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Chapter 1IntrodutionThe key-words for this thesis are 'extra dimensions' and 'supersymmetry'. Both of them areoften used in reent artiles on high energy physis. Nevertheless, the possibility that we livein a more than four dimensional universe may still sound exoti to some physiists. Also,supersymmetry is not visible in the spetrum of the up-to-now disovered partiles and someauthors (though surprisingly few) question its relevane to our world. Thus, a brief introdutionwhih justi�es the researh in this �eld seems to be neessary. In the next paragraphs we explainwhat are the theoretial motivations for the searh for extensions of the well-established andtested theories like the Standard Model (SM) and the General Relativity.The ontemporary theory of fundamental interations is the Standard Model (SM). Thistheory desribes three of the four known fores of nature (eletromagneti, weak and strong) andhas been extremely suessful in explaining phenomena of subnulear physis up to urrentlyaessible energies, whih are of the order of 100 GeV. The quantitative preditions of the SMare in perfet agreement with the experimental data; sometimes the auray is inredible,just to mention the anomalous magneti moment of the eletron, for whih the experimentallymeasured value agrees with the theoretial alulation within 10�13 preision.The SM is a quantum �eld theory whih respets the Poinar�e invariane (Lorentz rotations+ spae-time translations). It is founded on the gauge priniple: the partiles are assigned tovarious representations of the gauge group, whih is the loal symmetry group of the theory.In the ase of the SM the gauge group is SU(3)�SU(2)�U(1). The SU(3) fator orrespondsto strong interations, while the SU(2)�U(1) fator orresponds to weak and eletromagnetiinterations. The latter is spontanously broken to U(1), by the vauum expetation value ofthe salar �eld transforming as a doublet of SU(2). The onsequene of this mehanism isthe existene of a fundamental, salar partile - the famous, though still not disovered Higgsboson.The SM is a onsistent theory. Although alulations of quantum orretions yield divergentresults, the theory is renormalizable - the divergenies an be absorbed into rede�nitions of theparameters in the lagrangian and one ends up with �nite and well-de�ned preditions for thesattering ross-setions and other observables.Despite its onsiderable suess, most of the physiists tend to the opinion that the SM isnot the ultimate theory of nature and that the e�ets of the underlying, more fundamentaltheory should beome visible at higher energy sales. First, the SM ontains many arbitraryparameters. For example, the SM does not predit the mass of the eletron; it must be onsid-ered as the experimental input to the theory. The SM does not explain why quarks and leptonsour in three similar opies (generations) with the same quantum numbers. Also, one ould5



imagine other groups as symmetries of the theory; the hoie of the group and the representa-tions is restrited only by anellation of anomalies. Classial symmetries of �eld theories anbe broken by quantum e�ets - just mentioned anomalies. If loal symmetries are anomalousthen theory is inonsistent beause, �rst of all, it is not unitary. The SM is anomaly free, butthe mehanism behind it is not fundamental, rather it holds due to a miraulous interplay ofquantum numbers of the SM partiles. Thus, the way the anomaly anellation works in theSM is a very important hint pointing towards physis beyond the SM.Next, the SM model su�ers from the so-alled 'hierarhy problem'. To retain the perturba-tivity of the theory (and thus to be able to perform alulations) the Higgs boson mass shouldnot be muh higher than 1TeV. But in general, in higher orders of the perturbation theory ,masses of salar partiles reeive quantum orretions proportional to the supposed ultravioletut-o� of the theory set by the Plank sale (about 1019 GeV). Thus, to keep the physial Higgsboson mass to be below 1TeV, one must hoose very speial values of the parameters of theoriginal Lagrangian, so that 'miraulous' anellations in the alulation of the physial Higgsboson mass ould hold. Suh situation, usually desribed as the '�ne-tuning', is onsidered veryunlikely by the physiists, so other mehanisms are proposed to explain why the value of theHiggs boson mass an be many orders of magnitude smaller than the Plank sale. The otherway to state the hierarhy problem is to say that it is unnatural to have several di�erent masssales in one theory unless we have some symmetry to protet them. In the SM we have noexplanation why the eletroweak sale (103 GeV) is hugely di�erent from the Plank sale.However, the most important drawbak of the SM is that it annot onsistently inorporategravity, the fourth fundamental fore of nature. Indeed, trying to marry the SM with Einstein'sGeneral Relativity inevitably leads to unrenormalizable theory. Calulation of quantum or-retions yields in�nities whih annot be absorbed into rede�nition of the parameters, and thetheory loses muh of its preditive power.It may seem strange, that the theory whih fails to desribe gravity is so suessful. Thereason is that the e�ets of gravity in the experiments performed at urrently aessible energiesare negligible due to the smallness of the gravitational oupling (Newton's onstant). However,at energies ompared to the Plank sale the strength of gravity beomes omparable to thestrength of the other fundamental fores, and the e�ets of gravity an no longer be negleted.If this expetation turns out to be orret, the SM is only an e�etive theory valid in a restritedenergy range. It is not lear what is the energy at whih the SM will �nally break down; itannot be greater than the Plank sale, but most of the physiist expet new e�ets alreadyat energies of the order of 1TeV.It should be stressed that the above motivations for the searh of a 'new physis' are ratherof aesthetial nature. Apart from them, there are several open problems whih may requireserious modi�ations of the SM. The most spetaular problems of this kind are:1. For the onsisteny of the SM it is ruial, that at least one elementary salar �eld ispresent in nature. But, the so-alled Higgs boson still evades its disovery. This does notruin the foundations of the SM, as it is likely that the Higgs boson mass may be above100 GeV and this partile is inaesible in the present aelerators. The problem willreally begin, if the Higgs boson is not found in the next generation of aelerators, whihwill probe physis up to a few TeV.2. The reent disovery of neutrino osillations requires extending the SM, beause thisphenomenon an our only if the netrinos are massive. The experimental data are stillinsuÆient to favour one of the several possible extensions. One trivial possibility is6



that one adds a new set of partiles (right-handed neutrinos) to the spetrum, and theneutrino masses are inorporated in the theory in a way analogous to the masses of theother fermions. However, it may turn out that to explain neutrino osillation one has toadd a non-renormalizable term to the SM lagrangian whih would point towards a newphysis at higher energy sale and on�rm that the SM is merely an e�etive low energytheory. This issue is urrently the subjet of extensive experimental studies.3. As notied already by Einstein, the General Relativity admits the so-alled osmologialterm in the ation without violating the general oordinate transformations invariane.This term an be interpreted as the energy density of the vauum. Its presene modi�esthe solutions of the theory exluding the at Minkowski spae. Cosmologial observationsstrongly onstrain the magnitude of this hypothetial term and any fundamental theoryshould explain why the observed osmologial onstant is zero or very small. The SMitself does not desribe gravity, so one may think that this problem is not relevant. Butwhen we try to ombine the SM with the General Relativity, the energy of the zero-modeosillations of the SM �elds leads to the estimate of the osmologial onstant more than100 orders of magnitude bigger than the urrent limits!. This disrepany is even morestriking when ompared to the fantasti preision of other preditions. So far no-one hasgiven a satisfatory explanation of the osmologial onstant problem whih may turnout to be an important lue pointing towards a new physis.Having enumerated the basi motivations to searh for physis beyond the SM, we reviewsome of the most popular diretions. All the ideas listed below will be relevant to the ontentof this thesis.One possible extension of the SM, whih is known under the name GUT (Great Uni�edTheory), is to extend the loal symmetry group [19℄. Instead of having three di�erent groupsglued together one ould have one group, whih is then spontaneously broken to the SM group.Many expliit models of this kind were proposed, the most popular gauge groups being SU(5),SO(10), E6. Apart from aesthetial reasons, an extension of this kind is suggested by theapparent uni�ation (within 30 perent auray) of the SM gauge ouplings at energies oforder 1014 GeV. So far there has been no diret evidene for the relevane of GUT groups toour world. The most spetaular predition of GUT theories is the proton deay, extensivelysearhed for in some experiments.Another interesting possibility of extending the symmetries of the SM is supersymmetry.At the mathematial level this is equivalent to replaing the Poinar�e algebra of spae-timesymmetries with a superalgebra (graded Lie algebra). Physially, one introdues in this waya symmetry between bosons and fermions. Supersymmetry possesses many beautiful featureswhih make a onsiderable number of physiist believe in its existene, despite the fat that forover 20 years from the theoretial disovery of supersymmetry there has been no experimentalevidene in its favour.Supersymmetry solves the hierarhy problem. More preisely, it does not explain the hugeratio of the eletroweak and Plank sales but renders this ratio stable against radiative orre-tions. It is the symmetry between bosons and fermions whih leads to 'miraulous' anellationsamong quantum orretions to the Higgs boson mass. What is left are mild (logarithmi in theut-o�) divergenies, so the existene of a light salar �eld in the supersymmetri theory is moreplausible. An additional (and unexpeted at the beginning) virtue of supersymmetry is the fatthe simplest extension of the SM, known as the MSSM ( Minimal Supersymmetri StandardModel) leads to the gauge oupling uni�ation within 1 perent auray. In the oming years,7



with the running of the next generation of aelerators, physiists expet to gain evidenes infavour or against supersymmetry. In partiular, we do not see any supersymmetri pattern inthe spetrum of the up-to-now disovered partiles. If supersymmetry is relevant to our worldthen new, yet undisovered partiles must exist, whih together with the SM partiles, �t intorepresentations of the super-Poinar�e algebra.Even more rih in onsequenes are models whih embed the SM in a theory with thenumber of spae-time dimensions higher than four. In fat, this idea dates bak to early daysof the quantum theory when Kaluza and Klein (KK) proposed that that we may live in a �vedimensional universe [22℄. In the models of the KK type the additional (usually more thanone) spae-like dimensions are ompat and their harateristi size is very small omparedto the length sales probed in experiments. It an be proven that isometries of the ompatdimensions give rise to gauge symmetries of the e�etive four-dimensional theory. Besides,models of the KK type predit that moduli of the ompati�ation (that is - deformations ofthe ompat manifold whih do not hange the energy of the system) beome dynamial �eldsin the e�etive theory. Originally, it was hoped that with the help of extra dimensions one anexplain the abundane of various partiles in our world by means of a simpler theory, maybejust a higher dimensional gravity. At the same time extra dimensions provide new possibilitiesfor adressing the hierarhy problem as in these models the Plank sale is not a fundamentalquantity but merely a derived sale depending e.g on the volume of the ompat manifold.The idea of a higher dimensional universe has been revived with the development of stringtheories (see e.g. [27℄) whih inlude the only known examples of onsistent quantum theoriesthat desribe gravity. The idea behind string theories is to replae point partiles with extendedobjet of one spatial dimension. The observed partiles orrespond to various osillation modesof the fundamental strings. Surprisingly enough, these theories turn out to be very onstrained,merely by the demand of their onsisteny. To avoid tahyons in the partile spetrum one isfored to introdue supersymmetry and ends up with so-alled Superstring Theories. We knowof only �ve examples of onsistent Superstring Theories, namely type I, IIA, IIB, heterotiE8�E8 and heteroti SO(32). The number of spae-time dimension in whih the strings live isnot arbitrary; the Superstring Theories require ten dimensions. String theories ontain no freeparameters and, in priniple, one we deide on one of the �ve above mentioned realisationsthe whole dynamis is in priniple determined.At low energies string theories redue to quantum �eld theories. In the ourse of the yearsstring vaua have been onstruted, suh that ompati�ations of string theories yield spetraimitating the SM. Up to reently, the ompati�ation of the E8�E8 heteroti superstrings, inwhih six extra dimension url up to form a manifold known to mathematiians as the Calabi-Yau manifold, appeared to be most promising. This theory has many virtues: in the proess ofompati�ation one of the E8 fators breaks down to E6. The latter is a good andidate forthe GUT group; the supersymmetry is preserved by the ompati�ation and is thus expetedto be broken at energies omparable to the eletroweak sale; the seond fator E8 an serveas the gauge group of the so-alled 'hidden setor' (whih is the preferred senario of super-symmetry breaking in the onrete, phenomenologial models of low energy supersymmetry);the parameters of the SM an be expressed in terms of the topologial harateristis of theompat manifold.Reently, the monopoly of the heteroti strings has been broken. New vaua of type I andtype II superstrings have been onstruted. At low energies these vaua lead to physis verylose to the one derived from the SM. Although these onstrutions themselves are not of diretonern in this thesis, they introdue in a natural way the notion of branes (preisely, D-branes8



are hypersurfaes on whih open string are allowed to end). These objets will be important inthe following. In the nomenlature we use, p-branes are p+1 dimensional submanifolds in thehigher dimensional spae-time (note that a 4d spae-time orresponds to a three-brane). Theymay host various gauge as well as matter �elds, whih are on�ned on these submanifolds, inthe sense of not being allowed to propagate in the remaining transverse dimension.Independently of the string theories, even more reent motivation for the study of higherdimensional theories was given by the Randall-Sundrum (RS) model [11℄. Contrary to theSuperstring Theories, the RS model is not a onsistent, self-ontained theory but rather an ad-ho onstrution. The basi set-up onsists of a �ve dimensional gravity with a osmologialonstant, whih allows for anti-de-Sitter solution. In addition, there are three-branes loatedat various points along the �fth dimension. Randall and Sundrum showed, that for someon�gurations of those branes observers living on one of the brane would �nd that the gravityobeys the ordinary 4d Newton's law, in spite of the fat that the world is �ve dimensional andnone of the dimensions is ompat. Thus, we may be living in a higher dimensional universewithout simply notiing it!The modern understanding of Superstring Theories is that they are not �ve distint theoriesbut rather di�erent vaua of an underlying, still to some extent hypothetial, 11-dimensionaltheory named M-theory. This view has emerged from the study of non-perturbative relations,the so-alled dualities, between various Superstring Theories. It turned out that dual to someof the Superstring Theories are not any of the other ten-dimensional string theories but rathersome eleven-dimensional theory. Very little is known about the quantum formulation of M-theory (it is not even lear what M stands for). We know however that in the low energy limit(in this ase below the Plank sale) it redues to the 11 dimensional supergravity theory. Also,in addition to strings whih have one spatial dimension, brane objets with p-spatial dimensionsshould be present in the M-theory.We now ome to the starting point of this thesis. Horava and Witten showed [2℄ that at lowenergies the strong oupling limit of the heteroti E8�E8 superstring theory redues to elevendimensional supergravity de�ned on the manifold whih is the produt of a smooth manifoldM10and the interval S1=Z2. In addition to eleven dimensional supergravity multiplet, the spetrumof this model onsists of ten dimensional gauge multiplets in the adjoint representation ofE8 on�ned to the boundaries of the manifold, in other words, to the �xed points of the Z2symmetry. As mentioned earlier, E8 �E8 superstring theory is phenomenologially interestingand so is its strong oupling limit, beause to obtain the uni�ation of gauge and gravitationalouplings at one ommon sale, one must assume the string oupling muh greater than 1. Thus,in the interesting region of the parameter spae the fundamental theory may be desribed bythe Horava-Witten model.The question arises whether models ontaining �elds living in di�erent spae-time dimen-sions an be supersymmetri. The answer should be positive in this ase, as we onsiderthe strong oupling limit of a supersymmetri theory but the question is non-trivial beausethe Horava-Witten model is not a omplete, onsistent desription of the M-theory. Horavaand Witten proved by a diret onstrution [3℄ that, in the framework of their model, super-symmetrization indeed an be ompleted, at least in the �rst order of the expansion in thegravitational onstant. However, the required modi�ations appeared to be highly non-trivialand substantially a�eted the vauum solution of the model [1℄.To make ontat with the real world one must ompatify the Horava-Witten model tofour dimensions. It turns out that in order to have uni�ation of gauge and gravitationalouplings, the length of the eleventh dimension must be an order of magnitude greater than9



the harateristi size of the remaining six ompat dimensions [1℄. Thus, at the intermediateenergy sale, the universe should appear �ve-dimensional. Lukas et al. [4℄ managed to obtainthe e�etive �ve-dimensional theory resulting from the ompati�ation of the Horava-Wittenmodel on the Calabi-Yau three-fold (a manifold with three omplex , i.e six real dimensions).For the reason whih will be explained in detail in the next setions, this e�etive theory isnot a simple 5d supergravity, but its gauged version. Gauging of supergravities introduesprofound hanges in the theory. It implies the existene of potentials for the salar �elds and,generially, the at spae an no longer be a vauum solution. Apart from the setor livingin �ve dimensions (in the so-alled bulk) the ompati�ed Horava-Witten model ontains twoparallel 3-branes with gauge �elds and matter ontent whih depends on the spei� formof the ompati�ation. The supersymmetrization of the brane theory with the bulk theory(supersymmetrization of branes with bulk, in short) has not been performed before and one ofthe objetives of this thesis is to �ll this gap.In the following, we derive the supersymmetri oupling of �elds on�ned to a 3-braneto 5d supergravity. Using the Noether proedure, we add new terms to the bulk and branelagrangian, whih are neessary to arrive at a loally supersymmetri ation. More preisely,our set-up onsists of a �ve-dimensional N=2 supergravity on the manifoldM4�S1=Z2 oupledto SU(2; 1)=U(2) non-linear sigma model. Two parallel 3-branes are loated at x5 = 0 andx5 = �� and host a 4d gauge supermultiplet and a hiral matter supermultiplet. In the ontextof the ompati�ed Horava-Witten model this orresponds to only one universal hypermultipletin the bulk, whih is equivalent to hoosing a speial Calabi-Yau three-fold with Hodge numbersh1;1 = 1 h1;2 = 0. However, the onstrution we present is far more general and an be utilisedfor onstruting other supersymmetri 5d models with branes, even those whih do not havestringy origin. In partiular, the brane potential term for the bulk salars whih arises inthe ompati�ed Horava-Witten model an be replaed by a onstant brane tension, whihimmediately leads to the supersymmetri version of the Randall-Sundrum model. Beausesupersymmetrization of the RS model is presently the subjet of intensive study [15, 8℄, wepresent this extension in this thesis, although the RS model most probably annot be obtainedfrom the heteroti ompati�ations of superstring theories.The outline of this thesis is as follows. In Setion 2 we briey review supergravity theoriesin various, relevant dimensions. In Setion 3 the Horava-Witten model and its ompati�ationto �ve dimensions is introdued. Then we begin the presentation of the original results of thisthesis. In Setion 4 we present a detailed derivation of the supersymmetri oupling of gaugeand matter �elds on�ned to 3-branes to 5d N=2 supergravity. Neessary modi�ations ofthe supersymmetry transformation laws of bulk and brane �elds are also disussed. To makethe proess of supersymmetrization more transparent we start with a 4d gauge multiplet onthe brane and then we suessively add matter �elds in the bulk and on the brane. Then wearefully analyse the role of brane potentials, and their onnetion to the osmologial termsin the bulk supergravity. In Setion 5 we derive the e�etive 4d theory. We �nd a vauumsolution of the 5d theory whih preserves N=1 supersymmetry and ompatify our model onthis bakground. We disuss various ontributions to the e�etive 4d lagrangian oming fromthe moduli of the vauum solution and from the fat that �elds on the branes at as soures inthe equations of motion of the bulk �elds. We determine the preise form of the ompati�edtheory in terms of the anonial 4d supergravity. In setion 6 we perform the redution of the5d supersymmetry transformation law and �nally, in Setion 7, we omment on supersymmetrybreaking in the �ve-dimensional framework. 10



