M2-branes, ADE and Lie superalgebras

José Figueroa-O'Farrill

UTokyo hep-th Seminar 28 September 2009

http://www.maths.ed.ac.uk/~jmf/CV/Seminars/Hongo.pdf

< ロ > < 同 > < 回 > < 回 >

This talk is based on

- arXiv:0809.1086 [hep-th] (with PDM, EME, PR)
- arXiv:0908.2125 [hep-th] (with PDM, EME)
- arXiv:0909.1063 [hep-th] (with PDM, SG, EME)

where

PDM = Paul de Medeiros

SG = Sunil Gadhia

EME = Elena Méndez-Escobar

PR = Patricia Ritter

э

Motivation

After more than 15 years we still have not answered this:

Main question

What is M-theory?

- not a theory of strings!
- a theory of membranes?
- maybe, but quantising membranes is difficult.
- AdS/CET: try to at least understand dual theory

Motivation

After more than 15 years we still have not answered this:

Main question

What is M-theory?

- not a theory of strings!
- a theory of membranes?
- maybe, but quantising membranes is difficult!
- AdS/CFT: try to at least understand dual theory

Motivation

After more than 15 years we still have not answered this:

Main question

What is M-theory?

not a theory of strings!

- a theory of membranes?
- maybe, but quantising membranes is difficult!
- AdS/CFT: try to at least understand dual theory

Motivation

After more than 15 years we still have not answered this:

Main question

What is M-theory?

- not a theory of strings!
- a theory of membranes?
- maybe, but quantising membranes is difficult!
- AdS/CFT: try to at least understand dual theory

Motivation

After more than 15 years we still have not answered this:

Main question

What is M-theory?

- not a theory of strings!
- a theory of membranes?
- maybe, but quantising membranes is difficult!
- AdS/CFT: try to at least understand dual theory

Motivation

After more than 15 years we still have not answered this:

Main question

What is M-theory?

- not a theory of strings!
- a theory of membranes?
- maybe, but quantising membranes is difficult!
- AdS/CFT: try to at least understand dual theory

Context

• We have a fairly good proposal for the 3d CFTs dual to M2-branes

Bagger+Lambert (2006,2007) Gustavsson (2007)

Aharony+Bergman+Jafferis+Maldacena (2008)

 But we still lack a precise dictionary, despite many results BENNA+KLEBANOV+KLOSE+SMEDBÄCK (2008) FUJI+TERASHIMA+YAMAZAKI, TERASHIMA+YAGI (2008) SINGH, KIM (2008) OOGURI+PARK, JAFFERIS+TOMASIELLO (2008) IMAMURA+YOKOYAMA (2008), IMAMURA, FUJITA+TAI (2009) ET CETERA

Context

 We have a fairly good proposal for the 3d CFTs dual to M2-branes

BAGGER+LAMBERT (2006,2007) Gustavsson (2007)

AHARONY+BERGMAN+JAFFERIS+MALDACENA (2008)

 But we still lack a precise dictionary, despite many results BENNA+KLEBANOV+KLOSE+SMEDBÄCK (2008) FUJI+TERASHIMA+YAMAZAKI, TERASHIMA+YAGI (2008) SINGH, KIM (2008) OOGURI+PARK, JAFFERIS+TOMASIELLO (2008) IMAMURA+YOKOYAMA (2008), IMAMURA, FUJITA+TAI (2009) ET CETERA

Context

 We have a fairly good proposal for the 3d CFTs dual to M2-branes

> BAGGER+LAMBERT (2006,2007) Gustavsson (2007)

AHARONY+BERGMAN+JAFFERIS+MALDACENA (2008)

 But we still lack a precise dictionary, despite many results BENNA+KLEBANOV+KLOSE+SMEDBÄCK (2008) FUJI+TERASHIMA+YAMAZAKI, TERASHIMA+YAGI (2008) SINGH, KIM (2008) OOGURI+PARK, JAFFERIS+TOMASIELLO (2008) IMAMURA+YOKOYAMA (2008), IMAMURA, FUJITA+TAI (2009) ET CETERA

Content

- To establish a dictionary, one needs to know the "words" in both languages
- In this talk we will learn some of these words:
 - we will classify U/C> /4 M2-brane geometries in terms of U/CP /4 M2-brane geometrie
 - . we will classify 3/2 & superconformal
 - Chem-Simons+matter theories in terms of metric Lie
 - superalgebras, or if you prefer, metric triple systems
- Just like with natural languages (but for different reasons!) it is too naive to expect a bijection between these two sets of words, but it's a departure point for a more systematic study

Content

- To establish a dictionary, one needs to know the "words" in both languages
- In this talk we will learn some of these words:
 - we will classify N > 4 M2-brane geometries in terms of "ADE with a twist"
 - I we will classify 31 > 4 superconformal
 - Chem-Simons-matter theories in terms of metric Lie
 - superalgebras, ortifyou prefer, metric triple systems
- Just like with natural languages (but for different reasons!) it is too naive to expect a bijection between these two sets of words, but it's a departure point for a more systematic study

Content

- To establish a dictionary, one needs to know the "words" in both languages
- In this talk we will learn some of these words:
 - we will classify N ≥ 4 M2-brane geometries in terms of "ADE with a twist"
 - 2 we will classify N ≥ 4 superconformal Chern–Simons+matter theories in terms of metric Lie superalgebras, or if you prefer, metric triple systems
- Just like with natural languages (but for different reasons!) it is too naive to expect a bijection between these two sets of words, but it's a departure point for a more systematic study

Content

- To establish a dictionary, one needs to know the "words" in both languages
- In this talk we will learn some of these words:
 - we will classify N > 4 M2-brane geometries in terms of "ADE with a twist"
 - 2 we will classify N ≥ 4 superconformal Chern–Simons+matter theories in terms of metric Lie superalgebras, or if you prefer, metric triple systems
- Just like with natural languages (but for different reasons!) it is too naive to expect a bijection between these two sets of words, but it's a departure point for a more systematic study

Content

- To establish a dictionary, one needs to know the "words" in both languages
- In this talk we will learn some of these words:
 - we will classify N > 4 M2-brane geometries in terms of "ADE with a twist"
 - 2 we will classify N ≥ 4 superconformal Chern–Simons+matter theories in terms of metric Lie superalgebras, or if you prefer, metric triple systems
- Just like with natural languages (but for different reasons!) it is too naive to expect a bijection between these two sets of words, but it's a departure point for a more systematic study

Content

- To establish a dictionary, one needs to know the "words" in both languages
- In this talk we will learn some of these words:
 - we will classify N > 4 M2-brane geometries in terms of "ADE with a twist"
 - ② we will classify N ≥ 4 superconformal Chern–Simons+matter theories in terms of metric Lie superalgebras, or if you prefer, metric triple systems
- Just like with natural languages (but for different reasons!) it is too naive to expect a bijection between these two sets of words, but it's a departure point for a more systematic study

- 2 M2-brane geometries and ADE
- Superconformal Chern–Simons theories
- Triple systems and Lie superalgebras

< 回 > < 三 > < 三 >

2 M2-brane geometries and ADE

- 3 Superconformal Chern–Simons theories
- 4 Triple systems and Lie superalgebras

The M2-brane solution

Definition

The elementary M2-brane:

$$g = H^{-\frac{2}{3}} ds^{2}(\mathbb{R}^{2,1}) + H^{\frac{1}{3}} ds^{2}(\mathbb{R}^{8}$$
$$F = dvol(\mathbb{R}^{2,1}) \wedge dH^{-1},$$

where

$$\mathsf{H} = \alpha + \frac{\beta}{r^6} \; ,$$

for $\alpha, \beta \in \mathbb{R}$ not both equal to zero.

It is half-supersymmetric for .

The M2-brane solution

Definition

The elementary M2-brane:

$$g = H^{-\frac{2}{3}} ds^{2}(\mathbb{R}^{2,1}) + H^{\frac{1}{3}} ds^{2}(\mathbb{R}^{8}$$
$$F = dvol(\mathbb{R}^{2,1}) \wedge dH^{-1},$$

where

$$\mathsf{H} = \alpha + \frac{\beta}{r^6} \; ,$$

for $\alpha, \beta \in \mathbb{R}$ not both equal to zero.

It is half-supersymmetric for generic α , β .

The M2-brane solution

Definition

The elementary M2-brane:

$$g = H^{-\frac{2}{3}} ds^{2}(\mathbb{R}^{2,1}) + H^{\frac{1}{3}} ds^{2}(\mathbb{R}^{8}$$
$$F = dvol(\mathbb{R}^{2,1}) \wedge dH^{-1},$$

where

$$\mathsf{H} = \alpha + \frac{\beta}{r^6} \; ,$$

for $\alpha, \beta \in \mathbb{R}$ not both equal to zero.

It is half-supersymmetric for $\alpha\beta \neq 0$.

Asymptotia

• $\beta \rightarrow 0 \text{ (or } r \rightarrow \infty)$:

 $(g,F) \to (ds^2(\mathbb{R}^{10,1}),0)$

:: Minkowski vacuum

• $\alpha \rightarrow 0$ (or $r \rightarrow 0$):

 $H^{\frac{1}{2}} as^{2}(\mathbb{R}^{6}) \rightarrow H^{\frac{1}{2}}(as^{2} + s^{2}as^{2}(S^{2})) \rightarrow g^{\frac{1}{2}} \frac{dr^{2}}{r^{2}} \rightarrow g^{\frac{1}{2}}as^{2}(S^{2})$

э

Asymptotia

• $\beta \rightarrow 0$ (or $r \rightarrow \infty$):

 $(g,F) \to (ds^2(\mathbb{R}^{10,1}),0)$

- .:. Minkowski vacuum
- $\alpha \rightarrow 0$ (or $r \rightarrow 0$):

 $H^{\frac{1}{2}}ds^{2}(\mathbb{R}^{6}) = H^{\frac{1}{2}}(dr^{2} + r^{2}ds^{2}(S^{7})) \rightarrow \rho^{\frac{1}{2}} H^{\frac{1}{2}} = \rho^{\frac{1}{2}}ds^{2}(S^{7})$

Asymptotia

•
$$\beta \rightarrow 0$$
 (or $r \rightarrow \infty$):

 $(g,F) \rightarrow (ds^2(\mathbb{R}^{10,1}),\mathbf{0})$

.:. Minkowski vacuum

•
$$\alpha \rightarrow 0$$
 (or $r \rightarrow 0$):

 $H^{\frac{1}{3}}ds^{2}(\mathbb{R}^{8}) = H^{\frac{1}{3}}(dr^{2} + r^{2}ds^{2}(S^{7})) \rightarrow \beta^{\frac{1}{3}}\frac{dr^{2}}{r^{2}} + \beta^{\frac{1}{3}}ds^{2}(S^{7})$

 \therefore AdS₄ × S⁷, the near-horizon limit

Asymptotia

•
$$\beta \rightarrow 0$$
 (or $r \rightarrow \infty$):

 $(g,F) \rightarrow (ds^2(\mathbb{R}^{10,1}),\mathbf{0})$

.:. Minkowski vacuum

•
$$\alpha \rightarrow 0$$
 (or $r \rightarrow 0$):

 $H^{\frac{1}{3}}ds^{2}(\mathbb{R}^{8}) = H^{\frac{1}{3}}(dr^{2} + r^{2}ds^{2}(S^{7})) \rightarrow \beta^{\frac{1}{3}}\frac{dr^{2}}{r^{2}} + \beta^{\frac{1}{3}}ds^{2}(S^{7})$

 \therefore AdS₄ × S⁷, the near-horizon limit

Asymptotia

•
$$\beta \rightarrow 0$$
 (or $r \rightarrow \infty$):

 $(g,F) \rightarrow (ds^2(\mathbb{R}^{10,1}),\mathbf{0})$

.:. Minkowski vacuum

•
$$\alpha \rightarrow 0$$
 (or $r \rightarrow 0$):

 $H^{\frac{1}{3}}ds^{2}(\mathbb{R}^{8}) = H^{\frac{1}{3}}(dr^{2} + r^{2}ds^{2}(S^{7})) \rightarrow \beta^{\frac{1}{3}}\frac{dr^{2}}{r^{2}} + \beta^{\frac{1}{3}}ds^{2}(S^{7})$

 \therefore AdS₄ \times S⁷, the near-horizon limit

Killing superalgebra

 Every supersymmetric supergravity background has an associated Lie superalgebra, generated by the Killing spinors: the Killing superalgebra

FO (1999), FO+MEESSEN+PHILIP (20)

• For $AdS_4 \times S^7$ it is $\mathfrak{osp}(8|4)$

• The even subalgebra is

 $\mathfrak{so}(8)\oplus\mathfrak{sp}(4,\mathbb{R})\cong\mathfrak{so}(8)\oplus\mathfrak{so}(3,2),$

i.e., the infinitesimal isometries of S⁷ and AdS₄, respectively.

Killing superalgebra

 Every supersymmetric supergravity background has an associated Lie superalgebra, generated by the Killing spinors: the Killing superalgebra

FO (1999), FO+MEESSEN+PHILIP (2004)

• For $AdS_4 \times S^7$ it is $\mathfrak{osp}(8|4)$

• The even subalgebra is

 $\mathfrak{so}(8) \oplus \mathfrak{sp}(4,\mathbb{R}) \cong \mathfrak{so}(8) \oplus \mathfrak{so}(3,2),$

i.e., the infinitesimal isometries of S⁷ and AdS₄, respectively.

Killing superalgebra

- Every supersymmetric supergravity background has an associated Lie superalgebra, generated by the Killing spinors: the Killing superalgebra
 - FO (1999), FO+MEESSEN+PHILIP (2004)
- For $AdS_4 \times S^7$ it is $\mathfrak{osp}(8|4)$

The even subalgebra is

 $\mathfrak{so}(8) \oplus \mathfrak{sp}(4,\mathbb{R}) \cong \mathfrak{so}(8) \oplus \mathfrak{so}(3,2),$

i.e., the infinitesimal isometries of S⁷ and AdS₄, respectively.

Killing superalgebra

- Every supersymmetric supergravity background has an associated Lie superalgebra, generated by the Killing spinors: the Killing superalgebra
 - FO (1999), FO+MEESSEN+PHILIP (2004)
- For $AdS_4 \times S^7$ it is $\mathfrak{osp}(8|4)$
- The even subalgebra is

```
\mathfrak{so}(8) \oplus \mathfrak{sp}(4,\mathbb{R}) \cong \mathfrak{so}(8) \oplus \mathfrak{so}(3,2),
```

i.e., the infinitesimal isometries of S^7 and AdS_4 , respectively.

Conformal superalgebra

- The Killing superalgebra is isomorphic to the conformal superalgebra of the dual theory
- Now so(3, 2) is the conformal algebra of ℝ^{2,1} and so(8) is the R-symmetry algebra
- In general, three-dimensional conformal field theories admit realisations of the conformal superalgebras osp(𝒴|4), with R-symmetry so(𝒴), for 𝒴 ≤ 8.
- Some of these theories are dual to M2-brane geometries with conical singularities.

・ロ・・ (日・・ ヨ・・

Conformal superalgebra

- The Killing superalgebra is isomorphic to the conformal superalgebra of the dual theory
- Now so(3, 2) is the conformal algebra of ℝ^{2,1} and so(8) is the R-symmetry algebra
- In general, three-dimensional conformal field theories admit realisations of the conformal superalgebras osp(𝒴|4), with R-symmetry so(𝒴), for 𝒴 ≤ 8.
- Some of these theories are dual to M2-brane geometries with conical singularities.

Conformal superalgebra

- The Killing superalgebra is isomorphic to the conformal superalgebra of the dual theory
- Now so(3, 2) is the conformal algebra of ℝ^{2,1} and so(8) is the R-symmetry algebra
- In general, three-dimensional conformal field theories admit realisations of the conformal superalgebras osp(𝒴|4), with R-symmetry so(𝒴), for 𝒴 ≤ 8.
- Some of these theories are dual to M2-brane geometries with conical singularities.

Conformal superalgebra

- The Killing superalgebra is isomorphic to the conformal superalgebra of the dual theory
- Now so(3, 2) is the conformal algebra of ℝ^{2,1} and so(8) is the R-symmetry algebra
- In general, three-dimensional conformal field theories admit realisations of the conformal superalgebras osp(𝒴|4), with R-symmetry so(𝒴), for 𝒴 ≤ 8.
- Some of these theories are dual to M2-brane geometries with conical singularities.

э.

Conformal superalgebra

- The Killing superalgebra is isomorphic to the conformal superalgebra of the dual theory
- Now so(3, 2) is the conformal algebra of ℝ^{2,1} and so(8) is the R-symmetry algebra
- In general, three-dimensional conformal field theories admit realisations of the conformal superalgebras osp(𝒴|4), with R-symmetry so(𝒴), for 𝒴 ≤ 8.
- Some of these theories are dual to M2-brane geometries with conical singularities.

イロト イポト イヨト イヨト

э.

