SL generates interpreters automatically from composable

parts and is a useful tool for programming language design�

Contents

Table of Contents i

List of Figures iv

List of Tables vi

� Introduction �

��� Denotational Semantics �
����� Domains � Types �
����� Logics �
����� Environments �
����� Stores �
����� Continuations �
����� The importance of types �

��� Languages as ADTs �
��� Monolithic interpreters ��
��� Modular interpreters ��

����� Lifting interpreter ��
����� Strati�ed interpreter ��

��� Examples ��
����� A Scheme	like language ��
����� Nondeterminism and continuations � � � � � � � � � � � � � � � ��
����� Uni�ed system of parametrization � � � � � � � � � � � � � � � � ��
����� Resumptions ��

� Monads ��

��� Basic category theory ��
����� Categories ��
����� Functors ��
����� Natural transformations ��
����� Initiality ��
����� Duality ��
����� Category theory and functional programming � � � � � � � � � ��
����� References ��

i

��� Monads ��
����� First formulation ��
����� Second formulation ��
����� Interpretations ��

��� Monad morphisms ��
��� Monads don�t compose ��
��� Monads do compose ��
��� Monad transformers ��

����� Motivation ��
����� Formalization ��
����� Classes of monad transformers � � � � � � � � � � � � � � � � � � ��
����� Composition of monad transformers � � � � � � � � � � � � � � � ��

� Lifting ��

��� Lifting ��
����� Formal lifting ��
����� Monads and lifting ��

��� Pragmatics ��
����� Bottom	up ��
����� Top	down ��

� Strati�cation ��

��� Strati�ed monads ��
��� Strati�ed monad transformers ��

����� Top transformers ��
����� Bottom transformers ��
����� Around transformers ��
����� Continuation transformers ��

��� Computation ADTs ��
��� Language ADTs ��

� Conclusion ��

��� Lifting versus strati�cation ��
��� Limitations ��
��� Related work ��
��� Future work ��
��� Conclusion ��

Bibliography ��

A Miscellanea ��

A�� Why Scheme� ��
A�� Typed versus untyped values ���
A�� Extensible sums and products ���

ii

B Code �	�

B�� Monad transformer de�nitions ���
B�� Language construct de�nitions ���

iii

List of Figures

��� Interpreter ��
��� Environment ADT ��
��� Expression predicates and selectors ��
��� Expression constructors ��
��� Interpreter interface ��
��� Denotational implementation ��
��� Map from syntax to semantics ��
��� Monolithic interpreter� part ��
��� Monolithic interpreter� part ��
���� Store ADT ��
���� Lifting operators ��
���� Value level ��
���� Store level ��
���� Environment level ��
���� Level	negotiating operators ��
���� Modular interpreter� part ��
���� Modular interpreter� part ��
���� Example speci�cation and expressions � � � � � � � � � � � � � � � � � � ��
���� �let source de�nition ��
���� �let de�nition simpli�ed ��
���� �amb source de�nition ��
���� �amb version ��
���� �amb version ��
���� �amb version ��
���� Uni�ed system of parametrization ��
���� Uni�ed parametrization examples ��
���� Parallel language using resumptions ��

��� Example monads� part ��
��� Example monads� part ��
��� Monads don�t compose ��
��� Environment monad transformer ��

��� First answer transformer ��

iv

��� Second answer transformer ��

��� Odd de�nition of �end�of�input� ��

B�� Environment transformer ���
B�� Exception transformer ���
B�� Continuation transformer ���
B�� Store transformer ���
B�� First lifting transformer ���
B�� Second lifting transformer ���
B�� List transformer ���
B�� Monoid transformer ���
B�� Resumption transformer ���
B��� Amb ���
B��� Reset ���
B��� Stores ���
B��� Output ���
B��� While ���
B��� Begin ���
B��� Error exceptions ���
B��� Error values ���
B��� Batch I�O ���
B��� Booleans ���
B��� Call with current continuation ���
B��� Dynamically scoped procedures ���
B��� Environments ���
B��� Fixed points ���
B��� Letrec using �xed points ���
B��� Numbers ���
B��� Statically scoped procedures ���
B��� Resumptions ���
B��� Products ���
B��� Sums ���
B��� Shift ���

v

List of Tables

��� Monad type constructors ��
��� Meaning of existence ��
��� Monad transformers ��
��� Monad transformer classi�cation ��
��� Classi�cation examples ��

��� Names associated with each transformer � � � � � � � � � � � � � � � � ��
��� Levels and names for a complex language � � � � � � � � � � � � � � � � ��
��� Procedure types ��
��� Modules and language constructs ��

��� Non	local language constructs ��

vi

Acknowledgements

Mary Ng� my �anc�ee� has been waiting patiently for this thesis for several years�

I could have done it without her� but it would have been much worse� and it was

already bad� Mary is easily the happiest result of grad school�

Joanne Espinosa� my mother� has been great for �� years� Thanks� mom�

Gerald J� Sussman� who I have known for a decade now� has always been an

inspiration� His faith in his students never fails� and talking with him makes you

believe� if only for a moment� that you can do anything� On the more material side�

Jerry let me hang out at his lab for the last year �or more��

Sal Stolfo� my advisor at Columbia� has been an extremely tolerant observer of

my graduate school career� In part� I picked Sal as an advisor because he was a nice

guy
 remarkably� he still is�

My defense committee� Gail Kaiser� Ken Ross� and Mukesh Dalal� helped me get

out of Columbia in one piece�

Albert Greenberg rescued me from unemployment for several summers at AT�T�

He initially hired me because �it takes less paper work to hire Ph�D� scholars�� We

had fun hacking parallel Fourier transforms and solving models of communication

networks� The connection between that and monads seems certain� but� for the

present time� obscure�

An AT�T Ph�D� scholarship supported me for �ve years� and they didn�t even

make me beg too hard for a �fth year� Unfortunately� all they gave me was money

�Albert notwithstanding��

Thanks to Phil Chan� Mauricio Hernandez� Sushil Da Silva� Paul Michelman�

and Bulent Yener for keeping me company at Columbia� Similarly for Michael Blair�

Kleanthes Koniaris� Natalya Cohen� Raj Surati� and all the other fourth	oor people

at MIT�

Thanks also to my musical friends� Joseph Briggs� Kerstin Kup� Brian and Karen

Neal� Lois Winter� and Johelen Carleton�

vii

Albert Meyer has been great fun on many occasions� It�s splendid to talk to

someone who knows semantics inside and out� along with most of its history� You

just can�t get that from papers�

Eugenio Moggi deserves my thanks for his work� sine qua non� Albert objected

to Moggi�s inclusion here since our relationship is scienti�c rather than personal �es	

pecially since I�ve never met him�� Albert� as a logician� splits any hair he can �nd�

Jonathan Rees introduced me to monads and category theory� I hope we�ll be

able to work more together later� Now he�s o� chasing bugs in England�

Bill Rozas helped me out on many� many occasions and was always happy to

discuss semantics or architecture� Bill is incredibly generous and made me feel that

we were equals� even when we weren�t� I envy him this quality�

Carl Gunter has been a great source of advice and assistance� When I �rst met him

at LFP in ����� he was a soft	spoken man who� after a heated semantics argument

died down� would say� �Actually� the real answer is � � � �� His explanations and his

book �Gun��� are crystal clear�

Charles Leiserson provided convincing evidence to attend MIT as an undergrad

by being the most interesting person at Brown when I visited there� He did a great

job teaching me algorithms� but I �gure that �eld�s too easy anyway� Charles has an

astounding ability to formalize just about anything�

Franklyn Turbak and I have had enormous fun hacking interpreters and languages

for the last two years� Until meeting Lyn� I was convinced that formal semantics was a

non	sensical hodgepodge of Greek letters intended to confuse the reader into thinking

the �eld had actual content� My present views you�ll have to ascertain by reading

this thesis�

viii

Chapter �

Introduction

Denotational semantics is a powerful framework for de�ning programming languages�

Using it� we can describe languages concisely and unambiguously and build inter	

preters that execute actual programs� It is not a di�cult theory to understand�

especially considering its power�

Unfortunately� it is hard to read and write denotational descriptions� primarily

because they lack modularity� Each language construct interacts with all the semantic

building blocks that form the language�s foundation� For example� if we model assign	

ment using a store� then every language construct must interact with the store� not

just assignment� The complexity of this interaction makes denotational descriptions

overly intricate�

This thesis presents a modular style of writing denotational descriptions� which we

automate as Semantic Lego
��SL�� a Scheme program that builds interpreters from

component parts� In essence� SL is a language for describing languages� This work

makes several important contributions�

� We reintroduce the idea of programming languages as abstract data types� In	

terpreters written in this style are shorter and clearer than usual�

� We restate Moggi�s theory of lifting in simple terms� making it accessible to a

�Lego is a registered trademark of Interlego AG�

�

�

wider audience�

� We describe a new theory of strati�cation that is simpler than lifting yet more

powerful� This theory extends Mosses�s work on semantic algebras� adding

structure and modularity�

� We show two styles of writing modular interpreters� based respectively on lifting

and strati�cation�

� We present Semantic Lego� a modular language construction set based on

strati�cation� and give several examples�

This work has several important consequences�

� We can understand� discuss� and teach languages better by decomposing them

into parts� For example� the resumptions model of parallelism appears complex

until we see it as a combination of several simple features�

� We can experiment with new languages� SL handles the bookkeeping associated

with denotational descriptions� leaving the designer free to consider higher	level

issues� SL�s underlying theory can also help suggest new language constructs�

The following story illustrates SL�s power� Three teaching assistants for the MIT

graduate programming languages course needed to describe the semantics of a sophis	

ticated control construct �shift� in the presence of state� Although they understood

control and state independently� they were unable to �nd a suitable interaction be	

tween these features before distributing the problem set�

Using SL� I generated two solutions in under a minute� In fact� SL formed complete

interpreters� not just the single required construct� It was also easy to add errors

generation and handling� another semantic complication� Since I was con�dent in

SL�s ability to produce correct semantics� I did not even examine the de�nitions to

see if they were well	formed�

�

The thesis is organized as follows� Chapter � discusses lifting
 chapter � discusses

strati�cation� Chapter � compares these approaches and reviews previous work� Ap	

pendix A covers issues tangentially related to the thesis�

We assume an elementary understanding of denotational semantics and functional

programming
 for further background� see �Wad���� All examples and code fragments

are in Scheme �CR����

The rest of this chapter presents languages as abstract data types� demonstrates

that the usual style of writing interpreters isn�t modular� shows two styles of writing

modular interpreters� and exercises SL with a series of examples�

��� Denotational Semantics

In this section� we discuss denotational semantics� the theory on which SL is

based� Excellent references are �Gun��� Sch���� In general� semantics is the study of

meaning� Our goal is to determine� for example� that x � x�� means �add one to x��

Programming language semantics is actually a branch of mathematical logic
 the

main di�erence is that logics are for reasoning� while programming languages are

for computation� Semantics �whether of propositions or programs� is split into two

interacting parts� Proof theory� the more syntactic part� lets us reason and compute�

Model theory� the more semantic part� lets us describe what we are actually reasoning

and computing about�

����� Domains � Types

Our �rst step is to describe the raw material for building models� This elaborate

subject is called domain theory
 however� most of it is irrelevant to our interest in

modeling language features� I usually call domains types� although the concepts are

not quite the same�

We begin with base types such as Num� Bool� and String� We glue these together

using the type constructors� �function space�� � �cartesian product�� and � �disjoint

�

union�� A� B is the set of functions from A to B� Since� associates to the right�

A� B � C means A� �B � C�� A�B is the set of all pairs �a� b�� A�B is the

set of all ��� a� and ��� b�� That is� elements of A � B are either A�s or B�s� except

that we can always tell which is which by checking the tag� Thus� A�A is di�erent

from A�

Two types A and B are isomorphic �set	theoretically� if there exist functions

f � A� B and g � B � A such that f � g g � f id� Writing � for isomorphism�

we have

A�B � B �A

A�B � B �A

�A�B� � C � A� �B � C�

�A�B�� C � A� �B � C�

A� �B � C� � A�B �A�C

A� �B � C� � A�B � C

�A� C�� �B � C� � �A�B�� C

Thus� �� �� and � resemble addition� multiplication� and exponentiation� Because

of this structure� types built using these constructors are called algebraic types� Also�

all one	element sets are isomorphic �and similarly for other cardinalities�� If we dis	

tinguish a set of each cardinality� we can also write identities such as ��A � � and

� � � � ��

����� Logics

A logic is given by a language� a class of models� a set of inference rules� and a

meaning or denotation function for each model� The meaning function maps terms

�

in the language to elements of the model and interprets the language as being about

the model� The inference rules are used for reasoning or computation� Let�s take a

simple arithmetic language�

Exp Num

j Exp � Exp

j Exp � Exp

�Exp�
Num Dig j DigNum
Dig � � � � �

An example expression is � � ��� � ��� For a model� we have the usual natural

numbers� For inference rules� we have the usual identity� associative� commutative�

and distributive laws� The meaning function sends expressions to actual numbers�

For example� it sends � � ��� � �� to ��� The inference rules must be sound
 that

is� they must preserve meanings� For example� if we apply the distributive law to

�� ������ to get ��������� the meaning of this totally di�erent expression must

also be ��� Note that we specify only a single model� while our de�nition allows a

class of models
 see �Mes��� for a more thorough treatment of logics�

Interestingly� we have two ways of evaluating expressions� inside the language�

using the inference rules� and outside the language� using the meaning function� If

we use the meaning function� we need a way to compute in the language in which the

meaning function is described �the metalanguage�� Sometimes this means is available

for example� if we implement an evaluator for the above language in C� we can use

C�s arithmetic� Sometimes it is not
 in performing arithmetic by hand� we use the

inference rules to justify the syntactic manipulations of the usual addition and mul	

tiplication algorithms� In this thesis� we build interpreters using meaning functions

and focus on models rather than inference rules�

Most meaning function de�nitions are compositional� the meaning of an expression

depends only on the meaning of its subexpressions� rather than their exact syntax�

For example� in the arithmetic language� the meaning of a � b is the sum of the

meanings of a and b�

�

����� Environments

The semantics of more complex programming languages is simply an elaboration

of the above example� In the rest of this section� we discuss the basic techniques�

For example� suppose we add variables and a binding construct let to the language�

Now we can write �shifting to a Scheme	like notation��

�let ��a �� �b ���

�� a �	 b
���

The meaning of the overall program could still be a number� but what about the

meaning of an expression such as a� We take the meaning of an expression to be a

function from an environment to a number� where the environment assigns values to

variables� We can view the environment as a function from variables to values or as

a list of variable � value pairs
 it doesn�t matter which�

Thus� meanings �or denotations�� instead of being numbers� are elements of

Den Env � Num

The primary inference rule for variables is substitution� It must be carefully de	

�ned� and there are several variations� but� in general� we can infer that

�let ��a �� �b ���

�� a �	 b
���

has the same meaning as �� � �	 �
��� Although it seems simple� it is already not

easy to prove the soundness of this inference rule with respect to the environment

model�

����� Stores

The next complication arises in modeling state� Suppose we have a language with

assignment statements and sequencing� We can write programs such as

a � �

b � �

a � a � b

return a

�

The meanings of statements are functions from stores to stores� where a store is just

another name for an environment� That is� a statement accepts a set of variable

bindings and returns a new set� We write this as

Den Sto � Sto

For example� the meaning of a � a � � sends a store binding a to � to a store binding

a to �� To be accurate� we need separate meaning functions for programs� statements�

and expressions� We have

DenProgram Num

DenStatement Sto � Sto

DenExpression Sto � Num

We also need to handle unbound variables somehow
 there are several viable ap	

proaches� We could return an observable error value �that we could test�� an unob	

servable error value �that would propagate through all operators unchanged�� or we

could abort the computation immediately�

����� Continuations

One way to model an abort operator is via continuations� The continuation rep	

resents the rest of the computation� a map from the current store to the �nal store� A

statement accepts both a store and a continuation� Most statements form a new store

�as usual� and apply the continuation to the result� thus continuing the computation�

To abort� statements return the store directly� ignoring the continuation� Thus� a

model for statements is

Den Sto � Cont � Sto

Cont Sto � Sto

In a language with operators for manipulating continuations� such as catch and

throw� we can build non	local control structures for backtracking or coroutines� This

example shows that semantic concepts can sometimes suggest new and useful language

features�

�

����� The importance of types

Quite often� once we specify the language and the model� there are few ways to

map terms to denotations� Once we know that

Den Env � Num

�and that environments map variables to numbers�� it is clear how to de�ne variable

reference� Thus� an experienced semanticist needs only the language� the model�

and some general instructions about how the language should behave in order to

reconstruct its exact semantics� The model alone conveys most of the interesting

information� which is why types are good tools for describing semantics�

Why do models determine language construct semantics so completely� With

respect to the values they manipulate� language constructs are general and uniform�

For example� function call works for all types� and in the same way� This notion�

formalized by Reynolds� is called parametric polymorphism�

In the above semantics� it is clear that the only sensible meaning for a variable is

to look it up in the environment� How else could we get a number� We would have

to make one up� which would not be general� A good reference for this material is

