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ABSTRACT  

This thesis is devoted to the study of the representation 

theory of orthosymplectic superalgebras and their applications to 

physical theories.  Techniques are developed to educe typical and 

atypical finite-dimensional, irreducible representations of 

orthosymplectic superalgebras.  These include superfield and 

weight space procedures which are illustrated for several low-rank 

orthosymplectic superalgebras.  Young supertableaux are used to 

enumerate finite-dimensional typical, tensor representations and 

spinor representations of OSp(M/N), and atypical, tensor 

representations of OSp(2/2), OSp(3/2) and OSp(4/2).  Relations 

between Kac-Dynkin and supertableau labels are obtained and used 

to present conditions on diagram shape, necessary and sufficient 

for atypicality.  Modification rules for typical supertableaux of 

OSp(M/N), and for atypical supertableaux of OSp(2/2), OSp(3/2) and 

OSp(4/2) are presented.  Dimension formulae, in diagram notation, 

are discussed for typical, representations of OSp(M/N). 

New superfield realisations are presented for the 

determination of infinite-dimensional irreducible representations 

of N-extended super-Poincare algebras with central charges. 

These are illustrated for the N=2 extended super-Poincare algebra 

with one central charge.  Finally, a discussion of the roles played 

by orthosymplectic supergroups in some physical theories is 

presented. 
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1. 

1 	INTRODUCTION 
The purpose of this chapter is to place the subject matter 

of this thesis in an historical perspective so that the significance of 

the results reported here may be appreciated in their proper 

mathematical and physical context. 

1.1  AN HISTORICAL PRELUDE 

Symmetry principles play an important role in physics, lending 

simplicity and elegance to physical laws and physical systems amid the 

complexity which so often accompanies them.  In particular, global 

and local symmetries have become established as a fundamental feature 

of modern particle physics.  In the early 1970's a new symmetry 

principle was introduced to physics which involved transformations 

relating states of different quantum spin-statistics [1-8].  It has 

become known as supersymmetry.  The algebraic structure of supersymmetry 

is that of a graded Lie algebra, which is an extension of an ordinary 

Lie algebra to include anticommutators.  Graded Lie algebras first 

appeared in the mathematical literature with the work of Nijenhuis 

and Frohlicher [9,10] and later in connection with cohomology and deformation 

theories [11,12].  The sequel contains a brief historical review of 

the mathematical development of the theory of Lie superalgebras followed 

by a discussion of the applications they have found in physics. 

Prior to embarking on this, a few sentences will be devoted to 

establishing precisely what characterises a Lie superalgebra. 

Superalgebra is the term which has been adopted for Z 2-graded 

algebras, A = A6  + AT, which are algebras which satisfy the following: 

ifaEA,bEA e.  anda,f3EZ 2  = {OM, then abEA co.c  ALie 
a 

superalgebra is a superalgebra G = G6  + GT with an operation [ , ] 

which satisfies 



2. 

[a,b] = -(4)"[b,a]  foraEG,bEG 
a 

[a,[b,c]] = [[a,b],c] + (-1)"[b,[a,c]] for a e Ga , b E G . 

A theory establishing the connection between Lie superalgebras and Lie 

supergroups has been developed by Berezin and Kats [13] and Berezin and 

Leites [14].  An extensive discussion of supergroups and supermanifolds 

has been given by Kostant [48]. 

The program of the classification of Lie superalgebras was 

begun by Pais and Rittenberg [17].  Under some rather strong restrictions, 

including that the Killing form be nonsingular and the bosonic part be simple, 
0 

they find the only algebras to be OSp(1/2n).  This was followed by the 

work of Kaplansky and Freund [15,16] who exhibited two infinite families of 

simple Lie superalgebras, the special linear, SU(m/n), and orthosymplectic, 

OSp(m/2n), algebras and postulated the existence of the exceptional Lie 

superalgebras, F(4), G(3) and D(2,1;a).  The classification of all 

simple Lie superalgebras whose Lie algebra is reductive was given by 

Scheunert, Nahm and Rittenberg [18,19].  This work provided a complete 

classification for all the 'classical' Lie superalgebras which, in 

addition to the 'basic classical' Lie superalgebras mentioned above, 

includes the two 'strange' series, P(n) and Q(n).  The complete 

classification of all finite-dimensional, simple Lie superalgebras has 

been obtained by Kac [20].  He has shown that in addition to the classical 

Lie superalgebras there exist four series of the 'Cartan' type, W(n), 

S(n), H(n), S(n).  Filtrations and Z-gradations of Lie superalgebras 

play an important role in this classification.  Parker [21] has given a 

classification for the real forms of all the classical Lie superalgebras. 

The representation theory of Lie superalgebras has seen the 

following developments.  Kac [22] has obtained character and 

supercharacter formulae for 'typical' finite-dimensional, irreducible 
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representations of the basic classical Lie superalgebras.  For these 

algebras he has derived [23] necessary and sufficient conditions for 

a finite-dimensional, irreducible representation to be 'typical' and 

has obtained dimension formulae for these representations.  Djokovic 

and Hochschild [24,25] showed that the only Lie superalgebras for 

which all the finite-dimensional representations are completely 

reducible are those which are isomorphic to a direct product of a 

semi-simple Lie algebra with finitely many Lie superalgebras of the 

type OSp(1/2n).  With the work of Corwin [26] and Djokovic [27] a 

quite detailed representation theory for the Lie superalgebras 

OSp(1/2n) was developed. 

The concept of Hermitian representations of simple Lie algebras 

was generalized to classical Lie superalgebras by Scheunert, Nahm 

and Rittenberg [28].  They demonstrated the existence of two classes 

of such representations defined on a graded Hilbert space.  These are 

called star and grade star representations and are defined through 

adjoint and grade adjoint operations.  The finite-dimensional, star 

and grade star representations of OSp(1/2) and SU(2/1) were subsequently 

obtained by these authors [29]. 

The Casimir invariants for the general linear, special linear 

and orthosymplectic Lie superalgebras and for the strange Lie superalgebras 

have been constructed by Jarvis and Green [30] and Jarvis and Murray [31] 

respectively.  Following the classical approach of Perelomov and Popov, 

Scheunert has constructed generating functions to obtain the eigenvalues 

of the Casimir elements for the general linear, special linear and 

orthosymplectic Lie superalgebras [32] while Balantekin and Bars [36] 

have used characters to obtain formulae for the eigenvalues of all 

Casimir operators of SU(m/n), OSp(m/2n) and P(n). 
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Diagram techniques were introduced to the study of representations 

of Lie superalgebras by Dondi and Jarvis [33,34] and Bars and Balantekin 

[35,36].  These authors have studied the Lie superalgebras U(m/n), 

SU(m/n) OSp(m/2n) and P(n), developing branching rules, character 

formulae and dimension formulae for some representations.  Later work 

by Balantekin and Bars [37] and Bars, Morel and Ruegg [38] saw Young 

supertableaux techniques applied to contravariant, covariant and mixed 

representations of SU(m/n), while Delduc and Gourdin [39] have 

investigated SU(n/l) to establish which supertableaux correspond to 

irreducible representations.  Morel, Sciarrinoand Sorba [40] have 

recently developed new diagram techniques for the study of OSp(m/2n). 

They have been successful in obtaining branching rules, in closed form, 

for all typical tensor and spinor representations of these algebras. 

King [41] has used standard schur function operations to derive simple 

Kronecker product rules and branching rules for all representations 

of SU(m/n) and for tensor representations of OSp(m/2n).  He has also 

given dimension formulae in terms of partition labels for these 

representations, provided they are typical. 

Superfield techniques were first applied to the study of 

finite-dimensional representations of Lie superalgebras by Dondi and 

Jarvis [33], who studied U(m/n) and SU(m/n).  These techniques have 

been further developed and applied to the orthosymplectic Lie 

superalgebras by Farmer and Jarvis [42]. 

Following the initial work of Kac [23], weight space techniques 

were further developed by Hurni and Morel [43,44] where applications to 

the basic classical Lie superalgebras were considered.  Further 

developments were made by Farmer and Jarvis [45], applying these 

techniques to the orthosymplectic superalgebras and explicitly 
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constructing all finite-dimensional, irreducible, star and grade star 

representations of OSp(1/2), OSp(2/2, OSp(3/2) and D(2,1;oc). 

Some very interesting developments have been made recently by 

Thierry-Mieg [46], who has obtained theorems which allow the 

explicit construction of the irreducible representations of the basic 

classical Lie superalgebras. 

Lie superalgebras have become an important influence in the 

physics world and in particular in theoretical particle physics, 

where a very significant fraction of the literature is currently 

devoted to theories which are based on these algebras in some form. 

The first applications of Lie superalgebras came with the work of 

Neveu and Schwarz [I] and Ramond [2] on string models.  Independently, 

Gol'fand and Likhtman [5] and Volkov and Akulov [6] showed how to 

generalize the Poincar6 group to include fermionic charges.  With 

the construction of an interacting field theory, invariant under this 

graded Poincare group, by Wess and Zumino [7,8], a way was opened 

to circumvent the 'no-go' theorems of O'Raifearteagh [49] and Coleman 

and Mandula [50] and unify in a non-trivial way internal with space-

time symmetries.  These supersymmetric field theories [51] have 

turned out to have a less divergent ultraviolet behaviour than non-

supersymmetric field theories and it is even hoped that some theories, 

such as the N=4 super Yang-Mills theory may even be finite. 

Despite this it is still far from certain that these theories describe 

the real physical world.  With the work of Ferrara, Freedman and 

van Nieuwenhuizen [52,53] and Deser and Zumino [54], supersymmetry 

became a local gauge symmetry and supergravity was born.  From its 

inception this theory generated much interest with the possibility of 
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unifying gravity with the other forces of nature in a finite field 

theory.  It has now become a vast subject (see [55,56] for reviews), 

though the technical complexities have, to date, thwarted the complete 

construction of what is hoped will be this unifying theory, the 

N=8- extended supergravity.  The majority of these global and local 

supersymmetric field theories are based on OSp(N/4) or SU(N/4) either 

directly or via Inonu-Wigner contraction. 

Although the greatest efforts in applying Lie superalgebras 

to physical problems have been in the above areas a number of other 

applications have also been found in recent years.  One of the most 

useful is the BRS invariance of quantum gauge theories [57] where the 

symmetries are generated by translations in a superspace [58,59]. 

Another interesting application is in relation to composite models 

of quarks and leptons.  In these models SU(MiN) plays the role of a 

classification group which helps solve 'anomaly matching' and 'decoupling' 

constraints [60,61,62].  These are necessary for the dynamical survival 

of chiral symmetries, which are needed to explain the small masses of the 

quarks and leptons relative to their physical size, or to the binding 

energy of their composite structure. 

There have been other applications for instance to internal 

symmetries [63] and supersymmetric grand unification [64,65,66,67,68], 

however, I would like to close this discussion with the one application 

of superalgebras in Nature which has experimental support.  This is 

in the area of nuclear physics and is a model based on the algebra SU(6/M) 

[69,70].  It provides a classification scheme for many low lying nuclear 

states of muclei in the Platinum-Gold region and predicts energy levels, 

relations among decay rates and relations between nucleon transfer 

reactions with accuracies of 10-20%. 
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1.2 	THE THESIS STRUCTURE 

Throughout this thesis it is assumed that the reader if 

familiar with the representation theory of Lie algebras.  Although 

some knowledge of Lie superalgebras and their representations would 

be useful, chapter two should serve as a brief introduction for those 

unfamiliar with this subject.  It should also serve to establish the 

notation used here and the terminology necessary for communication. 

For more comprehensive treatments of this subject the reader is 

referred to the works of Kac [20,23] and Scheunert [47] on which the 

material of chapter two is based. 

As mentioned, chapter two serves as an introduction to the 

theory of Lie superalgebras.  The first section introduces the concepts 

of graded vector spaces and graded algebras, from which are defined the 

special class of Z 2 -graded algebras called Lie superalgebras.  Many of 

the formal definitions associated with these structures are given here. 

The second section provides the classification of all finite-dimensional 

simple Lie superalgebras which has been given by Kac [20]. 	The 

structures of the classical Lie superalgebras and their root systems 

are discussed in some detail.  In particular, the origin of the 

orthosymplectic superalgebras becomes apparent here. The third section 

provides an introduction to the representation theory of basic classical 

Lie superalgebras. 

The study of orthosymplectic superalgebras is begun in earnest 

in chapter three.  The general structure of the algebra is discussed 

in §3.2, incorporating an explicit choice of simple roots and presenting 

the general form of the Cartan matrix.  This allows the complete algebra 

to be constructed for any orthosymplectic superalgebra.  Weight space 

techniques are then developed for educing finite-dimensional, typical 

and atypical, irreducible representations of these algebras. 
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These techniques are then used to determine all finite-dimensional, 

irreducible representations of the superalgebras B(1,1), C(2) and 

D(2,1;a).  For a= 1 these are the lowest rank algebras from each of 

the three orthosymplectic classes.  The star and grade star 

representations are determined for each of these algebras. 

Chapter four develops superfield techniques for the determination 

of irreducible, typical and atypical, representations of orthosymplectic 

superalgebras.  These methods are based on the theory of induced 

representations.  Using these techniques, all irreducible representations 

of the superalgebras B(0,1), B(1,1), C(2) and D(2,1) are found. 

These are in agreement with the results of chapter three. 

Young supertableaux are introduced into the study of the 

representations of orthosymplectic superalgebras in chapter five. 

The relation between the Kac-Dynkin labels and the supertableau labels 

is first established and used to express the conditions for atypical 

representations in diagram notation.  Modification rules are found 

for the typical supertableaux of all orthosymplectic superalgebras 

and the atypical supertableaux of B(1,1), C(2) and D(2,1).  Dimension 

formulae for typical representations are presented here in diagram 

notation and branching rules to the underlying Lie algebra are given 

for spinor representations of all orthosymplectic superalgebras and 

atypical representations of B(1,1), C(2) and 0(2,1). 

New superfield techniques are introduced in chapter six for 

the study of irreducible realisations of the N-extended supersymmetry 

algebra in the presence of central charges.  After a general discussion 

of the procedure, which is based on an induced representation construction, 

the N=2 case is considered in detail.  The results are found to be in 

agreement with those obtained via the conventional methods, with the 

'spin reducing' cases arising analogously to atypical representations. 
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A review of the roles which orthosymplectic supergroups have 

found in physical theories is presented in chapter seven.  Perhaps 

the most useful application currently known is the elegant formulation 

it lends to the extended BRS symmetries of quantum gauge theories. 

Discussed here are applications to non-abelian gauge theories, Kaluza- 

Klein theories and gravity.  Orthosymplectic supergroups play a quite 

fundamental role in supersymmetric Yang-Mills and supergravity theories, 

since the N-extended super Poincare algebras, on which these theories 

are based, can be obtained by Inonu-Wigner contraction of OSp(N/4). 

This contraction procedure is presented in §7.2.  This chapter concludes 

with a discussion of Kaluza-Klein supergravity theories, wherein 

orthosymplectic supergroups play the role of the ground state symmetry 

of some compactifying solutions of these theories. 

The thesis concludes in chapter eight with a summary, 

reiterating the main new results obtained, and indicating avenues for 

future research. 

The appendices contain details of notation and some techniques 

which have been employed in the course of this work.  Also presented 

are two proofs pertaining to the work of chapters three and five and 

some useful identities for handling the 0-calculus of chapters four and 

six. 

Each chapter contains its own set of references, which though 

leading to some duplication has the advantage of making each chapter 

self-contained. 
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2. 	AN INTRODUCTION TO LIE SUPERALGEBRAS 

The primary function of this chapter is to provide the reader 

with the notation, definitions and basic mathematical theory of Lie 

superalgebras, necessary to make the remainder of this thesis 

intelligible and to provide the appropriate context for the 

representation theory of orthosymplectic Lie superalgebras. 

Consequently this chapter is basically a review of the mathematical 

theory of Lie superalgebras which relies heavily on the works of 

Corwin, Ne'eman and Sternberg [1], Pais and Rittenberg [2]. Freund 

and Kaplansky [3], Nahm, Rittenberg and Scheunert [4,5,6,7], Rittenberg 

and Scheunert [8] and particularly the comprehensive treatments by 

Kac [9,10] and Scheunert [11].  To contain the length of this chapter 

it has been thought expedient to only state results and refer the 

reader to the literature for the relevant proofs. 

In §2.1 the necessary basic definitions and concepts pertaining 

to graded algebraic structures and Lie superalgebras are introduced. 

Since the primary concern of this thesis is with Lie superalgebras 

these refer substantially to Z 2  - graded structures.  The extensions 

to more general gradings are discussed by Scheunert [12]. 

The classification of Lie superalgebras is discussed in §2.2. 

This deals mainly with the complete classification of all finite-

dimensional simple Lie superalgebras over an algebraically closed field 

of characteristic zero which has been provided by Kac [9]. 

Finally §2.3 provides a short review of the work of Kac [10] on 

finite-dimensional irreducible representations of simple Lie 

superalgebras. 
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2.1  INTRODUCTION TO GRADED ALGEBRAIC STRUCTURES AND 

LIE SUPERALGEBRAS 

Let r be the ring of integers, Z, or the residue class ring 

of Z modulo 2Z, Z 2  = Z/2Z [13].  The two elements of Z 2  will be 

denoted by  and I.  All spaces and algebras are regarded over a ground 

field, K, which is algebraically closed and of characteristic zero. 

A F-graded vector space, V, over the field K contains a family 

of subspaces, V, where YEF, such that 

An element of V is said to be homogeneous of degree YEF if it is an 

element of V.  If r = Z 2 the element of V5(VT)  is called even (odd). 

On any Z-graded vector space V = 0 V. there exists a natural Z2-  
jEZ 

grading, induced by the Z-grading and defined by 

V - = OD V
2j 	VT 

jcZ jEl 

A subspace U of V is called a F-graded subspace if U = ED 
yEr 

(U n V ). 

Let V and W be No r-graded vector spaces.  A linear mapping 

g: V  W is said to be homogeneous of degree V, vEr, if 

g(V ) c Wa 	Vaer. 	The mapping g is called a homomorphism of V into W 

if it is homogeneous of degree 0. 

An algebra A, over the field K, is a F-graded algebra if its 

underlying vector space is r-graded, A = CD A , and if 
yF Y  

Accik c Aco13  Val 13E1%  If A has a unit element, e, it follows that edt o . 

A homomorphism of F-graded algebras is a homomorphismof the 

underlying algebras and of the underlying r-graded vector spaces. 

It is homogeneous of degree O. 
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A graded subalgebra (or ideal) of a r-graded algebra, A, is a 

subalgebra (or ideal) of the algebra A which is, in addition, a graded 

subspace of the underlying r-graded vector space A. 

A superalgebra is a Z 2 -graded algebra A = A5  6) AT . 

The elements of A5 (A-) are called even (odd).  If a E A
a 
 (a = 

then a is called homogeneous of degree a. 

The graded tensor product, A GD B, of two associative 

subalgebras A and B is the tensor product of the underlying vector 

spaces with multiplication defined by the requirement that 

(a  b)(al  b ' ) = (-Wal  (aa') 0 (bb') 

va E A, a' E Aa ., b E B, b' E B ; a',  E Z 2 . 

With this multiplication A® B is an associative superalgebra. 

A Lie superalgebra is a superalgebra, G = G 5 03 GT , with an 

operation [ , ] satisfying the following: 

[a,b] = -(-l) °  (graded skew-symmetry) 

[a,[b,c]] = [[a,b],c] + (-l)  (graded Jacobi identity) 

va E Ga , b E 	c E G ;  a,f3 E Z 2 . 

If A is an associative superalgebra then defining  ] by 

[a,b] = ab -(-l)  va E A
a' 

b E A  ; a,G E Z
2 

turns A into a Lie superalgebra denoted AL . 

The universal enveloping algebra of a Lie superalgebra is 

constructed in the following way [9,11].  Let G = Ga.& GT  be a Lie 

superalgebra and T(G) the tensor algebra over the vector space G. 

The Z 2-grading of G induces a Z 2 -grading of T(G).  Let R be the two-sided 

ideal of T(G) generated by elements of the form: -  

R = [a,b] - a OD b + (-1) a  b 0 a. 

The factor algebra U(G) defined by U(G) = T(G)/R is an associative 

superalgebra. 
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The canonical mapping G  U(G) induces a homomorphism  G  U(G) L  

of Lie superalgebras.  The pair (U(G),i) is the universal enveloping 

algebra of G. 

The Poincarg-Birkhoff-Witt theorem can be used to construct a 

canonical basis for U(G) as follows.  Let a l ,...,am  be a basis of 

G- and b•b
n 
be a basis of G-, then the elements of the form 

k
1 	

k 
a

1 
...a

m m 
b...b

in' 	
where k

i 	
0 and 1  i

1 
<...< i

s 	n, 

form a basis of U(G). 

Let V = V- co V- be a Z 2-graded vector space, with V 13 
and VT 

ofdimension m and n respectively, and let 

Enda(V) = { A E End(V): A V =  

End(V) = OD End(V) is endowed with a Z 2-grading and a Lie superalgebra 

structure, denoted by Z(V)  ,(m,n), can be defined on it by setting 

[A,B] = AB - (-l)  ,  A,B E End(V). 

A linear representation, p, of a Lie superalgebra G = G 6 0. GT  in 

V is a homomorphism 

p:  G  t(V). 

The map ad: G  t(G) for which 

(ad g)(a) = [g,a]  ,  a,g E G 

is a linear representation of the Lie superalgebra, G, called the 

adjoint representation. 

The adjoint representation of a Lie superalgebra, G, induces a 

representation of the Lie algebra G6  in the odd subspace G T  and is 

denoted by adI G_ or G6IG1. 



17. 

It is now possible to introduce a generalized adjoint operation 

for a Lie superalgebra, G, and the concepts of star and grade star 

representations of G in a graded vector space, V, [7]. 

Let V = V- 013 V- be a finite-dimensional Z
2
-graded vector space. 

Assume that on V there exists a non-degenerate hermitian form denoted 

by ( , ) such that V- and V- are orthogonal with respect to this form, 
1 

i.e., (V 6 ,V7 ) =  If ( , ) is positive definite then V is called 

a graded Hilbert space. 

For any linear operator A in V the adjoint operator, A+ , with 

respect to ( , ) is defined by 

(ex,y) = (x,Ay)  vx,y E V. 

For the Lie superalgebra Z(V) consider the following rules: 

(i) The adjoint of an even (odd) element is even (odd). 

(ii) (aA + bB) +  = a*A+  + 

(iii) [A,B] 4-  =  [B+ ,A 1-3. 

(iv) (A)  = A. 

vA,B E 9,(V)  and  a,b E C. 

An adjoint operation in a Lie superalgebra, G, is a mapping 

A  A
+ 

of G into itself which satisfies the conditions (i) - (iv) above. 

Let A be a homogeneous linear operator in V of degree a.  The 

grade adjoint operator, A+, with respect to ( , ) is defined by 

(0x,y) = (-1) a (x,AY) VX E 	y E 	. V c ,  Vn  

For the Lie superalgebra Z(V) consider the following rules: 

(i') The grade adjoint of an even (odd) element is even (odd). 

(ii') (aA + bB) 4  = a*0 + b*B+ 
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(iii') [A,W = (-l)  

(iv') (A4 )  = (-1) a  A 

VA E SL(V) a  B E 2.(V) (3  and  a,b E C . 

A grade adjoint operation in a Lie superalgebra, G, is a mapping 

A  PJ of G into itself which satisfies the conditions (i') - (iv') above. 

Let G be a Lie superalgebra equipped with an adjoint (grade 

adjoint) operation, and let V = Vo(D VT  be a graded vector space. 

A star representation (grade star representation) of G in V is a graded 

representation p of G in V which satisfies 

p(e) = p(A) +  (p(0) = p(A)) . 

Let V be a finite-dimensional Z 2-graded vector space and let 

y : V÷Vbe the linear mapping which satisfies 

y (V) = (-1) av  if V E Va ; a E Z 2  . 

The supertrace, str, is a linear form on k(V) defined by 

str(A) = Tr(yA)  VA e 2.(V) . 

From this definition it follows that 

str([A,B]) = 0  VA,B E k(V) . 

Let G =  be a Z 2
-graded space and let f be a bilinear 

o 

form on G.  Then f is called 

consistent if f(a,b) = 0  for a E Go  , b E GT  , 

and  supersymmetric if f(a,b) = (-1) al3f(b,a) for a E Ga , b E Goa,f3 e 

If G is a Lie superalgebra, f is called 

invariant if f([a,b],c) = f(a,[b,c]) . 



19. 

The bilinear form (a,b) = str(ab) on t(V) is consistent, 

supersymmetric and invariant.  The killing form on a Lie superalgebra, G, 

is the bilinear form 

(a,b) = str( (ad a) (ad b) ) . 

A superalgebra, G, is said to be Z-graded if we are given a 

family (Gi ) j  z  of Z 2-graded subspaces of G such that 

(i) G = G G. , 
j€ Z 3  

(ii) G.G. Yi,j E Z. 

The Z-grading is said to be consistent with the Z 2 -grading of G if 

G- = e G., 
 

G_ = 

 

o  .  2j 
J € 	 j E Z 

j 
 

If G is a Z-graded Lie superalgebra, then G o  is a subalgebra 

and [G0 ,G i ] E G.  Thus the adjoint representation, restricted to G o , 

induces linear representations of G o  in the subspaces G i , denoted by 

Go lG i .  G is called irreducible if the representation of G o  in 

is irreducible. 

A Lie superalgebra, G = Go(13 GT  is solvable if and only if its 

LiealgebraG-issolvable.-is solvable if Gi n)  = 0 for some n, Go  

where Gl i)  is defined by 
0 

(1)  - 0) 
= G-  G-  LG

(0)
- ,G

(0)
'  

- ]  G!
2) 

= 

 

o '  o  o  o   

G' 
 (i-1) 

o  o 

A Lie superalgebra, G, is called semisimple if it contains no 

solvable ideals. 

A Lie superalgebra, G, is called simple if it does not have any 

graded ideals which are different from {0} and G and if [G,G]  0. 
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2.2  CLASSIFICATION OF SIMPLE LIE SUPERALGEBRAS 

The following discussion will be restricted to finite-

dimensional, simple Lie superalgebras, G = G5  ED GT , over an 

algebraically closed field, K, of characteristic zero.  A classification 

for all simple Lie superalgebras has been obtained by Kac [9] although 

partial results, particularly for the classical superalgebras, have 

also been obtained by others [2,3,4,5,6,14].  The two main categories 

are called Cartan and classical superalgebras.  The classification 

of the Cartan superalgebras relies on the concept of a filtration of 

G [9] which will not be discussed here.  A Lie superalgebra, G, is 

called classical if it is simple and the representation of G5  in GT , 

G-
o
IG-, is completely reducible.  These can be subdivided into two 

categories depending on whether G5  in GT  is reducible (type I) or 

irreducible (type II). 	The type I and type II classical superalgebras 

can be further subdivided into those with non-degenerate killing form 

and those with zero killing form.  In Figure 2.1 the classification 

scheme is sketched. 

2.2a  CLASSIFICATION OF CLASSICAL LIE SUPERALGEBRAS 

1.  A(m,n): 

Let SQ(m,n) = {A E Q(m,n)Istr(A) = 0 }. 

Then from the property str([A,B]) = 0 it can be seen that St(m,n) is an 

ideal in t(m,n) of dimension one less than the dimension of t(m,n). 

Z
2
- and Z-gradings of t(m,n) induce the same gradings on S(m,n). 

* The following notation is used in this section: St , Sp a , SOn  stand 

for the fundamental representations of these Lie algeEras, spin k  stands 

for the irreducible spinor representation of SOk, g2 denotes the simplest 
representation of the Lie algebra G2, CSp is Sp plus the 1-dimensional 
centre, and Stn  stand for the adjoint representation of St n , *denotes 
the dual module and S4  and 2  denote symmetrical and exterior products. 
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Figure 2.1  Classification of finite-dimensional Lie superalgebras over an algebraically 

closed field of characteristic zero. 

Finite-dimensional Lie superalgebras, G 

Kac [9, pg 9] 

Kac 
[9, Thm 6] 

Simple 

Cartan 

W(n), S(n), 

H(n), S(n). 

G/R 

Semis imple 

Q6  in G I  completely reducible 

R = Solvable radical of G. 

Solvable 

zero Killing form  nondegenerate Killing form 

///  \  //  \ 
Type I  Type II  Type I  Type II 

///  \  /I  \ 
n t A(n,n)  D(n+1,n)  A(m,n), in  B(m,n), D(m,n), m-n 

P(n)  0(2,1; a) 	C(n)  F(4), G(3). 

Q(n)  . 

1 



St(n,n) contains the one-dimensional ideal consisting of 

scalar matrices AI 2n• 

We set 

A(m,n) = S9.(m+1,n+1) for m  n ,  m,n  0. 

A(n,n) = S2(n+1,n+1)/XI 2n4.2  n >0. 

The Killing form of St(m,n) is given by 

(A,B) = 2(m-n) str(AB)  A,B E St(m,n) 

From this it is found that for A(m,n) the Killing form is 

non-degenerate while for A(n,n) the Killing form is zero. 

These are also known as unitary superalgebras. 

2.  B(m,n),  D(m,n), C(n): 

LetV=V-
o 
 +V_

1 
 be a Z 2-graded vector space with dim V- = m, 

dim V-
1  = n. Let F be a nondegenerate, consistent, supersymmetric 

bilinear form on V. 

We define OSp(m/n) = OSp(m/n)5 + OSp(m/n) T  by 

OSp(m/n) s  = { A E (m,n) s 1F(A(x),y) =(i)
s(de g x)

F(x,A(y))} 

where s E
2 '  

x,y E V. 

(i)  If m = 2. + 1, n = 2r: 

In some homogeneous basis of V the matrix of the form F can 

22. 

0 	I 	01 

I 	0 	0 2, 

0 0 
_ 

0I 
r 

be written as 

r 0 
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and OSp(22. +1,26 consists in this basis of the matrices of the 

form [ a  b  u ' x  x 1 1 
1 
1 

c -a
T 

v  y  y l 1 

	

-vT  -uT  0 ' z 	z 
1  1 

1--  -- ITT 

 

y 1  x 1  z1 I d  e 

T T T 
_-y -x -z 1 f -d

T 

where a is any (t x 0-matrix, b and c are skew-symmetric (t x 0-matrices, 

d is any (r x 6-matrix, e and f are symmetric (r x r)-matrices, u and v 

are (9, x 1)-matrices, x and y are (2 x r)-matrices and z is an (r x 1)- 

matrix. 

Two important properties of this are 

(a) OSp(22.+1,26 5  is a Lie algebra of type B iz,  C)C r , 

(b) the representation of OSp(22.+1,2r) (3 in 0Sp(22+1,26 7  is 

isomorphic to S0 2314.1  q0p 2r . 

(ii)  If m = 29., n = 2r: 

For this case the matrix of the form F and the matrices of 

OSp(29.,2r) are the same as for (i) with the middle row and column 

deleted. 

The properties analogous to (i) are 

(a) OSp(22„26 13  for 9.  2 is a Lie algebra of type D sz, 	Cr ; 

(b) the representation of OSp(29.,265 in OSp(29.,26 7  

is isomorphic to S0 29.(i Sp 2r • 

The case 9. = 1 admits the consistent Z-grading G_ 1  G0  G 1  

where G
o' 

G
-1 and G 1 

consist, respectively, of matrices of the 

form: 



         

24. 

         

 

0 ' 

       

         

         

       

0 0 

 

 

0 -a 

      

         

  

d e 

f -d
T  

   

     

       

          

where the various elements are matrices of the form as discussed in 

(i) with 9 = 1. 

We set 

B(m,n) = OSp(2m+1/2n) ,  m  0, n > 0 

D(m,n) = OSp(2m/2n)  ,  m  2, n > 0 

C(n)  = OSp(2/2n-2) ,  n  2. 

These are also known as orthosymplectic superalgebras. 

3. P(n), n  2: 

This is a subalgebra of S2(n+1,n+1) consisting of matrices 

of the form  [ a :  b 
_ 

C ,  -a' 

where tr a = 0, b is a symmetric matrix and c is a skew-symmetric 

matrix. 

P(n) admits the Z-graded structure P(n) = G 1 @ Go  G, 

where G
o' 

G
-1 

and G
1 
consist, respectively of matrices of the form: 

, 

[_ 
- 7  - 

-aj  0 1 0 

4. Q(n), n  2: 

This the subalgebra of S9.(n+1,n+1) .1 Q(n) = Q(n)/I 21.0.2  where Q(n) 

consists of matrices of the form  a : b  where tr b = 0 and 

( b , a 

I
2n+2 

is the one-dimensional centre of Q(n). 
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5. F(4): 

This is a 40-dimensional Lie superalgebra for which F(4) 6  is 

a Lie algebra of type B 3 (4) A l  and the representation of F(4) 5  in F(4) T  

is spin 7  $z 2 . 

6.  

This is a 31-dimensional Lie superalgebra for which G(3) 6  is 

a Lie algebra of type G 2  E A i  and the representation of G(3) 6  in 

G(3) T  is g 2  6D s2 2 . 

7. 0(2,1; a), a E K\{ 0,-1}: 

This is a one-parameter family of 17-dimensional Lie superalgebras 

consisting of all simple Lie superalgebras for which D(2,1;a) o  is a 

Lie algebra of type A l  e A, &A i  and the representation of D(2,1;a) 5  

in D(2,1;a) T  is st2  59, 2  O5t2 . 

In Table 2.1 are listed all the classical Lie superalgebras 

for which the representations of Go  in CT  is irreducible.  Also 

presented are the corresponding Lie algebra G 6  and the representation 

of G- in G-. 

