
Building Interpreters by

Transforming Strati�ed Monads

David Espinosa

Columbia University

Department of Computer Science

New York� NY �����

espinosa�cs�columbia�edu

June ����

Abstract

This paper shows how to construct programming language interpreters from a set
of mix�and�match parts� By composing a sequence of semantic modules� we form an
abstract data type �ADT� of computations� which is then used to build an ADT of
language constructs� We represent the ADT of computations by a strati�ed monad and
the modules by strati�ed monad transformers� These results extend previous work on
monads and have applications to language extensibility� interpreter construction� and
the study of semantic models�

Topics� interpreters� functional programming
Word count� ���� �� pages� without examples� �gures� and appendices

� Introduction

We describe Semantic Lego� an interpreter construction toolkit capable of building in	
terpreters for a wide variety of languages from a set of reusable parts
 By representing a
modular theory of language design in computational terms� we raise the level of dialogue
between the designer and the computer �AKHS���
 Language designers can use the toolkit
to prototype new languages� to experiment with new semantics� and to build interpreters for
use in other systems

To see the lack of modularity in interpreters� consider adding stores to a language without
them
 Even though most language constructs leave the store unchanged� it is necessary to
rewrite the interpreter completely
 Tools such as attribute grammars �DJL��� and abstract
semantic algebras �Mos�� were developed to solve this problem but cannot handle complex
semantics
 Using the toolkit� we simply add the stores module to the language speci�cation

To achieve these results� we reformulate Moggi�s theory of modular denotational seman	
tics �Mog�a� Mog�a�
 We introduce strati�ed monads� sets of named semantic levels� related
in pairs by monads
 We de�ne language constructs using the monad operators conceptu	
ally relevant to them� independent of other details of the semantics
 We realize semantic
modules� such as stores and continuations� as strati�ed monad transformers

�

This paper is a signi�cant advance over previous work that uses monads as a basis for
modular language speci�cation
 Speci�cally�

� Moggi �Mog�a� presents a complex formalism that is often di�cult to understand

We introduce a simpler and more �exible theory
 By representing it in computational
terms� we render it both more useful and more accessible

� Wadler �Wad�� builds interpreters from two parts� a base and an extension
 Our
theory is more general� allowing us to compose languages from any number of semantic
modules

� Steele �Ste�� uses pseudomonads to build a limited but complex interpreter toolkit

Our work is simpler and handles a wider range of constructions

The paper is organized as follows
 Section � presents a series of examples� section �
discusses how the toolkit works� and section � compares it to previous work
 We assume
an elementary understanding of denotational semantics and functional programming� for
further background� see �Wad��
 We present all examples and code fragments in Scheme
�CR��

� Examples

We discuss languages as abstract data types� show the toolkit in action� and use it to explore
the interaction between nondeterminism and continuations

��� Languages as ADTs

To see what the toolkit does� we need to specify what �generating an interpreter� means

Most authors de�ne a function such as

eval � Exp � Env �� Val

where Exp is an ADT of expressions with constructors

var � Name �� Exp

lam � Name � Exp �� Exp

app � Exp � Exp �� Exp

���

This approach does not express the point of denotational semantics� which is that eval

should map expressions to denotations
 Thus� it is better to write

eval � Exp �� Den

compute � Den �� Val

Den � Env �� Val

where compute is used to execute programs
 Furthermore� denotational semantics is com	
positional� which means that the denotations of expressions are functions of the denotations
of their subexpressions
 We can represent these functions directly as

�

�var � Name �� Den

�lam � Name � Den �� Den

�app � Den � Den �� Den

���

These operations form an abstract data type �ADT� of denotations �GTWW���
 We trivially
de�ne eval as

�eval �var v�� � ��var v�

�eval �lam v body�� � ��lam v �eval b��

�eval �app f a�� � ��app �eval f� �eval a��

���

A sample program execution now reads

�compute

�eval �app �lam 	x �add �var 	x� �var 	x���

�num
����

� ��

However� we could just as well write

�compute

��app ��lam 	x ��add ��var 	x� ��var 	x���

��num
���

� ��

and eliminate eval and its associated syntax constructors
 In this way� we evaluate programs
using the syntax of the language in which the ADT of denotations is embedded

So� what we mean by �an interpreter� is an implementation of an ADT of denotations
for a language
 Along with the implementations of ADT operators� it is easy to generate an
eval function� an ADT of expressions� and a user interface� but there is no a priori need
 In
algebraic terms� initiality of syntax yields a unique homomorphism to semantics �GTWW���

In the rest of the paper� we usually refer to the ADT of denotations as an ADT of
computations
 This change is �roughly� in accord with the existing literature on monads

��� An example

We construct an interpreter for a language with environments� call	by	value procedures�
stores� continuations� nondeterminism� and errors
 Figure � shows the complete language
speci�cation� the type of computations� and two example expressions
 Types written by
hand are in in�x form as usual� but machine	generated types are in pre�x� using let for
abbreviation
 For example�

�let A� �� a sto� ��� A� A���

means A � Sto �� A � Sto

To build an interpreter� we de�ne an ADT of computations using make�computations

This procedure accepts a list of semantic modules� implemented as strati�ed monad trans	
formers
 It composes them and applies the result to the identity strati�ed monad
 The
operators of the resulting strati�ed monad form the desired ADT
 Make�computations is
de�ned as

�

�define �make�computations � transformers�

��apply compose transformers� �make�identity�sm���

Next� we load several �les of language constructs
 These extract operators from the
computations ADT and use them to de�ne the language ADT
 Constructs may be de�ned
over any strati�ed monad that includes the appropriate semantic modules
 For example�
the �amb construct requires the nondeterminism module
 In general� the same construct
de�nition yields di�erent semantics when applied to di�erent strati�ed monads

Finally� we illustrate the behavior of the interpreter by evaluating several expressions