Chapter 2Supergravities in 11, 5 and 4dimensionsSupersymmetry is a non-trivial extension of the Poinar�e symmetry. Aording to the ele-brated Coleman-Mandula no-go theorem [24℄, the Poinar�e algebra is the largest possible Liealgebra of symmetries of a quantum �eld theory whih ats non-trivially on spae-time. Ex-tending further the algebra of symmetries leads to a trivial S-matrix, that is to no interations.Supersymmetry evades the limitations of the Coleman-Mandula theorem, beause the mathe-matial onept behind it is a graded Lie algebra. If suh an algebra is a symmetry algebra ofa theory then, apart from standard ommuting bosoni symmetries, we have anti-ommutingfermioni symmetries. The supersymmetry harge Q ommutes with the momentum operatorP� and with generators of internal symmetries but does not ommute with the generators ofthe Lorentz rotations M�� . Thus, one-partile states in supermultiplets, whih are obtainedby ating suessively with Q on a lowest weight state, have the same masses and internalquantum numbers but di�erent spins. Supersymmetry predits, therefore, that partiles areaompanied by a number of superpartners with similar properties exept for the spin. Sizeof supermultiplets, and thus a number of superpartners may vary depending on the hosenrepresentation of the superalgebra and dimensionality of the spae-time.In this thesis we onsider loal supersymmetry, that is symmetry generated by parameterswhih depend on spae-time oordinates. There are several reasons to prefer this option. Fromour experiene with the SM we know that loal (gauge) symmetries play a more fundamentalrole in the theory than global symmetries (like baryon or lepton number onservation). Thisview is supported by the no-hair theorem of quantum gravity whih states that only loalsymmetries an be exat in the presene of gravitational e�ets. The reason spei� for su-persymmetry is that loally supersymmetri theories neessarily inlude gravity. This is easyto see from the supersymmetry algebra. The antiommutator of two supersymmetry hargesfQ; �Qg equals the momentum operator P and if the parameters on the left-hand side dependon spae-time oordinates the right-hand side is a loal translation whih vary from point topoint, in other words a general oordinate transformation. Thus we an expet that a theoryinvariant under loal supersymmetry is also invariant under general oordinate transformationswhih is the symmetry of the General Relativity.For our purpose we will not need the detailed mathematial formulation of supersymmetry.All we need to do is to represent the supersymmetry algebra on the �elds of our lagrangians. Werequire that the lagrangian we onsider is invariant up to a total derivative under in�nitesimalloal supersymmetry transformations. This is analogous to representing gauge symmetries11



in the way we know from the Standard Model. The only di�erene is that in the ase ofsupersymmetry the in�nitesimal parameter of the transformations is an antiommuting spinor.Given the �eld ontent, supersymmetry �xes the form of the lagrangian up to a few arbitraryfuntions. The possible supermultiplets that an be present in various spae-time dimensionsare determined by a more involved analysis [16℄.2.1 Eleven dimensional supergravityThere are several reasons to start our survey from eleven dimensions:1. This is the highest spae-time dimension in whih a onsistent, interating supergravityan be formulated.2. The �eld ontent of the 11d supergravity is very simple and the supersymmetry �xesuniquely the form of the lagrangian.3. Many supergravities in lower dimensions an be obtained by a trunation of the 11dsupergravity. In partiular, this is the ase with 5d N=2 and 4d N=1 supergravitieswhih will onern us further in this thesis.In eleven dimensions the gravity multiplet onsists of a vielbein emI , one gravitino  I and onethree form CIJK. I,J... are eleven dimensional vetor indies equal 0..9, 11.The vielbein formulation of gravity is equivalent to the more familiar metri formulation [23℄.The onnetion between the two is given by gIJ = �mnemI enJ where � is the at 11d Minkowskimetri. As is well-known, at any single point of the Riemannian manifold, a general metrian be redued to the at Minkowski metri by the appropriate hoie of a oordinate frame.Vielbeins an be onsidered as the basis vetors of this (loally inertial) frame at a given point.The upper index, is a vetor index of SO(9,1) orresponding to the Lorentz symmetry of theMinkowski metri. The kineti term for the vielbein is the standard Rii urvature salar, justlike in the four-dimensional General Relativity.The gravitino  I is a vetor-spinor �eld (spinor indies are suppressed). Spinors in oddD dimensional spaes have 2(D�1)=2 omponents [25℄, so in our ase  has 32 omplex om-ponents. However, in 11 dimension we an impose the Majorana ondition and we e�etivelyend up with 32 real omponents (in the real Majorana basis). The kineti term is the Rarita-Shwinger ation given in the �rst line of (2.1). In four dimensions gravitino desribes a spin3/2 elementary partile . Suh partiles has not been disovered, but they must be presentin any loally supersymmetri theories. Therefore, if loal supersymmetry is relevant to ouruniverse, gravitinos must be either very heavy or light and very weakly interating.The �eld C is anti-symmetri in its 3 indies, hene its name three-form. The notion ofn-form �elds is generally known beause in 4d n-forms do not introdue any new possibilities todesribe physis: a 0-form is just a salar-�eld, a 1-form is a gauge �eld (this is how gauge �eldsare presented in more geometrially oriented books) and a 2-form is equivalent to a (pseudo-)salar by the Hodge duality. In D dimensions one an onsider n-forms with n=0...D-2 aspropagating �elds. In D > 4 dimensions form �elds desribe essentially new objets. Thekineti term, similarly to the vetor Abelian ase, is proportional to the square of the externalderivative dC. 12



The unique supergravity Lagrangian is [18℄:L11 = 1�211 e11 ( � 12R� 12 I�IJKDJ K � 148GIJKLGIJKL�p2192( � I�IJKLMN N + 12 � J�KL M)GJKLM � p23456�I1::I11CI1::I3GI4::I7GI8::I11 + (4fermi) )(2.1)In the above �11 is a gravitational onstant, e11 is the determinant of the 11d vielbein. Thegamma matries have dimension 32 � 32 and obey f�I ;�Jg = 2gIJ . The anti-symmetrizedproduts of matries are de�ned as: �I1::In = �[I1::�In℄ = 1n!�I1:::�In � (permutations): Theovariant derivative ating on the gravitino is DI J = �I J + 14!Imn�mn J and ontains thespin onnetion ! de�ned by the formula:!Imn = 12eJm(�IenJ � �JenI)� 12eJn(�IemJ � �JemI)� 12eJmeKn (�JepK � �KepJ)epI (2.2)The four-form �eld strength G is de�ned as GIJKL = 24�[ICJKL℄, in short G = 6dC. Obviously,G satis�es the Bianhi identity dG=0. Later, we shall see that oupling to YM �elds de�nedon boundaries requires rede�nition of G, so that the right-hand side of the Bianhi identitybeomes non-trivial.The four-fermion terms are also known, but we will not need them in further onsiderations.It is a ommon pratie to skip them when possible to avoid lengthy mathematial formulae.The 11d supergravity ation is invariant under the following loal supersymmetry transfor-mations: ÆemI = 12��m IÆ I = DI� + p2288(�JKLMI � 8gJI �KLM)�GJKLM + (three� fermi)ÆCIJK = �p28 ���[IJ K℄ (2.3)Note the derivative of the spinor parameter � in the transformation law of gravitino, whihan be interpreted, in analogy to the Yang-Mills ase, that gravitino is the gauge �eld ofsupersymmetry. This is the justi�ation of the previous statement that the gravitino must bepresent in loally supersymmetri theories. The number of onserved supersymmetry hargesis 32 (ounting eah omponent of Q separately). From the 4d point of view this numberorresponds to N=8 supersymmetry.2.2 Supergravities in �ve dimensionThe plural in the subtitle suggests that, ontrary to the 11d ase, 5d supergravity is notunique. Indeed, in 5d we have ertain freedom in hoosing the spetrum of matter �elds, aswell as the sigma model whih governs their dynamis. We an also onsider various numbersof supersymmetries. In this setion we onentrate on the ase of N=2 supersymmetry whihorresponds to eight onserved superharges 1.Every loally supersymmetri 5d theory ontains the gravity multiplet whih onsists of themetri g�� (here we work with the vielbein ea�), two sympleti Majorana gravitinos  A� and a1Some authors all it N=1 susy as it is the least possible number of supersymmetries in �ve dimensions. Weprefer to keep the label in N=2 beause of the similarity to N=2 supergravity in four dimension13



vetor �eld, in this ontext usually alled the graviphoton A�. The greek indies � � ... fromthe beginning of the alphabet are �ve dimensional and run over values 0..3,5. The reason weimpose sympleti onditions is that in �ve dimensions it is impossible to satisfy the standardMajorana ondition � � C��T = �, where C is a harge onjugation matrix, beause this leadsto a ontradition � = (�) = ��. Instead one an arrange spinors into pairs by demanding��A = (
AB�B)TC , where C is the harge onjugation matrix satisfying � T = C�C�1 and 
is a sympleti matrix whih squares to �1. In the ase of gravitinos the index A runs from 1to 2, and the sympleti matrix is just the antisymmetri tensor �AB.The notation using sympleti spinors makes expliit another symmetry of the N=2 supergrav-ity ation. A theory with N supersymmetries possesses SU(N) R-symmetry, whih transformsthe superharges into eah other. This symmetry, or rather its Z2 subgroup, so-alled R-parity,is familiar to those aquinted with the MSSM. For the ase at hand, this symmetry is SU(2)and the gravitino index A tranforms in the fundamental representation of the R-symmetrygroup. This index is raised and lowered with �AB; SU(2) invariant ontration of spinors is�A�A � �AB�A�B, the onventions are �12 = �12 = 1. Note also somewhat unusual de�nition�A � �A.The lagrangian for the gravity multiplet alone takes the form:L5 = e5 1�2 ( � 12R� 12 �A��D�  A � 12F��F��� 112p2���Æ�A�F�FÆ� + i4p2( A��Æ Æ A + 2 �A �A)F�� + (four � fermi) ) (2.4)The form of the above lagrangian resembles the one of 11d supergravity, e.g. the 'topologial'term AFF is similar to the 11d CGG term. Thus, we an expet that 5d N=2 supergravity anbe obtained as a ompati�ation of 11d supergravity. This statement is almost orret, as wean ompatify the 11d supergravity on the six-dimensional Calabi-Yau manifold leaving eightof thirty-two superharges unbroken, whih indeed leads to N=2 supergravity. However, thisproedure yields additional salars and fermion orresponding to the moduli of the ompati-�ation; e.g. one of the always present salar moduli is the volume of the ompat manifold.Beause of that, it is neessary to onsider a oupling of matter multiplets to the 5d gravitymultiplet.The gravity multiplet an be oupled to an arbitrary number of vetor multiplets whihonsist of a vetor �eld, two sympleti Majorana gauginos and a single real salar �eld. At thesame time, we an ouple hypermultiplets with two sympleti Majorana hyperinos and fourreal salar �elds. It turns out that hypermultiplets and vetor multiplets ouple to the gravitymultiplet only and not to one another. In a supersymmetri lagrangian ontaining hyper- andvetor multiplets, lengthy polynomials of salar �elds appear, whih are most onvienientlyharaterized in terms of geometry on some Riemannian manifold. The arbitrariness lies in thefreedom to hoose one of those speial geometries.It should be stressed that in �ve dimensions there are no supermultiplets with hiralfermions. To introdue hiral matter harged under Yang-Mills symmetries, one must loateit on a 4d submanifold. The Yang-Mills vetor �elds an also be on�ned to the boundaryand this is the ase we study arefully in this thesis. At the same time we an have gaugesymmetries in the bulk with vetor �elds of the vetor multiplets and the graviphoton beingthe gauge �elds. This possibility will also be studied in the following, rather not for the virtueof having gauge symmetries, but in order to introdue potential for the salar �elds. Otherwise,in ungauged 5d supergravities, salar potentials are always absent.In the next subsetions we follow losely the Appendix B of referene [5℄14



2.2.1 Coupling of vetor multipletsBelow we desribe oupling of nv Abelian vetor multiplets to the gravitational multiplet ofN=2 supergravity. We now have nv vetor �elds Ai�, 2nv sympleti pairs of spinors (gauginos)�Ax, and nv real salars �x. The index A of the gauginos is the same as that of gravitino. It isonvienient to group vetors with the graviphoton so that the index i = 0; 1::nv. The kinetiterms of the salars de�ne the sigma model: Lkin = �12gxy(�)���x���y If the vetor multipletsare oupled in a supersymmetri way, then gxy an be interpreted as a metri of a Riemannianmanifold MV with the very speial geometry; in suh the ase the salars �x an be intethevetor multiplets are oupled in a supersymmetri way, then gxy an be interpreted as a metriof a Riemannian manifoldMV with the very speial geometry; in suh the ase the salars �xan be interpreted as oordinates on MV .To see the struture of MV one starts with a nv + 1-dimensional spae C with oordinates biand the metri: Gij(b) = �12 ��bi ��bj lnK(b) (2.5)where K is a homogenous polynomial of degree three:K = dijkbibjbk (2.6)One then takes MV as the hypersurfae K = 6. Restriting ourselves to that submanifold wehave bi = bi(�x) and we an write the indued metri as:gxy(�) = �bi��x �bj��yGij(b) (2.7)The rest of the lagrangian is detemined by the sigma model metri. We restrain from givingthe lagrangian and the supersymmetry transformation laws until the subesetion 2.2.4.2.2.2 Coupling of hypermultipletsIn this subsetion we review oupling of nh hypermultiplets to the gravity multiplet. We aregiven 2nh sympleti Majorana fermions (hyperinos) �a and 4nh real salars qu. As in theprevious ase, the entral objet is the metri h of the sigma-model: Lkin = �huv(q)���u���vAgain, to render the oupling possible, huv must have the interpretation of a metri of someRiemannian manifoldMH on whih the salars qu are the oordinates. One �nds that for N=2supergravity MH is a quaternioni manifold. Below we present basi fats about quaternionigeometry.A quaternioni manifold an be thought of as a generalization of a omplex manifold. Thename is due to the three omplex strutures JAB, whih satisfy the quaternioni algebra undermatrix multipliation. It is endowed with a triplet of K�ahler forms KAB satisfying:dK + ! ^K = 0 (2.8)!AB is a SU(2) part of the spin-onnetion. As the holonomy group of a 4nh dimensionalquaternioni manifold is by de�nition the produt SU(2) � Sp(2nh), the orresponding spinonnetion deomposes into a sum of the SU(2) onnetion !AB and the Sp(2nh) onnetion �ab.In the ontext of N=2 supersymmetry, SU(2) is interpreted as the R-symmetry group and theindex A transforms in the same way as that of gravitino. Unlike the gauginos and gravitinos,the hyperinos �a are sympleti Majorana with respet to the Sp(2nh) onnetion, so the index'a' runs over values 1::2nh. 15



2.2.3 Gauging universal hypermultipletsIf the manifold MH admits isometries we an gauge them, modifying signi�antly the stru-ture of 5d supergravity. The proedure of gauging isometries of salar manifolds is similar togauging global symmetries in order to obtain ordinary supersymmetri Yang-Mills theories.The derivatives ating on �elds must be replaed with ovariant derivatives involving gauge�elds, and the potential for salar �elds must be added, whih in the super-Yang-Mills aseorresponds to the so-alled D-terms. The gauge �elds are provided by vetor multiplets andthe omni-present graviphoton from the gravity multiplet. Gauged isometries beome loal inthe spae-time sense.In this subsetion we onsider only Abelian isometries as the general ase is not given in theliterature. We gauge only hypermultiplets; gauging of vetor multiplets is also possible, but wedo not utilize that onstrution in this thesis.Isometries that preserve the quaternioni struture of MH are generated by the Killingvetors satisfying the Killing equation rukv + rvku = 0, whih an be solved in terms of afuntion PAB alled the prepotential:kuiKuv = �vPi + [!v;Pi℄ (2.9)Spae-time derivatives ating on the hypermultiplet salars must be replaed with ovariantderivatives: ��qu ! D�qu � ��qu + gAi�kui (2.10)Derivatives ating on the fermions have to be modi�ed as well, and those modi�ations are allsummarized in the next subsetion.The most signi�ant aspet of gauging is the fat that it introdues, otherwise absent,potential for the salar �elds:V = �2GijtrP iPj + 4bibjtrP iPj + 12bibjhuvkui kvj (2.11)In the absene of potentials the simplest solution to the equations of motion of the 5d super-gravity is the at Minkowski spae. Compati�ation to 4d on suh bakground is analogousto the standard Kaluza-Klein proedure. It does not break any of the supersymmetry andyields N=2 supergravity in four dimensions. Non-trivial potentials generially forbid at spaesolutions. The simplest solution are then so-alled BPS solutions whih preseve exatly onehalf of supersymmetries. The solutions preserving 4d Poinar�e invariane usually depend onthe �fth, transverse oordinate; this is not ompatible with the standard Kaluza-Klein ansatzand makes the proess of ompati�ation less straightforward. One spei� example of suhproedure will be thoroughly studied in setion 5.Another interesting aspet of gauging is that fermion mass-like terms appear in the la-grangian. At �rst sight, this may seem strange, for graviton remains massless and one of theommon opinions about supersymmetry is that it requires the same masses for eah memberof a supermultiplet. But the above statement is true only for the ase of supersymmetry in theat spae. Thus, the fermion mass terms are another indiation that we should not expet atspae solutions in gauged supergravities. 16



2.2.4 The �nal form of the ation and supersymmetry transforma-tionsIn this setion we present the general ation up to four-fermi terms and supersymmetry trans-formation up to three-fermi terms of �ve-dimensional N=2 gauged supergravity with gaugedAbelian isometries of the hypermultiplet manifold .The ation is given by:S = ZM5 d5xe5�2 (Lkineti + Lfermi mass + Lfourfermi � g2V ) (2.12)Lkineti = �12R � 12 �A��D�  A � 12GijF i��F j�� � 112p2dijk���Æ�Ai�F j�F jÆ��12Gij��bi��bj � huvD�quD�qv � 12�Ax�D��Ax � 12�a�D��a+ i4p2( A��Æ Æ A + 2 �A �A � �Ax���Ax � �a���a)biF i�� + 12p2(�Ax �� �A)bxiF i�� i8p2(�Ax���Ax)dijkbixbjyFk�� � i2(�Ax �� �A)bxi ��bi + i(�a�� �A)V Aau D�qu (2.13)In the above formula nv vetor multiplet salars �x appear through nv+1 salars bi subjetto the onstraint dijkbibjbk = 6; bix is short for �bi��x . V Aau denotes the vierbein of the quaternionimanifoldMh, whih is onneted to the metri h through the formula:huv = V Aau V Bbv 
ab�AB (2.14)The gauge ovariant derivative ating on hypermultiplet salars is D�qu � ��qu + gAi�kui .We do not gauge vetor multiplets, so we have ordinary partial derivatives ating on the vetormultiplet salars ontained in bi �elds. The ovariant derivatives ating on fermion �elds are:D��a = r��a +D�qu�uab�b + gAi��ukvi V uAaVvAb�bD��Ax = r��Ax + ���y�xyz�Az +D�qu!uAB�Bx + gAi�PiAB�BxD� A� = r� A� +D�qu!uAB B� + gAi�PiAB B� (2.15)In these formulae, r denotes an ordinary spae-time ovariant derivative inluding thespae-time spin onnetion. The term involving vetor �elds Ai� is due to the gauging de-sribed in the previous subsetion. The terms involving derivatives of salars are to render theexpression ovariant on the salar manifolds; these terms an be readily worked out by notingthat the SU(2) and Sp(2nh) indies are ontrated with the orresponding part of the spinonnetion , and the vetor index x is ontrated with the Christo�el onnetion on the vetormultiplet manifold.The fermion mass terms are:Lfermi mass = � igp2biPABi  �A�� �B + gp2bixPABi �xA� �B + gp2V Au abikui �a� �A+ig( 3p2dijkbixbjyPkAB + 3p2bixbjyGijbkPkAB)�xA�yB+ igp2V Aau bixkui �a�Ax � ig4p2V Aau V Bbv �ABbir[ukv℄i �a�b (2.16)As usually, we skip all four-fermion terms. We reall that the potential V is given by:V = �2GijtrP iPj + 4bibjtrP iPj + 12bibjhuvkui kvj (2.17)17