2 M2-brane geometries and ADE

- 3 Superconformal Chern–Simons theories
- 4 Triple systems and Lie superalgebras

Generalised M2-brane solution

• Replace the S^7 with M^7 :

$$\begin{split} g &= H^{-\frac{2}{3}} \, ds^2(\mathbb{R}^{2,1}) + H^{\frac{1}{3}}(dr^2 + r^2 ds^2(M^7)) \\ F &= dvol(\mathbb{R}^{2,1}) \wedge dH^{-1}, \end{split}$$

- field equations → M is Einstein
- supersymmetry $\implies M$ admits (real) Killing spinors:

$$\nabla_{\mathbf{m}}\varepsilon = \frac{1}{2}\Gamma_{\mathbf{m}}\varepsilon$$

(Notice: here supersymmetry \implies field equations)

・ロト ・回ト ・ヨト ・ヨト

Generalised M2-brane solution

• Replace the S⁷ with M⁷:

$$\begin{split} g &= H^{-\frac{2}{3}} \, ds^2(\mathbb{R}^{2,1}) + H^{\frac{1}{3}}(dr^2 + r^2 ds^2(M^7)) \\ F &= \text{dvol}(\mathbb{R}^{2,1}) \wedge dH^{-1}, \end{split}$$

- field equations → M is Einstein
- supersymmetry $\implies M$ admits (real) Killing spinors:

$$\nabla_{\mathbf{m}}\varepsilon = \frac{1}{2}\Gamma_{\mathbf{m}}\varepsilon$$

(Notice: here supersymmetry \implies field equations)

Generalised M2-brane solution

• Replace the S⁷ with M⁷:

$$\begin{split} g &= H^{-\frac{2}{3}} \, ds^2(\mathbb{R}^{2,1}) + H^{\frac{1}{3}}(dr^2 + r^2 ds^2(M^7)) \\ F &= \text{dvol}(\mathbb{R}^{2,1}) \wedge dH^{-1}, \end{split}$$

- field equations $\implies M$ is Einstein
- supersymmetry $\implies M$ admits (real) Killing spinors:

$$\nabla_{\mathrm{m}}\varepsilon = \frac{1}{2}\Gamma_{\mathrm{m}}\varepsilon$$

(Notice: here supersymmetry \implies field equations)

イロト イポト イヨト イヨト

Generalised M2-brane solution

• Replace the S⁷ with M⁷:

$$\begin{split} g &= H^{-\frac{2}{3}} \, ds^2(\mathbb{R}^{2,1}) + H^{\frac{1}{3}}(dr^2 + r^2 ds^2(M^7)) \\ F &= \text{dvol}(\mathbb{R}^{2,1}) \wedge dH^{-1}, \end{split}$$

- field equations \implies M is Einstein
- supersymmetry \implies M admits (real) Killing spinors:

$$\nabla_{\mathrm{m}}\varepsilon = \frac{1}{2}\Gamma_{\mathrm{m}}\varepsilon$$

(Notice: here supersymmetry \implies field equations)

イロト イポト イヨト イヨト

Generalised M2-brane solution

• Replace the S⁷ with M⁷:

$$\begin{split} g &= H^{-\frac{2}{3}} \, ds^2(\mathbb{R}^{2,1}) + H^{\frac{1}{3}}(dr^2 + r^2 ds^2(M^7)) \\ F &= \text{dvol}(\mathbb{R}^{2,1}) \wedge dH^{-1}, \end{split}$$

- field equations \implies M is Einstein
- supersymmetry \implies M admits (real) Killing spinors:

$$\nabla_{\mathrm{m}}\varepsilon = \frac{1}{2}\Gamma_{\mathrm{m}}\varepsilon$$

(Notice: here supersymmetry \implies field equations)

Bär's cone construction

Question

Which manifolds admit real Killing spinors?

- The metric cone of a riemannian manifold (M, g_M) is the manifold $C = \mathbb{R}^+ \times M$ with metric $g_C = dr^2 + r^2 g_M$ e.g., the metric cone of the round sphere S^n is $\mathbb{R}^{n+1} \setminus \{0\}$
- (M, g_M) admits real Killing spinors if and only if (C, g_C) admits parallel spinors
 BÄR (1993)
- If *M* is complete, then *C* is either irreducible or flat

GALLOT (1979)

(4月) (4日) (4日)

Bär's cone construction

Question

Which manifolds admit real Killing spinors?

- The metric cone of a riemannian manifold (M, g_M) is the manifold $C = \mathbb{R}^+ \times M$ with metric $g_C = dr^2 + r^2 g_M$
 - e.g., the metric cone of the round sphere S^n is $\mathbb{R}^{n+1} \setminus \{0\}$
- (M, g_M) admits real Killing spinors if and only if (C, g_C) admits parallel spinors
 BÄR (1993)
- If M is complete, then C is either irreducible or flat

GALLOT (1979)

イロト イポト イヨト イヨト

Bär's cone construction

Question

Which manifolds admit real Killing spinors?

- The metric cone of a riemannian manifold (M, g_M) is the manifold $C = \mathbb{R}^+ \times M$ with metric $g_C = dr^2 + r^2 g_M$ e.g., the metric cone of the round sphere S^n is $\mathbb{R}^{n+1} \setminus \{0\}$
- (M, g_M) admits real Killing spinors if and only if (C, g_C) admits parallel spinors
 BÄR (1993)
- If M is complete, then C is either irreducible or flat

GALLOT (1979)

э.

イロト イポト イヨト イヨト

Bär's cone construction

Question

Which manifolds admit real Killing spinors?

- The metric cone of a riemannian manifold (M, g_M) is the manifold C = ℝ⁺ × M with metric g_C = dr² + r²g_M e.g., the metric cone of the round sphere Sⁿ is ℝⁿ⁺¹ \ {0}
- (M, g_M) admits real Killing spinors if and only if (C, g_C) admits parallel spinors
 BÄR (1993)
- If M is complete, then C is either irreducible or flat GALLOT (1

Bär's cone construction

Question

Which manifolds admit real Killing spinors?

- The metric cone of a riemannian manifold (M, g_M) is the manifold $C = \mathbb{R}^+ \times M$ with metric $g_C = dr^2 + r^2 g_M$ e.g., the metric cone of the round sphere S^n is $\mathbb{R}^{n+1} \setminus \{0\}$
- (M, g_M) admits real Killing spinors if and only if (C, g_C) admits parallel spinors
 BÄR (1993)
- If M is complete, then C is either irreducible or flat

Gallot (1979)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Irreducible holonomies

Simply-connected 8-manifolds with parallel spinors:

N	Cone holonomy	7-dimensional geometry
8	{1}	sphere
3	Sp(2)	3-Sasaki
2	SU(4)	Sasaki-Einstein
1	Spin(7)	weak G ₂ holonomy

M. WANG (1989)

So generalised supersymmetric M2-brane solutions describe M2 branes at a conical singularity in an 8-manifold with special holonomy.

$\mathcal{N} > 3$ and sphere quotients

 To obtain 8 > N > 3 we need to consider quotients S⁷/Γ, for Γ ⊂ SO(8) such that

- Γ acts freely on S⁷ (so that S⁷/Γ is smooth).
- If lifts to Spin(8) (for S⁷/If to be spin).
- If leaves some chiral spinors invariant (for supersymmetry)

• It turns out there is an ADE classification... with a twist!

$\mathcal{N} > 3$ and sphere quotients

To obtain 8 > N > 3 we need to consider quotients S⁷/Γ, for Γ ⊂ SO(8) such that

- Γ acts freely on S⁷ (so that S⁷/ Γ is smooth)
- Γ lifts to Spin(8) (for S⁷/ Γ to be spin)
- Γ leaves some chiral spinors invariant (for supersymmetry)
- It turns out there is an ADE classification... with a twist!

 $\mathcal{N} > 3$ and sphere quotients

- To obtain 8 > N > 3 we need to consider quotients S⁷/Γ, for Γ ⊂ SO(8) such that
 - Γ acts freely on S⁷ (so that S⁷/ Γ is smooth)
 - Γ lifts to Spin(8) (for S^7/Γ to be spin)

Γ leaves some chiral spinors invariant (for supersymmetry)

It turns out there is an ADE classification... with a twist!

 $\mathcal{N} > 3$ and sphere quotients

- To obtain 8 > N > 3 we need to consider quotients S⁷/Γ, for Γ ⊂ SO(8) such that
 - Γ acts freely on S⁷ (so that S⁷/ Γ is smooth)
 - Γ lifts to Spin(8) (for S^7/Γ to be spin)

Γ leaves some chiral spinors invariant (for supersymmetry)

It turns out there is an ADE classification... with a twist!

 $\mathcal{N} > 3$ and sphere quotients

- To obtain 8 > N > 3 we need to consider quotients S⁷/Γ, for Γ ⊂ SO(8) such that
 - Γ acts freely on S⁷ (so that S⁷/ Γ is smooth)
 - Γ lifts to Spin(8) (for S^7/Γ to be spin)
 - Γ leaves some chiral spinors invariant (for supersymmetry)

• It turns out there is an ADE classification... with a twist!

< ロ > < 同 > < 回 > < 回 >

 $\mathcal{N} > 3$ and sphere quotients

- To obtain 8 > N > 3 we need to consider quotients S⁷/Γ, for Γ ⊂ SO(8) such that
 - Γ acts freely on S⁷ (so that S⁷/ Γ is smooth)
 - Γ lifts to Spin(8) (for S^7/Γ to be spin)
 - Γ leaves some chiral spinors invariant (for supersymmetry)
- It turns out there is an ADE classification... with a twist!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ADE subgroups of Sp(1)

Dynkin diagram	Label	Name	Order
••-•	An	cyclic	n + 1
· · · · · · · · · · · · · · · · · · ·	$D_{n \geqslant 4}$	binary dihedral	4(n - 2)
•••••	E ₆	binary tetrahedral	24
••••••	E ₇	binary octahedral	48
••••••	E ₈	binary icosahedral	120

... and the twist

Let Γ ⊂ Sp(1) be one of the ADE subgroups
Let τ ∈ Aut(Γ) be an automorphism
Let us embed Γ → SO(8) via

 $\mathbf{u} \cdot (\mathbf{x}, \mathbf{y}) = (\mathbf{u}\mathbf{x}, \mathbf{\tau}(\mathbf{u})\mathbf{y}) ,$

for $x, y \in \mathbb{H}$ and $u \in Sp(1) \subset \mathbb{H}$

 Then Γ acts freely on S⁷, lifts to Spin(8) and leaves invariant at least 4 spinors

... and the twist

• Let $\Gamma \subset Sp(1)$ be one of the ADE subgroups

- Let $\tau \in Aut(\Gamma)$ be an automorphism
- Let us embed $\Gamma \hookrightarrow SO(8)$ via

 $\mathbf{u} \cdot (\mathbf{x}, \mathbf{y}) = (\mathbf{u}\mathbf{x}, \mathbf{\tau}(\mathbf{u})\mathbf{y}) ,$

for $x, y \in \mathbb{H}$ and $u \in Sp(1) \subset \mathbb{H}$

 Then Γ acts freely on S⁷, lifts to Spin(8) and leaves invariant at least 4 spinors

... and the twist

- Let $\Gamma \subset Sp(1)$ be one of the ADE subgroups
- Let $\tau \in Aut(\Gamma)$ be an automorphism
- Let us embed Γ → SO(8) via

 $\mathbf{u} \cdot (\mathbf{x}, \mathbf{y}) = (\mathbf{u}\mathbf{x}, \mathbf{\tau}(\mathbf{u})\mathbf{y}) ,$

for $x, y \in \mathbb{H}$ and $u \in Sp(1) \subset \mathbb{H}$

 Then Γ acts freely on S⁷, lifts to Spin(8) and leaves invariant at least 4 spinors

... and the twist

- Let $\Gamma \subset Sp(1)$ be one of the ADE subgroups
- Let $\tau \in Aut(\Gamma)$ be an automorphism
- Let us embed $\Gamma \hookrightarrow SO(8)$ via

 $u\cdot(x,y)=(ux,\tau(u)y)$,

for $x,y\in\mathbb{H}$ and $\mathfrak{u}\in Sp(1)\subset\mathbb{H}$

 Then Γ acts freely on S⁷, lifts to Spin(8) and leaves invariant at least 4 spinors

... and the twist

- Let $\Gamma \subset Sp(1)$ be one of the ADE subgroups
- Let $\tau \in Aut(\Gamma)$ be an automorphism
- Let us embed $\Gamma \hookrightarrow SO(8)$ via

 $u\cdot(x,y)=(ux,\tau(u)y)$,

for $x,y\in\mathbb{H}$ and $\mathfrak{u}\in Sp(1)\subset\mathbb{H}$

 Then Γ acts freely on S⁷, lifts to Spin(8) and leaves invariant at least 4 spinors

э

The $\mathcal{N} > 3$ classification

The backgrounds $AdS_4 \times M^7$ with $\mathscr{N} > 3$ are those with $M = S^7/\Gamma$ with $\Gamma \subset SO(8)$ given by pairs (ADE, τ):

\mathcal{N}	Groups Γ

If $\tau = 1$ we don't write it and ν is the unique nontrivial outer automorphism of E_{7.8}. (The ones in red were not known.)

The $\mathcal{N} > 3$ classification

The backgrounds $AdS_4 \times M^7$ with $\mathscr{N} > 3$ are those with $M = S^7/\Gamma$ with $\Gamma \subset SO(8)$ given by pairs (ADE, τ):

N	Groups Г
8	A ₁
	$A_{n \ge 2}$
	$D_{n \geqslant 4}, E_6, E_7, E_8$
	$(A_{n\geqslant 4,\neq 5}, r\in \mathbb{Z}_{n+1}^{\times}\setminus\{\pm 1\})$
	$(D_{n\geqslant 6}, \mathfrak{r}\in\mathbb{Z}_{2(n-2)}^{\times}\setminus\{\pm1\}), (E_7,\nu), (E_8,\nu)$

If $\tau = 1$ we don't write it and v is the unique nontrivial outer automorphism of $E_{7.8}$. (The ones in red were not known.)

イロト イポト イヨト イヨト

The $\mathcal{N} > 3$ classification

The backgrounds $AdS_4 \times M^7$ with $\mathscr{N} > 3$ are those with $M = S^7/\Gamma$ with $\Gamma \subset SO(8)$ given by pairs (ADE, τ):

\mathcal{N}	Groups Γ
8	A ₁
6	$A_{n \ge 2}$
	$D_{n \geqslant 4}, E_6, E_7, E_8$
	$(A_{n\geqslant 4,\neq 5}, r\in \mathbb{Z}_{n+1}^{\times}\setminus\{\pm 1\})$
	$(D_{n\geqslant 6}, \mathfrak{r}\in \mathbb{Z}_{2(n-2)}^{\times}\setminus\{\pm 1\}), (E_7,\nu), (E_8,\nu)$

If $\tau = 1$ we don't write it and v is the unique nontrivial outer automorphism of $E_{7.8}$. (The ones in red were not known.)

イロト イポト イヨト イヨト

The $\mathcal{N} > 3$ classification

The backgrounds $AdS_4 \times M^7$ with $\mathscr{N} > 3$ are those with $M = S^7/\Gamma$ with $\Gamma \subset SO(8)$ given by pairs (ADE, τ):

\mathcal{N}	Groups Γ
8	A ₁
6	$A_{n \ge 2}$
5	$D_{n \geqslant 4}, E_6, E_7, E_8$
	$(A_{n\geqslant 4,\neq 5}, r\in \mathbb{Z}_{n+1}^{\times}\setminus\{\pm 1\})$
	$(D_{n\geqslant 6}, \mathfrak{r}\in \mathbb{Z}_{2(n-2)}^{\times}\setminus\{\pm 1\}), (E_7,\nu), (E_8,\nu)$

If $\tau = 1$ we don't write it and ν is the unique nontrivial outer automorphism of E_{7.8}. (The ones in red were not known.)

The $\mathcal{N} > 3$ classification

The backgrounds $AdS_4 \times M^7$ with $\mathscr{N} > 3$ are those with $M = S^7/\Gamma$ with $\Gamma \subset SO(8)$ given by pairs (ADE, τ):

\mathcal{N}	Groups Г
8	A ₁
6	$A_{n \ge 2}$
5	$D_{n\geqslant 4},E_6,E_7,E_8$
4	$(A_{n \geqslant 4, \neq 5}, r \in \mathbb{Z}_{n+1}^{\times} \setminus \{\pm 1\})$
	$(D_{n\geqslant 6}, r\in \mathbb{Z}_{2(n-2)}^{\times}\setminus\{\pm 1\}), (E_7,\nu), (E_8,\nu)$

If $\tau = 1$ we don't write it and ν is the unique nontrivial outer automorphism of E_{7.8}. (The ones in red were not known.)

(a) < (a) < (b) < (b)

The $\mathcal{N} > 3$ classification

The backgrounds $AdS_4 \times M^7$ with $\mathscr{N} > 3$ are those with $M = S^7/\Gamma$ with $\Gamma \subset SO(8)$ given by pairs (ADE, τ):

\mathcal{N}	Groups Г
8	A ₁
6	$A_{n \ge 2}$
5	$D_{n \geqslant 4}, E_6, E_7, E_8$
4	$(\boldsymbol{A}_{n \geqslant \boldsymbol{4}, \neq \boldsymbol{5}}, r \in \mathbb{Z}_{n+1}^{\times} \setminus \{\pm 1\})$
	$(D_{n \geqslant 6}, r \in \mathbb{Z}_{2(n-2)}^{\times} \setminus \{\pm 1\}), (E_7, \nu), (E_8, \nu)$

If $\tau = 1$ we don't write it and ν is the unique nontrivial outer automorphism of $E_{7,8}$. (The ones in red were not known.)

