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José Figueroa-O’Farrill

UTokyo hep-th Seminar
28 September 2009

http://www.maths.ed.ac.uk/~jmf/CV/Seminars/Hongo.pdf
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Motivation

After more than 15 years we still have not answered this:

Main question
What is M-theory?

not a theory of strings!
a theory of membranes?
maybe, but quantising membranes is difficult!
AdS/CFT: try to at least understand dual theory
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José Figueroa-O’Farrill M2-branes, ADE and Lie superalgebras 3 / 43



M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

Context

We have a fairly good proposal for the 3d CFTs dual to
M2-branes

Bagger+Lambert (2006,2007)
Gustavsson (2007)

Aharony+Bergman+Jafferis+Maldacena (2008)
But we still lack a precise dictionary, despite many results

Benna+Klebanov+Klose+Smedbäck (2008)
Fuji+Terashima+Yamazaki, Terashima+Yagi (2008)

Singh, Kim (2008)
Ooguri+Park, Jafferis+Tomasiello (2008)

Imamura+Yokoyama (2008), Imamura, Fujita+Tai (2009)
et cetera
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José Figueroa-O’Farrill M2-branes, ADE and Lie superalgebras 4 / 43



M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

Content
To establish a dictionary, one needs to know the “words” in
both languages
In this talk we will learn some of these words:

1 we will classify N > 4 M2-brane geometries in terms of
“ADE with a twist”

2 we will classify N > 4 superconformal
Chern–Simons+matter theories in terms of metric Lie
superalgebras, or if you prefer, metric triple systems

Just like with natural languages (but for different reasons!)
it is too naive to expect a bijection between these two sets
of words, but it’s a departure point for a more systematic
study
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1 M2-branes and AdS/CFT

2 M2-brane geometries and ADE

3 Superconformal Chern–Simons theories

4 Triple systems and Lie superalgebras
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The M2-brane solution

Definition
The elementary M2-brane:

g = H− 2
3 ds2(R2,1) +H

1
3ds2(R8)

F = dvol(R2,1) ∧ dH−1,

where
H = α+

β

r6 ,

for α,β ∈ R not both equal to zero.

It is half-supersymmetric for .
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Asymptotia

β→ 0 (or r→∞):

(g, F)→ (ds2(R10,1), 0)

∴ Minkowski vacuum
α→ 0 (or r→ 0):

H
1
3ds2(R8) = H

1
3 (dr2 + r2ds2(S7))→ β

1
3
dr2

r2 + β
1
3ds2(S7)

∴ AdS4 × S7, the near-horizon limit
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Killing superalgebra

Every supersymmetric supergravity background has an
associated Lie superalgebra, generated by the Killing
spinors: the Killing superalgebra

FO (1999), FO+Meessen+Philip (2004)
For AdS4 × S7 it is osp(8|4)

The even subalgebra is

so(8)⊕ sp(4, R) ∼= so(8)⊕ so(3, 2),

i.e., the infinitesimal isometries of S7 and AdS4,
respectively.
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Conformal superalgebra

The Killing superalgebra is isomorphic to the conformal
superalgebra of the dual theory
Now so(3, 2) is the conformal algebra of R2,1 and so(8) is
the R-symmetry algebra
In general, three-dimensional conformal field theories
admit realisations of the conformal superalgebras
osp(N |4), with R-symmetry so(N ), for N 6 8.
Some of these theories are dual to M2-brane geometries
with conical singularities.
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2 M2-brane geometries and ADE
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Generalised M2-brane solution

Replace the S7 with M7:

g = H− 2
3 ds2(R2,1) +H

1
3 (dr2 + r2ds2(M7))

F = dvol(R2,1) ∧ dH−1,

field equations =⇒ M is Einstein
supersymmetry =⇒ M admits (real) Killing spinors:

∇mε = 1
2Γmε

(Notice: here supersymmetry =⇒ field equations)
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Bär’s cone construction

Question
Which manifolds admit real
Killing spinors?