Names of language constructs begin with percent signs to avoid con�ict with Scheme

A typical construct is �let� whose de�nition �from cbv�environments� is shown in Fig	
ure �
 We can only interpret �let over a strati�ed monad that de�nes the levels top� envs�
and env�values
 All strati�ed monads have levels top and bottom� which refer respec	
tively to computations and values
 Furthermore� all monads built using the environments
transformer have envs and env�results� which are related by

envs � Env �� env�results

In words� �let reduces c� to the env�value v� using bindV� reduces c� to the envs e�

using bindE� and then returns� using unitE� the envs that accepts an environment E and
applies e� to E extended with v�

Although Scheme procedures are usually opaque� MIT Scheme allows us to reify them as
abstract syntax
 To see the results that the toolkit produces� we apply a program simpli�er
that performs inlining and � and � reduction
 The result of simplifying �let in the context
of the speci�ed ADT of computations� shown in Figure �� is exactly what we would have
written by hand
 The whole point of the toolkit is that the source de�nition of �let did not
mention stores or continuations� yet they were introduced properly and automatically

��� Amb and call�cc

In this section� we use the toolkit to explore interactions between non	determinism and
continuations
 We use three di�erent computation types but leave the de�nitions of all
language constructs unchanged
 For reference� Figure � gives the source de�nition of �amb

For each semantics� we show the modules forming the type of computations� the type itself�
the simpli�ed version of �amb� and the evaluation of an example program

In the �rst semantics �Figure ��� the subexpressions of �amb are run with list as a
continuation
 The results are appended and returned
 In the example� the list continuation
is replaced by a continuation that adds one� hence the result ��
 This semantics actually
results from using Scheme�s call�cc with the amb derived from Filinski�s monadic re�ection
operators �Fil�� over the list monad
 Monadic re�ection is not limited to this semantics� to
obtain others� we can re�ect over the monad

TA � �A �� List A� �� List A

and de�ne our own call�cc

In the second semantics �Figure ��� we replace continuations with continuations�

These modules di�er only in their treatment of operators on continuation answers
 The
continuations transformer passes down an identity continuation� applies the operator to
the results� and then applies k �in the appropriate way�
 Continuations� passes k down

�

 ADT of computations

�define computations

�make�computations

environments stores continuations nondeterminism errors��

�set�computations� computations�

 ADT of language constructs

�load �error�exceptions� �numbers� �booleans� �numeric�predicates� �amb�

�cbv�static� �cbv�environments� �stores� �while� �cbv�callcc��

 ADT implementation type

�get�type 	bottom 	top�

� ��� env

��� sto

�let A� �� a sto�

�let A� �� �list A�� errors�

��� ��� A� A�� A������

 Sample expressions

�compute

��call ��lambda 	x ��� ��var 	x� ��var 	x���

��amb ��num �� ��num �����

� �� �� would be �� � � �� in call�by�name

�compute

��begin

��store 	n ��amb ��num �� ��num
���

��store 	r ��num ���

��call�cc

��lambda 	exit

��while ��true�

��begin

��if ��zero� ��fetch 	n��

��call ��var 	exit� ��fetch 	r��

��skip��

��store 	r ��� ��fetch 	r� ��fetch 	n���

��store 	n ��� ��fetch 	n� ��num ����������

� ��� ����

Figure �� Example speci�cation and expressions

�

�define �let

�let ��unitE �get�unit 	envs 	top��

�bindE �get�bind 	envs 	top��

�bindV �get�bind 	env�values 	top���

�lambda �name c� c��

�bindV c�

�lambda �v��

�bindE c�

�lambda �e��

�unitE

�lambda �env�

�e� �env�extend env name v������������

Figure �� �let source de�nition

�lambda �name c� c��

�lambda �env�

�lambda �sto�

�lambda �k�

���c� env� sto�

�lambda �a� val � sto

���c� �env�extend env name �left a��� �right a�� k�������

Figure �� Result of simplifying �let

�define �amb

�let ��unit �get�unit 	lists 	top��

�bind �get�bind 	lists 	top���

�lambda �x y�

�bind x

�lambda �lx�

�bind y

�lambda �ly�

�unit �append lx ly���������

Figure �� �amb source de�nition

�

 ADT of computations

�define computations

�make�computations environments continuations nondeterminism��

 ADT implementation type

��� env �let A� �list val� ��� ��� val A�� A����

 Simplified �amb

�lambda �x y�

�lambda �env�

�lambda �k�

�reduce append ��

�map k �append ��x env� list� ��y env� list�������

 Example

�compute

��� ��num ��

��call�cc

��lambda 	k

��� ��num ���

��amb ��num �� ��call ��var 	k� ��num ���������

� ���
��

Figure �� �amb version �

directly and applies the operator to the results
 The evaluation of the example in this
semantics is clear

In the third semantics �Figure ��� we compose the continuations and nondeterminism

modules in the opposite order
 Here� continuations accept lists of values� rather than just
values
 �amb takes two lists� appends them� and continues with the result
 In the example�
invoking the captured continuation aborts this process and returns � directly
 Hence� the
expression has only one value in contrast to the other two semantics
 Of the semantics
presented here� this is the only one that Steele�s system can generate �Ste��
 Incidentally�
replacing continuations with continuations� leaves �amb unchanged

� Methods

This section explains how the toolkit works
 We consider monads� transformation versus
composition� strati�ed monads� and the de�nition of language constructs over strati�ed
monads