・ロット (雪) (き) (き)

2 M2-brane geometries and ADE

- Superconformal Chern–Simons theories
- 4 Triple systems and Lie superalgebras

(Supersymmetric) M2-brane degrees of freedom

 X, ψ are in a unitary representation m of the metric Lie algebra g, that is in has an invariant inder product

(all fields in $\mathbb{R}^{2,1}$)

- X: real scalars corresponding to transverse excitations
- ψ: real 2-component spinors
- A: g-valued
 Chern–Simons gauge fields

(Supersymmetric) M2-brane degrees of freedom

 X, ψ are in a unitary representation m of the metric Lie algebra g that is to has an invariant inner product (all fields in $\mathbb{R}^{2,1}$)

- X: real scalars corresponding to transverse excitations
- ψ: real 2-component spinors
- A: g-valued Chern–Simons gauge fields

(Supersymmetric) M2-brane degrees of freedom

 X, ψ are in a unitary representation m of the metric Lie algebra g (all fields in $\mathbb{R}^{2,1}$)

- X: real scalars corresponding to transverse excitations
- ψ: real 2-component spinors
- A: g-valued Chern–Simons gauge fields

(Supersymmetric) M2-brane degrees of freedom

 X, ψ are in a unitary representation m of the metric Lie algebra g; that is, g has an invariant inner product (all fields in $\mathbb{R}^{2,1}$)

- X: real scalars corresponding to transverse excitations
- ψ: real 2-component spinors
- A: g-valued Chern–Simons gauge fields

(Supersymmetric) M2-brane degrees of freedom

 X, ψ are in a unitary representation m of the metric Lie algebra g; that is, g has an invariant inner product (all fields in $\mathbb{R}^{2,1}$)

- X: real scalars corresponding to transverse excitations
- ψ: real 2-component spinors
- A: g-valued Chern–Simons gauge fields
(Supersymmetric) M2-brane degrees of freedom

 X, ψ are in a unitary representation m of the metric Lie algebra g; that is, g has an invariant inner product (all fields in $\mathbb{R}^{2,1}$)

- X: real scalars corresponding to transverse excitations
- ψ: real 2-component spinors
- A: g-valued Chern–Simons gauge fields

< ロ > < 同 > < 回 > < 回 >

Superconformal theories in 3 dimensions

The superconformal algebra of ℝ^{2,1} is s := osp(𝒴|4) with 𝒴 ≤ 8,

 $\mathfrak{s}_0 = \mathfrak{so}(\mathscr{N}) \oplus \mathfrak{so}(3,2) \qquad \text{and} \qquad \mathfrak{s}_1 = \mathbb{R}^{\mathscr{N}} \otimes \mathbb{R}^4$

- The R-symmetry algebra is $\mathfrak{so}(\mathcal{N})$, under which
 - \ast the supercharges transform as a vector (i.e., in the \mathscr{N})
 - The scalars 20 transform as a spinor
 - so do the fermions () (but of opposite chirality, if 0// is even)
 - The gauge fields /Lare inert, since supersymmetry is rigid.
- Matter fields are in representations of $\mathfrak{so}(\mathscr{N}) \oplus \mathfrak{g}$

イロト イポト イヨト イヨト

Superconformal theories in 3 dimensions

• The superconformal algebra of $\mathbb{R}^{2,1}$ is $\mathfrak{s} := \mathfrak{osp}(\mathscr{N}|4)$ with $\mathscr{N} \leq 8$,

 $\mathfrak{s}_0 = \mathfrak{so}(\mathscr{N}) \oplus \mathfrak{so}(3,2) \qquad \text{and} \qquad \mathfrak{s}_1 = \mathbb{R}^{\mathscr{N}} \otimes \mathbb{R}^4$

- The R-symmetry algebra is $\mathfrak{so}(\mathcal{N})$, under which
 - the supercharges transform as a vector (i.e., in the \mathscr{N})
 - the scalars X transform as a spinor.

 - In the gauge fields // are inert, since supersymmetry is rigid.
- Matter fields are in representations of $\mathfrak{so}(\mathcal{N}) \oplus \mathfrak{g}$

イロト イポト イヨト イヨト

Superconformal theories in 3 dimensions

• The superconformal algebra of $\mathbb{R}^{2,1}$ is $\mathfrak{s} := \mathfrak{osp}(\mathscr{N}|4)$ with $\mathscr{N} \leq 8$,

 $\mathfrak{s}_0 = \mathfrak{so}(\mathscr{N}) \oplus \mathfrak{so}(3, 2)$ and $\mathfrak{s}_1 = \mathbb{R}^{\mathscr{N}} \otimes \mathbb{R}^4$

• The R-symmetry algebra is $\mathfrak{so}(\mathcal{N})$, under which

- the supercharges transform as a vector (i.e., in the \mathcal{N})
- the scalars X transform as a spinor
- so do the fermions ψ (but of opposite chirality, if \mathscr{N} is even)
- the gauge fields A are inert, since supersymmetry is rigid

• Matter fields are in representations of $\mathfrak{so}(\mathcal{N}) \oplus \mathfrak{g}$

(日)

Superconformal theories in 3 dimensions

• The superconformal algebra of $\mathbb{R}^{2,1}$ is $\mathfrak{s} := \mathfrak{osp}(\mathscr{N}|4)$ with $\mathscr{N} \leq 8$,

 $\mathfrak{s}_0 = \mathfrak{so}(\mathscr{N}) \oplus \mathfrak{so}(3,2) \qquad \text{and} \qquad \mathfrak{s}_1 = \mathbb{R}^{\mathscr{N}} \otimes \mathbb{R}^4$

- The R-symmetry algebra is $\mathfrak{so}(\mathcal{N})$, under which
 - the supercharges transform as a vector (i.e., in the $\ensuremath{\mathscr{N}}\xspace)$
 - the scalars X transform as a spinor
 - so do the fermions ψ (but of opposite chirality, if \mathcal{N} is even)
 - the gauge fields A are inert, since supersymmetry is rigid
- Matter fields are in representations of $\mathfrak{so}(\mathcal{N}) \oplus \mathfrak{g}$

(日)

Superconformal theories in 3 dimensions

• The superconformal algebra of $\mathbb{R}^{2,1}$ is $\mathfrak{s} := \mathfrak{osp}(\mathscr{N}|4)$ with $\mathscr{N} \leq 8$,

 $\mathfrak{s}_0 = \mathfrak{so}(\mathscr{N}) \oplus \mathfrak{so}(3,2) \qquad \text{and} \qquad \mathfrak{s}_1 = \mathbb{R}^{\mathscr{N}} \otimes \mathbb{R}^4$

- The R-symmetry algebra is $\mathfrak{so}(\mathcal{N})$, under which
 - the supercharges transform as a vector (i.e., in the \mathcal{N})
 - the scalars X transform as a spinor
 - so do the fermions ψ (but of opposite chirality, if \mathcal{N} is even)
 - the gauge fields A are inert, since supersymmetry is rigid

• Matter fields are in representations of $\mathfrak{so}(\mathcal{N}) \oplus \mathfrak{g}$

(日)

Superconformal theories in 3 dimensions

• The superconformal algebra of $\mathbb{R}^{2,1}$ is $\mathfrak{s} := \mathfrak{osp}(\mathscr{N}|4)$ with $\mathscr{N} \leq 8$,

 $\mathfrak{s}_0 = \mathfrak{so}(\mathscr{N}) \oplus \mathfrak{so}(3,2) \qquad \text{and} \qquad \mathfrak{s}_1 = \mathbb{R}^{\mathscr{N}} \otimes \mathbb{R}^4$

- The R-symmetry algebra is $\mathfrak{so}(\mathcal{N})$, under which
 - the supercharges transform as a vector (i.e., in the \mathcal{N})
 - the scalars X transform as a spinor
 - so do the fermions ψ (but of opposite chirality, if \mathscr{N} is even)
 - the gauge fields A are inert, since supersymmetry is rigid

• Matter fields are in representations of $\mathfrak{so}(\mathscr{N}) \oplus \mathfrak{g}$

(日)

Superconformal theories in 3 dimensions

• The superconformal algebra of $\mathbb{R}^{2,1}$ is $\mathfrak{s} := \mathfrak{osp}(\mathscr{N}|4)$ with $\mathscr{N} \leq 8$,

 $\mathfrak{s}_0 = \mathfrak{so}(\mathscr{N}) \oplus \mathfrak{so}(3,2) \qquad \text{and} \qquad \mathfrak{s}_1 = \mathbb{R}^{\mathscr{N}} \otimes \mathbb{R}^4$

- The R-symmetry algebra is $\mathfrak{so}(\mathcal{N})$, under which
 - the supercharges transform as a vector (i.e., in the \mathcal{N})
 - the scalars X transform as a spinor
 - so do the fermions ψ (but of opposite chirality, if \mathcal{N} is even)
 - the gauge fields A are inert, since supersymmetry is rigid

• Matter fields are in representations of $\mathfrak{so}(\mathcal{N}) \oplus \mathfrak{g}$

(日)

Superconformal theories in 3 dimensions

• The superconformal algebra of $\mathbb{R}^{2,1}$ is $\mathfrak{s} := \mathfrak{osp}(\mathscr{N}|4)$ with $\mathscr{N} \leq 8$,

 $\mathfrak{s}_0 = \mathfrak{so}(\mathscr{N}) \oplus \mathfrak{so}(3,2) \qquad \text{and} \qquad \mathfrak{s}_1 = \mathbb{R}^{\mathscr{N}} \otimes \mathbb{R}^4$

- The R-symmetry algebra is $\mathfrak{so}(\mathcal{N})$, under which
 - the supercharges transform as a vector (i.e., in the \mathcal{N})
 - the scalars X transform as a spinor
 - so do the fermions ψ (but of opposite chirality, if \mathcal{N} is even)
 - the gauge fields A are inert, since supersymmetry is rigid
- Matter fields are in representations of $\mathfrak{so}(\mathscr{N}) \oplus \mathfrak{g}$

(日)

Spinor representations

N	1	2		3			4
$\mathfrak{so}(\mathscr{N})$ spinors	$\mathbb R$	u(1) ℂ		sp(' Ⅲ	1) sp($ \begin{array}{l} 1) \oplus \mathfrak{sp}(1) \\ \mathbb{H} \oplus \mathbb{H} \end{array} $
•					I	_	
N	5)		6		7	8
$\mathfrak{so}(\mathscr{N})$ spinors	sp(Ⅲ	2) 2	51 (ι(4) C ⁴	sc I	₀(7) ℝ ⁸	$\mathfrak{so}(8)\ \mathbb{R}^{8}\oplus\mathbb{R}^{8}$

イロト イポト イヨト イヨト

Matter representations

- The degrees of freedom of any physical theory are fundamentally real
- This determines the type (i.e., ℝ, C or ℍ) of the matter g-representation 𝔐 in terms of the type of the R-symmetry representation:

if N = 1, 7, 8, then 𝔐 is real, written 𝔐 ∈ Rep(𝑔, 𝔅)
 if 𝔐 = 2, 6, then 𝔐 is complex, written 𝔐 ∈ Rep(𝑔, 𝔅)
 if 𝔐 = 3, 4, 5, then 𝔐 is

- If $\mathcal{N} = 2, 6$ we have to take both
- If $\mathcal{N} = 3, 4, 5$ we have to

- The degrees of freedom of any physical theory are fundamentally real
- This determines the type (i.e., ℝ, C or ℍ) of the matter g-representation 𝔐 in terms of the type of the R-symmetry representation:
 - if *N* = 1, 7, 8, then 𝔅 is real, written 𝔅 ∈ Rep(𝔅, 𝔅)
 if *N* = 2, 6, then 𝔅 is complex, written 𝔅 ∈ Rep(𝔅, 𝔅)
 if *N* = 3, 4, 5, then 𝔅 is
- If $\mathcal{N} = 2, 6$ we have to take both
- If $\mathcal{N} = 3, 4, 5$ we have to

- The degrees of freedom of any physical theory are fundamentally real
- This determines the type (i.e., ℝ, C or ℍ) of the matter g-representation 𝔐 in terms of the type of the R-symmetry representation:
 - if $\mathcal{N} = 1, 7, 8$, then \mathfrak{M} is real, written $\mathfrak{M} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{R})$
 - if $\mathscr{N} = 2, 6$, then \mathfrak{M} is complex, written $\mathfrak{M} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{C})$ • if $\mathscr{N} = 3, 4, 5$, then \mathfrak{M} is
- If $\mathcal{N} = 2, 6$ we have to take both
- If $\mathcal{N} = 3, 4, 5$ we have to

- The degrees of freedom of any physical theory are fundamentally real
- This determines the type (i.e., ℝ, C or ℍ) of the matter g-representation 𝔐 in terms of the type of the R-symmetry representation:
 - if $\mathcal{N} = 1, 7, 8$, then \mathfrak{M} is real, written $\mathfrak{M} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{R})$
 - if $\mathcal{N} = 2, 6$, then \mathfrak{M} is complex, written $\mathfrak{M} \in \mathsf{Rep}(\mathfrak{g}, \mathbb{C})$
 - if $\mathscr{N}=$ 3, 4, 5, then \mathfrak{M} is
- If $\mathcal{N} = 2, 6$ we have to take both
- If $\mathcal{N} = 3, 4, 5$ we have to

イロト イポト イヨト イヨト

- The degrees of freedom of any physical theory are fundamentally real
- This determines the type (i.e., ℝ, C or ℍ) of the matter g-representation 𝔐 in terms of the type of the R-symmetry representation:
 - if $\mathcal{N} = 1, 7, 8$, then \mathfrak{M} is real, written $\mathfrak{M} \in \text{Rep}(\mathfrak{g}, \mathbb{R})$
 - if $\mathscr{N}=$ 2, 6, then \mathfrak{M} is complex, written $\mathfrak{M}\in \operatorname{\mathsf{Rep}}(\mathfrak{g},\mathbb{C})$
 - if $\mathcal{N} = 3, 4, 5$, then \mathfrak{M} is pseudoreal
- If $\mathcal{N} = 2, 6$ we have to take both
- If $\mathcal{N} = 3, 4, 5$ we have to

イロト イポト イヨト イヨト

- The degrees of freedom of any physical theory are fundamentally real
- This determines the type (i.e., ℝ, C or ℍ) of the matter g-representation 𝔐 in terms of the type of the R-symmetry representation:
 - if $\mathcal{N} = 1, 7, 8$, then \mathfrak{M} is real, written $\mathfrak{M} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{R})$
 - if $\mathscr{N} = 2, 6$, then \mathfrak{M} is complex, written $\mathfrak{M} \in \mathsf{Rep}(\mathfrak{g}, \mathbb{C})$
 - if $\mathscr{N} = 3, 4, 5$, then \mathfrak{M} is quaternionic, written $\mathfrak{M} \in \mathsf{Rep}(\mathfrak{g}, \mathbb{H})$
- If $\mathcal{N} = 2, 6$ we have to take both
- If $\mathcal{N} = 3, 4, 5$ we have to

・ロ・・ (日・・ ヨ・・

- The degrees of freedom of any physical theory are fundamentally real
- This determines the type (i.e., ℝ, C or ℍ) of the matter g-representation 𝔐 in terms of the type of the R-symmetry representation:
 - if $\mathcal{N} = 1, 7, 8$, then \mathfrak{M} is real, written $\mathfrak{M} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{R})$
 - if $\mathscr{N}=$ 2, 6, then \mathfrak{M} is complex, written $\mathfrak{M}\in \mathsf{Rep}(\mathfrak{g},\mathbb{C})$
 - if $\mathscr{N} = 3, 4, 5$, then \mathfrak{M} is quaternionic, written $\mathfrak{M} \in \text{Rep}(\mathfrak{g}, \mathbb{H})$
- If $\mathcal{N} = 2, 6$ we have to take both the representation and its conjugate representation

• If $\mathcal{N} = 3, 4, 5$ we have to

イロト イポト イヨト イヨト

- The degrees of freedom of any physical theory are fundamentally real
- This determines the type (i.e., ℝ, C or ℍ) of the matter g-representation 𝔐 in terms of the type of the R-symmetry representation:
 - if $\mathcal{N} = 1, 7, 8$, then \mathfrak{M} is real, written $\mathfrak{M} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{R})$
 - if $\mathscr{N}=$ 2, 6, then \mathfrak{M} is complex, written $\mathfrak{M}\in \mathsf{Rep}(\mathfrak{g},\mathbb{C})$
 - if $\mathscr{N} = 3, 4, 5$, then \mathfrak{M} is quaternionic, written $\mathfrak{M} \in \text{Rep}(\mathfrak{g}, \mathbb{H})$
- If *N* = 2, 6 we have to take both fields and their complex conjugates
- If $\mathcal{N} = 3, 4, 5$ we have to

イロト イポト イヨト イヨト

- The degrees of freedom of any physical theory are fundamentally real
- This determines the type (i.e., ℝ, C or ℍ) of the matter g-representation 𝔐 in terms of the type of the R-symmetry representation:
 - if $\mathcal{N} = 1, 7, 8$, then \mathfrak{M} is real, written $\mathfrak{M} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{R})$
 - if $\mathscr{N}=$ 2, 6, then \mathfrak{M} is complex, written $\mathfrak{M}\in \mathsf{Rep}(\mathfrak{g},\mathbb{C})$
 - if $\mathscr{N} = 3, 4, 5$, then \mathfrak{M} is quaternionic, written $\mathfrak{M} \in \text{Rep}(\mathfrak{g}, \mathbb{H})$
- If *N* = 2,6 we have to take both real and imaginary parts of the fields

• If $\mathcal{N} = 3, 4, 5$ we have to

イロト イポト イヨト イヨト

- The degrees of freedom of any physical theory are fundamentally real
- This determines the type (i.e., ℝ, C or ℍ) of the matter g-representation 𝔐 in terms of the type of the R-symmetry representation:
 - if $\mathcal{N} = 1, 7, 8$, then \mathfrak{M} is real, written $\mathfrak{M} \in \text{Rep}(\mathfrak{g}, \mathbb{R})$
 - if $\mathscr{N} = 2, 6$, then \mathfrak{M} is complex, written $\mathfrak{M} \in \mathsf{Rep}(\mathfrak{g}, \mathbb{C})$
 - if $\mathscr{N} = 3, 4, 5$, then \mathfrak{M} is quaternionic, written $\mathfrak{M} \in \text{Rep}(\mathfrak{g}, \mathbb{H})$
- If *N* = 2,6 we have to take both real and imaginary parts of the fields
- If *N* = 3, 4, 5 we have to take the underlying real representation