The metric cone of a riemannian manifold (M,gM) is the
manifold C = R+ ×M with metric gC = dr2 + r2gM

e.g., the metric cone of the round sphere Sn is Rn+1 \ {0}

(M,gM) admits real Killing spinors if and only if (C,gC)

admits parallel spinors Bär (1993)
If M is complete, then C is either irreducible or flat

Gallot (1979)
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manifold C = R+ ×M with metric gC = dr2 + r2gM

e.g., the metric cone of the round sphere Sn is Rn+1 \ {0}

(M,gM) admits real Killing spinors if and only if (C,gC)

admits parallel spinors Bär (1993)
If M is complete, then C is either irreducible or flat

Gallot (1979)
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Irreducible holonomies
Simply-connected 8-manifolds with parallel spinors:

N Cone holonomy 7-dimensional geometry
8 {1} sphere
3 Sp(2) 3-Sasaki
2 SU(4) Sasaki-Einstein
1 Spin(7) weak G2 holonomy

M. Wang (1989)
So generalised supersymmetric M2-brane solutions describe
M2 branes at a conical singularity in an 8-manifold with special
holonomy.
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N > 3 and sphere quotients

To obtain 8 > N > 3 we need to consider quotients S7/Γ ,
for Γ ⊂ SO(8) such that

Γ acts freely on S7 (so that S7/Γ is smooth)
Γ lifts to Spin(8) (for S7/Γ to be spin)
Γ leaves some chiral spinors invariant (for supersymmetry)

It turns out there is an ADE classification... with a twist!
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ADE subgroups of Sp(1)

Dynkin diagram Label Name Order

An cyclic n+ 1

Dn>4 binary dihedral 4(n− 2)

E6 binary tetrahedral 24

E7 binary octahedral 48

E8 binary icosahedral 120
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... and the twist

Let Γ ⊂ Sp(1) be one of the ADE subgroups
Let τ ∈ Aut(Γ) be an automorphism
Let us embed Γ ↪→ SO(8) via

u · (x,y) = (ux, τ(u)y) ,

for x,y ∈ H and u ∈ Sp(1) ⊂ H
Then Γ acts freely on S7, lifts to Spin(8) and leaves
invariant at least 4 spinors
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The N > 3 classification
The backgrounds AdS4 ×M7 with N > 3 are those with
M = S7/Γ with Γ ⊂ SO(8) given by pairs (ADE, τ):

N Groups Γ
8 A1

6 An>2

5 Dn>4, E6, E7, E8

4 (An>4,6=5, r ∈ Z×
n+1 \ {±1})

(Dn>6, r ∈ Z×2(n−2)
\ {±1}), (E7,ν), (E8,ν)

If τ = 1 we don’t write it and ν is the unique nontrivial outer
automorphism of E7,8. (The ones in red were not known.)
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1 M2-branes and AdS/CFT

2 M2-brane geometries and ADE

3 Superconformal Chern–Simons theories

4 Triple systems and Lie superalgebras
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(Supersymmetric) M2-brane degrees of freedom

X,ψ

X,ψ are in a unitary
representation M of the
metric Lie algebra g; that
is, g has an invariant
inner product

(all fields in R2,1)
X: real scalars
corresponding to
transverse excitations
ψ: real 2-component
spinors
A: g-valued
Chern–Simons gauge
fields
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José Figueroa-O’Farrill M2-branes, ADE and Lie superalgebras 21 / 43



M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

(Supersymmetric) M2-brane degrees of freedom

X,ψ,A

X,ψ are in a unitary
representation M of the
metric Lie algebra g; that
is, g has an invariant
inner product

(all fields in R2,1)
X: real scalars
corresponding to
transverse excitations
ψ: real 2-component
spinors
A: g-valued
Chern–Simons gauge
fields
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Superconformal theories in 3 dimensions

The superconformal algebra of R2,1 is s := osp(N |4) with
N 6 8,

s0 = so(N )⊕ so(3, 2) and s1 = RN ⊗ R4

The R-symmetry algebra is so(N ), under which
the supercharges transform as a vector (i.e., in the N )
the scalars X transform as a spinor
so do the fermions ψ (but of opposite chirality, if N is even)
the gauge fields A are inert, since supersymmetry is rigid