Table 2.1  

G G6  G-IG- 
o  1 

G G6  G-o IG- t 

B(m,n) 

D(m,n) 

0(2,1 ;a) 

B mI CE)C n  

Dm, cf- c n  

Al  ®AI G. A1  

SO2m+1  ®Sp 2n  

so2m  @ sp2n  

sk2  Si  s9 2  

F(4) 

G(3) 

Q(n) 

B 3  co A i  

G2  ® A 1  

An  

Spin 7  ® St2  

g 2  0 St2  

ad S9
n+1 

In Table 2.2 are listed all the classical Lie superalgebras for 

which the representation of G 6  in GT  is reducible.  These admit a 

unique consistent Z-grading of the form G ..1  e Gn E G 1  and the 



representations 

and C(n) contragredient. 

algebra G6 and 

Table 2.2 

of Go  in G_ i  

Also 

the representations 

G
o 

and G i  are irreducible 

presented are the 

of Go  in  and 

Go lG_ i  

and for A(m,n) 

corresponding Lie 

Go  I G 
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A(m,n),m  n 

A(n,n) 

C(n) 

P(n) 

Am  An 	K 

An  C) An  

C
n-1 

C.)K 

A
n 

St 
m+1 

® St
n+1  

K 

St 
n+1 

C)  St
n+1 

CSP2n-2 

2  * A 	
St n+1 

Stm+1  ®S2 n+1  

Sit
n+1 

Q)Skn+1 

CSp*211-2  

S
2 
Stn+l 

K 

A(m,n) and C(n) are called basic classical Lie superalgebras of 

type l and B(m,n), D(m,n), D(2,1;0), F(4) and G(3) basic classical 

Lie superaZgebras of type II. 	The remainder of this chapter will 

concentrate on enumerating and discussing various properties of the basic 

classical Lie superalgebras. 

2.2b  ROOT SYSTEMS 

Before discussing the properties of the root systems for the 

basic classical superalgebras the notation used here for weights, weight 

vectors, roots and root vectors is introduced. 

Let G = G-  G— be a basic classical Lie superalgebra and let H 

be a Cartan subalgebra of G.  Let p be a representation of G in a vector 

space V.  For A E H*  we set 

fy E Vlo(h)v = X(h)v ,  h E H}. 
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If V A 	0 then A is called a weight of p and a nonzero 

vector v
A 

E V A is called a weight vector. 

A weight of the adjoint representation of G is called a root 

of G.  For a E H we set 

G =feEGI[h,e] = a(h)e,  hEHl. 
a 

If G
a 	

0 then a is called a root of G and e E 	is called a 
a  a 

root vector. 

A root a is called even if G a  n G-  0 and odd if 

G n GT  0.  Let A, A and A 1 denote the sets of all roots, even U 0 

roots and odd roots respectively.  We also introduce the following 

sets 

A =faEAla/24A1 
0  0  1 

{ 6 E A
1 
 12a 4 A 1 1  

The cartan subalgebra, H, can be considered as a subspace of 

the space of diagonal matrices D.  Consequently the roots are expressed 

in terms of the standard basis c. of D*.  The systems of non-zero even 

roots A'
0 
 and odd roots A 1 for all the basic classical Lie superalgebras 

have been given by Kac [10] and since we will need to refer to them later 

they are reproduced here in Table 2.3. 

Table 2.3  

A(m,n).  The roots are expressed in terms of linear functions 

cl'""cm+1' 61 = E+2 ,  '+2 =.6m+n+2 • 

= 16 i -6j ; 6 i -6 j
}

'  j;  Al =  

B(m,n).  The roots are expressed in terms of linear functions 

cl'"" cm' 6 1 = 6 2m+1"  

AI
0  

{± 6 .  ±  
j' 

•  ±26.. 

A
1  

=  {±  6..
' 	

±E.  
l  1  J 

— ' 6 n 

±6.• 
1' 

= 

±6 ±6.} 
 i  j 

' 

,  j 
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C(n).  The roots are expressed in terms of linear functions 

C 1, 6 1 = e
3'

...
' 

6
n-1 

= E
n+1 

. 

A' 	={±26.* ±6. ± 6.) • ' 	A1  = i±6 1 	6. ± 	} 
0 	j 	• 

D(m,n).  The roots are expressed in terms of linear functions 

6 1' — ' 6 m' 6 1 = 6 2m+1'"" 6n = 6 2m+n 

A'  = {±6. ±c•
' 	

±26 • ±6
i 
 ±6.} 	i 	; 

0  j  j 

1 A 	= f±c
i 
 ±6

j
} . 

D(2,1; a). 	The roots are expressed in terms of linear functions 

6 1' 6 2' 6 3 ' 

A' 	=.(+26.1 • 
'  

A 1 = {±c 1 ±c 2 ±E 3 } 
0  -  

F(4).  The roots are expressed in terms of linear functions 

E 	E
2' 

E
3' 

6 1 • 

A'
0 
 = {±E. ±6

j  •' 
±E.'  ,  j 

 

1'  1  
1 

Al =  (±6 1 ±6 2 ±6 3 ±61)  

G(3).  The roots are expressed in terms of linear functions 

E  E
2' 

6
3' 

6 1 with E
1 

+ 6
2 

+ 6
3 

= 0. 

AI
0 

= {c
i 

_
j; 

:Lc  ±26
1 	

;  A
1 
= (±c ±6 1; ±6 1 } . 

Some general properties of basic classical Lie superalgebras, 

which are relevant for the explicit construction of the algebra and 

the discussion of representation theory later in the chapter, will now 

be presented.  In all future work, unless explicitly stated otherwise, 

G will refer to a basic classical Lie superalgebra. 

It is first noted that if H is the Cartan subalgebra of G then 

G = q) G and Go = H.  Furthermore, dim G
a 

= 1, for a x 0 except for 
* a 

A(1,1) and [Ga ,G] x 0 if and only if a,13 and a + (3 are all elements of A. 
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An invariant, non-degenerate, supersymmetric bilinear form, 

( , ), may be fixed on G.  This form is unique, up to a constant factor, 

and such that (G
a' 

G) = 0 for a  If now a bilinear form is 

defined on H *  by (a,0 = (ha , hd then [ea , e a] = (ea , e_a)ha  where 

h
a 

is a non-zero vector determined by (ha
, h) = a(h) where h E H. 

Finally it is noted that 0) if a E A (respectively 

(A0 , A l , To , El ) then -a E A (respectively Ao , A i , Ko , KI ) and 

(ii) ka E A, for a  0 and k  ±1, if and only if a E Ai and (a,a)  0 

in which case k = ±2. 

LetB6 beaBorelsubalgebraofG6(i.e. a maximal solvable 

subalgebra of G6 ), containing H.  Having fixed a Borel subalgebra 

B = B6  + B- of G then, since the adjoint representation of H in G is 
1 

diagonalizable, G may be decomposed as follows: 

G = N -  H  N I.  and  B = H (±) 

where N -  and N  subalgebras with the properties that [H, 11 -1-] c 

and [H, N - ] c N. 

A root a is called positive if Ga  n N+  0 and negative if 

Ga  n N -  0.  Let pip  (resp p 1 ) denote half the sum of all the even 

(resp odd) positive roots and let p = po  - p l .  A positive root a is 

called simple if it cannot be decomposed into a sum of two positive 

roots.  Let II =  where r is the rank of G, be the set of 

all simple roots. 

With the introduction of the above structures further useful 

properties of the basic classical Lie superalgebras can be enumerated. 

It is first noted that all the subspaces Ga  n N±  are one dimensional. 

Thus, non-zero elements e i  E G„,.n N
+
, ei E G__ .  n N and h i  E H, i =  

+ - 
may be chosen such that e i , e i  and h i  is the system of generators of G which 

satisfies the following relations: 
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[e,  = ;  •  [h.  h.] = 0 
ij  j 

[h. e.] = a 1  ej  ;  [h i , e ‘i] = -a ij ej  
j 

where (aij)  is the Cartan matrix which will be chosen to satisfy the 

following normalizing conditions: 

(i) a
ii 

= +2 or 0; (ii) if a ii 
= 0 then the first non-zero element 

among a ii+k  is +1.  The Cartan matrix will depend on the choice of B. 

+  - 
The above elements e i , e i  and h i  generate G.  The elements h i ,•..,h r  

span H and are linearly independent for all G except for G = A(n,n) 

for which case there is a unique linear dependence: 

 

(h
1 

+ 
h2n+1) 

 + 2(h
2 

+ h
2n

) +  + (n-1)(h
n-1 

+ 
hn+1) 

 + nh
n 

= 0. 

Having defineJthe Cartan matrix, G can be uniquely determined, up 

to an isomorphism, by the pair ((a ij ),T) where T is a subset of 

{1,...,6 consisting of those i for which a i  is an odd root. 

Basic classical Lie superalgebras admit a Borel subalgebra, B, 

for which the corresponding Dynkin diagram has the form represented in 

Table 2.4. 

Table 2.4 

Dynkin diagram 

A(m,n) 0 0 -- -0 -0 
B(m,n), m > 0 0 C 	 -C - 
B(0,n) 0 0 	0 0< 0 
C(n),  n >  2 0 < 
D(m,n) 0 C C - - 
F(4) 

G(3) 

D(2,1; a) 

0-0 	< 	0----0 



These diagrams consist of r-nodes of the form o,  and • 

which are called white, grey and black respectively.  The i-th node 

is white if i 4 T and grey or black if i E T and a ii  = 0 or +2 

respectively.  The i-th and j-th nodes are joined by la ij  aji l 

lines except in the case D(2,1;a).  If a ij  aji  = 0 then a ij  = aji  = 0 

and if a
ii 

= +2 then all the entries in the i-th row are non-positive 

integers. 

The pair ((a), T) is uniquely determined by the Dynkin 

diagram except for D(2,1 ;a) and D(2,n). The Cartan matrix of 

D(2,1;a) is 

0  +1  a- 

D
a 
= -1  +2  0 

_-1  0  +2] 

and the 3 x 3 - submatrix corresponding to the last 3 nodes of the 

Dynkin diagram of D(2,n) is D l . 

The remaining classical Lie superalgebras, P(n) and Q(n), have 

special properties which would necessitate a separate treatment to that 

given here.  Since the body of this thesis is concerned with orthosymplectic 

superalgebras, which belong to the class of basic classical Lie 

superalgebras it was thought to be inexpedient to discuss these algebras 

in detail.  Rather some general properties of P(n) and Q(n) which 

differ from the basic classical Lie superalgebras will be noted. 

Let G be a classical Lie superalgebra with G = OD G its root 
aa* a  

decomposition with respect to the Cartan subalgebra H.  Then if 

G = Q(n), Go  H and if G is any of P(2), P(3) or Q(n) then the property 

dim G
a 

= 1 for a  0 does not generally hold.  Furthermore, for G any 

of P(n) or Q(n), there does not generally exist on G a unique, 

31. 
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non-degenerate, invariant, supersymmetric bilinear form. 

Finally, the properties (i) [Ga ,  0 if and only if a,13,a+13 E A, 

(ii) (G
a' 

G) = 0 for a  -6, (iii) [e
a' 

e
-a

] = (e
a' 

e
-a

)h
a' 

presented 

earlier as being valid for the basic classical Lie superalgebras, are 

no longer generally valid for P(n) and Q(n).  These differing features 

are a consequence of the fact that the basic classical Lie 

superalgebras belong to the class of contragredient Lie superalgebras 

[9] where as P(n) and Q(n) do not. 

2.3  REPRESENTATIONS OF BASIC CLASSICAL LIE SUPERALGEBRAS 

This section contains a short review of the work of Kac [10] 

on finite-dimensional representations of simple Lie superalgebras. 

This work is based on the theory of induced representations which are 

now defined. 

Let G be a Lie superalgebra with universal enveloping 

superalgebra U(G).  Let H be a subalgebra of G and V be a H-module. 

Since V is equally well a U(H)-module it makes sense to form the 

tensor product U(G) 0-0 u(H) V where U(G)  u(H) V is a Z 2-graded space 

defined as the factor space of U(G) 6D V by the Z 2 -graded subspace, I, 

spanned by elements of the form gh  v - g 0.0 h(v), g E U(G), h E U(H), 

v E V.  The space U(G)  u(H) V can be endowed with the structure of a 

G-module by defining the left action of g as g(u (0 v) = gu  v, g E G, 

u E U(G), v E V.  That U(G) 0i; u(H) V has the structure of a G-module 

follows from the observation that I is invariant under the action of G. 

Thus, if we consider x E U(G)  u(H) V say 

x = (u C) v) + (g i h ® w -  h(w)) = (u x v) + i , where i E I 

then gx = g(u 0-0 v) + g(g l h c w - g l  0-0 h(w)) 
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= (g(u)  + (g(g i h) Cow - gg i  ® h(w)) 

= (g(u) ® v) + ((gg i )hgw - (gg i ) ®h(w)) 

= (g(u)  v) + (g 2h  w - g2  h(w)) ,  where g 2  = gg i  E G 

= (g(u) go + is 	 where i l  E I 

= 	 , where X i  E U(G)  

Therefore the action of G on u(G) 	u(H) V is well defined by 

g: u Cv + I ÷ g(u) jv + I  vg E G, u E U(G), v E V.  This 

G-module, constructed as above, is said to be induced from the 

H-module V and is denoted by Ind  [9,10].  This construction is 

now used to develop the representation theory of simple Lie 

superalgebras. 

If GG— is a basic classical Lie superalgebra, Go  

excluding A(n,n), and H is a Cartan subalgebra of Go. then we can fix 

a Borel subalgebra, B, of G containing H as B = H EN + .  Let A E H*  

be a linear function on H and define a one-dimensional B-module VA  by 

h(vjk  ) = A (h)vil  for h E H and N+ (v1k  ) = 0.  Setting V(A) = Ind VA , 

V(A) is a G-module which contains a unique maximal submodule 1(1). 

Setting V(A) = V(A)/I(A), the G-module V(A) is an irreducible 

representation and is called an irreducible representation with 

highest weight A. 
+ - 

Let e i , e i , h i , i = 1,...,r be the generators of G described 

in §2.2b and set a i  = A (h i ) where A E H * .  The representation V(A) 

is finite-dimensional if and only if the following conditions are 

satisfied [10]. 
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1)  a. E
+ 

for i  s, where s is the number of the non-white 

node in the Dynkin diagram. 

2 
 

for type II superalgebras b E Z+ , where b is given in 

Table 2.5. 

3)  for b < 2, in Table 2.5 the following supplementary conditions 

must also be satisfied: 

B(m,n) : a
n+k+1 = "' = am+n = 0 ' 

D(m,n) : an+k+ , =  =am+n= 0 ,  b  m-2 ; 

a
m+n-1 

= am+n  ,  b = m-1. 

D(2,1;a):  all a i  = 0 if b = 0; 

(a 3+1)a = ±(a 2+1) if .b = 1. 

F(4)  : all a i  = 0 if b = 0 ;  b  1 ; 

a 2  = a4  = 0 if b = 2 ;  a2  = 2a4+1 if b = 3. 

G(3)  : all a i  = 0 if b = 0 ;  b  1 ; 

a
2 
= 0 if b = 2. 

Table 2.5  

B(0,n)  1 a n  0 

1 B(m,n), m > 0  a
n 

- a
n+1  

- a
m+n-1  7 um+n 

1 t  D(m,n)  - a
n+1 - ' 

. - 
n  

amill _ 2  - y  omi.n _ l  + am+n ) 	m  

D(2,1;a) 	, 1 
l+ (2a

1  - a 2  - aa 3 )  2 
a 

F(4)  1 7  (2a 1  - 3a 2  - 4a 3  - 2a4 )  4 

G(3) 1 im 
7  ,,u 1  - 2a 2  - 3a 3 )  3 
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A general property of simple Lie superalgebras is that they 

contain finite-dimensional representations which are not completely 

reducible.  In fact it has been shown by Djokovic and Hochschild 

[15,16] that if G is a Lie superalgebra then all the finite 

dimensional representations of G are completely reducible if and 

only if G is isomorphic to the direct product of a semi-simple Lie 

algebra with finitely many Lie superalgebras of the type B(0,n), n > 0. 

Finite-dimensional representations of a Lie superalgebra, G, which 

are completely reducible are called typical. 

Kac [10] has derived necessary and sufficient conditions for 

a finite-dimensional, irreducible G-module, V(A ), with highest 

weight A , to be typical.  For example a sufficient condition is 

that V(A ) is typical if (A+p,a) x 0 for any a E 74.  A necessary 

condition for V(A ) to be typical is that dim V5  = dim VI  provided 

G is not isomorphic to one of the algebras B(0,n). 

In Table 2.6 the conditions for V(A ) to be typical are 

presented where G is a basic classical Lie superalgebra [10]. 

Table 2.6  

A(m,n) : am+,  - 1 a t  - 2m - 2 + i + j 
t=m+2  t=1 

forl5i5.m+ 1 5j5m+n+ 1 

B(m,n) :  1 a
t 

-  a
t 

+ 2n - i - j  0 
t=i  t=n+1 

m+n-1 
1 at  -  at  -2  at  - am+n  - i + j - 2m + 1  0 

t=i  t=n+1  t=j+1 

forl  5.n 5 j.m+n- 1 . 

B(0,n) : All finite-dimensional representations V(A ) are typical. 
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C(n) a l  x 	X a t +i -1 
t=2 

a x  X a
t 

+ 2  X  a
t 

+ 2n -  - 1 
1 

t=2  t=i+1 

for 1 5 i 5 n - 1. 

D(m,n)  :  X a-  c  a + 2n - i - j x 0 
t  t 

t=i  t=n+1 

 

forl  i 5.n 5j 5m+n- 1 .. 

m+n-2 

 

X a
t 

-  1  a
t 

- a
m+n 

+ n - m - i + 1 x 0 
t=i  t=n+1 

 

for 1 	i 5 n . 

m+n-2 
- a

m+n 
- i + j - 2m+2 x 0 

	

1 at - 	1 	at  -2 	X 	at  - am+n-1 
t=i  t=n+1  t=j+1 

for 1 5i5n5j5m+n-2. 

 

D(2,1;a) : a l  x0;  a
l 
xa

2
+ aa

3 
+ 1 + a ; 

a
1 
 a 2+1 +1  -  a 1  aa

3 
+ a . 

G(3)  : a l  x 0 ;  a 1 	
a
2 

+ 1  ; 

a
1  

a
2 
 + 3a 3 

 + 4 •' 
 

a 1  3a 2 
 + 3a 3 

 + 6 • 
' 

a
1  

3a
2 
 + 6a3 
 ' 
+ 9 .  a

1  
4a

2 
 + 6a 3 

 + 10 .  
' 

F(4)  : a1 0 

 

a
1 	

a
2 
+ 2a

3 
+ 3 

a
1 

x a
2 

+ 2a
3 

+ 2a
4 

a 1 
 x 2a

2 
+ 4a

3 
+ 2a

4 

• 
' 

a
1  

a  + 1  ; 
 2 

; a l  2a
2 

+ 2a
3 
+ 4  ; 

+ 5 
' 
- a

1  
2a

2 
+ 2a

3 
+ 2a

4 
+ 6  ; 

+ 8 ; a
1  

3a
2 
+ 4a

3 
+ 

2a4. 
+  9  . 

There is an error in this expression in ref.[10] which is corrected here. 



A(m,n)  : dim V(A) = 2
(m+1)(n+1)  H  

a
i
+a

1+1
+.. 

 
-k -k j5m 

j-i+1 

Kac [10] has also derived the expression for the dimension 

of a typical G-module V( A), with highest weight A , where G is a 

basic classical Lie superalgebra. If d = dim 4 then 

dim V = 2
d 

kPn,ai aELIo 	v 

These dimension formulae are given explicitly in terms of the 

Kac-Dynkin labels, a i , defined earlier in Table 2.7. 

Table 2.7  

37. 

a.+...+a.+j-i+1 
xfl 	1  

m+Li5j5.m+n+1 
j-i+1 

C(n)  : dim V(A) . 
2 2n-2 II a.+...+a.+j-i+1 

2 .kj5J1-1 
j-i+1 

X II  a  ...  J - 1  .++a. +2a.+...+2a
n  

2n-i-j+2 

a  .. +a .+j -i +1 
B(m,n)  : dim V(A) = 2

(2m+1)n  H  aj 

 

j-i+1  
n+lckj5m+n-1 

j-i+1 

(a.-F...4..a 
 J-1
.)A-2(a.+...+a -a 

x n  n n+1 ---a n+m-1  

2n+2-i-j 

x II 	 (a.++a ...
j 

+2(a+ -1 ....+a 
1  m+n-1

) 
m+n  

+a+2m-i-j+1 
n+15 .kjm+n 

2m-i-j+1 
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2mn 	a i +—+a ' 	a i + — +a j  
D(m,n) 	: dim V(A) = 2 	

+j - i+1  
1<i <j<n-1 j-i+1 	 j-i+1 

x H 	(a i  +... +a j-1 )+2(a j+...+a n
-a n+1 

 - ... -am+n-1  )-am+n+2n-2m+1 	-j 

1 -k,j5..n 	 2n + 2 - i - j 

X H 	( a i  + ... +a j -1 )+2(a j +...+am+n-1 )+anri+n
+2m-i -j+1 

n+1 	5_,j5.m+n-1 2m-i -j+1 

B(0 ,n) : dim V(A) = <i<j<n 3 	3  
(a 	.)+2(a 

1-1 
 +. . . +an-1 )+a n

+2n-i-j 

2n-i -j 

x n 2(a 1.+...+an-1 )+a n+2n-2i +1 

1 	 2n-2i +1 

D(2,1 ; cc) 	: dim V( A) = 16(a 2+1 ) (a 3+1 ) [( 2a i  -a 2 -cta 3 ) (1+0) -1  -1] 

G(3) 	: dim V(A) = Tk(a +1) (a 3+1) (a 2+a 3+2) (a 2+3a 3+4) 

x(a 2+2a 3+3)(2a 2+3a 3+5)(a 1 -2a 2 -3a 3 -5) 

F(4) 
	

: dim V(A) = g-(a 2+1)(a 3+1)(a4+1)(a 2+a 3+2)(a 3+a4+2) 

x (a 2+2a 3+3) (a 2+a 3+a 4+3)(a 2+2a 3+2a4+5) 
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3, 	REPRESENTATIONS OF ORTHOSYMPLECTIC SUPERALGEBRAS: 
WEIGHT SPACE TECHNIQUES 

3.1  INTRODUCTION 

In this chapter weight space techniques are used to explicity 

construct irreducible representations of orthosympletic superalgebras. 

The general method follows on the work of Kac [1,2]; explicit results 

have been obtained by Hurni and Morel [3] for several particular 

representations of various orthosymplectic superalgebras and also 

by Thiery-Mieg and Morel [4] and Hurni and Morel [5] for various 

special linear superalgebras. 

The general construction of the algebra is first presented 

followed by the procedure for obtaining irreducible representations. 

This is illustrated by a complete analysis of the finite-dimensional 

irreducible representations of the lowest rank superalgebras from 

each orthosymplectic class, namely C(2), B(1,1) and D(2,1;a) (from 

which D(2,1) is obtained by setting a = +1). 

3.2  STRUCTURE OF THE ALGEBRA 

The notation of chapter 2 is modified slightly to make the 

relation between the simple roots and their corresponding generators 

more apparent.  Let h i  (i = 1,2,...r; r = rank of the superalgebra) 

be the generators of the Cartan subalgebra and let ai  (ali) be the 

generator corresponding to th ith positive (negative) simple root. 

As discussed in [1] and ch.2 the algebra in this basis can be written 

in the following form 

[4, a]] =S . h i  

[h i , hj ] = 0 

[h i ,  = ±a.. a. 
1J J 
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where the a ij  are the elements of the Cartan matrix.  The remaining 

generators may be defined from those corresponding to simple roots 

by (anti-) commutation [3,5,6]. 

The weight space decomposition of a representation is given 

by the eigenvalues ai and b' of a vector with respect to h i  and k 

respectively. The odd 'simple root 'hides' an even simple root of 

the even subalgebra.  Consequently there exists a hidden Cartan 

generator, k, which is defined by equations (3.2, 3.5, 3.7, 3.9) for 

B(o,n), B(m,n), D(m,n) and C(n) respectively. 

B(o,n)  

The Dynkin diagram with the set of simple positive roots chosen 

and their associated generators is 

6 1 -6 2  62-6 3  6
3
-6

4  
6
n-2

-6
n-1  

6
n-1

-6
n  

6
n 

n+ 
al  

a
2  

a3  a
n-2  

a
n-1  

E 
an 

The Cartan matrix is 

 

2  -1 

 

-1  2  -1 

 

-1  2  -1 

[a..]  = 

- 1 	2 	-1 

-2 	2 

The remaining odd generators are constructed in the following way: 

+  + 
6i± 

n 
= E E... 	Ef3 	, 	an_

▪ 2

],...], a.] 3.1 

where 1  i  n-1.  The generator, k, in the Cartan subalgebra of 

Sp(2n) is 
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k = • h n .  3.2 

The "hidden" Sp(2n) generator associated with the nth node of the 

Dynkin diagram is taken as 
{n±,n±} 

 . 

B(m,n) m > 0  

The Dynkin diagram with the set of simple positive roots chosen 

and their associated generators is 

0-0-  - - 

cS
1
-(5

2  
45
2
-(S 3 

+ 	+ 
al  a

2 

0 - - -0 

 6 n-1
-6

n 
+ 
a
n-1 

0 

(S
n
-c

1 
+  n+ anEB n 

C) 

E 1
-E

2 
+ 

° n+1 

E
m-2

-EM-1 
+ 

an+m-2 

40, ---0 

E
m-1

-E
M 

+ 
an+m-1 

E
m  
+ 

an+m 

The Cartan matrix is 

- 2  -1 

-1  2  -1 

 

-1  2  -1 

-1  2  -1 

[a] = 
0 +1 

-1  2  +1 

 

-1  2  -1 

-1  2  -1 

 

-2  2 

The remaining odd generators are constructed in the following way: 

i+ 
611  =  [... [ [en + , 4_ 1 ], a1-

2 ], ...], 

B ij ±  = [ [••• [  441],  ...], 

il ±  = [ [••• [ a±  ], a± 	], ...], a±-] n+m' n+m  n+m-1  j 

where 1 5 i 5 n; n+1 5 j 5 n+m. 

3.3 
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The 'hidden' generator, k, in the Cartan subalgebra of Sp(2n) 

willbesomelinearmitinationoftheh.'s which satisfies the 

requirements 

[k,  = 0 .  n+1 5 j 5 n+m 

[k, a±

• 1 

 ] = 

[k, W,0 ± ] = ±  

where {13,13} refers to one of the 'hidden' generators given below. 

We find 

k = h - h  - h  H-1 
n n+1  n+2 - 

• 

- h 
'  n+m-1 - 2  n+m 

Associated with the nth node of the Dynkin diagram there exists 

a 'hidden' Sp(2n) generator which in the basis chosen can be taken as 

one of {e ±  e±  } where n 5 j 5 n+m-1 or as {e ±  an±  } 

D(m,n) 

The Dynkin diagram with the set of simple positive roots chosen 

and their associated generators is 
C) 

m-1 m 

 

C)  0  -0 	OD 	C) 	+ 
a
n+m-1 

6
1
-6

2  
6
2
-6

3  
6
n-1

-6
n  

6
n
-e

1  
C 1 -C 2  E

m-2
-C
m-1 

 

+  +  +  + n+  +  + 

a l  a2  
a
n-1 	

a
n
a.-- 13

n 	
a 
n+1  

a
n
iti-2 

3.4 

3.5 



-1 -1 

2 0 

0 2 

-1  2  -1 

 

-1  0  +1 

 

-1  2  -1 

[3-.] = ij 

The Cartan matrix is 

 

2  -1 

 

-1  2  -1 

- 1 	2 
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The remaining odd generators are constructed in the following way: 

i± 
I3n =  ["'  [13'n ' an-1L an-2 ] '  aT ]  

i  

 

= [ [—•  [an± ' a t±1+1 ] ' a±n+2 ] ' ...]' a-P 

f3 i±  = [sj±  a+  ]- n+m  n+m-2' n+m 

3.6 

-i± 
= [ [... [ [a n+Im' 

a+ 

n+m-1 ] ' an+m-2 ] '  ' a±j ]  

n + 1 5 j 5 n+m-1 ; 1  i 5 n. 

The 'hidden' generator in the Cartan subalgebra of Sp(2n) is 

k = h n  - - hn+2  - - 
hn+m-2 

- 
1/2(hn+m-1 

+ h) 3.7 

The 'hidden' Sp(2n) generator associated with the n th Dynkin node can 

be taken as one of {e± , }, where n 5 j 5 n+m-2 or as 
j  j+1 

n+ 
n+m-1, rril

+41m}, in the basis of simple roots chosen. 



C(n), n > 2*  

The Dynkin diagram with the set of simple positive roots 

chosen and their associated generators is 

OD  0  C)  -0------0 -cc  

 

c 1 •
1  

(S
1
4

2  
(5
2
4

3  
(5
n-3
4

n-2  
6
n-2
4

n-1  
2(5

n-1 

+E (3+ 	
+  +  

a
+  

a
+  

a a
+ 

1  
a 

 

1  2 
 a3 
 n-2  n-1  n 

The Cartan matrix is 

 

0  +1 

 

-1  2  -1 

 

2  -1 

 

-1  2  -1 

[a..] = 

-1  2  -1 

 

-1  2  -2 

 

-1  2 

The remaining odd generators are constructed in the following way: 

e = 	[... [ 	

▪ 

ai], ai], ...], a i ] 
▪ + 

= L [... [ [N, ar-1 _ 1 ], al±1 _ 2 ], ...], a±jI 

The 'hidden' 0(2) generator is 

2  i 5 n 
3.8 

2  j < n-1 

k = h - h  - h
n 1  2

- 
 3 -  • 
 3.9 

* For the C(2) = A(1,0) case, see §3.4. 

45. 
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3.3  FORMALISM FOR THE CONSTRUCTION OF REPRESENTATIONS 

Consider a representation possessing a highest weight vector, A, 

of weight, A, such that h i A = X(h i )A E a i A .  Let g E Ga  and 

g. 

 

€ G  such that a. e A
+ 

and let f3. E G
a. 

and . E G  such that 
_  +  _ 

1  -a.  1  0  1  1  -a. 

 

1  1  1 
+  +  + 

a. E A
1 
then g.A = 0 and ILA = 0 for all positive root vectors 

1  1  1 
+  + 
g. and 13. and the representation with highest weight vector A is 

spanned by the vectors 

- 	- i 	_ 
( gi ) 	(g2)

2 
 ...(gm) 

kLmN  1(1 
 

2  '  hMN 
3.10 

wherei j EW,e1,K.E{0,1} and m is the dimension of the even 

subalgebra  x Sp(N).  This is a consequence of the Poincard- 

Birkhoff-Witt theorem.  The distinct multiplets of the even subalgebra 

are generated from the 2 1/2MN  states 

k,_mm  
4)j  =  1  0i) 2  ... ( mN ) -2""A 3.11 

by application of even generators. 

Kac [1,2] has given conditions on the a i  under which the 

representation is finite-dimensional and irreducible (or typical). 

If the conditions for irreducibility are not satisfied, the representation 

is indecomposable, and the OM X Sp(N) structure of the irreducible 

composition factors (atypical representations) may be explicitly determined. 

In certain cases some of the x j  belong to infinite dimensional subspaces 

and it is necessary to revert to the induced module construction as 

discussed in chapter 2 (see also [2,9]). 

For the construction presented below it is useful to introduce 

an 'inner product' on the representation space. Scheunert et al. [7] 

have shown that for a Lie superalgebra there are two ways to do this 

depending on the choice of conjugation operation on the algebra. 
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As discussed in chapter 2 this can be either an adjoint (t) or a 

superadjoint (f) to which correspond star and grade star representations 

respectively.  Given that either exists, we have two different inner 

products ( , ) A  or ( , ) s  defined with respect to a fixed basis of the 

superalgebra by 

(gi  g A,f f  f A) =x 
p  1 2  q A  

3.12 

if  (9 +  ... (gp + (gi) l-  fi  fq- A= xA 

Y11112+—ILY y 
and  

( gi g -2 • • • gp-A  ' f-1 f-2-  • • • fq- A ) S = (-1)  
P  3.13 

 

if  (gi  fi  f -qA = yA 

and zero otherwise (i.e. if the vectors have different weights). 

Here g i , fj  are negative root vectors of degrees y i  and nj  respectively 

Y 
and (g.g.)+ = (-1) '

iYi 
 g 'g.'

1  
, and adjoints and superadjoints are 

j  

1
1 

given in Appendix A.  A characterisation of a vector v which belongs to 

an invariant subspace is that its length (v,v) should vanish [9, exercise 

20.9]; this criterion is applied to 'highest weight' vectors x. of the 

even subalgebra 0(M) x Sp(N). 

Given the O. and the inner product, the first stage is to write 

down the xj  by Schmidt orthogonalisation, 

xj = 11).;  - E C o  4) 9,  3.14 
9, 

where the set oz. consists of all states of the form 
i m  

Oz  = (gi)  (g)
12 

... (gi-n )  xi  such that the weightof O n  equals the 

weight of oj  and not all of the i j  are zero.  The coefficients C z  can 

be determined by imposing the conditions (O vxj ) = 0 for all oz . 

This gives 
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= (cPm 4i) - E (002 ) C z  

= Ym  -  (0)mk c  = 0  3.15 

= 0 C 

-1 = 	y  

or in components C = (0
-1
4m  Ym 
 3.16 

That this procedure ensures xj  is a highest weight of the even 

subalgebra is proved in Appendix B.  These coefficients are not 

dependent on whether the inner product is defined using an adjoint 

or a superadjoint operation.  In practice since 0 will in general 

be block diagonal its inversion will not be as difficult as first 

appears.  Despite this it is often easier to determine these coefficients 

by requiring xj  to be a highest weight of the even subalgebra, i.e. 

requiring 4 xj  = 0 for all positive, even, simple root vectors, 4, 

leads to a set of simultaneous equations which can be solved for the C 

The second stage is to evaluate the lengths (xj ,xj ) and identify 

atypicality conditions and invariant subspaces.  If a degeneracy exists, 

in the sense that there is more than one x j  of a given weight, then to 

determine whether the states of this weight belong to an invariant subspace 

mappings of the following form must be considered 

k.  k 
T(.  „ (

I-) 1 ( 2-) 2  ''• (131/2±MN  1/2MN 
xk  =  + E b  3.17 

j  x 

where xk  belongs to an invariant subspace.  The xj  will be some linear 

combination of the degenerate states and the b i  are some coefficients. 