�

 ADT of computations

�define computations

�make�computations environments continuations� nondeterminism��

 ADT implementation type

��� env �let A� �list val� ��� ��� val A�� A����

 Simplified �amb

�lambda �x y�

�lambda �env�

�lambda �k�

�append ��x env� k� ��y env� k�����

 Example

�compute

��� ��num ��

��call�cc

��lambda 	k

��� ��num ���

��amb ��num �� ��call ��var 	k� ��num ���������

� ���
�

Figure �� �amb version �

�

 ADT of computations

�define computations

�make�computations environments nondeterminism continuations��

 ADT implementation type

��� env �let A� �list val� ��� ��� A� A�� A����

 Simplified �amb

�lambda �x y�

�lambda �env�

�lambda �k�

��x env�

�lambda �a�

��y env�

�lambda �a��

�k �append a a����������

 Example

�compute

��� ��num ��

��call�cc

��lambda 	k

��� ��num ���

��amb ��num �� ��call ��var 	k� ��num ���������

� �
�

Figure �� �amb version �

��� Monads

We brie�y review monads� for a longer introduction� see �Wad��
 For our purposes� a monad
is type constructor T along with operators

unit � A �� TA

bind � TA � �A �� TB� �� TB

compute � TA � �A �� Rep� �� Rep

where Rep is a �xed type of observable representations
 The notation TA means the type
constructor T applied to the type A
 In general� juxtaposition denotes application �rather
than composition� and associates to the left
 Hence FTA� which appears in the next section�
is equivalent to the Scheme expression 		F T
 A

The intuition behind the use of monads in semantics� due to Moggi �Mog�b�� is that TA
is the type of computations over the values A
 Unit lifts values to computations� bind lifts
functions on values to functions on computations� and compute lifts representors of values to
representors of computations
 Monads capture a wide variety of �notions of computation�
�Mog�b�

We can lift operators on values to operators on computations using unit and bind� and
we can de�ne new operators on computations directly
 For example� Figure � de�nes the
environment monad� lifts the operator �v �add values� to �c �add computations�� and de�nes
a new variable reference operator

Monads are usually required to satisfy several identities� especially

�bind �unit a� f� � �f a�

which means that bind lifts functions through unit
 Our constructions usually satisfy these
identities� but we do not require them� since our purpose is to build interpreters� not to
reason about them
 We leave for future work the investigation of principles for reasoning
about modularly constructed languages

��� Monad transformers

Although type constructors compose� monads do not �at least not without help � see
�JD���
 To see why �informally�� we compose the type constructors of two di�erent en	
vironment monads
 Figure shows the unique monad that this composition can support�
but its bind operator cannot be formed by composition from the two environment mon	
ads
 In fact� Jones and Duponcheel �JD�� prove rigorously that monads cannot in general
compose

However� monads do transform
 Figure �� shows the environment monad transformer�
which takes a monad T into a monad FT
 Applying two �di�erent� environment monad
transformers to the identity monad indeed yields the double environment monad
 Other
monad transformers are listed in Table �
 Notice that composition of transformers is not
commutative
 The use of monad transformers in semantics originates with Moggi �Mog�a�
Mog�a�

��� Strati�ed monads

Suppose we build a monad of computations using several monad transformers
 The monad
allows access to the top and bottom levels �computations and values� but not to levels

��

 Environment monad� TA � Env �� A

�define �unit v�

�lambda �env� v��

�define �bind c f�

�lambda �env� ��f �c env�� env���

�define �compute c f�

�f �c empty�env���

 Lift �v to �c

�define ��c x y�

�bind x �lambda �vx�

�bind y �lambda �vy�

�unit ��v vx vy�������

 Variable reference operator

�define ��var name�

�lambda �env� �env�lookup env name���

Figure �� Environment monad and example operators

 TA � EnvX �� EnvY �� A

�define �unit v�

�lambda �envX� �lambda �envY� v���

�define �bind c f�

�lambda �envX� �lambda �envY� ���f ��c envX� envY�� envX� envY����

�define �compute c f�

�f ��c empty�envX� empty�envY���

Figure � Double environment monad

��

 FTA � Env �� TA

�define �environment�monad�transformer T�

�let ��unitT �monad�unit T��

�bindT �monad�bind T��

�computeT �monad�compute T���

�define �unit v�

�lambda �env� �unitT v���

�define �bind c f�

�lambda �env� �bindT �c env� �lambda �a� ��f a� env�����

�define �compute c f�

�computeT �c empty�env� f��

�make�monad unit bind compute���

Figure ��� Environment monad transformer

Transformer Action on types

State FTA � Sto �� T�A�Sto�

Output FTA � T�A�Monoid�

Exceptions FTA � T�A � X�

Resumptions FTA � fix�X� T�A � X��

Environments FTA � Env �� TA

Continuations FTA � �A �� TA� �� TA

Nondeterminism FTA � T�List A�

Table �� Monad transformers

��

between
 Without access to intermediate levels� we cannot de�ne many language constructs

A possible solution� due to Moggi �Mog�a�� is to interleave the de�nition of operators with
the application of transformers
 We arrange for transformers to transform operators as
well as monads �Esp��
 However� it is still di�cult �or impossible� to de�ne constructs
that interact with multiple levels
 For example� if we de�ne �call�cc in the continuations
module� it is di�cult for it to interact with the environments module �to prepare arguments
to procedures�

A better solution is to construct multiple monads� where each provides access to a di�er	
ent level
 In fact� we require a monad relating each pair of levels
 Using these� it is possible
to de�ne language constructs that involve several levels� simply by using the appropriate
operators
 Also� we can de�ne language constructs after building the monads
 Thus� we
separate language speci�cations into a computations ADT �the monad operators� and a
language ADT �the language constructs�

We now present a more formal de�nition of strati�ed monads� starting from several
subparts
 A level is a pair of a type constructor and a set of names for the level
 As with
monads� the type constructor builds a type of computations at that level from a type of
values
 The top half of Table � shows the levels for the language of Figure �

Names are identi�ers that allow language constructs to refer to levels
 Essentially� they
are the wiring that connects the language ADT to the computations ADT
 Levels may
have multiple names because conceptually distinct levels may coincide
 For instance� level
� of Table � is known to store constructs as stores and to environment constructs as
env�results
 Of course� distinct levels must have distinct names