�Wad���� which describes Reynolds� result that polymorphic functions obey identities

derivable solely from their types� For example� a function f � List�A� � List�A�

must obey

�f �map g l�� � �map g �f l��

for any l � List�A� and g � A� B�

Since models tightly constrain language semantics� we always begin by �nding a

suitable model� Furthermore� it is not surprising that a modular theory of interpreters

begins with a modular theory of models�

�

��� Languages as ADTs

We begin with a simple interpreter in the style of Abelson and Sussman �ASS���

and reduce it to its essence� eliminating issues of syntax as much as possible� This

approach shows that �metalinguistic abstraction� is no di�erent from ordinary ab	

straction� In other words� it is not necessary to �go outside� the implementation

language in order to program in the target language� It also provides a streamlined

style of writing interpreters that shortens them and makes the separation of syntax

and semantics more apparent�

A simple interpreter for a purely functional language appears in �gures ��� ! ����

A typical use of it is

�compute ���lambda x �	 x x�� ���

� �

This interpreter parses concrete syntax in the form of lists� That is� it recognizes the

subset of lists that are valid programs� Parsing has little to do with semantics� so we

pass to an abstract syntax� using the constructors shown in �gure ���� Now the same

program reads as

�compute ��call ��lambda �x ��	 ��var �x� ��var �x��� ��num ����

� �

which is more explicit �but less readable��

These constructors� along with the procedure compute� describe the interpreter as

an abstract data type �ADT�� whose signature is shown in �gure ���� Of course� the

signature only partially speci�es the behavior of the interpreter� The easiest way to

describe its behavior more completely is to provide a �model� implementation� such

as the one in �gures ��� ! ����

Now that we have speci�ed the interpreter�s interface� we can ask whether there

is a simpler implementation� In fact� �gure ��� shows that there is� In this �gure� we

use the Scheme syntax for de�ning curried functions� so that

�define ��f a� b� ����

��

�define �eval exp env�

�cond ��number� exp� �eval�number exp env��

��variable� exp� �eval�variable exp env��

��lambda� exp� �eval�lambda exp env��

��if� exp� �eval�if exp env��

���� exp� �eval�� exp env��

��	� exp� �eval�	 exp env��

�else �eval�call exp env����

�define �compute exp�

�eval exp �empty�env���

�define �eval�number exp env�

exp�

�define �eval�variable exp env�

�env�lookup exp env��

�define �eval�lambda exp env�

�lambda �val�

�eval �lambda�body exp�

�extend�env env �lambda�variable exp� val����

�define �eval�call exp env�

��eval �call�operator exp� env�

�eval �call�operand exp� env���

�define �eval�if exp env�

�if �eval �if�condition exp� env�

�eval �if�consequent exp� env�

�eval �if�alternative exp� env���

�define �eval�� exp env�

�� �eval �op�arg� exp� env�

�eval �op�arg� exp� env���

Figure ���� Interpreter

��

�define �empty�env� ����

�define �env�lookup var env�

�let ��entry �assq var env���

�if entry

�error �Unbound variable� � var�

�right entry����

�define �env�extend var val env�

�pair �pair var val� env��

Figure ���� Environment ADT

expands into

�define f �lambda �a� �lambda �b� ������

Notice that the syntactic constructors and selectors have entirely disappeared�

The new implementation is shorter� yet it preserves the semantic content of the orig	

inal� We call �gure ��� a denotational implementation of the language ADT because

we represent expressions by their denotations rather than their syntax� We call an

equation such as

Den Env � Val

the basic semantics of the language� We write Den in place of Exp to reect the

change in point of view� but the ADT semantics remains the same�

Despite these advantages� few authors write interpreters in this style� perhaps

because most languages encourage programmers to use concrete �rather than abstract�

data types� For example� Scheme emphasizes lists� while ML and Haskell emphasize

algebraic data types �sums and products�� Programmers in languages with better

support for ADTs might arrive more easily at this style� although �rst	class functions

are also necessary�

The denotational style shows explicitly that the semantics is compositional� which

is to say that the meaning of an expression is composed from themeanings of its imme	

��

�define variable� symbol��

�define �lambda� exp�

�eq� �lambda �first exp���

�define lambda�variable second�

�define lambda�body third�

�define call�operator first�

�define call�operand second�

�define �if� exp�

�eq� �if �first exp���

�define if�condition second�

�define if�consequent third�

�define if�alternative fourth�

�define ��� exp�

�eq� �� �first exp���

�define �	� exp�

�eq� �	 �first exp���

�define op�arg� second�

�define op�arg� third�

Figure ���� Expression predicates and selectors

�define ��num x� x�

�define ��var name� name�

�define ��lambda name exp� �list �lambda var exp��

�define ��call e� e�� �list e� e���

�define ��if e� e� e
� �list �if e� e� e
��

�define ��� e� e�� �list �� e� e���

�define ��	 e� e�� �list �	 e� e���

Figure ���� Expression constructors

��

compute � Exp � Val

�num � Val � Exp

�var � Name � Exp

�lambda � Name � Exp � Exp

�call � Exp � Exp � Exp

�if � Exp � Exp �Exp � Exp

�� � Exp � Exp � Exp

�	 � Exp � Exp � Exp

Figure ���� Interpreter interface

�� Den Env � Val

�� Proc Val � Val

�define ���num n� env�

n�

�define ���var name� env�

�env�lookup name env��

�define ���lambda name den� env�

�lambda �val�

�den �env�extend env var val����

�define ���call d� d�� env�

��d� env� �d� env���

�define ���if d� d� d
� env�

�if �d� env� �d� env� �d
 env���

�define ���� d� d�� env�

�� �d� env� �d� env���

�define ���	 d� d�� env�

�	 �d� env� �d� env���

Figure ���� Denotational implementation

��

�define �D exp�

�cond ��number� exp� ��num exp��

��variable� exp� ��var exp��

��lambda� exp�

��lambda �lambda�variable exp�

�D �lambda�body exp����

��if� exp�

��if �D �if�condition exp��

�D �if�consequent exp��

�D �if�alternative exp����

���� exp�

��� �D �op�arg� exp��

�D �op�arg� exp����

��	� exp�

��	 �D �op�arg� exp��

�D �op�arg� exp����

�else

��call �D �call�operator exp��

�D �call�operand exp������

Figure ���� Map from syntax to semantics

diate subexpressions� The original implementation does not preclude the possibility

that the meaning of an expression could depend on the syntax of its subexpressions�

Figures ��� ! ��� and �gure ��� implement the same interface ��gure ���� using very

di�erent base types� The former uses expressions� while the latter uses denotations�

As shown in �gure ���� we can de�ne a map from expressions to denotations� that is�

from syntax to semantics� For example� �	 �
� goes to ��	 ��num �� ��num
���

The denotational approach to interpreters originates with �GTWW���� This paper

shows that the expression implementation is initial in the category of implementa	

tions of an ADT interface �see section ������� A consequence is that all syntaxes are

isomorphic� and hence� from a mathematical point of view� syntax doesn�t matter�

The presentation of languages as ADTs shows that� contrary to �ASS��� or even

�Wad���� there is no real di�erence between �metalinguistic� abstraction and data

abstraction� New syntax �even abstract syntax� is not necessary for new languages�

��

In essence� every ADT forms a new language� and vice	versa� Of course� we cannot

have language without syntax
 in fact� we reuse Scheme�s syntax� For example� the

expression

��� ��num �� ��num ���

has meaning in Scheme �directly� and in the interpreted language �using compute��

With an extensible parser� we could make the interpreted language more readable�

Finally� observe that the denotational style can be used in languages other than

Scheme� With a little more work� we could implement the language ADT in C� and

the result would be equally usable�

��� Monolithic interpreters

In this section� we examine the usual monolithic style of writing interpreters and

show that it is non	modular� Monolithic means that a program is not textually

divided into modules� Non�modular means that a local conceptual change requires a

global textual change� Hence� monolithic is a syntactic property� while non	modular

is a semantic property�

To see an example of non	modularity� we extend the language presented above to

include stores� We add three new operations�

�begin � Exp � Exp � Exp

�fetch � Loc � Exp

�store � Loc � Exp � Exp

The intuitive meanings of these operations are that �begin threads a store through

two expressions in sequence� �fetch reads a value from the store� and �storewrites a

value into the store� We could de�ne �begin using �let but� since they are operations

in the same ADT� I prefer to give them equal status�

Figures ��� and ��� show a monolithic denotational implementation of the ex	

tended language� The store ADT� shown in �gure ����� is almost identical to the

environment ADT� The intuitive meaning of the base semantics

��

�� Den Env � Sto � Val � Sto

�� Proc Val � Sto � Val � Sto

�define ����num n� env� sto�

�pair n sto��

�define ����var name� env� sto�

�pair �env�lookup name env� sto��

�define ����lambda name den� env� sto�

�pair �lambda �val� �den �env�extend env name val���

sto��

�define ����call d� d�� env� sto�

�with�pair ��d� env� sto�

�lambda �v� s��

�with�pair ��d� env� s��

�lambda �v� s��

��v� v�� s�������

�define ����if d� d� d
� env� sto�

�with�pair ��d� env� sto�

�lambda �v� s��

�if v�

��d� env� s��

��d
 env� s������

Figure ���� Monolithic interpreter� part �

Den Env � Sto � Val � Sto

is that an expression is interpreted relative to an environment and a store� For

example� to evaluate ��fetch �a�� we need to know what is stored in location a� In

addition to returning a value� a denotation also returns an updated store�

Even though we have added only three new language constructs� the implementa	

tions of the other constructs change drastically� For instance� although numbers have

nothing to do with stores� we are forced to write

��

�define ����make�op op� d� d�� env� sto�

�with�pair ��d� env� sto�

�lambda �v� s��

�with�pair ��d� env� s��

�lambda �v� s��

�pair �op v� v�� s�������

�define �� �make�op ���

�define �	 �make�op 	��

�define ����begin d� d�� env� sto�

��d� env� �right ��d� env� sto����

�define ����fetch loc� env� sto�

�pair �store�fetch loc sto� sto��

�define ����store loc den� env� sto�

�with�pair ��den env� sto�

�lambda �val sto�

�pair �unit �store�store loc val sto�����

�define �with�pair p k�

�k �left p� �right p���

Figure ���� Monolithic interpreter� part �

�define �empty�store� ����

�define �store�fetch loc sto�

�let ��entry �assq loc sto���

�if entry

�error �Empty location� � loc�

�right entry����

�define �store�store loc val sto�

�pair �pair loc val� sto��

Figure ����� Store ADT

��

�define ����num n� env� sto�

�pair n sto��

in place of

�define ���num n� env�

n�

Thus we have an instance of non	modularity� a conceptually local change requires a

textually global change�

��� Modular interpreters

Modular programs have several advantages over monolithic programs�

� They are easier to understand�

� They are easier to reason about�

� They are easier to extend and modify�

In this section� we describe two modular interpreters� We begin by examining the

interpreter constructed in the last section� The basic semantics is

Den Env � Sto � Val � Sto

In this type� we distinguish three distinct �levels��

E Env � Sto � Val � Sto

S Sto � Val � Sto

V Val

Modularity is possible because most language constructs operate primarily at a single

level� For example� �var operates on environments� �� operates on values� and �store

operates on stores�

��

There are two methods for building a modular interpreter� which we describe by

analogy with building a house� In both methods� we build a oor at a time� starting

from the bottom� However� in the �rst� we move in our belongings �rugs� furniture�

china� paintings� books� after we �nish each oor� In the second� we wait until the

house is complete before moving in� It�s not surprising that the second method works

better�

In the �rst method� we start with the value level and constructs such as ��� Then

we add the stores level and more constructs such as �fetch� We also lift the value

constructs up to the stores level �the interesting part�� Then we add the environments

level and constructs such as �call� We also lift the value and store constructs up to

the environments level�

In the second method� we de�ne operators for lifting values and functions between

all pairs of levels� For example� unitVE lifts from values to environments� We can

de�ne these operators in stages� but it is easier to de�ne them all at once� Then we

use them to de�ne each language construct in a single step� without lifting it through

several levels�

In both interpreters� we use monads to relate pairs of levels� A monad is a triple

�T � unit� bind� of a type constructor and two polymorphic operators

unit � A� T �A�
bind � T �B�� �A� T �B��� T �B�

The operators are required to obey several identities� as discussed in section ���� Two

types A and B are related by a monad �T � unit� bind� if B T �A�� Unit lifts values

from A to B� and bind lifts functions of type A � B to functions of type B � B�

We can use bind to lift functions of other types also�

Let�s examine what lifting means� Suppose that we have a function square

� Num � Num and we want to de�ne a function square�list � List�Num� �

List�Num� that squares each number in a list� Given the list monad

��

��� T �A� List�A�

�define �unit a�

�list a��

�define �bind tb f�

�flatten �map f tb���

we can de�ne square�list as

�define �square�list l�

�bind l �lambda �n� �unit �square n�����

We can perform this lifting using the standard Scheme map function� but monads can

lift functions that map �and its generalizations� cannot� as shown in section ������ We

present a formal de�nition of lifting in section ����

����� Lifting interpreter

This section presents a modular interpreter built using lifting� Since strati�cation

is simpler and more powerful� it may be better to skip to the next section on �rst

reading�

The interpreter is shown in �gures ���� ! ����� The �rst �gure shows a set of lifting

operators� These accept a monad relating levelsA and B and a function de�ned on A�

They return a function de�ned on B� Functions may accept parameter types �written

X�� that are untouched by the lifting process� The parameters always come before

the actual arguments� The operator lift�pN�aM lifts a function of N parameters and

M arguments� For example� lift�p��a� takes functions

f � X �A�A� A

to lifted functions

f� � X �B �B � B

The lifting operators assume that all functions return values of type A�

��

�define ��lift�p��a� unit bind op� p��

�unit �op p����

�define ��lift�p��a� unit bind op� d��

�bind d�

�lambda �v��

�unit �op v������

�define ��lift�p��a� unit bind op� d� d��

�bind d�

�lambda �v��

�bind d�

�lambda �v��

�unit �op v� v��������

�define ��lift�p��a� unit bind op� p� d��

�bind d�

�lambda �v��

�unit �op p� v������

�define ��lift�if unit bind op� d� d� d
�

�bind d�

�lambda �v��

�op v� d� d
����

Figure ����� Lifting operators

The second �gure shows the values level and the constructs de�ned on it� The

third �gure uses the lifting operators and the stores monad to lift these operators to

the level of stores� It also de�nes several new operators� The fourth �gure does the

same for environments� Using appropriate laws for reasoning about Scheme programs

�essentially call	by	value lambda calculus�� we can show that the �nal constructs are

operationally equivalent to the monolithic de�nitions of �gure ����

Although the code for this interpreter is somewhat long� it is fairly modular� For

example� the de�nitions of

� �num� ��� and �	 do not involve environments or stores�

��

��� V V al

�define computeV id�

�define �numV id�

�define ��V ��

�define �	V 	�

�define ��ifV d� d� d
�

�if d� d� d
��

Figure ����� Value level

� �fetch and �store do not involve environments� and

� �var� �lambda� and �call do not involve stores�

We obtain modularity by lifting operators in a canonical way using unit and

bind� Canonical means that operators with identical types have identical liftings� An

exception is �if� which needs special treatment� Even in this case� the lifting of �if

is uniform for all levels�

A more serious lack of modularity occurs when de�ning �var� �lambda� and �call�

Here we use unitS and bindS� which were intended solely for the stores level� Also� we

assume that environments contain values from the values level� Since the environment

constructs interact with multiple levels� we say that they are non�local�

����� Strati�ed interpreter

The second interpreter is much simpler than the �rst� We de�ne all language

constructs using �ve operators that relate levels in pairs�

��

��� S Sto � V � Sto

�� Store monad

�define �unitS v�

�lambda �sto�

�pair v sto���

�define �bindS s f�

�lambda �sto�

�let ��v	sto �s sto���

�let ��v �left v	sto��

�sto �right v	sto���

��f v� sto�����

�� Lifted operators

�define �computeS den�

�computeV �left �den �empty�store�����

�define �numS �lift�p��a� unitS bindS �numV��

�define ��S �lift�p��a� unitS bindS ��V��

�define �	S �lift�p��a� unitS bindS �	V��

�define �ifS �lift�if unitS bindS �ifV��

�� New operators

�define ���fetchS loc� sto�

�pair �store�fetch loc sto� sto��

�define ���storeS loc den� sto�

�let ��v	s �den sto���

�let ��v �left v	s��

�s �right v	s���

�pair �unit

�store�store loc v s�����

�define ���beginS d� d�� sto�

�d� �right �d� sto����

Figure ����� Store level

��

��� E Env � S
��� Proc V � S

�� Environment monad

�define �unitE s�

�lambda �env� s��

�define �bindE e f�

�lambda �env�

��f �e env�� env���

�� Lifted operators

�define �compute den�

�computeS �den �empty�env����

�define �num �lift�p��a� unitE bindE �numS��

�define �� �lift�p��a� unitE bindE ��S��

�define �	 �lift�p��a� unitE bindE �	S��

�define �if �lift�if unitE bindE �ifS��

�define �fetch �lift�p��a� unitE bindE �fetchS��

�define �store �lift�p��a� unitE bindE �storeS��

�define �begin �lift�p��a� unitE bindE �beginS��

�� New operators

�define ���var name� env�

�unitS �env�lookup name env���

�define ���lambda name den� env�

�unitS

�lambda �val�

�den �env�extend name val env�����

�define ���call d� d�� env�

�bindS �d� env�

�lambda �v��

�bindS �d� env�

�lambda �v�� �v� v�������

Figure ����� Environment level

��

unitSE � S � E
unitVS � V � S
unitVE � V � E
bindSE � E � �S � E�� E
bindVE � E � �V � E�� E

We have left out bindVS since we don�t need it� These operators form an abstract

data type of computations� from which we can build the usual language ADT� We

could alternatively call it an ADT of denotations� but Moggi�s work on monads sets

a precedent for �computations�� although we have altered his meaning somewhat�

Peter Mosses was the �rst author to describe an ADT abstracting the basic se	

mantics of a language �Mos���� What is new here is strati�cation� which has several

advantages�

� We can de�ne non	local language constructs more naturally�

� We can understand computations and language constructs via the structure

that strati�cation provides�

� We can build strati�ed computation ADTs automatically from component mod	

ules�

We return to this approach in chapter ��

Figure ���� shows the computation ADT for this semantics� and �gures ���� and

���� show the language ADT built from it� Once again� this interpreter is observa	

tionally equivalent to the original monolithic interpreter� It is also somewhat non	

modular
 speci�cally� all constructs assume

� There are no levels above E�

� Level S is immediately below E�

� Level V is immediately below S�

Section ��� solves these modularity problems in the context of automatically generated

interpreters by giving each level several names�

��

�� E Env � S
�� S Sto � V � Sto

�� V V al

�define ��unitSE s� env�

s�

�define ��unitVS v� sto�

�pair v sto��

�define ���unitVE v� env� sto�

�pair v sto��

�define ��bindSE t f� env�

��f �t env�� env��

�define ���bindVE t f� env� sto�

�let ��p ��t env� sto���

�let ��v �left p��

�s �right p���

���f v� env� s����

Figure ����� Level	negotiating operators

��� Examples

The examples in this section show Semantic Lego�s input � output behavior
 the

next two chapters explain the mechanisms behind it� We consider

� A full	featured� Scheme	like language�

� Three interactions between nondeterminism and continuations�

� Lamping�s uni�ed system of parametrization� and

� A parallel language modeled using resumptions�

��

�� E Env � S
�� S Sto � V � Sto

�� V Val

�� Proc V � S

�define ��num v�

�unitVE v��

�define ���var name� env�

�unitVS �env�lookup env name���

�define ���lambda name den� env�

�unitVS

�lambda �val�

�den �env�extend env name val�����

�define ��call d� d��

�bindVE d�

�lambda �v��

�bindVE d�

�lambda �v��

�unitSE �v� v��������

�define ��if d� d� d
�

�bindVE d�

�lambda �v��

�if v� d� d
����

Figure ����� Modular interpreter� part �

����� A Scheme	like language

We construct an interpreter for a language with environments� call	by	value pro	

cedures� stores� continuations� nondeterminism� and errors� Figure ���� shows the

complete language speci�cation� the basic semantics� and two example expressions�

SL automatically generates descriptions of the basic semantics in pre�x form�

We build an interpreter in two steps� In essence� SL automates the manual meth	

ods used to build the strati�ed interpreter just shown� First� we de�ne a computation

��

�define ��make�op op� d� d��

�bindVE d�

�lambda �v��

�bindVE d�

�lambda �v��

�unitVE �op v� v��������

�define �� �make�op ���

�define �	 �make�op 	��

�define ��begin d� d��

�bindVE d�

�lambda �v��

d����

�define ��fetch loc�

�unitSE

�lambda �sto�

�pair �store�fetch loc sto� sto����

�define ��store loc den�

�bindVE den

�lambda �val�

�unitSE

�lambda �sto�

�pair �unit �store�store loc val sto�������

Figure ����� Modular interpreter� part �

ADT using make�computations� which accepts a list of semantic modules� The re	

sulting ADT is just a collection of appropriately named unit and bind operators�

Second� we load several �les of language constructs� These de�ne the language

ADT using operators extracted from the computation ADT� These de�nitions are

similar to those of the last section� Constructs may be de�ned over any computation

ADT that includes the appropriate semantic modules� For example� the �amb con	

struct requires the nondeterminismmodule� In general� the same construct de�nition

yields di�erent semantics when de�ned over di�erent computation ADTs�

��

�� Computation ADT

�define computations

�make�computations

cbv�environments stores continuations nondeterminism errors��

�� Language ADT

�load �error�exceptions� �numbers� �booleans� �procedures� �amb�

�environments� �while� �numeric�predicates� �stores� �callcc��

�� Basic semantics

�show�computations�

� ��� Env

��� Sto

�let A� �	 Val Sto�

�let A� �� �List A�� Err�

��� ��� A� A�� A������

�� Sample expressions

�compute

��call ��lambda �x ��� ��var �x� ��var �x���

��amb ��num �� ��num �����

� �� �� � would be ��

 �� in call�by�name

�compute

��begin

��store �n ��amb ��num �� ��num ����

��store �r ��num ���

��call�cc ��lambda �exit

��while ��true� ��begin

��if ��zero� ��fetch �n��

��call ��var �exit� ��fetch �r��

��unit��

��store �r ��	 ��fetch �r� ��fetch �n���

��store �n ��� ��fetch �n� ��num ����������

� ��� ����

Figure ����� Example speci�cation and expressions

��

�define �let

�let ��unitE �get�unit �envs �top��

�bindE �get�bind �envs �top��

�bindV �get�bind �env�values �top���

�lambda �name c� c��

�bindV c�

�lambda �v��

�bindE c�

�lambda �e��

�unitE

�lambda �env�

�e� �env�extend env name v������������

Figure ����� �let source de�nition

A typical construct is �let� whose source de�nition �from the environments �le�

is shown in �gure ����� We have not yet described enough of SL to explain this

de�nition in detail� but its form should be clear� Appendix B�� shows the de�nition

of each construct presently available in SL�

Although Scheme procedures are usually opaque� MIT Scheme allows us to reify

them as abstract syntax� We then apply a program simpli�er that performs inlin	

ing and � and � reduction� By inlining the operators of the computation ADT and

simplifying� we automatically generate denotational	style de�nitions of language con	

structs�

The result of simplifying �let in the context of the speci�ed computation ADT�

shown in �gure ����� is exactly what we would have written by hand� The whole point

of SL is that the source de�nition of �let did not mention stores or continuations�

yet they were introduced properly and automatically�

����� Nondeterminism and continuations

In this section� we use SL to explore the interaction between nondeterminism and

continuations� We use three di�erent computation ADTs but leave the de�nitions

��

�lambda �name c� c��

�lambda �env�

�lambda �sto�

�lambda �k�

���c� env� sto�

�lambda �a� � Val � Sto

���c� �env�extend env name �left a���

�right a�� k�������

Figure ����� �let de�nition simpli�ed

�define �amb

�let ��unit �get�unit �lists �top��

�bind �get�bind �lists �top���

�lambda �x y�

�bind x

�lambda �lx�

�bind y

�lambda �ly�

�unit �append lx ly���������

Figure ����� �amb source de�nition

of all language constructs unchanged� For reference� �gure ���� gives the source

de�nition of �amb� For each semantics� we show the modules forming the computation

ADT� the basic semantics� the simpli�ed version of �amb� and the evaluation of an

example program�

In the �rst semantics ��gure ������ the subexpressions of �amb are evaluated with

list as a continuation� The results are appended and returned� In the example� the

list continuation is replaced by a continuation that adds one� hence the result ���

In the second semantics ��gure ������ we replace continuationswith continuations��

These modules di�er only in their treatment of operators on continuation answers�

The continuations transformer passes down an identity continuation� applies the

operator to the results� and then applies the original continuation in the appropriate

��

way� Continuations� passes the original continuation down directly and applies the

operator to the results� The evaluation of the example in this semantics is clear�

In the third semantics ��gure ������ we compose the continuationsand nondeterminism

modules in the opposite order� Here� continuations accept lists of values� rather than

just values� �amb takes two lists� appends them� and continues with the result� In

the example� invoking the captured continuation aborts this process and returns �

directly� Hence� the expression has only one value in contrast to the other two se	

mantics� Of the semantics presented here� this is the only one that Steele�s system

can generate �Ste���� Incidentally� replacing continuations with continuations�

leaves �amb unchanged�

����� Uni�ed system of parametrization

In this section� we use SL to realize John Lamping�s �Uni�ed System of Pa	

rametrization� �Lam���� Lamping describes a semantics in which expressions are

parametrized over variables that �recursively� denote expressions� This recursion

models a substitution in which substituted terms can contain variables� The language

also includes call	by	name static environments
 hence the basic semantics is

Den Env � EEnv � Val

where both Env and EEnv contain EEnv � Val � Figure ���� shows the SL lan	

guage speci�cation and the semantics of �evar and �elet� which are used to form

expressions� The line marked 			 is especially interesting� Figure ���� shows several

examples�

����� Resumptions

Resumptions are a denotational model of interruptable execution sequences� The

basic structure of a resumption semantics is

Den �x �X� T �Val �X�

��

�� Computation ADT

�define computations

�make�computations environments continuations nondeterminism��

�� Basic semantics

��� Env �let A� �List Ans� ��� ��� Val A�� A����

�� Simpli�ed �amb

�lambda �x y�

�lambda �env�

�lambda �k�

�reduce append ��

�map k �append ��x env� list� ��y env� list�������

�� Example

�compute

��� ��num ��

��call�cc

��lambda �k

��	 ��num ���

��amb ��num
� ��call ��var �k� ��num ���������

� �
� ���

Figure ����� �amb version �

where T is a type constructor describing other features present in the language�

This construction means that a computation either terminates� producing a value�

or pauses� producing a computation with which to continue� The typical use of re	

sumptions is to interleave several computations by executing one until it pauses� then

executing the next� etcetera�

The standard parallel semantics� described in �Sch��� has

T �A� Sto � List�A� Sto�

��

�� Computation ADT

�define computations

�make�computations environments continuations� nondeterminism��

�� Basic semantics

��� Env �let A� �List Ans� ��� ��� Val A�� A����

�� Simpli�ed �amb

�lambda �x y�

�lambda �env�

�lambda �k�

�append ��x env� k� ��y env� k�����

�� Example

�compute

��� ��num ��

��call�cc

��lambda �k

��	 ��num ���

��amb ��num
� ��call ��var �k� ��num ���������

� �
� ��

Figure ����� �amb version �

so that computations accept and return stores and can fork into multiple computa	

tions� Thus the complete type of denotations is

Den �x �X� Sto � List��Val �X�� Sto�

Figure ���� shows the SL speci�cation for this language� along with several examples�

An expression evaluates to a list of values� one for each possible order of execution�

The de�nition of �par appears in appendix B��� �gure B���
 we could show its ex	

pansion� but it is not especially enlightening�

��

�� Computation ADT

�define computations

�make�computations environments nondeterminism continuations��

�� Basic semantics

��� Env �let A� �List Ans� ��� ��� �List Val� A�� A����

�� Simpli�ed �amb

�lambda �x y�

�lambda �env�

�lambda �k�

��x env�

�lambda �a�

��y env�

�lambda �a��

�k �append a a����������

�� Example

�compute

��� ��num ��

��call�cc

��lambda �k

��	 ��num ���

��amb ��num
� ��call ��var �k� ��num ���������

� ���

Figure ����� �amb version �

��

�� Computation and language ADTs

�define computations

�make�computations cbn�environments exp�environments��

�load �error�values� �numbers� �booleans� �numeric�predicates�

�environments� �exp�environments��

�� Simpli�ed �evar and �elet

�lambda �name�

�lambda �env�

�lambda �eenv�

�if �env�lookup eenv name�

��right �env�lookup eenv name�� eenv� � 			

�in �errors �unbound�error name������

�lambda �name c� c��

�lambda �env�

�lambda �eenv�

��c� env� �env�extend eenv name �c� env������

Figure ����� Uni�ed system of parametrization

�compute

��let �f ��	 ��evar �x� ��evar �x��

��� ��elet �x ��num
� ��var �f��

��elet �x ��num �� ��var �f�����

� ��

�compute

��let �g ��� ��evar �a� ��evar �a��

��let �f ��elet �a ��	 ��evar �x� ��evar �x��

��var �g��

��elet �x ��num
� ��var �f�����

� �

Figure ����� Uni�ed parametrization examples

��

�� Computation and language ADTs

�define computations

�make�computations resumptions stores lists��

�load �error�values� �numbers� �booleans� �begin� �while�

�products� �numeric�predicates� �amb� �stores� �resumptions��

�� Examples

�compute

��par ��num �� ��num �� ��num
���

� �� � �
 �
�

�compute

��seq

��store �x ��unit��

��par

��store �x ��pair ��num
� ��fetch �x���

��store �x ��pair ��num �� ��fetch �x���

��store �x ��pair ��num �� ��fetch �x����

��fetch �x���

� ��pair
 �pair � �pair � unit���

�pair � �pair
 �pair � unit���

�pair
 �pair � �pair � unit���

�pair � �pair
 �pair � unit���

�pair � �pair � �pair
 unit���

�pair � �pair � �pair
 unit����

�compute

��seq

��store �x ��num ���

��store �go ��true��

��par

��store �go ��false��

��while ��and ��fetch �go�

��� ��fetch �x� ��num ����

��pause ��store �x ���� ��fetch �x������

��fetch �x���

� ��
 � � � � � ��

Figure ����� Parallel language using resumptions

Chapter �

Monads

In this chapter� we �rst present some basic category theory� then discuss monads�

maps between monads� monad composition� and monad transformation� This may

sound like �everything you always wanted to know about monads�� but in reality it

barely scratches the surface� See �BW��� Mog��a� for more information�

Monads may be a �hot topic� in the �����s functional programming community�

but the real �monad explosion� occurred in the category theory � algebraic topology

community during the �����s� when they were �rst invented� Although I consider

myself a fairly good �monad hacker� by �����s standards� I have to admit that I�m

not even on the �����s chart� Even so� I �nd hard to hear computer scientists ask�

�Monads ! aren�t those about state��� That�s like asking� �Algebra ! isn�t that about

� � � ����

��� Basic category theory

In this section� we de�ne the basic notions of category theory� discuss the rela	

tionship between category theory and functional programming� and mention some

references�

��

��

����� Categories

Categories abstract the composition of typed functions� A category is a set of ob�

jects �these are the types�� a set of arrows �these are the functions�� and a composition

operator on the arrows� Each arrow points from one object �its domain� to another

�its codomain�� If f � A � B and g � B � C are two arrows then g � f � A � C is

their composition� There is a distinguished identity arrow from each object to itself�

Composition must be associative with the identity arrows as left and right identities�

The basic category that we use depends on whether we are doing semantics or

functional programming� In semantics� we use a suitable domain theory �see �Gun�����

In functional programming� we use the types and functions of our language� in this

case� Scheme �CR���� Scheme has no explicit types� so we have to imagine them

ourselves�

In a category� composition is primary� rather than application� In functional

programming� it�s the reverse� unless we program in a combinator language� This

change in point of view causes few problems in practice
 we use whichever is most

convenient�

����� Functors

In category theory� whenever we de�ne a class of objects� we also de�ne the ap	

propriate maps between them� thus making them into a category� For this reason� we

now consider maps between categories�

A function T between categories C and D is a map from C�s objects to D�s objects�

An endofunction is a function from a category to itself� In our case� an endofunction

is a type constructor
 it builds one type from another� For example� T �A� List�A�

builds lists of any type we like� The other type constructors we use are function space

���� products ���� and sums ����

Functions are insu�cient as maps between categories because they have no action

on arrows� We de�ne a functor T � C � D to be a function� also called T � along with

��

an function mapT from C�s arrows to D�s arrows such that

�� mapT � �A� B�� �T �A�� T �B��

�mapT id� � id

�mapT �oC g f�� � �oD �mapT g� �mapT f��

An endofunctor is a functor from a category to itself� so that we need only one

composition operator� For example� the ordinary map function on lists makes T �A�

List�A� into an endofunctor� Functors are the appropriate class of maps between

categories� since they respect identities and composition structure� Other functors

are the pairing functor

�� T �A� A�A

�define ��map f� ta�

�pair �f �left ta�� �f �right ta����

and the environment functor� which parametrizes a type by an environment�

�� T �A� Env � A

�define ���map f� ta� env�

�f �ta env���

����� Natural transformations

A natural transformation from a functor S to a functor T is a polymorphic function

sigma � S�A�� T �A�

such that

�o sigma �mapS f�� � �o �mapT f� sigma� � S�A�� T �B�

for all f � A � B� It is easy to remember this law as �sigma commutes with map��

Examples include

��

reverse � List�A�� List�A�
flatten � List�List�A��� List�A�
list � A� List�A�
left � A�A� A
diag � A� A�A

where list is natural from Id to List� left is natural from pairing to Id� and diag

is natural from Id to pairing�

In categorical terms� a natural transformation is a map from objects to arrows�

Given an object A� we obtain an arrow sigmaA� S�A�� T �A�� In other words� we ob	

tain a family of functions� indexed by type� The naturality condition above structures

our choice of arrows
 we cannot pick arbitrarily� This yields parametric polymorphism

rather than ad�hoc polymorphism� For further information� see �Wad����

����� Initiality

An object in a category is initial if there is a unique arrow from it to each object

of the category� A object is terminal is there is a unique arrow to it from each object�

Initial and terminal objects are unique up to isomorphism if they exist� Two objects

A�B of a category are isomorphic if there exist arrows f � A � B and g � B � A

such that g � f IdB and f � g IdA�

For example� in the category of sets and total functions� the empty set is initial

and any one	element set is terminal� Notice that there are many one	element sets� all

of which are isomorphic� Initiality will not see much use in this thesis� although it is

perhaps the fundamental concept of category theory�

����� Duality

Given a category C� we can form its dual Cop by reversing the direction of each

arrow and the order of composition� Needless to say� this operation is quite di�cult

in ordinary functional programming� If an object is initial in C� it is terminal in

Cop� and vice	versa� Hence we say that initial and terminal are dual concepts� Other

��

well	known dual concepts are products � sums and injective � surjective� In general�

we can form the dual of any concept formulated solely in category	theoretic terms�

In his brilliant master�s thesis �Fil���� Filinski shows that values and continuations

are dual� Although it is di�cult to develop an intuition for his language� his thesis

contains many surprising insights�

����� Category theory and functional programming

It is important to remember that� at least for the moment� mathematics and

programming are two di�erent activities� The main problem is that current languages

provide no automated support for representing and verifying properties of programs�

In this thesis� we embed category theory within functional programming in a

particular way� objects are types� and arrows are functions� Other embeddings are

possible
 for example� see �RB���� which represents objects as values� Their approach

is less straightforward� but more exible�

Our choice of embedding has several problems�

� Current languages have weak� non	existent� or implicit type systems �see section

A���� In category theory� we can form categories with any kind of objects at

all�

� It may not be easy to represent categorical composition as functional composi	

tion� Also� we cannot represent uncomputable compositions�

The clearest and most comprehensive treatment of category theory and functional

programming in this embedding is �Spi���
 hopefully� Spivey will soon publish these

handwritten notes in electronic or book form� A much	abbreviated version appears

as �Spi����

����
 References

General references on category theory for computer science are �Pie��� and �BW����

The latter contains many examples and applications and is easy despite its length�

��

Category theory is not terribly hard to learn� because its rich descriptive content

encourages the reader to acquire concepts one at a time� relating each to already	

understood notions from other �elds�

Category theory may be considered part of abstract algebra� MacLane and

Birkho��s larger book �MB��� is a wonderful introduction to algebra� not only because

it presents category theory near the end� but because it applies category	theoretic in	

sight throughout�

��� Monads

In this section� we present two formulations of monads and discuss the intuitions

behind them� Monads are functors with additional structure� in the same way that

functors are functions with additional structure�

����� First formulation

A monad is a triple� �T � unit� join� of an endofunctor and two natural transfor	

mations

unit � A� T �A�
join � T �T �A��� T �A�

Unit is natural from the identity to T and maps values into T � For example� unit

for the list monad is list� Unit is not required to be injective� although it actually

is in most applications� Join is natural from T �T to T and attens multiple T �s into

a single T � Join for the list monad is flatten�

Unit and join for the environment monad T �A� Env � A are

�define ��unit a� env�

a�

�define ��join tta� env�

��tta env� env��

�Monads are also called triples�

��

Monad Action T �A�

Identity A

Lists List�A�
Lifting �� A

Environments Env � A

Stores Sto � A� Sto

Exceptions A�X

Monoids A�M

Continuations �A� Ans�� Ans

Resumptions �x �X� �A�X�

Table ���� Monad type constructors

Unit and join must satisfy the additional properties

�o join unit� � id � T �A�� T �A�
�o join �map unit�� � id � T �A�� T �A�
�o join �map join�� � �o join join� � T �T �T �A���� T �A�

This formulation presents monads as modi�ed monoids �Mac��� �whence the name��

where unit is the identity and join is the monoid operator� The above laws are left

and right identity and associativity�

Table ��� shows the type constructors for some common monads used in seman	

tics� We describe their unit and join operators in the next section �via the second

formulation��

����� Second formulation

We can also describe a monad as a triple �T � unit� bind� where T is an endofunc�

tion� unit is a family of arrows that is not necessarily required to be natural� and

bind is a map between sets of arrows�

unit � A� T �A�
bind � �A� T �B��� �T �A�� T �B��

Unit functions exactly as before� Just as map takes functions from A � B into

T �A�� T �B�� bind takes functions of the more general formA� T �B� into T �A��

T �B�� Unit and bind obey several properties�

��

�� f � A� T �B�
�� g � B � T �C�

�bind unit� � id � T �A�� T �A�
�o �bind f� unit� � f � A� T �B�
�o �bind g� �bind f�� � �bind �o �bind g� f�� � T �A�� T �C�

To show the equivalence of the two monad formulations �bind versus map and join��

we can write

�define ��map f� ta� �bind ta �o unit f���

�define �join tta� �bind tta id��

�define �bind ta f� �join ��map f� ta���

Proving the two sets of laws equivalent is easy�

The second formulation is easier to understand if we rephrase it in terms of the

Kleisli composition oT on the space of functions A� T �B��

�� oT � �B � T �C��� �A� T �B��� �A� T �C��

�define ��oT g f� a�

�bind �f a� g��

Then the laws become

�oT unit f� � f

�oT f unit� � f

�oT h �oT g f�� � �oT �oT h g� f�

In other words� oT is associative and has unit as left and right identity� Thus� we can

form a Kleisli category whose objects are types and whose arrows are functions of the

form A� T �B�� with oT as composition� Like all systems of functional combinators�

Kleisli composition is useful for stating and deriving laws but is unwieldy for writing

programs�

Figures ��� and ��� de�ne unit and bind for the type constructors shown in table

���� These �gures use an applicative �rather than compositional� version of bind

obtained by uncurrying and reversing arguments�

bind � T �A�� �A� T �B��� T �B�

��

�� Identity� T �A� A

�define �unit a�

a�

�define �bind ta f�

�f ta��

�� Lists� T �A� List�A�

�define �unit a�

�list a��

�define �bind ta f�

�reduce append ��� �map f ta���

�� Environments� T �A� Env � A

�define �unit a�

�lambda �env� a��

�define �bind ta f�

�lambda �env�

��f �ta env�� env���

�� Stores� T �A� Sto � A� Sto

�define �unit a�

�lambda �sto� �pair a sto���

�define �bind ta f�

�lambda �sto�

�let ��a	s �ta sto���

�let ��a �left a	s��

�s �right a	s���

��f a� s�����

Figure ���� Example monads� part �

��

�� Exceptions� T �A� A�X

�define �unit a�

�in�left a��

�define �bind ta f�

�sum�case ta

�lambda �a� �f a��

�lambda �x� �in�right x����

�� Monoids� T �A� A�M

�define �unit a�

�pair a monoid�unit��

�define �bind ta f�

�let ��a� �left ta��

�m� �right ta���

�let ��a	m �f a����

�let ��a� �left a	m��

�m� �right a	m���

�pair a� �monoid�product m� m�������

�� Continuations� T �A� �A� Ans�� Ans

�define �unit a�

�lambda �k� �k a���

�define �bind ta f�

�lambda �k� �ta �lambda �a� ��f a� k�����

�� Resumptions� T �A� �x �X��A�X�

�define �unit a�

�in�left a��

�define �bind ta f�

�sum�case ta

�lambda �a� �f a��

�lambda �ta� �bind ta f����

Figure ���� Example monads� part �

��

����� Interpretations

In this section� we give several interpretations of monads� Moggi�s model� which

we discuss last� is the one most relevant to this thesis�

Monads resemble monoids

MacLane �Mac��� describes monads as a variation on monoids� with unit as the

identity and join as the monoid product� A monoid product �on a type constructor�

has type

	 � T � T � T

For example� consider append on List�A�� A monad product has type

join � T � T � T

For example� consider flatten� That these notions have a common generalization is

rather odd�

Monads model substitution

Suppose T �A� is a type of arithmetic expressions over a set of variables A�

T �A� A j T �A� � T �A� j T �A� � T �A�

Then unit transforms a variable into an expression� and bind performs substitution�

A substitution is a map A � T �B� that gives an expression T �B� over B for each

variable of A� Bind takes an expression over A and a substitution and returns an

expression over B�

Join also performs substitution by attening �expressions over expressions�� Bind

accomplishes everything that join does� but we never have to see more than one

application of T �

��

Monads model lifting

We can view bind as a generalization of map� The naturality of unit means that

�unit �f a�� � ��map f� �unit a��

In other words� it doesn�t matter whether we apply f before unit or �map f� after�

We say that �map f� is a lifting of f through unit� We give a very general de�nition

of lifting in chapter ��

Just as map lifting functions of the form A � B� we can say that bind lifts

functions of the more general form A� T �B�� and the �rst two monad laws ensure a

property similar to the above� Bind can also lift functions on products� For example�

we can lift � to act on lists of numbers using the list monad�

�define �list� l� l��

�bind l�

�lambda �n��

�bind l�

�lambda �n��

�unit �� n� n��������

This de�nition is not possible using map alone� However� with a map

product � T �A�� T �B�� T �A�B�

we can write

�define �list� l� l��

�map �product l� l��

�lambda �n�	n��

�� �left n�	n�� �right n�	n������

A purely categorical model of lambda calculus over a monad �see �Mog��b�� actually

requires a �tensorial strength� similar to product� even when using bind� Thus� some

of the power of bind �when compared to map� comes from Scheme� rather than from

pure category theory�

��

Monad A computation exists when it

Lists Produces a single value
Lifting Terminates
Environments Is independent of environment
Stores Leaves the store unchanged
Exceptions Causes no exceptions
Output Doesn�t output anything
Continuations Invokes its continuation exactly once
Resumptions Terminates in one step

Table ���� Meaning of existence

Monads model computation

Moggi�s insight was that T �A� represents a computation of a value of type A� For

example� a nondeterministic computation produces not just a single value but a set of

possible values� Unit lifts a value to a computation that produces that value �and does

nothing else�� Join attens computations of computations into single computations�

Bind composes functions from values to computations�

Moggi also made the following de�nition� a computation is a value or exists if it

is in the image of unit� that is� if it equals �unit v� for some value v� Thus� we

can say that a nondeterministic computation exists if it produces only a single value�

Table ��� shows the meaning of existence for other monads�

If unit is a way into a monad� we also need a way out� We cannot have a map

from computations to values because we might want to see more than one value or

perhaps know what �nal store a computation produced� Thus� we augment all our

monads with a map

compute � T �A�� �A� Rep�� Rep

where Rep is a universal representation type designed for users to read� In many

languages� this type would be String� but in Scheme we use lists� numbers� etcetera�

An alternative is

��

compute � T �Rep�� Rep

in which we map a function of type A � Rep across T �A�� then apply compute�

Although this approach is direct� it conicts with the computational analogy� since

T �Rep� is a computation of a representation rather than a computation of a value�

We do not discuss compute in the rest of the thesis� but section B�� shows its

de�nition for each of the monad transformers we use�

Why monads

Moggi�s intuition of �values and computations� does not quite explain why we need

join in addition to map and unit� In fact� we need it to abstract over computations

using functions�

In a language with a nondeterminism operator amb� modeled by the semantics

Den Env � List�Val�

consider the program

�define �f n�

�g �amb n �� n �����

�define �g n�

�amb n �	 n ����

The function g� although it accepts values� must return computations� since it uses

amb� The function f must apply g to a computation rather than a value� Thus� we

need a function

apply � �Val � Comp�� Comp � Comp

This function is essentially bind�

��

��� Monad morphisms

In keeping with the �categorical imperative� that arrows between objects are as

important as the objects themselves� we de�ne arrows between monads� Thus� we

form a category of monads and monad morphisms�

Since Kleisli categories were helpful in developing the monad laws� we suppose that

an arrow between monads S and T is a functor K between their Kleisli categories�

K acts as the identity on objects� On arrows� we have

mapK � �A� S�B��� �A� T �B��

satisfying the functorial properties

�� f � A� S�B�
�� g � B � S�C�

�mapK idS� � idT

�mapK �oS g f�� � �oT �mapK g� �mapK f��

We can reformulate this de�nition in terms of unit� bind� and a natural transforma	

tion K � S�A�� T �A�� in which case

�K �unitS a�� � �unitT a�

�K �bindS sa f�� � �bindT �K sa� �o K f��

An example of an arrow between monads is reverse from the list monad to itself�

�reverse �list a�� � �list a�

�reverse �append�map f l�� � �append�map �o reverse f� �reverse l��

An example of a natural transformation from the list monad to itself that is not an

arrow between monads is �lambda �l� ����� which fails the �rst law�

��� Monads don�t compose

Given the variety of semantic features that monads o�er� it seems that we should

have no trouble building all sorts of languages� Unfortunately� monads don�t compose�

��

�� S�A� EnvS � A
�� T �A� EnvT � A
�� ST �A� EnvS � EnvT � A

�define ��joinS ssa� envS�

��ssa envS� envS��

�define ��joinT tta� envT�

��tta envT� envT��

�define ���joinST ststa� envS� envT�

����ststa envS� envT� envS� envT��

Figure ���� Monads don�t compose

This may seem odd� since functors do compose� Unit also composes� but join and

bind do not�

As an example� let�s try to compose two environment monads S and T � Figure

��� shows join for the individual monads and for their composition� It is clear by

inspection that the latter cannot be de�ned from the former� even using unit and

map�

Jones and Duponcheel �JD��� give a rigorous proof based on the propositions as

types analogy� showing that the type of joinST is not provable in implicational logic

from the types of the other operators� However� if we think of monads as generalized

monoids� that is� as acting on sequences of S�s and T �s� we realize that unit introduces

an S or T � join attens SS or TT � and map allows us to act anywhere in a sequence�

Is is clear that we cannot reduce STST to ST using these operators� since they never

decrease the number of S�T boundaries�

��� Monads do compose

In the last section� we showed that� given two monads S and T � there is no way to

form a monad on ST using only the operators of S and T � There are three equivalent

��

ways around this di�culty� via distributive laws� liftings� and compatibility�

A distributive law is a map

swap � TS � ST

that distributes T over S and obeys several side conditions� Clearly� this map allows

us to reduce arbitrary sequences of S�s and T �s to a single pair�

A lifting of S over T is a monad on the Eilenberg	Moore category of T 	algebras�

which we will not discuss� It may also be possible to lift S onto T �s Kleisli category�

although the construction would be less direct� It may also be possible to present

monad transformers �section ���� as liftings of this form�

Finally� we can describe conditions under which ST is compatible with S and T �

There are two formulations of these conditions� The �rst� due to Barr �BW��� �page

����� is

ST S � T
map � mapS o mapT

�C�� unitST � unitS o unitT � mapS�unitT� o unitS

�C�� joinST o mapST�unitS� � mapS�joinT�

�C�� joinST o mapS�unitT� � joinS

�C�� joinS o mapS�joinS� � joinST o joinS

�C�� joinST o mapST�mapS�joinT�� � mapS�joinT� o joinST

Drawn as diagrams� these laws are just triangles and squares� which are su�ciently

described by their types�

�C�� � Id � ST
�C�� � STT � ST
�C�� � SST � ST
�C�� � SSTST � ST
�C�� � STSTT � ST

The second formulation� due to Beck �Bec���� requires that the two maps

unitS � T � ST
mapS�unitT� � S � ST

��

be monad morphisms �see section ���� and that the middle unitary law holds�

joinST o mapS�unitT o unitS� � id � ST � ST

Distributive laws and liftings were discovered by Beck �Bec���� Both Beck �Bec��� and

Barr �BW��� prove that liftings� distributive laws� and compatibility are equivalent�

Why Barr used a di�erent formulation of compatibility is unclear�� Barr studied dis	

tributive laws at the same time as Beck �see Beck�s paper�
 perhaps the two sets were

derived independently� It remains to verify that the conditions are indeed equivalent�

Jones and Duponcheel�s paper �JD��� is entirely about distributive laws but misses

the earlier references� This omission is unsurprising since the relevant section in

�BW��� occurs late in the book and is titled �distributive laws� rather than �monad

composition��

Using compatibility� we can develop monad composition as a relation rather than

a function� The composition of two monads is thus the set of all monads compatible

with them� The compatibility laws imply that composing a monad T with the identity

yields exactly T and no other monads� I have not been able to show associativity !

further conditions may be necessary�

If associativity holds� we can form a relational category whose arrows are monads�

The notion of a relational category is obvious but appears not have been studied before

�perhaps it lacks su�cient structure to be interesting�� A request for references to a

large mailing list of category theorists yielded few replies� One was directly relevant�

Martin Wirsing �Munich� mentioned that an �unnamed� student of his is studying

the idea in relation to nondeterminism and that his�her thesis is expected during the

summer of �����

Needless to say� the compatibility laws don�t yield a method for composing mon	

ads� We cannot even verify computationally that three monads are compatible� since

we cannot check equality of functions� For the same reason� we cannot check that

one function is a lifting of another �section ����� Nevertheless� the compatibility laws

do constrain possible compositions and allow us to reason about them�

�Barr graciously replied to my questions but doesn�t recall why his conditions are di�erent�

��

��� Monad transformers

Since monad composition fails to be constructive� we try monad transformation

categorically speaking� if monads aren�t arrows� let them be objects� That is� we

build monads from other monads� After motivating the basic concepts� we formalize

our constructions�

����� Motivation

For example� the environment monad transformer� shown in �gure ���� adds an

environment to any monad� We write the environment transformer as

F �T ��A� Env � T �A�

which indicates that it accepts a monad T and returns a new monad F �T �� The

action of F �T � on a type A is as shown above�

Applying monad transformers for EnvS and EnvT to the identity monad yields

precisely the monad for both environments� with joinST as shown in �gure ���� Thus�

we immediately see an example of a construction we could not previously make�

The transformation of join is fairly complex� It accepts an argument

ftfta � Env � T �Env � T �A��

and forms a value of type T �T �A�� in order to use joinT� Thus it reduces Env � T �A�

to T �A� inside T �Env � T �A�� using mapT�

Other monad transformers are listed in table ���� one for each monad in tables ���

and ���� More precisely� applying the X monad transformer to the identity monad

yields the X monad� where X is environments� stores� etcetera� Appendix B�� shows

the de�nition of each transformer� As usual� composition of transformers is not

commutative� and we shall make creative use of this fact later�

To illustrate the need for monad transformers further� we model a language with

nondeterminism and state using the type of denotations

Den�A� Sto � List�A� Sto�

��

�� F �T ��A� Env � T �A�

�define �environment�transformer m�

�let ��unitT �monad�unit m��

�mapT �monad�map m��

�joinT �monad�join m���

�define �unit a�

�lambda �env� �unitT a���

�define ��map f� fta�

�lambda �env�

��mapT f� �fta env����

�define �join ftfta�

�lambda �env�

�joinT

��mapT �lambda �fta� �fta env���

�ftfta env�����

�make�monad unit map join���

Figure ���� Environment monad transformer

Transformer Action on types F �T ��A�

Identity T �A�
Nondeterminism T �List�A��
Environments Env � T �A�
Stores Sto � T �A� Sto�
Exceptions T �A�X�
Monoids T �A�M�
Continuations �A� T �Ans��� T �Ans�
Resumptions �x �X� T �A�X�

Table ���� Monad transformers

��

Unit for this type is

�define �unit a�

�lambda �sto� �list �pair a sto����

but it is clear that it cannot be de�ned from

�define �unitS a�

�lambda �sto� �pair a sto���

�define �unitL a�

�list a��

In fact� there is no way to build Den�A� by composition� The only monad with type

constructor T �A� A� Sto has

�define �unitT a�

�pair a �empty�store���

which is useless� On the other hand� we can easily construct this type by composing

the store and nondeterminism transformers�

����� Formalization

Since we have already constructed a category of monads� we have several choices

for de�ning monad transformers� They could be functions �on objects�� functors

�with an action map on arrows�� premonads �functors with unit�� or even monads�

We develop these ideas in sequence and show that monads on the category of monads

are less complex than they sound� Formally� we de�ne a monad transformer to be

a premonad on the category of monads� since there is at least one case of a useful

monad transformer �stores� that is not quite a monad in the higher category�

A monad transformer�s action on objects is to create a monad F �T � from a monad

T � Its action on arrows is to send an arrow K � S � T between monads to an arrow

�mapF K� � F �S� � F �T � such that the functorial properties are satis�ed� For

example� the action of the list monad transformer on arrows is

��

�� F �T ��A� List�T �A��

�define ��mapF K� fta�

�map K fta��

Its action on objects �monads� is more complex and is given in appendix B��� For

each monad transformer F � we require a natural transformation

unitF � T �A�� F �T ��A�

from the identity to F � UnitF allows us to lift values from T �A� in F �T �A�

To lift functions from T to F �T � we can either use mapF� or� if possible� de�ne a

map

bindF � F �T ��A�� �T �A�� F �T ��B��� F �T ��B�

obeying the usual laws� BindF makes F into a monad on the category of monads�

Before we faint from lack of air at these dizzying heights of abstraction� let�s take

the environment monad transformer as an example� First we consider its action on

objects �monads��

�� F �T ��A� Env � T �A�

�� unitFT � A� F �T ��A�
�� bindFT � F �T ��A�� �A� F �T ��B��� F �T ��B�

�define �unitFT a�

�lambda �env� �unitT a���

�define �bindFT fta f�

�lambda �env�

�bindT �fta env�

�lambda �a�

��f a� env�����

Next we consider its action on arrows �between monads��

��

�� F �T ��A� Env � T �A�

�� mapF � �S�A�� T �A��� �F �S��A�� F �T ��A��

�define ���mapF K� fsa� env�

�K �fsa env���

And �nally� we consider unitF and bindF�

�� F �T ��A� Env � T �A�

�� unitF � T �A�� F �T ��A�
�� bindF � F �T ��A�� �T �A�� F �T ��B��� F �T ��B�

�define �unitF ta�

�lambda �env� ta��

�define �bindF fta f�

�lambda �env�

��f �fta env�� env���

This last de�nition is in fact identical to that of the usual environment monad �see

�gure ����� UnitF and bindF are thus much simpler than unitFT and bindFT� As we

pass to higher levels of abstraction� the de�nitions become simpler but their types

become more complex� Essentially� the more polymorphic a function is� the less it

knows about its arguments� so the less it can do �see section ������� As before� mapF

is unnecessary if we have unitF and bindF�

����� Classes of monad transformers

Suppose F transforms type constructors� It may not be possible to extend F �s

action to monads� For example� we can extend

F �T ��A� Env � T �A�

but not

F �T ��A� T �Env � A�

We do not give a rigorous proof� but let�s try it and see what happens�

��

Type Form

Bottom F �T � T � U

Top F �T � S � T

Around F �T � S � T � U

Table ���� Monad transformer classi�cation

�define �bindFT fta f�

�bindT fta

�lambda �env��a�

������

�define �bindFT fta f�

�unitT

�lambda �env�

�bindT fta � 			

�lambda �env��a�

�env��a env������

The �rst attempt falls at� The second appears more promising� but is badly typed

at the starred line� Similar arguments indicate that we can de�ne

F �T ��A� T �List�A��

but not

F �T ��A� List�T �A��

These observations naturally lead to a classi�cation of monad transformers as top�

bottom� or around� as shown in table ���� Continuations and resumptions do not

�t into this classi�cation� but table ��� classi�es the other transformers we have

discussed� Lifting appears twice since there are two di�erent lifting transformers�

Note that S and T in bottom and top transformers have monadic structure� since

we can apply the transformer to an identity monad� In around transformers� S � T

has monadic structure� Although we have only one good example each of top and

around transformers� the classi�cation will prove useful later� in section ����

The nondeterminism monad transformer should actually use sets� rather than

lists� In fact� �monads� created by list transformer don�t obey the associative law

��

Name Type F �T ��A� Classi�cation

Nondeterminism T �ListA� Bottom
Exceptions T �A�X� Bottom
Monoids T �A�M� Bottom
Lifting� T ��� A� Bottom
Lifting� �� T �A� Top
Environments Env � T �A� Top
Stores Sto � T �A� Sto� Around

Table ���� Classi�cation examples

unless the original monad is commutative �see �JD����
 however� in our interpreters�

we represent sets as lists and ask the reader to collapse distinctions of order and

multiplicity�

����� Composition of monad transformers

We can use transformers to build quite complex types� For example� consider a

language with environments� stores� continuations� nondeterminism� and exceptions�

We compose the transformers as

�compose

environments

stores

continuations

nondeterminism

exceptions��

obtaining

F �T ��A� Env �

Sto �

�A� Sto � List�Ans � Err���

List�Ans � Err��

Chapter �

Lifting

This chapter shows how to use monad transformers to build interpreters via the

important notion of lifting� The �rst section presents a general de�nition of lifting�

and the second describes several methods of building interpreters�

��� Lifting

In this section� we formalize lifting and show how monads can lift operations with

simple signatures�

����� Formal lifting

We de�ne a language of types t�S� parametrized by a functor S�

t�S� A �constants�
j V �variables�
j t� t �pairs�
j t� t �functions�
j S�t� �functors�

The form of this de�nition is from �LHJ���
 a slightly more complex version appears

in �Mog��a�� It is also nearly identical to the fundamental de�nition in Reynolds�

work on parametricity �Wad����

��

��

For any particular S� t�S� is still polymorphic� since we allow type variables�

Given two functors S� S� and a natural transformation sigma � S � S�� a lifting of

type t through sigma is a map

L � t�S�� t�S��

such that

�L a� � a �constants�
�L v� � v �variables�
�L �pair x y�� � �pair �L x� �L y�� �pairs�
��L f� �L x�� � �L �f x�� �functions�
�L s� � �sigma �mapS L s�� �functors�

Notice that

�sigma �mapS L s�� � �mapS� L �sigma s��

since sigma is natural� This de�nition speci�es li�ng as a relation� not a function�

In fact� given t and sigma there may be many liftings� one� or none� For example�

suppose we �x the following signature� functor� and function�

t�S� S�A�� A
S�A� A
�mapS f a� �f a�
id � t�S�

Then if we specify a functor S� and a natural transformation sigma from S to S�� we

can enumerate the liftings of id along sigma� First� we try

�� S��A� A�A

�define ��mapS� f� p�

�pair �f �left p�� �f �right p����

�define �sigma a� �pair a a��

Then there are two liftings of id� left and right� The constraint on liftings f is

�f �pair a a�� � a

��

which both left and right satisfy� Another choice of S� and sigma is

�� S��A� List�A�

�define �mapS� f l� �map f l��

�define �sigma a� �list a��

Liftings in this case have type List�A�� A� But there are no functions of this type�

since we wouldn�t know where to send the empty list� Vacuously� all of them meet

the lifting constraint

�f �list a�� � a

Given a monad T � we lift functions from Id to T through unit� Both cases above

are examples of this form� Given a monad transformer F � we lift functions from T to

F �T � through unitF� For example� consider append de�ned on the list monad�

T �A� List�A�
append � T �A�� T �A�� T �A�

If we lift append through the environment monad transformer

�� F �T ��A� Env � T �A�

�define �unitF ta�

�lambda �env� ta��

we obtain

�� lifted�append � F �T ��A�� F �T ��A�� F �T ��A�

�define �lifted�append fta� fta��

�lambda �env�

�append �fta� env� �fta� env����

There are additional naturality conditions on these liftings that we do not discuss

�see �Mog��a���

��

����� Monads and lifting

By now� it should be obvious that monads can de�ne liftings� For example� let�s

lift a binary operator f � A�B � C up to F along unit for a monad T � We write

�define �F ta tb�

�bind ta

�lambda �a�

�bind tb

�lambda �b�

�unit �f a b�������

Using the monad laws� we can show that F is a lifting of f according to the previous

section� We need

�F �unit a� �unit b�� � �unit �f a b��

Using substitution and the �rst monad law twice� we have

�F �unit a� �unit b��

� �bind �unit a�

�lambda �a�

�bind �unit b�

�lambda �b�

�unit �f a b������

� �bind �unit b�

�lambda �b�

�unit �f a b����

� �unit �f a b��

It would be interesting to determine the set of signatures liftable using monads� Some

useful operators� such as �callcc� are not apparently liftable�

��� Pragmatics

Consider a composition of monad transformers applied to a monad�

��

�F� � � � � � Fn��T �

From the bottom up� we form a sequence of monads Fn�T �� Fn���Fn�T ��� � � �� From

the top down� we form a sequence of monad transformers F�� F� � F�� � � �� Naturally�

we can combine these approaches by splitting the sequence of transformers at some

point� forming the left half top	down and the right half bottom	up� then combining

the two halves by application�

����� Bottom	up

In the bottom	up approach� we begin with a basic monad� usually the identity�

and apply monad transformers to it� As we apply a transformer we

� Lift existing operators through the the transformer� and

� Add new operators to the resulting transformed monad�

Thus� we obtain a new monad with not only the existing operators� but several new

ones as well� In this case� we lift along the unitF operator of the monad trans	

former� Although we are technically working with monads on the category of mon	

ads� Scheme�s implicit polymorphism allows us to use ordinary monads for lifting�

For example� we can lift an operator from T �A� to Env � T �A� using the ordinary

environment monad� Even easier� an operator on T �A� is already an operator on

T �List�A��� with no lifting needed� These short cuts would not be possible in the

polymorphic lambda calculus� where we would have to keep track of types explicitly�

It appears that we always lift operators through monad transformers� rather than

monads� but this is not quite the case� To de�ne operators on monad transformers�

we must often lift values and functions through the monads they transform� For

example� in order to de�ne call	by	value variable reference on Env � T �A�� we must

lift values using unitT�

��

�� �var � Name � Env � T �A�
�� Env Name � A

�define ��var name�

�lambda �env� �unitT �env�lookup env name����

Similarly� to de�ne �amb on T �List�A��� we lift append through T � Modulo these

considerations� building a system based on lifting is straightforward�

����� Top	down

The top	down approach yields a system of extensible interpreters generalizing

Wadler �Wad���� In a sequence F�� F��F�� � � �� we view F� as an interpreter parametrized

by a monad
 for example� Wadler�s basic interpreter is F �T ��A� Env � T �A��

However� instead of supplying a monad� we supply a monad transformer to obtain

another interpreter� In other words� given a parametrized interpreter I and a monad

transformer F � we form another parametrized interpreter I � F � Of course� we must

also take care to lift operators properly� Steele searched for this approach in �Ste���

but missed passing to higher	order types�

Chapter �

Strati�cation

In this chapter� we formally de�ne strati�ed monads and their transformers and

describe how SL actually works�

��� Strati�ed monads

Using compatible monads �section ����� we can formalize the notion of �levels

related by monads� discussed in chapters � and ��

A level is simply a type constructor �an endofunction on the category�� A monad

T relates L� to L� if L� T � L�� We can form categories whose objects are levels

and whose arrows are monads by de�ning composition any way we like� subject to

the category laws and the compatibility of composites�

For example� let�s form a category of levels and monads for the semanticsDen�A�

Env � Sto � A� Sto� We have levels

L��A� Env � Sto � A� Sto

L��A� Sto � A� Sto

L��A� A� Sto

L��A� A

��

��

These are related by monads

T���A� Env � A

T���A� Sto � A

T���A� Env � Sto � A

T���A� Sto � A� Sto

T���A� Env � Sto � A� Sto

where T�� and T�� are environment monads� T�� is the store monad� T�� is a �double

environment� monad� and T�� is an �environment � store� monad� We also have an

identity monad from each level to itself �not shown�� Notice that there is no monad

from L� to L�� Composition is given by

T�� � T�� T��

T�� � T�� T��

both of which satisfy the compatibility laws�

A strati�ed monad is a category of levels and monads satisfying several additional

properties that do not follow solely from the category structure� We require

� All diagrams commute�

� There are distinguished levels Bot and Top�

� Bot is the identity type constructor�

� Bot and Top are related by a monad T � We also call the entire strati�ed monad

T �

� Bot must be minimal� and Top must be maximal� meaning that no monad can

relate any L to Bot or Top to any L�

��

The requirement that all diagrams commutemeans there is at most monad relating

any two levels �there may be none�� since two parallel arrows form a diagram� Also�

by forgetting the structure of the arrows� we obtain a partial order in which L� v L�

if and only if there is a monad relating L� to L��

In necessary� we can drop the �all diagrams commute� condition
 however� most

semantics obey it� since there aren�t usually multiple ways to relate levels� Indeed�

we could call a language �non	uniform� if it requires multiple monads between levels

to de�ne its constructs� This restriction makes the implementation of SL easier since

we don�t have to specify which monad we want�

We do not require Bot and Top to be initial and terminal �stronger conditions

that minimal and maximal�� since some semantics include levels unrelated to Bot and

Top
 for instance� in the previous example� Bot fails to be initial since there is no

monad T��� In many semantics� however� they are actually initial and terminal�

A level L is a monad �rather than just an endofunction� if there is a monad

relating Bot to it
 hence� Bot is initial if and only if all levels are monads� Thus� in

the previous example� L� isn�t a monad� I haven�t found any real examples where

Top fails to be terminal� but we weaken this condition for symmetry�

��� Strati�ed monad transformers

According to the �categorical imperative�� we should now form a category of

strati�ed monads
 however� in this application� we do not need this structure�

Thus� a strati�ed monad transformer is an endofunction on the set of strati�ed

monads� We can verify these directly for each transformer that it respects the strat	

i�ed monad structure�

In practice� we build strati�ed monad transformers by �lifting� ordinary monad

transformers to act on strati�ed monads� Here the lifting is along the map that

extracts the monad T relating Bot to Top from the strati�ed monad T �recall our

naming convention�� The action of a strati�ed monad transformer is not hard to

��

guess from its action on levels� Let�s do an example� By applying strati�ed monad

transformers� we build the semantics

Den�A� Env � Sto � List�A� Sto�

We begin with an identity strati�ed monad� which has a single level and a single

monad�

L��A� A

T���A� A

We apply the nondeterminism strati�ed monad transformer F �T ��A� T �List�A���

Omitting the identity monads at each level� we obtain

L��A� List�A�

L��A� A

T���A� List�A�

Remember that each Tij is an entire monad� not just a type constructor� Now we

apply the store strati�ed monad transformer F �T ��A� Sto � T �A�Sto�� obtaining

L��A� Sto � List�Sto �A�

L��A� List�Sto �A�

L��A� Sto �A

L��A� A

T���A� Sto � A

��

T���A� List�A�

T���A� Sto � List�A�

T���A� Sto � List�Sto �A�

Finally� we apply the environment strati�ed monad transformer F �T ��A� Env �

T �A��

L��A� Env � Sto � List�Sto �A�

L��A� Sto � List�Sto �A�

L��A� List�Sto �A�

L��A� Sto �A

L��A� A

T���A� Env � A

T���A� Sto � A

T���A� List�A�

T���A� Env � Sto � A

T���A� Sto � List�A�

T���A� Env � Sto � List�A�

T���A� Sto � List�Sto �A�

T���A� Env � Sto � List�Sto �A�

In the next few sections� we elaborate the action of the strati�ed monad transformers

built from the classes of monad transformers discussed in section ������

����� Top transformers

Top transformers have the form F �T � S �T � F acts on the levels of a strati�ed

monad by adding a new top level S � Top� F acts on the monads by applying F to

��

all monads relating to Top� We add the new monads without deleting the originals�

We can verify this action in the example above for the environment transformer�

which has S�A� Env � A� We formed each of the monads involving environments

by transforming a monad relating some level to Top� Conversely� all such monads

were transformed�

����� Bottom transformers

Bottom transformers have the form F �T � T �U � F acts on levels by composing

each level with U and adding a new identity at the bottom� F acts on monads by

applying F to all monads relating to Bot� As before� we add the new monads without

deleting the originals�

We can verify this action in the example above for the nondeterminism trans	

former� which has U�A� List�A�� We formed each of the monads involving lists by

transforming a monad relating some level to Bot� Conversely� all such monads were

transformed�

����� Around transformers

Around transformers are somewhat more complex than bottom and top trans	

formers� In order to construct all the possible monads relating di�erent levels� we

require three ordinary monad transformers� not just one� If the around transformer is

FA�T � S � T � U

we also require

FB�T � S � T

FT �T � T � U

The action on levels is to add a new top level S�Top� compose each level with U below�

and add a new identity as Bot� The action on monads is to transform the monad

��

T using FA� to transform all monads relating to Bot using FB� and to transform all

monads relating to Top using FT � Note that we also transform T using FB and FT �

As before� we add the new monads to the result� leaving the old ones in place�

We obtain the store monad transformer by taking

Ar�T �A Sto � T �A� Sto�

Top�T �A Sto � T �A�

We do not use a Bot transformer� since it would have to be

Bot�T �A T �A� Sto�

and we have seen that this choice does not make sense�

����� Continuation transformers

The continuation transformer is

F �T ��A� �A� T �Ans��� T �Ans�

where Ans is a �xed domain of answers� F acts on levels as F �L��A� L�Ans�� That

is� once T is applied to answers� it ignores whatever else we apply it to� We add a

single new level L�A� �A� T �Ans��� T �Ans�� where T is the old top level�

F acts on monads as follows� It transforms T using the continuation transformer�

yielding a monad relating Bot to the new Top� It also transforms monads M relating

to Top via a special �answer transformer� FAns� yielding monads relating M to the

new Top� These monads allow us to access the levels of the answer type T �Ans��

There are two choices for FAns� shown in �gures ��� and ���� If we de�ne amb in

the semantics

Den�A� �A� List�Ans��� List�Ans�

using each of these choices� we obtain

��

�define ��unit� a� k�

�bindT �unitM a� k��

�define ��bind� c f� k�

�bindM �c unitT�

�lambda �a�

��f a� k����

Figure ���� First answer transformer

�define ��unit� a� k�

�unitM a��

�define ��bind� c f� k�

�bindM �c k�

�lambda �a�

��f a� k����

Figure ���� Second answer transformer

�define ��amb� d� d�� k�

�reduce append ��

�map k �append �d� list� �d� list�����

�define ��amb� d� d�� k�

�append �d� k� �d� k���

as discussed in section ������ Both de�nitions are reasonable�

��� Computation ADTs

A computation ADT is a strati�ed monad� except that we associate a set of

names with each level� Since there is at most a single monad relating any pair of

levels� monads are uniquely identi�ed by the levels they relate�

We use sets of names because a single level can play multiple roles in a semantics�

For example� in

��

Den�A� Env � List�A�

the level List�A� is called both Lists and Env�Results�

Each strati�ed monad transformer adds several new names� For example� the

environment transformer adds the following pairs of names and levels�

Envs � Env � T �A�
Env�Results � T �A�
Env�Values � A

Table ��� shows the names added by each transformer� In some cases� we reuse the

same strati�ed monad transformer� changing only the names that it adds� For exam	

ple� we build both the Stores and Batch I�O modules using the store transformer� We

can build a semantics using multiple instances of the same transformer �environments�

for example� by assigning di�erent names to the instances�

Table ��� shows the names and levels associated with the following language def	

inition�

�define computations

�make�computations

cbv�environments

stores

continuations

nondeterminism

errors��

Using the information contained in table ���� we can de�ne language constructs

over strati�ed monads� Construct de�nitions assume the existence of various levels

and monads� For example� �amb assumes the existence of the level Lists and a monad

relating Lists to Top� The de�nition of �amb is

��

Module Names Levels

Environments Envs Env � T �A�
Env�Results T �A�
Env�Values A

Stores Stores Sto � T �A� Sto�
Store�Results T �A� Sto�
Store�Pairs A� Sto

Store�Values A

Batch I�O IO IO � T �A� IO�
IO�Results T �A� IO�
IO�Pairs A� IO

IO�Values A

Lifting � Lifts �� T �A�
Lifting � Lifts �� A

Errors Errors A� Err

Output Output A�Out

Nondeterminism Lists List�A�
Continuations Conts �A� T �Ans��� T �Ans�

Cont�Values A
Cont�Answers T �Ans�
Answers Ans

Resumptions Res�Top �x �X� T �A�X�
Res�Bottom A� �x �X� T �A�X�

Table ���� Names associated with each transformer

�define �amb

�let ��unit �get�unit �Lists �Top��

�bind �get�bind �Lists �Top���

�lambda �x y�

�bind x

�lambda �x�

�bind y

�lambda �y�

�unit �append x y���������

The strati�ed monad operators are not quite su�cient to form a truly abstract data

type of computations� We need to know precisely the additional information contained

in table ���� For example� Lists are lists of some type� Envs are functions from

environments to Env�Results� etcetera� Thus� if we desire to build true abstract data

��

Names Level L�A�

Envs� Top

Env �
Sto �

let A� List�Ans � Sto� � Err in

�A� Sto � A��� A�

Env�Results� Stores

Sto �
let A� List�Ans � Sto� � Err in

�A� Sto � A��� A�

Store�Results� Conts
let A� List�Ans � Sto� � Err in

�A� Sto � A��� A�
Cont�Answers� Errors List�Ans � Sto� � Err

Lists List�Ans � Sto�
Answers Ans � Sto

Store�Pairs� Cont�Values A� Sto

Env�Values� Store�Values� Bottom A

Table ���� Levels and names for a complex language

types� we have to represent all this information as part of the interface�

The types Sto and Env are parameters to the semantics that can be speci�ed quite

late� That is� after forming a computation ADT� we can decide what type variables

should denote� Of course� the language constructs must implement this choice� and

not all choices make sense�

��� Language ADTs

In general� operators that act primarily at a single level� such as �amb ��gure �����

and �let ��gure ������ are easy to write using standard idioms� More complex oper	

ators� such as �call�cc� are best written by abstracting from their de�nitions in an

example semantics� Using a su�ciently complex semantics ensures that conceptually

distinct levels are not confused� Table ��� lists the available modules and the values

and language constructs they de�ne� We omit leading percent signs from the names�

SL includes four types of procedures� Table ��� shows the levels of their domains

and codomains� We de�ne all four types of procedures over the same environments

��

Procedure type Domain Codomain

CBV	static Env�Values Env�Results

CBN	static Env�Results Env�Results

CBV	dynamic Env�Values Envs

CBN	dynamic Env�Results Envs

Table ���� Procedure types

monad transformer by writing di�erent versions of �lambda and �call� Clearly� we

can de�ne other types of procedures as well�

��

Module Values Constructs

Amb amb

Batch I�O read� write� end�of�input�

Begin unit begin� unit

Booleans booleans true� false� not� if� boolean�

CallCC callcc

Dynamic procedures procedures lambda� call� procedure�

Environments var� let

Error exceptions error

Error values errors error

Exp environments evar� elet

Fix fix� rec� letrec

Numbers numbers num� �� �� 	� �

Numeric predicates ��� zero�� number�

Output write

Procedures procedures lambda� call� procedure�

Products pairs pair� left� right� pair�

Resumptions pause� seq� par

Shift shift� reset

Stores fetch� store

Sums sums case� in�left� in�right� sum�

While while

Table ���� Modules and language constructs

Chapter �

Conclusion

This chapter compares lifting and strati�cation� describes the limitations of these

ideas� relates this work to previous research� and suggests directions for further ex	

ploration�

��� Lifting versus strati�cation

The main problem with lifting is that it ties language constructs too tightly to

the monad transformers on which they are de�ned� For example� if we de�ne variable

reference on Env � T �A�� there is no easy way to raise an unbound variable error�

We could de�ne an ad	hoc set of lower	level operators to circumvent this problem �see

�LHJ����
 however� strati�cation shows how to de�ne a principled set of lower	level

operators�

Phrased di�erently� constructs cannot interact with multiple semantic levels� For

example� � interacts with values and errors� raising an error for non	numeric argu	

ments� and callcc interacts with continuations� environments� and values� Table ���

shows the levels referenced by the more complex language constructs�

Lifting also interleaves the creation of new operators with the lifting of old ones�

Not only are these actions conceptually separate� but when we use a transformer� we

might not want all of the operators that come with it� Again� strati�cation provides

��

��

Construct Modules referenced

�end�of�input� IO� booleans
�read� �write IO� numbers
�call�cc� �shift continuations� environments� procedures
�lambda� �call environments� procedures
�var environments� errors
�fix� �rec lifting� environments� procedures
�letrec lifting� environments
�� numbers� errors
�case sums� environments� procedures

Table ���� Non	local language constructs

a solution by separating the language constructs from the base semantics� Still� the

lifting approach remains viable for building abstract data types whose operators are

more local�

��� Limitations

SL has several intended limitations�

� Since it was designed to build denotational models� SL does not address issues

of type and syntax� which occupy large parts of most language speci�cations�

� We could extend SL to perform almost any compositional program analysis

however� it provides no help in de�ning �extra semantic� mechanisms such

as uni�cation or constraint set solution� That is� although an SL	constructed

analysis could derive a set of type constraints from a typed program� it would

not solve them�

� Although SL can build the basic semantics for a real	world language like C� by

the time we add all the speci�c details of C�s language constructs� we would

hardly claim to have built C from reusable parts�

��

SL also has several unintended limitations� but their descriptions are rather tech	

nical� First� store transformers do not compose modularly with each other� For

example� suppose we de�ne a language that includes both stores and batch I�O �two

di�erent parametrizations of the store transformer�� By composition� we obtain

Sto � �IO � �Val � Sto�� IO�

Consider the following construct ��read would do as well��

�define ����end�of�input�� sto� io�

�pair �pair �in �booleans �null� io�� sto� io��

To de�ne it directly �see appendix B��� �gure B����� we need a monad relating Val

to Val � Sto� an impossibility�

There are two unsatisfactory solutions to this problem� The �rst is to compose

the transformers in the opposite order and hope that the store operators don�t require

a monad from Val to Val � IO �indeed� they don�t��

The second solution is� instead of lifting Val to Val � Sto� to return Val in place

of Val � Sto� as though we could put any type at all there� Then we adjust the

result appropriately at the end �see �gure ����� Hudak et al� adopt this solution

ubiquitously �LHJ���� as described in section ���� The real problem is that monads

are not exible enough to handle store transformers� We require a more sophisticated

lifting operator� although its form is not yet clear�

The second unintended problem is similar to the �rst� When de�ning �callcc in

the usual Scheme semantics� we need to uncurry a function from

f � Val � Sto � Val � Sto

to

f � � Val � Sto � Val � Sto

Surprisingly enough� the strati�ed monad operators on stores cannot perform this

transformation� To be clear� we should say that our goal is not explicitly to uncurry

f but to change its type from

��

�define �end�of�input�

�let ��unitT �get�unit �io�pairs �io�results��

�unitS �get�unit �io �top��

�unitB �get�value�unit �booleans �top��

�bindV �get�bind �io�values �top���

�lambda ��

�bindV

�unitS

�lambda �io�

�unitT �pair �null� �batch�input io��

io����

�lambda �b�

�unitB b������

Figure ���� Odd de�nition of �end�of�input�

f � Store�Values � Stores

to

f � � Store�Pairs � Store�Results

�see section �����

To circumvent this problem� we add a left inverse to unit to each monad� called

iunit� Then the required lifting can be de�ned �see the tilt function in the de�nition

of �callcc� appendix B���� Since we require unit to be injective� a left inverse always

exists
 however� it is less apparent that the argument to iunit in the �callcc is

always in its domain� In this case� if we could prove using the monad laws that its

argument is always unit of something� we could probably eliminate iunit�

iunit is clearly a hack
 once again� the monad operators are simply not powerful

enough to perform all manipulations of the store transformer that occur in standard

construct de�nitions�

��

��� Related work

Spivey �Spi��� used monads to abstract over exception handling but did not connect

these ideas with extensibility�

Moggi �Mog��b� Mog��� split an �applied� lambda calculus into a core �variables

and environments� and an extension �other features�� expressed as a monad�

He presented many extensions and derived a �computational lambda calculus�

for reasoning about programs�

Moggi also showed that monad transformers can build complex monads from

parts �Mog��a�� This crucial facility was hitherto missing
 however� his presen	

tation is di�cult� and few researchers realized that he had made substantial

progress�

Rewriting Moggi�s methods �Esp���� I saw that they did not easily handle con	

structs involving multiple semantic levels� such as �call�cc or even �� �because

it raises errors on non	numbers�� Strati�ed monads solve this problem� increas	

ing modularity by inserting an abstraction barrier between computation ADT

and language ADT�

Wadler �Wad��� popularized Moggi�s ideas by presenting monadic interpreters writ	

ten in Haskell� The interpreters� limitation to extension by a single monad

motivated this thesis� Also� Wadler and King showed how to combine continua	

tions and lists with other monads �KW���� Despite Moggi�s earlier formulation

of monad transformers� they discussed �combiningM and L� rather than �con	

structingML fromM�� SL treats monad constructors in general and exhibits a

complete system for building interpreters from multiple modules� not just two�

Steele �Ste��� showed how to compose pseudomonads� a new construction� Although

they compose� pseudomonads are both more complex and less general than

monad transformers� In fact� pseudomonads are essentially bottommonad trans	

formers� That is� they can realize

��

F �T ��A� T �ListA�

F �T ��A� T �A�X�

F �T ��A� T �A�M�

but not

F �T ��A� Env � T �A�

F �T ��A� Sto � T �A� Sto�

Steele�s claim that pseudomonads improve on monad transformers by providing

a �xed composition operator fails to hold since they are not equally power	

ful
 however� Steele�s complete implementation of a modular semantics was

inspiring� and the strati�ed approach described here is based on his tower of

pseudomonads�

Jones and Duponcheel �JD��� addressed the problem of composing monads� They

showed rigorously that monads do not compose� but that if one of several aux	

iliary maps is de�ned relating the structures of two monads� they can be com	

posed� They found that some monads compose naturally to the left and some

to the right �corresponding to our bottom and top�� Although composition is

strictly weaker than transformation� they came as close as one could to discov	

ering monad transformers� and their work provides useful information about

the structure of semantic models
 however� they did not attempt to build inter	

preters�

Mosses �Mos��� showed how an abstract semantic algebra� which we call a com	

putation ADT� could modularize a semantics� By choosing algebra operators

low	level enough to be exible� yet high	level enough to hide irrelevant details�

we can make a semantics much easier to understand�

��

Mosses gave a single ADT with operators for environments� stores� and contin	

uations� Using this ADT� we can de�ne other semantic features� but only in an

unnatural and non	modular way� With SL� we can build ADTs custom tailored

to the languages we de�ne� In essence� SL is the �nal step in Mosses�s program�

the ability to combine algebras�

Filinski �Fil��� showed how to compute over an arbitrary monad in a language with

composable continuations� His construction is a direct use of the continuation

monad transformer

F �T ��A� �A� T �Ans��� T �Ans�

Most of his paper presents a rather technical proof that computing over F �T �

yields the same results as computing over T � as long as our constructs don�t use

F � It is possible that his proof could be simpli�ed using the general properties

of monad transformers�

Although composable continuations yield extensibility� we could alternatively

add reection operators to a language directly� Thus� we would need nothing

but lambda calculus and primitives to be �monadically complete�
 however�

this point is irrelevant� since we probably want to stores and continuations to

be primitive for e�ciency� Extensibility through continuations costs nothing

�beyond the continuations� if we don�t use it� This point is not obvious
 see

Filinski�s paper�

Cartwright and Felleisen �CF��� postulate that a computation is either a value

or an e�ect and include a resource administrator to manage e�ects� Their

semantics already includes environments� stores� and continuations� the latter

two of which are hidden using a monad �bind is called handle��

Their semantics employs object	oriented techniques such as extensible prod	

ucts �for stores�� extensible sums �for values�� and �self� arguments �for in	

terpreter composition�� These techniques recall my earlier thesis proposals

��

�Esp��a� Esp��b�� although there was no direct connection�

In general� it not surprising that Felleisen and Cartwright�s system can be ex	

tended with stores and continuations� since they are already included� in the

guise of a resource administrator� The intuitive value of this abstraction remains

to be seen� We can extend the store
 however� stores are already extensible in

most languages� since we can create new locations on demand�

Liang� Hudak� and Jones �LHJ��� recently published a paper improving on my

earlier work �Esp��� and on Moggi�s work as well�

Their �rst improvement was to lift callcc using operators designed speci�cally

for it� Both Moggi and I lifted all operators of a given type in a similar way

�parametrically� rather than ad	hoc�� Ad	hoc liftings are non	modular� since

they require a new lifting method for each operator and monad transformer�

Using strati�ed monads� we can de�ne a single reusable callcc �see �gure B�����

Although its de�nition is complex� it is independent of new transformers�

Their second improvement was to express monad transformers in a typed lan	

guage �Gofer� an extension of Haskell�� This work shows the power of Jones�s

constructor classes� since monad transformers cannot be expressed in pure

Haskell�

The main problem with Liang� Hudak� and Jones�s approach is the treatment

of non	local language constructs �those involving multiple levels�� They shift

all interaction to the top or bottom of the single monad that de�nes the base

semantics� That is� in a semantics

Den Env � List�Val�

procedures have types

CBV Proc Val � Den

CBNProc Den � Den

��

Although these appear reasonable at �rst glance� procedure arguments and

results unnecessarily include environments� That is� without access to interme	

diate levels in the semantics� their types lose precision�

Similarly� to de�ne variable reference� they form Den�Env �� denotations that

return environments� In e�ect� this approach desugars a reference to x into

�env�lookup �x �the�environment��

Explaining variable reference using �rst	class environments is inappropriate�

since environments would not normally appear in a language�s value domain�

Of course� after simpli�cation� the actual constructs reduce to the de�nitions

we would expect� so perhaps the ends justify the means� In general� since their

approach is based on lifting� it is much weaker than strati�cation� as discussed

in section ����

��� Future work

Implementation As mentioned in section A��� we could rewrite SL in Quest �Car���

to verify proper use of higher	order types�

By forming domains from expressions instead of functions� we could build ab	

stract interpretations� translations �such as CPS�� and simple compilers�

We could apply the methods developed here to other semantically complex do	

mains� such as communication protocols� If we don�t need functional abstrac	

tion� simpler lifting operators than monads should su�ce �see section �������

Extensibility We could generalize call	by	value and call	by	name to abstract over

other semantic levels� For instance� abstracting over the top level of denotations

yields most of the functionality due to macros� Also� we could de�ne a language

capable of abstracting over each semantic level�

��

We could de�ne a uniform family of rei�cation and reection operators �see

�Fil����� one for each semantic level� These would generalize constructs such as

the�environment� call�cc� and exception handling�

Models Are strati�ed monads derivable frommore categorical considerations� Since

the monad laws follow nicely from the Kleisli formulation� can we de�ne a Kleisli

category for several monads at once� This construction would presumably be

a product of the individual Kleisli categories� indexed by monad� The key idea

is that compositions associate�

Having presented two approaches to building interpreters� lifting and strati	

�cation� can we show their equivalence� at least in the cases that lifting can

handle�

Logics Can we develop modular calculi for reasoning about the languages we con	

struct� Moggi�s computational lambda calculus �Mog��� captures precisely the

inferences valid for lambda calculus over an arbitrary monad� Moggi�s syntactic

approach �MC��� is relevant but does not seem to address the problem directly�

Calculi can probably be derived via both lifting and strati�cation� Given a set

of laws on T � can we lift them to F �T �� Or� can we use the strati�ed monad

laws to derive laws for a completed semantics� Abramsky�s work �Abr��� on

deriving program logics from domain equations is applicable to domains built

using type constructors
 however� his methods seem to derive calculi that are

still very low	level�

��� Conclusion

Four simple imperatives summarize this thesis�

� Think with types� both abstract and concrete�

� Compute with denotations� not expressions�

��

� Split a complex interpreter into a computation ADT and a language ADT�

� Structure the computation ADT using monads and monad transformers�

The �rst two of these are most important� since types let us think in a simple

yet structured way� and denotations let us implement interpreters easily and directly�

These two ideas make an otherwise di�cult �eld accessible to anyone who understands

functional programming�

Bibliography

�Abr��� Samson Abramsky� Domain theory in logical form� Annals of Pure and

Applied Logic� ����!��� �����

�ASS��� Harold Abelson� Gerald J� Sussman� and Julie Sussman� Structure and

Interpretation of Computer Programs� MIT Press� Cambridge� MA�

�����

�Bec��� Jon Beck� Distributive laws� In Seminar on Triples and Categorical

Homology Theory� volume �� of Lecture Notes in Mathematics� pages

���!���� Springer Verlag� �����

�BW��� Michael Barr and Charles Wells� Toposes� Triples� and Theories�

Springer Verlag� New York� �����

�BW��� Michael Barr and Charles Wells� Category Theory for Computing Sci�

ence� Prentice	Hall� �����

�Car��� Luca Cardelli� Typeful programming� Technical Report ��� DEC Sys	

tems Research Center� Palo Alto� CA� May �����

�CF��� Robert Cartwright and Matthias Felleisen� Extensible denotational

language speci�cations� In Theoretical Aspects of Computer Software�

Sendai� Japan� April �����

�CR��� Will Clinger and Jonathan Rees� Revised� Report on Scheme� Lisp

Pointers� ����� �����

��

��

�Esp��a� David Espinosa� Language extensibility via �rst	class interpreters and

constructive modules� See http���www�cs�columbia�edu� April �����

�Esp��b� David Espinosa� Language features for extensible programs� See

http���www�cs�columbia�edu� October �����

�Esp��� David Espinosa� Semantic Lego� See http���www�cs�columbia�edu� Jan	

uary �����

�Fil��� Andrzej Filinski� Declarative continuations and categorical duality�

Master�s thesis� University of Copenhagen� August ����� See http�

��www�cs�cmu�edu������

�Fil��� Andrzej Filinski� Representing monads� In Proceedings of the ��st An�

nual ACM Symposium on Principles of Programming Languages� Port	

land� OR� January �����

�GM��� Carl Gunter and John Mitchell� editors� Theoretical Aspects of Object�

Oriented Programming� MIT Press� Cambridge� MA� �����

�GTWW��� J� A� Goguen� J� W� Thatcher� E� G� Wagner� and J� B� Wright� Initial

algebra semantics and continuous algebras� Journal of the ACM� �����!

��� �����

�Gun��� Carl Gunter� Semantics of Programming Languages� MIT Press� Cam	

bridge� MA� �����

�JD��� Mark P� Jones and Luc Duponcheel� Composing monads� Technical

Report YALEU � DCS � RR	����� Yale University� December �����

�KBdR��� Gregor Kiczales� Daniel G� Bobrow� and Jim des Rivieres� The Art of

the Metaobject Protocol� MIT Press� Cambridge� MA� �����

��

�KW��� David King and Philip Wadler� Combining monads� In Proceedings of

the Fifth Annual Glasgow Workshop on Functional Programming� Ayr�

Scotland� ����� Springer Verlag�

�Lam��� John Lamping� A uni�ed system of parametrization for programming

languages� In Conference Record of the ���� ACM Symposium on Lisp

and Functional Programming� pages ���!���� Snowbird� Utah� July

�����

�LHJ��� Sheng Liang� Paul Hudak� and Mark Jones� Monad transformers and

modular interpreters� In Proceedings of the ��nd Annual ACM Sym�

posium on Principles of Programming Languages� San Francisco� CA�

January �����

�Mac��� Saunders MacLane� Category theory for the Working Mathematician�

Springer Verlag� New York� �����

�MB��� Saunders MacLane and Garrett Birkho�� Algebra� Chelsea� New York�

�rd edition� �����

�MC��� Eugenio Moggi and Pietro Cenciarelli� A syntactic approach to mod	

ularity in denotational semantics� In Category Theory and Computer

Science� Lecture Notes in Computer Science� Springer Verlag� �����

�Mes��� Jos�e Meseguer� General logics� In H� D� Ebbinghaus� editor� Logic Col�

loquium ��� pages ���!���� North Holland� �����

�Mog��a� Eugenio Moggi� An abstract view of programming languages� Techni	

cal Report ECS	LFCS	��	���� Laboratory for Foundations of Computer

Science� University of Edinburgh� Edinburgh� Scotland� June ����� FTP

from theory�doc�ic�ac�uk�

��

�Mog��b� Eugenio Moggi� Computational lambda calculus and monads� In IEEE

Symposium on Logic in Computer Science� pages ��!��� Asilomar� CA�

June �����

�Mog��� Eugenio Moggi� Notions of computation and monads� Information and

Computation� �����!��� �����

�Mos��� Peter D� Mosses� Action Semantics� volume �� of Tracts in Theoretical

Computer Science� Cambridge University Press� �����

�Pie��� Benjamin C� Pierce� Basic Category Theory for Computer Scientists�

MIT Press� Cambridge� MA� �����

�RB��� David Rydeheard and Rod Burstall� Computational Category Theory�

Prentice	Hall� New York� �����

�Sch��� David A� Schmidt� Denotational Semantics� Allyn and Bacon� New

York� �����

�Spi��� Michael Spivey� A categorical approach to the theory of lists� In Math�

ematics of Program Construction� volume ��� of Lecture Notes in Com�

puter Science� pages ���!���� Springer Verlag� �����

�Spi��� Michael Spivey� A functional theory of exceptions� Science of Computer

Programming� ��������!��� June �����

�Spi��� Michael Spivey� Category theory and functional programming� Technical

Report PRG TR �	��� Oxford University� June �����

�Ste��� Guy L� Steele� Jr� Building interpreters by composing monads� In Pro�

ceedings of the ��st Annual ACM Symposium on Principles of Program�

ming Languages� Portland� OR� January �����

�Wad��� Philip Wadler� Theorems for free� In Functional Programming Languages

and Computer Architecture� London� England� September �����

��

�Wad��� Philip Wadler� The essence of functional programming� In Proceed�

ings of the ��th Annual ACM Symposium on Principles of Programming

Languages� pages �!��� Albuquerque� NM� January �����

Appendix A

Miscellanea

This appendix discusses issues tangent to the thesis proper at various points�

A�� Why Scheme	

The real reason for writing this thesis in Scheme� is that I�m used to it� Although

Scheme has many problems �notably the lack of modules and abstract data types�� it

is still pretty fun to program in� But� for this thesis� Scheme has several disadvantages�

� It fails to express the typed structure of the mathematics�

� Implicit polymorphism does not distinguish between a polymorphic function

and its instantiations at various types
 hence� a whole level of structure is lost�

� Since types are not mechanically veri�ed� our understanding of them could be

incorrect�

On the other hand� Scheme�s advantage is that it does not limit what we can

express� For example� in the usual Hindley	Milner type system� polymorphic values

�When I failed to explain an example su�ciently in an earlier thesis proposal� one reader ex�

claimed� �You can�t write your thesis in Scheme��

��

��

are not �rst	class� since we cannot instantiate them at di�erent types� F� has �rst	

class polymorphism but cannot treat type constructors as types� so that monads

cannot be �rst	class�

We can probably type SL in F�� which includes type constructors
 however� it is

not clear how to type the levels of a strati�ed monad� For instance� we would need

types Envs and Env�Results such that

Envs 	 Env � Env�Results

�see section ����� It would be a good exercise to rewrite SL in Cardelli�s Quest

language� which includes higher	order polymorphism as well as several other advanced

typing ideas �Car���� Also� Liang� Hudak� and Jones �LHJ��� have implemented

monad transformers in Gofer� a version of Haskell with an enhanced type system

�essentially Hindley	Milner extended to higher types��

In general� the programming languages community is realizing that current type

systems are inadequate
 however� we should go further and question the entire basis

for typed languages� In general� types are a form of speci�cation� When we say that

an expression has a type� we really mean that its evaluation meets a speci�cation�

This point of view leads naturally to more expressive types� Although inference

and veri�cation are intractable for these systems� we should recall that for years�

proof veri�ers have automated a well	de�ned class of simple inferences within complex

logics�

To strengthen the case for more expressive types� we cite two examples from the

monad literature of problems with limited type systems� In �Ste���� Steele writes�

�� � � the principal practical motivation for �a program simpli�er� was to transform the

code into a form acceptable to the Haskell type	checker�� In other words� he had to

treat programs at the syntactic level in order to bypass the type system� In �Fil����

Filinski circumvents ML�s type system using a universal type� He also states in a

di�erent context� �Peyton	Jones and Wadler probe the relationship between monads

and CPS further� and Wadler analyzes composable continuations from a monadic

���

perspective� but in both cases the restriction to Hindley	Milner typeability obscures

the deeper connections��

A�� Typed versus untyped values

Typed languages have multiple value domains� one for each type� and determine

expression types statically� Untyped languages have a single value domain that is

a sum of several others� and determine types dynamically� Untyped languages also

make fewer type distinctions than typed languages� particularly with respect to pro	

cedures� For instance� Scheme does not distinguish procedures returning numbers

from procedures returning pairs�

Monads are typed� as are all category	theoretic concepts� and denotations are

polymorphic over values� For example� we can type the language construct �zero�

as

�zero� � Den�Num�� Den�Bool �

However� in SL� we compute over a single untyped value domain� represented as an

extensible sum� Thus �zero� has type

�zero� � Den � Den

where we write Den instead of Den�Val �� Tagging values with their types exposes the

treatment of types in the semantic equations and abstracts from the existing Scheme

types�

Most type systems are not powerful enough to type typed interpreters� For exam	

ple� the interpreters in �Wad��� are untyped even though they are written in Haskell�

which is typed� The problem is that we would like to write

��var �x� � Num

when x is a number
 however� the type of ��var �x� depends on the context in

which the expression occurs� In general� the type of an expression needs to include

���

the names and types of its free variables� just as in the usual sequent	based typing

rules�

On a slightly di�erent subject� Steele �Ste��� tries to extend the domain of values

using monads� and I follow him in �Esp���
 however� as he points out� using the

exceptions monad to build extensible sums yields behavior such as

�compute ��� ��num
� ��true���

� true

which shows that monads are not the right tool for building extensible sums�

A�� Extensible sums and products

Although extensible sums and products play little part in this thesis� they are

useful for building extensible systems �see �Esp��b��� and I believe they capture the

essential aspects of object	oriented programming� They also demonstrate how cate	

gory theory can aid language design� We consider types

S S� � S� � � � �

P P� � P� � � � �

that can be extended either statically or dynamically� It doesn�t matter which
 these

considerations are orthogonal to the basic idea� To S and P there correspond exten	

sible functions

s � S � B

p � A� P

Note that s and p have opposite types� As we extend S or P � we also extend s or p�

As an example� suppose that s computes various vehicles� maximum speeds� Then

s � Vehicle � Number

���

where Vehicle is an extensible sum� Extensible sums are simply generic functions

in the sense of CLOS �KBdR���� while extensible products are not commonly used�

The types of s and p come directly from the category	theoretic de�nitions of sum

and product� For other theoretical treatments of object	oriented programming� see

�GM����

Appendix B

Code

This appendix lists the Scheme code for the monad transformers and language con	

structs presently supported by SL�

B�� Monad transformer de�nitions

The code for transforming types and inverse unit operators is omitted for clarity�

���

���

��� Environments� F�T��A� � Env �� T�A�

�define �env�trans t�

�with�monad t

�lambda �unit bind compute�

�make�monad

�lambda �a�

�lambda �env� �unit a���

�lambda �c f�

�lambda �env�

�bind �c env�

�lambda �a�

��f a� env�����

�lambda �c f�

�compute �c empty�env� f��

����

Figure B��� Environment transformer

���

��� Exceptions� F�T��A� � T�A � X�

�define �exception�trans t�

�with�monad t

�lambda �unit bind compute�

�make�monad

�lambda �a� �unit �in�left a���

�lambda �c f�

�bind c �sum�function

f �lambda �x� �unit �in�right x������

�lambda �c f�

�compute c �sum�function f compute�x���

����

Figure B��� Exception transformer

��� Continuations� F�T��A� � �A �� T�Ans�� �� T�Ans�

�define �continuation�trans t�

�with�monad t

�lambda �unit bind compute�

�make�monad

�lambda �a�

�lambda �k� �k a���

�lambda �c f�

�lambda �k�

�c �lambda �a� ��f a� k�����

�lambda �c f�

�compute �c �compose� unit value��answer�� f��

����

Figure B��� Continuation transformer

���

��� Stores� F�T��A� � Sto �� T�A 	 Sto�

�define �store�trans t�

�with�monad t

�lambda �unit bind compute�

�make�monad

�lambda �a�

�lambda �sto�

�unit �pair a sto����

�lambda �c f�

�lambda �sto�

�bind �c sto�

�lambda �as�

��f �left as�� �right as������

�lambda �c f�

�compute �c �initial�store��

�lambda �a	s�

�compute�store �f �left a	s�� �right a	s�����

����

Figure B��� Store transformer

���

��� Lifting �� F�T��A� � � �� T�A�

�define �lift��trans t�

�with�monad t

�lambda �unit bind compute�

�make�monad

�lambda �a�

�lambda �� �unit a���

�lambda �c f�

�lambda ��

�bind �c� �lambda �a� ��f a������

�lambda �c f�

�compute �c� f��

����

Figure B��� First lifting transformer

��� Lifting �� F�T��A� � T�� �� A�

�define �lift��trans t�

�with�monad t

�lambda �unit bind compute�

�make�monad

�lambda �a�

�unit �lambda �� a���

�lambda �c f�

�bind c �lambda �l� �f �l�����

�lambda �c f�

�compute c �lambda �l� �f �l�����

����

Figure B��� Second lifting transformer

���

��� Lists� F�T��A� � T�List�A��

�define �list�trans t�

�with�monad t

�lambda �unit bind compute�

�define �amb x y�

�bind x

�lambda �x�

�bind y

�lambda �y�

�unit �append x y�������

�make�monad

�lambda �a�

�unit �list a���

�lambda �c f�

�bind c

�lambda �l�

�reduce amb �unit ���� �map f l�����

�lambda �c f�

�compute c �lambda �l� �map f l����

����

Figure B��� List transformer

���

��� Monoids� F�T��A� � T�A 	 M�

�define �monoid�trans t�

�with�monad t

�lambda �unit bind compute�

�make�monad

�lambda �a� �unit �pair a �monoid�unit����

�lambda �c f�

�bind c

�lambda �a	m�

�let ��c� �f �left a	m����

�bind c�

�lambda �a	m��

�unit

�pair �left a	m��

�monoid�product

�right a	m� �right a	m�����������

�lambda �c f�

�compute

c �lambda �a	m�

�compute�m �f �left a	m�� �right a	m�����

����

Figure B��� Monoid transformer

���

��� Resumptions� F�T��A� � fix�X� T�A � X�

�define �resumption�trans t�

�with�monad t

�lambda �unit bind compute�

�make�monad

�lambda �a� �unit �in�left a���

�lambda �c f�

�let loop ��c c��

�bind c

�sum�function

f �lambda �c�

�unit �in�right �loop c��������

�lambda �c f�

�compute

�let loop ��c c��

�bind c

�sum�function

�compose� unit f�

loop���

id��

����

Figure B��� Resumption transformer

���

B�� Language construct de�nitions

��� Amb

�define �amb

�let ��unit �get�unit �lists �top��

�bind �get�bind �lists �top���

�lambda �x y�

�bind x

�lambda �x�

�bind y

�lambda �y�

�unit �append x y���������

Figure B���� Amb

��� Reset

�� �� �reset E� �� k � k �E �i�i�

�define �reset

�let ��mapC �get�map �conts �top��

�unitC �get�unit �cont�values �cont�answers��

�bindC �get�bind �cont�values �cont�answers���

�lambda �exp�

�mapC exp

�lambda �cont�

�lambda �k�

�bindC �cont unitC� k�������

Figure B���� Reset

���

��� Stores

�define �fetch

�let ��unitT �get�unit �store�pairs �store�results��

�unitS �get�unit �stores �top���

�lambda �loc�

�unitS

�lambda �sto�

�unitT �pair �store�fetch sto loc� sto�������

�define �store

�let ��unitS �get�unit �stores �top��

�unitT �get�unit �store�pairs �store�results��

�bindV �get�bind �store�values �top���

�lambda �loc val�

�bindV val

�lambda �val�

�unitS

�lambda �sto�

�unitT �pair val �store�store sto loc val����������

Figure B���� Stores

���� Output

�define �write

�let ��unitV �get�value�unit �unit �top��

�mapO �get�map �output �top���

�lambda �message�

�mapO �unitV �unit�

�lambda �a	m�

�let ��a �left a	m��

�m �right a	m���

�pair a �cons message m��������

Figure B���� Output

���

���� While

�define �while

�let ��bindB �get�value�bind �booleans �top���

�lambda �c� c��

�letrec

��loop

�bindB c�

�lambda �b�

�if b

��begin� c� loop�

��unit������

loop����

Figure B���� While

��� Begin

�define�show �unit �lambda �b� �unit��

�define �unit �make�op� �unit �unit��

�define �unit� �make�type�predicate �unit��

�define �begin�

�let ��bindV �get�bind �bottom �top���

�lambda �c� c��

�bindV c�

�lambda �v�� c������

�define ��begin � s�

�reduce �begin� ��unit� s��

Figure B���� Begin

���

���� Error exceptions

�define �raise�error top�

�let ��unit �get�unit �errors top���

�lambda �msg� �unit �in�right msg�����

�define �error �raise�error �top��

Figure B���� Error exceptions

���� Error values

�define�show �errors

identity�procedure�

�define�predicate �errors

�lambda �x�

�and �pair� x�

�eq� �car x� �error����

�define �raise�error top�

�get�value�unit �errors top��

�define �error �raise�error �top��

�define �error� �make�type�predicate �errors��

Figure B���� Error values

���

��� Batch I�O

�� IO � Input 	 Output

�� Input � List Number

�� Output � List Number

�define �end�of�input�

�let ��unitT �get�unit �io�pairs �io�results��

�unitS �get�unit �io �top��

�unitB �get�value�unit �booleans �io�values���

�lambda ��

�unitS

�lambda �io�

�unitT �pair �unitB �null� �batch�input io���

io�������

�define �read

�let ��unitT �get�unit �io�pairs �io�results��

�unitS �get�unit �io �top��

�unitN �get�value�unit �numbers �io�values���

�lambda ��

�unitS

�lambda �io�

�unitT �pair �unitN �car �batch�input io���

�make�batch �cdr �batch�input io��

�batch�output io���������

�define �write

�let ��unitS �get�unit �io �top��

�unitT �get�unit �io�pairs �io�results��

�bindN �get�value�bind �numbers �top��

�unitU �get�value�unit �unit �io�values���

�lambda �val�

�bindN val

�lambda �val�

�unitS

�lambda �io�

�unitT

�pair �unitU �unit�

�make�batch

�batch�input io�

�cons val �batch�output io������������

Figure B���� Batch I�O

���

��� Booleans

�define�show �booleans

�lambda �b� �if b �true �false���

�define�predicate �booleans

boolean��

�define �boolean� �make�type�predicate �booleans��

�define �true �make�op� �booleans �t��

�define �false �make�op� �booleans �f��

�define �b�or x y� �or x y��

�define �b�and x y� �and x y��

�define �not �make�op� �booleans �booleans not��

�define �or �make�op� �booleans �booleans b�or��

�define �and �make�op� �booleans �booleans b�and��

�define �if

�let ��bind �get�value�bind �booleans �top���

�lambda �p c a�

�bind p

�lambda �p�

�if p c a������

Figure B���� Booleans

���

��� Call�CC

�� Proc � env�values �� env�results

�� Cont � cont�values �� cont�answers

�define �call�cc

�let ��mapC �get�map �conts �top��

�mapK �get�map �conts �env�results��

�iunitK �get�iunit �conts �env�results��

�unitE �get�unit �env�values �env�results��

�unitP �get�value�unit �procedures �env�values��

�unitR �get�unit �cont�values �env�results��

�bindS �get�value�bind �procedures �env�results���

�� tilt � cont�value 	 �procedures �� env�results� �� conts

�define �tilt cv f�

�iunitK �bindS �unitR cv� f���

�lambda �exp�

�mapC exp

�lambda �cont�

�lambda �k�

�define �callcc�proc v�

�mapK �unitE v�

�lambda �cont�

�lambda �k�� �cont k�����

�cont

�lambda �cv�

��tilt cv

�lambda �p�

�p �unitP callcc�proc����

k���������

Figure B���� Call with current continuation

���

��� Dynamically scoped procedures

�define�show �procedures

�lambda �p� ��procedure���

�define�predicate �procedures

procedure��

�� Proc � env�values �� envs

�define �lambda

�let ��bindE �get�bind �envs �top��

�unitP �get�value�unit �procedures �top���

�lambda �var body�

�bindE body

�lambda �body�

�unitP

�lambda �arg�

�lambda �env�

�body �env�extend env var arg����������

�define �call

�let ��bindP �get�value�bind �procedures �top��

�bindV �get�bind �env�values �top��

�unitE �get�unit �envs �top���

�lambda �proc arg�

�bindP proc

�lambda �proc�

�bindV arg

�lambda �arg�

�unitE �proc arg���������

Figure B���� Dynamically scoped procedures

���

��� Environments

�� Env � Id �� env�values

�define �var

�let ��unitT �get�unit �env�values �env�results��

�unitE �get�unit �envs �top��

�error �raise�error �env�results���

�lambda �id�

�unitE

�lambda �env�

�let ��binding �env�lookup env id���

�if binding

�unitT �right binding��

�error �unbound�error id���������

�define �let

�let ��unitE �get�unit �envs �top��

�bindE �get�bind �envs �top��

�bindV �get�bind �env�values �top���

�lambda �id c� c��

�bindV c�

�lambda �v��

�bindE c�

�lambda �c��

�unitE

�lambda �env�

�c� �env�extend env id v������������

Figure B���� Environments

���

��� Fixed points

�define �fix

�let ��bindP �get�value�bind �procedures �top��

�unitL �get�unit �lifts �top��

�bindV �get�bind �env�values �lifts��

�unitR �get�unit �env�results �lifts���

�lambda �p�

�bindP p

�lambda �p�

�unitL

�fix �lambda �l�

�bindV l

�lambda �v�

�unitR �p v������������

�define �rec

�let ��unitE �get�unit �envs �top��

�bindE �get�bind �envs �top��

�bindV �get�bind �env�values �lifts��

�unitL �get�unit �lifts �env�results��

�unitR �get�unit �env�results �lifts���

�lambda �name c�

�bindE c

�lambda �c�

�unitE

�lambda �env�

�unitL

�fix �lambda �l�

�bindV l

�lambda �v�

�unitR �c �env�extend env name v���

������������

Figure B���� Fixed points

���

��� Letrec

�define �letrec

�let ��unitE �get�unit �envs �top��

�bindE �get�bind �envs �top��

�bindV �get�bind �env�values �lifts��

�unitL �get�unit �lifts �env�results��

�unitR �get�unit �env�results �lifts���

�lambda �name c� c��

�bindE c�

�lambda �c��

�bindE c�

�lambda �c��

�unitE

�lambda �env�

�unitL

�bindV

�fix

�lambda �l�

�bindV l

�lambda �v�

�unitR �c� �env�extend env name v���

����

�lambda �v�

�unitR �c� �env�extend env name v���

������������

Figure B���� Letrec using �xed points

���

��� Numbers

�define�show �numbers identity�procedure�

�define�predicate �numbers number��

�define �num �get�value�unit �numbers �top��

�define �� �make�op� �numbers �numbers ���

�define �� �make�op� �numbers �numbers ���

�define �	 �make�op� �numbers �numbers 	��

�define ��� �make�op� �numbers �numbers ����

�define ���� �make�op� �numbers �numbers �����

�define ��

�let ��unit �get�value�unit �numbers �top��

�bind �get�value�bind �numbers �top��

�error �raise�error �top���

�lambda �a� a��

�bind a�

�lambda �a��

�bind a�

�lambda �a��

�if �zero� a��

�error �divide�by�zero�error��

�unit �� a� a�����������

��� Numeric predicates

�define �zero� �make�op� �numbers �booleans zero���

�define �� �make�op� �numbers �booleans ���

�define �� �make�op� �numbers �booleans ���

�define �� �make�op� �numbers �booleans ���

�define ��� �make�op� �numbers �booleans ����

�define ��� �make�op� �numbers �booleans ����

�define �number� �make�type�predicate �numbers��

Figure B���� Numbers

���

��� Statically scoped procedures

�define�show �procedures

�lambda �p� ��procedure���

�define�predicate �procedures

procedure��

�� Proc � env�values �� env�results

�define �lambda

�let ��unitE �get�unit �envs �top��

�bindE �get�bind �envs �top��

�unitP �get�value�unit �procedures �env�results���

�lambda �var body�

�bindE body

�lambda �body�

�unitE

�lambda �env�

�unitP

�lambda �arg�

�body �env�extend env var arg�����������

�define �call

�let ��bindP �get�value�bind �procedures �top��

�bindV �get�bind �env�values �top��

�unitR �get�unit �env�results �top���

�lambda �proc arg�

�bindP proc

�lambda �proc�

�bindV arg

�lambda �arg�

�unitR �proc arg���������

�define �procedure� �make�type�predicate �procedures��

Figure B���� Statically scoped procedures

���

��� Resumptions

�� F�T��A� � rec�X� T�A � X�

�� res�top � T�A � X�� res�bottom � A � X

�define �pause

�let ��bindR �get�bind �res�top �top��

�unitT �get�unit �res�bottom �top���

�lambda �c�

�bindR c

�lambda �t�

�unitT �in�right t�������

�define ��seq� c� c��

��begin� c� ��pause c����

�define ��seq � s�

�reduce �seq� ��pause ��unit�� s��

�define ��par� c� c��

��amb ��then c� c��

��then c� c����

�define ��par � s�

�reduce �par� ��pause ��unit�� s��

�define �then

�let ��bindR �get�bind �res�bottom �top��

�unitT �get�unit �res�top �top���

�lambda �c� c��

�bindR c�

�sum�function

�lambda �a� ��pause c���

�lambda �t� ��pause ��par� �unitT t� c���������

Figure B���� Resumptions

���

��� Products

�define�show �pairs

�lambda �p�

��pair ��show�value �left p��

��show�value �right p�����

�define�predicate �pairs pair��

�define �pair� �make�type�predicate �pairs��

�define �make�pair�op op�

�let ��unit �get�unit �bottom �top��

�bind �get�value�bind �pairs �top���

�lambda �a�

�bind a

�lambda �a�

�unit �op a�������

�define �left �make�pair�op left��

�define �right �make�pair�op right��

�define �pair

�let ��unit �get�value�unit �pairs �top��

�bind �get�bind �bottom �top���

�lambda �c� c��

�bind c�

�lambda �v��

�bind c�

�lambda �v��

�unit �pair v� v����������

Figure B���� Products

���

��� Sums

�define�show �sums

�lambda �p�

�sum�case p

�lambda �x� ��in�left ��show�value x���

�lambda �x� ��in�right ��show�value x������

�define�predicate �sums sum��

�define �sum� �make�type�predicate �sums��

�define �make�sum�op op�

�let ��unit �get�value�unit �sums �top��

�bind �get�bind �bottom �top���

�lambda �a�

�bind a

�lambda �a�

�unit �op a�������

�define �in�left �make�sum�op in�left��

�define �in�right �make�sum�op in�right��

�define �case

�let ��bindS �get�value�bind �sums �top��

�bindP �get�value�bind �procedures �top��

�unitV �get�unit �bottom �env�values��

�unitR �get�unit �env�results �top���

�lambda �x f g�

�bindS x

�sum�function

�lambda �x�

�bindP f �lambda �f� �unitR �f �unitV x������

�lambda �x�

�bindP g �lambda �g� �unitR �g �unitV x�����������

Figure B���� Sums

���

��� Shift

�� �� �shift p� �� k � �p ��v� �k�� �k� �k v��� �i�i�

�define �shift

�let ��mapC �get�map �conts �top��

�mapK �get�map �conts �env�results��

�iunitK �get�iunit �conts �env�results��

�unitC �get�unit �cont�values �cont�answers��

�bindC �get�bind �cont�values �cont�answers��

�unitE �get�unit �env�values �env�results��

�unitP �get�value�unit �procedures �env�values��

�unitR �get�unit �cont�values �env�results��

�bindS �get�value�bind �procedures �env�results���

�� tilt � cont�value 	 �procedures �� env�results� �� conts

�define �tilt cv f�

�iunitK �bindS �unitR cv� f���

�define �cont�compose k� k��

�lambda �cv�

�bindC �k� cv� k����

�lambda �exp�

�mapC exp

�lambda �cont�

�lambda �k�

�define �shift�proc v�

�mapK �unitE v�

�lambda �cont�

�lambda �k��

�cont �cont�compose k k�������

�cont

�lambda �cv�

��tilt cv

�lambda �p�

�p �unitP shift�proc����

unitC���������

Figure B���� Shift