Thelineardependenceofthe.'s under these mappings will tell us how Xj  

many of the degenerate states belong to the invariant subspace. 

y 

C 
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The above construction shows that the whole representation 

can be made star or grade star.  Indeed since the individual (xj,Xj)A 

and (xj ,xj ) s  differ at most by a sign, the crucial question is whether 

the representation is on a graded Hilbert space.  In fact, we find no 

such finite-dimensional star representations for B(m,n) and D(m,n), but 

two classes for C(2), depending on how the adjoint is defined, in 

agreement with Scheunert et al. [7,8].  In the grade star case there 

exist two classes of finite-dimensional representations on a graded 

Hilbert space depending on how the adjoint is defined, as discussed in 

Appendix B.  These representations are given for the cases studied in 

the following sections. 

The result, that no finite-dimensional star representations 

exist for B(m,n), D(m,n) and D(2,1;a) can be easily demonstrated as 

follows.  If E-  designate the 'hidden' Sp(2n) generators defined in 

§3.2 and §3.6 then [E + ,E ] = -ak, where a = -16 for B(m,n) and a = -4 

for D(m,n) and D(2,1;a).  For a given representation with highest 

weight vector A , let kA = bA .  A finite-dimensional representation 

requires b  0.  Therefore if 

(A, A) A  = (A A) s  = +1 

then for star representations: 

= ((E - ) +E - A,A)A  = -ab 

0  if b  0. 

However for grade star representations: 

(E -A,E -A) s  = ((E - )E -A,A) s  = (-E+EA,A) = ab 

(E -A,E -A) s  0  if  b  0. 

In the examples considered in the following sections we find that 

if in (3.14) C  = 0, then for the procedure to be consistent (3.14) must 

be written as 

J 
= 0. - E C 	. 

zki 
3.18 
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It is found that although x is not a highest weight of the even 

subalgebra it is part of the infinite-dimensional invariant subspace and 

therefore does not appear in the finite dimensional factor space. 

If the Kac-Dynkin labels have been chosen appropriately [2] so that A is 

the highest weight vector of a finite-dimensional factor space (so that 

supplementary conditions may apply), then  xp = O.  To determine 

the irreducible representations for these 'special' cases, it is necessary 

to examine explicity mappings from states in the invariant subspace to 

states xj  for which (Xj,Xj)  O. 

3.4  C(2) E OSp(2/2) = A(1,0)  

Dynkin diagram:  OD 	 

E1-61  
2(5

1 

a1+ 
 

a
2 

Cartan matrix: 1 0 	+ 11  
1,) 	-1  +21 

As discussed in §3.2 the odd generators are 13
1± 

and 

= [(3 1± ,4].  The even generators corresponding to the even 

positive and negative simple roots are 4.  The generators of the Cartan 

subalgebra are h l  and h2 .  The hidden 0(2) generator is 

k = 2h
1 - h2 • 
	 3.19 

The complete algebra is given in Appendix A. 

The highest weight vector of an OSp(2/2) representation will be 

designated by A, with weight components (a 1 ,a 2 ; b = 2a 1 -a 2 ) where 

h.A = X(h.)A E a.A and kA = X(k)A = bA.  Any OSp(2/2) representation 

can be uniquely decomposed in terms of 0(2) x Sp(2) irreducible 
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representations.  In general we have four of these (see §3.3). 

The weight components of the 0(2) x Sp(2) highest weight vectors are 

given below. 

:  (a 1 ,a 2 ; b) 

:  (a 1 ,a 2+1; b-1) 

:  (a 1 -1,a 2-1; b-1) 

:  (a 1 -1,a 2 ; b-2) 3.20 

Applying the procedure discussed in §3.3, we find the corresponding 

0(2) x Sp(2) highest weight vectors are given by the following: 

, 1  - 
X3 = 11)3  

2 

X4 = 11)4 

As discussed in §3.3, to find the conditions under which a state x i  

decouples from the highest weight we look for those conditions under 

which (x i ,x i ) = 0.  The inner products of the above states are given 

by the following: 

(X10(1 )A1 9 2 = (X 10( 1)S1 , 2 = 1 

((20(2)A1 = 
	

- (X2,X 2 ) si  = (X2,X2)s2 =  a l  

(x3,X3)A = -(x3 ,X3 )A2 = -(X3,X3) s i = (X3,X3) s 2 = -a 2 (a 2 -a 1+1)/(a 2+1) 

(X4,X4)A1 , 2 = -(X4,X4 )S1,2 = -a 1 (a 2 -a 1+1) 
 

3.22 

It can be seen that under the conditions (i) a 2  = 0, and (ii) a 2 -a 1+1 = 0 

the OSp(2/2) representation specified by the highest weight vector, A, 

is not irreducible and can be decomposed as shown in Table 3.1. 

3.21 
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We require a 2  to be a non-negative integer for the representation 

to be finite dimensional. 

Table 3.1  

Atypicality condition 
 

/ Factor space  Invariant subspace 

a 1  = 0 
	

X1, X3  X2, X4 

a
2
-a

1
+1 = 0 
 

X1, X2  X3, X4 

From (3.22) it can be seen that the only finite-dimensional 

irreducible representations defined on a graded Hilbert space are the 

following. 

Star representations: 

Al:  {X1 ,X2 X3,X4} if b > a 2  + 2,  X ,X } if b = a 2  + 2, 

1)( 1 1 if a 2 = b  = ° ; 

A2:  {x 1 ,x2 ,X3 ,x4 } if b + a 2  < 0,  X1,X 
 

if a
2 

+ b = 0. 

Grade star representations:* 

Si:  {X 1 ,x31 if a 2  + b = 

S2: {x1,X2,x4}  if a 2  = 0 and 0 < b < 2 , 

{X1,x2} if 1/2a 2  - 1/2 b + 1 = 0 , {x 1 } if a 2 
= b = 0. 

These results are in agreement with those of Scheunert et al. [8] where 

the representation labels (b,q) correspond to (½b-li,ha 2+1/2) in the present 

notation. 

* The sets of grade star representations designated here as Si and S2 have 
been determined using the convention that the grading of A is of degree 
zero.  If the grading of A is chosen to be of degree 1, then Si and S2 
will simply interchange.  This is also the case for the remaining results 
of this chapter. 
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Taking C(2) simply as the n = 2 case of the general treatment of C(n) 

as given in Chapters 2 and 5 and [2] corresponds to taking the Cartan 

matrix as 

(aii)  r101  

•With this, the value of the a l  label in Chapters 2 and 5 and [2] will 

be twice the value of the a
1  label in this section. 

3.5 B(1,1) E OSp(3/2)  

Dynkin diagram: 

00  CD 

c5 1 -E 1 
	

E
2 

a
+ 

13.
1+ 

2 

Cartan matrix:  
(a ij )  = [22  : 121 

	

1 	1±  r 1±  ±- As discussed in §3.2 the odd generators are B
± 
, B2  = LB , c4 2 .1 

- 1± + 
and B  = [B

1±
'  a

±
] . 	The even generators are ai corresponding to the 

2  2  2 

even positive and negative simple roots.  The 'hidden' Sp(2) generators 

1±  1± are given by iB
2 

,B
2 

1.  The generators of the Cartan subalgebra are 

h
1 
and h

2' 	The 'hidden' Cartan generator corresponding to the Sp(2) 

sector is given by 

k = h 1  - 1/2h 2 	 3.23 

The complete algebra is given in Appendix A. 

The highest weight vector of an OSp(3/2) representation will be 

designated by A , with weight components (a 1 ,a 2 ; b = a l  - 1/2a 2 ), where 

h. A = A(h.)AE a.A , kA = A(k)A E bA . 	Any OSp(3/2) representation 

can be uniquely decomposed in terms of 0(3) x Sp(2) irreducible 
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representations.  In general there will be eight of these (see §3.3) 

The weight components of the 0(3) x 5p(2) highest weight vectors are 

given below: 

1 = A 

- II)2 
	
. 	A  

i- 
ll)3 	= 	3 2 	A 

- 1- 
4 = 32 A 

1- 	1- 
11) 5 	= 	13 	132 	A 

11) 6 	= 	32 	& 

1- - 1- 
11)7 = 32 32 	A 

1- 1--1- 11)8 = 	32 32 A 

(a l ,a 2 ;  b) 

(a 1 ,a 2+2;  b-1) 

:(ala  
6-1)  

(a 1 -2,a 2 -2;  b-1) 

(a 1 -1,a 2+2;  b-2) 

(a 1 -2,a 2 ;  b-2) 

(a 1 -3,a 2 -2;  b-2) 

(a 1 -3,a 2 ;  b-3) 3.24 

Applying the procedure discussed in §3.3, we find the corresponding 

0(3) x Sp(2) highest weight vectors are given by the following: 

xl = 1P1 

2  - 
X3 = 4)3 	a

2
+2 a2 

2- 
X4 = 1P4 „.  a2 a2 X3 

X2 

2  

(a 2+1)(a 2+2)  
a2 X2 

2 	a2 
(a 2+2) 

2 - 
a 2 a2 X6 

(a 2 -a 1+2) 

(a 2 -2a 1+2) 

(a 2 -a l ) 

X5  (a 2 -2a 1 ) 

2  

(a 2+1)(a 2+2)  

1- i- 
2 ' 132 / X1 

   

1- 1- 1 	 -  {a ,32 	X2 • (a 2+2) a2  2 
3.25 

As discussed in §3.3 the conditions for which (x i ,x i ) = 0 are 

the conditions for which x i  decouples from the highest weight. 'The inner 

products of the above states are given below: 
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(x l ,x 1 ) si  = (x l ,x0 s2 = 1 

(x2,x2) si  = -(x2,x2 ) s2 = -a l  

(x3,x3) s i = -(x3,x3)s2 = +a 2 (a 2 -2a 1+2)/(a 2+2) 

(x4,x4) s i = -(x4,x4)s2 = +4(a 2 -1)(a 2 -a 1+1)/(a 2+1) ; a 2  x 0 

(xs,Xs)si = (X5,X5)s2 = a 1 (a 2 -2a 1+2) 

(x6,x6) s i = (X6,X0 s2 = +4a 1a (a 2 -a 1+1)(a 2 -2a 1+2) 

b x 0 

(x7,x7) si  = (X7,X7)s2 = -4(a 2 -1)(a 2 -a 1+1)(a 2 -2a 1+2) 

/(a 2+1); a 2  x 0, b x 0. 

(X8,X8) si  = - (X8,X8)s2 = 4a 1 (a 2 -a 1+1)(a 2 -2a 1+4) ; b  1.  3.26 

It can be seen that under the condition (a 2 -a 1
+1) = 0, the 

OSp(3/2) representation specified by the highest weight vector, A, is not 

irreducible and can be decomposed as shown in Table 3.2.  As discussed 

in §3.3, if b = 0,1 or a 2  = 0, then (3.25) must be modified as per (3.18). 

If b = 0, then to obtain a finite-dimensional representation we must also 

impose the supplementary condition a 2  = 0 [2] and the representation 

is atypical. This gives the singlet, x l , as the only finite-dimensional 

irreducible representation.  For the 'special' cases a 2  = 0 or b = 1, 

the only finite-dimensional irreducible representations occur as factor 

spaces.  These are: a 2  = 0, {x 1 ,x2 ,x5 ,x8 }, the adjoint is obtained from 

this by setting b = 2; b = 1, {X1,X2,X4}•  If a 2  = 0 and b = 1, we 

obtain the fundamental {x 1 ,x2 }.  The decompositions for all atypical, 
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irreducible, finite-dimensional representations are given in Table 3.2. 

For the existence of a finite-dimensional representation, we require a 2  

and b to be non-negative integers. 

Table 3.2  

 

Atypicality condition 
 

Factor space  Invariant subspace 

1 = 0 
 x l  

a
2
-a

1
+1 = 0 
 

X10(20(30(5 	X40(079X8 

From (3.26) and the above discussion we see that the only 

finite-dimensional, irreducible representations defined on a graded 

Hilbert space are the following grade star representations: 

Si:  if a
2 

= b = 0 

S2: {x i } if a2  = b = 0 

{X1X21 if b = 1 , a 2  = 0,1. 

3.6D(2,1; a)  

Dynkin diagram: 

	

r 0 	+1  6] 
Cartan matrix:  (a

ij
) = 1-1  +2  01 

 

L71  0  +2] 

 

As discussed in §3.2 the odd generators are al ± , 	[(3 1± ,4] , 

1±  1± +  - 1±  +  1± + a3  = o ,cc] and 13 2  = [(32  ,a-3 ] = [(33  ,(1-2 ] .  The even generators 

 

+  + 
corresponding to the even positive and negative simple roots are a 2 , a3  . 

1± 1± 
The 'hidden' Sp(2) generators are given by {13 2  ,133  }.  The generators 
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of the Cartan subalgebra are h 1 ,h 2  and h3 .  The 'hidden' Cartan 

1 
generator is given by k = 1 4-7—a- (2h 1 -h 2 -ah 3 ). 

k = (2h 1 -h 2 -ah 3 )/(1 a) .  3.27 

The complete algebra is given in Appendix A. 

The highest weight vector of a D(2,1; a) representation will be 

designated by A , with weight components (a 1 ,a 2 ,a 3 ; b = 1 	11. a  (2a 1 -a 2 -aa 3 )), 

where h i A = X(h i )AE a i A and kA = A(k)AE bA .  Any D(2,1; a) 

representation can be uniquely decomposed in terms of SU(2) x SU(2) x SU(2) 

irreducible representations.  In general there will be sixteen of these 

(see §3.3  ).  The weight components of the SU(2) x SU(2) x SU(2) 

highest weight vectors are given below: 

= A  
: (a 1 ,a 2 ,a 3 ;  b) 

1P2 = A  
: (a 1 ,a 2+1,a 3+1;  b-1) 

1P3 = 1312 - A  
(a 1 -1,a 2 -1,a 3+1;  b-1) 

4 = 1- 
A 3 

: (a 1 -a,a 2+1,a 3 -1;  b-1) 

: (a 1 -1-a,a 2 -1,a 3 -1; b-1) 

: (a 1 -1,a 2 ,a3+2; b-2) 

: (a 1 -a,a 2+2,a 3 ; b-2) 

: (a 1-1-a,a 2 ,a 3 ; b-2) 

: (a 1 -1-a,a 2 ,a 3 ; b-2) 

1P 10=  

41 11 =  

1P 12=  

4'13 =  

4 -4- A  
0,1 611''' 	A  
P3 	" 

°-4312 -13 31 -A  

: 

: 

: 

: 

(a 1 -2-a,a 2 -2,a 3 ;  b-2) 

(a 1 -1-2a,a 2 ,a 3 -2;  b-2) 

(a 1 -1-a,a 2+1,a 3+1;  b-3) 

(a 1 -2-a,a 2 -1,a 3+1;  b-3) 

1- 1- - 1- 
tV 14 =  (3 	133 	13 2 A 

11) 15 

1P 16 

A  

:  (a 1 -1-2a, a 2+1,a 3 -1;  b-3) 

:  (a 1 -2-2a,a 2 -1,a 3 -1;  b-3) 

:  (a 1 -2-2a,a 2 ,a 3 ;  b-4) 3.28 



1 
a
2
+1 a2 

a3  

a3 X3 

X2  

X4+ 
1  

a 3 +1 
1  

(a 2+1)(a 3 +1)  a2 a3  x2  

Applying the procedure discussed in §3.3, we find the 

corresponding SU(2) x SU(2) x SU(2) highest weight vectors are 

given by the following: 

58. 

= 
„ 	1 	- 

X8 	a
2

+2 (12 

1 
11)9 

, 

 r27-2-F a2 

a 2 4-aa 3 -a 1 
 a„ 

.5 -6 4.  a 2+aa3 -2a 1  115 2 ' 163 

aa 3 -a 1  

a3 X6 	a 2+aa 3 -2a 1  113 2 1563 / 

x l  

xl 

	

- 	1 	- 	1  
X10=  4)10 	

1  
a 2 a 	

„ 
2 	9 	a 2  a2 X8 	(a 2+1)(a 2+2) a2 a

2 X7 

1  
a 2+aa3 -2a 1  a - 2 

, 1- 1-, 
1132 	/ X1 

1 	- - 
X11 = 4) 11 - a 3 a3 X9 

A. 1 	 - 
-r 	Ot 

a3 3 
1  

X8 	(a 3+1)(a 3+2) a3 
a3  X6 

 

a 

 

3-  '2 /83 / X1 

1- 1- 
132 p3 	X2 

a 2+aa 3 -2a 1 
aa3 -a i+a 

X12= 4) 12 	a 2+aa 3 -2a 1 +1+a 

l3= 
1 	 a2+aa3-a1+1+a 

X  IP 13 + a 2+1 a2 X12 a2+aa 3 -2a 1 +1+a 

aa3 -a 1 +a 
,- {a l- a l- 1  

(a 2+1)(a 2+aa 3 -2a 1 +1+a) '2 '2 ''3 ' X2 

1- 1- 
{12. 2 ,f33 } X3 
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1  -  
a 2  +aa 3 

 -a
1 
 +1+a  fa l- 

X14 = 4)14 - a
3
+1 a3 X 12  a

2
+aa

3
-2a

1
+1+a 'P2  ' X4 

a 2 -a 1 +1  -  1- 1- 
+  a {6  6 } x 

(a 3+1)(a 2+aa 3-2a 1 +1+a)  3  2 ' 3  -2 

X15 = 4'15 - a 2+1 a2 X14  a 3+1 a3 X13  (a 2+1)(a 3+1) a2 a3 X12 

aa
3
-a

1
+a  a 2+aa 3 -a 1 +1+a 

{6
1-

03
1-

} X- 4-  a -  1- 1- 
{6 ,6  x 

a 2+aa 3 -2a 1+1+a  2  3  b  (a 2+1)(a 2+aa 3 -2a 1+1+CT  2  3  -4 

a.  . a 2 -a 1
+1 

-  ,0 1- 1  „ 
(a 3+1)(a 2+aa 3 -2a 1+1+a) 3 ''2  ' 43 (a 2+1)(a 3+1)(a 2+aa 3 -2a 1 +1+a) 

1- 1- 
62 ' 62 } x2 

a 2+aa 3 -a 1+2+2a  1 _ 1 _ ,  

X16 = 4) 16  a 2+aa 3 -2a 1+2+2a  2 ' 133 J.  X9 

aa
3
-a 1

+2a  ca l- O 1- 1  
a
2
+aa

3
-2a

1
+2+2a {62  ,63  a

3
+2 a3  X6 

(a 1
2
+a

2
a 3

2
-a

1
a 2

-2aa
1
a 3

+a
a2

a 3 -a 1
+a(1+a)a 3'.  1-  1-  1- 1- 

(a 2+aa 3 -2a 1 )(a 2+aa3 -2a 1+1+a)  2 ' 133 "32 ' 133 / X1 + 

3.29 

Examination of the above states reveals a degeneracy in the sense 

that 11)8  and ip9  possess the same weight and the same eigenvalues with respect 

to the even subalgebra Casimin operators.  Since the orthogonal ization 

procedure we have used does not allow us to overcome this multiplicity 

problem, we have been obliged to determine the irreducible spaces to which 

the corresponding SU(2) x SU(2) x  SU(2) highest weight vectors, x8  and x9 , 

belong by mapping from states in the invariant subspace to linear 

combinations of x
8 

and x
9' 	

We can then determine from the nature of these 
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linear combinations whether both, none or only one of x 8  and x9  belong 

to the invariant subspace.  The inner products, (Xi,Xi), of the 

remaining states are given below: 

(x l ,x 1 )si = (x l ,x0s2 = +1 

(x2,x2)si = -(X2,x2)s2 = -a l  

(x3,x3)si = 
 +a 2 (a 2 -a 1+1)/(a 2+1) 

( X4 ,X4)s i ' -( X4 9X4)s 2 	+a3(aa3 -al+a)/(a3+1) 

(x 5 ,x 5 ) si  = -(x 5 ,x0 s2  = +a 2 a 3 (a 2+aa 3 -a 1 +1+a)/Ca 2+1)(a 3 +1)] 

(X6,X6)s = (x6 ,x6) s 2 = +a 1 (a 2-a 1+1) 

(X7,X7)s1 = (X7,X7)s2 = +a 1 (aa3 -a 1+a) 

= 
= -(a 2 -a 1+1)(a 2+aa 3 -a 1+1+a)(a2-1) 

( X10' )(10 ) S1  ( X10' )(10 ) S2 

/(a 2+1) ; a 2  0 , b  0. 

( X11' )( 11 ) S1 = (

• 

X11')(11)S2 = -(aa
3 -a 1+a)(a 2+aa 3 -a 1+1+a)(a3-1) 

/(a 3+1) ; a 3  0  b  0 . 

( X12' )( 12 ) S1 = -

• 

(X12')(12)S2 = a
1 (a 2 -a 1+1)(aa 3 -a 1+a) 

 

(a 2+aa 3 -2a 1+2+2a)/(a 2+aa3-2a1+1+a) ; b  1. 

(X1,, X,,  ii)S1 = - (

• 

X13,X13 ) s2  = a 1a 2 (a 2 -a 1+1)(a 2+aa 3 -2a 1+2+2a) 

 

(a 2+aa 3 -a 1+1+a)/(a 2+1)(a 2+aa 3 - 2a 1+1+a) ; b  1. 

( X14' )(14 ) S1 = (X1014 )
S2 = a1a3(aa3-a1+1)(a2+aa3-2a1+2+2a) 

 

(a 2+aa 3 -a 1+1+a)/(a 3+1)(a 2+aa 3 -2a 1+1+a) ; b  1. 
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(X1r0(ir D 1D ) S1 = -(X151X15)52 = 
-a 2 a 3 (a 2 -a 1+1)(aa 3 -a 1 +a) 

(a 2+aa 3 -a 1+1+a)(a 2+aa 3 -2a 1+2+2a)/ 

(a 2+1)(a 3+1)(a 2+aa 3 -2a 1+1+a) ; b  1. 

( X16' )( 16 ) 51 = (X1016)S2 = -a
1 (a 2 -a 1+1)(aa 3 -a 1+a) 

(a 2+aa 3 -a 1+1+a)(a 2 +0ta 3 -2,3 1+3+3a)/(a 2+aa 3 -2a 1+1+a) ; b = 0,2. 

3.30 

It can be seen that under the conditions (i) a
1 
 = 0, 

(ii) a 2 -a 1+1 = 0, (iii) aara l+a = 0 and (iv) a 2+aa 3 -a 1+1+a = 0, 

the OSp(4/2) representation specified by the highest weight vector, A, 

is not irreducible and can be decomposed as shown in Table 3.3. 

As discussed in 0.3, if b = 0,1,2 or a 2  = 0 or a 3  = 0, then (3.29) must 

be modified as per (3.18).  If b = 0, then to obtain a finite-dimensional 

representation the supplementary conditions a 2  = a 3  = 0 must be imposed [2]. 

This gives the singlet, x l , as the only finite-dimensional irreducible 

representation.  Similarly, if b = 1, then either of the supplementary 

conditions C 4. : (a 2+1) = u(a 3+1) or C_: (a 2+1) = -a(a 3+1) must be imposed. 

If C+ is taken the only finite-dimensional, irreducible representation 

consists of {x 1 ,x2,x 5 } .  If C_ is imposed the only finite- 

dimensional, irreducible representation consists of {x 1 ,x3 ,x4 } . 

Other 'special' cases are: if b = 2 or a 2  = 0 or a3  = 0, then one of 

X8 or x 9  is part of the infinite-dimensional subspace; if a 2  = a 3  = 0 

or a 2  = 0 and b = 2 or a 3  = 0 and b = 2, then both x8  and x 9  belong to 

the infinite-dimensional subspace.  For the following atypical 

representations Table 3.3 must be modified to include both x8  and X9 

in the invariant subspace: if condition (ii) above and a 3  = 0 or 

condition (iii) and a 2  = 0 or condition (iv) and a 2  = a 3  are imposed. 
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If b = 1 and a 2  = a 3  = 0 the fundamental fx 1 ,x2 } is obtained. 

If b = 2 and a 2  = a 3  = 0 the adjoint [x1,x2,x6,x71  is obtained. 

Table 3.3 contains the decompositions for all atypical, finite- 

dimensional, irreducible representations.  For the existence of a 

finite-dimensional representation a 2 ,a 3  and b are required to be 

non-negative integers. 

Table 3.3 

0 

Factor space 

X1,X3,X4,x5, 

X10' )( 11' )( 15 

X1,X2,X4,X5, 

X7,X8,X11,X14 

X1,X2,X3,X5, 

X6' )(8' )( 10' )( 13 

Xi,X2,X3,X4, 

X6' )(7' )(8' )( 12 

Invariant subspace 

x20(070(80( 9 ,  

)(12' )( 13' )(14' )(16 

X3,X5,X9,x10, 

X12 , X13 , X15' )( 16 

)(4 , X7' )(9°( 11' 

X12' )( 14' )(15' )(16 

X5,X9 ')(10')(11' 

X13,X14,X15 ' )( 16 

Atypicality 
condition 

a 1  = 0 

a 2 -a 1+1 = 0 

aa 3 -a 1
+a = 0 

a 2+aa 3
-a

1
+1+a = 

From an analysis of (3.30) and considering the above discussion 

it is observed that the only finite-dimensional, irreducible representations 

defined on a graded Hilbert space are the following grade star 

representations with highest weight vectors of the even subalgebra written 

X i (a 2' a3'
b) 

Si: 	fx 1 (0,0,0) 1 

{ 1 (1 , O,- 1-) , x3 ( 0 ,1 ,-2P 
{x1( -a-1 , 0 , 1 ), X3 (-a-2,1,0)} 
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S2: 	{X 1 (0,0,0)} 

fX1( 0 , 1 , -  d•), X4 (1,0,- 2,- Ii—++4.-)} 

a+1 	2a+1 
a  , 1), X4(1, 	, 0)1 

[x 1 0, 1-a 1 
a  , 1), 	x2 (1 ' 	' 0)} 

{ 1 (a-1,o,1 
	

x 2 (a,1,0) 1 

For the above representations to be finite-dimensional a must be chosen 

such that for x 1 (a 2 ,a 3 ,b) each of a 2 ,a 3  and b must be a non-negative 

integer. 
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4, 	REPRESENTATIONS OF ORTHOSYMPLECTIC SUPERALGEBRAS: 
SUPERFIELD TECHNIQUES 

4.1  CONSTRUCTION OF INDUCED REPRESENTATIONS 

The technique of induced representations for finding irreducible 

representations of a group is a well established procedure in group 

theory [1,2].  There is a large class of groups which has irreducible 

representations which can be written as induced representations. 

For example Mackey [1] has shown that for the class of groups having 

invariant subgroups all unitary irreducible representations can be 

written as induced representations.  The application of induced 

representations to supergroups, G, involves the construction of functions 

(superfields),(1), defined on graded cosetspaces,G/H,and taking values in 

a representation space, V. of the subgroup H of G.  Application of these 

techniques to supergroups was first made by Salam and Strathdee [3] who 

considered the graded Poincare group.  Subsequently much work has been 

done on superfield formulations of supersymmetry and supergravity 

(see van Nieuwenhuizen [4] for a review). The use of induced 

representations to determine finite-dimensional irreducible representations 

of simple graded Lie algebras was begun by Dondi and Jarvis [5,6] who 

considered SU(m/1).  Applications to orthosymplectic superalgebras have 

been made by Farmer and Jarvis [7] and it is principally these results 

which are reported here. 

The procedure elucidated here was proposed by P.D.Jarvis and is, 

conceptually, a graded extension of a technique pioneered by Bargmann [11]. 

Bargmann considered the application of function spaces R 2 , being 

homogeneous polynomials in two complex variables, to the study of the 

rotation group.  This is a realization of a more abstract work by 
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Schwinger [12] in which he introduces certain operators a  a
+ 

which act as creation and annihilation operators of boson fields. 

The orthonormal vector basis of the Hilbert space on which the 

operators a c  act is then defined in terms of the a c  themselves. 

In Bargmann's approach the Hilbert space is given a priori as a 

function space, R
2 , while the creation and annihilation operators 

are realized as operators in R 2  and consequently the representations 

are directly defined on the function space.  These boson operator 

techniques were used to construct explicit states of irreducible 

representations of the unitary groups by Baird and Biedenharn [13] 

and later extended to the orthogonal and symplectic groups by Lohe 

and Hurst [14,15] and Zhelobenko [16].  This brings us to expound 

the method used here as applied to supergroups. 

Consider a supergroup G and subgroup H, with corresponding 

superalgebras 5 and }{ .  Representations of 5 are afforded by 

functions 0 on coset spaces G/H and taking their values in a 

representation space V of }{ .  If x and y are coset representatives 

of G/H then for g E G the group action in an appropriate basis for V 

is 

(g 0 )a (x) = ha  ob(Y) 
	

4.1 

^b 
where y is such that g•x = yh

-1
, h E H and ha 

is the matrix representing 

h in the chosen basis for V. 

The coset space G/H is the space of orbits that the subgroup H 

sweeps out in G.  One can choose an origin in this space and coordinatize 

its neighbourhood by exponentiating the coordinates in the tangent space 

at that point; i.e. a point in the coset space can be written as 

expE(xX + 0Q), where X and Q are generic even and odd elements of 

and x and 0 are c-number and a-number parameters respectively. 



If now S(R) is an odd (even) element of H and n(y) is an a-(c-) 

number parameter then the group action on G/H is infinitessimally 

exp(ns) expE(xX + 0Q) = expE[(x  n e f 1 (x02 ))x 

+ (0 + n g 1 (x,0 2 ))Q] expE(n k 1 (x,0)K) 

exp(yR) expE(xX + 0Q) = expE[(x + y f 2 (x,0 2 ))X 

+ (0 + y e g 2 (x,0 2 ))Q] expE(y k 2 (x,O)K) 

where K E X. 	The particular basis chosen will determine the precise 

form of the functions f,g and k and for an appropriate )--( they may be 

restricted to polynomials of low degree which can be obtained directly 

via BCH formula.  From (4.1), (4.2) and (4.3) it can be seen that the 

group action induces a motion in the parameter space.  This motion may be 

generated by differential operators 

S  E[f 1 (x,0 2 ) 03/Ox + g 1 (x,0 2 ) /D0 - k i (x,O)k  4.4 

, 
R  E[f2' 

 
(x 0)

2 VD x + g 2 kx ' 0
2 

 ) OD/De - k
2
(x,0)K 

•  
4.5 

where K is the matrix of the infinitessimal generator K in the 

representation space V.  Often it will be possible to decompose )( as 

= )-( 0  + )-(+, where )4  is an ideal ([){,)-+] c ).(  . 	Representations 

of )-( 0  are then easily extended to )4 by taking them to be zero on )-f 

The action on superfields corresponding to (4.2) and (4.3) is 

given by 

S (1)(x
'
0) = S 0(x,0)  and 

 
6
R 

0(x
'
0) = R 0(x,0) 

respectively.  The representation obtained by expanding as power series 

in x and polynomially in e is in general infinite dimensional, but possessing 

a finite-dimensional factor related to the choice of V. 

67. 

4.2 

4.3 
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As discussed in chapter 2, Kac [8] has argued that all irreducible 

representations can be obtained by choosing }{ as a Borel subalgebra, 

H 0  the Cartan subalgebra and V one-dimensional.  However, in general, 

this leads to large dimensional coset spaces making the algebra 

prohibitively complex.  Consequently, in general, )-( will be chosen 

larger than the Borel subalgebra and thus V greater than one-dimensional. 

The form of the algebra used in this chapter will not be that of 

chapters 2 and 3 but rather the covariant form given by Jarvis and Green [9]. 

Here the OSp(m/n) generators are MAB  = - [AB] MBA , 1 s A,B s m+n. 

These consist of the OW generators  
= Mba 

Ma .
D  

1 s a,b s , the Sp(n) 
'  

m 
 

generators Mai3  = Not , 1 s a,6 s n, and the odd generators Maa  = Maa • 

The generators satisfy the superalgebra 

[MAB' MCD ]  = gBC M
AD - LAB] a 

- -AC MBD  
[CD] a 

- -BD MAC  [AB][CD1 - -AD MBC 

4.6 

where g  LAB] g  the orthosymplectic metric and the sign factors 

[AB] are +1 if 1 s A,B s m or 1 s A s m, m+1 s B s m+n (or vice versa) 

and -1 if m+1 s A,B s m+n.  The metric is taken as follows 

gab =  

01 
10 

010 1 
100  
001 

m even 

m odd 

1 0  1)
• got13 =  Oj  4.7 

= n 	= O. 
gaa  faot  

In the following sections Sp(1/2), OSp(2/2), OSp(3/2) and 

OSp(4/2) are examined.  In each case the superfield transforms as an 

arbitrary, irreducible representation of the chosen little group. 

Full decompositions with respect to the even subalgebra for typical 

and atypical representations are derived. 
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4.2  OSp(1/2):  

In the notation of (4.6) the OSp(1/2) superalgebra consists of 

the even Sp(2) generators M  the odd generators M ia  where 1 5. a,13. 5. 2. 

The odd generators will be wri teen M kt  E Qa  and the M  be transformed 

to the spherical basis  M_ and M3  via Ma  = 2M-(a6 c03  where a l ,a2 ,a3  

0  1 )  1 
are the Pauli matrices and (E a ) = ( 

 
0j, or M  M  M = 

 

+ - 2-  22' -  2 22 
1 

and M3 
 T = M

12 '  
With the generators in this form the superalgebra becomes: 

[M3,Qa] = - 103)2 Q  = - ( 0±.)2 

= 2M 3  [M 3 ,M+ ] = t M+  

 

} = - 2(a+c)a  M_ - 2(a_da  114. - 2(c530 003  M3  4.8 

with all other (anti-) commutators zero. 