- The degrees of freedom of any physical theory are fundamentally real
- This determines the type (i.e., ℝ, C or ℍ) of the matter g-representation 𝔐 in terms of the type of the R-symmetry representation:
 - if $\mathcal{N} = 1, 7, 8$, then \mathfrak{M} is real, written $\mathfrak{M} \in \text{Rep}(\mathfrak{g}, \mathbb{R})$
 - if $\mathscr{N}=$ 2, 6, then \mathfrak{M} is complex, written $\mathfrak{M}\in \mathsf{Rep}(\mathfrak{g},\mathbb{C})$
 - if $\mathscr{N} = 3, 4, 5$, then \mathfrak{M} is quaternionic, written $\mathfrak{M} \in \text{Rep}(\mathfrak{g}, \mathbb{H})$
- If *N* = 2,6 we have to take both real and imaginary parts of the fields
- If *N* = 3, 4, 5 we have to impose a symplectic reality condition on the fields

$\mathcal{N} \leqslant$ 3 theories

For $\mathcal{N} \leq 3$ theories, the matter representation \mathfrak{M} is not constrained beyond its type:

- *N*=1 theory = 𝔅 ∈ Rep(𝔅, ℝ) + quartic 𝔅-invariant superpotential
- 𝒩=2 theory = 𝔅 ∈ Rep(𝔅, 𝔅) + quartic 𝔅-invariant F-term superpotential
- $\mathcal{N}=3$ theory = $\mathfrak{M} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{H})!$
- Rigidity of *N*=3 theories agrees with the geometric rigidity of complete 3-Sasakian manifolds

Pedersen+Poon (1999)

$\mathcal{N} \leqslant$ 3 theories

For $\mathcal{N} \leq 3$ theories, the matter representation \mathfrak{M} is not constrained beyond its type:

- 𝒴=1 theory = 𝔅 ∈ Rep(𝔅, ℝ) + quartic 𝔅-invariant superpotential
- *N* =2 theory = 𝔅 ∈ Rep(𝔅, ℂ) + quartic 𝔅-invariant F-term superpotential
- $\mathcal{N} = 3$ theory = $\mathfrak{M} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{H})!$
- Rigidity of *N*=3 theories agrees with the geometric rigidity of complete 3-Sasakian manifolds

PEDERSEN+POON (1999)

(日)

$\mathcal{N} \leqslant$ 3 theories

For $\mathcal{N} \leq 3$ theories, the matter representation \mathfrak{M} is not constrained beyond its type:

- *N*=1 theory = 𝔅 ∈ Rep(𝔅, ℝ) + quartic 𝔅-invariant superpotential
- 𝒴=2 theory = 𝔅 ∈ Rep(𝔅, ℂ) + quartic 𝔅-invariant F-term superpotential
- $\mathcal{N} = 3$ theory = $\mathfrak{M} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{H})!$
- Rigidity of $\mathcal{N}=3$ theories agrees with the geometric rigidity of complete 3-Sasakian manifolds

PEDERSEN+POON (1999)

(日)

$\mathcal{N} \leqslant$ 3 theories

For $\mathcal{N} \leq 3$ theories, the matter representation \mathfrak{M} is not constrained beyond its type:

- *N*=1 theory = 𝔅 ∈ Rep(𝔅, ℝ) + quartic 𝔅-invariant superpotential
- 𝒴=2 theory = 𝔅 ∈ Rep(𝔅, ℂ) + quartic 𝔅-invariant F-term superpotential
- $\mathcal{N}=3$ theory = $\mathfrak{M} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{H})!$
- Rigidity of $\mathcal{N}=3$ theories agrees with the geometric rigidity of complete 3-Sasakian manifolds

PEDERSEN+POON (1999)

(日)

$\mathcal{N} \leqslant$ 3 theories

For $\mathcal{N} \leq 3$ theories, the matter representation \mathfrak{M} is not constrained beyond its type:

- *N*=1 theory = 𝔅 ∈ Rep(𝔅, ℝ) + quartic 𝔅-invariant superpotential
- 𝒴=2 theory = 𝔅 ∈ Rep(𝔅, ℂ) + quartic 𝔅-invariant F-term superpotential
- $\mathcal{N}=3$ theory = $\mathfrak{M} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{H})!$
- Rigidity of *N*=3 theories agrees with the geometric rigidity of complete 3-Sasakian manifolds

PEDERSEN+POON (1999)

(日)

$\mathcal{N} \geqslant$ 4 theories

• Now the representation (and also g!) is constrained.

Matter representation	

 $\Delta (\mathcal{A}) = \pm$ -chirality (if applicable) spinor of $\mathfrak{so}(\mathcal{A})$

- Irr = irreducible representations
- The subscripts aLTS, aJTS and 3LA stand for certain types of of matrix tiple systems or equivalent for certain types of

$\mathcal{N} \geqslant$ 4 theories

• Now the representation (and also g!) is constrained.

Matter representation	

- $\Delta_{\pm}^{(\mathcal{N})} = \pm$ -chirality (if applicable) spinor of $\mathfrak{so}(\mathcal{N})$
- In = irreducible representations
- The subscripts aLTS, aJTS and 3UA stand for certain types of motion inple systems or opurvalent for certain types of

$\mathcal{N} \ge 4$ theories

• Now the representation (and also g!) is constrained.

N	Matter representation	Remarks
4	$\Delta^{(4)}_{\pm} \otimes W_1 \oplus \Delta^{(4)}_{\mp} \otimes W_2$	$W_{1,2} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{H})_{\operatorname{aLTS}}$
5	$\Delta^{(5)}\otimes W$	$W \in Irr(\mathfrak{g},\mathbb{H})_{aLTS}$
6	$\Delta^{({f 6})}_{\pm}\otimes { m V}\oplus\Delta^{({f 6})}_{\mp}\otimes \overline{{ m V}}$	$V\in {\textnormal{Irr}}({\mathfrak{g}},{\mathbb{C}})_{\textnormal{aJTS}}$
8	$\Delta_{\pm}^{(\boldsymbol{8})}\otimes U$	$U\in \text{Irr}(\mathfrak{g},\mathbb{R})_{\text{3LA}}$

• $\Delta_{\pm}^{(\mathscr{M})} = \pm$ -chirality (if applicable) spinor of $\mathfrak{so}(\mathscr{M})$

- Irr = irreducible representations
- The subscripts aLTS, aJTS and 3LA stand for certain types of metric triple systems or equivalent for certain types of Lie-embeddable unitary representations (see later)

・ロット (日) ・ (日) ・ (日)

$\mathcal{N} \ge 4$ theories

• Now the representation (and also g!) is constrained.

N	Matter representation	Remarks
4	$\Delta^{(4)}_{\pm}\otimes W_1\oplus\Delta^{(4)}_{\mp}\otimes W_2$	$W_{1,2} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{H})_{\operatorname{aLTS}}$
5	$\Delta^{(5)}\otimes W$	$W \in Irr(\mathfrak{g},\mathbb{H})_{aLTS}$
6	$\Delta^{({f 6})}_{\pm}\otimes V\oplus\Delta^{({f 6})}_{\mp}\otimes \overline{V}$	$V\in {\textnormal{Irr}}({\mathfrak{g}},{\mathbb{C}})_{\textnormal{aJTS}}$
8	$\Delta^{(\boldsymbol{8})}_{\pm}\otimes U$	$U\in \text{Irr}(\mathfrak{g},\mathbb{R})_{\text{3LA}}$

• $\Delta_{\pm}^{(\mathscr{N})} = \pm$ -chirality (if applicable) spinor of $\mathfrak{so}(\mathscr{N})$

- Irr = irreducible representations
- The subscripts aLTS, aJTS and 3LA stand for certain types of metric triple systems or equivalent for certain types of Lie-embeddable unitary representations (see later)

イロト イポト イヨト イヨト

$\mathcal{N} \ge 4$ theories

• Now the representation (and also g!) is constrained.

N	Matter representation	Remarks
4	$\Delta^{(4)}_{\pm} \otimes W_1 \oplus \Delta^{(4)}_{\mp} \otimes W_2$	$W_{1,2} \in \operatorname{Rep}(\mathfrak{g},\mathbb{H})_{\operatorname{aLTS}}$
5	$\Delta^{(5)}\otimes W$	$W\in {\sf Irr}(\mathfrak{g},\mathbb{H})_{\sf aLTS}$
6	$\Delta^{({f 6})}_{\pm}\otimes V\oplus\Delta^{({f 6})}_{\mp}\otimes \overline{V}$	$V\in {\textnormal{Irr}}({\mathfrak{g}},{\mathbb{C}})_{\textnormal{aJTS}}$
8	$\Delta_{\pm}^{(\boldsymbol{8})}\otimes U$	$U\in \text{Irr}(\mathfrak{g},\mathbb{R})_{\text{3LA}}$

• $\Delta_{\pm}^{(\mathscr{N})} = \pm$ -chirality (if applicable) spinor of $\mathfrak{so}(\mathscr{N})$

- Irr = irreducible representations
- The subscripts aLTS, aJTS and 3LA stand for certain types of metric triple systems or equivalent for certain types of Lie-embeddable unitary representations (see later)

イロト イポト イヨト イヨト

$\mathcal{N} \ge 4$ theories

• Now the representation (and also g!) is constrained.

N	Matter representation	Remarks
4	$\Delta^{(4)}_{\pm}\otimes W_1\oplus\Delta^{(4)}_{\mp}\otimes W_2$	$W_{1,2} \in \operatorname{Rep}(\mathfrak{g}, \mathbb{H})_{\operatorname{aLTS}}$
5	$\Delta^{(5)}\otimes W$	$W \in Irr(\mathfrak{g},\mathbb{H})_{aLTS}$
6	$\Delta^{({f 6})}_{\pm}\otimes V\oplus\Delta^{({f 6})}_{\mp}\otimes \overline{V}$	$V\in {\textnormal{Irr}}({\mathfrak{g}},{\mathbb{C}})_{\textnormal{aJTS}}$
8	$\Delta^{(\boldsymbol{8})}_{\pm}\otimes \boldsymbol{U}$	$U\in \text{Irr}(\mathfrak{g},\mathbb{R})_{\text{3LA}}$

• $\Delta_{\pm}^{(\mathscr{N})} = \pm$ -chirality (if applicable) spinor of $\mathfrak{so}(\mathscr{N})$

- Irr = irreducible representations
- The subscripts aLTS, aJTS and 3LA stand for certain types of metric triple systems or equivalent for certain types of Lie-embeddable unitary representations (see later)

Some remarks

- For $\mathcal{N} \ge 5$, irreducible representations decouple
- $\mathcal{N} = 7$ theories are automatically $\mathcal{N} = 8$
- Representation theory uniquely determines $\mathcal{N} \ge 3$ theories
- *N* ≥ 4 theories can be defined in terms of 3-algebras or triple systems, as in the original BLG model
- As in ABJM, we can now show this language is not necessary
- As in GAIOTTO+WITTEN (2008), we may adopt the more familiar language of Lie superalgebras
- **Question**: Can the theories be reformulated solely in terms of Lie superalgebras?

ヘロト ヘ回ト ヘヨト ヘヨト

Some remarks

• For $\mathcal{N} \ge 5$, irreducible representations decouple

- $\mathcal{N} = 7$ theories are automatically $\mathcal{N} = 8$
- Representation theory uniquely determines $\mathcal{N} \ge 3$ theories
- *N* ≥ 4 theories can be defined in terms of 3-algebras or triple systems, as in the original BLG model
- As in ABJM, we can now show this language is not necessary
- As in GAIOTTO+WITTEN (2008), we may adopt the more familiar language of Lie superalgebras
- **Question**: Can the theories be reformulated solely in terms of Lie superalgebras?

ヘロト ヘ回ト ヘヨト ヘヨト

Some remarks

- For $\mathcal{N} \ge 5$, irreducible representations decouple
- $\mathcal{N} = 7$ theories are automatically $\mathcal{N} = 8$
- Representation theory uniquely determines $\mathcal{N} \ge 3$ theories
- *N* ≥ 4 theories can be defined in terms of 3-algebras or triple systems, as in the original BLG model
- As in ABJM, we can now show this language is not necessary
- As in GAIOTTO+WITTEN (2008), we may adopt the more familiar language of Lie superalgebras
- **Question**: Can the theories be reformulated solely in terms of Lie superalgebras?

ヘロト ヘ回ト ヘヨト ヘヨト

Some remarks

- For $\mathcal{N} \ge 5$, irreducible representations decouple
- $\mathcal{N} = 7$ theories are automatically $\mathcal{N} = 8$
- Representation theory uniquely determines $\mathcal{N} \ge 3$ theories
- *N* ≥ 4 theories can be defined in terms of 3-algebras or triple systems, as in the original BLG model
- As in ABJM, we can now show this language is not necessary
- As in GAIOTTO+WITTEN (2008), we may adopt the more familiar language of Lie superalgebras
- **Question**: Can the theories be reformulated solely in terms of Lie superalgebras?

(日)
- For $\mathcal{N} \ge 5$, irreducible representations decouple
- $\mathcal{N} = 7$ theories are automatically $\mathcal{N} = 8$
- Representation theory uniquely determines $\mathcal{N} \ge 3$ theories
- 𝒴 ≥ 4 theories can be defined in terms of 3-algebras or triple systems, as in the original BLG model
- As in ABJM, we can now show this language is not necessary
- As in GAIOTTO+WITTEN (2008), we may adopt the more familiar language of Lie superalgebras
- **Question**: Can the theories be reformulated solely in terms of Lie superalgebras?

- For $\mathcal{N} \ge 5$, irreducible representations decouple
- $\mathcal{N} = 7$ theories are automatically $\mathcal{N} = 8$
- Representation theory uniquely determines $\mathcal{N} \ge 3$ theories
- 𝒴 ≥ 4 theories can be defined in terms of 3-algebras or triple systems, as in the original BLG model
- As in ABJM, we can now show this language is not necessary
- As in GAIOTTO+WITTEN (2008), we may adopt the more familiar language of Lie superalgebras
- **Question**: Can the theories be reformulated solely in terms of Lie superalgebras?

- For $\mathcal{N} \ge 5$, irreducible representations decouple
- $\mathcal{N} = 7$ theories are automatically $\mathcal{N} = 8$
- Representation theory uniquely determines $\mathcal{N} \ge 3$ theories
- 𝒴 ≥ 4 theories can be defined in terms of 3-algebras or triple systems, as in the original BLG model
- As in ABJM, we can now show this language is not necessary
- As in GAIOTTO+WITTEN (2008), we may adopt the more familiar language of Lie superalgebras
- **Question**: Can the theories be reformulated solely in terms of Lie superalgebras?

くロン (雪) (ヨ) (ヨ)

= nar

- For $\mathcal{N} \ge 5$, irreducible representations decouple
- $\mathcal{N} = 7$ theories are automatically $\mathcal{N} = 8$
- Representation theory uniquely determines $\mathcal{N} \ge 3$ theories
- 𝒴 ≥ 4 theories can be defined in terms of 3-algebras or triple systems, as in the original BLG model
- As in ABJM, we can now show this language is not necessary
- As in GAIOTTO+WITTEN (2008), we may adopt the more familiar language of Lie superalgebras
- **Question**: Can the theories be reformulated solely in terms of Lie superalgebras?

(日)

= nar

M2-branes and AdS/CFT

2 M2-brane geometries and ADE

3 Superconformal Chern–Simons theories

Triple systems and Lie superalgebras

A (10) × (10) × (10) ×

Superalgebras from representations

Slogan

When a Lie algebra admits an invariant inner product, its unitary representations give rise to superalgebras.

• The superalgebra consists of two subspaces

- A unitary representation V in degree 1
- and three products
 - $\bigcirc g \times g \to g$ is the Lie bracket on g
 - $O_{-g} \times V \rightarrow V$ is the action of g on V.
 - 0.0000 , 0.00000 , 0.00000 , 0.00000 , 0.000000 , 0.000000 , 0.0000000 , 0.00000000
 - product on the superalgebra is invariant; equivalently, it is
- If the Jacobi identity holds, V is Lie-embeddable
- N > 3 supersymmetry demands that V is Lie-embeddable

Superalgebras from representations

Slogan

When a Lie algebra admits an invariant inner product, its unitary representations give rise to superalgebras.

- The superalgebra consists of two subspaces
 - A metric Lie algebra g in degree 0
 - 2 A unitary representation V in degree 1
- and three products
 - $O:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$ is the Lie bracket on \mathfrak{g}
 - $\bigcirc g \times V \rightarrow V$ is the action of g on V.
 - $\mathbb{O} : \mathbb{V} \times \mathbb{V} \to \mathfrak{g}$ (or $\to \mathfrak{g}_{\mathbb{C}})$ is defined so that the natural inner
 - product on the superalgebra is invariant; equivalently, it is
- If the Jacobi identity holds, V is Lie-embeddable
- N > 3 supersymmetry demands that V is Lig-embeddable

Superalgebras from representations

Slogan

When a Lie algebra admits an invariant inner product, its unitary representations give rise to superalgebras.