Finally, we give the supersymmetry transformation laws. The supersymmetry parameter�A, like gravitino, is a Majorana sympleti spinor and arries the R-symmetry SU(2) index.The three-fermion terms in the transformation laws of fermions are omitted:� Gravity multipletÆem� = 12�Am �AÆ A� = D��A � i6p2( �� � 4Æ��)aiF i��A + igp23 biPABi ��B (2.18)� Vetor multiplet + graviphotonÆAi� = � i2p2bi �A�A + 12p2bix�A��AxÆ�Ax = bxi ( i2���bi + 12p2��F i��)�A + gp2bxi P iAB�BÆbi = � i2bix�A�Ax (2.19)� Hypermultiplet Æqu = i2V uAa�A�aÆ�a = �iV Aau �D�qu�A + g 1p2V Aau bikui �a (2.20)Note that only fermions reeive orretions from gauging (always represented by the lastterm).2.3 Supergravity in four dimensionsIn this setion we follow losely the referene [17℄. In four dimensions the simplest (and the onlyphenomenologially viable) supergravity theory is N=1 supergravity with four superharges.The gravity multiplet ontains only two omponent �elds: spin 2 metri g�� and spin 3/2vetor spinor  �, whih in the ustomary formulation is subjet to the Majorana ondition.The greek indies � � ... from the middle alphabet are four-dimensional and run over 0..3.As in �ve dimension, salar �elds and their superpartners an be oupled to the four di-mensional gravity multiplet. In four dimensions a salar multiplet ontains a spin 0 omplexsalar �eld zi and its spin 1/2 fermion superpartner �i; the index i ounts the number of salarmultiplets . The omplete lagrangian is determined by the kineti terms of the salars whihan be written in terms of a sigma model metri, also in this ase having the geometrial inter-pretation. This time salar �elds parametrize a omplex manifold of the K�ahler type, and thekineti terms are determined by the K�ahler manifold metri. For our purpose it is importantto know that this metri an be expressed in terms of a K�ahler potential K:gij = � ��zi ��zjK(z; z�) (2.21)18



Even without gauging we an have a potential for salar �elds whih an be desribed in termsof a holomorphi funtion W alled the superpotential. It is usufel to de�ne:G = �K � ln(jW j2) (2.22)In this subsetion we put the 4d Plank sale equal to one. Contrary to the 5d ase, in fourdimensions we an an introdue a Yang-Mills supermultiplet whih ontains a spin 1 vetor�eld Aa� and a spin 1/2 gaugino �a, both in the adjoint representation of the gauge group (a isthe group index). Gauge multiplets an be oupled to 4d supergravity and the salar multipletstransform in some representation of the gauge group. The basi funtion whih determines theoupling is the gauge kineti funtion fab. It is a holomorphi funtion of z. The kineti termsof the gauge �elds are: Lgkin = �14RefabF a��F b�� (2.23)The 4d supergravity ation onsists of the following terms:S4 = 1�2 Z d4xe4(LBkin + Lpot + LD + LFkin + LFmass + L4fermi) (2.24)The determinant of the 4d vierbein is denoted e4. The bosoni kineti terms are:LBkin = �12R +GijD�ziD�z�j � 14RefabF a��F b�� � 14ImfabF a�� ~F b�� (2.25)The notation we use is Gi = �G�zi ,Gj = �G�(zj)� , and so on. Note the axion type ouplingsdetermined by the imaginary part of the gauge kineti funtion f .The potential part is: Lpot = exp(�G)(3 +Gk(G�1)klGl) (2.26)Whenever salars are harged under gauge symmetries, the so-alled D-terms arise.LD = �12 g2Refab (GiT aji zj)(GkT blk zl) (2.27)The fermion kineti part of the lagrangian is:LFkin = �12 ����D� � +Gij�i�D��j+14Refab(��a�D��b + 12�a��� �F b�� � 12�aR��bRGiD�zi)+18�a5��bD�Imfab � 14f iab�Ri���bLF a�� + 18 �5��� �GiD�zi�Gji R����LjD�z�i � (Gijk + 12GikGj)�Ri��kLD�zj (2.28)The terms desribed as 'fermi mass' ontain interations bilinear in fermion �elds and poly-nomial in salar �elds. They beome real mass terms only when salars develop vauum ex-petation values: LFmass = 12e�G=2 L��� R� + 14e�G=2Gl(G�1)kl f �abk�aL�bR+e�G=2(Gij �GiGj �Gl(G�1)klGijk )�Ri�Lj � e�G=2Gi L���Li�12 igGiT aji zj R���aR + 2igGjiT akj zk�aL�iR + 12 ig(Ref)�1ab f bkGiT aji zj�Rk�L (2.29)19



The supersymmetry transformation laws are:Æem� = 12�m �Æ L� = D��L + 12e�G=2��R � 14�L(GiD�zi �GiD�z�i)� 116(2g�� � ��)�L�a5��bfab + : : :ÆAa� = �12���aÆ�aR = �14���RF a�� ig2 Ref�1ab GiT bji zj�R + : : :Æzi = �R�LiÆ�Li = 12�D�zi�R � 12e�G=2(G�1)jiGj�L � 18�L(G�1)ki f �abk�aL�aR (2.30)We skipped all three-fermi terms exept for those involving gaugino bilinears whih will beimportant in further disussions.
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Chapter 3Horava-Witten modelAt the time when Horava and Witten onstruted their model, the ommon opinion was thatthe only phenomenologially viable string theory is the E8 � E8 heteroti superstring theory.To understand the motivation of the authors we must �rst briey reall the basi features oflow energy theories derived from the heteroti superstring theories.In the low energy limit (that is below the Plank sale) the weakly oupled E8 � E8 het-eroti string theory redues to the 10d Type I supergravity oupled to one E8�E8 Yang-Millsmultiplet. To make ontat with the real world this theory is further ompati�ed to fourdimensions on the bakground M4 � K, where M4 is the non-ompat spae where we live,and K is a ompat six dimensional manifold. The number of superharges of the Type I 10dsupergravity is 16 and orresponds to N=4 supersymmetry in 4d. However, if supersymmetry isrelevant to our TeV sale world it an be at most N=1 supersymmetry, so the ompati�ationmust somehow break the remaining supersymmetries. This an be ahieved by hoosing for Ka omplex K�ahler Rii-at manifold of SU(3) holonomy known as the Calabi-Yau three-fold.One we deide on the Calabi-Yau manifold, we obtain a number of remarkable preditionsonerning the four-dimensional e�etive theory:1. If we want (for osmologial reasons) the non-ompat part of the bakground M4 to bemaximally symmetri, then by �eld equations it is neessarily the Minkowski at spae(de Sitter and anti-de Sitter spaes are exluded); thus string theory an in prinipleprovide us with the explanation of the observed atness of the universe.2. The simplest hoie of the vauum expetation value for the gauge �elds whih satis�es theequations of motions (preisely - the Bianhi identity of the two-form �eld) breaks the E8gauge group to E6. The exeptional group E6 was proposed for the Grand Uni�ed Grouplong before the advent of the string phenomenolgy. It has a omplex representation 27whih an aomodate one generation of the Standard Model �elds. The ompati�ationpredits a number of supermultiplets in this representsation. Moreover, E6 ontainsSO(10) and SU(5) as its subgroups so it an be broken to more standard and thoroughlyinvestigated GUT groups.3. Generially, we get more than one opy of massless 27 (whih beome massive onlyafter supersymmetry breakdown and their masses are of the order of the eletroweaksale). Thus, we have a natural explanation of the existene of generations in the SM.The predited number of generations in the low energy world is one half of the Eulerharateristi of the Calabi-Yau three-fold and so the atual number of generations anbe understood on stritly topologial grounds.aaaaaa21



4. One we hoose to plae the SM matter in the representations of E6 we automatiallyget extra matter from the seond E8 setor whih ouples only gravitationally to theobservable partiles; in other words we automatially get the so-alled hidden setor - themost popular mehanism of supersymmetry breaking in realisti model-building5. The ompati�ation universally yields also an axion so, in priniple, we are able to solvethe strong CP problem.The impresive suess of the heteroti string theory was shadowed by one disturbing fat: thegravitational and gauge oupling did not unify at the GUT sale but rather at a sale an orderof magnitude higher. Imposing the uni�ation at the GUT sale required the string ouplingonstant muh bigger than one and thus out of the range in whih perturbative alulationsin string theory ould make any sense (note that string theories are formulated only perturba-tively).Shortly before the Horava-Witten model was onstruted the unexpeted relations (duali-ties) between various string theories had been disovered. It beame lear that taking the limitof large (aproahing in�nity) string oupling onstant ould lead to another theory whih wasnot neessarily a string theory. At that time it was known e.g. that the strong oupling limit ofthe type IIA superstring theory is an eleven dimensional theory provisionally named M-theory.Horava andWitten took seriously the message stemming from the (lak of) gauge-gravitationaluni�ation and onsidered the strong oupling limit of the E8�E8 heteroti superstring theory.They onjetured [2℄ that in this limit one got M-theory ompati�ed on M10 � S1=Z2 , whereM10 is a smooth 10d manifold and S1=Z2 is equivalent to the interval. In the low energy limitM-theory redues to 11d supergravity. Thus, the strong oupling limit of the E8 � E8 het-eroti string theory should orrespond to eleven dimensional supergravity on a manifold withboundaries. This onjeture an be the starting point for phenomenologial onsiderations.What happens to gauge group present in the weakly oupled limit? Contrary to the ten-dimensional ase, there is no Yang-Mills supermultiplet in eleven dimensions, but in the Horava-Witten model we still have ten-dimensional boundaries of the interval at our disposal. Horavaand Witten found [3℄ that the onsisteny of the model (preisely - the anomaly anellation)requires one YM supermultiplet in the adjoint of E8 at eah end of the interval. In a sense,the E8 � E8 of the weakly oupled limit is ut in two parts. The size �� of the eleventhdimension an be shown to orrespond to the strength of the string oupling; taking the limit�! 0 redues the Horava-Witten model bak to the ten-dimensional desription of the weaklyoupled ase and the two E8 fators merge together.Though it was not lear from the begining whether a theory in whih part of the �elds residedon a lower-dimensional manifold ould be onsistently supersymmetrized, Horava and Wittenshowed [3℄ by the diret onstrution, that supersymmetrization was possible. One an expetthe supersymmetry of the string theory to survive in the strong oupling limit, whih makessupersymmetrization of the Horava-Witten model a non-trivial test of the onsisteny of theentire set-up. In the ase of supergravities on smooth manifolds we an lassify possible theoriesand �eld representations by means of the so-alled tensor alulus. In the ase of the Horava-Witten model, due to the presene of boundaries the ommutation relations beome singularand the tensor alulus does not work. So far a general formulation of loally supersymmetritheories with matter residing on submanifolds has not appeared.The proedure applied by Horava and Witten in order to ouple the Yang-Mills supermul-tiplet is known as the Noether method. The idea is to start with a globally supersymmetritheory lagrangian. To promote this symmetry to a loal one, new terms are iteratively added22



to the lagrangian and to the transformation laws. At eah step the lagrangian is varied andthe modi�ations of the lagrangian and supersymmetry transformations needed to anel thevariation are guessed. It is not guaranteed that the proedure ends in �nite time, but if theoupling is possible one usually needs only a few steps.3.1 11d supergravity on M10 � S1=Z2Before proeeding we must �rst de�ne our 11d supergravity on the manifold of whih onedimension (say, the eleventh) is an interval. M10�S1=Z2 is essentially a manifold with boundaryand we should speify the appropriate boundary onditions for the eleven-dimensional �elds.However, there is a more onvenient way to deal with this problem. In the following, we workwith �elds de�ned on the smooth manifold M10 � S1 and impose a Z2 symmetry on the �eldsof 11d supergravity.We parametrize the irle S1 with the oordinate x11 whih extends from ��� to �� and weidentify the endpoints. The Z2 parity ats by x11 ! �x11. The �xed points of this symmetryoperation are ten-dimensional hypersurfaes x11 = 0 and x11 = �� where the gauge �elds areloated. Eleven dimensional �elds an be even (�(x11) = �(�x11)) or odd (�(x11) = ��(�x11))under Z2 . Note that the odd �elds must either vanish or be disontinuous at the �xed points,hene they are not dynamial �elds on the submanifolds where the gauge �elds live. Z2 takes�11 into ��11 so the eleventh derivative reverses the parity assignments.We require Z2 to be the symmetry of the eleven dimensional ation. In the following wesingle out ten dimensonal indies (0..9) whih are denoted with latin letters from the beginningof the alphabet A,B,... We de�ne gAB to be even so that the ten-dimensional part of the metriis dynamial at the �xed points; all the subsequent parity assignments follow from this hoie.The Rii salar R ontains the eleventh derivative of gA11 so those omponents must be odd.The similar reasoning leads to g11 11 being even: R ontains either two or no eleventh derivativesof this omponent of the metri. Equivalently, in the vielbein language eaA and e1111 are even ande11A and ea11 are odd. In summary, the metri omponents whih ontain odd number of '11' areodd.The parity assignments of the three-form �eld C follow from the 'topologial' term in theation �I1::I11CI1::I3GI4::I7GI8::I11 . Let us suppose I1 = 11 (thus the remaining indies areten dimensional; otherwise the Levi-Civita tensor is zero). The two �eld strengths GABCDmultiplied by eah other are even, whatever parity is hosen for a single GABCD. Then thewhole expression is Z2 invariant only when we hose C11AB even and it follows that G11ABCmust be even. Next, the invariane of the kineti term G11ABCG11ABC together with the fatthat g11A is odd requires that GABCD is odd. In summary, an odd number of '11' in C or Gmeans that this omponent is even.A little less straightforward is the ation of Z2 on gravitinos. Consider the interation term J�KL MGJKLM . From the previously obtained Z2 assignments of G it follows that  A�B11 Cis even and  A�BC D is odd. This is possible only if  A(x11) = �11 A(�x11). Then the formerexpression: A(x11)�B11 C(x11) = �11 A(�x11)�B11�11 C(�x11) = � A(�x11)�11�B11�11 C(�x11)=  A(�x11)�B11 C(�x11)is indeed even as one must anti-ommute one with �B to anihilate two �11's. Similarly the latterexpression is odd as one must anti-ommute twie. Analogous reasoning leads to  11(x11) =23



��11 11(�x11).If we want the supersymmetry transformations to ommute with Z2 we must also asignthe orret Z2 parity to the supersymmetry transformation parameter �. From the gravitinotransformation law Æ A = DA� + ::: we an read o� that the parity assignment of � must bethe same as that of the ten-dimensional omponents of the gravitino: �11�(x11) = �(�x11)One an easily hek that with this assignments the rest of the terms in the 11d supergravitylagrangian as well as the supersymmetry transformation laws are Z2 invariant. Below wesummarize the Z2 properties of the 11d �elds:even oddeaA; e1111 e11A ; ea11C11AB; G11ABC CABC ; GABCD (3.1)�11 A(x11) =  A(�x11)�11 11(x11) = � 11(�x11)�11�(x11) = �(�x11) (3.2)3.2 Coupling 10d Yang-Mills supermultiplet to 11d su-pergravityIn this subsetion we review the Horava-Witten onstrution following the referene [3℄. Westart with the 11d supergravity lagrangian given in (2.1). We know that this lagrangian pos-sesses loal supersymmetry and the supersymmetry transformations are given in (2.3). Nexta perturbation onsisting of a 10d vetor supermultiplet in the adjoint representation of E8 ateah �xed point is added. In the folowing, the gauge group will not be important and the super-symmetri oupling is possible for any group. We onentrate only on the brane at x5 = 0; themodi�ations required on the seond brane are idential. Following the standard terminologywe will all the interior of the 11d spae the 'bulk' and the boundaries will be desribed as the'branes'.Ten dimensional gauge supermultiplet ontains gauge �elds AaA and gauginos �a. The latinindies A,B,... are ten dimensional and run over values 0..9. a is a group index whih weoften suppress (it should not be onfused with the Sp(2nh) index of 5d sympleti Majoranaspinors). In ten dimensions we an de�ne spinors whih satisfy both the Majorana and theWeyl onditions. The gaugino � is suh a Majorana-Weyl spinor with de�nite hirality andsatis�es �11� = �. We add to the 11d supergravity ation the kineti terms for the gaugemultiplet: SYM = 1�2 ZM11 d11xe11Æ(x11)LYMLYM = �14F a��F ��a � 12�a�ADA�a (3.3)Classially, � is a free parameter - the gauge oupling of E8. However gravitational and gaugeanomalies anel out only if � is related to the gravitational oupling by the formula [3℄:�2 = 2�(4��2)2=3 (3.4)24