Matter fields are in representations of so(N )⊕ g
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Spinor representations

N 1 2 3 4
so(N ) u(1) sp(1) sp(1)⊕ sp(1)

spinors R C H H⊕H

N 5 6 7 8
so(N ) sp(2) su(4) so(7) so(8)

spinors H2 C4 R8 R8 ⊕ R8
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Matter representations
The degrees of freedom of any physical theory are
fundamentally real
This determines the type (i.e., R, C or H) of the matter
g-representation M in terms of the type of the R-symmetry
representation:

if N = 1, 7, 8, then M is real, written M ∈ Rep(g, R)

if N = 2, 6, then M is complex, written M ∈ Rep(g, C)

if N = 3, 4, 5, then M is
If N = 2, 6 we have to take both
If N = 3, 4, 5 we have to
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

N 6 3 theories

For N 6 3 theories, the matter representation M is not
constrained beyond its type:

N =1 theory = M ∈ Rep(g, R) + quartic g-invariant
superpotential
N =2 theory = M ∈ Rep(g, C) + quartic g-invariant F-term
superpotential
N =3 theory = M ∈ Rep(g, H)!
Rigidity of N =3 theories agrees with the geometric rigidity
of complete 3-Sasakian manifolds

Pedersen+Poon (1999)
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José Figueroa-O’Farrill M2-branes, ADE and Lie superalgebras 25 / 43



M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

N 6 3 theories

For N 6 3 theories, the matter representation M is not
constrained beyond its type:

N =1 theory = M ∈ Rep(g, R) + quartic g-invariant
superpotential
N =2 theory = M ∈ Rep(g, C) + quartic g-invariant F-term
superpotential
N =3 theory = M ∈ Rep(g, H)!
Rigidity of N =3 theories agrees with the geometric rigidity
of complete 3-Sasakian manifolds

Pedersen+Poon (1999)
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

N > 4 theories

Now the representation (and also g!) is constrained.
N Matter representation Remarks
4 ∆

(4)
± ⊗W1 ⊕ ∆

(4)
∓ ⊗W2 W1,2 ∈ Rep(g, H)aLTS

5 ∆(5) ⊗W W ∈ Irr(g, H)aLTS

6 ∆
(6)
± ⊗ V ⊕ ∆

(6)
∓ ⊗ V V ∈ Irr(g, C)aJTS

8 ∆
(8)
± ⊗U U ∈ Irr(g, R)3LA

∆
(N )
± = ±-chirality (if applicable) spinor of so(N )

Irr = irreducible representations
The subscripts aLTS, aJTS and 3LA stand for certain types
of metric triple systems or equivalent for certain types of
Lie-embeddable unitary representations (see later)
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

Some remarks
For N > 5, irreducible representations decouple
N = 7 theories are automatically N = 8
Representation theory uniquely determines N > 3 theories
N > 4 theories can be defined in terms of 3-algebras or
triple systems, as in the original BLG model
As in ABJM, we can now show this language is not
necessary
As in Gaiotto+Witten (2008), we may adopt the more
familiar language of Lie superalgebras
Question: Can the theories be reformulated solely in
terms of Lie superalgebras?
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

1 M2-branes and AdS/CFT

2 M2-brane geometries and ADE

3 Superconformal Chern–Simons theories

4 Triple systems and Lie superalgebras
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

Superalgebras from representations
Slogan
When a Lie algebra admits an invariant inner product, its
unitary representations give rise to superalgebras.