- The superalgebra consists of two subspaces
 - A metric Lie algebra g in degree 0
 - A unitary representation V in degree 1
- and three products

 $(a \circ p < b \rightarrow q)$ is the action of p on b q $(a \circ q < b \rightarrow q)$ (or $(a \circ q_c)$ is defined so that the natural inner $(a \circ q_c)$

- product on the superalgebra is invariant; equivalently, it is
- If the Jacobi identity holds, V is Lie-embeddable
- N > 3 supersymmetry demands that V is Lig-embeddable

29/43

Superalgebras from representations

Slogan

When a Lie algebra admits an invariant inner product, its unitary representations give rise to superalgebras.

- The superalgebra consists of two subspaces
 - A metric Lie algebra g in degree 0
 - A unitary representation V in degree 1
- and three products

product on the superalgebra is invariant; equivalently, if

- If the Jacobi identity holds, V is Lie-embeddable
- N > 3 supersymmetry demands that V is Lie-embeddable

Superalgebras from representations

Slogan

When a Lie algebra admits an invariant inner product, its unitary representations give rise to superalgebras.

- The superalgebra consists of two subspaces
 - A metric Lie algebra g in degree 0
 - A unitary representation V in degree 1

and three products

- $lacksymbol{1}$ $\mathfrak{g} imes\mathfrak{g}
 ightarrow\mathfrak{g}$ is the Lie bracket on \mathfrak{g}
- $\textcircled{3} \mathfrak{g} \times V \to V \text{ is the action of } \mathfrak{g} \text{ on } V$
- V × V → g (or → g_C) is defined so that the natural inner product on the superalgebra is invariant; equivalently, it is the transpose of the g-action on V
- If the Jacobi identity holds, V is Lie-embeddable
- N > 3 supersymmetry demands that V is Lie-embeddable

Superalgebras from representations

Slogan

When a Lie algebra admits an invariant inner product, its unitary representations give rise to superalgebras.

- The superalgebra consists of two subspaces
 - A metric Lie algebra g in degree 0
 - A unitary representation V in degree 1
- and three products
 - $\textcircled{0} \quad \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g} \text{ is the Lie bracket on } \mathfrak{g}$
 - 2) $\mathfrak{g} \times V \to V$ is the action of \mathfrak{g} on V
 - ③ V × V → g (or → g_C) is defined so that the natural inner product on the superalgebra is invariant; equivalently, it is the transpose of the g-action on V
- If the Jacobi identity holds, V is Lie-embeddable
- N > 3 supersymmetry demands that V is Lie-embeddable

29/43

Superalgebras from representations

Slogan

When a Lie algebra admits an invariant inner product, its unitary representations give rise to superalgebras.

- The superalgebra consists of two subspaces
 - 1 A metric Lie algebra \mathfrak{g} in degree 0
 - A unitary representation V in degree 1
- and three products
 - $\textcircled{0} \quad \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g} \text{ is the Lie bracket on } \mathfrak{g}$
 - 2 $\mathfrak{g} \times V \to V$ is the action of \mathfrak{g} on V

Over the superalgebra is invariant; equivalently, it is the transpose of the g-action on V

If the Jacobi identity holds, V is Lie-embeddable

N > 3 supersymmetry demands that V is Lie-embeddable

Superalgebras from representations

Slogan

When a Lie algebra admits an invariant inner product, its unitary representations give rise to superalgebras.

- The superalgebra consists of two subspaces
 - A metric Lie algebra g in degree 0
 - A unitary representation V in degree 1
- and three products
 - $\textcircled{0} \quad \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g} \text{ is the Lie bracket on } \mathfrak{g}$
 - 2 $\mathfrak{g} \times V \to V$ is the action of \mathfrak{g} on V
 - Solution V × V → g (or → g_C) is defined so that the natural inner product on the superalgebra is invariant; equivalently, it is the transpose of the g-action on V
- If the Jacobi identity holds, V is Lie-embeddable
- $\mathcal{N} > 3$ supersymmetry demands that V is Lie-embeddable

Superalgebras from representations

Slogan

When a Lie algebra admits an invariant inner product, its unitary representations give rise to superalgebras.

- The superalgebra consists of two subspaces
 - A metric Lie algebra g in degree 0
 - A unitary representation V in degree 1
- and three products
 - $\textcircled{0} \quad \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g} \text{ is the Lie bracket on } \mathfrak{g}$
 - 2 $\mathfrak{g} \times V \to V$ is the action of \mathfrak{g} on V
 - Solution V × V → g (or → g_C) is defined so that the natural inner product on the superalgebra is invariant; equivalently, it is the transpose of the g-action on V
- If the Jacobi identity holds, V is Lie-embeddable

• $\mathcal{N} > 3$ supersymmetry demands that V is Lie-embeddable

Superalgebras from representations

Slogan

When a Lie algebra admits an invariant inner product, its unitary representations give rise to superalgebras.

- The superalgebra consists of two subspaces
 - A metric Lie algebra g in degree 0
 - A unitary representation V in degree 1
- and three products
 - $\textcircled{0} \quad \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g} \text{ is the Lie bracket on } \mathfrak{g}$
 - 2 $\mathfrak{g} \times V \to V$ is the action of \mathfrak{g} on V
 - Solution V × V → g (or → g_C) is defined so that the natural inner product on the superalgebra is invariant; equivalently, it is the transpose of the g-action on V
- If the Jacobi identity holds, V is Lie-embeddable
- $\mathcal{N} > 3$ supersymmetry demands that V is Lie-embeddable

Triple systems from superalgebras

Slogan

The odd subspace of a superalgebra is a triple system.

- $\mathfrak{g} \oplus V$ a superalgebra
- We define a 3-bracket on V by

$[\mathfrak{u},\mathfrak{v},\mathfrak{w}]:=[[\mathfrak{u},\mathfrak{v}],\mathfrak{w}]$

where the RHS brackets come from the superalgebra

- For the $\mathcal{N} \ge 4$ theories, the relevant triple systems are

 - metric anti-Jordan triple systems for .//
 - symplectic anti-Lie triple systems for 2/ = 4,5

Triple systems from superalgebras

Slogan

The odd subspace of a superalgebra is a triple system.

- $\mathfrak{g} \oplus V$ a superalgebra
- We define a 3-bracket on V by

 $[\mathfrak{u},\mathfrak{v},\mathfrak{w}]:=[[\mathfrak{u},\mathfrak{v}],\mathfrak{w}]$

where the RHS brackets come from the superalgebra

- For the $\mathcal{N} \ge 4$ theories, the relevant triple systems are
 - metric 3-Lie algebras for 2/ > 6

 - symplectic anti-Lie triple systems for .// = 4,5

Triple systems from superalgebras

Slogan

The odd subspace of a superalgebra is a triple system.

- $\mathfrak{g} \oplus V$ a superalgebra
- We define a 3-bracket on V by

 $[\mathfrak{u}, \mathfrak{v}, \mathfrak{w}] := [[\mathfrak{u}, \mathfrak{v}], \mathfrak{w}]$

where the RHS brackets come from the superalgebra

• For the $\mathcal{N} \ge 4$ theories, the relevant triple systems are

• metric 3-Lie algebras for $\mathcal{N} > 0$

< ロ > < 同 > < 回 > < 回 >

Triple systems from superalgebras

Slogan

The odd subspace of a superalgebra is a triple system.

- $\mathfrak{g} \oplus V$ a superalgebra
- We define a 3-bracket on V by

 $[\mathfrak{u},\mathfrak{v},\mathfrak{w}]:=[[\mathfrak{u},\mathfrak{v}],\mathfrak{w}]$

where the RHS brackets come from the superalgebra

- For the $\mathcal{N} \ge 4$ theories, the relevant triple systems are
 - metric 3-Lie algebras for *N* > 6
 - metric anti-Jordan triple systems for $\mathcal{N} = 6$
 - symplectic anti-Lie triple systems for $\mathcal{N} = 4, 5$

イロト イポト イヨト イヨト

Triple systems from superalgebras

Slogan

The odd subspace of a superalgebra is a triple system.

- $\mathfrak{g} \oplus V$ a superalgebra
- We define a 3-bracket on V by

 $[\mathfrak{u},\mathfrak{v},\mathfrak{w}]:=[[\mathfrak{u},\mathfrak{v}],\mathfrak{w}]$

where the RHS brackets come from the superalgebra

- For the $\mathcal{N} \ge 4$ theories, the relevant triple systems are
 - metric 3-Lie algebras for $\mathcal{N} > 6$
 - metric anti-Jordan triple systems for $\mathcal{N} = 6$
 - symplectic anti-Lie triple systems for $\mathcal{N} = 4, 5$

イロト イポト イヨト イヨト

Triple systems from superalgebras

Slogan

The odd subspace of a superalgebra is a triple system.

- $\mathfrak{g} \oplus V$ a superalgebra
- We define a 3-bracket on V by

 $[\mathfrak{u},\mathfrak{v},\mathfrak{w}]:=[[\mathfrak{u},\mathfrak{v}],\mathfrak{w}]$

where the RHS brackets come from the superalgebra

- For the $\mathcal{N} \ge 4$ theories, the relevant triple systems are
 - metric 3-Lie algebras for $\mathcal{N} > 6$
 - metric anti-Jordan triple systems for $\mathcal{N} = 6$
 - symplectic anti-Lie triple systems for $\mathcal{N} = 4, 5$

Triple systems from superalgebras

Slogan

The odd subspace of a superalgebra is a triple system.

- $\mathfrak{g} \oplus V$ a superalgebra
- We define a 3-bracket on V by

 $[\mathfrak{u},\mathfrak{v},\mathfrak{w}]:=[[\mathfrak{u},\mathfrak{v}],\mathfrak{w}]$

where the RHS brackets come from the superalgebra

- For the $\mathcal{N} \ge 4$ theories, the relevant triple systems are
 - metric 3-Lie algebras for $\mathcal{N} > 6$
 - metric anti-Jordan triple systems for $\mathcal{N} = 6$
 - symplectic anti-Lie triple systems for $\mathcal{N} = 4, 5$

・ロト ・四ト ・ヨト ・ヨト

Metric Lie algebras

- Let g be a Lie algebra with an invariant inner product (-,-), not necessarily positive-definite.
- Let (X_i) be a basis for g:

 $[\mathbf{X}_{i}, \mathbf{X}_{j}] = f_{ij}^{k} \mathbf{X}_{k}$ and $(\mathbf{X}_{i}, \mathbf{X}_{j}) = \kappa_{ij}$

- Invariance means that f_{ijk} = f_{ik}^ℓκ_{ℓk} is totally skewsymmetric
- Not all Lie algebras are metric: reductive (=semisimple + abelian) are,...

(日)

Metric Lie algebras

• Let g be a Lie algebra with an invariant inner product (-, -), not necessarily positive-definite.

Let (X_i) be a basis for g:

 $[\mathbf{X}_{\mathbf{i}}, \mathbf{X}_{\mathbf{j}}] = f_{\mathbf{i}\mathbf{j}}^{\ \ k} \mathbf{X}_{\mathbf{k}}$ and $(\mathbf{X}_{\mathbf{i}}, \mathbf{X}_{\mathbf{j}}) = \kappa_{\mathbf{i}\mathbf{j}}$

- Invariance means that f_{ijk} = f_{ik}^ℓκ_{ℓk} is totally skewsymmetric
- Not all Lie algebras are metric: reductive (=semisimple + abelian) are,...

くロン (雪) (ヨ) (ヨ)

Metric Lie algebras

- Let g be a Lie algebra with an invariant inner product (-, -), not necessarily positive-definite.
- Let (X_i) be a basis for g:

 $[X_i, X_j] = f_{ij}^{\ k} X_k$ and $(X_i, X_j) = \kappa_{ij}$

- Invariance means that f_{ijk} = f_{ik}^ℓκ_{ℓk} is totally skewsymmetric
- Not all Lie algebras are metric: reductive (=semisimple + abelian) are,...

(日)

Metric Lie algebras

- Let g be a Lie algebra with an invariant inner product (-, -), not necessarily positive-definite.
- Let (X_i) be a basis for g:

 $[X_i, X_j] = f_{ij}^{\ k} X_k$ and $(X_i, X_j) = \kappa_{ij}$

- Invariance means that f_{ijk} = f_{ik}^ℓκ_{ℓk} is totally skewsymmetric
- Not all Lie algebras are metric: reductive (=semisimple + abelian) are,...

くロン (雪) (ヨ) (ヨ)

= nar

Metric Lie algebras

- Let g be a Lie algebra with an invariant inner product (-, -), not necessarily positive-definite.
- Let (X_i) be a basis for g:

 $[X_i, X_j] = f_{ij}^{\ k} X_k$ and $(X_i, X_j) = \kappa_{ij}$

- Invariance means that f_{ijk} = f_{ik}^ℓκ_{ℓk} is totally skewsymmetric
- Not all Lie algebras are metric: reductive (=semisimple + abelian) are,...

くロン (雪) (ヨ) (ヨ)

= nar

Real unitary representations of a metric Lie algebra

- Let U ∈ Rep(g, ℝ) be a real unitary representation with g-invariant inner product ⟨−, −⟩
- Let (e_a) be a basis for U and let $\langle e_a, e_b \rangle = g_{ab}$.

• For every $X_i \in \mathfrak{g}$ we have

$$\mathbf{X}_{\mathbf{i}} \cdot \mathbf{e}_{\mathbf{a}} = \mathbf{e}_{\mathbf{b}} \mathsf{T}_{\mathbf{i}}{}^{\mathbf{b}}{}_{\mathbf{a}}$$

• Unitarity means that $T_{iab} = T_i^c{}_ag_{bc} = -T_{iba}$

Real unitary representations of a metric Lie algebra

- Let U ∈ Rep(g, ℝ) be a real unitary representation with g-invariant inner product ⟨−, −⟩
- Let (e_a) be a basis for U and let $\langle e_a, e_b \rangle = g_{ab}$.

• For every $X_i \in \mathfrak{g}$ we have

$$\mathbf{X}_{\mathbf{i}} \cdot \mathbf{e}_{\mathbf{a}} = \mathbf{e}_{\mathbf{b}} \mathsf{T}_{\mathbf{i}}^{\mathbf{b}}{}_{\mathbf{a}}$$

• Unitarity means that $T_{iab} = T_i^c{}_ag_{bc} = -T_{iba}$

イロト イポト イヨト イヨト

Real unitary representations of a metric Lie algebra

- Let U ∈ Rep(g, ℝ) be a real unitary representation with g-invariant inner product ⟨−, −⟩
- Let (e_a) be a basis for U and let $\langle e_a, e_b \rangle = g_{ab}$.

• For every $X_i \in \mathfrak{g}$ we have

$$X_{i} \cdot e_{a} = e_{b} T_{i}{}^{b}{}_{a}$$

• Unitarity means that $T_{iab} = T_i^c{}_ag_{bc} = -T_{iba}$

イロト イポト イヨト イヨト

Real unitary representations of a metric Lie algebra

- Let U ∈ Rep(g, ℝ) be a real unitary representation with g-invariant inner product ⟨−, −⟩
- Let (e_a) be a basis for U and let $\langle e_a, e_b \rangle = g_{ab}$.
- For every $X_i \in \mathfrak{g}$ we have

$$X_{i} \cdot e_{a} = e_{b} T_{i}{}^{b}{}_{a}$$

• Unitarity means that $T_{iab} = T_i^c{}_ag_{bc} = -T_{iba}$

イロト イポト イヨト イヨト

Real unitary representations of a metric Lie algebra

- Let U ∈ Rep(g, ℝ) be a real unitary representation with g-invariant inner product ⟨−, −⟩
- Let (e_a) be a basis for U and let $\langle e_a, e_b \rangle = g_{ab}$.
- For every $X_i \in \mathfrak{g}$ we have

$$X_{i} \cdot e_{a} = e_{b} T_{i}{}^{b}{}_{a}$$

• Unitarity means that $T_{iab} = T_i^{c}{}_ag_{bc} = -T_{iba}$

Lie-embeddable real representations

 Let U_± = U but with degree ±1 and define on U_− ⊕ g ⊕ U₊ the following Lie brackets and inner product

$$\begin{split} [e_{a}^{+}, e_{b}^{-}] &= \kappa^{ij} T_{i\,ab} X_{j}, \quad [X_{i}, e_{a}^{\pm}] = T_{i}{}^{b}{}_{a} e_{b}^{\pm}, \quad [X_{i}, X_{j}] = f_{ij}{}^{k} X_{k} \\ (e_{a}^{+}, e_{b}^{-}) &= g_{ab} = -(e_{a}^{-}, e_{b}^{+}) \qquad (X_{i}, X_{j}) = \kappa_{ij} \end{split}$$

- Jacobi (+ metricity) $\iff F_{abcd} = \kappa^{ij} T_{iab} T_{jcd}$ skew in abcd
- The resulting 3-bracket

$$[\boldsymbol{e}_{a}, \boldsymbol{e}_{b}, \boldsymbol{e}_{c}]^{\pm} := [[\boldsymbol{e}_{a}^{+}, \boldsymbol{e}_{b}^{-}], \boldsymbol{e}_{c}^{\pm}]$$

defines on U the structure of a 3-Lie algebra Nамви (1973), Filippov (1980)

1

Lie-embeddable real representations

 Let U_± = U but with degree ±1 and define on U_− ⊕ g ⊕ U₊ the following Lie brackets and inner product

$$\begin{split} [e_{a}^{+}, e_{b}^{-}] &= \kappa^{ij} T_{iab} X_{j}, \quad [X_{i}, e_{a}^{\pm}] = T_{i}{}^{b}{}_{a} e_{b}^{\pm}, \quad [X_{i}, X_{j}] = f_{ij}{}^{k} X_{k} \\ (e_{a}^{+}, e_{b}^{-}) &= g_{ab} = -(e_{a}^{-}, e_{b}^{+}) \qquad (X_{i}, X_{j}) = \kappa_{ij} \end{split}$$

- Jacobi (+ metricity) $\iff F_{abcd} = \kappa^{ij} T_{iab} T_{jcd}$ skew in abcd $\iff \mathcal{N} = 8$ supersymmetry!
- The resulting 3-bracket

$$[\boldsymbol{e}_{a}, \boldsymbol{e}_{b}, \boldsymbol{e}_{c}]^{\pm} := [[\boldsymbol{e}_{a}^{+}, \boldsymbol{e}_{b}^{-}], \boldsymbol{e}_{c}^{\pm}]$$

defines on U the structure of a 3-Lie algebra Nамви (1973), Filippov (1980

= nar

Lie-embeddable real representations

 Let U_± = U but with degree ±1 and define on U_− ⊕ 𝔅 ⊕ U₊ the following Lie brackets and inner product

$$\begin{split} [e_{a}^{+}, e_{b}^{-}] &= \kappa^{ij} T_{i\,ab} X_{j}, \quad [X_{i}, e_{a}^{\pm}] = T_{i}{}^{b}{}_{a} e_{b}^{\pm}, \quad [X_{i}, X_{j}] = f_{ij}{}^{k} X_{k} \\ (e_{a}^{+}, e_{b}^{-}) &= g_{ab} = -(e_{a}^{-}, e_{b}^{+}) \qquad (X_{i}, X_{j}) = \kappa_{ij} \end{split}$$

 Jacobi (+ metricity) ⇔ F_{abcd} = κ^{ij}T_{iab}T_{jcd} skew in abcd ⇔ 𝒴 = 8 supersymmetry!
 The resulting 3-bracket

$$[e_{a}, e_{b}, e_{c}]^{\pm} := [[e_{a}^{+}, e_{b}^{-}], e_{c}^{\pm}]$$

defines on U the structure of a 3-Lie algebra Nамви (1973), Filippov (1980)

◆□▶ ◆□▶ ◆□▶ ◆□▶ = の♀♡

Lie-embeddable real representations

 Let U_± = U but with degree ±1 and define on U_− ⊕ 𝔅 ⊕ U₊ the following Lie brackets and inner product

$$\begin{split} [e_{a}^{+}, e_{b}^{-}] &= \kappa^{ij} T_{iab} X_{j}, \quad [X_{i}, e_{a}^{\pm}] = T_{i}{}^{b}{}_{a} e_{b}^{\pm}, \quad [X_{i}, X_{j}] = f_{ij}{}^{k} X_{k} \\ (e_{a}^{+}, e_{b}^{-}) &= g_{ab} = -(e_{a}^{-}, e_{b}^{+}) \qquad (X_{i}, X_{j}) = \kappa_{ij} \end{split}$$

• Jacobi (+ metricity) $\iff F_{abcd} = \kappa^{ij}T_{iab}T_{jcd}$ skew in abcd $\iff \mathcal{N} = 8$ supersymmetry!

• The resulting 3-bracket

$$[e_{a}, e_{b}, e_{c}]^{\pm} := [[e_{a}^{+}, e_{b}^{-}], e_{c}^{\pm}]$$

defines on U the structure of a 3-Lie algebra Nамви (1973), FiLippov (1980)

= nar
Lie-embeddable real representations

 Let U_± = U but with degree ±1 and define on U_− ⊕ g ⊕ U₊ the following Lie brackets and inner product

$$\begin{split} [e_{a}^{+}, e_{b}^{-}] &= \kappa^{ij} T_{iab} X_{j}, \quad [X_{i}, e_{a}^{\pm}] = T_{i}{}^{b}{}_{a} e_{b}^{\pm}, \quad [X_{i}, X_{j}] = f_{ij}{}^{k} X_{k} \\ (e_{a}^{+}, e_{b}^{-}) &= g_{ab} = -(e_{a}^{-}, e_{b}^{+}) \qquad (X_{i}, X_{j}) = \kappa_{ij} \end{split}$$

- Jacobi (+ metricity) $\iff F_{abcd} = \kappa^{ij}T_{iab}T_{jcd}$ skew in abcd $\iff \mathcal{N} = 8$ supersymmetry!
- The resulting 3-bracket

$$[e_{a}, e_{b}, e_{c}]^{\pm} \coloneqq [[e_{a}^{+}, e_{b}^{-}], e_{c}^{\pm}]$$

defines on U the structure of a 3-Lie algebra NAMBU (1973), FILIPPOV (1980) FO+PAPADOPOULOS (2003)

Lie-embeddable real representations

 Let U_± = U but with degree ±1 and define on U_− ⊕ g ⊕ U₊ the following Lie brackets and inner product

$$\begin{split} [e_{a}^{+}, e_{b}^{-}] &= \kappa^{ij} T_{iab} X_{j}, \quad [X_{i}, e_{a}^{\pm}] = T_{i}{}^{b}{}_{a} e_{b}^{\pm}, \quad [X_{i}, X_{j}] = f_{ij}{}^{k} X_{k} \\ (e_{a}^{+}, e_{b}^{-}) &= g_{ab} = -(e_{a}^{-}, e_{b}^{+}) \qquad (X_{i}, X_{j}) = \kappa_{ij} \end{split}$$

- Jacobi (+ metricity) $\iff F_{abcd} = \kappa^{ij}T_{iab}T_{jcd}$ skew in abcd $\iff \mathcal{N} = 8$ supersymmetry!
- The resulting 3-bracket

$$[e_{a}, e_{b}, e_{c}]^{\pm} \coloneqq [[e_{a}^{+}, e_{b}^{-}], e_{c}^{\pm}]$$

defines on U the structure of a metric 3-Lie algebra NAMBU (1973), FILIPPOV (1980) FO+PAPADOPOULOS (2003)

Classification

Theorem

There is precisely one (up to scale) irreducible positive-definite metric 3-Lie algebra.

(Conjectured in FO+Papadopoulos (2003)) NAGY (2007) Papadopoulos (2008) GAUNTLETT+GUTOWSKI (2008) DE MEDEIROS+FO+MÉNDEZ-ESCOBAR (2008) bllows from the classification of simple 3-Lie algebras LING (1993) CANTARINI+KAC (2009)

Classification

Theorem

There is precisely one (up to scale) irreducible positive-definite metric 3-Lie algebra.

(Conjectured in FO+Papadopoulos (2003)) NAGY (2007) PAPADOPOULOS (2008) GAUNTLETT+GUTOWSKI (2008) DE MEDEIROS+FO+MÉNDEZ-ESCOBAR (2008) It follows from the classification of simple 3-Lie algebras LING (1993) CANTARINI+KAC (2009)

The metric 3-Lie algebra

- $\mathfrak{g} = \mathfrak{so}(4) \cong \mathfrak{sp}(1)_{-k} \oplus \mathfrak{sp}(1)_k$, with subscripts indicating the multiple of the Killing form
- A priori $k \in \mathbb{R}$ but it is quantised in the quantum theory
- U = ℝ⁴ of so(4), or U = ℍ with sp(1) ⊕ sp(1) acting by leftand right-multiplications
- $F_{abcd} = k^{-1} \varepsilon_{abcd}$
- The resulting superconformal Chern–Simons theory is the original BLG model

Bagger+Lambert (2006,2007) Gustavsson (2007)

The metric 3-Lie algebra

- $\mathfrak{g} = \mathfrak{so}(4) \cong \mathfrak{sp}(1)_{-k} \oplus \mathfrak{sp}(1)_k$, with subscripts indicating the multiple of the Killing form
- A priori $k \in \mathbb{R}$ but it is quantised in the quantum theory
- U = ℝ⁴ of so(4), or U = ℍ with sp(1) ⊕ sp(1) acting by leftand right-multiplications
- $F_{abcd} = k^{-1} \varepsilon_{abcd}$
- The resulting superconformal Chern–Simons theory is the original BLG model

Bagger+Lambert (2006,2007) Gustavsson (2007)

The metric 3-Lie algebra

- g = so(4) ≅ sp(1)_{-k} ⊕ sp(1)_k, with subscripts indicating the multiple of the Killing form
- A priori $k \in \mathbb{R}$ but it is quantised in the quantum theory
- U = ℝ⁴ of so(4), or U = ℍ with sp(1) ⊕ sp(1) acting by leftand right-multiplications
- $F_{abcd} = k^{-1} \varepsilon_{abcd}$
- The resulting superconformal Chern–Simons theory is the original BLG model

Bagger+Lambert (2006,2007) Gustavsson (2007)

The metric 3-Lie algebra

- g = so(4) ≅ sp(1)_{-k} ⊕ sp(1)_k, with subscripts indicating the multiple of the Killing form
- A priori $k \in \mathbb{R}$ but it is quantised in the quantum theory
- U = ℝ⁴ of so(4), or U = ℍ with sp(1) ⊕ sp(1) acting by leftand right-multiplications
- $F_{abcd} = k^{-1} \varepsilon_{abcd}$
- The resulting superconformal Chern–Simons theory is the original BLG model

Bagger+Lambert (2006,2007) Gustavsson (2007)

The metric 3-Lie algebra

- g = so(4) ≃ sp(1)_{-k} ⊕ sp(1)_k, with subscripts indicating the multiple of the Killing form
- A priori $k \in \mathbb{R}$ but it is quantised in the quantum theory
- U = ℝ⁴ of so(4), or U = ℍ with sp(1) ⊕ sp(1) acting by leftand right-multiplications
- $F_{abcd} = k^{-1} \varepsilon_{abcd}$
- The resulting superconformal Chern–Simons theory is the original BLG model

Bagger+Lambert (2006,2007) Gustavsson (2007)

くロン (雪) (ヨ) (ヨ)

The metric 3-Lie algebra

- $\mathfrak{g} = \mathfrak{so}(4) \cong \mathfrak{sp}(1)_{-k} \oplus \mathfrak{sp}(1)_k$, with subscripts indicating the multiple of the Killing form
- A priori $k \in \mathbb{R}$ but it is quantised in the quantum theory
- $U = \mathbb{R}^4$ of $\mathfrak{so}(4)$, or $U = \mathbb{H}$ with $\mathfrak{sp}(1) \oplus \mathfrak{sp}(1)$ acting by leftand right-multiplications
- $F_{abcd} = k^{-1} \varepsilon_{abcd}$
- The resulting superconformal Chern–Simons theory is the original BLG model

BAGGER+LAMBERT (2006,2007) GUSTAVSSON (2007)

Complex unitary representations

Let V ∈ Rep(g, C) with hermitian inner product g_{αb}
 On the 3-graded superspace V ⊕ g_C ⊕ V define

 $[\boldsymbol{e}_{a}, \boldsymbol{e}_{\overline{b}}] = \kappa^{ij} \mathsf{T}_{i\overline{b}a} X_{j}, \quad [\mathbf{X}_{i}, \boldsymbol{e}_{a}] = \mathsf{T}_{i}{}^{b}{}_{a} \boldsymbol{e}_{b}, \quad [\mathbf{X}_{i}, X_{j}] = \mathsf{f}_{ij}{}^{k} X_{k}$ $(\boldsymbol{e}_{a}, \boldsymbol{e}_{\overline{b}}) = \mathfrak{g}_{a\overline{b}} = -(\boldsymbol{e}_{\overline{b}}, \boldsymbol{e}_{a}), \quad (\mathbf{X}_{i}, X_{j}) = \kappa_{ij}$

- Jacobi $\iff F_{a\overline{b}c}{}^d := \kappa^{ij} T_{i\overline{b}c} T_{j}{}^d{}_a = -F_{c\overline{b}a}{}^d$
- The sesquibilinear 3-bracket $V \times \overline{V} \times V \rightarrow V$

$$[e_{a}, e_{\overline{b}}, e_{c}] := [[e_{a}, e_{\overline{b}}], e_{c}]$$

turns V into anti-Jordan triple system

FAULKNER+FERRAR (1980)

Complex unitary representations

- Let V ∈ Rep(g, C) with hermitian inner product g_{ab}
 On the 3-graded superspace V ⊕ g_C ⊕ V define
 [e_a, e_b] = κ^{ij}T_{iba}X_j, [X_i, e_a] = T_i^b_ae_b, [X_i, X_j] = f_{ij}^kX_k (e_a, e_b) = g_{ab} = -(e_b, e_a), (X_i, X_j) = κ_{ij}
- Jacobi $\iff F_{\alpha \overline{b}c}{}^d := \kappa^{ij} T_{i \overline{b}c} T_{j}{}^d{}_{\alpha} = -F_{c \overline{b}a}{}^d$
- The sesquibilinear 3-bracket $V \times \overline{V} \times V \to V$

$$[e_{a}, e_{\overline{b}}, e_{c}] := [[e_{a}, e_{\overline{b}}], e_{c}]$$

turns V into anti-Jordan triple system

FAULKNER+FERRAR (1980)

くロン (雪) (ヨ) (ヨ)

Complex unitary representations

- Let $V \in \operatorname{Rep}(\mathfrak{g}, \mathbb{C})$ with hermitian inner product $g_{a\overline{b}}$
- On the 3-graded superspace $\overline{V} \oplus \mathfrak{g}_{\mathbb{C}} \oplus V$ define

 $\begin{bmatrix} e_{a}, e_{\overline{b}} \end{bmatrix} = \kappa^{ij} T_{i\overline{b}a} X_{j}, \quad \begin{bmatrix} X_{i}, e_{a} \end{bmatrix} = T_{i}{}^{b}{}_{a} e_{b}, \quad \begin{bmatrix} X_{i}, X_{j} \end{bmatrix} = f_{ij}{}^{k} X_{k}$ $\begin{pmatrix} e_{a}, e_{\overline{b}} \end{pmatrix} = g_{a\overline{b}} = -(e_{\overline{b}}, e_{a}), \qquad \begin{pmatrix} X_{i}, X_{j} \end{pmatrix} = \kappa_{ij}$

- Jacobi $\iff F_{a\overline{b}c}{}^{d} := \kappa^{ij} T_{i\overline{b}c} T_{j}{}^{d}{}_{a} = -F_{c\overline{b}a}{}^{d}$ $\iff \mathscr{M} = 6 \text{ supersymmetry}$
- The sesquibilinear 3-bracket $V \times \overline{V} \times V \rightarrow V$

$$[e_{a}, e_{\overline{b}}, e_{c}] := [[e_{a}, e_{\overline{b}}], e_{c}]$$

turns V into anti-Jordan triple system

FAULKNER+FERRAR (1980)

くロン (雪) (ヨ) (ヨ)

Complex unitary representations

- Let $V \in \operatorname{Rep}(\mathfrak{g}, \mathbb{C})$ with hermitian inner product $g_{a\overline{b}}$
- On the 3-graded superspace $\overline{V} \oplus \mathfrak{g}_{\mathbb{C}} \oplus V$ define

 $\begin{bmatrix} e_{a}, e_{\overline{b}} \end{bmatrix} = \kappa^{ij} T_{i\overline{b}a} X_{j}, \quad \begin{bmatrix} X_{i}, e_{a} \end{bmatrix} = T_{i}{}^{b}{}_{a} e_{b}, \quad \begin{bmatrix} X_{i}, X_{j} \end{bmatrix} = f_{ij}{}^{k} X_{k}$ $\begin{pmatrix} e_{a}, e_{\overline{b}} \end{pmatrix} = g_{a\overline{b}} = -(e_{\overline{b}}, e_{a}), \qquad \begin{pmatrix} X_{i}, X_{j} \end{pmatrix} = \kappa_{ij}$

Jacobi ⇔ F_{āb̄c}^d := κ^{ij}T_{īb̄c}T_j^d_a = -F_{c̄b̄a}^d ⇔ 𝒴 = 6 supersymmetry!
 The sequibilinear 3-bracket V × V × V → V

 $[e_{a}, e_{\overline{b}}, e_{c}] := [[e_{a}, e_{\overline{b}}], e_{c}]$

turns V into anti-Jordan triple system

FAULKNER+FERRAR (1980)

ヘロト ヘ戸ト ヘヨト ヘヨト

Complex unitary representations

- Let $V \in \operatorname{Rep}(\mathfrak{g}, \mathbb{C})$ with hermitian inner product $g_{a\overline{b}}$
- On the 3-graded superspace $\overline{V} \oplus \mathfrak{g}_{\mathbb{C}} \oplus V$ define

 $\begin{bmatrix} e_{a}, e_{\overline{b}} \end{bmatrix} = \kappa^{ij} T_{i\overline{b}a} X_{j}, \quad \begin{bmatrix} X_{i}, e_{a} \end{bmatrix} = T_{i}{}^{b}{}_{a} e_{b}, \quad \begin{bmatrix} X_{i}, X_{j} \end{bmatrix} = f_{ij}{}^{k} X_{k}$ $\begin{pmatrix} e_{a}, e_{\overline{b}} \end{pmatrix} = g_{a\overline{b}} = -(e_{\overline{b}}, e_{a}), \qquad \begin{pmatrix} X_{i}, X_{j} \end{pmatrix} = \kappa_{ij}$

- Jacobi $\iff F_{a\overline{b}c}{}^{d} := \kappa^{ij} T_{i\overline{b}c} T_{j}{}^{d}{}_{a} = -F_{c\overline{b}a}{}^{d}$ $\iff \mathscr{N} = 6 \text{ supersymmetry!}$
- The sesquibilinear 3-bracket $V \times \overline{V} \times V \rightarrow V$

$$[e_{a}, e_{\overline{b}}, e_{c}] := [[e_{a}, e_{\overline{b}}], e_{c}]$$

turns V into anti-Jordan triple system

FAULKNER+FERRAR (1980)

くロン (雪) (ヨ) (ヨ)

= nar

Complex unitary representations

- Let $V \in \operatorname{Rep}(\mathfrak{g}, \mathbb{C})$ with hermitian inner product $g_{a\overline{b}}$
- On the 3-graded superspace $\overline{V} \oplus \mathfrak{g}_{\mathbb{C}} \oplus V$ define

$$\begin{split} [\boldsymbol{e}_{a}, \boldsymbol{e}_{\overline{b}}] &= \kappa^{ij} \mathsf{T}_{i\overline{b}a} \mathsf{X}_{j}, \quad [\mathsf{X}_{i}, \boldsymbol{e}_{a}] = \mathsf{T}_{i}{}^{b}{}_{a} \boldsymbol{e}_{b}, \quad [\mathsf{X}_{i}, \mathsf{X}_{j}] = \mathsf{f}_{ij}{}^{k} \mathsf{X}_{k} \\ & \left(\boldsymbol{e}_{a}, \boldsymbol{e}_{\overline{b}}\right) = \mathfrak{g}_{a\overline{b}} = -\left(\boldsymbol{e}_{\overline{b}}, \boldsymbol{e}_{a}\right), \qquad \left(\mathsf{X}_{i}, \mathsf{X}_{j}\right) = \kappa_{ij} \end{split}$$

- Jacobi $\iff F_{a\overline{b}c}{}^{d} := \kappa^{ij} T_{i\overline{b}c} T_{j}{}^{d}{}_{a} = -F_{c\overline{b}a}{}^{d}$ $\iff \mathscr{N} = 6 \text{ supersymmetry!}$
- The sesquibilinear 3-bracket $V \times \overline{V} \times V \rightarrow V$

$$[e_{a}, e_{\overline{b}}, e_{c}] := [[e_{a}, e_{\overline{b}}], e_{c}]$$

turns V into an anti-Jordan triple system FAULKNER+FERRAR (1980) BAGGER+LAMBERT (2008)

Complex unitary representations

- Let $V \in \operatorname{Rep}(\mathfrak{g}, \mathbb{C})$ with hermitian inner product $g_{a\overline{b}}$
- On the 3-graded superspace $\overline{V} \oplus \mathfrak{g}_{\mathbb{C}} \oplus V$ define

 $\begin{bmatrix} e_{a}, e_{\overline{b}} \end{bmatrix} = \kappa^{ij} \mathsf{T}_{i\overline{b}a} \mathsf{X}_{j}, \quad [\mathsf{X}_{i}, e_{a}] = \mathsf{T}_{i}{}^{b}{}_{a} e_{b}, \quad [\mathsf{X}_{i}, \mathsf{X}_{j}] = \mathsf{f}_{ij}{}^{k} \mathsf{X}_{k} \\ (e_{a}, e_{\overline{b}}) = g_{a\overline{b}} = -(e_{\overline{b}}, e_{a}), \qquad (\mathsf{X}_{i}, \mathsf{X}_{j}) = \kappa_{ij}$

- Jacobi $\iff F_{a\overline{b}c}{}^{d} := \kappa^{ij} T_{i\overline{b}c} T_{j}{}^{d}{}_{a} = -F_{c\overline{b}a}{}^{d}$ $\iff \mathscr{N} = 6 \text{ supersymmetry!}$
- The sesquibilinear 3-bracket $V \times \overline{V} \times V \rightarrow V$

$$[e_{a}, e_{\overline{b}}, e_{c}] := [[e_{a}, e_{\overline{b}}], e_{c}]$$

turns V into a metric anti-Jordan triple system FAULKNER+FERRAR (1980) BAGGER+LAMBERT (2008)

Classification

 Indecomposable N = 6 theories ↔ V ∈ Irr(g, C)_{aJTS}
 V irreducible ↔ embedding Lie superalgebra is simple PALMKVIST, FO (2009)

 Two classes of simple 3-graded complex (metric) Lie superalgebras: A(m, n) and C(n + 1)
 KAC (1977)

- $\mathcal{N} = 6$ theories have been classified by other means SCHNABL+TACHIKAWA (2008)
- The A(n, n) theory is the ABJM model AHARONY+BERGMAN+JAFFERIS+MALDACENA (2008)
- The $A(n, m \neq n)$ and C(n + 1) theories have already been constructed HosomicHI+3LEE+PARK (2008)

Classification

• Indecomposable $\mathscr{N} = 6$ theories $\iff V \in Irr(\mathfrak{g}, \mathbb{C})_{aJTS}$

• Two classes of simple 3-graded complex (metric) Lie superalgebras: A(m, n) and C(n + 1) KAC (1977)

- $\mathcal{N} = 6$ theories have been classified by other means SCHNABL+TACHIKAWA (2008
- The A(n, n) theory is the ABJM model AHARONY+BERGMAN+JAFFERIS+MALDACENA (2008)
- The $A(n, m \neq n)$ and C(n + 1) theories have already been constructed HosomicHI+3LEE+PARK (2008)

Classification

- Indecomposable $\mathscr{N} = 6$ theories $\iff V \in Irr(\mathfrak{g}, \mathbb{C})_{aJTS}$
- V irreducible \iff embedding Lie superalgebra is simple PALMKVIST, FO (2009)
- Two classes of simple 3-graded complex (metric) Lie superalgebras: A(m, n) and C(n + 1) KAC (1977)
- $\mathcal{N} = 6$ theories have been classified by other means SCHNABL+TACHIKAWA (2008)
- The A(n, n) theory is the ABJM model AHARONY+BERGMAN+JAFFERIS+MALDACENA (2008)
- The $A(n, m \neq n)$ and C(n + 1) theories have already been constructed HosomicHI+3LEE+PARK (2008)

Classification

• Indecomposable $\mathscr{N} = 6$ theories $\iff V \in Irr(\mathfrak{g}, \mathbb{C})_{aJTS}$

• V irreducible \iff embedding Lie superalgebra is simple PALMKVIST, FO (2009)

- Two classes of simple 3-graded complex (metric) Lie superalgebras: A(m, n) and C(n + 1)
 Kac (1977)
- $\mathcal{N} = 6$ theories have been classified by other means SCHNABL+TACHIKAWA (2008
- The A(n, n) theory is the ABJM model Aharony+Bergman+Jafferis+Maldacena (2008)
- The A(n, m ≠ n) and C(n + 1) theories have already been constructed HosomicHI+3LEE+PARK (2008)

Classification

- Indecomposable $\mathscr{N} = 6$ theories $\iff V \in Irr(\mathfrak{g}, \mathbb{C})_{aJTS}$
- V irreducible \iff embedding Lie superalgebra is simple PALMKVIST, FO (2009)
- Two classes of simple 3-graded complex (metric) Lie superalgebras: A(m, n) and C(n + 1)
 Kac (1977)
- $\mathcal{N} = 6$ theories have been classified by other means SCHNABL+TACHIKAWA (2008)
- The A(n, n) theory is the ABJM model Aharony+Bergman+Jafferis+Maldacena (2008)
- The $A(n, m \neq n)$ and C(n + 1) theories have already been constructed HosomicHI+3LEE+PARK (2008)

Classification

- Indecomposable $\mathscr{N} = 6$ theories $\iff V \in Irr(\mathfrak{g}, \mathbb{C})_{aJTS}$
- V irreducible \iff embedding Lie superalgebra is simple PALMKVIST, FO (2009)
- Two classes of simple 3-graded complex (metric) Lie superalgebras: A(m, n) and C(n + 1)
 Kac (1977)
- $\mathcal{N} = 6$ theories have been classified by other means SCHNABL+TACHIKAWA (2008)
- The A(n, n) theory is the ABJM model AHARONY+BERGMAN+JAFFERIS+MALDACENA (2008)
- The A(n, m ≠ n) and C(n + 1) theories have already been constructed HosomicHI+3LEE+PARK (2008)

Classification

- Indecomposable $\mathscr{N} = 6$ theories $\iff V \in Irr(\mathfrak{g}, \mathbb{C})_{aJTS}$
- V irreducible \iff embedding Lie superalgebra is simple PALMKVIST, FO (2009)
- Two classes of simple 3-graded complex (metric) Lie superalgebras: A(m, n) and C(n + 1)
 Kac (1977)
- $\mathcal{N} = 6$ theories have been classified by other means SCHNABL+TACHIKAWA (2008)
- The A(n, n) theory is the ABJM model AHARONY+BERGMAN+JAFFERIS+MALDACENA (2008)
- The $A(n, m \neq n)$ and C(n + 1) theories have already been constructed HOSOMICHI+3LEE+PARK (2008)

イロト イポト イヨト イヨト

Quaternionic unitary representations

- There are no quaternionic Lie algebras
- so we think of W ∈ Rep(g, Ⅲ) as a complex unitary representations with a quaternionic structure:
 - - Fis compatible with the hermitian inner products of the dependence of t
- J defines a g-invariant complex symplectic structure

 $\omega(\mathfrak{u}, \nu) := \mathfrak{g}(\mathfrak{u}, J\nu)$

with components ω_{ab}

・ロト ・通ト ・モト ・モト

Quaternionic unitary representations

• There are no quaternionic Lie algebras

- so we think of W ∈ Rep(g, Ⅲ) as a complex unitary representations with a quaternionic structure:
 - a complex antilinear map $J: W \rightarrow W$ obeying $J^2 = -1$
 -) is g-equivariant
 - \circ) is compatible with the hermitian inner products of (\circ
- J defines a g-invariant complex symplectic structure

 $\omega(\mathfrak{u}, \nu) := \mathfrak{g}(\mathfrak{u}, J\nu)$

with components ω_{ab}

Quaternionic unitary representations

- There are no quaternionic Lie algebras
- so we think of W ∈ Rep(g, H) as a complex unitary representations with a quaternionic structure:
 - a complex antilinear map J : $W \rightarrow W$ obeying $J^2 = -1$
 - J is g-equivariant
 - J is compatible with the hermitian inner product: g(Ju, Jv) = g(v, u)
- J defines a g-invariant complex symplectic structure

 $\omega(\mathfrak{u}, \nu) := \mathfrak{g}(\mathfrak{u}, J\nu)$

with components ω_{ab}

Quaternionic unitary representations

- There are no quaternionic Lie algebras
- so we think of W ∈ Rep(g, H) as a complex unitary representations with a quaternionic structure:
 - a complex antilinear map $J: W \to W$ obeying $J^2 = -1$
 - J is g-equivariant
 - J is compatible with the hermitian inner product: g(Ju, Jv) = g(v, u)

• J defines a g-invariant complex symplectic structure

 $\omega(\mathfrak{u}, \nu) := \mathfrak{g}(\mathfrak{u}, J\nu)$

with components ω_{ab}

Quaternionic unitary representations

- There are no quaternionic Lie algebras
- so we think of W ∈ Rep(g, H) as a complex unitary representations with a quaternionic structure:
 - a complex antilinear map $J: W \to W$ obeying $J^2 = -1$
 - J is g-equivariant
 - J is compatible with the hermitian inner product: g(Ju, Jv) = g(v, u)

J defines a g-invariant complex symplectic structure

 $\omega(\mathfrak{u}, \nu) := \mathfrak{g}(\mathfrak{u}, J\nu)$

with components ω_{ab}

Quaternionic unitary representations

- There are no quaternionic Lie algebras
- so we think of W ∈ Rep(g, H) as a complex unitary representations with a quaternionic structure:
 - a complex antilinear map $J: W \to W$ obeying $J^2 = -1$
 - J is g-equivariant
 - J is compatible with the hermitian inner product: $g(Ju,J\nu)=g(\nu,u)$

J defines a g-invariant complex symplectic structure

 $\omega(\mathfrak{u},\nu):=g(\mathfrak{u},J\nu)$

with components ω_{ab}

Quaternionic unitary representations

- There are no quaternionic Lie algebras
- so we think of W ∈ Rep(g, H) as a complex unitary representations with a quaternionic structure:
 - a complex antilinear map $J: W \to W$ obeying $J^2 = -1$
 - J is g-equivariant
 - J is compatible with the hermitian inner product: $g(Ju,J\nu)=g(\nu,u)$
- J defines a g-invariant complex symplectic structure

 $\omega(u,v) := g(u,Jv)$

with components ω_{ab}

Symplectic anti-Lie triple systems

• On $\mathfrak{g}_{\mathbb{C}} \oplus W$ we define

 $[e_{a}, e_{b}] = \kappa^{ij} T_{i}{}^{c}{}_{a} \omega_{cb} X_{j}, \quad [X_{i}, e_{a}] = T_{i}{}^{b}{}_{a} e_{b}, \quad [X_{i}, X_{j}] = f_{ij}{}^{k} X_{k}$ $(e_{a}, e_{b}) = \omega_{ab} \qquad (X_{i}, X_{j}) = \kappa_{ij}$

• Let
$$G_{abc}{}^d := \kappa^{ij} T_i{}^e{}_a \omega_{eb} T_j{}^d{}_c$$
. Then
Jacobi $\iff G_{abc}{}^d + G_{bca}{}^d + G_{cab}{}^d = 0$

The 3-bracket

$[\boldsymbol{e}_{a}, \boldsymbol{e}_{b}, \boldsymbol{e}_{c}] := [[\boldsymbol{e}_{a}, \boldsymbol{e}_{b}], \boldsymbol{e}_{c}]$

turns W into a symplectic anti-Lie triple system

Symplectic anti-Lie triple systems

 $\bullet~$ On $\mathfrak{g}_{\mathbb{C}}\oplus W$ we define

 $[\boldsymbol{e}_{a}, \boldsymbol{e}_{b}] = \kappa^{ij} T_{i}{}^{c}{}_{a} \omega_{cb} X_{j}, \quad [\boldsymbol{X}_{i}, \boldsymbol{e}_{a}] = T_{i}{}^{b}{}_{a} \boldsymbol{e}_{b}, \quad [\boldsymbol{X}_{i}, \boldsymbol{X}_{j}] = f_{ij}{}^{k} X_{k}$ $(\boldsymbol{e}_{a}, \boldsymbol{e}_{b}) = \omega_{ab} \qquad (\boldsymbol{X}_{i}, \boldsymbol{X}_{j}) = \kappa_{ij}$

• Let $G_{abc}{}^d := \kappa^{ij} T_i{}^e{}_a \omega_{eb} T_j{}^d{}_c$. Then Jacobi $\iff G_{abc}{}^d + G_{bca}{}^d + G_{cab}{}^d = 0 \iff \mathcal{N} = 5$

The 3-bracket

$[\boldsymbol{e}_{a}, \boldsymbol{e}_{b}, \boldsymbol{e}_{c}] := [[\boldsymbol{e}_{a}, \boldsymbol{e}_{b}], \boldsymbol{e}_{c}]$

turns W into a symplectic anti-Lie triple system

Symplectic anti-Lie triple systems

• On $\mathfrak{g}_{\mathbb{C}} \oplus W$ we define

$$\begin{split} [\boldsymbol{e}_{a}, \boldsymbol{e}_{b}] &= \kappa^{ij} \mathsf{T}_{i}{}^{c}{}_{a} \omega_{cb} \mathsf{X}_{j}, \quad [\mathsf{X}_{i}, \boldsymbol{e}_{a}] = \mathsf{T}_{i}{}^{b}{}_{a} \boldsymbol{e}_{b}, \quad [\mathsf{X}_{i}, \mathsf{X}_{j}] = \mathsf{f}_{ij}{}^{k} \mathsf{X}_{k} \\ (\boldsymbol{e}_{a}, \boldsymbol{e}_{b}) &= \omega_{ab} \qquad \left(\mathsf{X}_{i}, \mathsf{X}_{j}\right) = \kappa_{ij} \end{split}$$

• Let
$$G_{abc}{}^d := \kappa^{ij} T_i{}^e{}_a \omega_{eb} T_j{}^d{}_c$$
. Then
Jacobi $\iff G_{abc}{}^d + G_{bca}{}^d + G_{cab}{}^d = 0 \iff \mathcal{N} = 5!$

The 3-bracket

$[\boldsymbol{e}_{a}, \boldsymbol{e}_{b}, \boldsymbol{e}_{c}] := [[\boldsymbol{e}_{a}, \boldsymbol{e}_{b}], \boldsymbol{e}_{c}]$

turns W into a symplectic anti-Lie triple system

Symplectic anti-Lie triple systems

• On $\mathfrak{g}_{\mathbb{C}} \oplus W$ we define

$$\begin{split} [\boldsymbol{e}_{a}, \boldsymbol{e}_{b}] &= \kappa^{ij} \mathsf{T}_{i}{}^{c}{}_{a} \omega_{cb} \mathsf{X}_{j}, \quad [\mathsf{X}_{i}, \boldsymbol{e}_{a}] = \mathsf{T}_{i}{}^{b}{}_{a} \boldsymbol{e}_{b}, \quad [\mathsf{X}_{i}, \mathsf{X}_{j}] = \mathsf{f}_{ij}{}^{k} \mathsf{X}_{k} \\ (\boldsymbol{e}_{a}, \boldsymbol{e}_{b}) &= \omega_{ab} \qquad \left(\mathsf{X}_{i}, \mathsf{X}_{j}\right) = \kappa_{ij} \end{split}$$

• Let
$$G_{abc}{}^d := \kappa^{ij} T_i{}^e{}_a \omega_{eb} T_j{}^d{}_c$$
. Then
Jacobi $\iff G_{abc}{}^d + G_{bca}{}^d + G_{cab}{}^d = 0 \iff \mathcal{N} = 5!$

The 3-bracket

$[\boldsymbol{e}_{a}, \boldsymbol{e}_{b}, \boldsymbol{e}_{c}] := [[\boldsymbol{e}_{a}, \boldsymbol{e}_{b}], \boldsymbol{e}_{c}]$

turns W into a symplectic anti-Lie triple system

Symplectic anti-Lie triple systems

 $\bullet~$ On $\mathfrak{g}_{\mathbb{C}}\oplus W$ we define

 $[\boldsymbol{e}_{a}, \boldsymbol{e}_{b}] = \kappa^{ij} T_{i}{}^{c}{}_{a} \omega_{cb} X_{j}, \quad [\boldsymbol{X}_{i}, \boldsymbol{e}_{a}] = T_{i}{}^{b}{}_{a} \boldsymbol{e}_{b}, \quad [\boldsymbol{X}_{i}, \boldsymbol{X}_{j}] = f_{ij}{}^{k} X_{k}$ $(\boldsymbol{e}_{a}, \boldsymbol{e}_{b}) = \omega_{ab} \qquad (\boldsymbol{X}_{i}, \boldsymbol{X}_{j}) = \kappa_{ij}$

• Let
$$G_{abc}{}^d := \kappa^{ij} T_i{}^e{}_a \omega_{eb} T_j{}^d{}_c$$
. Then
Jacobi $\iff G_{abc}{}^d + G_{bca}{}^d + G_{cab}{}^d = 0 \iff \mathscr{N} = 5!$

The 3-bracket

$$[e_{a}, e_{b}, e_{c}] := [[e_{a}, e_{b}], e_{c}]$$

turns W into a symplectic anti-Lie triple system
Classification

• Indecomposable $\mathscr{N} = 5$ theories $\iff W \in Irr(\mathfrak{g}, \mathbb{H})_{aLTS}$

- The simple complex (metric) Lie superalgebras with quaternionic odd subspace are: A(m, n), B(m, n), C(n + 1), D(m, n), $D(2, 1; \alpha)$, F(4) and G(3) KAC (1977)

 The *№* = 5 theories have been constructed Hosomichi+3Lee+Park (2008) ВегозноеFF+Hohm+Roest+Samtleben+Sezgin (2008)

Classification

- Indecomposable $\mathscr{N} = 5$ theories $\iff W \in Irr(\mathfrak{g}, \mathbb{H})_{aLTS}$
- W irreducible \iff embedding Lie superalgebra is simple FO (2009)
- The simple complex (metric) Lie superalgebras with quaternionic odd subspace are: A(m, n), B(m, n), C(n + 1), D(m, n), $D(2, 1; \alpha)$, F(4) and G(3) Kac (1977)

 The *№* = 5 theories have been constructed Hosoмicнi+3Lee+Park (2008) ВегозноеFF+Hoнм+Roest+Samtleben+Sezgin (2008)

Classification

- Indecomposable $\mathcal{N} = 5$ theories $\iff W \in Irr(\mathfrak{g}, \mathbb{H})_{aLTS}$
- W irreducible \iff embedding Lie superalgebra is simple FO (2009)
- The simple complex (metric) Lie superalgebras with quaternionic odd subspace are: A(m, n), B(m, n), C(n + 1), D(m, n), $D(2, 1; \alpha)$, F(4) and G(3) Kac (1977)

 The *№* = 5 theories have been constructed Hosomichi+3Lee+Park (2008) Bergshoeff+Hohm+Roest+Samtleben+Sezgin (2008)

Classification

- Indecomposable $\mathscr{N} = 5$ theories $\iff W \in Irr(\mathfrak{g}, \mathbb{H})_{aLTS}$
- W irreducible \iff embedding Lie superalgebra is simple FO (2009)
- The simple complex (metric) Lie superalgebras with quaternionic odd subspace are: A(m, n), B(m, n), C(n + 1), D(m, n), $D(2, 1; \alpha)$, F(4) and G(3) Kac (1977)

 The *N* = 5 theories have been constructed Hosoмicнi+3Lee+Park (2008) Bergshoeff+Hohm+Roest+Samtleben+Sezgin (2008)

Classification

- Indecomposable $\mathscr{N} = 5$ theories $\iff W \in Irr(\mathfrak{g}, \mathbb{H})_{aLTS}$
- W irreducible \iff embedding Lie superalgebra is simple FO (2009)
- The simple complex (metric) Lie superalgebras with quaternionic odd subspace are: A(m, n), B(m, n), C(n + 1), D(m, n), $D(2, 1; \alpha)$, F(4) and G(3) Kac (1977)
- The $\mathcal{N} = 5$ theories have been constructed HOSOMICHI+3LEE+PARK (2008) BERGSHOEFF+HOHM+ROEST+SAMTLEBEN+SEZGIN (2008)

A comment on the $\mathcal{N} = 4$ theories

- Indecomposable $\mathcal{N} = 4$ theories of GAIOTTO+WITTEN (2008) — those with matter representations $\Delta_{\pm}^{(4)} \otimes W$ are also classified by irreducible symplectic anti-Lie triple systems; equivalently by simple metric complex Lie superalgebras with quaternionic odd subspace
- The more general $\mathscr{N} = 4$ theories of HOSOMICHI+3LEE+PARK (2008) — those with matter representations $\Delta_{\pm}^{(4)} \otimes W_1 \oplus \Delta_{\mp}^{(4)} \otimes W_2$ — are classified in terms of dominoes whose tiles are the above objects and two files are said to match if they have a metric Lie subalgebra in common

(人間) トイヨト イヨト

A comment on the $\mathcal{N} = 4$ theories

- Indecomposable $\mathcal{N} = 4$ theories of GAIOTTO+WITTEN (2008) — those with matter representations $\Delta_{\pm}^{(4)} \otimes W$ are also classified by irreducible symplectic anti-Lie triple systems; equivalently by simple metric complex Lie superalgebras with quaternionic odd subspace
- The more general $\mathscr{N} = 4$ theories of HOSOMICHI+3LEE+PARK (2008) — those with matter representations $\Delta_{\pm}^{(4)} \otimes W_1 \oplus \Delta_{\mp}^{(4)} \otimes W_2$ — are classified in terms of dominoes whose tiles are the above objects

A comment on the $\mathcal{N} = 4$ theories

- Indecomposable $\mathcal{N} = 4$ theories of GAIOTTO+WITTEN (2008) — those with matter representations $\Delta_{\pm}^{(4)} \otimes W$ are also classified by irreducible symplectic anti-Lie triple systems; equivalently by simple metric complex Lie superalgebras with quaternionic odd subspace
- The more general $\mathscr{N} = 4$ theories of HOSOMICHI+3LEE+PARK (2008) — those with matter representations $\Delta_{\pm}^{(4)} \otimes W_1 \oplus \Delta_{\mp}^{(4)} \otimes W_2$ — are classified in terms of dominoes whose tiles are the above objects and two tiles are said to match if they have a metric Lie subalgebra in common

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

A comment on the $\mathcal{N} = 4$ theories

- Indecomposable $\mathcal{N} = 4$ theories of GAIOTTO+WITTEN (2008) — those with matter representations $\Delta_{\pm}^{(4)} \otimes W$ are also classified by irreducible symplectic anti-Lie triple systems; equivalently by simple metric complex Lie superalgebras with quaternionic odd subspace
- The more general $\mathscr{N} = 4$ theories of HOSOMICHI+3LEE+PARK (2008) — those with matter representations $\Delta_{\pm}^{(4)} \otimes W_1 \oplus \Delta_{\mp}^{(4)} \otimes W_2$ — are classified in terms of dominoes whose tiles are the above objects and two tiles are said to match if they have a metric Lie subalgebra in common

A comment on the $\mathcal{N} = 4$ theories

- Indecomposable $\mathcal{N} = 4$ theories of GAIOTTO+WITTEN (2008) — those with matter representations $\Delta_{\pm}^{(4)} \otimes W$ are also classified by irreducible symplectic anti-Lie triple systems; equivalently by simple metric complex Lie superalgebras with quaternionic odd subspace
- The more general $\mathscr{N} = 4$ theories of HOSOMICHI+3LEE+PARK (2008) — those with matter representations $\Delta_{\pm}^{(4)} \otimes W_1 \oplus \Delta_{\mp}^{(4)} \otimes W_2$ — are classified in terms of dominoes whose tiles are the above objects and two tiles are said to match if they have a metric Lie subalgebra in common

Summary

- We classified complete, smooth $\mathcal{N} \ge 4$ Freund–Rubin backgrounds $AdS_4 \times M^7$ by
 - showing that M = S⁷/F for some freely acting F ⊂ SO(8)
 classifying such F in terms of pairs (ADE, a) consisting of an ADE subgroup of Sp(1) together with an automorphism
- We showed that superconformal Chern–Simons+matter theories are governed by the representation theory of metric Lie algebras
- We classified the *N* ≥ 4 theories in terms of metric Lie superalgebras, equivalently, in terms of certain metric triple systems
- **Important**: the inner product on the Lie superalgebra is a crucial part of the data

・ロト ・回ト ・ヨト ・ヨト

Summary

- We classified complete, smooth $\mathcal{N} \ge 4$ Freund–Rubin backgrounds $AdS_4 \times M^7$ by
 - showing that M = S⁷/Γ for some freely acting Γ ⊂ SO(8)
 classifying such Γ in terms of pairs (ADE, τ) consisting of an ADE subgroup of Sp(1) together with an automorphism
- We showed that superconformal Chern–Simons+matter theories are governed by the representation theory of metric Lie algebras
- We classified the *N* ≥ 4 theories in terms of metric Lie superalgebras, equivalently, in terms of certain metric triple systems
- **Important**: the inner product on the Lie superalgebra is a crucial part of the data

Summary

- We classified complete, smooth N ≥ 4 Freund–Rubin backgrounds AdS₄ × M⁷ by
 - **()** showing that $M = S^7/\Gamma$ for some freely acting $\Gamma \subset SO(8)$
 - Classifying such Γ in terms of pairs (ADE, τ) consisting of an ADE subgroup of Sp(1) together with an automorphism
- We showed that superconformal Chern–Simons+matter theories are governed by the representation theory of metric Lie algebras
- We classified the *N* ≥ 4 theories in terms of metric Lie superalgebras, equivalently, in terms of certain metric triple systems
- **Important**: the inner product on the Lie superalgebra is a crucial part of the data

Summary

- We classified complete, smooth *N* ≥ 4 Freund–Rubin backgrounds AdS₄ × M⁷ by
 - **()** showing that $M = S^7/\Gamma$ for some freely acting $\Gamma \subset SO(8)$
 - Classifying such Γ in terms of pairs (ADE, τ) consisting of an ADE subgroup of Sp(1) together with an automorphism
- We showed that superconformal Chern–Simons+matter theories are governed by the representation theory of metric Lie algebras
- We classified the *N* ≥ 4 theories in terms of metric Lie superalgebras
- **Important**: the inner product on the Lie superalgebra is a crucial part of the data

Summary

- We classified complete, smooth *N* ≥ 4 Freund–Rubin backgrounds AdS₄ × M⁷ by
 - **()** showing that $M = S^7/\Gamma$ for some freely acting $\Gamma \subset SO(8)$
 - Classifying such Γ in terms of pairs (ADE, τ) consisting of an ADE subgroup of Sp(1) together with an automorphism
- We showed that superconformal Chern–Simons+matter theories are governed by the representation theory of metric Lie algebras
- We classified the *N* ≥ 4 theories in terms of metric Lie superalgebras; equivalently, in terms of certain metric triple systems
- **Important**: the inner product on the Lie superalgebra is a crucial part of the data

Summary

- We classified complete, smooth *N* ≥ 4 Freund–Rubin backgrounds AdS₄ × M⁷ by
 - **()** showing that $M = S^7/\Gamma$ for some freely acting $\Gamma \subset SO(8)$
 - Classifying such Γ in terms of pairs (ADE, τ) consisting of an ADE subgroup of Sp(1) together with an automorphism
- We showed that superconformal Chern–Simons+matter theories are governed by the representation theory of metric Lie algebras
- We classified the *N* ≥ 4 theories in terms of metric Lie superalgebras; equivalently, in terms of certain metric triple systems
- **Important**: the inner product on the Lie superalgebra is a crucial part of the data

Summary

- We classified complete, smooth *N* ≥ 4 Freund–Rubin backgrounds AdS₄ × M⁷ by
 - **()** showing that $M = S^7/\Gamma$ for some freely acting $\Gamma \subset SO(8)$
 - Classifying such Γ in terms of pairs (ADE, τ) consisting of an ADE subgroup of Sp(1) together with an automorphism
- We showed that superconformal Chern–Simons+matter theories are governed by the representation theory of metric Lie algebras
- We classified the *N* ≥ 4 theories in terms of metric Lie superalgebras; equivalently, in terms of certain metric triple systems
- **Important**: the inner product on the Lie superalgebra is a crucial part of the data

Further results

- arXiv:0908.2125 [hep-th] contains more results!
- The representation theory also explains naturally the mechanism of supersymmetry enhancements:
 - $0 \cdot 1 = 4 \text{ to } 1 = 5$
 - Ø ...// = 5 to ...// = 6
 - Ø ∪ / = 6 to ∪ / = 8, in particular why ∪ / = 7 implies ∪ / = 8
- In the paper we also construct the theories starting from the representation-theoretic data; in particular, we give explicit expressions for the superpotentials
- That in itself is worth another seminar, and luckily PAUL and ELENA will be visiting IPMU from October (^_^)

・ロ・・ (日・・ ヨ・・

Further results

• arXiv:0908.2125 [hep-th] contains more results!

- The representation theory also explains naturally the mechanism of supersymmetry enhancements:
 - 🌔 N = 4 to N = 5
 - Ø . M = 5 to M = 6
 - $0 \cup \ell' = 6$ to J' = 8, in particular why J' = 7 implies J' = 8
- In the paper we also construct the theories starting from the representation-theoretic data; in particular, we give explicit expressions for the superpotentials
- That in itself is worth another seminar, and luckily PAUL and ELENA will be visiting IPMU from October (^_^)

・ロ・・ (日・・ ヨ・・

Further results

- arXiv:0908.2125 [hep-th] contains more results!
- The representation theory also explains naturally the mechanism of supersymmetry enhancements:

1 $\mathcal{N} = 4$ to $\mathcal{N} = 5$

Image: A state of the second secon

3 $\mathcal{N} = 6$ to $\mathcal{N} = 8$, in particular why $\mathcal{N} = 7$ implies $\mathcal{N} = 8$

- In the paper we also construct the theories starting from the representation-theoretic data; in particular, we give explicit expressions for the superpotentials
- That in itself is worth another seminar, and luckily PAUL and ELENA will be visiting IPMU from October (^_^)

・ロン ・四 と ・ ヨ と ・ ヨ と

Further results

- arXiv:0908.2125 [hep-th] contains more results!
- The representation theory also explains naturally the mechanism of supersymmetry enhancements:

② 𝒴 = 5 to 𝒴 = 6

 $\mathcal{N} = 6$ to $\mathcal{N} = 8$, in particular why $\mathcal{N} = 7$ implies $\mathcal{N} = 8$

- In the paper we also construct the theories starting from the representation-theoretic data; in particular, we give explicit expressions for the superpotentials
- That in itself is worth another seminar, and luckily PAUL and ELENA will be visiting IPMU from October (^_^)

・ロト ・四ト ・ヨト ・ヨト

Further results

- arXiv:0908.2125 [hep-th] contains more results!
- The representation theory also explains naturally the mechanism of supersymmetry enhancements:

2 $\mathcal{N} = 5$ to $\mathcal{N} = 6$

 \Im $\mathcal{N} = 6$ to $\mathcal{N} = 8$, in particular why $\mathcal{N} = 7$ implies $\mathcal{N} = 8$

- In the paper we also construct the theories starting from the representation-theoretic data; in particular, we give explicit expressions for the superpotentials
- That in itself is worth another seminar, and luckily PAUL and ELENA will be visiting IPMU from October (^_^)

・ロ・・ (日・・ ヨ・・

Further results

- arXiv:0908.2125 [hep-th] contains more results!
- The representation theory also explains naturally the mechanism of supersymmetry enhancements:

1
$$\mathcal{N} = 4$$
 to $\mathcal{N} = 5$

3 $\mathcal{N} = 6$ to $\mathcal{N} = 8$, in particular why $\mathcal{N} = 7$ implies $\mathcal{N} = 8$

- In the paper we also construct the theories starting from the representation-theoretic data; in particular, we give explicit expressions for the superpotentials
- That in itself is worth another seminar, and luckily PAUL and ELENA will be visiting IPMU from October (^_^)

Further results

- arXiv:0908.2125 [hep-th] contains more results!
- The representation theory also explains naturally the mechanism of supersymmetry enhancements:

1
$$\mathcal{N} = 4$$
 to $\mathcal{N} = 5$

3 $\mathcal{N} = 6$ to $\mathcal{N} = 8$, in particular why $\mathcal{N} = 7$ implies $\mathcal{N} = 8$

- In the paper we also construct the theories starting from the representation-theoretic data; in particular, we give explicit expressions for the superpotentials
- That in itself is worth another seminar, and luckily PAUL and ELENA will be visiting IPMU from October (^_^)

Further results

- arXiv:0908.2125 [hep-th] contains more results!
- The representation theory also explains naturally the mechanism of supersymmetry enhancements:

1
$$\mathcal{N} = 4$$
 to $\mathcal{N} = 5$

3 $\mathcal{N} = 6$ to $\mathcal{N} = 8$, in particular why $\mathcal{N} = 7$ implies $\mathcal{N} = 8$

- In the paper we also construct the theories starting from the representation-theoretic data; in particular, we give explicit expressions for the superpotentials
- That in itself is worth another seminar, and luckily PAUL and ELENA will be visiting IPMU from October (^_^)