Note that the bulk ation is multiplied by 1=�2 and the boundary ation by 1=�2 � 1=�4=3.Thus the boundary ation an be onsidered a �rst order perturbation in �2=3. The relation 3.4an be qualitatively established on the basis of the dimensional analysis, as � has dimension(mass)�3 and � - (mass)�9=2; the anomaly anellation analysis gives just the preise form ofthis relation.The delta funtion is de�ned ovariantly:ZM11 d11xe11Æ(x11) = ZM10 d10xe10 (3.5)where M10 is the hypersurfae x11 = 0 inM11 and e10 is built from the ten dimensional ompo-nents of the vielbein. The above super-Yang-Mills lagrangian possesses global supersymmetryand the supersymmetry transformations are:ÆAaA = 12(��A�a)Æ�a = �14�AB�F aAB (3.6)Interestingly enough, the super-Yang-Mills ation exists only in 3, 4, 6 and 10 dimensions. Theform of the ation is always the same (but of ourse the dimensionality of spinors and gammamatries must be appropriate for a given spae-time dimension).The spinor parameter � is Majorana-Weyl. It is ruial for the whole onstrution toidentify � with the parameter of the loal supersymmetry transformations in 11d supergravity.Although in eleven dimensions we annot impose the Weyl ondition (suh ondition would notbe invariant under general oordinate transformations as �11 is one of the matries of the 11dCli�ord algebra), enforing the Z2 symmetry �11�(x11) = �(�x11) has the e�et that at the�xed point the 11d parameter � indeed satis�es the Weyl ondition �11� = �.We ompute the variation of the lagrangian (3.3) using the transformations (3.6) with a gen-eral x-dependent parameter �. The variation of the gauge kineti term F 2 yields� e2FABD[A(��B℄�)while the variation of the gaugino kineti term yields e4FAB(��AB�CDC�). Together they sumto ÆLYM = � e4FAB[DC(�(��AB�C + �ABC)�) + (��AB�CDC�)℄= e4 [FAB(DC��AB�C�) + FABDC(��ABC�)℄= e4FAB(DC��AB�C�) (3.7)In the �rst line the gamma matries identity ��AB�C + �ABC = �2gA[C�B℄ was used. Inthe last line we integrated by parts (this is allowed as the invariane of the ation requires thelagrangian to be invariant up to a total derivative) and used the Bianhi identity for the �eldstrength D[AFBC℄ = 0.The variation (3.7) an be anelled by adding a new term to the boundary lagrangian:LN = �e4( ABCA�)FBC (3.8)The part of the gravitino variation proportional to DA� in LN anells the variation of LYM .Note that in in the language of the 11d ation this term is multiplied by the delta funtion.This term is usually alled the Noether term. In fat, what we did was to ouple the Noetherurent (superurrent) of a globally supersymmetri lagrangian to the gravitino, whih is the25



gauge �eld of supersymmetry [17℄, in analogy to what one does in loally symmetri Yang-Millstheories.It turns out that more modi�ations are needed. The hint is given by onsidering thevartiations of the form � F 2. These ome from varying the vielbein in the gauge kineti termand from varying gauginos in the Noether term. After some tedious manipulations one �ndsthat these variations do not anel by themselves. What is left is:ÆL = e16 A�ABCDE�FBCFDE (3.9)The situation is reminesent of what we enounter in 10d supergravity. There, the identialalulations yield the same result and to anel the variations of the form � F 2 one is fored tomodify the Bianhi identity for the three-form �eld strength. In the framework of the Horava-Witten model we do not have any form �elds on the boundary, but we have the four-form�eld strength G in the bulk. Therefore, the natural idea is to anel the above variation bymodifying the Bianhi identity for G. It turns out that the orret solution is to replae G inthe bulk lagrangian with: Ĝ11ABC = G11ABC + �2p2�2 Æ(x11)!ABC (3.10)where ! is the Chern-Simons form satisfying:�[A!BCD℄ = 6F a[ABF aCD℄ (3.11)Another way to desribe the above orretions is to say that the Bianhi identity for the modi�edfour-form �eld strength reads:(dG)11ABCD = �3p2�2�2 Æ(x11)F a[ABF aCD℄ (3.12)What is the mehanism to anel (3.9)? When we vary the 11d bulk lagrangian, we must hek,in partiular, if the variations of the form � G anel. Varying the gravitino kineti term andonsidering the part of the gravitino transformation law proportional to G, we get an expressionof the form: ÆL =  A(Gamma0s)DB(�G11CDE) (3.13)When the derivative ats on the spinor � the variations anel with the variations of gravitnoproportional toDA� in the  2G terms. In the pure 11d supergravity, the part with the derivativeating on G is identially zero due to the Bianhi identity dG=0. If the Bianhi identity ismodi�ed as in (3.12) the derivative ating on G ontributes to the variation and preiselyanels (3:9).Rede�nition of the �eld strength G must be supplemented by the modi�ation of the su-persymmetry transformation law of G by a term:+ÆĜ11ABC = 3�2p2�2 Æ(x11)��[A�FBC℄ (3.14)It should be stressed that the modi�ation of the Bianhi identity is just a onvienent andompat way of saying that we add new boundary ouplings. In the ase at hand we ouplethe bulk �eld C to the polynomial built of the boundary gauge �elds.26



Another neessary boundary oupling an be determined by onsidering variations of theform ��GF whih originate from variation of  proportional to G in the Noether term andfrom variation of Ĝ proportional to F in the kineti term of G. These two variations do notanel and the left-over is: ÆL = �p2e96 ��BC�DEF�FBCGDEF11 (3.15)It is easy to see that to anel the above a new term in the boundary lagrangian is needed:+L = p2e48 ��DEF�GDEF11 (3.16)The YM variation (3.6) of the gauginos is enough to ensure that variatons of the form ��FGindeed anel out.The remaining orretions are four-fermi terms in the boundary lagrangian and three-fermiterms in the supersymmetry transformation laws. Although, to have on�dene in the theoryit is very important to show that supersymmeti variation of the ation indeed vanishes afteradding these orretions, the atual alulations is tedious and not very spetaular. Therefore,we onentrate only on a few interesting aspets of this alulation, whih will be important inthe following setions.First, we shall take a loser look at modi�ations of the gravitino transformation law. Theyan be determined from the study of 4-fermi variations of the form D ���. They do not anelby themselves and the gravitino transformation law must be supplemented with:+Æ A = � �2288�2 Æ(x11)(��BCD�)(�ABCD � 6gBA�CD)�+Æ 11 = � �2288�2 Æ(x11)(��ABC�)�ABC� (3.17)The objet of interest here is the delta funtion. It must be present, sine the variations wewant to anel are on the boundary and we vary the gravitino kineti term whih lives in thebulk. But this may ause troubles. We have already gravitno interations on the boundary (theNoether term) and suh terms in the 11d ation are already proportional to the delta funtion.If we vary gravitino entering the boundary terms (3.17) we get singular variations whih areformally proportional to the delta squared. Even worse, suh singular variations do not anelout. Sine, suh variations are proportional to �4�4 (w.r.t to the bulk ation) we have to admitthat the Horava-Witten model is valid only to the �rst order in perturbation in �2�2 � �2=3.Nevertheless, we an try to anel at least some of the variations of order �4�4 . For example(3.17) in the Noether term and variation of Ĝ in the G�� interation yield:ÆS = � Z d11xe11Æ2(x11) �21536�4 (��ABC�)(��ABC�DE�)FDE (3.18)whih an be easily anelled by varying the gaugino in the new singular, quarti in gauginosinteration: +S = � Z d11xe11Æ2(x11) �21536�4 (��ABC�)(��ABC�) (3.19)An interesting observation is that this singular term is a part of a 'perfet square'. The situationis similar to what one enounters in ten-dimensional supergravity, where gauginos group into27



a perfet square (H + ��)2 with the three-form �eld strength (of ourse, in 10d there are nosingular terms). In the Horava-Witten model, gauginos ombine into the perfet square withthe four-form �eld strength G. The bulk kineti term of G, the boundary interation G�� andthe singular term �4 an be written as:Sps = � Z d11xe11 148(GABC11 � p2�28�2 Æ(x11)��ABC�)2 (3.20)This form suggests, that we ould formally get rid of the divergent term by rede�ning the�eld strentgh G. Thus, we an trust, that in spite of the singularities, the Horava-Witten modelis a sensible theory. Later we will see that singularities indeed drop out from the e�etivefour-dimensional theory.3.3 Higher derivative orretionsThe derivations of the previous subsetion were limited to terms whih are at most seondorder in derivatives. However, plenty of physis is ontained in higher derivative interations.To avoid gravitational and gauge anomalies we must inlude terms proportional to R4 and F 4in the ation [3℄. The preise form of these terms will not onern us in this thesis but thereare two orreions to the lagrangian whih will be important in the following disussions.First, we found that the Bianhi identity for the four-form �eld strength G must be mod-i�ed modi�ed. Anomaly anellation analysis introdues further, higher order in derivativesorretions, so that the Bianhi identity reads (up to �4�4 terms):(dG)11ABCD = �3p2�2�2 [(F (1)[ABF (1)CD℄�12 tr(R[ABRCD℄)Æ(x11)+(F (2)[ABF (2)CD℄�12 trRABRCD)Æ(x11���)℄(3.21)Note the fators 1/2 appearing in front of the traes of the urvature tensor, whih will beruial in the subsequent disussion, beause they forbid vauum solutions with G=0.The seond modi�ation we mention is the boundary term involving the urvature, so thatthe bosoni part of the boundary lagrangian reads:LYM = � e4�2 (F (1)ABF (1)AB � 12RABCDRABCD) (3.22)and similar terms are added on the seond brane. This modi�ation will be helpful to determinethe boundary salar potential in the low energy theory.3.4 Compati�ation to �ve dimensionsIf theory is to desribe our physial world, it has to redue to a four dimensional e�etive �eldtheory at low energies. But the ompati�ation does not have to proeed in one step; theremay exist some intermediate sale, at whih the theory an e�etively be formulated in morethan four dimensions. This is the ase with the Horava-Witten model in an interesting regionof its parameter spae. To obtain the uni�ation of gauge and gravitational ouplings, thesize of the eleventh (orbifold) dimension must be about an order of magnitude larger that theharateristi length of the remaining six ompat dimensions. Thus, just below the Planksale, the Horava-Witten model is desribed by a �ve dimensional theory.28



Generally, to obtain a low energy e�etive theory one has to perform the Kaluza-Kleinredution. The extensive introdution to KK redution in the ontext of string theories anbe found in [27℄ and here we present only the most important key-words. We assume that thebakground manifold on whih we ompatify is a diret produt M � K, where M is non-ompat and parametrized with oordinates x and K is a ompat manifold with oordinates y.We write the �elds 	 of the original theory as a sum 	(x; y) = Pn �n(x)�n(y). The equationsof motion �	 = 0 of the original theory split into:(�M +�K)�(x)�(y) = 0 (3.23)The laplaian � has a di�erent meaning depending on the ontext; if 	 is a salar �eld it is anordinary laplaian, if 	 is a spinor it is the Dira operator. We demand that the �elds � areeigenvetors of the laplaian �K on the manifold K with eigenvalue m2n. Then the equationsof motion take the form: (�M +m2n)�n = 0 (3.24)The linear independene of eigenvetors of the laplaian was used. This is the equation of motionfor a �eld �n with mass mn. Thus, in the e�eive theory we get a tower of �elds with massesorresponding to the eigenvalues of �K . On dimensional grounds we expet that generi massesare proportional to 1/R where R is the harateristi length sale of K. For phenomenologiallyviable values of R, these masses are huge and the orresponing �elds deouple from the lowenergy theory. The only �elds that remain in the e�etive desription orrespond to mn = 0, inother words, to the zero-modes of �K . Usually, massless �n are also alled zero-modes. Belowwe determine only the zero-modes of bosoni �elds; if our bakground preserves supersymmetry,the zero modes of fermioni �elds must �t in supermultiplets.As was already mentioned, the Horava-Witten model is the strong oupling limit of theheteroti E8�E8 string theory. Phenomenologially promising ompati�ations of that stringtheory are obtained on bakgrounds of whih the ompat omponent is a six-dimensionalCalabi-Yau manifold. It is then reasonable to ompatify the Horava-Witten model on a Calabi-Yau three-fold. A Calabi-Yau three-fold breaks exatly one fourth of the supersymmetries. Inthe ase of heteroti strings we have a ten dimensional theory with 16 superharges, so thee�etive theory is four dimensional and possesses N=1 supersymmetry (4 superharges). TheHorava-Witten model is eleven dimensional and has 32 superharges, so its ompati�ationon a Calabi-Yau three-fold yields a �ve dimensional theory with 8 superharges. Suh theoryis alled N=2 5d supergravity and was desribed in the setion 2.2.The preise form of the �ve dimensional e�etive theory was found in [5℄. The bakgroundmetri is given by: ds2 = V �2=3g��(x)dx�dx� + gij(y)dyidyj (3.25)gij is the metri on the Calabi-Yau and V is the Calabu-Yau volume de�ned by V =RCY qdet(gij). The fator V �2=3 is to ensure that the �ve-dimensional metri g�� has theanonial Einstein-Hilbert ation (that is, the kineti term of the metri is �12R). We havehanged the notation, so that the original eleventh dimension has beome the �fth.Having deided on the ompat Calabi-Yau manifold we still have ertain freedom in hoos-ing its parameters. The equations of motion do not restrit these parameters so they orrespondto massless salar �elds in the e�etive theory. They are alled the moduli of the ompati�-ation.Every Calabi-Yau manifold is endowed with the K�ahler form !. This is a losed two-form(d! = 0, usually we hose d�w = 0, so that it is also harmoni) with one holomorphi and29



one anti-holomorphi index, that is a (1,1) form in the terminology of omplex manifolds. Thenumber of independent harmoni (1,1) forms on a Calabi-Yau three-fold is arbitrary and isharaterized by the Hodge number h1;1. The K�ahler form is thus a linear ombination of h1;1forms: !a�b = ai!ia�b (3.26)Another harateristi parameter of a Calabi-Yau three-fold is the Hodge number h2;1. Inthe usual aproah to ompati�ation it is assumed that h2;1 = 0. If this number is non-zero,a number of hypermultiplets in the 5d theory appears, but their struture is independent ofthe spei� features of the Horava-Witten model. The Calabi-Yau three-folds have no otherindependent Hodge numbers. We have h00 = h30 = h03 = 1 h22 = h11 and the remainig hab arezero.The ai's beome the dynamial �elds in the e�etive theory. However they are not inde-pendent of V, as the Calabi-Yau volume an be expressed as V = 16 R ! ^ ! ^ !. We have therelation 6V = dijkaiajak (3.27)where the Calabi-Yau intersetion numbers are de�ned as dijk = R !i^!j ^!k. Thus, the �eldsai together with V desribe only h1;1 independent degrees of freedom.We must also determine the zero-modes orresponding to the three-form �eld C. In the �rstorder in �2�2 its equations of motion are dG = d�G = 0 whih are trivially satis�ed by G=0=dC.The 11d three-form �eld C survives in the e�etive 5d theory as a one 5d three form �eld (whihby duality orresponds to one real pseudosalar), h1;1 vetor �elds Ai� and one omplex salar�. If C is harmoni its various omponents an be deomposed in the following way:C��(x)C�a�b = 16Ai�(x)!ia�bCab = 16�(x)
abCab = 16 ��(x)
ab (3.28)In the �rst line we used h00 = 1 (the unique harmoni (0,0) form is just a onstant), while thelast two lines result from h30 = h03 = 1 and 
 is the unique harmoni (3,0) form on Calabi-Yau.Let us summarize the bosoni spetrum of the �ve dimensional e�etive theory obtainedby the ompati�ation of the bulk ation. We have the 5d metri g��, h1;1 vetor �elds Ai�,h1;1 real salars ai (whih are subjet to the onstraint (3.27)) , three salars V, �, and �� anda three-form C�� . Our task is to interpret them as omponenents of 5d supermultiplets.Obviously, the metri belongs to the gravitational multiplet. Due to the de�nition (3.25 ithas the orret Einstein-Hilbert kineti term �12R. To omplete the bosoni part we need agraviphoton. We have the vetors �elds A and we expet that the graviphoton is their linearombination. The preise formula is 23biAi� but it is not so important as the formulation of 5dsupergravity we gave in the previous setion plaes all vetor �elds on equal footing.Of ourse, we an have only one gravitational multiplet, so the remaining vetor �elds must�t in h1;1 � 1 vetor multiplets. To omplete the vetor multiplets we have salars ai. If wede�ne: bi = V �1=3ai (3.29)30



then the �elds bi represent h1;1 � 1 degrees of freedom and are subjet to onstraint:K(b) � dijkbibjbk = 6 (3.30)This is exatly ompatible with the formulation of dynamis of salars belonging to vetormultiplets we presented in subsetion 2.2.1. In the general formulation the symmetri tensord is arbitrary, while in the ompati�ed theory it aquires an interpretation of the Calabi-Yauintersetion numbers.The metri of the sigma model desribing salars b an be expliitly expressed in terms ofthe harmoni forms on the Calabi-Yau manifold:Gij = 12V ZCalabi�Y au !i ^ (�!j) (3.31)The funtions K and Gij given above are suÆient to reover the oupling of the vetor multi-plets to 5d supergravity, as desribed in subsetion 2.2.1We are left with three salars and one three form whih is equivalent to a salar. As wehave no vetors left, the natural guess is that these four salar degrees of freedom belong toa hypermultiplet. This multiplet is usually alled the universal hypermultiplet as the abovementioned moduli arise in any ompatiation of M-theory on Calabi-Yau. After dualizing thethree form to a salar � by G��Æ = 1p2���Æ�(��� � i(����� � �����)) the kineti terms of thehypermultiplet salars read:Skin = � R d5xe5 12�2 ( 12V 2 (��V ��V + ������) + 2V ����� ��+ i2V 2 (�������� � ��������)� 12V 2 ((��� ��)2 + (�����)2 � j�����j2) ) (3.32)In the languag used in the setion 2.2 this sigma model orresponds to the K�ahler potential:K = �ln(S + �S � 2� ��)S = V + � �� + i�: (3.33)If the ompati�ation of the Horava-Witten model were the standard KK redution, thiswould be the whole story. But in the onsistent redution we are not allowed to neglet thebakground value of the four-form �eld strength G. The reason is that we must satisfy theBianhi identity (3.21), and G = 0 does not solve it. Thus, ompati�ation with G = 0 is notonsistent as the solutions the theory ompati�ed with G = 0 would not be the solutions ofthe original theory.In the ase of the heteroti E8 � E8 string theory the situation is muh simpler. TheBianhi identity for the three-form �eld strength H reads (dH)ABCD � F (1)[ABF (1)CD℄+F (2)[ABF (2)CD℄�trRABRCD. As the spin onnetion and the urvature on Calabi-Yau are SU(3) matries, we anput them equal to the SU(3) subgroup of, say, the �rst E8 and the demand that the vevs of theseond E8 setor are equal to zero. This is what is usually referred to as the standard embedding.Then the Bianhi identity redues to dH=0, the solution H=0 is perfetly legitimate, and theompati�ation is the standard KK redution.In the ase of the Horava-Witten model, beause of the unfortunate fator 1/2, there is nopossibility to anel the right-hand side of the Bianhi identity. However we an still keep thestandard embedding: trF (1) ^ F (1) = trR ^ RF (2) = 0 (3.34)31