The subalgebra ri will be taken as )--( = {113 ,M1_,Q 2 } with 

=
3
1 = U(1).  The cosets are labelled by the elements 

0  

exp(xM_ + eQ 1 ) and the superfields are functions 0(x,e) carrying a 

charge ME -M.  Expanding the superfield in e gives simply 

o( ,e) = A(x)  0 ip(x)  4.9 

The differential representation of these generators see 4.4 

and 4.5) is 

M = 

m+ = - x 2 a/a x - x e 3/ SO + 2x M 

1 
M3  =  

Q 1  = - 6 a/a x + a/a e 

Q 2 = - ex a/a x + x a/a + 2 0 M  4.10 

Acting on the superfield with the above set of generators yields the 

following variations for the component fields, writing A' E aA/ax, etc., 
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: SA = A' 

M+  SA = -x
2
A' - 2MxA 

M
3 
 • SA = -xA' -MA 

Q1 : 6A  = 

Q2  : SA = x 

= 

Sw = -xw' - xw - 2Mxw 

Sw = -xw' 
 

- MIP 

6w = -A' 

-xA' - 2MA  4.11 

Now expand A(x) and W(x) as power series in x: 

CO 	 00 

A(x) =  Axn 
 

and  W(x) =  Wn  x n  .  4.12 
n=0  n=0 

Substituting these into (4.11) and equating like powers of x gives the 

following results 

M_  :  . (n4.1 ) An+1  (stpn  (n+1)1pn+1 

m+  (sAn  n  rstip  -(n_21,4)n-1, n 
 1 

M
3 
 • SA n = -(n-M)An  

61pn  
' 

Ql : SA n  = wn , n  2M-1  Swn  =  

Q2 :  SA ' = w
n-1

, n  1 Sw
n 

= -(n-2M)A ,  n  1 

4.13 

with all other variations zero. 

If M is taken as half-integral, then it is clear from the explicit 

component form of the variations (4.13), especially 11 4.  and Qa , that the 

infinite set {A
0
,A

1
,...;

0
,W

1
,....} has an infinite invariant subset 

LA2M+1 A
2M+2

,...; W
2M 

W
2M+1 	

If these components are set to zero, 

then the remaining finite subset {A 0
,A 1 ,...,A 2M ;  01  2M_1 } is  

invariant (i.e. as a factor space). 

Thus an arbitrary finite-dimensional irreducible representation 

of OSp(1/2) has dimension 4M+1 and 'superspin' M[10].  The superspin is 

with respect to the second order Casimir invariant, C 2 , (which for 

OSp(1/2) is the only independent Casimir invariant) acting on the 
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superfield (1)(x,e) with eigenvalue WM+1/2), where 

2  1 
2 = M -M+  M3  M3 -  cc:43 Qa Q(3 

1 
The component fields A and tp have spins M and M - 2- , respectively 

under Sp(2).  The matrix elements acquire a more symmetrical form 

in the basis defined by BP=AP+M,xv.tpv+M-1/2  where p = -M,-M+1,... ,M 

1  3  1 
and v = -m+ 2- , -m+ 2- , 	m - 2- : 

M3  : SBP  = -11B' 
 

(se = -vxv 

: 6B1 ' = (M+1)811-1.1 
 

6e= (M4T-v)Xv;1  

Q1,Q2 : OP  =  (Se = 
 

4.14 

±(M+1)_  ±(M+1/2) 
where B 

 

- X 	E O.  An alternative form for these matrices is 

given in Appendix E in terms of spin projection operators (see, for 

example, El, E7, E8 ); it is in this form that they are required 

for OSp(3/2) as treated in §4.4. 

4.3  OSp(212):  

In the notation of (4.6) the OSp(2/2) superalgebra consists of 

the odd generators Qaa  E Maa , the 0(2) generator L ab  a Mab  and the 

Sp(2) generators Mae. .  Here 1  a,b  2 refers to 0(2) and 1 5. a,12. 5. 2 

refers to Sp(2).  The Sp(2) generators are again written in the spherical 

M+ ,M_,M3  basis as in §4.2.  These generators satisfy the superalgebra 

[Lab' Qcal 
	

-d 
 ac 
Q
ba 

+
bc pact 

Em3 
	

(-1 )a ]a. Qaa  

EM+ ' Qa1 3  = -Qa2  EM-' Qa2 ]  = -Qa1 

[M+  , M_ ] = 2M 3  [M3 , M+ ]  = ±M±  

fQal' Qb1 1  = 26abM -  1Qa2' Qb2 1  = -26abM+ 

1Qal' Qb2 /  = -26abM3 - L ab 
 4.15 

with all other (anti) commutators zero. 
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The subalgebra )-4 will be taken as  = (L ab M+' M3' Qa2 1  

with )-( 0 =.Lab M3 
 } = U(1) x U(1).  The cosets are labelled by the 

'  

elements exp(xM_  
eaQa1)*  

Superfields are functions 0(x, e a ) which 

form a representation of the U(1) x U(1) little group carrying changes 

M = -M and L
ab 

= -C ab  iL  Expanding the superfield in e a  yields 

0(x, e a ) = A(X)  e a  tpa (x) +  ea 
0b 

Cab H(x).  4.16 

Note that indices can be lowered or raised using the 0(2) metric 6ab 

or inverse metric d ab respectively and £ 12  = £ 12 = + 1. 

Following (4.4, 4.5) the differential form of the generators, 

writing 3 a  E a/aea , is 

Lab = 0ba a -eaa 	cab it- 

M  = a/ax 

= -x
2
3/3x - xe

a a a + 2xM + 7" Cab iL  
lab 

-x 3/  
1

3x -  ea 3 a  +M 

M+ 

M
3 

= 

Qal = -8a a/ ax 4-a a 

a2 =  
x3/3x + xa a  - ea  

Q 
+ 2e

a
M - 

0 bb
ab iL 4.17 

The following field redefinitions are introduced so that the 

components of the superfield transform as eigenvectors of the 0(2) x Sp(2) 

even subalgebra. 

M  0;  =  + i tp2 ;  11) 2  . 

Following the procedure of §4.1, A(x), tp + (x) and H(x) are expanded as 

power series in x.  Examining the transformations of the components 

An , tic n  and Pn  under the above generators shows that the infinite set 

- - {p,
0
,A

1
,...; tp+

0 
114

1
,•••; H

01 
 ,H ,...} decomposes into an infinite 

dimensional invariant subset LA
2M+1

, A
2M+2

,...;
2M o4j2M+1

,...; 



-2M-1 -2M 
H  H ,...} and a finite dimensional factor space LA 0 ,A 1

,...A
2M

; 

, 0 „ 1  „ 2M-1  -0 -0  - 2M-2 
H , H  H  1 . 

Thus in general an arbitrary finite-dimensional representation 

of OSp(2/2) has dimension 8M and the component fields A, 14, 11) ..  and H 

1  1 
have spins M, M +  M -  and M - 1 respectively under Sp(2) and 

charges iL, i(L+1), i(L-1) and il respectively under 0(2). 

These representations may be atypical (see Chapters 2 and 3) and 

thus reducible.  To determine the conditions under which this may occur 

the transformations of the component fields under the odd generators 

are examined.  This yields the following results 

Q11 : 6A  = z 4)+  4)1  

(Stp l_ = ±i1-1 - (1 ± 171 )A' 

,31:1 = 	i (1 -) ip - 	(1 	40)._  4.18 

Q21 : 
(SA =--i 

64)_, = - 171 4: (1 ±  A' 

61--1  

1 	1 
Q12 	6A  

61P+  = ± i x 1-1 - (1 ± 21:)(xAl - 2MA) 

Sri = 	i (1 - 11 )(x 	- 2M 	+ 14) 

- 	i (1 + 4.4)(x 1p' - 2M 	- q)_) 

73. 

4.19 

4.20 
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Q22 1 6A  
1  1 

=  2- x 44  2- x  

4+  =  -  x  HT  i  (1  ± -=1,-4-)(x  A' T 2MA) 

6171 =  (I - 171)(x  - 2M + tp+ ) 

4.21 

It becomes apparent from these results that if L = ±2M the set 

{tpT , H} form an invariant subspace of dimension (4M-1) with the set 

{A, tp+ 1 invariant as a factor space of dimension (4M+1). 

The irreducible representations obtained here are in agreement 

with those of §3.4 where the label correspondence is a 2  = 2M - 1 and 

b = L + 1. 

4.4  OSp(3/2): 

The OSp(3/2) superalgebra consists of the odd generators 

Qaa E M  the 0(3) generators Lab  = Mab  and the Sp(2) generators M. 

Here I 5 a, b 5 3 refer to 0(3) and I  a, 	2 refer to Sp(2). 

These generators can be recast in the form 

L+ = L31 + iL32 
	

L- = -L31 + iL 32 	L
3 

= iL
21 

Q+a = Qla i Q2a  Q-a = Qla i Q2a 	Q3a = Q3a • 

In this form the generators satisfy the following superalgebra 

+, L -] = 2L 3 
	

[L 3 , L+ ] = ±1_ 1_ 

[Maf3' My(5] =6 	M -FE  M  M  6 y a 	a 13y 	ay f36 	13o ay 

[L + , Q .7.04] = ± 2Q 3a 	[ 1-0  Q3a] = 	c4a  



[L 3 , (4 0t] = 

[11c43' Q±y =e 	Q 	+e ay ±  13y -a 

[Mu e. ,  Q3y ] = eay Q 313 4- 	Q3a 

{Q 3a , Q±a } = 	ae. L 
	

11Q 3a' Q 313 /  = 

{Q+a ,  = -2M  Laa  L 3  4.22 

with all other (anti) commutators zero. 

The subalgebra )-* will be taken as )4 = {L i., L 3 , 1:4.a , Q 3a , Ma0 

with  
0 

= {L
3' 

Q
3a ,  Mar3

} = U(1) x OSp(1/2).  Cosets are labelled by 

the elements exp(xL_ + e a  Q_a ).  Superfields are functions A (x, ea ) 

carrying change C  -L, and a 'superspin' M representation of the 

U(1) x OSp(1/2) little group (see also E.1). 

loa(x ,  ed 
loaa ( x ,  

4.23 

In the following the spin-M indices will be suppressed.  Expanding the 

superfield in ea  gives 

+ e 
a  [p+ (x) + ip - (x) 

	

e 	1 	1 
2  ,  f 

1  
H(x) 

 

P
a(3.

(x)  0.1a(x)) 

 

 

4.24 

  

where 0 2 E 	ea  O.  The Sp(2) indices can be lowered or raised 

using the Sp(2) metric c a  or inverse metric c °  where 

6 21 cal3  respectively where c i2  =  = + 1 and e a  = 6 	eY, ea 	Eal e . 
13Y 

The components have the following spins under Sp(2): A and H, M; 

1  1 tPa , M + 	; tPa , aa  and ha , M - z  .  P  be decomposed into fields 

of definite spin under Sp(2) by the following procedure: 

75. 

+a  



 

1 	 1 
Paa = 2- (Paa - P aa ) + 2- (Paa + Paa ) 

1 E: 	yS 	0 	-1 
= -  E P +P 	+ P 

2 aa 	Sy 	aa 	aa 

76. 

4.25 

where P' 0 -1 = 0,-1 Y 6 	(p 	+ P ) aa aa 	 2 	Sy 	(SY 

 

are the spin M and spin (M-1) projections defined in Appendix C. 

Since 0 P act  has spin (M - 2-) but Ha  H f3y  = 0, there is no spin 

(M+1) projection.  Furthermore using (05,D7) and (D.20) 

Y6^ Y6  E 	P Sy = M 	P 6/2(M 1) E M Y6  P° / 2(M+1). 4.26 

It should be noted that P °  is not an eigenvector of II ±1/26 . 	However, 
aa 

it can be rewritten as 

(2M+1) P 0 	M(P°.d aa  + (M+1)(0) 0ta  

(P) 	(13% 	eaa  M ID  Y(S R0/2M± ) 

	

M E M 
	

E -M - 1 

such that -2  (P)  =  )  and  ±½ (P)  = 0. 

	

4-a 	0 	0 
a 	± ya 	ya 	a 	+ YO 

Thus we finally have in (4.24) 

P  = (P
o

)  + P - 
1 

	

aa 	- aa 	aa 

The differential representation of the generators is (see (4.4,4.5) 

and Appendix E) 

M  = 0 a +  a - 

	

aa 	aa 	aa 	aa 

L 	= 3/3 x 

L + = -x 2 3/3 x - 0 2 va x -2x Oa  a a + 2xL - 20a a3a 

where 

4.27 

4.28 
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L
3 

= -x3 /3 x - 0
a

a  + L 

Q_a = a  
a 

a  
Q  =x3/3 x - x

2
3+ 20

2
D + 20 L - 20 J€ 6a - 2x a  a  

a 
+a  a  a  3a  

Q3a = -ea 3/3 x - x 3 a - 	3a . 	 4.29 

Upon examination of the action of L +  on the superfield a modified 

basis for the component fields is obtained in which they transform as 

eigenvectors under the 0(3) x Sp(2) even subalgebra.  The necessary 

field redefinitions are (where [M] = (2M+1) 2 ) 

= L[M] -1  tp-  + a' 
a  a 

- 0  0  1 
P
ca3 

= -L[M] P
ct 

+ 
2-Maa 

A' 

-  1  -1  43 - 
H  = (M+1)[M]

1 
 (L-1)H - 7 L -1  [M]  M

c 
 P

,0a r3 

[m] -1 L -1 (2L-1) -1 (L-1)(M+1)(L+2M)A" 

a 
= (L-1)[M] -1h + [M] L -1  

a 

+ [M] -1  L -1 (2L-1) -1 (L-1)(L-2M-1)a;  4.30 

and A, tp
+ 

a and P
-1 

are unchanged. 
a' a  043 

Following the procedure of the previous sections and expanding 

the component fields as power series in x reveals a finite dimensional 

factor space in which their degrees (highest power of x in the finite 

+  -0 
factor) are A and aa , 2L;

a
, LI)

a
, P

af3 
and P

-1
, (2L-2); H and h

a
, (2L-4). 

a(3 

From (4.29), taking into account (4.30), the 0(3) x Sp(2) = 

SU(2) x SU(2) decompositions obtained for arbitrary induced representations 

with the chosen little group (corresponding to superfields of arbitrary 

half-integer change L and 'superspin' M) are given in Table 4.1. 
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In general this class of representations is typical and thus irreducible 

with total dimension 4(2L-1)(4M+1) for L  and M  0. For M = 0 the 

superfield (DA is a singlet under the little group and (4.23) and (4.24) 

reduce to (DA(x,e) = (I)(x,O) = A(x) + 0p(x) +  62H(x)  4.31 

and consequently A, tp; and H form an invariant set.  Examining the 

transformations of the component fields under the odd generators reveals 

that for certain (L,M) the above set is reducible, corresponding to 

atypical representations.  Table 4.2 demonstrates this for Q. 

With (L = 2M + 1, M >  ' 
1
) the set P  H, tp

a 
and h

a 
form an invariant _ 2- 	aa 

subspace of dimension (32M 2  - 2) = (16M 2  - 2116M2 ), with the set 

-  1 
(A, P

0
ar  aa , ipa ) invariant as a factor space.  For (L = 2, M = 2-) 

R and t-pa  form a further invariant subspace equivalent to the fundamental 5. 
1 

From (4.24) it is evident that L = 0, 2-  and 1 must be treated as special 

cases; if L = 0 the only finite-dimensional representation occurs for 

M = 0, corresponding to the singlet A; no finite-dimensional 

(L =  M  0) superfield can be constructed; the sequence (L = 1, 

M  0) has an invariant set (A, P .elv  a (;) which includes the 

fundamental 5 = (3 x 1)1(1 x 2) for M = 0 and the adjoint 

12 = (3 x 1 + lx 3)/(3 x 2) for M =  The 0(3) x Sp(2) = SU(2) x SU(2) 

decompositions obtained for these cases are summarised in Table 4.2. 

The irreducible representations presented here are in agreement 

with those of §3.5 where the label correspondence is a 2  = 2L - 2 and 

b = 2M + 1. 



47,0-t  = (Tr -d ay  L(M+1) -1 (L-1) -1 x 2 14 

- (7-0 (L-2M-1)(L-1)[M] -1  {L-1(2L-1 ) -1 x2.. _ A 	2L -- xA l  - 2A} ay 
-1  -3  -  - 1 

+ (L-2M-1)L [M]  {(L-1-1) x2 P' 0  - 2xP
-0 
 } - x

2 
 P'

-1 
 + 2(L-1)xP 

-Ya 	-Ya 	Ya 	Ya 

79. 

Table 4.1  0(3) x Sp(2) = SU(2) x SU(2) decomposition of typical 

OSp(3/2) induced representations from little group 

U(1) x OSp(1/2) for L  3/2, M  O. 

'Even'  Dimension  'Odd'  Dimension 

A(L,M)  (2L+1)(2M+1)  a(L,M - 1)  (2L+1)(2M) 

H(L-2,M)  (2L-3)(2M+1)  L-2,M -  (2L-3)(2M) 

- 0  --  1 p (L-1,M)  (2L-1)(2M+1)  lp (L-1,M - 2)  (2L-1)(2M) 

-1 p (L - 1,M - 1) 	(2L - 1)(2M - 1) 	tp+(L - 1,M + -P 	(2L - 1)(2M+2) 

Total  2(2L-1)(4M+1)  Total  2(2L-1)(4M+1) 

Table 4.2  OSp(3/2) component field variations under Ci /y-  . 

+  -1  --  -1 
SA = -x

2  
- L [M]x

2  
+ L[M]x

2 
 a' - 2[M]xa 

+  +  -1  -1 2 -  
&pa  = (7 6) ay[MEM+1) (L-1) x H 

+ (7 1-6) ay  (L+2M) {-L -1 (2L-1) -1 x2A" + 2L -1 xA' - 2A} 

-1 -  - 
+ 2L

-1
[M] -2  {(L-1) x2 P'

0  - 2xP0 +yet } 
+ya 

= (m+1)NEL-1 )-1 	- 2Lxii } 

- (L+2M)(M+1)EME2L-1) -1  {(L-1) -1 x 2 1-1c -  - 2(2L-3)(L-1) -1 x;,'( -  + 2(2L-3)} 

- (L - 2m - 1)(m+1)(2L - 1) -1 	 - 2(2L-3)x +  + 2(L-1)(2L-3)L -1 } 

Sa
l[m]-1x2/7,0 

Ya 
_ x2p-1 + 1 7 - E) ay  [M] 1 -1 x2A 1  = 2xA} a 	- 	Ya 	1  
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,;  _  m-
l) 

-1 x  2,71 - 2A 	fx 2 ".' 1-  + Urat3 	"a8 	L  
y  yy  2(L-1)xlp+ 
 ct3

0 =  ). 

4. A [A](L4.2A)L -1 A -1  {(L-1) -1 x 2 t-p. -  - 2x;- } 
a8 

1  + M EMEL+2M)(L-1)M -  {L -1 (2L-1) -1 x 2a u  - 2L- 	+ 
a8 

-1 	p 	1 	p 
SPa8 = (MM  a8Sy  + c ya6 8  + ye ot8 da  ) 

x ( _ EmEL _ 1) -1 x2i; + rm] 2. -1 
L  {(L-1) -1 x 2-q;' -  - 2xtp-  } p 	L 	P 	P 

+ (L -2M - 1) {L
-1

(2L - 1)
-1

x
2
a" - 2L

-1
xa' + 2a }) 

p  P 	P 

671 = (L-2M-1)[M] - 2  {(L-1)-1(2L-1 ) -1 x 2 13.0 _ 2(2L-3)(L-1)-1(2L-1)-ixf310 
a 	 -Ya 	 - Ya 

+ 2(2L-3)P l ya  

-1  - (L+2M)[M] -1 (2L-1)  {x 2 PII -1  - 2(2L-3)xP' -1  - 2(2L-3)(L-1)P -1 } 
Ya 	 Ya 	 Ya 
-- 

(Tr -c) ot  NEL-1)
-1

(M+1)
1 
 Ix

2 
 H' - 2(L-2)A1 

Table 4.3  0(3) x Sp(2) = SU(2) x SU(2) decompositions of OSp(3/2) 

induced representations from little group U(1) x OSp(1/2) 

for atypical representations and 'special' cases (see text). 

(L = 2M+1, M  1) invariant space 

P -1 (2M,M-l)  (4M+1)(2M-1)  -ti)- (2M,M 1-)  (4M+1)(2M) 

H (2M-1,M)  (4M-1)(2M+1)  1:1 (2M-1 ,M - .)  (4M-1)(2M) 

Total  16M
2
-2  Total  16M

2 

(L = 2M+1, M  --12-) factor space 

A(2M+1, M)  (2M+1)(4M+3)  a(2M+1, M-1-)  (4M+3)(2M) 

-0 P (2M,M)  (2M+1)(4M+1)  tp 4- (2M, M+1)  (4M+1)(2M+2) 

Total  16(M+) 2  Total  16(M4 2 -2 
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CL  =  1,  M 0)invariant space 

A(1,M) 3(2M+1) ty+ (0,M + -1z) 1(2M+2) 

P
-1

(0,M-1) 1(2M-1) a - (1,M-) 3(2M) 

Total 8M+2 Total 8M+2 

(L _ 1, M = 0)  invariant space 

A(L,O) 2L+1 47(L-14-) 2(2L-1) 

H(L-2,0) 2L-3 

Total 4L-2 4L-2 

4.5  OSp(4/2):  

The generators of the 0Sp(4/2) superalgebra can be written in 

the following way.  Let 0  p, v  3 refer to the 0(4) indices and 

1 5 a, 8 5 	refer to the Sp(2) indices, then from (4.6) define 

= -  Mpv 

Mab = 1 pv )  M 
2  ab pv 

N EM 
a8  a8 

Q.  1.1 aaa = a - M 
aa pa 

 

4.32 

Where  a = (1,a)  a = (1, -a) 

	

' 	P 

1 
a
pv 

= pay 
- ayap ) 

c a +aa = 2n 
pv  vp  pv 

a = (a a - a a ) 
pv 2pv  vp• 

 



where (ee) ab = eaa eb (00) a8 
a 

	0aa va 

These generators satisfy the superalgebra 

Q6bd = - 26  o43  1Qaact, 	 N 	cab Ca8 L ai) 4. ca8 6 1S Mab 

[Mab' Mcd 	= 
 Ebc Mad + cac Mbd + c bd Mac + ad bc  

[11  '(/' ] 	= cbc QCay 	ac c ccy 	 c 	by Q. 

and similarly for 1_ 1;  and N 	The generators Lab  can be written in a 

spherical basis L .4_,L_,L 3  as in §4.2 

The subalgebra }i will be taken as 

= 1-3'Mab ,Nae,L+  'QLal  with 

	

= {L3 Mab  N } = U(1) x SU(2) x SU(2). 	Cosets are labelled by 0 	' 	' a8 

the elements exp(xL + 	Qiaa) and superfields are functions 

0(x,Oaa ) carrying a charge LE -L and spins M x N under the little group 

U(1) x SU(2) x SU(2): 

++  +- 
0(x,0aa ) = A(x) + act  E(Ip-- (x) + 11)-1- (x)) aa 	aa 

(Wab E (F1 -±( x )) 	 (00(113 E (GT( x )) 

±+ f 3 aa , 	+ - 

co ) 	Ecx - (x) + x-+ (x)) + e
4 

D(x). aa 	act 4.34 

82. 

4.33 

(0 3 ) act = (H ob 	 04 . (0 3 ) a eaa  

and the summations are over all possible projections onto total spin 

(M ± 	, N ±;) for q)aa(x) and xact(x) (M,M±1) for F ab (x) and (N,N±1) 

for G (x). 	The relevant projection operators are given in Appendix D. old3 

The differential representation for the generators, writing 

aa E.  a/a e aa , is (see (4.4,4.5) and Appendix D) 
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L  =•/ x 

(143 ^ 
L
+  

= -(x
2 

- 
1-8 4 )3/ ax -(xe+0

3
)
aa 	

act + 2xL + 1 
 ( 88)ab Mab -(88) 	Na8 2 

1 act 
L
3  

- xa/ax---83+L 
2  act 

Mab = ea  3  + ea a  - A a 	ba 	b act 	ab 

N  = ea ,  ea , 
al3 	a ° a 13 	13 ° act 	ai3 

Q i aa = eau 	+ a act 

Cl aa = (xesaa  + e 3act ) a/a x + x a act  - 2(00) ab  a ba  + (ee) icla 	+ 

eba  Aba  - 2ea N 	4.35 

As for the previous cases the following field redefinitions are 

introduced so that all component fields will transform as eigenvectors 

under the even subalgebra 0(4) x Sp(2): 

o 
Fab = F°ab  - Aab - A'/4L 

-0 G 	= G°  + f\sl  A'/2L 
a8 	ct8 	ct8 

1 imn = xmn + (
2Mm  + 4Nn  + 3) mn/6(L 

= D 	 ab _0 
b F I /12(L-1) -  0 1 /6(L-1) 

" 	a - 	 af3 

- [3L+2M(M+1) - 8N(N+1) -3]Au/24(L4(L-1)  4.36 

with m,n = ± and 2M±  + 1 = ±(2M+1). 

Expanding the component fields as power series in x yields a 

finite-dimensional factor space in which their degrees (highest power of x 

in the finite factor) are: 
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A,2L; 	Ipmn ,(2L-1); 	Fm ,O,Gn  and 0,(2L-2); 

Xmn ,(2L-3); 6,(2L-4). 

From (4.35), taking into account the definitions (4.36), the 

0(4) x Sp(2) = SU(2) x SU(2) x SU(2) decompositions obtained for arbitrary 

induced representations with the chosen little group (corresponding to 

superfields of arbitrary half-integer change L and spins M and N) are 

given in Table 4.4. 	This class of irreducible representations is in 

general typical (with even and odd dimensions the same), and total 

3 
dimension 16(2L-1)(2M+1)(2N+1), with L 	-2- and M,N 	0. 	In the basis 

(4.36) it is found that superfields which cannot be decomposed arise for 

certain (L,M,N) values, corresponding to atypical representations. 

This is demonstrated for the component field variations under Q a.a  in 

Table 4.5. 	It is apparent from this table that when a particular 

atypicality condition is imposed only a certain linear combination of 

0 0 and F
ab 

appears in the invariant subspace.  This indicates that, in 
af3 

general, for atypical representations, of the two fields with weights 

(L-1,M,N) one belongs to the invariant subspace and the other to the 

factor space.  The general atypicality conditions are L = Mm  - 2N n , 

m,n = +,- .  These are in agreement with the results of Kac [8] and 

of §3.6 for 0(2,1; a = 1) where the label correspondence is a 2  = 2M, 

a3 = 2(L-1), b = 2(N+1). 	The condition L = M-  - 2N+  is however never 

realized in this approach.  It corresponds to the condition a l  = 0 of 

§3.6 for which only the trivial representation (a 2  = a 3  = b = 0) occurs. 

The complete 0(4) x Sp(2) = SU(2) x SU(2) x SU(2) decompositions for the 

remaining atypicality conditions are presented in Table 4.6.  As a 

specific example it can be noted that the adjoint 

17 = (3x1x1 + lx3x1 + 1x1x3)/(2x2x2) is derived from the invariant set 

(A,F+ ,e)/(1P++) for (L = 1, M = N = 0). 
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The atypical representations found here and listed in Table 4.6 are 

identical to those found for D(2,1; a=1) in §3.6 and listed in Table 3.3. 

Table 4.4 
 

0(4) x Sp(2) = SU(2) x SU(2) x SU(2) decomposition of 

typical OSp(412) irreducible induced representations 

from little group U(1) x SU(2) x SU(2) for L  M, N  O. 

'Even' 
 

Dimension 
 

'Odd' 
 

Dimension 

A,D(L-1±1,M,N) 

-0 
F (L-1,M,N) 

F± (L-1,M±1,N) 

-0 
G (L-1,M,N) 

G± (L-1,M,N±1) 

Total 

2(2L-1)(2M+1)(2N+1) 

(2L-1)(2M+1)(2N+1) 

2(2L-1)(2M+1)(2N+1) 

(2L-1)(2M+1)(2N+1) 

2(2L-1)(2M+1)(2N+1) 

8(2L-1)(2M+1)(2N+1) Total 

2(2L)(2M+2)(2N+1) 

2(20(2M)(2N+1) 

2(2L-2)(2M+2)(2N+1) 

2(2L-2)(2M)(2N+1) 

8(2L-1)(2M+1)(2N+1) 

Table 4.5  OSp(4/2) component field variations under 

SA =  x Ipmn  
cy 

m,n 

4Trelt  = 2x(ffnc)ay Fmac 
 + 2x(Trmel  F 

'ac 
_ 

(  .  1  xdeOde nno ory [(Nn4.1)  xN 66e  4-  (mm4.1)  2A IT  ''ac 

2(L-Mmt2Nn) 
 {2MA - xA'} 1  

SFm 	 r m de 	[3 -mn 	(-L+Mm+2Nn+2)  r„mn ,'mn, = L P  6  --XX 	9  f 
ab  ab  dc L2  ey  2L-1  'Vey 'Pey 

oGn  v pn (Se  [_ 3 x -mn  (L+Mm+2Nn+1  
a8  L a8  Sy  XCE  2L-1 

mn 'mn 
{ cc' ti)ce } 1 



_ 
-0  r  1 	m mmr 3 -mm 

-  
+ fkm+1  (-L+Mm+2N n+2) 1{enmn l l 

SF  - L 
ab  4M(M+1) Mb M[- 2- xxcy 	' L  2L-1  cy cy 1 

m,n 
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-0 	1 
6G = a(3. 	L  4N(N+1 

m,n  

n1-3 -mn  2(N+1)  (L+Mm+2Nn+1) ,mn 'mn 1 

a  L 2 "cy  L  2L-1  / . 1 

,, mn  4 (  n ‘  (L+Mm+2Nn+1)  {Fm  ,F 'm 1 
uXaa = - l' ff clay  2L-1  ac ac 

 

4 (  m 1  (-L+Mm+2Nn+2)  {Gn _ G sn
} 

 
7 -P IT Cl ac  2L-1  ay' ay 

_ 1 virmel  „eel  
T '  ac '  ' 	

I -, 1  (L+Mm+2Nn+1) 1  Ade r i.'0 F'0 1  
l cod: L-1  ,..m tm +1)(2L-1)  

"de' de' 

2  (-L+Mm+2N n+2) 	-de - 0  - + {   1 N  {GU GSE
1 - 12 x

2 
 D] 

L-1  (Nn+1)(2L-1) 

-mn  
SD = 

cy 
(L+M2Nn-1) 

 {(2m-3) x 	- X  Xcy  I 
m,n 

Where n
m
a
b 

and 

and pm cd and 
ab 

respectively. 

1 	1 7na
(3 
are spin M ± 2- and N ±  projectors respectively 

P
n10 are spin M ± 1 and spin N ± 1 projectors 

- -  n 
Also if B is any of F

0 
 ,G

0 
 , F

m 
 or G 

then  {B,B 1 } = (2M-2)B - xB' 

and  
ten 11, 1 mn l 	(2m...1)  e n _ o 'mn 
aa' aa  aa  aa 



Table 4.6 	0(4) x Sp(2) = SU(2) x SU(2) x SU(2) decompositions of atypical OSp(4/2) irreducible, 

induced representations from little group U(1) x SU(2) x SU(2) for L 	3/2, M,N 	O. 

Atypicality Condition Irreducible Representations Dimensions 

L = M - 2N 

Factor 
Space 

'Even  A,  F- ,  G - ,  F-1)  2(16M2N + 4M2  - 32MN2 - 8MN - 8N 2 + 1) 

 

-  -+  — 
'Odd'  0+  ,  0  ,  0  ,  R --  3(4M2N 4' M2  - 8MN

2 - 2MN - 2N 2 ) 

Invariant 
Space 

'Even'  G,  F,  D,  G 2(16M2N + 12M2 - 32MN 2 - 24MN - 24N 2 - 24N - 5) 

++ 	..++-+ 	...+- 
'Odd'  0  ,x  ,  T(  ,X 8(4M2N + 3M 2 - 8MN 2 - 6MN - 6N 2 - 6N -1) 

L = M + 2N + 2 

Factor 
Space 

+  -  -0 
'Even'  A,  G,  F,  F 2(16M2N + 12M 2 + 32MN 2 + 56MN + 24M + 8N 2 + 16N + 7) 

'Odd'  0
++

, 0
-+

, 0
--

, R-+ 8(4M2N + 3142 + 8MN 2 + 14MN + 6M + 2N 2 + 4N + 2) 

Invariant 
Space 

'Even'  D,  F,  G,  G 2(16M2N + 4M2  + 32MN2 + 40MN + 8M + 24N 2 + 24N +5) 

+- 	_++ 	_+- 	__ 
'Odd'  4,  .  x  ,  X 	, 	R 8(4M2N + M2 + 8M71 2 + 10MN + 2M + 	N 	+ 6N + 1) 

L = -M + 2N + I 

Factor 
Space 

'Even'  A,  G
+

,  F
+

,  i°  2(-16M 2N - 12M2 + 32MN 2 + 24MN + 24N 2 + 24N + 5) 

++ 	+- 	-+ 	_.++ 
'Odd'  0  ,p  ,p  ,  x 8(-4M2N - 3M2 + 0MN 2 + 6MN + 6N 2  +6N + 1) 

Invariant 
Space 

'Even  F,  G,  D,  G 2(-16M 2N - 4M2 + 32MN 2 + BMN + 8N 2 - 1) 

'Odd'  0— , R+- , R -+ , R--  8(-4M2N - M2  + 8MN 2  + 2MN + 2N 2 ) 

The above dimensions are, in general, only applicable for L a 2, 

M, N ? 1. 
-0 	-0 

See text for the discussion regarding F and G . 
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REPRESENTATIONS OF ORTHOSYMPLECTIC SUPERALGEBRAS: 
YOUNG SUPERTABLEAUX 

5.1  INTRODUCTION 

Young tableau and Schur function techniques provide a useful 

and elegant description of many properties related to irreducible 

representations of semi-simple Lie algebras.  The extension of 

these techniques to Lie superalgebras was first made by Dondi and 

Jarvis [1,8] and Bars and Balantekin [6,7].  Dondi and Jarvis [1] 

presented the following branching rules for purely covariant or 

purely contravariant representations of U(m/n) and SU(m/n) 

	

U(m/n) 4,  U(m) 	U(n) 
	

{x} 	{X/E} 	{Z} 

u ( m/m) 	u(v/n) 
 

{x} 	/ { x/} 0 tO 

	

u(mil+nv)mv+np) 	u(m/n) 0 u(p/v) {x} 	1 	{xocT} E){a} 5.1 
cfOr 

where C is summed over all possible partitions and the operation (o) 

is that of the inner Kronecker product of representations of the 

symmetric group Sr, r being the rank of {X}.  The above branching 

rules, with the inclusion of a U(1) label, also apply for 

SU(m/n)  SU(m) x Su(n) x U(1).  They have also given rules for 

Kronecker products, and dimensions of some representations, for 

U(m/n) and su(m/n). 