Contrary to appearance� levels are not ordered and are referenced only by their names

Also� although it seems that a strati�ed monad can have only a single level of environments
�or stores� etcetera�� we can easily remove this restriction by parametrizing both semantic
modules and language constructs by the names used to connect them

A monad T relates levels X below and Y above if YA � T	XA

 Then

unit � XA �� YA

bind � YA � �XA �� YB� �� YB

rewrites to

unit � A	 �� TA	

bind � TA	 � �A	 �� TB	� �� TB	

for A � XA and B � XB
 This formulation shows that T legitimately relates computations
at levels X and Y over di�erent base types A and B

A situated monad is a triple of a monad and two levels related by the monad
 A strati�ed

monad is a set of situated monads and two distinguished levels with the names bottom and
top �among other names� possibly�
 The operators get�unit and get�bind take two names
and extract the respective operator from the monad relating the levels having those names

Table � shows the structure of the strati�ed monad de�ned in Figure �
 Notice that not all
pairs of levels have monads de�ned for them

��� Strati�ed monad transformers

Strati�ed monad transformers are similar to the ordinary monad transformers
 Their actions
are unrestricted� except that they must return a strati�ed monad
 Table � shows how the

��

Level Names Constructor T�val� �

� env�values� store�values� bottom val

� store�pairs� cont�values �� val sto�

� lists �list �� val sto��

� cont�answers� errors �� �list �� val sto�� errors�

 store�results� conts

�let A� �� val sto�

�let A� �� �list A�� errors�

��� ��� A� A�� A����

� env�results� stores

��� sto

�let A� �� val sto�

�let A� �� �list A�� errors�

��� ��� A� A�� A�����

� envs� top

��� env

��� sto

�let A� �� val sto�

�let A� �� �list A�� errors�

��� ��� A� A�� A������

Bot Top Monad TA �

� � a

� � a

� � a

� � �list a�

� � a

� � �� a errors�

� � �� �list a� errors�

 a

�
 ��� cont a�

�
 ��� cont �� a errors��

�
 ��� cont �� �list a� errors��

� � a

 � ��� sto a�

� � ��� sto ��� cont a��

� � ��� sto ��� cont �� a errors���

� � ��� sto ��� cont �� �list a� errors���

� � ��� sto ��� cont �� �list �� a sto�� errors���

� � a

� � ��� env a�

 � ��� env ��� sto a��

� � ��� env ��� sto ��� cont a���

� � ��� env ��� sto ��� cont �� a errors����

� � ��� env ��� sto ��� cont �� �list a� errors����

� � ��� env ��� sto ��� cont �� �list �� a sto�� errors����

Table �� Strati�ed monad for the language of Figure �

��

Before After

Level Names Level Names

A bottom� � � � A bottom� env�values� � � �

TA top� � � � TA env�results� � � �

� � � Env �� TA top� envs

� � � � � �

Table �� Environment transformer action on levels

Type Examples Form

Bottom exceptions FT � T � U

nondeterminism

Top environments FT � S � T

Around stores FT � S � T � U

Continuation continuations FT � �A �� TA� �� TA

continuations�

Table �� Strati�ed monad transformer types

environment transformer acts on the levels of a strati�ed monad
 It adds a single new level
Env �� TA� adds the name env�results to TA� and adds the name env�values to A
 It calls
the new level envs and shifts the name top from TA to Env �� TA
 It makes no changes to
other levels

Strati�ed monad transformers typically act by adding monads� not by removing them

For example� the environment transformer transforms all monads relating to top� specifying
that they now relate the same level to the new top
 The transformer also adds an identity
monad on the new top

The environment transformer adds only relating monads� since if T relates a level l to
top� then FT relates l to the new top
 If Top is the type construction for top and L is the
constructor for l� then we are saying that if Top � TL� then F	Top
 � F	TL

 Furthermore�
it is clear� though more di�cult to establish� that all relating monads are added

The current toolkit includes four classes of strati�ed monad transformers� top� bottom�
around� and continuation
 Table � shows the form of each of these� and they are described
fully in appendix A
 Table � lists the levels and names de�ned by each transformer

��� De�ning language constructs

In general� operators that act primarily at a single level� such as �amb �Figure �� and
�let �Figure ��� are easy to write using standard idioms
 More complex operators� such
as �call�cc� are best written by abstracting from their de�nitions in an example semantics

Using a su�ciently complex semantics ensures that conceptually distinct levels are not con	
fused
 Table � lists the available modules and the value types and language constructs they
de�ne
 Leading percent signs are omitted from the names

The toolkit includes four types of procedures
 Table � shows the levels of their domains
and codomains
 We de�ne all four types of procedures over the same environmentsmonad

��

Transformer Level Name

nondeterminism List A lists

exceptions A � X errors

environments Env �� TA envs

TA env�results

A env�values

stores Sto �� T�A�Sto� stores

T�A�Sto� store�results

A�Sto store�pairs

A store�values

continuations �A �� TA� �� TA conts

TA cont�results

A cont�values

Table �� Transformer levels and names

Procedure type Domain Codomain

cbv�static env�values env�results

cbn�static env�results env�results

cbv�dynamic env�values envs

cbn�dynamic env�results envs

Table �� Procedure types

transformer by writing di�erent versions of �lambda and �call
 Since names in call	by	value
and call	by	name environments denote di�erent types of values� the environment transformer
is actually polymorphic
 Unfortunately� this polymorphism is not explicitly represented in
Scheme

� Discussion

This section discusses typed versus untyped value domains� the use of Scheme� previous
work� and future work

��� Typed versus untyped values

In the monadic framework� computations are polymorphic over values
 For example� we can
type the language construct �zero� as

�zero� � C number �� C boolean

where C is the type of computations
 Using an ADT instead of an eval function �see section
�
��� it is easy to reuse the types and values of the language in which the interpreter is
written
 Thus we can write �zero� as above without having to write