The Bianhi identity redues in this ase to(dG)11ABCD = �3p2 �22�2 [trR[ABRCD℄Æ(x5)� trR[ABRCD℄Æ(x5 � ��)℄ (3.35)Its right-hand side has non-zero delta funtion soures supported by the boundaries. Theequations of motion and the Bianhi identity for G are now solved byGabd = 14V �a�b �de �f!i e �f�i�(x5) (3.36)where the onstants �i are de�ned by the integrals:�i := ��2�2 ZCi trR ^R (3.37)over four-yle Ci orresponding to the harmoni !i. In onsequene, �i are proportional tothe Pontryagin index of Calabi-Yau and are quantized. The step funtion �(x5) takes values+1 for x5 2 (0; ��) and -1 for x5 2 (���; 0) .Taking into aount the non-zero bakround value of G essentially hanges the e�eive 5dtheory. Instead of the simple 5d supergravity we obtain its gauged version. Below we arguewhy the e�etive theory should be a gauged supergravity1. The non-zero G in the kineti term G2 in the 11d lagrangian leads in the e�eive theorythe potential term � 14V 2Gij�i�j. This term depends on the salar V and on the salars ofthe vetor multiplets (through the metri Gij). However, potentials for salar �elds aregenerally forbidden in ungauged 5d supergravities.2. Also on the boundaries, when we substitute the kineti terms� e4�2 (trF (1)ABF (1)AB�12trRABRAB)with their bakground values, we get the boundary potential p2V �ibi. In the next setionwe show, that supersymmetrization of suh bakground potentials is possible only whenthe supergravity in the bulk is a gauged one.3. Redution of the topologial term C�efG��ÆGabd yields the oupling of the form:1V 2�iAi���� (3.38)In ungauged supergravities vetor �elds do not ouple in this manner to salars but in thegauged version we reognize in (3.38) a part of the kineti term (D��)2 with the partialderivatives substituted with the ovariant derivatives. Hene, we see that the vetor�elds are the gauge �elds and that it is the �eld � of the universal hypermultiplet whihbeomes gauged. From the kineti terms (3.32) we see that the sigma-model possessesa translational U(1) symmetry � ! � + onst, and in fat it is this symmetry whih isgauged.More detailed alulation proves that indeed all terms in the e�etive lagrangian �t into theframework presented in subsetion 2.2.3. The funtions whih desribe the preise form of thegauged lagrangian are:� Killing vetor ku = (0;�2; 0; 0) (3.39)32



� Prepotential gPAi B =  � 14V i�(x11)�i 00 14V i�(x11)�i ! (3.40)If instead of the standard embedding we used other solutions, the preise form of gauging andthe above funtions would hange, but the general features of the e�etive theory would stayintat.This ompletes the desription of the e�etive bulk theory. We also have zero-modes of the10d boundary gauge �elds. We expet that they yield four dimensional gauge supermultipletsand some salar supermultiplets - their number and representation depends on the hoie of theembedding. In the next setion we determine the boundary theory using the Noether method,in the similar way as it was done in the original paper of Horava and Witten. One ould tryto obtain the boundary theory diretly from the redution, but the method we use an beextended to more general �ve-dimensional theories with matter residing on branes, inludingtheories whih do not follow from the ompati�ation of a higher dimensional theory.
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Chapter 4Coupling of 5-dimensional supergravityto boundariesThe purpose of this setion is to repeat the Horava-Witten onstrution of supergravity oupledin a supersymmetri way to matter �elds on the boundaries, but this time, in the frameworkof �ve-dimensional supergravity de�ned on the M4 � S1=Z2 manifold and with YM multipletsliving on two 3-branes loated at the Z2 �xed points. We restrit ourselves to a spei� non-linear sigma model, namely the SU(2; 1)=(SU(2) � U(1)), oupled to 5d supergravity. Thesystem desribes the dynamis of the universal moduli of the M-theory ompati�ation on aCalabi-Yau three-fold. In this setion we do not onsider vetor multiplets. It is not diÆultto modify this onstrution to inlude other multiplets.In the bulk theory we have the gravitational multiplet (ea�;  A;A�), and the universal hy-permultiplet (�a; V; �; �; �). We quote the kineti part of the 5d ation and write expliitly thesigma-model metri and the sympleti index of the Majorana spinors :S = � R d5xe5 1�2 ( � 12R + 34F��F�� + 12p2���Æ�A�F�FÆ� + 14V 2 (��V ��V + ������)+ 1V ����� �� + i4V 2 (�����D�� � �����D��)� 14V 2 ((�����)2 + (�����)2 � j�����j2)+(12 1���D� 1 + 1! 2) + (12�1�D��1 + 1! 2) ) (4.1)The supersymmetry transformation laws are:Æem� = 12�1m 1� + (1! 2)Æ 1� = D��1 � i4p2( �� � 4Æ��)F��1 + i4V D���1 + 14V (����� � �����)�1 � 1pV ����2Æ 2� = D��2 � i4p2( �� � 4Æ��)F��2 � i4V D���2 � 14V (��� �� � �����)�2 + 1pV �� ���1ÆA� = � i2p2 1��1 + (1! 2) (4.2)ÆV = ip2V (�1�1)� (1! 2)Æ� = + 1p2V (�1�1) + (1! 2) +qV2 (��1�2 � ���2�1)Æ� = � ipVp2 (�2�1) Æ�� = � ipVp2 (�1�2)Æ�1 = � i2p2V (�=(V + i�)� ���=� + ��=��)�1 + ip2V �=��2Æ�2 = + i2p2V (�=(V � i�) + ���=� � ��=��)�2 + ip2V �=���1 : (4.3)35



The Z2 projetion is de�ned in suh a way that bosoni �elds (em� ; e55;A5; V; �) are even w.r.tthe orbifold dimension, and (em5 ; e5�;A�; �) are odd. The ation of Z2 on fermion �elds and onparameter � of supersymmetry transformations is de�ned as:5 A� (x5) = (�3)A B B� (�x5) 5 A5 (x5) = �(�3)A B B5 (�x5)5�a(x5) = �(�3)a b�b(�x5) 5�A(x5) = (�3)A B�B(�x5) (4.4)where 5 = (�1 00 1); �3 = (1 00 �1) and A; a = 1; 2. Sympleti Majorana spinors in 5d satisfy��A = (�A)TC5 with C5 = i225 in 4d hiral representation. At the Z2 �xed points one half ofthe degrees of freedom is eliminated, whih means, that the number of superharges is reduedto one half. This leaves 4 superharges orresponding to N=1 supersymmetry in 4d. Thuse�etively, at x5 = 0; x5 = ��, the seond supersymmetry is killed by Z2, and we an loate3-branes with (hiral) matter ontent harateristi for N=1 supersymmetry.It is onvenient to ombine two sympleti Majorana spinors into one Majorana (in a fourdimensional sense) spinor even w.r.t to the �fth oordinate. We de�ne: � =   2L� 1R� !  5 =  � 1L5 2R5 ! � = p2V  �i�1Li�2R ! : (4.5)� =  �2L�1R ! : (4.6)These are the ombinations whih ouple to 4-dimensional spinors on the boundary. Usingthe above de�nitions we an re-express the �ve dimensional lagrangian (4.1) involving fermionsin terms of even (and odd) fermion ombinations. For example, the gravitino kineti term anbe expressed as �12( ����D� �)+(odd). Sine, as already disussed in hapter 3, the odd �eldsdo not ouple to the boundary, and we are interested in �nding supersymmetri oupling to theboundary, we an neglet the odd spinor ombinations and �elds in subsequent formulas. Thesupersymmetry transformations of the even bulk �elds expressed in terms of variables de�nedin (4.5) read: Æea� = 12(�a �)Æe55 = 12(� 5)Æ � = D��� i2p2(�� � 2g��)e555�F�5 � i4V ���5�Æ 5 = �5�� � ip2�5�F�5 + 1pV (�5��L + �5 ���R)ÆA5 = i2p2( 55�)ÆV = 12(��)Æ� = i2(�5�)Æ� = 12�=(V + i5�)�+pV 1e55 (�5��L + �5 ���R) (4.7)Reall, that the �fth derivative of an odd �eld is even. Thus, in the above transformation the�fth derivatives of � and ��L � ��1L, ��R � �2R should not be negleted.Our task is to ouple gauge and matter �elds on the boundary in suh a way, that loalsupersymmetry is preserved. The strategy is similar to the one employed for the Horava-Wittenmodel; we start with a globally supersymmetri lagrangian and suesively add new ouplingsto make the supersymmetry loal. It is impossible to give all the alulations leading to the36



�nal results in this thesis. Below we will present some sample alulations just to give a avourof what is going on but often we limit ourselves to presenting the �nal formulae without adisussion. The �nal form of the lagrangian an be found in the appendix.4.1 Pure 5d supergravity oupled to Yang-Mills super-multiplets on the braneWe now add matter on the boundary. It is onvenient to proeed in several steps. First, weonsider only pure 5d supergravity and a Yang-Mills multiplet on the boundary. As long as wedo not adress the problem of anomalies, the gauge group is arbitrary. In the Horava-Wittenmodel ompati�ed by using the standard embedding, the gauge group is E6 on one brane andE8 on the other.The ation of the four-dimensional super-Yang-Mills theory reads:S = Z d5xÆ(x5)e5 1g2LYMLYM = f [�14F a��F ��a � 12�aD=�a℄ (4.8)For the time being we keep the fator f multiplying the kineti term unspei�ed. This ationis known to possess global supersymmetry and the transformations are:ÆAa� = �12(���a)Æ�a = 14���F a�� (4.9)(Note the sign di�erene with respet to the onvention used in Chapter 3. We identify thespinor � parametrizing the Yang-Mills supersymmetry transformations with an even ombina-tion of 5d spinors, as de�ned in (4.5).The next few steps are ompletely analogous to the Horava-Witten model. If the abovetransformations are made loal, the supersymmetri variation of the YM ation is non-zero andis proportional to D�� is: ÆLYM = �e4F��(D������) (4.10)To anel it, one is fored to add the so-alled Noether term to the boundary ation:+L = fe4 ( �����)F�� (4.11)When the gravitino in the Noether term is varied, the part of the gravitino transformation lawequal to D�� anels ÆLYM . Sine we identi�ed � with the even ombination of 5d spinors, itis preisely the even ombination of 5d gravitinos  � given by (4.5) whih appears here.There is only one more term bilinear in fermion �elds that has to be added. Another partof the gravitino transformation law Æ � = � i2p2(�� � 2g��)F�5, when applied to the Noetherterm yields:ÆLN = ief8p2e55 �5(�� � 2g��)����F�5F�� = � 3ief8p2e55 �5����F�5F�� (4.12)37



The identities �� = �� � g�� and ���� = 0 were used. This variation an be anelledonly if we add a new term to to the boundary lagrangian.+L = 3i4p2 efe55 (�5��)F�5 (4.13)Varying the gaugino Æ� � ��F�� anels (4.12). Note that e55 appears expliitly in the boundarylagrangian. It always aompanies the bulk �elds arrying the �fth world index, so that theation is ovariant also from the 5d point of view.At this stage, one profound di�erene with respet to the Horava-Witten model appears.In the Horava-Witten model one �nds that after adding the Noether term, there exists a termin the variation of the Lagrangian proportional to F 2( �ABCDE�), whih does not anel. Itspresene was the motivation to modify the Bianhi identity for the 4-form G. Below we performthe orresponding alulation in the 5d framework and we �nd that the orresponding variationsdo anel in the 4d ase. We need to hek anellations of the variations proportional to F 2� .These originate from:1. Variation of the metri in the gauge kineti term:Lgkin = �ef4 g��g��F��F�� (4.14)Variations of the determinant and variations of the inverse metri are:Æe = eÆea�e�a = e2�� � Æg�� = ��(� �) (4.15)Hene the variation of the gauge kineti term yields:ÆLgkin = �ef4 (12�� �F��F �� � 2�(� �)F��F �� ) (4.16)2. Variation of the gaugino Æ� = 14��F��� in the Noether term, whih yields:ÆLN = fe16( ����Æ��)F��FÆ� (4.17)To be able to ompare it with the previous variation one has to deompose the produtof gamma matries: ���Æ� =2���g�Æ + 4���g�Æ + 2�Æ�g�� + 2�g�Æg�� + 4�g�Æg�� + 4�g�Æg�� (4.18)The gamma matries with three indies vanish when ontrated with the gauge �eldstrength tensors: those with oeÆient 2 anel against eah other and the one withoeÆient four vanishes when ontrated with the symmetri ombination of the twogauge �eld strength tensors. The remainining three terms with a single gamma matrixyield:ÆLN = fe16 �(�2�F ��F��+4�F��F ��+4�F ��F �� )� = fe4  �(�12�F ��F��+2�F��F ��)�(4.19)This indeed anels with the variation of the gauge kineti term if the Majorana spinorsidentity �� � = � ��� is used. 38



Note that in this ase the alulation is almost the same as in the Horava-Witten model, butgamma matries antysymmetrized in �ve indies are trivially zero. Beause of that fat, thereis no unanelled variations proportional to F 2 left. Thus, having added the Noether term(4.11) and the term (4.12) we arrive at the lagrangian whih is already supersymmetri up to4-fermi variations.For supersymmetry variations to lose, one needs to add a olletion of four-fermi term, aswell as 3-fermi orretions to the supersymmetry variations of fermions. The analysis is oftenparallel to the ase of the ordinary 4d supergravity, as desribed in [10℄. The alalution isvery tedious so instead of going through ompliated algebra we onentrate only on the mostinteresting aspets:1. The orretion to the gravitino transformation law:Æ � = Æ(x5)g2�2 f8 (g�� � 12��)5� (�a5��a) (4.20)has the delta funtion in front. This is neessary, beause the gravitino kineti term livesin �ve dimension, and this orretion must anel the supersymmetri variation restritedto the boundary.2. One has to hek the anellation of variations proportional to the �fth derivative of anodd bulk spinor (whih an be non-zero on the boundary). For example we have:ÆA� = � i2p2 1��1 + (1! 2)ÆF�5 = i2p2 1��5�1 + (1! 2) + : : :ÆL = 3i4p2 efe55 (�5��)ÆF�5 + : : : = �i 316 efe55 (�5��)( �R�5�1 +  �L�5�2) (4.21)To anel (4.21) a term proportional to  5 has to be added:+L = 316 fe55 ( �5 5)(�5��) (4.22)Varying Æ 5L = �iÆ 15 = �i�5�1, Æ 5R = iÆ 25 = i�5�2 anels (4.21).One an also hek that variations proportional to the �fth derivative of the odd ombi-nation of the gravitino anel.3. The four-gaugino term (present in 4d supergravity with the same numerial oeÆient)is proportional to Æ2(x5). This is beause it should anel the gravitino variation propor-tional to the gaugino �elds multiplied by the delta funtion, in the Noether term, whihas a boundary term, is already proportional to the delta funtion. Using (4.20) we analulate ÆLN = � ef2�232g4 Æ(0)�5(g�� � 12��)����F��(�5��)= �3ef2�264g4 Æ(0)���5��F��(�5��) (4.23)Thus, if we insist on supersymmetry in order (�g )4 we must add a singular term to thelagrangian: L�4 = �3ef 2�264g4 Æ(0)(�5��)(�5��) (4.24)39



However, one an formally get rid of this singular term by rede�ning the �eld strength ofthe graviphoton: F̂�5 = F�5 � if4p2 Æ(x5)e55 (�5��) (4.25)Replaing F with F̂ in the bulk ation reprodues F�2 oupling as well as the singular�4 term. As we will see later in setion 5, due to the fat, that singular terms alwaysombine into the perfet square strutures, the singular terms will dissapear from thefour-dimensional e�etive ation. Also, the gaugino bilinear in the transformation law of � mathes the perfet square struture of F . This is not the ase for Æ 5, whih has aterm proportional to F�5, but no piees bilinear in gaugino �elds. The deviation of Æ 5from the perfet square struture was also noted in the 11d framework in [13℄, and hasimportant onsequenes for supersymmetry breaking.The lagrangian obtained at this stage (inluding terms not disussed here) is given in AppendixA as LYM in equation (A.2).4.2 Sigma model in the bulkWe now ouple the SU(2; 1)=U(2) non-linear sigma-model to 5d supergravity . In the bulkwe have therefore four real salar �elds (V; �; �; ��). Their fermion superpartner is a sympletiMajorana spinor �a, alled hyperino. We de�ne the even Majorana spinor � as in (4.5). We alsospeify the gauge kineti funtion f, whih appeared in the previous subsetion, to be f = V .This hoie is motivated by the fat, that suh a kineti term appears in the ompati�edHorava-Witten theory. Supersymmetri oupling is possible for more general gauge kinetifuntions, but it has not been worked out in this thesis. The presene of sigma model �eldsa�et the boundary Lagrangian in the following ways:1. The supersymmetry variation of the non-standard gauge kineti term produes a termproportional to (��)F 2. To anel it, two new boundry terms are needed:+L = eg2 [�14�F�� ~F �� � 14(����)F��)℄ (4.26)We see, that the sigma �eld aquires an axion-type oupling.2. Supersymmetry variations of the bulk fermions  � and � ontain derivatives of the hy-permultiplet salars. When we vary these fermions in the boundary ation (e.g.  � inthe Noether term (4.11), or � in (4.26), we get new unanelled variations. It turns outthat the following terms are needed:+L = eg2 [� i8(�a5��a)��� � pV2e55 [(�L�R)�5� + (�R�L)�5�℄ (4.27)Note, that the odd �eld � now appears expliitly in the boundary Lagrangian through its�fth derivative whih is even.Again, 4-fermi terms in the boundary Lagrangian and 3-fermi terms in the supersymmetrytransformation laws are needed to render the ation supersymmetri. They are all given inAppendix A as LH in eq. (A.3). Here, we onetrate on those, whih unover the `perfet40



square struture'. We get a bilinear in gaugino �elds orretion to the hyperino transformationlaw: +Æ� = Æ(x5)�2g2 V 22 [�L(�L�R) + �R(�R�L)℄ (4.28)A singular, quarti in gaugino term is needed, too:+L = �e �24g4 Æ2(x5)V 2(�L�R)(�R�L) (4.29)As before, we an formally get rid of this singularity. We de�ne a new variable:�5�̂ = �5� + �2g2 Æ(x5)V 3=22 (�L�R) (4.30)and replae �5� with �5�̂ in the bulk ation. This proedure reprodues the �5��2 oupling aswell as the singular �4 term. Bilinear gaugino term in the transformation law of the hyperino� also mathes the perfet square struture of �5�̂, but there is no gaugino bilinear in thetransformation law of  5 to omplete the perfet square with �5��2 (We noted in the previoussubsetion, that also F does not ombine into the perfet square in Æ 5).4.3 Salar multiplets on the boundaryTo make ontat with the phenomenology, we should introdue salar multiplets living on theboundary, whih an provide us with known matter �elds suh as quarks and leptons. As inthe ase of the Yang-Mills multiplet, we begin with a globally supersymmetri ation for amultiplet that onsists of a omplex salar C, and a Majorana spinor �:S = Z d5xe5Æ(x5)LSLS = �D�CD�C � �D=� (4.31)(Note, that we use a di�erent normalization of C, than the referene [5℄)Global supersymmetry transformation laws are:ÆC = (�R�L)Æ�L = 12D=C (4.32)If the transformations (4.32) beome loal, variation proportional to D�� appears, and must beanelled by the gravitino variation in the new term:+L = ( R�D=C��L + h::) (4.33)The origin of this term is similar to the Noether term (4.11),and as in subsetion 4.1, thepresene of  � auses new unanelled variations, whih must be anelled by adding newterms to the boundary Lagrangian. The part of the gravitinovariation proportional to ��� isanelled by the variation of � in: +L = � i4V ���(�5��) (4.34)41



