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CONFIGURATION SPACES

EDWARD FADELL! and LEE NEUWIRTH

I. Introduction.

A knowledge of the space of configurations of » points in & manifold
leads to information about the topological and non-homotopy properties
of the manifold, as well as the identity components of the spaces of
autohomeomorphisms and diffeomorphisms of the manifold,

In the first part of this paper we give the fundamental sequence of
fibrations for the study of configuration spaces, and localize the problem
of computing the homotopy groups of these spaces to finding a cross
section of a particular fibration.

In the second section a theorem is proved which tells of the existence
or non-existence of cross sections in many situations.

The last section is devoted to some diverse applications of this inves-
tigation.

II. The Fundamental sequence of fibrations.

Let M denote an arbitrary manifold (locally Euclidean connected
Hausdorff space) and @,,={g;,...,¢,.} & fixed set of m distinet points
of M. We will assume throughout that dim M 2 2; the ease dimM =1
is of little interest. Define F,, (M)< M x ... x M as follows:

—
n

Fro M) = {{p1, .. .20) | P M ~Qy, petp; foritj}.

When the manifold M is fixed we will designate F,, ,(#) simply by
F, n Give F,, . the topology induced by M and note that ¥, , is a
nk dimensional manifold if ¥ =dim M. Note that 7, , is essentially in-
dependent of the set @}, chosen since any manifold is m-homogeneous,

TaeorEM 1. m:F, , - M —Q,, where z(py, .. .,p,)=p,and n>1,4is a
locally trivial fiber space with fiber F 4 g0 If m21, 7 admils a cross
section.
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Proor. a) We first show that = is locally trivial. Add another point
Gy Y0 the set @, to form Q, ., and fix x,e M—-Q,,. Tot & M - M
denote a homeomorphism fixed on @, such that «(q,,.,)==x, Let U
denote a Euclidean neighborhood of x, which aveids @,,. Furthermore,

let 0 UxU - T

denote a map with the following properties. Setting 0.(y)=0(z,y) we
require

1. 6,:U - U is » homeomorphism having 8T fixed.

2. O (x)=m,
# has the obvious extension

: UxM—>M
by setting 8(x,y)=y for y ¢ U. The required local product representation

a~ YU} = s Ux Fm+1,n—1

U«

is obtained by setting
P&, Py, -+, Pa) = (2,0, Upy), . -, 0,7 (D))
P Do+« s D) = (£,6720,(py), - - a2 0,(D,)) -

b) Now we show that n admits a cross section if m= 1. Let ¥V denote
a Euclidean neighborhood of ¢, whose closure avoids g,,t2 2. We may
assume without loss that ¥ is a spherical neighborhood of 0 in Euclidean
space with unit radius. Let W denote the spherical neighborhood of O
of radius } and y,,...,y, mutoally distinet points on 2W. On ¥ —gq,
define

fi@) = lely,  25isn, zeV-gq,
and extend to M — @, by setting
filz) =y, x¢V.
Now, set f, =identity and observe that for x e M@,
(@) fol@), - -, ful@) € Fr -
Since each f; is a map and fj(x)=x, it is clear that

flxy = (A=), .. .. ful2)

is the required cross section.
This completes the proof of the theorem,
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OssurvaTioN. With regard to the existence of cross sections the fol-
lowing remark is obvious:

k> M—Q, admits a cross section if and only if there exist n—1
fixed point free maps f,,...,[,: M —@Q,, — M -, which are non-coin-

cident, i.e., o
fi(m) *fj(x}s ¥ 4:..?’ xEM*Qm'

Therefore, what we showed above is that the manifold M — @, has the
property required for cross sections if mz 1. Now, for m=0 no cross
sections need exist since the manifold may have the fixed point property,
e.g. the projective plane.

The need for information concerning the existence of cross sections
for the case m =0 is apparent from looking at the following fundamental
sequence of fibrations.

Fo.n Fl,n—l Fn-s,s Fn-2,2
Fl,n—-l Fﬂ.n—-ﬁ e Fn—2,2 Fﬂ——l,l
\
M M-Q, M-Q, 4 M-Q, ,

Since F,_; ;=M —@,_,, we may start at the extreme right and employ
the existence of cross sections at each stage except the one on the extreme
left to conclude

Turorem 2. For any manifold M,

7 Fy,n-1) =:Z—17‘£(M—Qk) (direct sum)

foriz2, If mFy , — M (fiber=0F,; ,_,) admits a cross section then

n—3

7l Fo,n) =k2 m{M—-Q,), iz2.

Corowrary 2.1. If M is Euclidean r-space, then

n=1
il Fo ) =X m (871w .. v 8L, = 2.
k;l A —
k

Cororrary 2.2. If M is a compact 2-manifold, then F,, , is aspherical
if mz1, that s, A(F,, ,)=0, €22, If M is neither the projective plane
P? nor the 2-sphere S2, the statement remains valid for m=0.

Proor. M - @, is aspherical as long as mz 1. Thus, the first part of
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the corollary is an immediate consequence of the preceding theorem.
Now, if M is not P2 or 8% it is aspherical. Consider the exact sequence

o ﬂ"i(Fl,ﬂ-—-l) - “{(Fo,n) -+ ni(M) e

Since, m;(M)=0=n/F, ,_;) for iz 2, it follows that F, , is aspherical
in this case.

An interpretation of the vanishing of the higher homotopy groupa of
Fy (M3 (Corollaries 2.1, 2.2) yields the following:

CoroLLARY 2.3. If M2 is E® or a compact manifold different from 82 or P2,
then any n coincidence-free maps of a k-sphere (k> 1) into M2 may be
extended lo n coincidence-free maps of the k+1 ball into M2,

Remark. We will see shortly that #: F, , — M {fiber=F, , ;) actually
admits a cross section if M is a 2-manifold different from P2 or 82,

We mention next an extension of Theorem 1. Tts proof, which is a
slight modification of the proof of Theorem 1, is omitted. Let M denote
a fixed manifold and consider the map

I

¥, F,, nzr, m2z0

iven b
& J ﬂ(?l:-‘-a’pn) = (pls'--:’pr)'
ToreorEM 3. m: F,, , —~ F,, . is a locally trivial fiber space with fiber

Fm+r,n—r'

III. Gross Sections.

DermviTioN. A manifold M is called suitable if it has the following
property: Let G(M) denote the group of all homeomorphisms of M onto
M with the compact-open topology and fix ¢;€ M. Then, M is
called suitable if there exists a map

0. M -~ G(M)
such that 0(z)(x)=g¢, and #(g,) =identity.

ReEmark, Every Lie group is suitable. Among the spheres 87, 8% ig
suitable only for n=1,3,7 since one can easily show that suitability im-
pliea the existence of an H-space structure [1].

TErEOREM 4, If M is suitable, m: Fy , - M 13 actually a product, that is,
Fon=MxF,,_,.

Proor. Let 8: M — G{M) be the map given by the suitability con-
dition. Define ¢:F, .2 M x F, ,_;:9~! by
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PPy, - -, Pn) = (2,02) (), . . .. 8(x){py))
N2, Py, - 1 Pa) = (2,027 (P), -, B(@) () -
Therefore, F, , is homeomorphic to F, ,_, x M, preserving projections,
The following theorem gives some further insight into the existence
of cross sections for the fiber map =: Fy , - M.

Turorem 5. Consider the fiber map m:Fy , - M with fiber Fy , _, and
nz2. Then,

a) There are no cross sections if M has the fized point property.

b} If M > L as a retract and L admits n— 1 fixed point free, non-coincident
maps, 7 admits @ cross section.

¢) If M iz differentiable and admits a non-vanishing vector field, then =
admits a cross section,

d) If M is an even dimensional sphere,  admits a cross section only when
n=2

Proo¥. a) This part is immediate from the observation made in § I1.

b) If o: M —~ L is a retraction and f,, .. .,f,: L - L are n — 1 fixed point
free non-coincident maps, then fio: M - M, 2 £¢{ <#, are n — 1 fixed point
free non-coincident maps and again the observation in § II appliea,

¢) At each point of M take a geodesic arc of length k in the direction
given by the vector field. Then, the points on the geodesic at a distance
0, k/(n—1), 2k{(n—1), ...,k from any given point define a cross section
for =. (This proof follows a suggestion of M. Hirsch.}

d) That m: Fy , — 8" always admits a cross section is clear by employing
the antipodal map.

Next, we show that m: F, 3 — 8" does not admit a cross section for r
even. (Thig part can also be proved by employing Lefschetz’s theory of
coincidences.) We will employ the following simple lemma,

Leuma. Suppose (E,p,B)is a fiber space (the covering homotopy property
valid for a class of spaces containing B [3]} and 0: B — E is a map such that
po ~ 1, that 13, pa i3 homotopic to the identity map 1. Then, p admits a cross
section.

Consider the following diagram

1.3

R Fon

87+
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where n,n’,« are fiber maps given by Theorems 1 and 3 in § II. We
prove now that x admites & cross section if and only if « does. Firat,
recall that n" always admits a cross section. Hence, if « does, so does =.
Secondly, suppose = admits a cross section ¢. Since =’ is a homotopy
equivalence, a«(om’)~1, The argument here is as follows. Suppose
B’ 8% » Fy , is a homotopy inverse for z'. Now a'wo=n'0=1. Therefore,
fa'so=8 ~ac and hence 1~f'n" ~agx’. Our lemma then applies. It
suffices now to show that x does not admit a cross section. Let f: 8" - 87
denote the antipodal map and consider the subset 4 of F; , consisting
of pairs (z.f(x)), # £ 87. If a cross section existed, it would generate a
map g: 8" — 87 such that g{z) £z, f(x), 2 € §7. Since, for every z,g(x) + f(x)
it is easy to see that g ~ 1 and ¢ has degree 1 and hence fixed points which
is a contradiction. Thus, = Fy ; — 87 does not admit a cross section.
To complete the proof of part d), consider the following diagram

2.4

Fy

1’“

i Fopey-

¥
[\
+

Fa

If n' fails to admit a cross section so does = and hence induection com-
pletes the proof.

CoroLLaRY 8.1, If M is compuct and the first Betli number of M does
not vanish, m: Fy , — M admils a cross section for every n.

Proor. In this case M is a muiticoherent Peano continuum [5] and
hence there is a l-sphere L< M which is a retract of M. Part b) of
Theorem 5 now applies.

CorOLLARY 5.2. If M is an odd dimensional differentiable manifold,
m:Fy, > M admits a cross section for every n.

CoROLLARY 5.3, [If M =387 (r-sphere) with r odd, then

n—2
m(Fo ) = (87 + (ST v . v ST
Ko 1

&

for i = 2.

IV. Applications.

1. Let M denote a manifold (differentiable) and G(M) (D(M)) denote
the group of homeomorphisms (diffeomorphisms) of 3 onto itself which
are isotopic (diffeotopic) to the identity. These groups are assumed to



CONFIGURATION SPACES 117

have the compact—open topology [4]. Furthermore, let @, denote a fixed
set of » pointsin M and G,(M). D, (M} the subgroups of G(M) and D(M),
respectively, which leave ¢, pointwise fixed. Both Q,(M) and D,(M)
are, respectively, closed subgroups which admit local cross sections,
Furthermore, it is easy to see that G(M){G . (M), D(M)/D (M) and
Fy (M)=F, , are homeomorphic. Thus, the fiberings

G(M) D(M)
G (M) D (M)
Fﬂ,n FO, n

lead to exact sequences
- = 74(Fo a) = mGo(ID) & w(GM)) > 7l Fon) > -
- “i+1(Fu,n) - ‘ni(Dn(M)) % J’fi(D{M)) - ‘ni(Fﬂ,n) BRI
TueorEM 6. Let M denote a r-manifold which is k-connected (n{M)=0
Jor i2k) and let y=min(r—2,k). Then, j* iz an isomorphism in both the
above sequences for ¢ <y and when i=yu,j* i3 epic (onlo).
Proor. Since M is k-connected and of dimension r, M —@,, is p-con-
nected where @,, is a finite set of m points and g=min{r—2,k}. Em-

ploying the fundamental sequence of fibrations (§ II}, it is then clear
that F, , is u-connected and the result follows.

CoroLLARY 6.1. If M=E" or 8", then m,(G,(M)) ~m (G(M)) for i <r—2
and w,_o(G(M)) is a homeomorph of 7, o(G,(M)). The corresponding result
holds for D(M) and D (M).

2. Let M denote an r-manifold which is k-connected and as in the
first application g=min(r~ 2, k). Then, if L™ is the permutation group
on n letters, 2 acts freely on F,, .. Let B, ,=F,, /2" We thus have

& principal bundle p: Fopw—> B

If ¢ is any finite group, there exists an » such that G< 2®» Thus, G
generates a principal bundle [4]

wh Fm.ﬂ. - m,ﬂ/G *

Tasorem 7. w: F, , = F,, /G i3 a p-universal bundle for @, where
p=minf{r—2 k).

Proor. The proof is immediate since F,, , is y-connected.

CoroLLary 7.1. If M =E"or 87, w: F,, , > F,, /G is an (r - 2)}-universal
bundle for Q.
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3. Let M denote a manifold and let B, , be as in the preceding section.
Following R.H.Fox [2], we define the braid group B,(M) (n strings) by

B (M) = xl(BO.n) .
We recall that F, , is a covering space over B, , and hence
ni(Fn,n) = ns{BO.n)’ iz2.
The following theorem of P.Smith will be employed (see [3, p.287]).

TrEorEM (P.Smith). Let X be a finite dimensional K(n,1). Then, n has
no elements of finite order.

Treorem 8. If M is any compact 2-manifold, except P? or 82, or if
M = E?, then the braid groups B,(M) have no elements of finite order.

Proor. By previous results F, , is aspherical, hence & K(x,1}, and of
finite dimension. Therefore, B, , is a K(B,{}),1) of finite dimension.
The above lemina, then, completes the proof of the theorem,

REmark. It is easy to see that B,{S%) =Z, (cyclic group of order 2) as
follows. Consider the fibrations

Foo— S, fiber F, , .

Since F, , is contractible, F ;~ 8% and hence F), , is 1-connected. There-

fore, F, 5~ B, , is a universal covering with fiber Z, and hence #,{B, ;)=
By(8%)=2Z,.

TrEOREM 9. If M isan r-manifold,r = 3, which is 1-connected, B, (M)= X
(symmetric group on n leiters) and hence there is no braid theory on thiz class
of manifolds.

Proor. By employing the fundamental sequence of fibrations (§ II)
and the fact that M —Q,, 05i<n -2, is 1-connected, it follows that F ,
is 1-connected. Hence, p: F, , — B, , is the universal covering of B ,
with fiber 2». The theorem is then immediate.
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