��

Module Values Constructs

amb amb

booleans booleans true� false� not� if� boolean�

numbers numbers num� �� �� �� �

numeric�predicates ��� zero�� number�

error�values errors error

error�exceptions error

cbv�environments let� letrec� var

cbn�environments let� letrec� var

cbv�static procedures lambda� call

cbn�static procedures lambda� call

cbv�dynamic procedures lambda� call

cbn�dynamic procedures lambda� call

cbv�callcc call�cc

cbn�callcc call�cc

stores fetch� store� begin� skip

while while

Table �� Modules and language constructs

eval�boolean � boolean�exp �� C boolean

eval�number � number�exp �� C number

� � �

Similarly� we could de�ne �call as

�call � C P�a�b� � C a �� C b

where P	a�b
 is the type of procedures from a to b
 Using this technique� Wadler could
have implemented the simply	typed lambda calculus in �Wad��� rather than the untyped�
by reusing Haskell�s type system
 Such a treatment would adhere more closely to Moggi�s
original �Mog�b�

In the toolkit� we compute over a single untyped value domain� represented as an exten	
sible disjoint union
 This choice exposes the treatment of types in the semantic equations
and abstracts from the existing Scheme types� however� it would be interesting to try various
typed approaches

Steele �Ste�� tries to extend the domain of values using monads� and I follow him in
�Esp��
 However� as he points out� using the exceptions monad to build sums yields behavior
such as

�compute ��� ��num �� ��true���

� true

which is not at all what we want
 Rather than add a complex error system to the monad
operators� it is easier and more natural to build a separate value domain that language
construct modules can extend �see Figure ��

��

��� Why Scheme�

Why choose an untyped language when types are at the core of these ideas� Indeed� it would
be preferable to express explicitlymore of the toolkit�s structure� particularly when Scheme�s
implicit polymorphism hides non	trivial constructions
 The toolkit represents types as values
but does not take this approach far enough

Because we need to treat monads and monad transformers as values� ML and Haskell�s
type systems are not su�cient
 We require higher	order types as values� and languages with
these features �Car�� are not in common use
 The usual reason for restrictive type systems
is the intractability of inference in complex systems� but surely there is a way to make a
well	de�ned class of simple inferences within a complex type system

��� Previous work

Through his work on the partial lambda calculus �Mog���� Eugenio Moggi realized that
the categorical concept of monads was applicable to the problem of modular semantics

In �Mog�b� Mog�b�� he shows how to divide an �applied� lambda calculus into a core
�variables and environments� and an extension �other features�� expressed as a monad� and
presents many such extensions

In the second half of �Mog�a�� Moggi explains how to use monad transformers to form
complexmonads from parts
 This crucial ability was missing from his earlier papers� however�
it is di�cult to understand Moggi�s presentation� and few researchers realized that he had
made signi�cant progress toward modularizing denotational semantics

After reexplaining and implementing Moggi�s methods in �Esp��� I saw that they do not
provide su�cient modularity to handle constructs involving multiple semantic levels� such as
�call�cc or even �� �because it raises errors�
 Strati�ed monads solve this problem� and� by
separating semantic extensions from the language constructs they enable� increase language
design �exibility

Philip Wadler �Wad�� popularized Moggi�s ideas by presenting monadic interpreters
written in Haskell
 Their restriction to extension by a single monad was the primary mo	
tivation for the present work
 Also� Wadler and David King �KW�� show how to combine
continuations and lists with other monads
 Despite Moggi�s earlier formulation of monad
transformers� they discuss �combining M and L� rather than �constructing ML from M�
 Our
toolkit treats monad constructors in full generality and exhibits a complete system for build	
ing interpreters from multiple modules� not just two

Guy Steele �Ste�� shows how to compose pseudomonads� a new construction
 Although
they compose� pseudomonads are both more complex and less general than monad transform	
ers
 In fact� pseudomonads are essentially monad transformers limited to right composition

That is� they can realize

FTA � T�List A�

FTA � T�A � X�

FTA � T�A � M�

but not

FTA � Env �� TA

FTA � Sto �� T�A�Sto�

��

Steele�s claim that pseudomonads improve on monad transformers by providing a �xed com	
position operator would be true if they were equally powerful
 Steele�s main contribution is
a complete implementation of a modular semantics� which was really inspiring

Mark Jones and Luc Duponcheel �JD�� address the problem of composing monads
 They
�nd that if one of several auxiliary maps is de�ned relating the structures of two monads�
they can be composed� in an order depending which map is used
 They do not attempt to
build interpreters� and we note that monad composition is strictly less powerful than monad
transformation

Peter Mosses �Mos�� describes action semantics� a reformulation of his theory of ab�
stract semantic algebras
 Mosses attempts to achieve modularity in semantics by de�ning an
intermediate level� called actions� into which one can translate language constructs
 Actions
are low	level enough to be �exible� but high	level enough to hide the details of interactions
between facets of a language

Since Mosses has not yet been able to combine facets� he gives a single algebra of actions�
with environments� stores� etcetera
 This algebra corresponds to a single strati�ed monad
generated by the toolkit
 Mosses�s theory is more modular than pure denotational semantics
because constructs are isolated from each other� but� from our point of view� it is not modular
at all
 One can only de�ne modularly the constructs that the algebra was designed to de�ne

That is� one can de�ne stores modularly because the �xed algebra of actions includes modular
stores

Recalling that Moggi cites Mosses�s comments on the non	modularity of denotational
semantics� we can more gently view the toolkit as a �nal step in Mosses�s program
 Strati�ed
monads could be the modular facets Mosses was looking for

��� Future work

Using the toolkit� it should be possible to build abstract interpretations� translations �such
as CPS�� and simple compilers from reusable parts
 The methods used to build interpreters
could also be adapted to build other semantically complex systems� such as communication
protocol handlers