The variation proportional to F�5 requires more profound modi�ations. Not only the newterms of the form: +L = iF�5p2e55 (CD�C � CD�C)� iF�52p2e55 (�5��) (4.35)have to be added to the boundary lagrangian. One must also modify the supersymmetrytransformation law of the graviphoton:~ÆA5 = i�26g2 Æ(x5)(�R�L + h::) �C (4.36)These modi�ation an be summarized by the rede�nition of the graviphoton �eld-strength:F̂�5 = F�5 + iV4p2 Æ(x5)e55 (�5��) + i�26g2 (CD�C � CD�C); (4.37)(The �rst term in (4.37) was determined in subsetion 4.1).The supersymmetry transformation law of F̂�5, apart from standard 5d piee, reeives aorretion: ~ÆF̂�5 = i�23g2 Æ(x5)(�R�L + h::) �C (4.38)These modi�ations are analogous to those required in the Horava-Witten model for the aseof the four-form �eld strength G. This ould have been expeted, beause in the ontext ofM-theory the 5d graviphoton �eld strength F omes from the redution of G.To anel the variation of � in (4.33), we must add orretions proportional to D�C to thegravitino transformation law. It turns out that these orretion an be obtained by replaingF�5 with F̂�5 in the transformation laws Æ � and Æ 5.The rest of the orretions to the boundary Lagrangian are 4-fermi terms, and are given inAppendix A as LS in eq. (A.4).If we want to introdue a superpotential W for salar �elds C, further modi�ations of theboundary lagrangian are neessary. The derivation is fairly straightforward, and the resultsare given in Appendix A as LW in eq. (A.6). The interesting aspet of this onstrution theappearane of yet another perfet square struture. It turns out that the W�5� oupling hasto be added, as well as singular terms Æ2(x5)W �W and Æ2(x5)W�2. This an be summarized bythe rede�ntion of the '� �eld strength':�5�̂ = �5� + �2e55g2 Æ(x5)V 3=24 (�L�R) + 2�2e55g2 �WÆ(x5) (4.39)This replaement of �5� with �5�̂ in the bulk � kineti term reprodues all the above men-tioned ouplings. Also the � and W parts of  5 (but not the gaugino part as noted earlier)transformation laws math the perfet square struture of �5�4.4 Supersymmetrizing bulk and boundary potentialsIn this setion we supersymmetrize potentials that are de�ned on the brane, but are funtionsof the bulk salars (this ase is di�erent from that onsidered in the previous subsetion, wherewe supersymmetrized the potential W for the brane salar �elds). We know that suh termsarise in the ompati�ations of the Horava-Witten model, but in this setion we onsider awider lass of potentials, whih do not neesarily originate from M-theory.42



We assume a salar potential Æ(x5) e�2 (��+ p2�V ) loalized on the �rst brane (note the deltafuntion). The parameters � and � are onstants, while V is one of the bulk hypermultiplet�eld. The motivation for the onstant (�) part of this expression is that it will �nally lead usto the Randall-Sundrum exponential solutions. At the same time we allow for 'osmologialpotential' �=V for the hypermultiplet salar; this partiular form is motivated by the M-theoryexample and is a natural extension in the presene of hypermultiplets. More general potentialsare possible, but �-dependent terms in the potential break the translational U(1) symmetry� ! � + onst whih is useful when it omes to solving the strong CP problem, while �annot appear in the boundary potential beause of parity assignments. We will be ableto supersymmetrize this ation by modifying the bulk ation only (thus, our onstrution isalternative to the one presented in [15℄). We initially put � = 0 and assume that only thegravity multiplet is present in the bulk. Consider a osmologial term of the form:LB = �Æ(x5) e�2� (4.40)e is the determinant built of the metri indued on the brane. We want to supersymmetrizethis term. The supersymmetry variation of LB arises from varying e4:ÆL = 12Æ(x5)e�( 1���1 + (1! 2)) (4.41)We observe that, without further modi�ation of the boundary ation, we an anel thisvariation by modifying the gravitino transformation law:+Æ 1� = + �12�(x5)��1+Æ 2� = � �12�(x5)��2 (4.42)With this modi�ation, when  is varied in the gravitino kineti term, the �fth derivative atingon the step funtion produes an expression multiplied by the delta funtion, whih preiselyanels (4.41): Lkin � � e52�25 1��5��5 1� + (1! 2)ÆL = e5�25 ( 1���5�5( �12�(x5)��1)� (1! 2) = � e52�25�Æ(x5)( 1��5�1)� (1! 2) + : : := � e52�25�Æ(x5)( 1���1) + (1! 2) + : : : (4.43)In the �rst line we used ��� = 3� and �5�(x5) = 2Æ(x5) while in the seond line we used thefat that spinors have de�nite hirality on the boundary. In fat, to anel (4.41) we need tomodify only Æ �, but we modify Æ 5 as well so as to maintain the 5d ovariane.Note that these orretions are ompatible with the Z2 symmetry de�ned by (4.4); forexample: 5Æ 1�(x5) = � �12�(x5)�5�1(x5) = �12�(�x5)��1(�x5) = Æ 1�(�x5) (4.44)But as soon as we add (4.42) the bulk theory is no longer supersymmetri. In addition to theboundary term (4.43) the variations of the gravitino kineti term resulting from (4.42) yield:ÆLkin = � e5�25 �12�(x5)( 1���D��1)� (1! 2)� e5�25 �4 �(x5)( 1���D��1)� (1! 2) (4.45)43



The above variation an be anelled by adding a `gravitino mass term':L 2 = + e58�2��(x5)( 1��� 1� �  2��� 2�) (4.46)The gravitino variation Æ A� = D��A in (4.46) anels (4.45), but now (4.42) yields the variationof the mass term (4.46) proportional to �2:ÆL 2 = + e54�2��(x5)( 1��� �12�(x5)��1) + (1! 2)= e512�2�2( 1���1) + (1! 2) (4.47)whih an be anelled by varying the determinat in the new 'osmologial term':LC = e56�2�2 (4.48)Moreover, in our framework, �(x5) has another disontinuity at x5 = ��, so the �fth derivativein the gravitino kineti term yields an additional variation multiplied by Æ(x5 � ��) . Thisvariation an be anelled by adding a osmologial term on�ned to that brane:LB0 = Æ(x5 � ��) e�2� (4.49)(The minus sign relative to (4.40) appears here beause �(x5) has a `step down' at x5 = ��).Note that the osmologial term (4.48) appeared with a plus sign. The relevant part of thebulk ation now reads S = �12 R (R � 13�2) whih admits the anti-de-Sitter solutions. In fat,the oeÆient of (4.48) is preisely the one we need to obtain the Randall-Sundrum senario,as we will show shortly.The above mentioned orretions are still not suÆient to supersymmetrize the bulk lagrangian.To ahieve this goal we also need the oupling of the graviphoton to the gravitino:LA = � ie54p2�2 �(x5)� �( 1��� 1)A� � (1! 2)� : (4.50)If we swith on the hypermultiplets, one an infer that to ahieve anellation of variations ofthe form ��(x5)(��)��V the hyperino mass term is needed:L�2 = + e58�2 �(x5)� ��1�1 � (1! 2)� (4.51)The presene of the hyperino mass term indiates that to arrive at a fully supersymmetriation we must gauge some isometry of the hypermultiplet sigma model but this is worked outelsewhere [9℄.In addition, a graviphoton dependent orretion to the gravitino transformation law appears:Æ A� = � i2p2�(x5)�(�3)AB�BA�: (4.52)Note that that the presene of the step funtion ould potentially produe another delta funtionin the variation of the bulk lagrangian (more preisely, in the variation of the gravitino kinetiterm, similarly as in ( 4.43) ). But this variation has the form ÆL � Æ(x5)�A�� and vanishes,beause A�, being odd, is zero on the brane. 44



Furthermore, we need 4-fermi terms in the bulk ation to omplete the supersymmetrization,but these are not given in this thesis. The ation we arrive at �ts in the framework of 5d gaugedsupergravity without matter. The gauged group is the U(1) subgroup of the R-symmetry SU(2)group. One an hek that the terms found above ontaining the graviphoton an be arrangedinto the ovariant derivatives. The di�erene to the standard ase is that the harge �(x5)� hasopposite sign on the two sides of the brane 1. The prepotential whih desribe this gauging ispieewise onstant and takes the form:gPAB =  14p2 i�(x5)� 00 � 14p2 i�(x5)� ! (4.53)Let us now assume � = 0 and re-introdue the hypermultiplet in the bulk. Consider theboundary term: L = Æ(x5) e�2 p2�V : (4.54)The variation of the determinant an be aneled by modifying Æ , similarly to the previousase: Æ 1� = �p212 �V �(x5)��1Æ 2� = +p212 �V �(x5)��2 : (4.55)We must also vary the hypermultiplet modulus V in (4.54) (ÆV = iVp2(�1�1 � �2�2)) and thisyields: ÆL = �iÆ(x5)e �V (�1�1 � (1! 2)) (4.56)This variation an be anelled by modifying supersymmetry transformation law of the hyperino�: Æ�1 = i2V ��(x5)�1Æ�2 = i2V ��(x5)�2 : (4.57)A similar mehanism works: in the variation of the hyperino kineti term the �fth derivativeats on the step funtion whih leads to a term whih preisely anels (4.56). Note that it isonly the potential �=V whih auses the orretions to the hyperino transformation law. Asbefore, we need to supersymmetrize further. Two-fermi terms and, onsequently, a osmologialpotential is neessary:L = e52V �2��(x5) �p24 ( 1��� 1� � (1! 2)) + i(�1� 1� + (1! 2)) + i3p24 (�1�1 � (1! 2))!(4.58)LC = � e56�2 �2V 2 (4.59)However, this time a minus sign relative to that of (4.48) appears, and anti-de-Sitter solutionis not allowed. Moreover, ontrary to the previous ase, the 2-fermi and osmologial terms1In the reent referene [28℄ the gauge harge is promoted to a supersymmetry singlet �eld45



are not enough to render the bulk lagrangian supersymmetri. Closer inspetion shows, thatterms of the form �(� )��� do not anel and the bulk lagrangian must be supplemented withthe oupling ����A�. In the ontext of 5d supergravity this means that the translations of thepseudosalar � from the hypermultiplet are gauged, with the graviphoton being the gauge �eld.To reapitulate, starting with the boundary term (4.54) we are led to 5d gauged supergravitysimilar to that studied in [4℄. The gauging an be desribed by the prepotential 3.40One ould also imagine other powers of V ouring in (4.54), or more generally, some funtionf(V ). But then supersymmetrization is possible only if the bulk sigma model quaternionimetri is found. In some simple ases one an appropriately rede�ne Re(S) and end up in thesame sigma model, however in general one has to searh for new sigma models with quaternionikineti metri that allow for gauging, whih is beyond the sope of this paper.The interesting question is if we an join both shemes disussed in this setion and introduein a supersymmetri way a boundary term LB = Æ(x5) e�2 (�� + p2�V ). The answer is yes andthe neessary steps are given in [9℄.
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Chapter 5Compati�ation to 4 dimensions
In order to investigate the phenomenologial onsequenes of theories formulated in D > 4spae-time dimensions, one has to go to the e�etive four-dimensional desription, that is onehas to ompatify. If the additional ompat dimension are assumed to be small (whih is thease with the �fth dimension in our model), one keeps only massless Kaluza-Klein modes (zeromodes) in the e�etive desription; heavy Kaluza-Klein exitation deouple from the e�etivetheory. But in the ase at hand the ompati�ation is not a straightforward task beauseone annot simply trunate the �ve-dimensional theory. By 'trunation' we mean ignoring thedependene of the �elds on the �fth oordinate; the integral over the ompat dimensions in theation yields just the volume whih an be absorbed into the de�nition of the 4d gravitationalonstant. In the standard ase of Kaluza-Klein ompati�ation on at bakgrounds it anbe shown, that trunation is equivalent to ignoring the heavy Kaluza-Klein modes. But weshall see, that in the model disussed in setion 4 the at spae is not a solution to to theequations of motion. The vauum solution we will �nd, will depend on the �fth oordinate andthe zero modes will be the x5 independent exitations around this vauum solution. In suhases, simple trunation is not onsistent. Instead we have to arefully integrate out the x5dependene from the ation.The bakground solutions to the equations of motion depend dramatially on the hoie ofthe potential in the bulk (and on the boundary sine the two are onneted by supersymmetry).In this setion we assume the more general potential introdued in subsetion 4.4, sine for thishoie, in ertain limits, we an obtain the pure M-theoritial solution, while in other limits theinteresting solution of the Randall-Sundrum type an be obtained. We want to ompatify ourmodel down to 4d and we demand that the e�etive theory has N=1 supersymmetry. Thus, wemust searh for the bakground solution whih preserves exatly four superharges, that is halfof the 5d supersymmetry. The solutions, whih leave some portion of supersymmetry unbroken,�t into a very speial lass of supersymmetri objets, alled BPS states. It is generally believedthat they are stable, sine they minimize energy for a given harge. The best way to �nd suhBPS solutions is to onsider �rst the supersymmetry transformation laws. We will see thatthe on�guration preserving an unbroken N=1 supersymmetry (whih are quite easy to �nd),automatially satis�es the equations of motion.For brevity, some formulae presented in the subsequent setion are written as if both � and�=V parts of the boundary potential were present although, as disussed at the end of the lasthapter, the theory is supersymmetri only for � = 0 or for � = 0.47



5.1 BPS solutionThe supersymmetry transformation laws of fermions, inluding modi�ations found in the pre-vious paragraphs are: Æ A� = D��A � �(x5) 112(�� + p2�V )�(�3)AB�BÆ�a = � i2p2V �5V 5(�3)aB�B + ��(x5) i2V �a : (5.1)In the above formulas we negleted terms with 4d derivatives �� in order to preserve the 4dPoinar�e invariane of the bakground we seek. We also put � = A5 = 0 sine these �elds donot our in the potential, so setting them to zero is onsistent with the equations of motion.Finally, we negleted �5� sine, as we show later in this thesis, non-zero expetation value ofthis term generially breaks all supersymmetries.The ansatz for a stati solution is:ds2 = a(x5)dx�dx���� + b(x5)(dx5)2V = V (x5) (5.2)The relevant supersymmetry transformation laws evaluated for this ansatz are ( a prime denotes�5 and the world indies now refer to the 4d Minkowski metri ���):Æ A� = a04pab�5�A � �(x5)pa12 (�� + p2�V )�(�3)AB�BÆ A5 = �5�A � �(x5)pb12 (�� + p2�V )5(�3)AB�BÆ�a = � i2p2bV V 0(�3)aB5�B + ��(x5) i2V �a: (5.3)The onditions for unbroken supersymmetry are equivalent to the requirement that the abovevariations of fermioni �elds vanish for vauum on�gurations. This leads to the followingonditions: a0a = 13(�� + p2�V )�(x5)pbV 0 = p2��(x5)pb�5�A = pb12 (�� + p2�V )�(x5)�A: (5.4)In addition we need thehirality onditions for the spinorial supersymmetry transformationparameters , whih break N=2 supersymmetry down to N=1:5�1 = �1 5�2 = ��2 (5.5)The hirality onditions arise beause of the �3 Pauli matries multiplying �A in (5.3). Theirpresene auses sign di�erene between the A=1 and A=2 omponents of the supersymmetrytransformation, whih must be ompensated for by (5.5) if we want satisfy both Æ 1 = 0 andÆ 2 = 0.First, we hek that if the parameters a; b; V of our ansatz satisfy the onditions (5.4),they automatially satisfy the equations of motion (with delta soures). To do this, it will beonvienent to work with � � lnV . 48



Einstein's equations are 12Rg�� � R�� = T��, where T�� � 1e5 �Lmatter�g�� . Taking its trae andsubstituting bak for R we an express it in the equivalent form:R�� = �(T�� � 13T g��) � �S�� (5.6)For the ansatz (5.2) the omponents of the Rii tensor are:R�� = (a002b � a0b04b2 + (a0)22ab )���R55 = 2a00a � a0b0ab � (a0)2a2R�5 = 0 (5.7)For our lagrangian the tensor S de�ned in (5.6) takes the form:S�� = [(a3�2e�2� � a9(�� +p2�e��)2)��� � a3pb(�� +p2�e��)(Æ(x5)� Æ(x5 � ��))℄S55 = [ b3�2e�2� � b9(�� +p2�e��)2 + 12(�0)2 � 4pb3 (�� +p2�e��)(Æ(x5)� Æ(x5 � ��))℄S�5 = 0 (5.8)Note the delta funtions originating from the boundary potential. Though the T55 ompo-nents of the energy-momentum tensor vanish on the boundary, S55 is non-zero as it ontainsontributions from T�� . The (�5) omponents of the Einstein's equations are trivially satis�ed.The remaining omponents of the Einstein's equation together with the equation of motionfor � take the form: a002b � a0b04b2 + (a0)22ab + a3�2e�2� � a9(�� +p2�e��)2= a3pb(�� +p2�e��)[Æ(x5)� Æ(x5 � ��)℄2a00a � a0b0ab � (a0)2a2 + b3�2e�2� � b9(�� +p2�e��)2 + 12(�0)2= 4pb3 (�� +p2�e��)[Æ(x5)� Æ(x5 � ��)℄12�00 + a0a �0 � 14 b0b �0 + b�2e�2� � b3p2�e��(�� +p2�e��)= p2b�[Æ(x5)� Æ(x5 � ��)℄ (5.9)To hek if these equations are satis�es, we re-write the relations (5.4) in the form whih ismore onvienient for our purpose. Dividing the �rst relation (5.4) by the seond we get:a0a = 13�0(1� �p2�e�) (5.10)We an also obtain a useful relation for b:b0b = 2pb b02pb = 2(p2�e���3a0a = 2a00a0 � 2a0a + 2p2��0p2���e� = 2a00a0 � 2a0a + 6a0a(1� �p2� e�)2So �nally: b0b = 2a00a0 � 2a0a + 6a0a(1� �p2�e�)2 (5.11)49



We show how this works on the example of the �rst equation in (5.9). Away from the boundary,where the delta funtions do not ontribute, we have:l:h:s: = a002b � a0b04b2 + (a0)22ab + a3�2e�2� � a9(�� +p2�e��)2= 1b 24a002 � a04 (2a00a0 � 2a0a + 6a0a(1� �p2�e�)2 ) + (a0)22a 35+ a3�2e�2� � a9(�� +p2�e��)2= 1b [f�3(a0)22a 1(1� �p2�e�)2 + ab3 �2e�2�g+ f(a0)2a � a9(�� +p2�e��)2)g℄ = 0 (5.12)In the seond line we used (5.11) and in the last line (5.10). We must still satisfy the deltafuntions on the right-hand side of the equations. From the Z2 properties of the metri andof the hypermultiplet �eld V we know that funtions a,b,� are even (and ontinuous), their�fth derivatives are odd and so an be disontinous aross the boundaries. Thus, their seondderivatives an have delta funtion singularities. The oeÆients of the delta funtion is equalto the disountinuity of the �rst derivative or, equivalently, twie the boundary value of the�rst derivative.We again onsider the example of the �rst equation of (5.9). We need to satisfya002b = a3pb(�� +p2�e��)Æ(x5) (5.13)in the viinity of the �rst brane. But the above onsideration allow to re-express this equationas: a0b = a3pb(�� +p2�e��)�(x5) (5.14)whih is again the relation (5.10) if the equality pb = �0e��p2��(x5) is used. Thus, we have indeedshown that the �rst of the Einstein's equations (5.9) is satis�ed for the BPS on�guration (5.4).The remaining equations an be heked in the similar way.We an now solve the onditions (5.4). This an be easily done in the oordinate frame inwhih b = R20. The vauum solution is:V = V0 + �p2R0 (jx5j � ��2 )g�� = a0 �1 + �p2R0V0 (jx5j � ��2 )�1=3 e�R0�3 jx5j���g55 = R20 (5.15)The 4d e�etive theory for the general potential is diÆult to obtain (and it is not learif integrating out the �fth dimension makes sense in the general ase). In the following wedetermine the e�etive theory only in the M-theoretial (� = 0) limit. In this limit it isustomary to work in a di�erent oordinate frame in whih g55 6= 0. Then the solution is:g�� = 1R0H�g��g55 = R20H4V = V0H3H := 1 + �p2R03V0 (jx5j � ��2 ) (5.16)50



From the view-point of the e�etive 4d theory the integration onstants R0, V0 and �g�� beomethe dynamial �elds (moduli). They are de�ned in suh way that �g�� is the 4d metri withthe standard Einstein-Hilbert kineti term, and V0 =< V >,R0 =< pg55 >, up to O(�2)orretions (< : : : > denotes averaging by integrating over the �fth dimension) .The formulae (5.16) desribe the vauum solution with vanishing all boundary �elds. Sinein the full lagrangian the bulk �elds ouple to gauge �elds on the boundary, allowing for non-zero boundary �elds hanges also the �eld on�guration in the bulk (in their equation of motionthis manifests itself as delta funtion soures). As mentioned earlier, we annot simply ignorethis bak-reation. Negleting all quantum orretions, we an aount for the dependene ofbulk �elds on the boundary dynamis by replaing the bulk �elds in the 5d ation with thesolutions of their equations of motion. Having done this we integrate over the �fth dimension.Due to the ompliated non-linear sigma model in the bulk, the quest for the exat solutionis a hopeless task. Instead, we an simplify the problem by taking a spei� limit. We willassume that: �5� >> ���. This orresponds to the limit of small 4d momenta ompared tothe momentum along x5. In the following we will simply neglet ��.One more assumption turns out to be very helpful. The boundary ation is suppresed by aparameter �2g2 , and onsequently, the soures for the bulk �elds are suppressed by this parameter.Thus, we an write down the solution as a series in �2g2 . We will be able to solve the equationsof motion in the �rst order in �2g2 .5.2 Solving equations for the even �eldsIn our model, the even bosoni �elds in the bulk are: (g�� ; g55;A5; V; �). There are no (�5)A5terms in the bulk so A5 is not exited in the limit we onsider.The proedure of extrating gauge �eld dependene of even bulk �elds was desribed in[7℄. Here, we quote only basi results. The detailed form of the solution is not important tous, beause, as we show in the next subsetion, to the order we perform the alulations thee�etive theory depends only on the bakground value of the even �elds (with the exeption ofthe �A5 dependene of �B).We write a generi even bulk �eld � as a sum: � = �va+�B, where �va is the orrespondingbakground solution given by (5.16). Then �B satis�es an equation of the form:�5�5�B = J1Æ(x5) + J2Æ(x5 � ��)� 12��(J1 + J2) (5.17)where Ji are boundary soures for �. The part of the r.h.s without the delta funtion omesfrom integrating �va out of the equation of motion. It yields the (x5)2 dependene of thesolution. The delta funtions provide the boundary onditions for the �fth derivative. Reall,that the �fth derivative of the even �eld is odd, and in priniple an be disontinuous at Z2�xed points. The oeÆient of the delta funtion equals this disontinuity, so the boundaryvalue of �5� equals preisely one half of this oeÆient. Moreover, we require that < �B >vanishes. The detailed alulation shows that to the �rst order in �2g2 and � we an write:VB = �2R30V 202��p�g [J1V ((x5)2 � 2��x5 + 23(��)2) + J2V ((x5)2 � 13(��)2)�2R0V 202��p�g ℄�B = 2�(jx5j � ��)A5 + �2R30V 202��p�g [J1�((x5)2 � 2��x5 + 23(��)2) + J2�((x5)2 � 13(��)2)℄51



(gB)�� = �2R302��p�g [(J1g)��((x5)2 � 2��x5 + 23(��)2) + (J2g)��((x5)2 � 13(��)2)℄ (5.18)where Ji� denotes a derivative of the i-th boundary lagrangian with respet to the �eld �.The �A5 dependene of the solution for �B arises beause of the gauge ovariant derivativeD�� = ��� + 2��(x5)A� ating on � in the lagrangian; the �fth derivative ating on thestep funtion aompanying � yields a delta funtion, whih e�etively ats as a soure in theequation of motion.5.3 Solving equations for the odd �eldsWe begin with �. It ouples to the boundary theory through its �fth derivative, and thusaquires a non-trivial gauge �eld dependene. The relevant terms in the Lagrangian are:� e5�2V g55�5��5 �� + e5g2e55�5�[Æ(x5)(�pV2 (�R�L)1 + 2V W ) + Æ(x5 � ��)� pV2 (�R�L)2℄ (5.19)We ignored �4 terms in the bulk sine they ontribute only at order (�2g2 )3. As justi�ed before,we also negleted derivatives other than �5.The equation of motion for � is:�5( e5�2V g55�5 ��) = �2g2 �5[e5Æ(x5)(�pV2 (�R�L)1 + 2V W )� e5Æ(x5 � ��)pV2 (�R�L)2℄ (5.20)Substituting for the bulk �elds their vauum solutions (5.16), and integrating twie, we obtain:�5 ��H�3 = �22g2 (V0R0)3=2[Æ(x5)(��21 + 4(V0R0)3=2WH�3(0))� Æ(x5 � ��)�22℄ + f (5.21)�(x5)�� = 14�0H4f + h (5.22)We de�ned: �21 := (�R�L)1  H(0)R0 !3=2 �22 := (�R�L)2  H(��)R0 !3=2 (5.23)The integration onstants f ,h an be alulated using boundary onditions. Mathing deltafuntions in (5.21) requires that �� has disontinuities at x5 = 0 and x5 = ��. One half of thisdisontinuity is the boundary value for �. One an alulate:f4�0 = �24g2 (V0R0)3=2��21H3(0)� �22H3(��) + 4(V0R0)�3=2WH4(0)�H4(��) (5.24)h = �24g2 (V0R0)3=2��21H3(0)H4(��)� �22H3(��)H4(0) + 4(V0R0)�3=2WH4(��)H4(0)�H4(��) (5.25)In the same way we solve the equation of motion for the 4d omponents of the graviphoton,whih also ouples to the boundary through its �fth derivative. The result is:�5A� � ��A5 =�23R0g2 [Æ(x5)(� 3i4p2V0R0�21 �H2(0)� ip2(CD� �C � �CD�C) + i2p2�2�)+Æ(x5 � ��)(� 3i4p2V0R0�22 �H2(��))℄ +Hf� (5.26)52



A� = H2 f�2�0 + ��A5x5 + g� (5.27)[�21 � := (�5��)1(H(0)R0 )3=2 �22 � := (�5��)2(H(��)R0 )3=2 �2� := (�5��)(H(0)R0 )1=2℄As before f� and g� are spei�ed by the boundary onditons:f�2�0 = �26g2 (� 3i4p2V0R0(�21 �H2(0)+�22 �H2(��)� ip2 (CD� �C� �CD�C)+ i2p2 �2�)+��A5��H2(0)�H2(��)g� = �26g2 (� 3i4p2V0R0(�21 �+�22 �)H2(0)H2(��)� ip2 (CD� �C� �CD�C)H2(��)+ i2p2 �2�H2(��))H2(0)�H2(��)+��A5��H2(��)H2(0)�H2(��) (5.28)Note, that there is no arbitrary integration onstant (they are all spei�ed in terms of thematter �elds on the boundary) in the solutions for � and A�. Thus, there will be no zero modesorresponding to these �elds in the e�etive 4d theory.The other odd �elds in the bulk do not ouple to the boundary, so they are not exited.5.4 First order ompati�ationWe briey review the ompati�ation in the (�2g2 )0 and (�2g2 )1 order. This step is well-knownsine the e�et of the non-trivial bakground is visible only at (�2g2 )2 (thus, to up to this orderwe an simply trunate the 5d ation). Gravity enters at (�2g2 )0. The de�nition of 4d moduli in(5.16) is hosen suh, that the Rii salar R built out of �g�� is anonially normalized in thisorder. The 4d gravitational onstant 1�24 an be expressed in terms of its 5d ounterpart as:1�24 = 2���25 (5.29)The superpartner of the graviton is the gravitino  � whih originates from the even part of the5d gravitino. To give the orret normalization to the gravitino kineti term we must resale: � ! (R0)�1=4 �. We have also kineti terms for the moduli V0; �0 whih are zero-modes of theorresponding hypermultiplet salars, as well as for the moduli R0;A5 whih are zero-modes ofg55 and the �fth omponent of the graviphoton, respetively:�24LKIN = p�g[� 14V 20 (��V0��V0 + ���0���0)� 34R20 (��R0��R0 + 2��A5��A5)℄ (5.30)The boundary ation enters in (�2g2 )1 order. We have two gauge setors: (A�;�)1 and (A�;�)2with kineti terms: g2Lgaugekin = p�g 2Xn=1[�14V0(F��F ��)n � 14�0(F�� ~F ��)n℄ (5.31)We get also a kineti term for the salar C:g2LKIN = � 1R0D�CD� �C (5.32)53



There are no (�)1 orretions to bulk kineti terms, beause R ��0 d5x �(y � ��2 ) = 0. Thus, inthe �rst order�2g2 and � , the 4d e�etive supergravity an be desribed by the K�ahler potentialG and the gauge kineti funtions fi:G = ln(S + �S) + 3ln(T + �T � 23 �24g2C �C)� ln(64W �W ) (5.33)f1 = f2 = S (5.34)The numerial fator oming with the superpotential W an be read o� from the bilinearfermioni terms as given in LW in Appendix A. TheW �W term enters at (�2g2 )2, and we will obtainit after integrating out � (so far W �W ours as a singular term in the boundary Lagrangian).The moduli �elds S and T are de�ned as: S = V0 + i�0T = R0 � �23g2C �C + ip2A5 (5.35)The superpartners of the modulus C is the boundary fermion �, and of the modulus S theeven part of bulk hyperino �. To have fermion kineti terms normalized as in [17℄, we resale:� ! (R0)1=4�, � ! (R0)1=4�. The supersymmetry transformation laws suggest, that thesuparpartner of T is  5, but as yet, it has no kineti term. To obtain the kineti term we usethe fat, that the gravitino kinetiti term in the bulk mixes  5 with  �. To diagonalize it, andto obtain a legitimate kineti term of  5 we must rede�ne the 4d gravitino:( �)4d :=  � + i2R0�5 5 (5.36)We an de�ne the fermion superpartner of the modulus T:�TL = (R0)�1=4[ L 5 + 2�243g2 �C�L℄ (5.37)The � dependent orretion is neessary here, beause of the terms involving C in the de�nitionof ReT.5.5 Higher order orretionsHaving solved the equation of motion we an proeed with �nding �2 ,��2g2 and (�2g2 )2 orretionsto the e�etive 4d theory.First, we should omment on the osmologial potential. In the 5d bulk theory, we havethe osmologial term �2V 2 . What happens in 4d e�etive theory? There is a general argument,that suh a osmologial term should be absent. Indeed, the bakground solution (5.16) wasobtained under the assumption of N=1 supersymmetry and vanishing expetation value ofthe superpotential W. This, in turn, is equivalent to vanishing of the potential energy at itsminimum (although potential in 4d supergravity is given by �3exp(�G) whih is not semi-positive de�nided, this expression is zero if < W >= 0). It is reassuring to see that the 4dosmologial potential vanishes if we expliitly alulate it our framework.54



In the 5d bulk there are three terms whih ontribute to the 4d vauum energy: the urvaturesalar R, the kineti term of V and the original 5d potential. We an simplify the alulationsusing the relations (5.10, 5.11) whih for � = 0 redue to:a0a = 13 V 0V (5.38)b0b = 2a00a0 + 4a0a (5.39)Using (5.39) we an re-write the urvature tensor given by (5.7) in the form R�� = � (a0)22ab ��� ,R55 = �5(a0)2a2b , so the ontribution from the Rii salar is:�12R = �12(g��R�� + g55R55) = 7(a0)22a2b (5.40)Using (5.38), the kineti term of V ontributes:�14g55(V 0V )2 = �9(a0)24a2b (5.41)while the 5d osmologial potential an be re-written using the �rst relation of (5.4) 1V = 3a0p2�pbaand ontributes: � �26V 2 = �3(a0)24a2b (5.42)These three ontributions sum to (a0)22a2b . Inserting this in the solution (5.16) and integratingover the �fth dimension yields the 4d e�etive potential:Vbulk = R 2��0 dx5a2pb (a0)22a2b= 2 R ��0 dx5 �29V 20 1R0H2 = 29 �2R0V 20 R ��0 dx51+p2�R03V0 (x5���2 )= p2�3R20V0 ( 1H(0) � 1H(��)) = 2�2��9R0V 20 11�(p2�R0��6V0 )2 (5.43)We should not forget about the delta funtions in R. The singular part of the seond derivativeof the metri is: a00 = 2p2�3V0 (Æ(x5)� Æ(x5 � ��)) (5.44)From (5.7) we see that the singularities of the Rii tensor areR�� � p2�3bV0 (Æ(x5)� Æ(x5 � ��))���R55 � 4p2�3aV0 (Æ(x5)� Æ(x5 � ��))) R � 8p2�3abV0 (Æ(x5)� Æ(x5 � ��)) (5.45)Putting this into the ation yields an additional ontribution to the potential:Vsing = �12 R 2��0 dx5a2pb 8p2�3abV0 (Æ(x5)� Æ(x5 � ��)) = � 4p2�3R20V0 ( 1H(0) � 1H(��))= � 4p2�3R20V0 �p2R0��3V0 11�(p2�R0��6V0 )2 = � 8�2��9R0V 20 11�(p2�R0��6V0 )2 (5.46)55



The last ontribution omes from the boundary potentials.Vbound = p2�(a2V (0)� a2V (��)) =p2�R20V0 ( 1H(0) � 1H(��)) = 2�2��3R0V 20 11�(p2�R0��6V0 )2 (5.47)Thus, we see that: V4d = Vbulk + Vsing + Vbound = 0 (5.48)and no tree level osmologial potential appears in the 4d e�etive lagrangian. The anellationworks as well even if there is no seond brane and the �fth dimension is in�nite. Suh a situationis equivalent to negleting 1=H(��); various ontributions anel in the same way as previously.Of ourse we annot laim that the osmologial onstant problem is solved as there is noth-ing to prevent the osmologial potential to appear at the one-loop level after supersymmmetrybreaking (whih must neessarily our if the model is to desribe the physial world). Theanalysis an be repeated for the ase of more general bulk/boundary potential we onsideredbefore. The result is the same but the alulations are a little bit more triky, beause for thesolution (5.4) we annot do the integrations over x5 expliitly.Another point of view on this issue is given in [14℄, in whih onditions for vanishing of theosmologial onstant derived from the requirement of onsisteny of the Einstein's equationsare disussed.Next, we onsider orretions to the 4d e�etive ation oming from the non-trivial x5dependene of V. We an represent V as a sum:V = Vva + VB where Vva is the vauumexpetation value of V as given in (5.16), and VB takes into aount bak-reation of theboundary; it is given to �rst order in �2g2 in (5.18). There are three soures of orretions to thee�etive lagrangian, that ontain no more than two spae-time derivatives:1. Integrating out VB in the kineti term of V;2. Expanding the boundary term e5p2�V (Æ(x5)� Æ(x5 � ��)) to the �rst order in VB;3. Substituting V with Vva in the rest of the boundary Lagrangian.The ontribution from 1. is:+LEFF = � 14�2 R 2��0 dx5e5g55(�5(Vva+VB)Vva+VB )2 = � 14�2R30 R 2��0 dx5p�g(3V0H2H0+V 0B)V0H3+VB )2 =� 12�2 R ��0 dx5p�g[9(H0)2H2 (1� 2V0H3VB ) + 6H0V0H4V 0B℄ + (� V 2B) (5.49)The zeroth order term ontributes to the osmologial potential, whih we alulated before.The term proportional to VB(H 0)2 without the �fth derivative is of order (�)2 �2g2 . Thus we areleft with:+LEFF = �p�g p2��2V 20 R20 Z ��0 dx5 V 0BH4 = �p�g p2��2V 20 R20 [VB(��)� VB(0)℄ +O(�2) (5.50)while the ontribution from 2. is:+LEFF = + p2��2V 20 R20 [VB(��)� VB(0)℄ +O(�2) (5.51)The ontributions (5.49) and (5.50) anel against eah other, so in the �rst order in � thee�etive theory does not depend on the form of KK modes of V. If we wanted to go beyond the56



�rst order approximation, the ontribution from the non-trivial gauge dependene of VB woulda�et the e�etive theory.The same situation ours in the ase of the ontribution from the metri. The ontributionoriginating from expansion of the urvature R anels in order (�)1 against the ontributionoming from expanding the the determinant in the boundary term �V .Situation is di�erent in the ase of the � �eld. The solution of its equation of motion is:� = �0 + 2�A5(jx5j � ��2 ) + (gauge) (5.52)where (gauge) denotes the gauge �elds dependene, whih is relevant only for higher derivativeterms. Thus, the ovariant derivative D5�B = �5�B � 2��(x5)A5 vanishes, and we are left withthe ontribution from inserting the solution for � in the boundary ation, as well as from theD� part of the ovariant derivative in the bulk ation.We have not determined yet those terms in the e�etive Lagrangian whih result fromintegrating out the odd �elds in the bulk. The equations of motion have been solved expliitlyin subsetion 5.3. First, let us onsider �. This �eld ours in our ation as a 'perfet square':S� = � Z d5xe5 1V ���̂���̂ (5.53)Where the hat denotes the modi�ed �fth derivative (4.39) whih we repeat here:�5�̂ = �5� + �2e55g2 Æ(x5)V 3=22 (�L�R) + 2�2e55g2 �WÆ(x5) (5.54)(We have negleted terms in the equation (5.53) proportional to �2D� and �4, as the yield onlyhigher order oretions).Inserting the solution (7.2) and negleting all 4d derivatives yields:+LEFF = � p�g�2V0R30 R 2��0 dx5H3jf j2= �14p�g �24V 20g4 j � �21H3(0)� �22H3(��) + 4W (V0R0)�3=2j2 +O(�2) (5.55)Similarly, integrating out the kineti term of the graviphoton yields:+LEFF = � 32�24R20p�g[��A5+ �243p2g2 (�3i4 V0R0(�21 �H2(0)��22 �H2(��))�i(CD� �C� �CD�C)+ i2�2�)℄2(5.56)Note, that all the delta funtions have anelled out. Although the original 5d theory hadsingularities of the Æ2 type, the e�etive theory is perfetly well de�ned (supposedly, to allorders in �). The singularities have anelled preisely, due to the perfet square struture ofthe odd �elds.Having identi�ed possible soures of orretions to the e�etive theory, we an now inter-pret the resulting Lagrangian in terms of funtions G; f de�ned sin subesetion (2.3) , whihunambigously desribe 4d supergravity. We expet non-trivial orretions to the kineti fun-tions of gauge �elds. As explained previously, the only ontribution omes from inserting thebakground solution into the boundary lagrangian, whih results in:+LEFF = �14p�gV0[H3(0)(F��F ��)(1) � [H3(��)(F��F ��)(2)℄= �14p�g[(V0 � �p22 ��R0)(F��F ��)(1) + (V0 + p22 ���R0)(F��F ��)(2)℄ +O(�2) (5.57)57



This implies the following modi�ation of the gauge kineti funtions:f1 = S � p22 ���Tf2 = S + p22 ���T (5.58)For onsisteny, the imaginary part of the moduli �elds S,T should have axioni ouplings.They are provided by inserting the solution for � into the boundary axioni term:+LEFF = �14p�g[(�0 + �B(0))F�� ~F ��)(1) + (�0 + �B(��))F�� ~F ��)(2)℄= �14p�g[(�0 � ���A5)F�� ~F ��)(1) + (�0 � ���A5)F�� ~F ��)(2)℄ (5.59)exatly as required by (5.58) (Note p2 in the de�niton of Im T).Aording to the results of subsetion (2.3) the gaugino kineti term should be multipliedby �12Ref . Instead, in the e�etive theory we obtain:+LEFF = �12p�g(R0)�3=2[(�D=�)(1)H9=2(0) + (�D=�)(2)H9=2(��)℄ (5.60)The gauge kineti funtions (5.58) require H3 instead of H9=2, so to have gauginos orretlynormalized, the following resaling has to be performed:�(1) !  H(0)R0 !�3=4 �(1)�(2) !  H(��)R0 !�3=4 �(2) (5.61)Likewise, the orret normalization of the Noether term, as well as of the oupling of the gauginoto the hyperino, requires the resaling: � ! �HR0�1=4  ��! �HR0��1=4 � (5.62)Another modi�ation due to the �x5 dependene of the bakground solution appears in thekineti term of matter �eld C. Inserting the bakground (5.16) into the orresponing boundaryterm yields: +LEFF = �p�gH(0)R0 D�CD� �C = p�g(� 1R0 + �p26V0��)D�CD� �C (5.63)Thus we have to modify both the K�ahler potential and the de�nition of the modulus S:ln(S + �S)! ln(S + �S + �243g2�p2��C �C)ReS ! V0 � �246g2C�p2��C �C (5.64)58



Similarly to the ase of other fermions, bringing the oeÆient multiplying the kineti term of� (superpartner of C) to the orret form given in subsetion 2.3 requires the resaling:� !  H(0)R(0)!�1=4 � (5.65)Finally, aording to subsetion 2.3 a term: �14f;i(�i���)F�� should appear. In our boundaryLagrangian we �nd instead: �Æ(x5)e5 14(����)F�� (5.66)and no other terms of this form appear in the ourse of the ompati�ation. Therofore, wemust de�ne the superpartner of S as:�S =< �� �p2(jx5j � ��) 5 > (5.67)The same result an be obtained by solving the equation of motion for �a and identyfying theS fermion with the zero mode of this solution.The K�ahler potential given by the �rst order solution (5.33) ontained the superpotenialW, and the formula for G was derived from the 2-fermi terms in the e�etive lagrangian. ThejW j2 term appears in the e�etive ation (with the orret oeÆient) after integrating out the� �eld. Generally, integrating out the odd �elds provides us with higher order terms requiredby the K�ahler potential derived from the �rst order redution (another example of this kindare quarti gaugino terms).To summarize, we ollet below the results obtained in this setion for the K�ahler potentialG, the gauge kineti funtion f, and the de�nitions of the moduli �elds.G = ln(S + �S + �243g2�p2��C �C) + 3ln(T + �T � 23 �24g2C �C)� ln(64W �W ) (5.68)f1 = S � p22 ���T f2 = S + p22 ���T (5.69)S = V0 � �246g2�p2��C �C + i� �S =< � HR0�1=4 (�� �p2(jx5j � ��) 5) >T = R0 � �23g2C �C + ip2A5 �T =< � HR0�1=4 [ 5 + 2�243g2 ( �C�L + C�R)℄ >C �C = �H(0)R0 �1=4 �A(1)� ~�(1) = �H(0)R0 �3=4 �(1)A(2)� ~�(2) = �H(��)R0 �3=4 �(2) (5.70)
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Chapter 6Redution of the supersymmetrytransformation lawsIn the preeding setions we have determined the form of the 4d e�etive theory by diretompati�ation of the 5d lagrangian. Although the funtions G and f are suÆient to re-onstrut the rest of the supergravity lagrangian, an interesting onsisteny hek would beto obtain expliitly the omplete 4d lagrangian by integrating out the �fth dimension. Thisis rather diÆult as, e.g., the 4-fermi terms reeive ontributions that are of higher order in�. Another approah is to redue 5d supersymmetry transformation laws to 4d, and hek ifthey are onsistent with the results (5.68). This has the advantage that orretions from thenon-trivial � dependene of the funtions G and f an be seen at lower order in the expansionin � and �2. As an example we present how to determine the gauge kineti funtions from thetransformation laws of the superpartners of the moduli salars.First, we need to determine what is the 4d parameter of supersymmetry in terms of its 5dounterpart. To this end, we need to solve the Killing eqution for 5d spinor whih is just theondition Æ A5 = 0 in (5.3). This ondition an be easily solved with the general potential:�1R = e��R0jx5j12 �1 + �p2R0V0 (jx5j � ��2 )�1=12 a�1=40 �R�2L = e��R0jx5j12 �1 + �p2R0V0 (jx5j � ��2 )�1=12 a�1=40 �L (6.1)Sine �2L = �i�2�1 �R (the 5d Majorana ondition) the spinor � is Majorana in the 4d sense.The appearane of the fator a0 in (6.1) yields anonial form of the redued 4d supersym-metry transformation law of the gravity multiplet. Then � depends only on x� and has theinterpretation of the parameter of supersymmetry transformations in the 4d theory.We again put � = 0 and hoose the oordinate frame g55 = R20H4. The Killing spinor is then�1R = HR0 1=4�R. First we determine gaugino bilinears in the transformation law of the modulus Tsuperpartner �T . As in (5.68) it is de�ned as �T =< ( HR0 )1=4[ 5 + 2�243g2 ( �C�L +C�R)℄ >. The C�part is unimportant as there are no gauginos in the transformation law of the C superpartner.The relevant part in the transformation law of  5 reads:Æ 5L = 1pV �5��L (6.2)Note that here �5� does not appear as a perfet square. Inserting in this expression the solution61



for the Killing spinor as well as the solution for � and other bulk �elds yields:Æ 5L = �2g2 �HR0��1=4 V0R02 (�H2(0)(�1)2Æ(x5)�H2(��)(�2)2Æ(x5���))�L� 1pV0R0H2 �HR0��1=4 f�L(6.3)where f is de�ned as: f4�0 = �24g2 (V0R0)3=2��21H3(0)� �22H3(��)H4(0)�H4(��) (6.4)Thus the transformation law of �T is:Æ�T = 12�� R 2��0 � HR0�1=4 Æ 5= 12�� 23�0pV0R0 (H3(��)�H3(0))f�L � 12�� �2g2 V0R02 (H2(0)(�1)2 +H2(��)(�2)2)�L= 2�243g2V0R0(��21H3(0)� �22H3(��))H3(��)�H3(0)H4(0)�H4(��)�L��24g2 V0R02 (H2(0)(�1)2 +H2(��)(�2)2)�L (6.5)The seond part of the above expression would be absent if Æ 5 respeted the perfet squarestruture. The gaugino bilinears would the enter in the zeroth order in � violating the anonialform of the supersymmetry transformation law. Instead, after expanding in � the result to the�rst order is: Æ�TL = � �2412g2R20�p2�� ��21 � �22� �L : (6.6)Similarly, we an alulate the supersymmetry transformation law of the superpartner of themodulus S: Æ�SL = �242g2V 20 ��21 + �22� �L (6.7)Realling form subsetion (2.3) that in 4d supergravity, salar gaugino ondensates in thetransformation law of the fermions �S;�T are multiplied by 18f;S (G�1)SS and 18f;T (G�1)TT ,respetively, the result (6.6,6.7) indeed agrees with (5.68). We stress that the agreement is dueto the perfet square struture in Æ� and the lak thereof in Æ 5. Thus, when we alulateÆ�T the linear part of the solution for �5� anels to zeroth order in � with the delta funtionsouring in this solution, leading to the orret form of f;T . Note also, that the admixture of 5 in the de�nition of �S is ruial to obtain the orret form of f;S.From the transformation laws (6.6,6.7) it an be read o� that presene of gaugino onden-sates breaks supersymmetry in the 4d e�etive theory. Although one an adjust �21 = ��22 sothat the ondesates anel in the regular part of the solution (7.2) for �5� and in onsequene inÆ�S, but then the non-zero ondensate ontribution appears in Æ�T due to the above mentionedlak of the perfet square struture in Æ 5. However, if we allow for boundary salar �elds,appropriately adjusting their superpotentials we have the possibility to anel the ontributionof the ondensates.
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Chapter 7Gaugino ondensation andsupersymmetry breaking in �vedimensionsSimilarly to models derived from the heteroti string theory, in the theory formulated in setion4 there is the possibility to break supersymmetry by gaugino ondensation on the hidden and/orvisible branes. The supersymmetry breaking is ommuniated from one brane to another bythe expetation value of the hypermultiplet �eld �. This mehanism works beause �, althoughodd, ouples to gauginos on the boundaries through its �fth derivative (a toy-model of thiskind is studied in [21℄). The equation of motion for the � �eld in the presene of the gauginoondensates on the branes is:1�2�5(e5g55V �5�) = �5  �e4pV2g2e55 (Æ(x5)(�L�R)1 + Æ(x5 � ��)(�L�R)2)! : (7.1)We are interested in the solution for �5� (and not for � alone) beause it is just this expressionwhih enters the relevant formulae. For � = 0 we obtain the solution:�5�H�3 �22g2 (V0R0)3=2 ��Æ(x5)�21 � Æ(x5 � ��)�22�+ C (7.2)C = �23g2�p2��(V0R0)3=2��21H3(0)� �22H3(��)H4(0)�H4(��) (7.3)It is worth noting, that in the 5d theory gaugino ondensates break the supersymmetry Inthe presene of the ondensates we have no way to satisfy simultanously Æ A� = 0 with anyother of the remaining onditions for unbroken supersymmetry. Indeed, neither �5� nor theondensates do not alter the transformation law of  �, so in partiular, the onditions resultingfrom Æ A� = 0 inlude the hirality onditions (5.5). But in suh a ase, the ondensates in theformulae for Æ�a and Æ A5 multiply the supersymmetry parameter �, whih is of the hiralityopposite to other �'s ouring in these transformation laws. Thus, onditions Æ A5 = 0 andÆ�a = 0 annot be satis�ed.
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Chapter 8Conlusions
Let us summarize the ontent of this thesis. Having prepared the neessary bakground insetions 2 and 3, in setion 4 we presented the �ve dimensional onstrution analogous to theHorava-Witten onstrution in eleven dimensions. Preisely, we derived a loally supersymmet-ri lagrangian whih onsists of two setors: the 5d bulk supergravity oupled to one 'universal'hypermultiplet, the 4d hiral matter and the YM �elds on the brane. This thesis does notdesribe general ompati�ation of the Horava-Witten model on Calabi-Yau threefolds. Real-ization of suh programm would require onsidering an arbitrary number of hyper- and vetormultiplets in the bulk. Instead, we onentrated on some general features of 5d loally su-persymmetri theories ontaining hiral matter on�ned to 3-branes. The lass of potentialswe onsidered was wider than those obtained in the ompati�ation of the Horawa-Wittenmodel. We show that gauge and matter �elds residing on the brane an be supersymmetrizedby modifying the brane ation only but one has to modify the supersymmetry transformationlaws of both brane and bulk �elds. On the other hand we show that the boundary potentialterms for bulk salars an be reoniled with supersymmetry by modifying the bulk ation andthe supersymmetry transformation laws of the bulk �elds. The oupling of the 4d Yang-Millsand matter �elds to the bulk �elds does not depend neither on the boundary nor on the bulkpotentials. In partiular, the 'visible' brane ation would have the same form in the supersym-metri version of the Randall-Sundrum senario. In the original RS model, the interations ofthe bulk with the brane �elds yield spei� experimental signatures [26℄ whih may be seenat the Tevatron and LHC. In the supersymmetri version of this model the phenomenologialonsequenes may be even riher, as e.g. the gravitino and its massisve KK modes interat withthe SM �elds. The ation obtained in this thesis an be the starting point for phenomenologyin the framework of the supersymmetri RS model or modi�ations thereof.In setion 5 the supersymmetry preserving ompati�ation to four dimensions of theHorava-Witten model is studied. Generally, our results on�rm the onlusions of referene[6℄, where the e�etive theory was obtained by diret ompati�ation from eleven dimensionsdown to four. We analyze ontributions to the e�etive ation and interpret them in terms ofthe anonial form of 4d supergravity as given in [17℄. For example, we study the anellationof various ontributions to the 4d tree-level osmologial onstant; as advoated, its vanishingis neessary for the onsisteny of the ompati�ation. In addition, we express the anoniallynormalized fermion �elds of the 4d theory in terms of their 5d ounterparts. In setion 6 wepoint out that the e�etive theory an also be onsistently dedued from the redution of the5d supersymmetry transformation laws. 65
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Appendix A
This appendix ontains the full Langrangian of �ve-dimensional N=2 gauged supergravity onM4 � S1=Z2 oupled to non-linear sigma model SU(2; 1)=U(2) and to YM multiplets (Aa�; �a)on two parallel branes plaed at x5 = 0 and at x5 = ��. Matter multiplet (C; �) on the "visible"brane, transforming under gauge group, is inluded. This Langrangian ontains the followingparts: S = R d5xe5[LBULK + LYM1Æ(x5) + LYM2Æ(x5 � ��)+LH1Æ(x5) + LH2Æ(x5 � ��) + L27Æ(x5) + LW Æ(x5) + L�Æ(x5)� L�Æ(x5 � ��)℄ (A.1)LBULK is given by eq. 4.1. LYM and LH part ontains gauge �elds living on the brane. Ofourse, gauge �elds should have an appropriate index orresponding to its loation, e.g. Aa (1)�for the part of the ation multiplied by Æ(x5). Only the even part of bulk fermions appearshere;  �; � is de�ned in terms of �ve-dimensional sympleti Majorana spinors  A� ; �a in (4.5).g2LYM = �V4 F a��F a�� � V2 �aD=�a + V4 ( �����a)F a�� + 3i4p2 Ve55 (�a5��a)F�5+ V32( ��� �)(�a�a) + V32( ��5� �)(�a5�a)� V8 ( � �)(�a�a)+V8 ( �5 �)(�a5�a) + V32( �5� �)(�a5��a)� V16( ��5 �)(�a5��a) + 316 1e55 ( �5 5)(�a5��a)+ 3�264g2 Æ(x5)V 2(�a5��a)(�b5��b) (A.2)g2LH = �14�F a�� ~F a�� � 14(����a)F a�� � i8(�a5��a)��� � pV2e55 [(�aL�aR)�5� + (�aR�aL)�5�℄�14(����a)( ���a)� 18( ���)(�a�a)�18( ��5�)(�a5�a)� i8e55 ( 55�)(�a�a)� i8e55 ( 5�)(�a5�a)+ 164V (�a5��a)(�5��) + 364V (�a5�a)(�5�) + 364V (�a�a)(��)� �216g2 Æ(x5)V 2[(�a�a)(�b�b)� (�a5�a)(�b5�b)℄ (A.3)If we inlude matter on the visible brane, we have to add following ouplings:g2LS = �D�CpD�Cp � �D=�+( R�D=Cp��pL + h::) + iF�5p2e55 (CpD�Cp � CpD�Cp)� iF�52p2e55 (�5��)� i4V ���(�5��) + 1e55 ( � 5)[� i8(�5��) + i4(CpD�Cp � CpD�Cp)℄+( ����5 �)[� 116(�5��)� CpD�Cp � CpD�Cp)℄� 18( �5� �)(�5��)67



+ 116V 2 (�5��)[�12(�5��)� (CpD�Cp � CpD�Cp)℄� 12V (CT aC)(CT aC)+12( ���a)(CT aC) + (2i�aRCT a�L) + h::)� i2V (��a)(CT aC)��2g2 Æ(x5)[� 116(�5��)(�a5��a) + 124(�5��)(�5��)+ 124(CpD�Cp � CpD�Cp))(CpD�Cp � CpD�Cp))� 112(�5��)(CpD�Cp � CpD�Cp)℄(A.4)(A.5)g2LW = � 2V �W�Cp �W�Cp � 2pV �2W�Cp�Cq (�pR�qL) + 2pV �W�Cp ( L���pL)+ 1pVW ( L��� R�) + 2V 3=2 �W�Cp (�R�pL)� 1V 3=2W ( L���L)� 2V e55W�5� + iV 3=2e55W ( R5�L)+�2g2 Æ(x5)[� 4VWW �pVW (�aR�aL)℄ + h:: (A.6)The boundary osmologial term must appear if �ve-dimensional supergravity is gauged:�2L� = p2�V (A.7)The supersymmetry transformation laws of the YM and matter multiplets are:ÆAa� = �12(���a)Æ�a = 14��� [F a�� + ( ���a)℄ + 18V 5�a (�5�) + 14V 5� (�a5�)� i2V � (CT aC)ÆCp = (�R�pL)Æ�pL = 12[D�Cp � ( R��pL)℄ ��R + 18V �pL (�5�)� 1pV �W�Cp�L (A.8)One has to modify supersymmetry transformation laws of the even ombinations of the bulkfermions: �2g2 Æ � =M� YM1Æ(x5) +M� YM2Æ(x5 � ��) +M� 27Æ(x5) (A.9)M�YM = V8 (g�� � 12��)5� (�a5��a)M�27 = (g�� � 12��)5� [16(CpD�Cp � CpD�Cp)� 112(�5��)℄ (A.10)�2g2 Æ 5 = +N27Æ(x5) +NW Æ(x5) (A.11)N27 = e55�� [ i6(CpD�Cp � CpD�Cp)) + i6(�5��)℄NW = 2ie55pV (W�L �W�R) (A.12)�2g2 Æ� = PYM1Æ(x5) + PYM2Æ(x5 � ��) + PW Æ(x5) (A.13)68



PYM = V 24 [�(�a�a)� 5�(�a5�a)℄PW = �2pV (W�L +W�R) (A.14)
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