Bars and Balantekin [6,7] have used Young tableau techniques 

generalized to supergroups to derive character and dimension formulae 

for representations of su(m/n) and OSp(m/2n) which may be derived 

from direct products of (covariant and contravariant) fundamental 

89. 
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representations.  In particular they have noted that the characters 

for the orthosymplectic and superunitary groups formally look the 

same as the characters for the orthogonal and unitary groups 

respectively, except for the replacement of supertraces by traces 

and superdeterminants by determinants.  These works have also 

drawn attention to the result that for su(m/n) and OSp(m/n) the 

fundamental representation acts in a graded (m+n) dimensional space 

V = ‘15  + V1  , where v5  is of degree zero and VT is of degree one. 

There are two possible gradings of V and consequently, by taking 

tensor products, two classes of representations.  These are 

designated, class I for which dim vo. = m and dim VT = n and class II 

for which dim V- = n and dim V -  = m.  For OSp(m/n) King [2] has 

referred to these classes by OSp(m/n) and Sp0(m/n) respectively. 

Later work [10] saw the derivation of a generating function to obtain 

the eigenvalues of all Casimir operators of SU(m/n), while the 

branching mles SU( m/n) + Su(m) QDSU(n) x 

SU(m+v/u+n) + SU(m/P) x SU( v/n) x u(1), and 

SU(mu+nv/mv+nu) + SU(m/n)I;DSU(1.i/v) have been extended to contravariant, 

covariant and mixed supertableaux [9,11], though the mixed 

supertableaux may be reducible but indecomposable, i.e. atypical. 

Bars, Morel and Ruegg [11] have established the relation between 

Young supertableaux and the Kac-Dynkin diagrams for SU(m/n).  The 

connection is made by realising that the highest weight of the 

representation corresponds to that state in the decomposition 

SU(m/n) + SU(m)o)SU(n)  11(1) for which the U(1) charge is maximum 

if m < n or minimum if m > n.  They have thus established that purely 

covariant or purely contravariant tableaux correspond to irreducible 
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representations while mixed supertableaux may also correspond to 

indecomposable representations.  An investigation of the mixed 

supertableaux of su(n/l) has been carried out by Delduc and 

Gourdin [16] for typical and atypical representations.  They have 

established the cases for which the supertableau corresponds to an 

irreducible representation of SU(n/1).  These are typical or 

atypical covariant, contravariant or mixed supertableaux for which 

c
1
+E

1 
<1'l n or typical covariant, contravariant and mixed supertableux 

for which c
1
+E 1 > n, where c

1
A-E

1 
is the sum of covariant and 

contravariant boxes of the first columns.  A mixed atypical 

supertableaux, for which c
1
+E 1 > n, is only a part of an indecomposable 

representation of SU(n/l) and the indecomposable representation is 

a sum of four atypical components. 

Wybourne [17] has used the theory of symmetric functions to 

provide concise expressions for characters, dimensions and branching 

rules for representations of u(m/n). 

Some recent work of Morel, Sciarrino and Sorba [13] has 

considered the development of Young supertableaux for the study of 

representations of OSp(M/N).  They develop branching rules for the 

decomposition of a supertableaux, corresponding to an irreducible 

representation of OSp(71/N), into the irreducible representations of 

x Sp(N) which compose it.  For this purpose extensive use is 

made of generalized Young tableaux.  These are diagrammatic 

techniques which have been developed by Girardi, Sciarrino and Sorba 

for the study of Kronecker products of representations of SO(2m) 

[14] and Sp(2n) [15].  In the interests of space it will not be 

possible to develop these here, however the reader is encouraged to 



92. 

examine these works for the authors have been successful in obtaining 

a closed form of the branching rules for all typical, tensor and 

spinor representations of OSp(M/N).  They have also given rules for 

obtaining the decomposition of atypical representations, however 

this requires a knowledge of all irreducible, atypical representations 

of lower dimension which satisfy the same atypicality condition as 

the representation under investigation.  If these should exist 

within the decomposition obtained by applying the rules used for 

typical diagrams then they are simply deleted to yield an irreducible, 

atypical representation. 

King [2] has developed Kronecker product rules and branching 

rules, for tensor representations of OSp(M/N), in terms of standard 

Schur function operations. He has also given dimension formulae 

for these representations in terms of partition labels.  The 

Kronecker product of two representations [A] and [p] of OSp(M/N) is 

given by 

[x] x [P] = 	[(Alp) 	(11/03 • 

Branching rules for tensor representations [2] are given in (5.2) 

and (5.3) while branching rules for spinor representations follow 

from the character formulae [12] (5.16) and (5.17) for OSp(2m/2n) 

and (5.20) and (5.17) for OSp(2m+1/2n). The dimension formulae 

are presented in §5.5. 
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5.2  ATYPICALITY CONDITIONS AND RELATIONS BETWEEN KAC-DYNKIN 

AND SUPERTABLEAU LABELS 

This section examines finite-dimensional, tensor representations 

of OSp(M/N) via standard Young diagrams.  These can be realised by 

graded symmetrised, supertraceless tensors [1] and can be decomposed 

in terms of irreducible representations of OM x Sp(N), with 

branching rule [2], 

[A]  1 [A/E] <4> 	y 	A/E 
	

5.2 

E 13. 

or 
 

[A]  I [EP)] < x/E> =  1 [/(5] <x/E> 
 

5.3 

E 6 

where  runs over all divisors of A, (3 corresponds to partitions 

with even column lengths and 5 to partitions with even row lengths. 

In order to present necessary and sufficient conditions on the 

diagram shape for the representation to be atypical, each of the 

algebras B(m,n), C(n) and D(m,n) are examined to establish the 

correspondence between the Kac-Dynkin labels which label the highest 

weight of an OSp(M/N) representation (as discussed in chs. 2 & 3) 

and the diagram labels. 

In this section we consider only 'standard' supertableaux in 

the following sense: •for B(m,n) and D(m,n) the diagrams are such 

thatifc.isthelengthofthei th columnthenc.<m for i > n. 

For C(n) ; OSp(2/2n-2) we require c i  < 1 for i > n-1.  Of course all 

diagrams must be regular in the sense that for all column lengths c k  

and row lengths r k , c k  > ckil  and rk  > 
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The conditions for atypicality are given in table 5.1.  These 

conditions are general for OSp(M/N) when diagram labels are used. 

Table 5.1  Atypical ity conditions for OSp(M/N) 

(i)
1  

p. + A. + — N = i + j - 1 
j  2 

1 
(ii)  pi  + z N+j+ 1 =A. +M+ 

where  1<i_<_ :12-N; 1 <j<[-M] 

M] is the largest integer less than or equal to  M.) 

The diagram labelling is as given in (5.4). 

For C(n) E OSp(2/2n-2) the correlation between the above diagram 

labelling and that of §5.2c is k
1 

=
1
+n-1, and v. = p.

-1
-1.  If 

k
1 
 < n-1 then p.=1 for k

1 
 +1 < i < n-1. 
 — — 

It has been noted by King [12] that these atypicality 

1  1 
conditions may be interpreted as conditions on the a y  M] x-2- N) box 

positions in the upper-left corner of the tableaux.  The above 

conditions may be written as 

(i') h
ij 

=0 

(ii') h.= h. 
lj 

1 
where  h

ij 
= (p

i 
 - j) + (Xj +  N -  + 1 

and  h. = 2(p. - i + 1) - (M - N). 
J  1 

Thus (i') can be interpreted as the condition for the 'hook length' 

of the (i,j) position to be zero while (ii') can be interpreted as 

the condition necessary for a modification of the tableau in 0(M-N) 

to yield a regular tableau when starting the hook removal in the i
th 

column.  In view of the close connection between the orthosymplectic 

and orthogonal characters, as discussed earlier, and particularly 

the equivalence between the super-character of OSp(M/N) and the 



0(M-N) character this seems an interesting observation though its 

implications remain to be explored. 

5.2.a B(m,n), m > 0 

Consider the supertableau 

X. 

95. 

Xm- 1 [A ] = 

Am 

Mn  

mj  

5.4 

where X. is the number of boxes beyond the n
th 

column in the i
th 

withi<mand u. is the number of boxes in the j
th 

column, with s)  

This diagram will be designated as [A 1 ,A2 ,...,Am ; 11 1 ,112 ,...,unt 

general diagram in the decomposition (5.2), after the appropriate 

modification, will have the form 

row, 

j < n. 

A 
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5.5 

The relationships, for (5.5), between the 0(2M+1) x Sp(2n) Dynkin 

labels and the diagram labels are given by [3]: 

=  - 11 	, 	, 	= 	- p r; , b' = 	, 

a'+1  
A'  , a r42  = A- A  ,  , a l'14111_ 1  =  - A' , a'  = 2A' 

n  1  m  n+m  m 

5.6 

where ai, a ,  , a r'1 _, and b' refer to the Sp(2n) labels and 

a r'14.1 ,a 2  ,  , a r'llin  refer to the 0(2m+1) labels. 

To determine which diagram in (5.2) corresponds to the highest 

weight vector, A, with weight components A(h i ) = a i , A(k) = b, of a 

B(m,n) representation we first consider the action of the odd negative 

generators on A. 	The weights of these are presented in tables 5.2 

and 5.3.  The action of all the odd negative generators can be 

obtained by considering each of those in table 5.2 by themselves and 

in conjunction with each of the even supplementary operators in 

table 5.3.  Examination of these reveals that A can be uniquely 

determined by application of the following sequence of selection 

criteria: (i) select those states of maximum b', (ii) within this 

subset select those states of maximum a
n-1  
'  (iii) from these select 

' 



those states of maximum a'
2' 
 etc., until we finally select the 

n- 

state of maximum ai.  This state will be A.  Expressed in diagram 

notation these criteria are: (i) select those diagrams of maximum 

(ii) of these select those diagrams of maximum pn_ l , etc., until 

we finally select the diagram with maximum pi.  The diagram which 

corresponds to A is obtained by taking 8 = {0} and 

97. 

= 5 = 

n 

1-1 2 

1 5.7 

This diagram will be given by taking Xi = X i  and p‘i = pi  in 

(5.5). Therefore the Kac-Dynkin labels a k  and b in terms of the 

supertableaulabelsX.and p. are: 

a l  =  - 1-12  a2  = p2 - 113 	a 	= pn _ l  - pn  

a
n 

= p
n 

+ X
1 

, a
n+1 

= X
1 
- X2, a

n+2 
= X

2 
- A3, • •• 

an+m_ l  = Xm_ i  - 	, amin  = 2A 	b = pn  . 	5.8 

Using (5.8) we can now rewrite the conditions for atypicality [4] in 

diagram notation.  These results are given in table 5.1.  The proof 

that the above choice (5.7) for  uniquely determines A, is presented 

in Appendix F. 



Note that for the B(0,n) algebra, as defined in ch 2., there 

is a direct correspondence with the above by setting X i  = 0 v i. 

There are no atypical representations for B(0,n) [4]. 

5.2.b  D(m,n) 

Consider again the supertableau (5.4) for which (5.2) and 

(5.5) are still applicable. The relationships for (5.5) between 

the 0(2m) x Sp(2n) Dynkin labels and the diagram labels are given 

by [3]: 

ai = pi - 11  ,a =  - pi ,  ,  =  -  , b' = 11 1'1  , 

a'  = X 1  - X I  a'  = X I  - X I  a'  = x ,  _ x , 
n+1  1  2 ' n+2  2  3 '  ' n+m-2  m-2  m-1 ' 

a +1  =Xm-1 1  -  ' Xs  a+1  = Xm-1  '  + X' , 
n+m-1  m   

a-1  = X I  + X 1  a-1  = X 1  - X 1  n+m-1  m-1  m ' n+m  m-1  m 
5.9 

where ai ,a  a r1i _ 1  and b' refer to the Sp(2n) labels and 

±,  ±, 
a l4 1  , a r42  ,  , an+11 _ 1  , an _lin  refer to the 0(2m) labels.  If 

X' t 0, both signs arise for a± '  and a±'
m  . 
 This corresponds to 

the fact that the 0(2m) representation is self-associated and reduces 

to a sum of two inequivalent irreducible representations of SO(2m) 

under this restriction, so that under 0(2m) 4 ,  SO(2m) we have 

[X] 4,  [X] + + [X] . 	[X]+ and [x] are conjugate to one another 

under an involutary outer-automorphism of S0(2m) involving a matrix 

of determinant -1. 

To determine which diagram in (5.2) corresponds to A, we 

again consider the action of the odd negative generators on A.  These 

weights are presented in tables 5.2 and 5.4.  The action of all the 
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odd negative generators can be obtained by considering each of those 

in table 5.2 by themselves and in conjunction with each of the even 

supplementary operators in table 5.4.  Examination of these reveals 

that A can be uniquely determined by application of the same 

sequence of selection criteria as for B(m,n).  Consequently the 

diagram which corresponds to A is again obtained by taking B = (0} 

and C as in (5.7).  If Am  0 the sign ambiguity corresponds to 

the decomposition of the graded tensor [A] into a sum of two 

conjugate representations of D(m,n) with distinct Kac-Dynkin labels: 

a =1.1  ,a =u -p  =u  , 
1  1  2  2  -2  3  n-1  n-1  n 

a =p+A,a 
n n 1 n+1 1 2 n+2 2 3 " 

a
n+m- 

= A
m-1 

-

m ' 

a
n+m 

= Am _ l + Am ; 

a
n+m-1 

=X 	+AA
m ' an+m  Am-1  A

m , b .  5.10 

This decomposition is the super-analogue of the D(m) tensor reduction 

described above and is related to the outer-automorphism of D(m,n) 

generated by a;f14171 4—*c  for the simple roots.  It is clear 

from table 5.4 that this corresponds to the usual automorphism of 

D(m) on each irreducible representation of 0(2m) x Sp(2n). 

Using (5.10), the conditions for atypicality [4] are 

presented in diagram notation in table 5.1.  Note that the 

conditions are independent of the sign choice for A m  0.  The proof 

that the choice (5.7) for C uniquely determines A is given in 

Appendix F. 
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5.2.c  C(n) 

Consider the supertableau 

K1 

v
n-2 

V
2 

V
1 

5.11 

where<l isthenumberofboxesinthefirstrowand.is the v .y0  

number of boxes in the j
th 

column, with j < n-1.  In the decomposition 

(5.3) a general diagram will take the following form after 

modification, 

[A ] = 

    

    

  K 

   

   

    

    

5.12 

The relationships, for (5.12), between the 0(2) x Sp(2n-2) Dynkin 

labels and the diagram labels are given by [3]: 

b' = K i
1  

a = vs - v'  a' = v .  - v' 
' 3  2  3 ' "' ' 

a'  = v'  - v'  , a'  v' 
n-1  n-2  n-1  n  n-1 

5.13 

where b' is the 0(2) label and a ,  , aril  are the Sp(2n-2) labels. 

Since the branching rule for 0(2)  (1(1)  S0(2) is 



101. 

[W]  {b'} + {6'} [5], then an 0(2) tensor [A] with Dynkin label 

b' will decompose into a direct sum [A] + [A]_ with Dynkin labels 

= +b' and b' -  = -b' respectively. 

To determine which diagram in (5.3) corresponds to A, the 

action of the odd, negative generators on A is again considered. 

These results are presented in table 5.5.  Examination of these 

reveals that the 0(2) x Sp(2n-2) highest weight state of maximum b' 

must be A.  The diagram (5.12) which corresponds to A must, 

therefore, have Ki = K i  .  This state is unique and is obtained by 

taking E = { K i } and 6 = {0}.  For this situation (5.12) becomes 

[KO < v i , v2  , 	, v 	>. 	To show that this is indeed the 

only diagram in (5.3) containing [K 1 ] we need only show that if E 

contains more than one row, then [C/D] contains only diagrams [Ki] 

with Ki < K l .  This is achieved by consideration of the chain 

0(2) tr U(2) 4,  0(2) which diagrammatically can be expressed as 

[/D) tr {} 	[E/D] [5]. 	In U(2) we need consider only {}. 

If it has more than two rows it will be zero and if it has two rows, 

i.e. if {0 = { 1 , c2 }, then it will have the same 0(2) content as 

{E l  - E2 }.  Thus when we consider the branching {} 4 ,  [/D] there 

will be no diagram consisting of just [KO if E 2  x 0. 

If K
1 
 > n-1 the graded tensor [A] decomposes in a sum of two 

conjugate representations of C(n) with distinct Kac-Dynkin labels: 

- 
b = +Kl 	 b 

- 

= 2n - K - 2 ,  
1 

+ v
1 ' 

a
l 
 = 2n - K -  + v

1 ' 

a2 = v1 - v2 , a3 = v2 - v3 ,  , an_1 = v
n-2 

 - v
n-1 ' an = vn-1 • 

5.14 



Using these we present the atypicality conditions in table 5.1. 

Note that the conditions are independent of which of these two 

conjugate representations they are written for. 
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TABLE 5.2  Weight components for some odd negative generators of 

B(m,n) and D(m,n). 

Qn-  n-1-  Qn-2- 
(3
3- 	a2- 	13

1- 
'n  'n  'n  n  n  n  n 

h 1  
0 +1 -1 

h
2 

+1 -1 0 

h
3 

-1 0 

hn-4 
+1 

h
n-3 

+1 -1 

h
n-2 

+1 -1 0 

h
n-1 

+1 -1 0 0 

h
n 

0 +1 +1 +1 +1 +1 +1 

(ha ) (-2) (0) (0) (0) (0) (0) (0) 

h
n+1 

+1 +1 +1 +1 +1 +1 +1 

hn+2 

hn+m 

-1 0 0 0 0 0 0 

The terms in brackets indicate the appropriate values for 

consideration of B(0,n). 



TABLE 5.3 	Weight components for even negative 'supplementary' 

generators of B(m,n). 

h
1  

h2 

h
n-1 

e  e
_ 
2 e 3 e

m-1  
em em  m-1 6- m-2 e 2 6-  1 

hn -1 	-1 -1 -1 -1 	-1 -1 -1 -1 -1 -2 

hn+1 -2 	-1 -1 -1 -1 	-1 -1 -1 -1 -1 0 -2 

h 2  n+ +1 	-1 0 0 0 	0 0 0 0 +1 -1 0 

hn+3 +1 -1 0 -1 0 

hn+4 +1 -1 0 

hn+5 
+1 

hn+m-3 
+1 

hn+m-2 +1 -1 

hn+m-1 -1 	0 +1 -1 0 

hn+m +2 	0 -2 0 0 

k 00 0 0 0 	0 0 0 0 0 0 0 

where e; = 	[...[[cjwo 	,a-r1+2 1, ce-111.3 ], 

= ar-14.m_ 1 ], 

and 1 	< 	i 	< m. 
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TABLE 5.4 	Weight components for even negative 'supplementary' 

generators for D(m,n). 

f-  1 f-  2 f-  3 f 4 f m-2 fm-1 
_ 
ff m m-1 f m-2 f 3 f- 2 

h2 

hn-1 
h
n 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 

hn+1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -2 

hn+2 +1 -1 0 0 0 0 0 0 0 +1 -1 0 

hn+3 +1 -1 0 -1 0 

hn+4 +1 -1 0 

hn+5 +1 

n+m- 3 0 0 0 0 +1 

hn+m-2 -1 0 0 +1 -1 

hn+m-1 +1 -1 +1 -1 0 

hn+m +1 +1 -1 -1 0 

0 	0 	0 0 	0 0 00 0 000 

where 
= 	[...[Ea;+1  ' cx171+2  ' a-  3  

	

n+3 	' ar-141 3  

= EfM-2' al-i+m3  

= E "' UfM' a-n+m-1 3 ' %+m-2' 	al-1+0 

and 	1 <i <m-i. 
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TABLE 5.5 	Weight components for all negative generators of C(n). 

n n-1 n-2 3 2 

h 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -2 

h2 +1 -1 0 0 0 0 0 0 +1 -1 

h 3 0 +1 -1 0 0 0 0 0 -1 0 

h 4  0+1 -1 0 0 0 0 0 0 

h 5  0+1 0 0 0 0 0 

hn-3 0 +1 

hn-2 0 0 +1 -1 

hn-1 -1 +1 -1 0 

hn +1 -1 0 0 

-1 -1 -1 1 -1 -1 -1 -1 -1 -1 

The above tables show the weight components a(h i ) and a(k) where 

a are the roots associated with the indicated root vectors. 
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5.3  BRANCHING RULES 

5.3.a SPINOR REPRESENTATIONS 

In this section branching rules are obtained which decompose 

finite-dimensional, irreducible, spinor representations of OSp(M/N) 

in terms of irreducible representations of OM x Sp(N).  The 

spinor representations of OSp(M/N) are characterised by a n+m  being 

an odd positive integer for OSp(2m+1/2n) m > 0, and by a n+m_ i  being 

an odd positive integer with % ill  an even positive integer (or 

vice-versa) for OSp(2m/2n) m > O.  They can be represented in terms 

of Young supertableau by defining a standard, spinor supertableau, 

[A; X], where (X) refers to the partition defined in (5.4) and 

[A; X] is the partition of (5.4) with an additional m 'spinorial' 

boxes in the (n+l)th column.  This spinor supertableau is labelled 

analogously with (5.4) by p i  as in (5.4) and by 

Xi 
s 

 
X1 
 

1  ls  
X + 1  where the X. are the labels of (5.4). 

2 , 
 

' m  m  2 

The relations between the Kac-Dynkin labels (a i ,b) and the spinor 

supertableau labels are taken to be (5.8) and (5.10) for 

OSp(2m+1/2n) and OSp(2m/2n) respectively with X i  replaced by 

1 
X. = X + 

2
- . 	Two notable features are, there are no spinor 

representations for b = p n  < m and there are no atypical spinor 

representations. 

In the following y 
- -2m/2n 

[K], x2m [K] and x2n  <K> refer 

respectively to the OSp(2m/2n), 0(2m) and Sp(2n) characters of a 

partition (K).  Similar notation is used for OSp(2m+1/2n) and 

0(2m+1).  If (X) is taken as defined in (5.4) then (Xs ) and (.i) 

are partitions of the form 
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  A
l  

  A2 
  A.  6) - .1 

  X
m-1 

Am 

5.15 

Osp(2m/2n) m > 0: 

The branching rules expressed here for spinor representations 

of OSp(2m/2n) are based on two results obtained by King [12]. 

Firstly, a consequence of Kac's character formulae [4] is that 

x2m/2n [6; A]  = x4mn [6]  • x2m [A; 5'1  • X2n <13> 
 

5.16 

Secondly, 

x4mn [6]  = X2m/2n n
m/A] .  5.17 

Consequently, 

 

x2m/2n [A;  = X2m/2n [rim/A]  • x2m [A;  x2n <1-̂1> 

 
5.18 

The following sequence of Schur function operations can now be 

performed. 

[A; A]2m/2n = [nm' 2m/2n  A32m 4>2n 

 

=  [nm/A]2m  <Z/B> n  
2 [6' .' 5'' ]2m 4>2n 

	

= 	/ 	[A. (nm/GCT)(/T)]2m  <(C/Bn)(1-1/n) >2n 
' 

	
- 	 A 	

5.19 
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OSp(2m+1/2n) m > 0: 

For this case King [12] has obtained the following result 

	

X2m+1/2n [A; x ]  = X2m/2n [rim/A]  • X2m+1 [A' 5" ] 	X2n+1[13] 5.20 

This can be expressed in a more edifying form through the following 

sequence of Schur function operations: 

[A; X]2m+1/2n = [nm/A] 2m/2n [A;  5■ ] 2m41 2n+1 

	

= 	[nm/AC] 2m  <Z/B>2n  [A; jt12m4_, [13/M] 2n  

	

= 	[nm/1LE] 2m+1  </B>2n  [A;5■1 2 ,114.1  4/MBC> 

	

= 	[nm/EE] 2m4.1  <E/B>2n  [A; 5■]- 1,111. - 2 1 4/Q>2n 

CA; I  4/Q> 5t = [nm/E] 2m+1/2n 	2m+1 	2n 

This gives the result 

X2m+1/2n [A ; x] 
 = X2m+1/2n [rim/E3  • X2m+1 [A;  5t']  X2n <13/Q> 	5 ' 23  

From (5.21) the following expressions can now be obtained 

	

EA; A '2m+1/2n = 	Erim/E] 2m+1 [A; *] 2m+1 <Z/8>2n 4/ Q >2n 

 

=  7  [A; (nm/cT)(/T)] 2„.1  <(Z/Bn)(f3/Qn)>2 n  5.24 
E'T,n 

The branching rules (5.19) and (5.24) are valid for all 

spinor representations of OSp(2m/2n) and OSp(2m+1/2n), respectively. 

Unfortunately these expressions are very complex involving negative 

terms through the Schur function series G and C. 	It would be hoped 

that future work could provide more compact forms for these branching 

rules. 

5.21 

5.22 
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5.3.b ATYPICAL REPRESENTATIONS 

From an explicit knowledge of the atypical representations 

for OSp(2/2), OSp(3.2) and OSp(4/2) as derived in chapters 3 and 4 

it has been possible to determine branching rules for these cases 

which decompose irreducible, atypical representations of 

OSp(M/2) M = 2,3,4 in terms of irreducible representations of 

x Sp(2).  These results as disclosed in (5.25), (5.26) and 

(5.27) highlight the phenomenon that the indecomposable, atypical 

representations contain an irreducible, atypical representation as 

a factor and an irreducible, atypical representation of the same 

atypicality type, but of lower dimension, in an invariant subpsace. 

This is just the phenomenon which is apparent in tables 3.1, 3.2 

and 3.3 and has been exploited by Morel, Sciarrino and Sorba [13] 

in their branching rules for atypical diagrams and has been noted 

by Delduc and Gourdin [16] in their work on indecomposable 

representations of SU(n/l) as discussed in §5.1.  Thierry-Mieg [17] 

has in fact proved this result quite generally for the basic classical 

Lie algebras and used it to aid in compiling tables of irreducible 

representations for a number of these algebras.  The irreducible 

representations obtained in this thesis for OSp(2/2), OSp(3/2) and 

OSp(4/2) agree with Thierry-Mieg's work. 

OSp(2/2):  

Standard Young supertableaux for tensor representations of 

OSp(2/2) are characterised by 

A
1 
= (number of boxes in the first row -1) and 

p i  = (number of boxes in the first column).  From table 5.1, atypical 

representations are characterised by A i  = m i . 	If the supertableau 



(I ) 

v- 1 

corresponding to the irreducible  character of the atypical 

representation with A l  = v and p i  = v is denoted by the supertableau 

with the subscript (I) then for v >1 (if v = 1 the final term on 

the R.H.S. of (5.25) disappears) 

(I) 

5.25 

Using (5.2) or (5.3) the right hand side of (5.25) may be decomposed 

into irreducible representations of 0(2) x Sp(2) to give the complete 

branching. 

OSp(3/2):  

As described in §5.2.a supertableaux are labelled by A l  and 

p i  (see 5.4) and from table 5.1 atypical representations are 

characterised by u1 = x 1 +1.  Again denoting the supertableau 

corresponding to the irreducible character of the atypical 

representation with A l  = v and 1.1, = v+1 by the supertableau with 

the subscript (I) then for v > 1 (for v = 1 (5.26) has no singlet on 

the R.H.S.) 

           

          

-1 
(_1)V1 

          

          

  

( I) 

     

(I) 

 

           

           

v+1  v+1 

     

5.26 



2 

(I) 

5.27 
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The right hand side of (5.26) can now be decomposed into irreducible 

representations of 0(3) x Sp(2) through the use of (5.2) or (5.3) 

to obtain the complete branching. 

OSp(4/2): 

As described in 55.2.b supertableaux are labelled by A 1 , X2  

and 1.1 1  (see 5.4).  The atypical representations of interest here 

are characterised by (see table 5.1) (1) p l  = A 1 +2 and (2) p 1  = X2+1. 

Again the irreducible supertableau of an atypical representation is 

denoted by the subscript (I).  Consider the following expression 

	I A 1 
A l  2 

+ (-1) v-1  

This expression is valid when interpreted in the following way. 

(1) 	1-11 = A l  2  : 

(a) If A l  > X2  then set p 1  = v+2, A l  = v , A2  = K 

= v+1, Ai= v-1, )t = K. 

(b) If A l  = X2  then set p1  = v+2, A l  = v, A2  = K = V 

pi= v, A = v-1, )■ = v-1. 

(2) p l  = X2  + 1 : 

Let p l  = v+1, X2  = v, A l  = IC, pi = v, )t = v-1, Ai = K. 

For each of these cases the final term on the R.H.S. of (5.27) is 

(I ) 

to be dropped for v = 1.  Using (5.2) or (5.3) the R.H.S. of (5.27) can 

now be decomposed into irreducible representations of 0(4) x Sp(2). 
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5.4  MODIFICATION RULES FOR YOUNG SUPERTABLEAUX 

In this section consideration will be given to the treatment 

of non-standard supertableaux.  In particular the modification rules 

will be presented through which non-standard supertableaux may be 

expressed in terms of standard supertableaux.  In this section we 

maintain the same relations between the Kac-Dynkin labels and the 

diagram labels as given in §5.2 and call those diagrams typical 

which do not satisfy either of the conditions of table 5.1 and 

those diagrams atypical which satisfy either of these conditions. 

Typical and atypical diagrams modify in significantly different ways. 

In §5.4.a general modification rules are presented for all typical, 

tensor supertableaux of OSp(NVN).  In §5.4.b the modification rules 

for atypical supertableaux are discussed and explicit results given 

for OSp(2/2), OSp(3/2) and OSp(4/2).  The results presented here 

have been obtained by explicitly decomposing numerous supertableaux 

using (5.2) or (5.3), with the aid of the group theory computer package 

SCHUR.  General proofs for these results remain the work of future 

investigations, but for the typical case a proof would presumably 

follow directly from the results expressed in (5.35) and (5.36). 

As described earlier, standard tableaux for OSp(M/N) lie 

within the envelope shown in (5.4) and (5.11).  Non-standard 

tableaux will include boxes outside this envelope. These 'extra' 

boxes we label by row lengths, rj , or column lengths, c i  as shown 

below. 
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r 1 
r2 
r. 

5.4.a TYPICAL SUPERTABLEAUX 

OSp(2m+1/2n):  

(1) If r
1 

.> c
1 the modification rule is 

[A]  [A]m = ( -1 ) r-1  [X-h] , h = 2r 1 -1 
 

5.29 

where h is the hook boundary length to be removed from [X] starting 

from the end box in r
1 
and working to the left and down with r being 

the row in which the removal ends. 

(2) If c l  > r 1  the modification rule is 

[X]  [X]m  = (-1) c-1  [X-h] ,  h = 2c 1 -1 
 

5.30 

where h is again the hook boundary length to be removed from [X] 

starting from the end box in c l  and working to the right and up with 

c being the column in which the removal ends. 

If any modification results in an irregular diagram this diagram is 

set to zero. 
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OSp(2m/2n): 

(1) If r
1 

> c 1 the modification rule is 

[A]  [AIM = (-1) r  [A-h] ,  h = 2r 1 -2 
 

5.31 

and proceed as for OSp(2m+1/2n) case (1). 

(2) If c
1 

.> r
1 
the modification rule is 

[A ] 	CA ] m  = (7 ) c-1  [A-11]  ,  h = 2c 1  5.32 

and proceed as for OSp(2m+1/2n) case (2). 

These results have a natural interpretation in terms of the 

character formulae of King [12].  For a typical, tensor representation 

with corresponding standard Young supertableau [A], as defined by 

(5.4), he has noted that for 

OSp(2m+1/2n) : Y 
-2m+1/2n [A]  = X2m+112n [nm/E]  • X2m+1 [5'' ]  • X2n+1 [C3]  

5.33 

and for OSp(2m/2n)  
X2m/2n [X]  = X2m/2n[nm1A]  X2[A] • X2n <111>  

5.34 

where (5) and (I]) are defined in (5.15). 

If [V], as defined in (5.28), is a non-standard, typical 

supertableau then the modification rules (5.29)-(5.32) tell us, in 

the light of (5.33) and (5.34), that 

[X.]2m+1/2n = [nm/E]2m+1/2n [1]2m+1 [11‘11] 2n+1 

and 

[A1]2m/2n = [nm/A]2m/2n [5s' 112m 4.>2n 

5.35 

5.36 



where, if r > 
1  c1 

= (x l , x2 , ..., x 	x ) m- 1' m 

) = 11 1 -111, 112 -111,  "" n
-m, c 1 , c

2
,  c.) 

and if c
1 —

> r
1 

: 

= (Xl, X2 ,  Am , r 1 ,  r.) 

(P') = (1.11 -111 , 112 -M, 	Pn -10- 

Thus the modification of a supertableau is essentially a modification 

of (') in 0(2m+1) or 0(2m) or of (jI')  in 0(2n+1) or Sp(2n). 

5.4.b  ATYPICAL SUPERTABLEAUX 

For a supertableaux to be atypical one or more of the conditions 

of table 5.1 must be fulfilled.  An analysis of these conditions 

reveals that for regular, non-standard supertableaux, none of the 

conditions (i) of this table can be fulfilled.  However, for regular, 

non-standard supertableaux in OSp(M/N) the maximum number of the 

conditions (ii), of table 5.1, which may be simultaneously realized 

is the lesser of (N/2) and [M/2].  In the cases examined below it 

is possible to realize only one atypicality condition for a given 

regular, non-standard supertableaux. 

In the notation of (5.4) non-standard, atypical diagrams for 

OSp(2/2) are characterised by A i  =  = v.  Non-standard, atypical 

diagrams for OSp(3.2) are characterised by A l  = 11 1 - 1 = v. 