Although the toolkit evolved through the correction of �aws in its design� one remains
 In
de�ning �call�cc� it is necessary to lift a map from store�values �� stores to store�pairs

�� store�results
 This complex	sounding lifting is accomplished by the trivial procedure

�lambda �f�

�lambda �a�s�

��f �left a�s�� �right a�s����

This procedure cannot be written using unit and bind� and it was necessary to introduce
iunit� an inverse to unit
 Since unit is usually injective� an inverse is not a problem� but
a reformulation of monads around the idea of liftings could provide a framework in which to
de�ne functions such as the above

As strati�ed monads are a model	theoretic construction� the biggest challenge posed by
this work is to �nd their proof	theoretic counterpart
 That is� we would like to develop
modular calculi for reasoning about the languages that the toolkit can build
 Moggi�s com	
putational lambda calculus �Mog�b� Mog�b� captures precisely the inferences valid for
lambda calculus over an arbitrary monad
 Can we go further� Moggi�s syntactic approach
�MC�� is certainly relevant but does not seem to address the problem directly

�

� Conclusion

We have built a language designer�s workbench� a collection of mix	and	match modules
that assemble to form programming language interpreters
 These interpreters run example
programs and can be simpli�ed to yield semantic equations
 The toolkit de�nes a language
from a sequence of semantic modules and a set of language constructs
 The semantic modules
combine to form an abstract data type of computations which constructs augment with
particular linguistic features
 These contributions yield increased �exibility and modularity
over previous systems based on monads

� Acknowledgements

I am grateful to Mary Ng� Bill Rozas� and Gerry Sussman for encouragement and inspiration�
to Jonathan Rees for getting me into monads and category theory� to Eugenio Moggi for his
work� to AT�T for �nancial support� and above all to Franklyn Turbak for friendship and
assistance beyond the call of duty

A Transformer actions

This appendix describes the action of bottom� top� around� and continuation transformers
on strati�ed monads using a simple pattern language in which

� Rules send sets to sets

� The �rst matching case is used

� Ellipses indicate repetition

In patterns� we write levels as �fname� � � � g� type�constructor� and situated monads as
�bottom�level� top�level� monad�
 We write new�bot and old�top �etcetera� for the
levels named bottom and top
 After each rule� we describe its action in words

A�� Bottom transformers

A bottom transformer is speci�ed by three names and a monad transformer
 The names are
labelled b� m� and t for bottom� middle� and top
 The monad transformer F is of the form
FTA � T	UA
 for some type constructor U �which can be given monad structure by applying
F to the identity monad�
 In the resulting strati�ed monad� b refers to the level A� m refers
to UA� and t refers to T	UA

 The action on levels is�

f�fbottom� n�� � � �g� Bot��

�ftop� n�� � � �g� Top��

�fn�� � � �g� T�� � � �g
�
f�fb� bottomg� Id��

�fm� n�� � � �g� F�Bot���

�ft� top� n�� � � �g� F�Top���

�fn�� � � �g� FT�� � � �g

��

� F is applied to all type constructors

� A new bottom level is added with identity type constructor

� The name bottom is removed from the old bottom level

� The names b� m� t are added to the new bottom� old bottom� and top levels� respectively

The action on situated monads is�

f�old�bot� l� T�� � � ��

�a� b� M�� � � �g
�

f�new�bot� new�bot� Id��

�old�bot� l� T�� � � ��

�new�bot� l� FT�� � � ��

�a� b� M�� � � �g

� Monads relating to bottom are transformed

� An identity monad is added at the new bottom

A�� Top transformers

Top transformers are speci�ed by three names b� m� t and a monad transformer F� which is
of the form FTA � S	TA

 The name b refers to A� m refers to TA� and t refers to S	TA

 The
action on levels is�

f�fbottom� n�� � � �g� Bot��

�ftop� n�� � � �g� Top��

�fn�� � � �g� T�� � � �g

�
f�fb� bottom� n�� � � �g� Bot��

�fm� n�� � � �g� Top��

�ft� topg� F�Top���

�fn�� � � �g� T�� � � �g

� Only the top type constructor is transformed

� top is removed from the old top level

� t� m� b are added to the new top� old top� and bottom

The action on situated monads is�

f�l� old�top� T�� � � ��

�a� b� M�� � � �g
�
f�new�top� new�top� Id��

�l� old�top� T�� � � ��

�l� new�top� FT�� � � ��

�a� b� M�� � � �g

� Monads relating to top are transformed

� An identity monad is added at the new top

��

A�� Around transformers

Around transformers are speci�ed by four names b� m�� m�� t and three monad transformers
F� G� H
 Essentially� F is the around transformer� while G and H are the bottom and top
transformers from which it is composed

We require that FTA � S	T	UA

� GTA � T	UA
� and HTA � S	TA
 for some S and T

Hence F � G � H � H � G
 The name b refers to A� m� refers to UA� m� refers to T	UA
� and
t refers to S	T	UA