The superalgebra consists of two subspaces
1 A metric Lie algebra g in degree 0
2 A unitary representation V in degree 1

and three products
1 g× g→ g is the Lie bracket on g
2 g× V → V is the action of g on V
3 V × V → g (or→ gC) is defined so that the natural inner

product on the superalgebra is invariant; equivalently, it is
the transpose of the g-action on V

If the Jacobi identity holds, V is Lie-embeddable
N > 3 supersymmetry demands that V is Lie-embeddable
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Triple systems from superalgebras
Slogan
The odd subspace of a superalgebra is a triple system.

g⊕ V a superalgebra
We define a 3-bracket on V by

[u, v,w] := [[u, v],w]

where the RHS brackets come from the superalgebra
For the N > 4 theories, the relevant triple systems are

metric 3-Lie algebras for N > 6
metric anti-Jordan triple systems for N = 6
symplectic anti-Lie triple systems for N = 4, 5
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

Metric Lie algebras

Let g be a Lie algebra with an invariant inner product
(−, −), not necessarily positive-definite.
Let (Xi) be a basis for g:

[Xi, Xj] = fij
kXk and

(
Xi, Xj

)
= κij

Invariance means that fijk = fik
`κ`k is totally

skewsymmetric
Not all Lie algebras are metric: reductive (=semisimple +
abelian) are,...
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
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Real unitary representations of a metric Lie algebra

Let U ∈ Rep(g, R) be a real unitary representation with
g-invariant inner product 〈−, −〉
Let (ea) be a basis for U and let 〈ea, eb〉 = gab.
For every Xi ∈ g we have

Xi · ea = ebTi
b

a

Unitarity means that Tiab = Ti
c

agbc = −Tiba
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M2-branes and AdS/CFT
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Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

Lie-embeddable real representations
Let U± = U but with degree ±1 and define on U− ⊕ g⊕U+

the following Lie brackets and inner product
[e+

a , e−
b ] = κijTiabXj, [Xi, e±a ] = Ti

b
ae±b , [Xi, Xj] = fij

kXk

(e+
a , e−

b ) = gab = −(e−
a , e+

b ) (Xi, Xj) = κij

Jacobi (+ metricity) ⇐⇒ Fabcd = κijTiabTjcd skew in abcd
⇐⇒ N = 8 supersymmetry!

The resulting 3-bracket
[ea, eb, ec]± := [[e+

a , e−
b ], e±c ]

defines on U the structure of a 3-Lie algebra
Nambu (1973), Filippov (1980)

FO+Papadopoulos (2003)
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

Classification

Theorem
There is precisely one (up to scale) irreducible positive-definite
metric 3-Lie algebra.

(Conjectured in FO+Papadopoulos (2003))
Nagy (2007)

Papadopoulos (2008)
Gauntlett+Gutowski (2008)

de Medeiros+FO+Méndez-Escobar (2008)
It follows from the classification of simple 3-Lie algebras

Ling (1993)
Cantarini+Kac (2009)
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

The metric 3-Lie algebra

g = so(4) ∼= sp(1)−k ⊕ sp(1)k, with subscripts indicating the
multiple of the Killing form
A priori k ∈ R but it is quantised in the quantum theory
U = R4 of so(4), or U = H with sp(1)⊕ sp(1) acting by left-
and right-multiplications
Fabcd = k−1εabcd

The resulting superconformal Chern–Simons theory is the
original BLG model

Bagger+Lambert (2006,2007)
Gustavsson (2007)
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

Complex unitary representations
Let V ∈ Rep(g, C) with hermitian inner product gab

On the 3-graded superspace V ⊕ gC ⊕ V define
[ea, eb] = κijTibaXj, [Xi, ea] = Ti

b
aeb, [Xi, Xj] = fij

kXk(
ea, eb

)
= gab = −

(
eb, ea

)
,

(
Xi, Xj

)
= κij

Jacobi ⇐⇒ Fabc
d := κijTibcTj

d
a = −Fcba

d

⇐⇒ N = 6 supersymmetry!
The sesquibilinear 3-bracket V × V × V → V

[ea, eb, ec] := [[ea, eb], ec]

turns V into anti-Jordan triple system
Faulkner+Ferrar (1980)
Bagger+Lambert (2008)
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Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

Classification

Indecomposable N = 6 theories ⇐⇒ V ∈ Irr(g, C)aJTS

V irreducible ⇐⇒ embedding Lie superalgebra is simple
Palmkvist, FO (2009)

Two classes of simple 3-graded complex (metric) Lie
superalgebras: A(m,n) and C(n+ 1) Kac (1977)
N = 6 theories have been classified by other means

Schnabl+Tachikawa (2008)
The A(n,n) theory is the ABJM model

Aharony+Bergman+Jafferis+Maldacena (2008)
The A(n,m 6= n) and C(n+ 1) theories have already been
constructed Hosomichi+3Lee+Park (2008)
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

Quaternionic unitary representations

There are no quaternionic Lie algebras
so we think of W ∈ Rep(g, H) as a complex unitary
representations with a quaternionic structure:

a complex antilinear map J : W →W obeying J2 = −1
J is g-equivariant
J is compatible with the hermitian inner product:
g(Ju, Jv) = g(v,u)

J defines a g-invariant complex symplectic structure

ω(u, v) := g(u, Jv)

with components ωab
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

Symplectic anti-Lie triple systems
On gC ⊕W we define

[ea, eb] = κijTi
c

aωcbXj, [Xi, ea] = Ti
b

aeb, [Xi, Xj] = fij
kXk

(ea, eb) = ωab

(
Xi, Xj

)
= κij

Let Gabc
d := κijTi

e
aωebTj

d
c. Then

Jacobi ⇐⇒ Gabc
d +Gbca

d +Gcab
d = 0 ⇐⇒ N = 5!

The 3-bracket

[ea, eb, ec] := [[ea, eb], ec]

turns W into a symplectic anti-Lie triple system
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

Classification

Indecomposable N = 5 theories ⇐⇒ W ∈ Irr(g, H)aLTS

W irreducible ⇐⇒ embedding Lie superalgebra is simple
FO (2009)

The simple complex (metric) Lie superalgebras with
quaternionic odd subspace are: A(m,n), B(m,n), C(n+ 1),
D(m,n), D(2, 1;α), F(4) and G(3) Kac (1977)
The N = 5 theories have been constructed

Hosomichi+3Lee+Park (2008)
Bergshoeff+Hohm+Roest+Samtleben+Sezgin (2008)
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M2-branes and AdS/CFT
M2-brane geometries and ADE

Superconformal Chern–Simons theories
Triple systems and Lie superalgebras

A comment on the N = 4 theories

Indecomposable N = 4 theories of Gaiotto+Witten
(2008) — those with matter representations ∆(4)

± ⊗W —
are also classified by irreducible symplectic anti-Lie triple
systems; equivalently by simple metric complex Lie
superalgebras with quaternionic odd subspace
The more general N = 4 theories of
Hosomichi+3Lee+Park (2008) — those with matter
representations ∆(4)

± ⊗W1 ⊕ ∆
(4)
∓ ⊗W2 — are classified in

terms of dominoes whose tiles are the above objects and
two tiles are said to match if they have a metric Lie
subalgebra in common
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Summary
We classified complete, smooth N > 4 Freund–Rubin
backgrounds AdS4 ×M7 by

1 showing that M = S7/Γ for some freely acting Γ ⊂ SO(8)
2 classifying such Γ in terms of pairs (ADE, τ) consisting of an

ADE subgroup of Sp(1) together with an automorphism
We showed that superconformal Chern–Simons+matter
theories are governed by the representation theory of
metric Lie algebras
We classified the N > 4 theories in terms of metric Lie
superalgebras; equivalently, in terms of certain metric triple
systems
Important: the inner product on the Lie superalgebra is a
crucial part of the data
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Further results
arXiv:0908.2125 [hep-th] contains more results!
The representation theory also explains naturally the
mechanism of supersymmetry enhancements:

1 N = 4 to N = 5
2 N = 5 to N = 6
3 N = 6 to N = 8, in particular why N = 7 implies N = 8

In the paper we also construct the theories starting from
the representation-theoretic data; in particular, we give
explicit expressions for the superpotentials
That in itself is worth another seminar, and luckily Paul and
Elena will be visiting IPMU from October (^_^)
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