Non-standard, atypical diagrams for OSp(4/2) are characterised by 

either (i) A 1  = 1.1 1 -2 = v or (ii) A2  = p 1 -1 = v. 	In the above v is 

116. 
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any positive integer.  For each of these cases the appropriate 

modification rule is 

[x] = [A ] m  4-  (-1 ) v  [x]A  + (-l ) 	 5.37 

where [X] is diagram obtained from [X] by application of the rules 

given in §5.4.a and [XJ A  and [X] B  are obtained as follows.  If [X] 

is an atypical diagram by virtue of it satisfying one of the conditions 

(ii) of table 5.1 which relates say p i  and Xj  then [X]A  is obtained 

from [X] by removal of a boundary which starts from the final box of 

row j and ends in the final box of column i.  [X]
B 

is obtained by 

removal of a similar boundary from [X] m  remembering to carry any sign 

factors [X] m  possesses onto [X] B .  The branching rules developed in 

§5.3 can now be used to yield irreducible representations for any of 

these algebras.  As a demonstration of the working of (5.37) an 

example is given, for OSp(4/2), in table 5.6. 
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TABLE 5.6  Modification in OSp(4/2) of the supertableau 

[A] E [A 1 =3, A2=3, p i =4, r 1 =2] and its decomposition into 

irreducible representations of 0(4) x Sp(2).  This 

tableau satisfies the atypicality condition 1.1 1  = A2+1 and 

v = 3. 

Modification : (-1) 2 x-I  !III  
■■•■• 

[A] 
 

[Xi m 	DJA 

o(4) x Sp(2) decomposition: 

	

[X] 	- [44] <2> - [43] <3> - [43] <1> - [42] <2> 

- [42] <0> - [33] <4> - [33] <2> - [33] <0> 

- [41] <1> - [32] <3> - [32] <1> - [32] <1> 

- [4] <0> - [31] <2> - [31] <0> - [22] <2> 

- [22] <0> - [3] <1> - [21] <1> - [2] <0> 

- [44] <2> - [43] <3> - [43] <1> - [42] <2> 

- [33] <4> - [33] <2> - [33] <0> - [32] <3> 

- [32] <1> + [4] <0> - [22] <2> + [3] <1> + [2] <0> 

[x]
A 

4. + [42] <0> + [41] <1> + [32] <1> + [4] <0> + [31] <2> 

+ [31] <0> + [22] <0> + [3] <1> + [21] <1> + [2] <0> 

	

[A] B 	- [4] <0> - [3] <1> - [2] <0> 
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5.5  DIMENSION FORMULAE 

The dimensions, in supertableaux notation, of all irreducible, 

typical representations for U(M/N) and OSp(M/N) have been given by 

King [2,12].  For completeness these results for OSp(M/N) are 

reproduced here in the present notation.  If (X) is a standard, 

typical partition as given by (5.4) then for 

OSp(2m/2n) : D(2m ,2n)  [X] = 2
2mn 

 02m[A] • D2n <1A1> 
 

5.38 

•D(2m,2n) [A X] = 2 2mn  D2m [A; 5st]  
D 
2n 

 <Csi> 5 39 

 

-  • 

for OSp(2m+1/2n) :
22mn 

Aj 

 . 
D2n+1 D(2m+112n) 'A J 

5.40 

 

(2m+1/2n) 
[A; x ]  22mn  r 

u2m+1  

, 

LA;  "-I • u2n+1[11] 5.41 

where D (m/N) [ ], Dm[ ] and DN< > refer to the dimension of the relevant 

 

representation in OSp(M/N), OM and Sp(N) respectively and  and 

(ii) are defined in (5.15). 

The above is always sensible for <p> since, as pointed out by King [2] 

and can easily be derived from (i) of table 5.1, if p n  < m then [A] 

is atypical.  El Samra and King [19] have given compact dimension 

formulae for the classical Lie groups which for a partition, (.10, 

with row lengths K i  and column lengths K i  are for OM and Sp(N) 

respectively 

D [lc] = 	II  ( M+K.44c.-i-j)  H  
(i<j) 	1 	J 	(i>i) 	

1 	j 

D K  =  H  (N+K.+<.-i-j+2)  H  (N-K.-K.+i+j)/N(K) 
(i<j)  

1 3  
(i>i)  

1 3 

5.42 

5.43 
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where the products are taken over all pairs (i,j) specifying positions 

of boxes of the Young diagrams with i specifying the column number 

 

and j the row number.  The denominators, H(K), in (5.42 & 5.43) 

refer to Robinson's hook length formula [20] which is a product of 

hook lengths given by 

 

H(K) =  H  (K. + K.  j 	1) . 	5.44 

(i,i)  J  

For spinor representations of 0(M) the dimension is obtained from 

DM[; K] = 2
[M/2] 

DM-1 <K> . 	5.45 
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NEW SUPERFIELDS FOR N-EXTENDED SUPERSYMMETRY 
WITH CENTRAL CHARGES 

6.1  INTRODUCTION 

In this chapter new methods are developed for the study of 

N-extended supersymmetry in superspace.  Although the ultimate goals 

of the superfield programme, as applied to the study of super space- 

time algebras, are the construction of realistic interacting models with 

a view to their quantum behaviour, the work here remains at the 

linearized level.  Specifically, new representations are introduced 

which generalize, to the case of N-extended supersymmetry with 

unrestricted central charges, the notion of chiral superfields; 

a step which general arguments from the usual superfield framework 

would indicate as problematical.  To the extent that a pluralistic 

attack is needed on unresolved questions of maximally extended N=4 

super Yang-Mills and N=8 supergravity models [1,2], the present 

work and extensions of it may find application alongside other 

approaches.  Thus, although rapid progress has been made recently 

in component formalisms at the classical level [e.g. 3], comprehensive 

results with the quantized models will require full local and covariant 

techniques.  The complexities of the latter have engendered such 

modifications as N-supersymmetry in an N= 1-'component superfield' 

basis [4,5,6,7,8] and light-cone formalisms [9,10,11,12] which 

necessitate sacrifices such as auxiliary field content, manifest 

Lorentz invariance or locality.  There are indications based on 

counting arguments that beyond N= 2 the full N-superspace is intrinsically 

inadequate to represent physical multiplets [13,14] unless particular 

'spin-reducing' representations are used [4,5,15,16].  These emerge 

naturally in the present work. 
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The conventional method of nonlinear realisations on coset 

spaces, as applied to N-extended supersymmetry, considers functions 

(superfields), (1), on the coset spaces ((Z x 0(3,1) x G) A T41414)/0(3,1) x G, 

where 0(3,1) is the Lorentz group, G is an internal symmetry group 

(a subgroup of Sp(2N)), T 4/4N  is the nilpotent algebra of translations 

and Z denotes the abelian central charges [17,18,19].  As discussed 

in Chapter 4, induced representations of the algebra are afforded 

(A}  by these superfields, (1) (p,(1) (x ,e-ai  ,e ai  ,...), which are functions of 

1  1 
spinor parameters (5 ai ,e ai ) transforming as (2-,0) x {1} +  x {1} 

under 0(3,1) x G, plus the usual Minkowski space coordinates, )JI , 

and some additional bosonic central charge coordinates.  The superfields 

take their values in a representation space of the little group, 

0(3,1) x G, labelled by (p,q) x {A}. 	The representations of the 

N-extended superalgebra, realised by these superfields, are highly 

reducible and it is a nontrivial exercise to extract the irreducible 

content of a given superfield. 

These superfields and the physical multiplets contained within 

them have been analyzed extensively [20-29].  The superfield is a 

function of 4N Grassmann coordinates, and consequently when expanded 

in these coordinates, contains 2
4N 

component fields.  A satisfactory 

analysis of the representation content of these fields, requires the 

use of the maximal automorphism symmetry of the algebra, this being 

Sp(2N) in the absence of central charges or a subgroup of Sp(2N) if 

central charges are present.  The irreducible representations are 

obtained by realising that the superfields are in fact irreducible 

under an enlarged algebra containing covariant derivatives which 

anticommute with the supertranslations.  These can then be used to 

provide labelling operators, including Casimir invariants, from which 
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projectors can be constructed to provide differential constraints on 

the superfields.  These suitably constrained superfields provide 

irreducible representations of the original superalgebra 

A useful set of projectors corresponds to the 'chiral' case 

where a superfield is constrained to have vanishing covariant derivative 

and consequently can be solved in terms of a function only of 

x P  + 5G P e and say e ai , thereby having only 2 2N  components.  However, 

since central charges arise from the anticommutation of covariant 

derivatives, care must be exercised, lest on-shell conditions 

(e.g. P
2 

= 0 = 121
2
) be applied already as constraints [30,31]. 

The approach expounded here differs in two fundamental respects 

to the conventional procedure.  First, the central charges are 

realised as multiplicative, complex parameters rather than extra 

coordinates.  Second, the superfields are functions of Grassmann 

parameters of only a particular chirality but take their values in a 

graded representation space of a superalgebra.  Thus superfields 

are functions on the coset space ((2 x 0(3,1) x G) A T4/4N )1 

((Z x 0(3,1) x G) A T0/2N ), where Toin  is the superalgebra of 

supertranslations of a particular chirality.  These superfields are 

functions of only 2N Grassmann coordinates but possess 'external' 

representations of (2 x 0(3,1) x G) A To/2N .  As will be seen in the 

[1/2P] next section, these include 2 2  irreducible representations of 

the Lorentz group giving a total of 
22N+2[1/2N] 

component fields. 

It has been observed [4,5,15,16] that for P
2 

+ 121
2 
= 0 

where 121
2 

=  a constraint is imposed on the supertranslation 

generators effecting a drastic reduction in the number of component 

fields contained in an irreducible representation.  In fact, in the 

presence of the maximal number of central charges, all of which fulfil 

the above condition, the number of component fields reduces from 2
2N 

to 2
N

. 
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In the present treatment P
2 

+ IZI
2 
= 0 is an atypicality condition 

(see chapters 2, 3 and 4) under which otherwise irreducible superfields 

become indecomposable;on each factor space the constraint is 

implemented modulo coset elements. 

It is via these so-called 'spin-reducing' cases (which will 

become P
2 

= IZI
2 
= 0 on shell) that one hopes to avoid the 'component 

explosion', and give a full off shell formalism for N  3 supersymmetry 

(for results of a different implementation of this approach see [32]). 

As far as the present work is concerned we observe that bilinear 

invariants may always be written down (at least in component form) 

which in fact serve as definitions of the contragrediently-transforming 

superfield; presumably a corresponding projector formalism could be 

found [26,27,29,33].  However in practice such projections are 

implemented via gauge freedoms and other constraints, so there is little 

to be gained in the absence of these and without interactions. In this 

connection the possibility of a geometrical framework for the present 

superfield realizations also raises interesting questions. 

6.2  CONSTRUCTION OF INDUCED REPRESENTATIONS 

The SO(N)-extended super-Poincare algebra, 5 consists of the 
generators (P li ,J pv ) of the Poincare algebra, spinorial generators 

1  1 (QQai ) , 7  N(N-1) SO(N) generators T ij  = -I  at most -z  N(N-1) 

complex central charges Z
ij 

= -Z
ij 

where i,j = 1,...,N. These generators 

satisfy the following superalgebra 

[J ,P J = i(n P - n P) 
Pv P  )pp  pp v 

[J I1V , ] = i(nJ  -nJ  -nJ) cy  
PP PO  OP VO  pa up  va pp 

{Qai ,Qu } = -2dij(0P)aep 



tQ cti ,Q i3j } = 2c Z.

{Qai ,Q i } = 2e&;Z ij  

[J ov ,Qcd ] = -i(0 ) 	- pv a 	(31 

Dpv,Qai  11 , ] = i(),;, 116-0  

[Qui'Tjk ]  = (tjk ) i zQat 

z - [Qai ,Tjk] 	(tjk ) i  Q; 9,  

mn 
[T

ij
T
kz

] = C
ki

T
mn 

mn 
where (tjk ) i

z 
is an hermitian representation of T jk  and  are the 

structure constants of SO(N). All other (anti-)commutators are zero. 

The technique of constructing induced representations of cis 

analogous to the procedure used in chapter 4 to which the reader is 

referred for a more formal discussion of the inducing construction. 

This technique was first applied to supersymmetry by Sal am and Strathdee 

[34].  In the present work superspace is taken as the coset space, 

G/H, where G is the SO(N)-extended super-Poincare group whose 

corresponding superalgebra is g, and H is a subgroup of G with 

corresponding superalgebra 3-( = {J ,Q .,T.2,Z..}.  This coset space 
al 	1j 	lj 	

-2 
11 

can be parametrized as exp  + e Q-•) with coordinates  
u 

where x(ö) is a c-(a-) number parameter.  Representations of (5 are 

afforded by superfields 0
A
(x,) which are functions on G/H taking 

their values in a representation space V, of X . 

The group action on G/H is infinitesimally _ 
exp i (sS) • exp i  P + e l  Ojti  ) 

= exp i[(x 11  + se(x,5))P li  + (ed  + sg &i (x,5))&60 

 

• exp i E(sk(x,5)K)  6.2 
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where S E 	and K E )-(. 	The precise form of e(x,5), g&i (x,5) 

and k(x,5) can be obtained via the BCH formula.  From (6.2) the 

differential representation of the generators will be 

S 	-ie(x,q)D/mu - ig 6i (x,5)a/N75i - E k(x,6)K°  6.3 

where K°  is the matrix of the infinitesimal generator K in the 

representation carried by V.  The action on superfields is given 

simply by 

640
A
(X 1-1 ' 	= S(1)

A
(x11

'
171 6i ) 
 

6.4 

Obtaining irreducible representations of cin the above manner 

presumes the irreducible representations of YE are known.  Since X 

is also a superalgebra an analogous procedure to the above is 

followed.  Firstly, it is noted that with respect to the positive, 

negative and zero roots of SO(N) the generators T ij  and Qai  may be 

written in bases T ij  = fT+' 
 ' 
T  T° } and Qai = { Q+ 

' 
Q - 

a  a  n  an an' a 

respectively, where n =  N], a =  N][ -(N - l) and 

Q0a  only exists for N odd, for which [T -± ,T° ]c T± , [T+ ,T - ] c 

fe,Q - 1 = Z, [1- ± ,Q; -21  = Q and all other (anti-) commutators involving 

these generators are zero.  To implement the inducing construction on >(- 

a subgroup, H', of H is chosen with corresponding superalgebra 

W =  It is possible to decompose 
pv a' n' an' a ij 

+ +  
)1L' as = }C

0  +
f 

 
x-'  where )+'

+ 
= (1-

a'
Q
an'

Q0
a
} is an ideal.  Representations 

' 

of Nt' o  are then extended to X by taking them to be zero on X . + . 

sB(yaan 
Representations of )(are afforded by superfields  

o 
 

which are functions on the coset space H/H' and taking their values in 

a representation space of )4'.  This coset space is parametrized as 

In the manner described 
a  an 

above, the generators of  can be realized as differential operators 

exp i(yaT - 
(ya oan ).  

+ eanQ -  ) with coordinates 
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on the coset space and the action on the superfields examined to 

determine the finite-dimensional, irreducible representations of )(- 

by the method expounded in chapter 4. 
1 

Since an expansion of 
TB(ya o  an 

) in ea  yields 
22[—N] 
 2 

component fields and an expansion of (Dpi (x 11 ,5 &i ) in TP yields 2 2N  

component fields, each of which carries a representation of A-

there are a total of 
4N+[-N] 
 2  component fields.  There may however 

be fewer than this if the representation of x carried by T B  is 

reducible. 

The problem of determining irreducible representations of 

must now now be addressed.  In the conventional procedure, discussed 

in §6.1, the algebra  is extended to include covariant derivatives 

which, together with the generators of g-, provide a basis in 
superspace for the enveloping algebra and under which the superfields 

are still invariant.  Since the superfields provide a representation 

space for the extended algebra they are expected to be reducible 

under sr_ 	A similar situation exists in the present case. 

The differential form of the spinorial generators is 

=  + i 5 1.3j c•,tz9 
ao ij 

0 
Q • =p p  

  
- Q . 

aa  al 

0 
where Z.. and Q° . are matrix representations of the corresponding 

co 

generator.  Remembering that Z  totally antisymmetric, (6.5)' 

and (6.6) tell us that a basis for the enveloping algebra in 

superspace is provided by extending the superalgebra to include a 

new set of generators,  = a/aVli .  It is noted however that the 

complete set of differential operators, a/a0 i , is not required for 

this basis if N is odd.  This becomes apparent if one regards the 

6.5 

6.6 



second term on the right of (6.5) as a set of N linear equations in 

the variables 5j with coefficients Z
o
ij. 
 Since Z

oi
j 

is a totally 

antisymmetric N x N matrix it will have zero determinant, for odd N, 

and consequently the equations will be linearly dependent.  Thus, 

for N odd, at least one of the generators, Tai , can be regarded as 

being constructed from linear combinations of the other generators. 

This extended algebra is denoted by g . 	The generators 

are, however, significantly different to the covariant derivatives 
ae 

of the conventional procedure in that they do not anticommute with 

Q.. and Qai  and thus cannot be used to generate irreducible 
al 

representations of ';'r from irreducible representations of g- . 
Rather than adopting the treatment based upon the construction of 

Casimir invariants and associated projection operators [20,21,22,23, 

26,27,29] the procedure here is based upon recognition of highest 

(and lowest) weight components, and explicit construction of the 

invariant subspaces therefrom.  First, it is noted that S ai  and Qai  

 
may be cast in bases S ai  = fSan ,Sim ,Sa } and Q  = fQ(701 ,Q; n ,%, with 

similar properties to Q 1--  and Q°.  From the discussion of the previous 
an 	a 

-
0 as paragraph we note that it is possible to regard  a linear 
a 

combination of the other generators of  and thus it is not an 

independent generator.  Consequently in the following work it will 

not be counted in the explicit construction of states. 

Irreducible representations of  (and hence superfields) are 

obtained by an inducing construction from irreducible representations 

ofS .  The irreducible representations of S may also be obtained 

from an inducing construction by choosing a subalgebra NE , of S where 

YE = (S. 
an ,an

Q. ,  
n  

Q ,Q , T ,T ,Z..,J } and states, A, which are 
a  a 	a n ij pv 

irreducible representations of the little algebra NE 0  = (1,Juv,Zij} 

130. 
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-+  -+ 
andwilichsatisfYS.A= Q n  . A 

 = QA = QuA = TaA = 0.  This last 
an  a 

+ 
requirement is justified from the fact that A- 	= fSan ,Qan ,Qan ,Qa ,Ta l 

is an ideal of x- . 	A basis for an irreducible representation of cr 

of states which are representations of A- , is obtained by acting with 

- 
monomials of Q. 

n' 
 Q.0 and Q -  on A.  A similar basis, for irreducible 

	

a a  an 

representations of  , is obtained by acting with monomials of 

-  - 
Q

'  
.  Q.

0 
' 

Q  and S. on A.  Thus, a superfield will possess 2
2[1/2N] 

an a an  an 

irreducible multiplets of  each of which contains 2 2N  irreducible 

multiplets of A 0 , giving a total of 4N 4 [ 11 component fields as 

required by the superfield analysis.  Unlike the conventional case, 

where the irreducible multiplets of cy  are invariant under the 
covariant derivatives, the S &a  will mix these representations. 

The 'spin-reducing' cases can be obtained by introducing 

further field redefinitions for which the constraint, P
2 

+ 1Z1
2 

= 0, 

is an atypicality condition under which otherwise irreducible multiplets 

become indecomposable.  This programme is carried out in detail in 

§6.3 for S0(2)-extended supersymmetry. 

6.3  N=2 EXTENDED SUPERSYMMETRY WITH CENTRAL CHARGE 

6.3a  Algebra 

The S0(2) graded extension of the Poincare algebra,. , is 

obtained by taking, in addition to the generators of the Poincare 

algebra, P and J , the generator for S0(2) transformations, T, and 
pv 

the Majorana spinor charges 

In its most general form the algebra may also include a central charge, Z. 

In the Weyl representation these generators satisfy the following 

graded Lie algebra 

Q  &&a , where 1  a,  2 and a = +,- . 



[J ,P ] = i(n P - n P ) 
Pv P 	UP P 	PP v 

[J  ,J ] = i(n-J  -nJ  +nJ  -nJ) 
wv pa  up 110  pp va  pa up  VG pp 

fQat ,Q64 1 = -4(a P ) .P 
aa p 

{Qaa'Bb = 4i C af3 cab':  

( Q&a 4 (2.0 = 4i  EJLa cabz 

[ti
pv

9Qad  pv / = -i(a) a 
 fl  

(3a 

= i(;* pv ad  pv a Bd. 

[1. 9% + ]  = ±Qa, 

[T,6&+ ]  = ± 17,  6.7 

where e-+  = -e+- = +1 and all other anti-) commutators are zero. 

The metric is taken as n  =  

Following the procedure discussed in §6.2 the subalgebra, 

is taken to be A = {J pv ,T,Z,Qaa } with little group X. 0  =  . 

The cosets SO( are labelled by the elements exp i(x uP + 5"6. ) 

 

u  aa 

and the superfields are defined as functions, (D A (xP ,gaa ), taking their 

values in a representation space of N: o . 

Since X still defines a superalgebra the first task is to 

determine the irreducible representations of A. . To do this the 

above procedure is repeated with the subalgebra yE . of X taken as 

)(' = {J pv ,T,Z,Qa+ 1 and little group X-6 = {J pv ,T,Z}.  The cosets 

ME/ }E' are labelled by the elements exp i(e a-Qa_) and the superfields 

are defined as functions 440 a- ) taking their values in a representation 

space of N . 	In §6.3b the irreducible representations of A are 

determined and subsequently used to deduce the irreducible representations 

of 1r  in §6.3c. 

132. 
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6.3b  Irreducible Representations of A 

The generators of  can be realized as differential operators 

in the coset space A7/ NL' and as matrix representatives in the 

representation space of A:6.  Explicitly they take the form: 

Q 	= - iaa- a- 

Qa+ 
= 40 6- 6 0aZ°  

= -e
a-

a  -T
0  

a- 

Z 	= -Z 

J 	= ie - (E 3 E a ) — J°
ab

* a0 	la 6- 	Yr3  

0
j 
 * 

,.1.•=-J  • aa 	ta 
6.8 

_ 
where a 	= a/ae a  and TC) ,Z° ,J °af3 and J°&  • are matrix representations a- 	 a 
of the 'little superalgebra'.  T°  and Z°  may be represented simply 

as charges T°  = -T and Z °  = -Z while J 0 . and J°af3 may be represented a0 

in terms of spin p x  and spin q x 7  projectors, nit  and rui; , 

respectively (see Appendix D) as 

 

ga = 2p011-0 (1 6 - 2(P+1)01 - 0 6t ; 	 6.9 

 

gaa = 2q(n
+

c)
(113 

- 2(q+1)(1(6) a0 
	 6.10 

where the spin p and q indices have been suppressed. 

* j  has been expressed in bispinor form in the following way pv 

j 	= 24(7, 60,x 	3fi3 _ 	&a; 1.36) j  
pv 8 p 	v 	v 	p 	coi6 

_ 	&a— 	&a- Aa 
_80  a v 	- av  ap  )(cal3j &  + E ao ad 

where J  = -  J • 1 	y 
and  J.- = - — J . • 

2 aY6 	 a6 	2 ya 0 
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Expanding the superfield y(0) in o 

 

a- +,  1 2 
=V+ 0 (E a  + ED +-zOW  6.11 

where all components possess spin p under Jwnd charge: Z 

under Z. V and W possess spin q under Jand charges T and T-2 

 

-  1  1 
respectively under T,while E

+ 
and E possess spin q + 2- and q - -2- 

a  a 

respectively under J et  and charge T-1 under T. 

All component fields are eigenfunctions of the even generators 

and have the following variations under the odd generators 

 

.  +  .  -  +  .  + 
Q  :  v = - 1 E - 1 E  6 E-  = 101 E) W 
a-  a-  a  a  a- 13  13a. 

s
a -

W = 0 

Q  6 a4.1/ = 0  6 E -  = 
a+ 13  13a 

d W : -4ZE
+ 
-4ZE -a+  a  a 

From this explicit component form of the variations it is clear 

that y(ea- ) is irreducible for non-zero central charge. Having found 

the irreducible representations of )t the principal task of determining 

the irreducible representations of 5- can now be broached. 

6.3c  Irreducible Representations of 51, 

 

The generators of  can be realized as differential operators in 

the coset space S. / Aand as matrix representatives in the representation 

space of >to .  Their explicit form is 

P = - ia 

= i(n xP a - n  ea ) + i 6 4Cci )7, 6 a• - J 0  
pv  vp  p  pp 	v 	pv p uta PV 

Q. =  a 	2-04 
a+  

car•3 

6.12 

6.13 



-aT p 
Qco.  = 48  (a ) a&  ap  - ea+  

Z=-Z 

-(1+ 
T = e 	a- - e 	• - T°  

a+  a- 

where 3- 
a = 3/35aa ,  = 3/3x 11  and J °  20 , T°  and Q°

aa 
are the 

a  Pv' 

matrix representations of the 'little superalgebra' which determines 

the external transformation rules of the superfield: Suitable 

forms for Z°  and T°  are 
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6.14 

6.15 

-Toa
c 0 

-(T-1 )TCc  
!ac 

The algebra satisfied by  requires matrices Q°
aa 

which satisfy 

Wo
aa' Q

o
} = 4i  E

ab 
2° . 

These are found to be of the form 

6.16 



Q y+ = 

= 
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0 

(11+ 6)  c 
aya 

(ll_e) ayac 

0 

+13c 
0 	-Ilya 

0  0 

0  0 

00 

0 

0  

0 

-Ef3c 
n
yb 

-13c 
-Ilya 

0 

0 

0 

0  0 

0  0 

0  0 

- f3c 
yb  

0 

0 

+ 
(II 6 aya d  

(n-E)ayad 

0 

6.17 

6.18 

where 11 = 	and y = (1+i)1/2" has been chosen simply to render the 

most symmetrical form for Q°1 . 	The only essential requirement for 
± 

these coefficients is that their product is 4iz. 

The superfields (DA (x11 , eta ) form a representation of )k -

labelled by {( p,q) , T, Z} as described in §6.2: 

(DA (xP , Pa ) = 

/Va (x1-1 , "Cita  

E+  (x/1 , T)a  
act 

E-  (x P , 'Cita ) act 

6.19 

  

Wa (xll ' ea  

The general form of the superfield when expanded in ° ta  is (spin-q 

indices will be suppressed in the following work; ;-monomials are 

defined in Appendix G together with some useful identities): 



/A 

. 1 a m -02 	a 
')A(x 	) = 	a- 

a 
\a 

 

Fk  

q)a+k 

(Pak/fk. 
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+ 	-6  a 

 

  

 

/di.)  aa 
m+ 

W • aaa 

1 m-1,  • 
CtOta 

iii \ 
V • ca 

 

  

(e3 ) (la E  + ( -64 )  

  

  

6.20 

where m = +,- refer to spin P+1 and P-1 projections, 2, = 0,+,- refer 

to spin P, P+1 and P-1 projections, a = +,- refer to 1+1 and T-1 

projections and k = 0,+,- refer to T,T+2,T-2 projections.  All 

component fields are functions of xP . 

To determine the irreducibility or indecomposability of 

(DA (x/1 , IT)&a ) it is necessary to introduce appropriate field 

redefinitions for the component fields and examine their variations 

under the odd generators.  To aid in this we recall that the algebra 

realized by 6.14 may be extended to include the generators 

g. = 9. a  yielding the extended algebra 1, .  As we have noted, since 
Cta 	Ot 

* To be precise this term should read, considering for example the 

top component only, 

	

(5 5) ab  Fab  = (5 5) ++  F++  +  F 

F+- + (6 -6)-+ F-+ . 

 

Thus we define F
+ = F++' F- = F  and F =F  + F 

+- 0  -+ • 



the general superfield 0A(xP ,5 aa ) is still a representation of 3, 

it is expected to be reducible under  .  To find the irreducible 

representations of 5 contained in 0 we proceed as follows. 
Given an irreducible representation of 5 with highest weight vector 

A = l(p,q), T, Z >, such that 

Qa+ A = QA = a+ A = 0 , a+  

a basis for ("; may be obtained from the four vectors A, a 13- 

11- J'§. A, (§. ) 2A by acting with monomials of Q. and Q
a-

.  This 
a 6-  a- 

suggests that  that a superfield 0A (xP , Pa ), which carries a representation 

((p,q), T, Z) of Ph- , contains four irreducible representations of 

This is indeed found to be the case, with A = l(p,q), 1+2, Z > 

and consequently, H IJS. A = l(p+1,q), T+1, Z >, a 8- 

II- A. A 

 

= (p -½,q), T+1, Z >and (S- ) 2 A = l(P,q), T, Z >.  Each 
a 6- 

of these these multiplets contains sixteen fields with weights as shown in 

table 6.1. 

To obtain the basis which renders the irreducible multiplets 

of 5 evident we proceed as follows.  From the superfield it is 

apparent that the highest weight vector, A, is F since 

6Q F =  F 	6s.  = 0.  The variations of, F+ , under Q 

Y+_ 	Y+ 	Y+ 
and Q- are: 

Y- 

	

6 F = - 3/11(04.  + (1)-  ) + 2(1?) 6  (a T -1  4-  
Y- 	Y+ 	Y+ 	Y 	P a+ 	P 

3 	+ + 

	

6•F = 	(0- 	07 	- 
-2  

 P 	T. ) 

From (6.21) and (6.22) we project spin q±1 and spin p±i states 

respectively, and define new fields proportional to these states. 

Thus, explicitly, we have 
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-+ 
n a

y
y- F

+ 
= - yp Oa+  

H  S. F = Q- - 
a y_ +  a+ 

• 

( P a  ( where cp-co.  = ( a+  - (2/yp 1„a+  31.1  a+  311T) F  

-+3 • +  -2 
and  Q- . = — Q- - -  

+ 
p T- -  (see end of Table 6.2 for notation). 

a+ 2  a+  a+ 

We now consider the variation of each of these -fields under 

Q 

 

 and Q. and define new - fields by projecting Lorentz eigenstates 
Y- 

 

from the the field variations as in (6.23) and (6.24).  This procedure 

is simply repeated until a basis for the sixteen states of this 

multiplet has been generated.  This basis is given in Table 6.2a. 

For the multiplet characterized by () 2A the judicious 

choice is to consider a lowest weight vector A =  T-4, Z > 

such that QA = Q- A = 	A = 0 and obtain the remaining states of 
a- 

 
a-  a- 

the multiplet by acting with monimials of Q 00.  and Q(70.  on A.  From 

the superfield we find that f_ is the field corresponding to A, 

since 6  f = 6 -  f = (5- f = 0.  By analogy with the F multiplet 
Qa_ -  Q&_  

we now determine the variations of f under Q
a+ 

and Q
d4+ 

and define 

new fields as proportional to the Lorentz eigenstates projected from 

these variations.  Again by repeated application of this procedure 

we obtain a basis for the sixteen states of this multiplet.  This 

basis is given in Table 6.2b. 

For the remaining two multiplets characterized by 11 ±A. A , 
a 

we see see from the superfield that the highest weight states will be 

some linear combination of Q- - and T1 - which is linearly independent 
a+  a+ 

-+  -+ 
to 0- -

.  
For simplicity we choose T- - = T-

&4. 

for which 
a+  a+ 

139. 

6.23 

6.24 
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-+  
6
Q  

T- -
+ 
 = 0 and 6-  T- . = 6-  T--

a+ 
= 2i(II-E)--F .  Thus as will 

 

Y4. 
a   aA + 

1+  14-  
-+ 

be seen presently, T c;44. , are highest weight vectors, modulo coset 

elements, F.E . Again by analogy with the F~ multiplet, the bases 

for the T- .
+ 
 multiplets are obtained by acting with mon mials of 

a 
-+ 

Qa+  and Q(1.1.  on  and defining new fields as proportional to the 

Lorentz eigenstates projected from these variations.  These bases 

are given in Tables 6.2c and 6.2d. 

This procedure effectively provides a basis transformation 

of the superfield components into irreducible multiplets of.-

Such basis transformations may also be effected by constructing 

Casimirs of 5-which label different multiplets of  and finding 

-aa  
functions of 6  which form a complete set of eigenfunctions of 

this Casimir.  Expanding the superfield in terms of these functions 

yields the appropriate basis directly as the component fields. 

Jarvis [35] has used this technique for the study of unitary, 

irreducible representations of the N=1 super Poincare algebra. 

Bufton and Taylor [36] define similar basis functions for the 

N-extended supersymmetry algebras. 

Given this new basis for the components of the superfield, 

the irreducibility of the multiplets we have generated can now be 

examined.  It is found that the F+ and f multiplets are invariant 

subspaces while the 414-&4.  and T- (14.  multiplets are invariant as factor 

spaces.  This behaviour is typified by the following examples: 

-+- 
6Q 

+ 
1q0.

- 

 - 

- 

- Ym Wyjo, - YP Wyet+  - 4i(&'). a 	i 

Y  
ya p + 

 

-  = - 21 171 2  - 2i 52  (Ts: sQ , 
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6  -- .  _ 2i  -2  +.  i  .,--,4  2i  
0,-14  0  (p+1) P ' y+  (p+1)(2p+1) " i+  (2p+1) " i+ 

6-  -. = 2i(11 -0.- i - 11  (a11 ).
Y 

 (1  (3 P --1 +  
Q. 4Ia  al + Yll  p aa+  p aa+ 
Y -1-  

As discussed in §6.2, it has been pointed out [4,5,15,16] 

that if the constraint 

Z Q  =± i)  Q 
a±  a p a+ 

(all ) a  P Q. 
 

6.25 

is imposed, the number of fields in an irreducible representation is 

reduced from 2
4 

to 2
2

.  This constraint implies that 

P
2 

+ Z2 = 0 .  6.26 

In the present approach this reduction takes place via the imposition 

of only the weaker constraint (6.26) as described below. 

To observe this phenomenon we note the intimate connection 

between (6.25) and (6.26) and use this to introduce further field 

redefinitions, for the fields in each multiplet which are obtained 

from acting with Qa_, Qa_ Q (3. _ and Qa_ 0. &_ on the highest weight 

state of the multiplet or with Qa+ , Qa+  Q (34. , Qa+  'Oa+  on the lowest 

weight state of the multiplet.  These fields are constructed, up to 

a proportionality, from the - basis of table 6.2, by projecting 

Lorentz eigenstates either from 

(Q -4(4 P F)* 'a-  a  p a- 
6.27 

where g is the generic title given to the fields obtained from Ai , 

Qa_Ai  and Q&_Ai  with Ai  the highest weight state of a multiplet or from 
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(Qa+ - Z (all) a& Pp (1&+)6  6.28 

where B refers here to the fields obtained from A, Qa+A and 

with A the lowest weight state of a multiplet.  These field 

redefinitions are given in Table 6.3 and in this basis it is 

observed that the fields A i , CILAi  and QL 4+Ai  (taking upper 

(lower) signs if Ai  is a lowest (highest) weight vector) are 

invariant as a factor space with the remaining fields of each 

multiplet decoupling when P 2  + Z2 = 0.  This is demonstrated for 

the F+ multiplet in table 6.4, which clearly shows that when 

condition (6.26) is imposed, an irreducible realisation of the 

S0(2)-extended super Poincare algebra consists of four fields with 

0(3,1) x U(1) labels 

{(p,q,T), (p+i,q,T-1), (p-1,q,T-1), (p,q,T-2)} . 



- I, -I, 0 

- 1, 0, 0 

0, 0, 0 

-1, 0, -1 

- 3, 0, -1 

- 1, 4, -1 

- 1, -I, -1 

0, I, -1 

0, -I, -1 

-2  

-2  

- 1, 0, -2 

0, 0, -2 

-I, 0, -3 

P. aa+ 

--+ 
Yaa 

Yaa 
-0+ 
Yaa 
-0- 
Yaa 

P:+ aa-
p': - 
aa-

-- 
g  
"0 
g a 
-- 
* &_ 
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TABLE 6.1  Weights and defining fields of the four irreducible multiplets of 5 contained 

in the suoerfield. 

p,  q,  T A 1  p, q, T A2 p, q, T 

A. 

Q
a 
 A. c 	1 

0, 0, 	+2 

0, 	f, 	+1 

0, 	-i, 	+1 

F+ 

41 
a+ 

(I) a+ 

0, 

0, 

0, 

0, 

4, 

-1, 

-4 

-3 

-3 

(I) a- 

4 a- 

I, 	0, 

4, 	4, 

4, 	-4, 

+1 

0 

0 

p, q, T A4 

-1, 

-1, 

0, 

1, 

+1 

0 

-- 
T • a+ 

aa+ P. 
aa+ 

P• aa+ 

-+ 	 -+ 
Ojci.  A i 	I, 0, +1 0 • 	f, 0, -3 	(111% 	1, 0, 0 	G -• 

a+ 	 a- 	 a6 

- I, 0, +1 0 • + 	-5, 0, -3 	w •  0, 0, 0 
a 	 a- 	 Fo 

Qa+ Q i3+ A i 	0, o, o  f  0, -2  F , 0, -1  4, • 
- a+ 

-+ 
Qa+4+Ai 	0, 0, 0 	D 	0, 0, -2  a  4, 0, -1 	T • a- 

QaALAi 	I, 1, 0 	W- 	I, i, -2  W  1, I, -1  Y" aa+ 	 da- 	 a6a 
-+- 	 -+- 	 -+- 

I, -1, 0 	W• 	4, - I, -2 	W• 	1, 71, -1 aa+ 	 aa- 	 Tact 

-1, I, 0 	W• 

- 	

- 	1.1 

	

i, I, -2 	* 	0 , i• -1  aa+ 	 aa- 	 T  a0 
.._ 

- 4, - 4, 0 W• 

- 	

- 4, - I, -2 W•  0, -1, -1  6 
aa+ 	 aa- 	 ' a0 

0, I, -1 	'c& 	0, i, -1 	a 	4, I, -2 	Pjul_ QaA±Q;±Ai 	 a 
-+- 

0, -I, _1 	6 	0, -i, -1 	a 	4, - I, -2 	P' a 	 a 	 aa- 

(11 (1+ QuAlfAi 	1, 0, -1 	(4.
+ 	f, 0, -1 	0 • 	1, 0, -2 

a 	 a- 	 g a;  _ 
_ i , 0, _, w.  -i, 0, -1 	ii- . 	0, 0, -2 	f a+ 	 a- 	 0 

Qa+ Q fp.Qa+41.Ai  0, 0, -2  'ci  o, o, o  A  I, 0, -3  -+ 
4, a_ 

A3 

The fields of the Al' A3 and A4 multiplets are defined as proportional to HQ a- a 4. acting on 
- 

the highest weight vectors Pi. , -171-(14.  and  respectively.  The fields of the A2  multiplet 

are defined defined as proportional to HQ,a+HOjo.  acting on the lowest weight vector f. 
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TABLE 6.2a  Basis for the A multiplet 

= F÷  

-  -  (Gj a  [3 11  + 

-+ 

 

 

3. +  -2 + 
0- (1+  = 2- 1 Q- (14.  - p W- (1_,_ 

i 

 

=
+ 

f  +  8  ,2A - 2 , G p  ++  +- 

+  2 2 " — 

	

YP 	p aa+ p aa+ p aa+ p aa+ 
Y P 

o = 3D + i52  F0 - 1-14  

k 

 A 

-++  3  +±  -2 +±  2i  p,± 
W=-  - 	W=  - p P7  (a  • D F aa+ 	aa+ 	a 	 + j a+ yp _ aa p 0 

 

4-2  
4i ( u)  [ a  G±.• + 	G°  

+ 
(0111 ± . a A - — 	 a 	p ±pa 

 

1  act p 	YP 	- a 	IA 

-+  +  .-2 +  -  + 
36- 

 a0 

- 	(03-+I ) a  [a Y -1.
• 
 a T- '  (03-±1 ) a  Ca Q+ '  a 0 • ] 

YP 	- a 	P a- 	P a- 	YP - a 	P a- 1-1  a- 

-2 ±  8i   2 + _ p ly •  Y- . 
a+ 	 a- a+ 

Y
2
P
2 

2i  p +  4P  PN± a r + 
— (a ) - -

a 
 [a  + a  ]  kG ) • La a 	+ a a-  ] 

YP 	a 	p a0 	p a0 	yp 	a 	pa 	pa 

_ 4i (011 ) (la ra  1. a  __17 4. a  _ot .  4. 	_07,. 
YP  L  p'13aa 	p'(3aa 	pi±13aa 	p'±-13aai 

-  
-2  ,2 c  

d = 3d + ip f
o -

-4  8 
p a  

22 
y u 

„-2 
" P 	 ( P ) aa  [D Pt+  + a Pt-  + a P7+  + a P7-  ] 

YP 	 p aa- 	p aa- 	p act- 	p aa- 

+  + a w.  + a 
++  +-  w.  + D W- ] 

yp 	p act- 	p act- 	p act- 	p act- 

-2 



-2 	-4 	8 	2 
A 

- 

= 3D - ip F - ' A • 2 2 3 f+ 0 	
Y P 
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TABLE 6.2b 
	

Basis for the (S6) 2 A multiplet 

f 

-+  
(I; a_ = (Fa_ + ,f11.7 

( P ) ct 
[Dp(I)

+
(1_ + 

3 	,+ 	-2 + 
-  w &_ 	P 4r- jx- 

8  ++  +-  -+ 
F = F -  a

2
a - 	(ap ) aa [a P-  + a P.  + a P.  + a P- ] 

- 	- 	2 2 
Y P 	

Yu 	p act- 	p act- 	p act- 	p aa- 

-2 	- 
p 

 4 
a 

- 

= 3d - ip fo  -  a 

-++ 	3 . ±±-2 ±+ 	2i , 11,± 
= — W. 	- p P- -  + — ka ) - a f 

act- 	2 	act- 	act- 	yp 	act p0 

4T12  (op l ± .  a  a  4.  4i 	
a 

 

Lo g (3a  0 ±f3a  
YP 	- 1  aa P 	YP -  

-+ .-2 	-4 
aa = 36±a - ip (1) 	- p a a0 	a 

, 	3 	pl a rr, 	+ 	-- ] 2ip  ( op) a [ a + 	D• j  + 	ka+ i a  Lo llw  wp a+ yp 	_ a 	p a+ 	p 

-+ 

 

3.± 	-2 ± 	8i 	2±.  
2-•  = 	 P T  • - 22 a  41- cl+ a- 	a- 	a- 

Y P 
A -2 

- 2i  (0 1.1 ) ± * a  ra  +  A-  1 	2•P--- (011 ) ± - a  [a  +  a-  ] 
YP 	a L  p' a0 	a0 J  yP 	a 	p a 	p a 

4i 	p fla 	±+ 	+- 	0+ 	0- 
- — (a ) 	[D 	+ a Y7 b 	a Y 	Y YP 	P Paa 	P I3Pa 	p ±(3aa 	p -.113aa 

- 2 

- 2 	 +- 	-+ 

	

2iP 	 (aP ) a'a  [a Pt+  + a P. 	+ a P. 	+ a P. ] 

	

YP 	 p aa + 	p aa+ 	p aa+ 	p aa+ 

++ 	+- 
+ —

3 
(011 ) 641  [a w- 	+ a w-  + a w-

-+ 
 + W: -  ] 

	

YP 	p aa+ 	p aa+ 	p aa+ 	p aa+ 



TABLE 6.2c  Basis for the II
+

S. A multiplet 
a 
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-+ 
T • = T • 

a+ 	a+ 

P- -  = P- -  + 	+- 3 A 
aa+ .aa+ yP ± act P 

-+ 
G 	= G 

- 	 F 	212 	 A+ 	  
0 	2P+1 0 	2P+1 	2(P+1)(2P+1) 	a 

4 
+ — (a11 ) + - a  [3 a+  + 3 a-  ] 

a+ 	a+ YP 	a 	pa 	Pa 

-+-2 + y • = 3. i + Q. + 	p y • a- 2 	a- 	a- 

-+± 	+± 	. 1 	( -IAN 	KA1- ... 	, i.-1- . yaa  = yaa  T yp  ko± j a  ri+c43,x  op y 6 -  

-2 ± 	1   
a = crotO 2.41 a  a 2(P+1) 	laa 

2  (011 ) a  a 	■ 4  ( PI & 	w- 
Y1

- 	

1(P+1) 	P a-  PI ‘ G4-1 a 3 1-1 ' 

-++3 . +± 	-2 +± 	4i (op,+ p.- 	_ w. 	+ p p. 	+ 	) • 	F 
act- 	2 	act- 	act- 	± act p - 

g(-4. = g a; yp  m
+
+ X 	[3p  P- 	+ a P- ] 
aB 	Oa- 	p Oa- 

-+ 	+ 	1 	 ++ 	+- 

• • 
0(3 0 

g  a 

pt+ 	 2(P+1)  a pl.+ 	2(r)  ap: - 
p aa- 	P+1 p aa- 

- 	

P 	pact- 	
u p act- 

= 

	

4i , p,+ a r  +  - 
+ 	la ) 	Lap$ a  + a (1) 

- P a- 

f0 = f0 + 2ip 

.4. 	2 

-+ 	3 
0 &_ = 2-  i 

-2 	1 a + 
2(P+1) 

r 	1 (Gp )&a 
LP+1 

+ 	-2+ 
&_ + P 0 
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TABLE 6.2d 	Basis for the H - - r3S- multiplet 
a B- 

= 

	

a+ 	a+ 

 

-+  -+  4 P-= P. + — 	A aa + 	aa+ yp _ aa p 

G• = G " 

	

a8 	a8 

-2 	n  
2i(p+1)  no 

	

= (2P+1) 	a - 2(2141) 	FO (241) ma A  

(ap ) - - a  Ca 	+ 	a-  ] 

	

a+ 	a+ yp 	a 	P Ct  P Ct 

T- . = 	Q-. 	-2 - 

	

a- 	2 	a- 	P '11  

--+ 	-± 	1 y.. = y .. 	( GP) 	m-  - 
  ± a  W T • 6- 

-0± 	 0± 	1 • 	 -2 
yaa  = 2(P+1)y-- - 	M.• (I) 0 	P M" a a8a 	a8 a - ia8 

L A.. (di) 	r2aply+i„ - 115- aplY- - ] 
YP af 	± 3 	i a 

	

± 	3 	-± 	-2 -± 	4i 	p - 
F&a- = 2- iW&a- 	p FL-  Y-1-1- ( a+ )  act ap F- 

- 	1 ,  r_ 	-7+ 	_  n 
g  a = g  a 	 ko  ) 	 F  11-aU LaP 6a-  6PF6a-j  

goa = 2(P+1 )g0  a;  _ Ma fo  - ip Ma a 

1 , pcv " 	2P 	++ 	2p 	+- 	1 	-+  1 
+ — ka a M-- [ — a P- + — P- + – a p. + – A p7 -  1 

a8 P+1 p ya- P+1 p ya- 	P p ya- P -p ya-' 

3 	- 	-2 - 	4i 
=  i w  &_  P  jx_  

( a )_. 0 + a 	( 1)-  ] 
P a- 



In these tables the following notation has been adopted. 

(c1_,I )Lc  = 11±2 (011 ) . 	(aP ) ± * = 	(011) r3a ' acta 

rit tuY =  SxY  + c  SAY  +  

where P  P and P -  = - P-1, and 

o 	y 0  . 0± 
G • =  G-• and y•• and g

o
•A are 

-±a.  a  Yf3  ±003a  ±cols 

similarly defined.  See Appendix D for further discussion of the 

properties of the spin p4 projectors, HY, and the spin q4-

projectors, 11±a
13 . 

148. 
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TABLE 6.3 	Basis required to obtain the irreducible 'spin-reducing' 

multiplets 

	

1 	a [a 	4. a 	] A+ 

± a 	p a+ 	p a+ 

1 (aP) aa  [a it+  + a 1741—  + a W. +  + 	] 
2ypp 

f+ = f+ 	- 2 	P aa+ 	P aa+ 	P eta+ 	P aa+ 

= 	2  	( o-P)± 

• 	

a 
aa+ 	aa 	

YPP 
+ 	-2 	± actp 

• ^+  -+  1  
(1)- 	= 	 + 	(ap ) a  [a 11  4.  a 

YP 	
--• ] a- 	- 	2 + a 	p a-  

	

a 	ITI 	- 

F =F 	
1 	(aP ) aa  [a w- 	+ a Wt-  + a 171: 4.  ±a c4: -  ] 

- 	2yup-2 	Ti aa- 	p act- 	 p act- 	 p eta - 

i
'41-± . 1-4-1i± 4.  2  f _II N ± .  , .-4 
act- act- -2 ''±' aa ° 14 u  

YPP 

-4-1-  -++ 1  

Peta+ = Pcla+ + 	-2 (cli+ )2 [2iDp q& + 12- '1,i, ap -.0 ]  
YPP 

-+  -+  i  ( p+ a+ 	-_ 

III  jt+ = q)  (1+ +  -2 a  1  a E pp (P 0 + pp (I)  a0 ]  2ypp 

+ 	i _ 2  (all ) r3a  [Dp  Yga  + ap  iL] 
pip 

1 	(on) X  141- --- s̀  a  ''+• 
Yaa = Yaa - , -2 ± a +a $ a11  (5 - 

cY111-1  

-+ 	 (2P+1) 1 	(all) a a  4, 4- . 
cra0 = '-a0 	(P+1) 	-2 	± a p a- 

YPP 

Alp 
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^-+ 	 - p 7, = 	
-2 	- 

± 4. 	 ) 	[2i 3 G— ,t• + 	G O ] 
act+ 	'act+ 	

a 4-  a 	 1613t 

= 	• + 	i  - 2  
a+ 	a+ 	2yi.tm 

1 	-0+ 	1 
1J -cwt 	 3 1.1 Y-1Vta 

--+ + 2 	y• • + 2 a Y' • _I 1.t 13aa 	13aa 

M •  • • 	3 	'is • af3a lai3a 231111-2  

. " 
"0± 	-0± (2 P+1 ) 	1  

(GP ) Y  = 	4.  - Y .• 	Y . 1.3 	2P aa 	a a 	 -2 	a ai3 i Y- Y1-11-1  
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TABLE 6.4  Variations of the fields of the A E F4.  multiplet under 

Q  and Q. . 	These demonstrate the irreducibility, as a factor 
Y÷  A+ 

-+ 
space, of the fields F .1_, 2 •  Q  , D under the constraint 

2 2-2 
P +p p = 0. 

1+ 

 

F = 6. -1- F  0 4- 	A 

+  _y_ te  (1)2 4.  2-2 1r  
uy+  T  - _ 2  El ay  P P 

PP 

6. X+ 

y+ 

6- A+ 

A+ 

a+ 

-+ 
Q- . a+ 

-+ 
Si- a+ 

= 0 

= - 4i(aP ) ± 	• 	3 
Ya 

	

. 	 ± 
= - 	

-2 
41 

F 
P 

 F aX 	+ 

6  _x_ (1 p2 2-2 + 
y+ 	-2  

PP  
Y+ 

2i
•  

p a  2 2-2 -+ 
224 (a  )  (P 411 P  )  (X+ 	3p 

Y P P 

^  2i  a  ^+ 
(514.f+  =  

( P ) 	(D (I)  +  
YP 	A 	p a+ 	p a+ 

6 D = - 21(a1I)a (a  + DQ. ) 
Y P a+ 	P 

-2 - 

6- 	= -2ip (Q
+ 
 +  1 

X+  5t+ 

W4--±  = - 4i(cM ± . 
y+ aa+ 	ay p a+ 

_ 	(n± e) 	(p
2 
4112 T12 )  

	

-2 	ay 
PP 

n±± 
= - 4ip WO.. (1)-  

X+ aa+  aX a+ 
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6 _  we)  - (p2 1112 52 )  o  
y+ a 	- 2  ay 

PP 

- 2i(aP ) a  (a W• -  + a W: ±  ) 
Y P aa+ 	p aa+ 

-+ 	-2 A-F± 	^■ 4. 
6- 6-  = - 2i p (W- 	+ W- ) 
X+ a 	X a + 	Xa+ 

6  w (11. = - 4i(a11 ) ± .  f - yp(10̂Co_ + WI;+ ) 
ay p + 

2  (cP) ± - (0v )h  3 D  + (nit -  +  +  ) 
ay 	P v 	P43+ 	(3(3+ 	f3(3+ 

YPP 

2 	p ± 	2 2 - 2  - 
- 2 -4 (a  ) &y (P +1-1 P  ) 	D  

P P 

6- 	= - 4i112 (11± 6)-- 	- 	(aP )- a  a  +  ) 
x+ w -a+ 	aX + yp 	X p aa+ 	aa+ 

21 p a 	^++ 	^+_ 
- (a )

+ 
=  3 (w.  + w.  + w.  + w. -  ) 

yp 	a 	p Xa+ 	Xa+ 	Xa+ 	Xa+ 

6- 	Ci X+ 
-+ 

=  2 iP 
-2

( 
 -+  - )  ( aP)•a ( a  6 	+ a 6 -  ) w 1+ 4. w+11  Allapa 

6  = - 2(&1 )a  +a  +  ( -+  -+ -- 
aw•  w  )  YP 6 + 6 ) 

1+  p a+ 	p dt+ 	Y 

In the above 6
1+ 

E 6
Q 	

and 6- E 6-  , and we recall P
2 

= - 

 

A+  Q- 
-2  - 

p2 E Z and  
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7, 	ORTHOSYMPLECTIC SUPERGROUPS IN PHYSICAL THEORIES 

7.1  EXTENDED BRS INVARIANCE 

Perhaps the most useful application that orthosymplectic 

supergroups have found (to date) in the world of physics, is to 

the elegant formulation they provide of the extended BRS symmetries 

[1,2,3,4] of quantised gauge theories.  The BRS symmetries [1,2] 

mix the gauge and ghost fields of non-abelian gauge theories in 

such a way as to leave the action invariant.  They have powerful 

implications for the quantisation and renormalisation of these 

theories, and in particular Zinn-Justin [5] and Kluberg-Stern and 

Zuber [6,7] have been able to prove the renormalisability of 

Yang-Mills theories based on this invariance.  Subsequent investigations 

[3,4] revealed that an 'extended' BRS set can be constructed, involving 

a two-parameter 'BRS group' where the roles of 'ghost' and 'antighost' 

can essentially be interchanged.  Following earlier work on the 

unextended case [8,9], Bonora and Tonin [10] developed a superfield 

formulation of the extended BRS symmetry based on a six dimensional 

superspace in which the BRS group consists of supertranslations in two 

a-number superspace coordinates (e,C3-).  An alternative formulation 

of BRS supersymmetry has been proposed by Delbourgo and Jarvis [11]. 

This formulation is based upon a real form of the inhomogeneous OSp(4/2) 

supergroup [12] consisting of the usual transformations of the Poincare 

group and, in addition, vmplectic transformations in (e, -0 space as 

well as I supertranslations' and 'super-Lorentz' transformations. 

This goes beyond the work of Bonora and Tonin [10] in the sense that 

the group of supertranslations is enlarged to include transformations 

mixing x° and (e,fl.  The supertranslations again give rise to extended 
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BRS transformations amongst the superfield component fields. 

The essence of thi's formulation by Delbourgo and Jarvis is sketched 

below and its extensions discussed briefly. 

As mentioned above the space-time supersymmetry imposed is a 

real form [13] of the six-dimensional, inhomogeneous, orthosymplectic 

supergroup OSp(4/2) AT 412, which is the group of all superlinear 

transformations preserving the distance [12] 

"4) 2 _ (x _y)m gMN (x_y)N  
7.1 

between points in superpace, Xm  = (x0 ,e a ) where p = 0,1,2,3 and 

a = 1,2.  Here the orthosymplectic metric is 

MN  
( ... 0%)  0  

= t" 
0 

where n" is the usual diagonal Lorentfmetric and c a  is the 2 x 2 

antisymmetric matrix with 6 12  = +1. 

This space-time supergroup admits, in addition to the usual 

Poincare transformations, supertranslations 

(x ,e  (x ,e + E ) p a 	a 
7.2 

symplectic rotations on e a , 

 

(x ,e )  (x  )  7.3 

 

u a 	P a (3 

and super-Lorentz transformations, 

 

(x ,e )  (x + x l3 e ,  e - x vx ) . 

	

p a 	P 	a 	a v 
7.4 

The conventions here are those of [11] in which e 2  = O  (0 1 ,0 2 ) = (6,15) 

(see [11] for further discussion of hermiticity questions). 



In constructing local gauge theories over superspace, a 

gauge potential superfield is introduced 

o  
M' 
(x e) = A

M 
 (x) + (higher-order terms in e) 

where A ( ) is a c-number field, A u (x) is an a-number field and A m (x) 

transforms as the fundamental, six-dimensional, vector representation 

of OSp(4/2) and takes its values in the compact Lie algebra of the 

oma Ta 
gauge group,  

.  
where the T a  are the generators of the Lie 

algebra. 

The gauge field strength, o mN (x,e), is a superfield transforming 

in the 17-dimensional graded-antisymmetrical tensor representation 

(i.e. the adjoint) of OSp(4/2) and is constructed as 

otim = 3moN - [m] ,vm - i gN , 00+ 
	 7.6 

where g is the gauge coupling constant and [MN] is a signature factor 

with [ou] = [Lia] = +1, [ct,] = - 1. 

Gauge transformations for o m  and o
MN 
 are given as usual by 

-1  -1 
o l (x e) = U o (x,e)U - i/g(e U )U M 7.7 

(x,e) = U -l omN (x,e)U  7.8 

and, as shown by Bonora et al [14], U(x,e) may be uniquely decomposed as 

U(x,e) = exp[-igA(x)] exp[-ig(e awu (x) - e a e u8(x))] E Uo U l  7.9 

To obtain a model in the six-dimensional space, which yields a 

Yang-Mills action upon dimensional reduction to four-dimensional 

Minkowski space-time, only those gauge potential superfields are 

admitted which satisfy 

(x 	= m 
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7.5 

7.10 



and 
_ 1 (Fvv  (x) 

(Dm  (x,e) = U l  0 	IU I  
0 

where A (x) is the ordinary four-vector potential and F(x) is 

the usual Yang-Mills field strength. Expanding the exponential 

of (7.9) the components of (D m(x,e) may be written as 

1  (3  1 
= A w  + e a D o w i3  - 	e e a[y + -z g(D liwa ) x wa ] 

wa + e f3 [Be c,  - gw x w a ] 

- 1  er3 e [-gB x  + g2  (w x wY ) x w 	 7.13 a 	a 

where D is the covariant derivativeDB=3B+ gA xB, etc. 

The six-dimensional action, S. is taken to be the sum of a gauge-

independent piece, S o , and a gauge-dependent piece, S l .  So  is 

constructed to be gauge invariant, OSp(4/2)AT 412  invariant and to 

reduce to the usual Yang-Mills action in four-dimensional space-time. 

It is given by 

6 1 2 aMN a  . 
S
O 

=  d X —
4 X 4) 	MN 7.14 

The choice of the gauge breaking term, S l , is not unique but is required 

to break superlocal gauge invariance, to be both Sp(2) and supertranslation 

invariant, and to have canonical dimension 2 [15] (for an extended 

discussion of gauge breaking see Thompson [15]).  A suitable candidate is 

S. =  d
6
X.24)

M
m 

where  is a real constant.  This leads to the action [11] 

4  1 pv 	 1 	2 	p— S = 	d x[- —4 F Fpv + a°A • B + —2 B - a w•a w 

	

1 R p — 	 1 2 ,2 

	

- ygm w  a w  + -- g 	x wi  
P 	8 
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7.11 

7.12 

7.15 

7.16 
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after appropriate rescaling of the fields and taking (wr w 2 ) = 

This action incorporates the conventional Yang-Mills action; gauge 

fixing terms involving the gauge potential, A w , and multiplier field, B; 

and Faddeev-Popov ghost terms involving ghost fields, w and  in 

addition to A.  It differs from the conventional action by the 

inclusion of a quartic ghost-term. 

Supertranslations leave invariant the action (7.14) plus (7.15) 

and also respect the condition (7.10).  From (7.12) and (7.13) the 

component field variations under supertranslations are found to be 

6A = 'ED w - LOW, 
1.1 

1 — 6w = - g EW X W - LB_ 

1 w = , -2- gEW 	W 	E + 

7.17 

6B+  = - ga+  x  ,  613 = g7B_ 

where 
1 — 

= B — + g w  x w 
- 2 

These are the extended BRS symmetries, providing a set of transformations 

which leave the total action invariant.  Further, it was shown [11] that 

this model is renormalisable in standard fashion and yields the same 

on-shell S-matrix as that obtained via the conventional approach [15]. 

It was later shown [16] that a satisfactory geometrical setting 

for the above scheme could be achieved based upon a coset space 

dimensional reduction procedure [17].  With this treatment, the ansatz 

(7.10), for the form of 4? 1,1 (x,e), follows from superfield constraints, 

obtained from the requirement that the gauge potential superfield be 

invariant under the action of the OSp(4/2) supergroup, up to a gauge 

transformation. 
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This formalism also allows the introduction of matter fields, 

including fermions, which appear as the solutions of analogous 

constraint equations applied to an appropriate representation of the 

tangent space supergroup OSp(4/2).  One such constraint requires 

fields which are Sp(2) singlets [16].  Thus, for example, to 

incorporate spinors into the theory we examine representations of 

OSp(4/2), labelled by -0_,M,N1, and decompose them with respect to 

0(4) x Sp(2) = SU(2) x SU(2) x SU(2)  as (see 0.5) 

{LAN}  (L-1,M,N) 2  + (L-1±1,M,N) + (L-1,M±1,N) 

(L-1,M,N±1) + (L-1± 12-,M4,N4)  7.18 

From this, it is evident that there is a unique, typical, irreducible 

1 
representation whose only Sp(2) singlet is ( 2-,0), corresponding to a 

left handed spinor: namely the 0/2,0,11, possessing dimension 96. 

Similarly the right handed spinor (04) occurs as the unique Sp(2) 

1 
singlet in the 0,2-,1} representation of dimension 96.  Thus a Dirac 

Spinor, Ta (x,e) would correspond to the reducible representation 

0/2,0,11 + 04-,11 , of OSp(4/2).  Using the supertableau techniques 

of Chapter 5, it is possible to show that the Kronecker product of 

0/2,0,1} with the fundamental representation of OSp(4/2) contains 

04,11 , the parity conjugate.  Thus it is possible to construct a• 

bilinear kinetic term and subsequently an OSp(4/2) invariant 

lagrangian (7 CM  DM  7 + m  ), where the CM  are coupling 
a ae 	13 	a a 	af3 

coefficients, which becomes (7 iy /j  D  + m TY) upon dimensional 

reduction [16]. 

This formalism of dimensional reduction via supercoset space has been 

applied to the quantisation of an OSp(n/2) gauge theory over a six-

dimensional superspace [18].  This results, after reduction to four 

dimensions, in a gauged 0(n) model containing massless scalar Higgs 

fields in the fundamental representation of 0(n) with quartic self- 
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interactions and gauge fixing and ghost terms which admit an extended 

BRS invariance. 

It has also been shown [15,19,20] that the derivation of extended 

BRS symmetries for quantum gravity is also amenable to the orthosymplectic 

BRS supersymmetry formalism; suitably modified of course but retaining 

a six-dimensional superspace which admits an OSp(4/2) supergroup. 

This was a particularly satisfying result in view of the fact that the 

standard gauge fixing procedure for gravity, while possessing an 

invariance under a set of BRS transformations [21,22], does not allow 

a corresponding set of dual BRS transformations [23].  The actions 

obtained from the OSp(4/2) formalism and the standard formalism differ 

only by a BRS (or dual BRS) transformation and hence their on-shell 

S matrices agree. 

Kaluza-Klein theories [24,25,26,27] involve the construction of 

a gravitational action in (4+N)-dimensions and the subsequent 

compactification of N-dimensions to yield an action which formally 

incorporates a four-dimensional gravitational action, a Yang-Mills 

action (if N > 1) and a cosmological term.  By extending the above 

ideas to consider a 4 + N + 2 -dimensional manifold admitting an 

OSp(4+N/2) symmetry, combined with a (4+N)-dimensional Kaluza-Klein 

theory, an action emerges, after an appropriate dimensional reduction, 

which contains not only the correct gauge-fixing and Faddeev-Popov 

terms for both the gravitational and non-abelian gauge theories, but 

also leads to a complete set of extended BRS transformations [15,28]. 

This result was first achieved by Hosoya, Ohkuwa and Omote [29] quite 

independently of the OSp(4+N/2) formalism, however the latter version 

is aesthetically more pleasing in that the ghost and antighost fields 

enter, quite generally, in a symmetric manner. 
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7.2  ORTHOSYMPLECTIC SUPERGROUPS IN SUPERSYMMETRY 

Over the past ten years supersymmetric Yang-Mills and supergravity 

theories have become a dominant force in the physics literature (see 

[30,31) for reviews).  The basic algebra underlying the majority of these 

theories is the N-extended super Poincare algebra, SP, discussed in 

Chapter 6.  The role of orthosymplectic superalgebras becomes apparent 

when it is realised that OSp(N/4) is the algebra of the N-extended 

graded de Sitter group and is related by contraction to SP.  The 

gauging of a number of orthosymplectic supergroups has bestowed upon them 

a dynamical role in some theories.  For example, MacDowell and 

Mansouri [32] showed that N = 1 supergravity with a cosmalogical constant 

follows from gauging OSp(1/4), while Townsend and van Nieuwenhuizen [59] 

arrived at a similar result for N = 2 supergravity from the gauging of 

OSp(2/4).  Nath and Arrowitt [33] have constructed geometrical models 

of supergravity in superspace where the tangent space group is 

OSp(3,1/4N).  Extensive use has been made of orthosymplectic groups 

in the group manifold approach to supergravity theories.  D'Adda et al 

[34] have classified a large range of orthosymplectic groups which are 

suitable for the construction of supergravity theories in various 

dimensions.  They have developed a comprehensive procedure by which 

such theories may be formulated on orthosymplectic supergroup manifolds. 

A detailed discussion of these models is eschewed in favour of 

demonstrating the contraction procedure for OSp(N/4), based upon the 

work of Green and Jarvis [35] and Butchart [36], which leads to the 

N-extended super Poincare algebra, and a discussion of the work of 

Lukierski and Rytel [37] wherein a contraction of OSp(2N/4) leads to 

the N-extended super Poincare algebra with a complete set of N(N-1) 

real central charges. 
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The OSp(N/4) superalgebra consists of even generators, 

 

L
ab 

= -L
ab 

of 0(N) and, M  = M, of Sp(4) and odd generators 
aa  aa 

 

S
aa 

= S
aa' 

where a = 1,...,N ; U = 1,...,4.  These generators satisfy 

the following relations 

L  n 

 

[Lab'-cd] = cb
L 
 ad - nacLbd  n nd Lca  nda Lcb 

[M ,M ]=C M +C M +C M +C M 
aa Y6  ya ad  ya (36  da ya  Oa y6 

[L ] =  _ 
ncb Saa  Sba 

7.19 

[M ,S ] = 
aa ay 

+C S 
y act 	ya aa 

{S  S l=n M  + C L 
aa' ba  ab aa  aa ba 

where nab  is the diagonal 0(N) metric with signature (+,+,...,+) and 

C
aa 

is the Sp(4) metric.  The isomorphism between the Sp(4) algebra 

and the algebra, S0(3,2) of the de Sitter group is established by 

identifying C  with the charge conjugation matrix of the Dirac 
aa 

spinor representation and expanding M  terms of the symmetric 

matrices (y C)  and (a
pv

C) 
aa 

M
aa 

= -(y C) M u  - -11-( a C) MUV 
p aa  2  pv aa 

where p = 0,1,2,3.  The de Sitter algebra is 

[mpv ,mpo ]  = i(nvp.po pp va VG pp ap vp. 
m -n M -n M +n M ) 

[mOv , mPj = i(nPvmW-n M PW N)) 

[mp ,mv] = _ impv 

where n = (+ ---) . 
pv 

7.20 

7.21 



Defining new generators 

ph  = 1  mu 
R2  

JP V mpV 7.22 

and taking the limit, R  co, in which the barred generators of 

(7.22) tend to smooth limits Q 
aa

, P u  and (.1", (7.19) and (7.21) become 

[  ,J ] = i( n J  -n J  +n J ) 

	

v pa 	pv pa 	PP VG 	CYV pp 	ap up 

[J  ,P ] = i(n P - n P ) 
Pu P 	up P 	PP v 

Ej  ] = 1- (a ) 130 

 

aa  pv a 

1Qaa4 1)13 1  = -nab ( Yp C  a P
P  7.23 

[P p' P v 	=
aa 

= 0 

[L ab' L cd ]  = ncb ad - nacL bd  nbd i-ca  nda L cb 

ab' Qca = ncbQaa - ncaQba . 

This is the algebra of 0(N)-extended supersymmetry and has been 

obtained by a straightforward contraction of OSp(N14).  The Casimir 

invariants of OSp(N/4) have been shown [35,36] to contract in the 

required manner to yield the Casimir invariants of the extended 

supersymmetry. 

As shown in chapter 6 the central charges constitute an important 

enlargement of SP .  Indeed as noted there (see e.g. [38,39]) 

in some cases it is only the presence of central charges which allows 

for the existence of the appropriate field representations necessary 

for the construction of interacting theories.  They also appear to be 

necessary for the formulation of N ?_ 3-extended supergravities. 

Lukierski and Rytel [37] have shown that by a suitable contraction 

procedure, similar to that described above, though somewhat more 

164. 
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complex,applied to OSp(2N/4) one can obtain SP with a complete 

set of N(N-1) real central charges.  The 0(2N) algebra may be 

decomposed into a direct sum U(N) (0 0(2N)/U(N).  It is the 0(2N)/U(N) 

generators which in the contraction limit yield the central charges, 

upon reduction of the internal symmetry group, U(N), to a 

subgroup which commutes the Z ij .  Such a reduction has been discussed 

by Ferrara et al [40] and Lopuszanski and Wolf [41].  It is this type 

of geometric understanding of the origin of central charges which may 

provide the key to their potential role in the extended supergravity 

theories. 

7.3  KALUZA-KLEIN SUPERGRAVITY 

Kaluza-Klein supergravity is a term which refers to the 

construction of a supergravity theory in a space of dimension, d = 4 + N, 

and the subsequent compactification of N of these dimensions to yield 

an effective theory of supergravity in four dimensions.  These theories, 

and in particular the d=11 version, have offered the exciting prospect 

of unifying gravity with the standard model, SU(3) x SU(2) x U(1), 

of elementary particles.  Although this offer has not been fulfilled, 

despite an enthusiastic following, these are still early days in the 

investigation and much remains to be learned about the structure of 

these theories.  Orthosymplectic supergroups arise as the ground state 

symmetry of some of the solutions which have been exhibited.  The 

eleven dimensional supergravity models which compactify a seven 

dimensional internal manifold have received the closest scrutiny, 

since they appear at present to offer the best prospect for achieving 

the unification mentioned above.  In these theories it is OSp(M/4) 

which arises as the ground state symmetry for some solutions and 
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consequently it is the infinite dimensional representations of 

OSp(M/4) which must be ascertained if the full implications of these 

solutions are to be known.  This is of particular consequence for 

those solutions for which the effective four dimensional theory is 

in a de Sitter space where the simple idea of keeping massless modes 

and discarding massive ones has been shown to be incorrect [42]. 

In the sequel the solutions of simple supergravity in d= 11 will be 

presented for which the compact manifold, M 7 , is the 'round' seven 

sphere, S 7 , and the seven torus, T 7 , both of which possess a ground 

state symmetry of OSp(8/4).  This will be followed by a brief 

discussion of the possibilities for obtaining solutions which have 

SU(3) x SU(2) x U(1) as the isometry group of M 7 .  Finally some 

recent work by Freedman and Nicolai [43] on unitary, irreducible 

representations of OSp(N/4) and their applications will be mentioned. 

The fields of simple supergravity in d= 11 [44] are the elfbein, 

e
A

'  a 32-component Majorana spinor M' 
and an antisymmetric 3-index 

M  

tensor A
MNP  where the world indices, M,N,..., and 

tangent space 

indices, A,B,..., all take values 1-11.  To obtain vacuum solutions, 

the usual procedure [45,46] to require that the vacuum expectation 

value of the spinor field, < tpm  > , be zero and to look for solutions 

of the bosonic field equations.  These are 

1 	p 	1 p 	c  PQR  1  c 	cPQRS 
RMN -  gMN''  [' MPQR I  N  gMN' PQRS'  

7.24 

PQ 
_Ml* M8N  

	

FM  ..M 
F
M•..M umr  

576  1'  4 5*  8 

where F
MNPQ = 4 a 

[ 
-A

NPQ] '  =  
,  

wM rAB') is the covariant m  DM  ( 'M ' IT  

derivative, with r
AB 

= r
[A rB] and  rA the eleven dimensional Dirac 

matrices, e—  is the totally antisymmetric tensor with  = +1, 

and gmN , RmN  and R are the eleven dimensional metric tensor, Ricci 

7.25 
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curvature tensor and Ricci scalar, respectively.  A solution to 

this system of equations is provided by the Freund-Rubin 

mechanism [47] which takes F ovpo  = 3M E pvloo  , FmNpQ  = 0 and 

(x 1-1 )  0 
1.1v 

9M0P4m)  = 
0  gmn (ym ) 

and (a,b,...;m,n,... = 1,...7).  Some straightforward manipulation 

of (7.24) and (7.25), adopting these forms for F mNpQ  and gmm , yields 

Rpv = 12m
2
g  , R

mn 
 = -6m

2
g
mn 

, R
um 

= 0 .  7.26 
pv  

Thus we have a solution of the field equations for which the ground 

state is a direct product of a non-compact four dimensional manifold 

and a compact seven dimensional manifold.  There are, however, still 

infinitely many solutions of (7.26) and some criterion is necessary 

to distinguish the 'false' ground states from the 'true' ground 

state.  Such a criterion can be provided by the requirement that the 

ground state be stable, a reason for which may be an unbroken 

supersymmetry.  Such a supersymmetric vacuum would require that, 

<  > , stay zero under the local supersymmetry transformations, 

dem , which leave the action invariant.  Assuming that the local 

spinor parameter E(x,y) of these transformations factorizes as 

E(x,y) = E(x)n(y) and recalling the above restrictions on F mNpQ  and 

gmm  then (sem  = 0 implies 

E = D E + my y5=  0 
P 

1 n = D  -0 m 	m 	2 m 

where the r matrices have decomposed as 

7.27 

7.28 

rA 	(Ya ® I 	Y5 	ra )  



The integrability conditions of (7.27) and (7.28) are 

[b.  = [  R  yPG  -my ]E - 0 
Ii v  8 pvpo ' 	'pv 	- 

1  p  ,rs , 1 2 , 1 _ . 0  
[15-W5n 1-1  = 

r  
-mnrs I 	-4- m I mn J " 

If these conditions are satisfied then 

R
pvpa 	

4m2(g
pp

g
VG 

-g 
PG

g
vp

) 

= -m
2
(9 g  g g r 

R
mnrs  ) mr ns  ms n 

There remain only two possibilities for the complete solution: 

(i) if m 2  = 0, (7.31) and (7.32) are the standard Riemann curvature 

tensors for a four dimensional Minkowski space, M 4 , and the seven-

Torus, T
7
, respectively; (ii) if m

2 
> 0 (7.31) and (7.32) are the 

standard Riemann curvature tensors for anit- de Sitter space, AdS 4 , 

and the seven sphere, S
7
, respectively.  The m

2 
= 0 case (when only 

zero modes are retained) was the first solution found for the 

compactification of eleven dimensional supergravity to four dimensions. 

It was obtained by Cremmer and Julia [48] via a dimensional reduction 

procedure in which all fields were simply assumed to be independent 

of the 'extra' seven dimensions.  The m
2 
> 0 solution was first 

exhibited by Duff and Pope [46,49] by taking the results of Freund 

and Rubin [47], who obtained (7.26), and requiring the existence of 

eight unbroken supersymmetries in four dimensions.  These are 

provided by the eight linearly independent solutions to (7.28), since 

n is an eight component spinor.  Since S 7  is the coset space 

S0(8)/S0(7) which admits an S0(8) isometry group, this solution describes 

a theory with local S0(8) invariance.  The full symmetry group of 

both these solutions has been found to be OSp(8/4) [50,51]. 

168. 

7.29 

7.30 

7.31 

7.32 



169. 

Variations of the above solutions have also been obtained for 

which the compact seven dimensional manifold is the 'squashed' 

[52] or parallelized [53] seven spheres or a product of spheres, 

S
5
0S

2
, S

4 	
S
3
, S

3 
OS

2 
®S

2 
[54].  Of these the only solution 

involving an orthosymplectic supergroup is the 'squashed' S
7 
of Awada, 

Duff and Pope [52].  These authors observed that S
7 
admits another 

Einstein metric besides the maximally symmetric 'round' one for which 

the isometry group is S 7 .  This is the 'squashed' S 7  which has 

SO(5)  SU(2) as its isometry group.  The full symmetry group of this 

solution is OSp(1/4)  SO(5)0 SU(2). 

Of the solutions mentioned above only, S
5 

x S
2
, possesses an 

isometry group of the compact internal manifold large enough to contain 

the phenomenological SU(3) 0 SU(2)  U(1) gauge group.  A class of 

seven dimensional manifolds which do contain SU(3)  SU(2)  U(1) are 

the coset spaces 

mpqr _ SU(3) g SU(2)  U(1)  . 
SU(2) 0 U(1) 0 U(1) 

This classification has been given by Witten [55] where p, q and r 

are integers with no common divisor and r  O.  These integers 

parametrize the embedding of SU(2) Qis) U(1)  U(1) in SU(3)  SU(2) 0 U(1). 

Castellani, D'Auria and Fr e [56] have investigated compactifying 

solutions of d=11 simple supergravity where the compact manifolds 

are MPq r  spaces.  They have been able to classify all such solutions 

by the ratio p/q, there being no solution only for p = q = 0, while 

for all other values of p and q there is a unique invariant Einstein metric 

on the corresponding topological space MPq r .  No supersymmetry survives 

except in the case of p/q = 1 for which the full symmetry group is 

OSp(2/4) ®SU(3) ®SU(2).  There is obviously a long way to go to 

make d= 11 supergravity a realistic theory of nature but the fact that 
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it does compactify onto manifolds which possess an SU(3)  SU(2)  U(1) 

symmetry is an encouraging result. 

In order to obtain a complete classification of the various 

states present in the supermultiplets, the full invariance of the 

ground state must be considered.  Thus for the 'round' S
7
, which 

possesses an OSp(8/4) invariance of the ground state, the excitations 

corresponding to fluctuations about this ground state should form 

irreducible representations of OSp(8/4).  For other solutions we 

have seen that OSp(M/4) is the relevant invariance and consequently 

a knowledge of the unitary, irreducible representations of OSp(M/4) 

is important for the construction of supersymmetric field theories in 

anti- de Sitter space.  A study of such representations has begun with 

the work of Gunaydin and Bars [57,58] and Freedman and Nicolai [43]. 

Of particular interest in the latter work is a phenomenon which these 

authors have called 'multiplet shortening'.  This phenomenon arises 

for certain restrictions on the vacuum quantum numbers, and effects a 

reduction of the maximal spin of a representation.  Consequently it 

may have an important role to play in the construction of supersymmetric 

field theories.  In this way it closely resembles the phenomenon of 

'spin reduction' in the presence of central charges which has been 

discussed in chapter 6.  As a final point it is worth stressing that 

both these phenomena are closely related to the existence of atypical 

representations, which as we have seen throughout chapters 2 to 5 

play a fundamental role in the finite-dimensional, representation theory 

of the Lie superalgebras. 
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8. 	CONCLUSION 
We conclude by summarizing the work and results presented in 

this thesis and discussing avenues for future research. 

8.1  SUMMARY 

In chapter two a brief review of the theory of Lie superalgebras 

was presented .  This served to introduce this subject to readers 

unfamiliar with it, and to introduce the notation and terminology used 

in the thesis.  This work was based on the comprehensive treatises by 

Kac [1,2] and Scheunert [3]. 

The main work of the thesis was commenced in chapter three, 

wherein weight space techniques were developed to educe finite-

dimensional, irreducible, typical and atypical, star and grade star 

representations of the orthosymplectic superalgebras.  These techniques 

were then used to determine all such representations for the superalgebras 

B(1,1), C(2) and D(2,1;a).  These representations for C(2) = A(1,0) 

have been reported by Scheunert, Nahm and Rittenberg [7].  The results 

for B(1,1) and D(2,1;a) are new to the literature. 

Chapter four saw the development of superfield techniques for the 

determination of all finite-dimensional, irreducible representations of 

the orthosymplectic superalgebras.  These techniques are based on an 

induced representation construction and were used here to find all such 

representations for the superalgebras B(0,1), B(1,1), C(2) and D(2,1). 

The results for the latter three cases were found to be in agreement 

with those of chapter three.  Finite dimensional, irreducible representations 

for B(0,1) and C(2) have been constructed using weight space techniques 

by Scheunert, Nahm and Rittenberg [7] while Dondi and Jarvis [8] have 

used superfield techniques to construct such representations for C(2). 

The results for B(1,1) and D(2,1) are new to the literature. 
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Young supertableaux were investigated in chapter five.  This 

chapter included a fairly comprehensive review of the development of 

young supertableau techniques for the study of representations of 

SU(M/N) and OSp(M/N).  New results obtained here were the relations 

between the Kac-Dynkin labels and the supertableau labels for OSp(M/N) 

and the subsequent expression of Kac's atypicality conditions as 

conditions on the diagram shape.  Modification rules were also obtained 

for all typical representations of OSp(M/N) and, in addition, for the 

atypical representations of OSp(2/2), OSp(3/2) and OSp(4/2).  Branching 

rules for spinor representations of OSp(M/N) and for atypical 

representations of OSp(2/2),OSp(3/2) and OSp(4/2) were also presented. 

Chapter six saw new 'chiral-like' superfield techniques 

developed for the study of irreducible realisations of the N-extended 

supersymmetry algebra in the presence of central charges.  These 

techniques are based on the theory of induced representations.  The 

N= 2-extended algebra was considered in full detail and all irreducible 

realisations, including the 'spin-reducing' cases, were exhibited. 

Chapter seven was a review of some of the applications 

orthosymplectic supergroups have found in physical theories.  The 

relationship between these supergroups and the extended BRS symmetries 

of quantum gauge theories was first discussed, based on the work of 

Delbourgo and Jarvis [4].  It was then demonstrated how the N-extended 

super Poincare algebra could be obtained from a Inonu-Wigner contraction 

of OSp(N/4).  This chapter concluded with a discussion of the role 

played by OSp(N/4) as the ground state symmetry of some compactifying 

solutions in Kaluza-Klein supergravity theories [5]. 
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8.2  FUTURE RESEARCH 

Although the techniques developed in chapters three and four 

are applicable to any orthosymplectic superalgebra they become rapidly 

more complex to work with as the rank of the algebra increases. 

This is principally due to the rapid increase in the number of 

irreducible representations of OM x Sp(N) contained generally in 

N 
an irreducible representation of OSp(M/N).  This goes as 2 -̀ 1  and 

consequently without computer assistance would soon become unmanageable. 

Thus, a high priority for the approaches of chapters three and four 

would be the simplification of these procedures to make the higher 

rank algebras more accessible.  Indeed the recent work of Thierry- 

Mieg [6] takes a very significant step in this direction though it 

appears some degree of computer assistance may still be necessary. 

There are a number of possible areas, related to Young 

supertableaux, which are open for development.  Nearly all of these 

pertain to atypical representations.  In particular the development 

of modification rules, branching rules and rules for Kronecker 

products, for atypical representations of OSp(M/N) and from which one 

could determine the irreducible representations would be most welcome. 

A simpler form of the branching rule for spinor representations than that 

given in §5.3 would also be useful. 

The techniques of chapters three to five have been developed with 

the application to the orthsymplectic superalgebras as the immediate 

motivation.  However, hybrid forms of these procedures should also be 

applicable to the study of representations of any of the classical Lie 

superalgebras.  This is obviously a major task and it may be many years 

before the representation theory of Lie superalgebras has evolved to 

the level currently acquired by Lie algebras. 



The work presented in chapter six is only the beginning of a 

program for which the next phase is the use of these superfields in 

the construction of models of supersymmetric field theories.  It is 

hoped that these superfields will be more amenable to a fully covariant 

treatement with the minimal sets of auxiliary fields arising in a more 

transparent manner. 
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APPENDIX A: 	THE ALGEBRAS: C(2), B(1,1), D(2,1;a) 

The explicit form of the algebras for C(2), B(1,1) and D(2,1;a) 

as used in chapter three are presented here. The notation is as given 

in §3.2. 
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APPENDIX B: 	DEFINITION OF ADJOINT AND SUPERADJOINT OPERATIONS 

The adjoints and superadjoints [1] of all even root vectors 

corresponding to simple roots and of all generators in the Cartan 

tsubalgebra are defined as follows: (a) 	, (G±.) 1 =a:i. (h) t=h 	(h ) 1 =h .. 

	

J 	J 	j' 

The adjoints of the odd root vectors can be defined in two ways 

which we designate as AG, where G=1 or 2: 

B ( n,n ) : 	( 	- ± It  
+ lq 

'e% 	 \ t 	 j 

	

r  4- vn 	/ 	 rv) 
where 05jn-1, 	015M-1. 

D(m,n):  
t 

	

t 	(_ 1 ) 	vvN -1- 	a., 

	

yv 	I P.) 

( a' 	-3 ± 	r 	( _ 1 ) 'I-  IN-1 .1- t 	_ 

	

t- 	 -A 
where 05j5n-1, Ok5m-1, 115m-1. 

C(n): 	) t 	= (-I) 

I ) 

where 

The superadjoint of the odd root vectors can be defined in two 

ways which we designate as SG, where a=1 or 2: 

B(m,n): 	( 	 = ± _ 	_ 

t 	= 	 vv% +A 	4- 	- 

t where 05j551-1, Ok5m, 

D(m,n): 	 )t 	 n  
4-1-k  

	

pn-3 	\t 
• 	h + Yv% 	f 	 t-' n - yv

± 	= t  (_. 1 )3+YNItA+a- t-i 9 v- 
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where 0.j5n-1, 05k5m-1, 151m-1. 	
t- vt, 

C(n): 	( P3 	) 

where 1.45.n, 151(11-2: 

-7- (- 1) 	/ 3j 

.--+.  
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We note that for B(m,n) and D(m,n), but not C(n), the 'hidden' 

even Sp(2n) generator {t3 1.3. , s} defined in 53.2 transforms as 
+  ±  -T. 	-T. 	+ 	±1 

	

ive  so —is a , so and ive  ap 	130 

corresponding to compact and non-compact real forms of Sp(2n) in the 

superadjoint and adjoint cases, respectively. 
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APPENDIX C:  ORTHOGONALISED STATES, x j , AS HIGHEST WEIGHT 

STATES OF THE EVEN SUBALGEBRA. 

In this appendix it is demonstrated, in a quite general manner 

that the states, 

) 
xj = 11)j  -  j k  o k 

 kj 

as constructed in §3.3, are in fact highest weight states of the even 

C.1 

subalgebra. The proof presented here is quite simple and rests only 

on the assumption that, given a particular basis in the enveloping 

algebra, the states constructed in (Cl) by Schmidt orthogonalisation 

are unique. 

It will be recalled from §3.3 that the o k  are states of the 

same weight as  and such that (P k  = E; x k , where E; is a monomial 

of even,negative root vectors. The adjoint and superadjoint of c 

will be a monomial of even, positive root vectors, which will be 

designated F and G  (see Appendix B for a discussion 

of these operations): i.e. (c)
t 

= F
+ 

 

and  (E) .4   = G
k. 

If we now construct a highest weight state of the even subalgebra 

x ij , from oj  and some subset of the set of (o k ) from (Cl) then 

(x.,O ) =E- x k  ) =  xj  l  x k  ) = (F+  x l ' x k 
 ) = 0  C.2 

j k  j' k  k  '  k j  

since F;1.< x  Thus x i. is orthogonal to all the o k . If, however 

such a state can only be constructed uniquely then x. as constructed 

in (Cl) must be a highest weight of the even subalgebra. An identical 

argument follows if the superadjoint is taken in (C2). 
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APPENDIX D:  PROJECTION OPERATORS FOR SPIN Mx1/2 AND SPIN Mx1 

Chapters four and six require the use of spin Mx1/2 and spin Mxl, 

with respect to SU(2), projection operators. As explained in §4.2 the 

two-index basis for SU(2) is related to the spherical basis via 

M 	= 2(M-ac)  D.1 

where the generators are in a spin M matrix representation of SU(2). 

Where these act on superfield components such as ti)ct  or P ao , the question 

arises of projections onto total spins (M±1/2) or (M, M±1), respectively. 

These are derived using the characteristic identity (quadratic or cubic, 

respectively) satisfied by the generators in the reducible Mx1/2 and Mxl 

representations. 

The general construction of projection operators proceeds as 

follows.  Consider some reducible representation of an algebra with 

Casimir operator, C, and eigenvalues c l , c2 ,   , c
n

.  Then there 

exists a complete set of projection operators 
n  (C-c.) 

H. 
 

= (c-) 1  (c.-c.) 
j=1  1 j 

ji 

such that n.11
j 

=
131  

nd E U. = 1.  Each of the H. will extract a 
i=1  

1 

subspace with eigenvalue c i  with respect to C. 

For Mx1/2 we have for the Casimir (spin M indices are suppressed 

and indices a, i, ... are raised using the inverse metric c aa ) 

(iii. cr ) a = ( .1;i 	1/20) 2 a _ ( A ) 20 _ ( 1,(1) 2 a 
-  a  a 

D.3 

where M and 1/20 are spin M and spin 1/2 matrix representations respectively. 

The eigenvalues of (M-c) 	on the reducible Mx1/2 space are given by 

(M±1/2) subspace:  (M±1/2)(M±1/2+1) - M(M+1) - 1/2(1/2+1) = 

where M
+ 

= M and M = -M-1. 	The projection operators are therefore 

given by 

n ±1/213  = ( Maa  - 24a)/2(2M±  +1) 
a 

D.4 

D.5 
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where (D.1) has been used.  The following expressions can easily be 

derived from (0.5) and are frequently used 

o a 	n+1/2a  n-1/2a  D.6 

Ma a = 2W- Ii+1/2a + 2M-n-1/2  S 	 0.7 

	

a 	a 

14 13A  = 4M(M+1)6 1  - 2M Y  D.8 
a 

 a 	a 

For Mxl we have the Casimir 

^ 	Y6 	^ 	2y6 	- 2 y6 	21(6 
(M . E) 	(M 	1/2E) 	(M) 1 	- (1/2E) 	0.9 

aa - aa 	aa 	aa 

where  1/2E Y6  = 11(0 Y O 6  + 6 la 6  + a Y S 6  + 6 Ya 6 )  0.10 a 	a8 	13 a 	8_a 

is the spin 1 matrix representation and 

1Y6  = 1/2(6 Y O 6  + 6 6 6 Y ). 	 0.11 co 	a a 	a a 
^  The eigenvalues of (M-E) Y6  on the reducible Mxl space are given by aa 

(M±1) subspace:  (M±1)(M±1+1) - M(M+1) - 1(1+1) = 2M±  0.12 

(M) subspace :  M(M+1) - M(M+1) - 1(1+1) = -2  0.13 

Thus the projection operators are 

IN + ( 2M43)L + 4(M±+1)(M ±+2)1 
±lyd = aa 	8(M±+1)(2M-41) 

E 	4M+M- 1 Y6  
Y 6  - 110 

8M M  aa 

where we have used (D.8) and the following definitions 

EY6  = %(MY0 + 6 Y  M6  + MY 6 6  + 6 .1'416 ) 
aa 	2  aa 	a a 	(3 a 	13 a 

N Y6  = 1/4(66  + M6  MY  + MYM6  + M6 MY ) aa 	aa 	a a 	aa 	aa 

From these definitions several useful identities can be derived 

which are necessary for the extraction of component field variations. 

Examples are 

+ 1-v  6 6 ,±1 = p±1 17 -2, 	r 
a a 	Y6  aa 

+ + +1/21  
6 p±1 = 2M- P 1 

-aa H-a "a 	y6 

y 6  
0.14 

0.15 

0.16 

0.17 
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±1/2;y 	+1 	+%-y ^ 6 	+1 
H 	6 	P  = 0 = H - 2 ' M 	P 

a 	a 	yd 	 a 	16 

n ±1/21  6 6  P°
6  = 
	P° 	

4  
+ 	MY6 P

Y6
°  )/( 2M±  + 1) 

a a 	y 	aa 	aa  

+Ly " 6 0 	,_± -0 • . E  . .̂)(60 6 N/" -± 1.2)/(26. ,‘ 

 

1)  D.18 Py6  = -2(m r ocs  + 	asm r y  )km 

+1 	+116 ±1 	_ D ±1  0y6 DO 	. p
(
0 

). - r 	and Has  r (y6) 	as  where P -  and Po satisfy rra  P (y6 ) 	( as ) 

Other useful examples are 

1/2t6  y 6  6 	6  y 6  d )n 4, ±11 	in±116  nOyd ln  ,±11 

	

a  a 	(3 a 	y 6 	aa 	aa 	y'v d 

^ Y 6 	^ Y 6 	+1/2 	+ 	Oyd  +1/2 
1/2(Ma 6 a 	M a d a )ny 	= 2M±  11± 	- 2(M -+2)11

cd3 ny--(5 	D.19 
aa 

+113 
where fl - c2t  11) -3 2  = Iti -a 2  and n is a spinor parameter. 

Finally we have 

11± 46  A 	= 0 = Aa,  H 116  
aa 	y6 	aa 

016 ^ 	"aa Oyd 	^yd 
H 	M 	=M M 	H 	=M . 
aa 	y6 	aa ' 	aa  

D.20 
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APPENDIX E:  MATRIX REPRESENTATIONS OF OSp(1/2) 

In §4.4 the little group chosen involves the supergroup OSp(1/2) 

with generators (M ap, , Qa  ). The superfield technique requires explicit 
"  . 

matrix representations  ) of these generators acting on fields aa 	a 

of arbitrary Isuperspin' M (4.2), i.e. two component superfields 

4)a )act 

where (p a  has spin M and (p aa  has spin M-1/2 or n -r 6 
= 

Using the results of appendix D the matrices for the Sp(2) 

generators can be written as 

(ild pc  =  
aa C 

\ 	0  (M) 

/  d 
(M )  0 

^x d6 
aa cy / 

d  -x dO 
where (M) are spin M matrix representations and 

(Maa)cy 
correspond to 

aa c 

the reducible Mx1/2 representation 

-x do 
(M ) aaCy =(M ) aaC y 	ya a 	ya a 

d  + E 	6 6  + E 	 E.3 

we actually want to project the spin M-1/2 component from M x , however, 
aa 

since the spin M+1/2 projectors commute with it the form presented in 

(E.2) is appropriate, i.e. 

u-kdo t '1,;ix N ee  I dd n -1/2ee „  \ do ,  E.4 

 

" Cy "laa J CIS 'PeE  "aa J cy n  d6 Pee  ‘ "aa l Cy 9 d6 

since (p aa  has spin M-1/2. 

The matrices 6a ,D must be chosen to satisfy the anticommutation 
C 

relations 

kt ) pc (-4) ED  + (k) pc  6a ) ED =  -(At  E.5 

as required by the OSp(1/2) algebra.  The appropriate choice is found 

to be 

0 	11-1/2Cy 

	

(2M+1)
1,1 
	1, 	ba 

t rr --20 c 	0  
i baa 

(D
A 

E.1 

E.2 

E.6 



A 
When working with a ct  care must be taken to ensure that it anticommutes 

with a-numbers, though from the form (E.6) this property is not explicit 

A  D )  C D = 	\ do A.  
V"ae i cy 'do 
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A D 
Finally, the action of (A6,d c  and 

d 	• 
(Ma dc 4) (1 

6i a) 
on the superfield (1) D is 

E.7 

E.8 



1a
1 	

a 2  ar I 
, 

(a) = 1+1  a211 .. a r+1  
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APPENDIX F.  A PROOF WHICH DETERMINES THE YOUNG TABLEAU 

CORRESPONDING TO THE HIGHEST WEIGHT VECTOR, A. 

In the following we present a diagrammatic proof that the 

choice (5.7)  for and a = (0) in (5.2) uniquely determines the 

highest weight vector, A, for B(m,n) and D(m,n).  Given the selection 

criteria, for the diagram corresponding to A, which are presented in 

§§5.2.a, 5.2.b, this proof amounts to showing that if E = (p+x) has 

(n+x) columns where x corresponds to the final x rows in Z, then all 

the partitions in the series < "4/B > modify in Sp(2n) to a partition 

of rank < Ipl .  The rank of a partition (p) we designate as !pl. 

We first note that if (x) is a partition of the form 

x  p in Frobenius notation [2], then <  > modifies to (_1)I1/ 2  <  ›;  

otherwise it modifies to partitions of rank < 10.  Our proof is by 

induction in which we show that if < > contains no diagram of 

rank 101 then < 1-14-( x+2)  > contains no diagram of rank Ipl, where 

(x+2 ) is any partition for which 1(x+2 )I = lx1 +2 and u+(x2)  is a 

regular diagram. Since, in Sp(2n), modification involves removing 

a hook of length h = 2(P-n-1)  0 [3], then unless lx1 is even < 11X > 

will modify to partitions of rank < Ipl.  Consider now 

+ (x+2) 1  .  
+

p  (x4.2)}  Efu + (x+2)"} 

+ E{P" +(x+2 )} + Efw' + (x+2)'}  F.1 

where lo l l 5  11-1 1 - 1, 11111 1 5  IPI -2 , I(X+2 ) 1 1 5 l)(1 +1,  0 5  1(x+2 ) " 1 5  Ixl, 

and A is the s-function series A = E(-1) 1a1/2 {0.  We now divide both 
a 

sides by B and use AB = 1 = (0} to give 
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(u  (x+2 )  
B  - {11  (x+2 )} - ECP  ( x+2 )"1 

8 

E{P"  
(x+2)  B 	EfP1 B

(02)11  F.2 

Examining (F.2) we see that the final two terms explicitly 

modify to partitions of rank < 'pl.  Considering the first and second 

terms, we note two possibilities: 

(i)  (x+2) is not a form (a). 	In this case, 2 5 1(x+2)"I 5  IXI 

and by our assertion <   > will modify only to partitions 

of rank < M.  Also as noted earlier the first term will 

modify to a partition of rank < 'pl. 

(x+2) is of form (a).  For this case in .(F.1) we have 

E{P  (X 1-2 )"} = ( - 1) 1a/12 (111  E{1.1  (x+2)"} 

where now 2  1(x+2)"I 5  IXI.  The second term in (F.2) 

therefore takes the form 

(-1) 1a1/2 4} + Ef P 	I3X-1-2)"1 } . 

By our assertion the last term here modifies only to partitions 

of rank < 101 and the first term is explicitly of rank < 101 

except for 13 = {0}.  The first term in (F.2) modifies however 

to (-1)I a1 / 2<p>.  Thus the only terms contributing to < 1.1 > 

in (F.2) will cancel. 
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To complete the proof we need only show that for lxI = 2 ' <  >  B 

modifies only to partitions of rank <Id.  There are only two 

possibilities: 

( 1 )  x = (1 2 ) :  < P4.(12) >  _ < 1,+(1 2 )> + < u > + z<p'+(1)> + E<p"+(1 2 )> + E<p" 

-<p> + <1.1> — E<1.1"> + E<p ul > 

= E<1.1"> — E<p n > where 1111, 

(i i 
	

x = ( 2) : 	< 	> - < 0 114)> + E<p' + ( 1)> 
p+(2)  

+ E<11"1-(2)› 	E<Pul> 

where 111' 1 '1 < IPI • 
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APPENDIX G: 	e - CONVENTIONS AND SOME USEFUL IDENTITIES 

Conventions for chapter four: 

ab  
E 	= E 	=-E 

 
= - E 

aa 

where a,b = 1,2 , a,R = 1,2 and E
12 

= +1. 

ab  a  aR 	a 
6 	c bc = 6 C ' c 	c aY = 6  Y 

 

ba  act  aa ab 

	

6 	= E 	E  e
ba 6

aa 
= ea$ C ab 6 	, 

Conventions for chapter six: 
•• 
a0 ab = E 	= E 	= -Eab aa 

• • 
where a,13. = 1,2 , a,b = +,- and E

12 
= E

+- 
= +1. 

•• 

	

 a 	ab  a 
C 	c'• = 6- , 	E 	E 	= 6 

f3y 	Y 	bc  c 

 

.  • • 

5- = e-• e 	.(01) 	7aa 	aa ba - 
aa ' aa ba  '  

U 	= E 	E 	e . 
ab 

Metric n  = 
Pv 

a u  =  , (3 1-1  = (1,-a i ) , 	tr a p  (7J v  = 

The monomial bases for o aa  and 5aa  expansions in 0.5 and §6.3 

respectively, is given below together with some useful identities 

associated with taking products and derivatives.  These are given in 

the notation of §6. ,3, the corresponding relations for §4.5 are obtained 

5 ,  
by simply replacing 

aa by eaa 
i.e. 5 , 0, a 4- a, a  a. 

Calculus: 

-(3b = 	b 
3- 	6 	6- 	6 aa 	a a 

▪ ( z ) bc = 6  b 5 . c 1.  6  C 5 . b 
uad " v 	a a 	a a 

• • 	• 	• 	 • 
a-  (i55) f3Y =(s- I3  5Y  + 6. 1(  aa 	a 	a 	a 	a 

• (Mb = 	/1 1)  6.fl 	t7,7,N(3. 6 b 
°aa 	a a 	2 ‘ °°1  a a 



Identities: 

( 55 ) ab =  oad 5. b 
•  a 

••  •  • 
( 55 ) af3 = 5ad 5 3 

( 63 ) ad = (5506 7. a = .. (55) ab za 
b 

( 54 )  = ( 53 ) ad 5. 	(5 5 ) aa 
ad  

/aa 

= _ (55) ab 

••  — 
oad 51; 13  = 11( 55 ) a(3 611 _ 1/2(55)% e ca3 

1  /*F.,  1 	h za fz ipbC = :y 	z w 
' a '° '  od  ku )  'a 

- --  1 -3 6  «if • 	a 
U  (ee)  =  (e ) a  E 	( 3 )Y 

a 

-  a b 
e 

a

- 

(e )  = -  (
4

e )  d
a 

(55)a8 ( 6.5 ) ab = 0  

(55) jt6 ( 55 ) ;(;  =  C ji(; 	E jte.  c 65) ( 54 )  

(so)  (so) 
(5(5) cd =  (Ebc cad 4.  e ac cbd) (54) 
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