 The action on levels is�

f�fbottom� n�� � � �g� Bot��

�ftop� n�� � � �g� Top��

�fn�� � � �g� T�� � � �g
�

f�fbottom� bg� Id��

�fm�� n�� � � �g� G�Bot���

�fm�� n�� � � �g� G�Top���

�ftop� tg� F�Top���

�fn�� � � �g� GT�� � � �g

� All levels are transformed by G

� The top level is also transformed by F

� top and bottom are moved to the new top and bottom

� b� m�� m�� t are added to the new bottom� old bottom� old top� and new top

The action on situated monads is�

f�old�bot� old�top� T���

�old�bot� l�� T��� � � ��

�l�� old�top� T��� � � ��

�a� b� M�� � � ��g

�
f�new�bot� new�bot� Id��

�new�top� new�top� Id��

�new�bot� new�top� F�T����

�new�bot� old�top� G�T����

�old�bot� new�top� H�T����

�new�bot� l�� T��� � � ��

�new�bot� l�� G�T���� � � ��

�l�� old�top� T��� � � ��

�l�� new�top� H�T���� � � ��

�a� b� M�� � � �g

� Monads relating to bottom� top� and both are transformed by G� H� and F

� Identity monads are added at the new bottom and new top

��

A�� Continuation transformers

Continuation transformers are speci�ed by three names b� m� t and two monad transformers
F and G
 F is always FTA � 	A �� TA
 �� TA� but G varies
 Continuation transformers shift
T into the answer type� so their action is rather unusual
 Essentially� F handles continuations
in the usual way� ignoring T since continuations are polymorphic in the type of answers�
while G controls how operators on T are lifted to operators on 	A �� TA
 �� TA
 G actually
accepts two monads� rather than one� since its action on monads M relating to top depends
on T� the monad relating bottom and top
 The action on levels is identical to that of top
transformers�

f�fbottom� n�� � � �g� Bot��

�ftop� n�� � � �g� Top��

�fn�� � � �g� T�� � � �g
�

f�fb� bottom� n�� � � �g� Bot��

�fm� n�� � � �g� Top��

�ft� topg� F�Top���

�fn�� � � �g� T�� � � �g

� Only the top type constructor is transformed

� top is removed from the old top

� t� m� b are added to the new top� old top� and bottom

The action on situated monads is�

f�old�bot� old�top� T��

�l� old�top� M�� � � ��

�a� b� M�� � � �g

�
f�new�top� new�top� Id��

�old�bot� old�top� T��

�old�bot� new�top� FT��

�old�bot� new�top� GTT��

�l� old�top� M�� � � ��

�l� new�top� GTM�� � � ��

�a� b� M�� � � �g

� An identity monad is added at the new top

� Monads relating to top are transformed by G

� The monad relating bottom and top is transformed by F

��

B Language construct de�nitions

This appendix lists some of the more interesting language construct de�nitions

��� Call�by�value call�cc

�� Proc � env�values �� env�results

�� Cont � cont�values �� cont�answers

�define �call�cc

�let ��mapC �get�map �conts �top��

�mapK �get�map �conts �env�results��

�iunitK �get�iunit �conts �env�results��

�unitE �get�unit �env�values �env�results��

�unitP �get�value�unit �procedures �env�values��

�unitR �get�unit �cont�values �env�results��

�bindS �get�value�bind �procedures �env�results���

�lambda �exp�

�mapC exp

�lambda �cont�

�lambda �k�

�cont

�lambda �cv�

��iunitK

�bindS �unitR cv�

�lambda �p�

�p �unitP

�lambda �v�

�mapK �unitE v�

�lambda �cont�

�lambda �k	� �cont k����������

k���������

��� Call�by�value static procedures

��� Proc � env�values �� env�results

�define �var

�let ��unitT �get�unit �env�values �env�results��

�unitE �get�unit �envs �top���

�lambda �name�

�unitE

�lambda �env�

�unitT �env�lookup env name�������

�define �lambda

�let ��unitE �get�unit �envs �top��

�bindE �get�bind �envs �top��

�unitP �get�value�unit

�procedures �env�results���

�lambda �var body�

�bindE body

�lambda �body�

�unitE

�lambda �env�

�unitP

�lambda �arg�

�body �env�extend

env var arg�����������

�define �call

�let ��bindP �get�value�bind �procedures �top��

�bindV �get�bind �env�values �top��

�unitR �get�unit �env�results �top���

�lambda �proc arg�

�bindP proc

�lambda �proc�

�bindV arg

�lambda �arg�

�unitR �proc arg���������

��� Call�by�name dynamic procedures

��� Proc � env�results �� envs

�define �var

�let ��unitE �get�unit �envs �top���

�lambda �name�

�unitE

�lambda �env�

�env�lookup env name������

�define �lambda

�let ��bindE �get�bind �envs �top��

�unitP �get�value�unit �procedures �top���

�lambda �var body�

�bindE body

�lambda �body�

�unitP

�lambda �arg�

�lambda �env�

�body �env�extend

env var arg����������

�define �call

�let ��bindP �get�value�bind �procedures �top��

�bindR �get�bind �env�results �top��

�unitE �get�unit �envs �top���

�lambda �proc arg�

�bindP proc

�lambda �proc�

�bindR arg

�lambda �arg�

�unitE �proc arg���������

��

C Strati�ed monad transformer de�nitions

This appendix lists the Scheme code for the strati�ed monad transformers used in the toolkit

The code for transforming inverse unit operators is omitted for clarity

��� Environments� FTA
 Env �� TA

�define environments

�make�top�transformer

�env�values �env�results �envs

�lambda �unit bind compute t�

�make�monad

�lambda �a�

�lambda �env� �unit a���

�lambda �c f�

�lambda �env�

�bind �c env�

�lambda �a�

��f a� env�����

�lambda �c f�

�compute �c empty�env� f��

�lambda �a�

���� env ��t a�������

��� Nondeterminism� FTA
 T�List A�

�define nondeterminism

�make�bottom�transformer

f �lists f

�lambda �unit bind compute t�

�define �amb x y�

�bind x

�lambda �x�

�bind y

�lambda �y�

�unit �append x y�������

�make�monad

�lambda �a�

�unit �list a���

�lambda �c f�

�bind c

�lambda �l�

�reduce amb �unit ���� �map f l�����

�lambda �c f�

�compute c �lambda �l� �map f l����

�lambda �a�

�t ��list �a�������

��� Side�effects� FTA
 Sto �� T�A�Sto�

�define side�effects

�make�around�transformer

�store�values �store�pairs

�store�results �stores

�� G �bottom�

�lambda �levels� ����

�� H �top�

�level�transformer

�lambda �unit bind compute t�

�make�monad

�lambda �a�

�lambda �sto� �unit a���

�lambda �c f�

�lambda �sto�

�bind �c sto�

�lambda �a�

��f a� sto�����

�lambda �c f�

�compute �c empty�store� f��

�letify

�lambda �a�

���� sto ��t a�������

�� F �around�

�level�transformer

�lambda �unit bind compute t�

�make�monad

�lambda �a�

�lambda �sto�

�unit �pair a sto����

�lambda �c f�

�lambda �sto�

�bind �c sto�

�lambda �as�

��f �left as�� �right as������

�lambda �c f�

�compute �c empty�store�

�compose f left���

�letify

�lambda �a�

���� sto ��t ��� �a sto����������

��

��� Errors� FTA
 T�A � X�

�define errors

�make�bottom�transformer

f �errors f

�lambda �unit bind compute t�

�make�monad

�lambda �a� �unit �in�left a���

�lambda �c f�

�bind c

�sum�function

f �lambda �x� �unit �in�right x������

�lambda �c f�

�compute c �sum�function

f identity�procedure���

�lambda �a�

�t ��� �a �name�������

��� Continuations� FTA
 �A �� TA� �� TA

�define continuation�monad�transformer

�lambda �unit bind compute t�

�make�monad

�lambda �a�

�lambda �k� �k a���

�lambda �c f�

�lambda �k�

�c �lambda �a� ��f a� k�����

�lambda �c f�

�compute �c unit� f��

�letify

�lambda �a�

��letify

�lambda �ta�

���� ��� �a �ta� �ta���

�t a�������

�define continuations

�make�cont�transformer

�cont�values �cont�answers �conts

continuation�monad�transformer

�lambda �unitT bindT computeT T�

�lambda �unitM bindM computeM M�

�make�monad

�lambda �a�

�lambda �k�

�bindT �unitM a� k���

�lambda �c f�

�lambda �k�

�bindM �c unitT�

�lambda �a�

��f a� k�����

�lambda �c f�

�computeM �c unitT� f��

�lambda �a�

���� cont ��m a��������

�define continuations�

�make�cont�transformer

�cont�values �cont�answers �conts

continuation�monad�transformer

�lambda �unitT bindT computeT T�

�lambda �unitM bindM computeM M�

�make�monad

�lambda �a�

�lambda �k�

�unitM a���

�lambda �c f�

�lambda �k�

�bindM �c k�

�lambda �a�

��f a� k�����

�lambda �c f�

�computeM �c unitT� f��

�lambda �a�

���� cont ��m a��������

References

�AKHS��� Hal Abelson� Jacob Katzenelson� Matthew Halfant� and Gerald Jay Sussman

The Lisp Experience
 Annual Review of Computer Science� ��������� ���

�Car�� Luca Cardelli
 Typeful programming
 Technical Report ��� DEC Systems
Research Center� Palo Alto� CA� May ��

�CR�� Will Clinger and Jonathan Rees
 Revised� Report on Scheme
 Lisp Pointers�
����� ��

�DJL��� Pierre Deransart� Martin Jourdan� and Bernard Lorho
 Attribute Grammars�
volume ��� of Lecture Notes in Computer Science
 Springer Verlag� ���

�Esp�� David Espinosa
 Semantic Lego
 FTP from martigny
ai
mit
edu � pub�dae�
January ��

��

�Fil�� Andrzej Filinski
 Representing monads
 In Proceedings of the ��st Annual ACM
Symposium on Principles of Programming Languages� Portland� OR� January
��

�GTWW��� J
 A
 Goguen� J
 W
 Thatcher� E
 G
 Wagner� and J
 B
 Wright
 Initial algebra
semantics and continuous algebras
 Journal of the ACM� �������� ���

�JD�� Mark P
 Jones and Luc Duponcheel
 Composing monads
 Technical Report
YALEU � DCS � RR	����� Yale University� December ��

�KW�� David King and Philip Wadler
 Combining monads
 In Proceedings of the Fifth

Annual Glasgow Workshop on Functional Programming� Ayr� Scotland� ��

Springer Workshops in Computer Science

�MC�� Eugenio Moggi and Pietro Cenciarelli
 A syntactic approach to modularity in
denotational semantics
 In Category Theory and Computer Science� Lecture
Notes in Computer Science
 Springer Verlag� ��

�Mog��� Eugenio Moggi
 Categories of partial morphisms and the partial lambda cal	
culus
 In Category Theory and Computer Programing� volume ��� of Lecture
Notes in Computer Science� Guildford� England� ���
 Springer Verlag

�Mog�a� Eugenio Moggi
 An abstract view of programming languages
 Technical
Report ECS	LFCS	�	���� Laboratory for Foundations of Computer Science�
University of Edinburgh� Edinburgh� Scotland� June ��
 FTP from the	
ory
doc
ic
ac
uk

�Mog�b� Eugenio Moggi
 Computational lambda calculus and monads
 In IEEE Sym�

posium on Logic in Computer Science� pages ������ Asilomar� CA� June ��

�Mog�a� Eugenio Moggi
 A modular approach to denotational semantics
 In Category

Theory and Computer Science� volume ��� of Lecture Notes in Computer Sci�

ence� pages ������
 Springer Verlag� September ��

�Mog�b� Eugenio Moggi
 Notions of computation and monads
 Information and Com�

putation� ������� ��

�Mos�� Peter D
 Mosses
 Action Semantics� volume �� of Tracts in Theoretical Com�

puter Science
 Cambridge University Press� ��

�Ste�� Guy L
 Steele Jr
 Building interpreters by composing monads
 In Proceedings

of the ��st Annual ACM Symposium on Principles of Programming Languages�
Portland� OR� January ��

�Wad�� Philip Wadler
 The essence of functional programming
 In Proceedings of the

��th Annual ACM Symposium on Principles of Programming Languages� pages
����� Albuquerque� NM� January ��

��

