Brownian loops and conformally invariant systems

Valentino F. Foit

GTP Seminar

November 23, 2022

Outline

- Conformal field theories
 - Statistical mechanics
 - Conformal invariance
 - Examples
- 2 Brownian loop soup
 - Primary operator spectrum
 - Correlation functions
- 3 Percolation
- 4 Overview and summary

Statistical mechanics

Configuration space Ω with Gibbs measure for $\omega \in \Omega$

$$P(\omega) = \frac{1}{Z}e^{-\beta E(\omega)}$$

Statistical mechanics

Configuration space Ω with Gibbs measure for $\omega \in \Omega$

$$P(\omega) = \frac{1}{Z}e^{-\beta E(\omega)}$$

Partition function

$$Z = \sum_{\omega \in \Omega} e^{-\beta E(\omega)}$$

Correlation functions

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\ldots\rangle = \frac{1}{Z}\sum_{\omega\in\Omega}\mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\ldots e^{-\beta E(\omega)}$$

Example: Ising Model

$$\Omega = \{-1, 1\}^{D}$$

$$E(\omega) = -\sum_{\langle i, j \rangle} S_{i} S_{j}$$

Example: Ising Model

 $\beta < \beta_{\rm critical}$

Disordered phase Critical point

Collective behavior

Conformal field theories are quantum field theories that are invariant under angle-preserving transformations

$$x \to x' = x + \varepsilon(x)$$

$$g_{\mu\nu}(x) \to g'_{\mu\nu}(x') = \Omega(x)g_{\mu\nu}(x)$$

Conformal field theories are quantum field theories that are invariant under angle-preserving transformations

$$x \to x' = x + \varepsilon(x)$$

$$g_{\mu\nu}(x) \to g'_{\mu\nu}(x') = \Omega(x)g_{\mu\nu}(x)$$

Conformal transformations form the conformal group.

For $d \geq 3$

$$SO(d + 1, 1)$$

with $\frac{1}{2}(d+1)(d+2)$ generators: translations, dilations, rotations, SCT

d=2 (Euclidean field theory) is special. Conformal transformations are given by Cauchy–Riemann equations.

d=2 (Euclidean field theory) is special. Conformal transformations are given by Cauchy–Riemann equations.

All holomorphic (locally analytic) functions

$$z \to f(z)$$

$$\bar{z} \to \bar{f}(\bar{z})$$

generate conformal transformations.

d=2 (Euclidean field theory) is special. Conformal transformations are given by Cauchy–Riemann equations.

All holomorphic (locally analytic) functions

$$z \to f(z)$$
$$\bar{z} \to \bar{f}(\bar{z})$$

generate conformal transformations.

The (quantum) generators form the Virasoro algebra

$$[L_n, L_m] = (n - m)L_{n+m} + \frac{c}{12}n(n^2 - 1)\delta_{n+m,0}$$
$$[L_n, \bar{L}_m] = 0$$

The global conformal transformations L_{-1}, L_0, L_1 form a sub-algebra

Any analytic function with nonzero derivative is a conformal map

$$z \to f(z)$$

Any analytic function with nonzero derivative is a conformal map

$$z \to f(z)$$

(Quasi-)primary operators behave like

$$\Phi(f(z),\bar{f}(\bar{z})) = \left(\frac{\partial f}{\partial z}\right)^{-\Delta} \left(\frac{\partial \bar{f}}{\partial \bar{z}}\right)^{-\bar{\Delta}} \Phi(z,\bar{z})$$

Any analytic function with nonzero derivative is a conformal map

$$z \to f(z)$$

(Quasi-)primary operators behave like

$$\Phi(f(z), \bar{f}(\bar{z})) = \left(\frac{\partial f}{\partial z}\right)^{-\Delta} \left(\frac{\partial \bar{f}}{\partial \bar{z}}\right)^{-\bar{\Delta}} \Phi(z, \bar{z})$$

From here on $\langle \Phi_1(z_1, \bar{z}_1) \dots \rangle \equiv \langle \Phi_1(z_1) \dots \rangle$

$$E = -\sum_{\langle i,j \rangle} S_i S_j, \quad S_i = \pm 1 \text{ at criticality}$$

In the continuum: $\Phi(\lambda z) = \lambda^{-\Delta} \Phi(z)$

Correlation functions

Every global conformal symmetry corresponds to one Ward identity:

$$\langle \Phi(z) \rangle$$

$$\langle \Phi(z_1) \Phi(z_2) \rangle$$

$$\langle \Phi_1(z_1) \Phi_2(z_2) \Phi_3(z_3) \rangle$$

are determined.

Every global conformal symmetry corresponds to one Ward identity:

$$\langle \Phi(z) \rangle$$
$$\langle \Phi(z_1) \Phi(z_2) \rangle$$
$$\langle \Phi_1(z_1) \Phi_2(z_2) \Phi_3(z_3) \rangle$$

are determined.

The four-point function

$$\langle \Phi_1(z_1)\Phi_2(z_2)\Phi_3(z_3)\Phi_4(z_4)\rangle = G(x)\prod_{i< j}^4 z_{ij}^{c_{ij}} \bar{z}_{ij}^{\bar{c}_{ij}}$$

with $z_{ij}=z_i-z_j$ and cross-ratio $x=rac{z_{12}\,z_{34}}{z_{13}\,z_{24}}$ contains non-trivial information

CFTs appear in

- Statistical physics
- Condensed matter physics
- String theory
- AdS/CFT
- Stochastic systems

CFTs appear in

- Statistical physics
- Condensed matter physics
- String theory
- AdS/CFT
- Stochastic systems

Let's cook a Brownian loop soup!

The BLS is the Poissonian ensemble of Brownian loops in the plane

The outer boundary of a random walk is a self-avoiding random walk

The BLS is the Poissonian ensemble of Brownian loops in the plane

The outer boundary of a random walk is a self-avoiding random walk

$$N(z_1) = 1$$
$$N(z_2) = 0$$

The BLS in domain D with intensity λ

- is a Poisson point process
- of unrooted loops
- \bullet with unique measure $\lambda\mu^{\mathrm{loop}}$

from 1501.05945

The BLS in domain D with intensity λ

- is a Poisson point process
- of unrooted loops
- \bullet with unique measure $\lambda\mu^{\mathrm{loop}}$

The **restriction** of D to $D' \in D$ is a BLS in D'

The BLS in domain D with intensity λ

- is a Poisson point process
- of unrooted loops
- with unique measure $\lambda \mu^{\text{loop}}$

The **restriction** of D to $D' \in D$ is a BLS in D'

The image of $D \to D'$ under **conformal map** is BLS in D'

The layering vertex operators

The partition function

$$Z = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\lambda \mu^{\text{loop}} \right)^n$$

Loop measure

$$\mu^{\text{loop}} = \int_D \int_0^\infty \frac{1}{2\pi t^2} \mu_{z,t}^{\text{br}} dt dA(z)$$

Central charge

$$c = 2\lambda$$

The layering vertex operators

The partition function

$$Z = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\lambda \mu^{\text{loop}} \right)^n$$

Loop measure

$$\mu^{\text{loop}} = \int_D \int_0^\infty \frac{1}{2\pi t^2} \mu_{z,t}^{\text{br}} dt dA(z)$$

Central charge

$$c = 2\lambda$$

Primary operators

$$e^{i\beta N(z)}$$

with $N(z) = N_{+}(z) - N_{-}(z)$ have conformal dimension

$$\Delta = \bar{\Delta} = \frac{\lambda}{10} (1 - \cos \beta)$$

Example: The two-point function

$$\left\langle e^{i\beta N(z_1)} e^{-i\beta N(z_2)} \right\rangle = \begin{cases} |z_1 - z_2|^{-4\Delta} & \text{CFTs} \\ \exp\left[-\lambda (1 - \cos\beta)(\alpha(z_1|z_2) + \alpha(z_2|z_1))\right] & \text{BLS} \end{cases}$$

$$\alpha(z_1|z_2) = \mu^{\text{loop}}(\text{loops covering } z_1 \text{ but not } z_2)$$

Correlation functions

Example: The two-point function

$$\left\langle e^{i\beta N(z_1)} e^{-i\beta N(z_2)} \right\rangle = \begin{cases} |z_1 - z_2|^{-4\Delta} & \text{CFTs} \\ \exp\left[-\lambda (1 - \cos\beta)(\alpha(z_1|z_2) + \alpha(z_2|z_1))\right] & \text{BLS} \end{cases}$$

$$\alpha(z_1|z_2) = \mu^{\text{loop}}(\text{loops covering } z_1 \text{ but not } z_2)$$

Compute the four-point function

$$\left\langle \prod_{i=1}^{4} e^{i\beta_i N(z_i)} \right\rangle = \exp[-\lambda(\text{sum of weights})]$$

These αs appear in the O(n) model. $n \to 0$ gives the ensemble of single, self-avoiding loops

The O(n) model

Random n-dimensional vectors:

- $\bullet \ n=1 \ \mathrm{Ising}$
-
 $\, n = 2$ XY (Berezinskii–Kosterlitz–Thouless)
- $\bullet \ n \to 0$ single, self-avoiding loops

The O(n) model

Random n-dimensional vectors:

- n = 1 Ising
- n = 2 XY (Berezinskii-Kosterlitz-Thouless)
- $n \to 0$ single, self-avoiding loops

$$Z(n) = \int_{\mathbf{S}} d\mathbf{S} \prod_{\langle i,j \rangle} (1 + k\mathbf{S}_i \cdot \mathbf{S}_j)$$
$$= \sum_{i} k^E n^L$$
$$= 1 + n(\dots) + O(n^2)$$

Sum over self-avoiding loop configurations of L loops and E edges

from 1708.00058

The O(n) model

Random n-dimensional vectors:

- n = 1 Ising
- n = 2 XY (Berezinskii-Kosterlitz-Thouless)
- $n \to 0$ single, self-avoiding loops

The BLS for $\lambda \to 0$ becomes the O(0) model. Study the critical O(n) model as a CFT!

A four-point function

All weights are determined

$$\alpha_{\mathbb{S}}(z_1|z_2, z_3, z_4) = \frac{1}{5} \left(\log \left| \frac{z_{12} z_{14}}{z_{24}} \right| + A(x) \right)$$

$$\alpha_{\mathbb{S}}(z_1, z_2|z_3, z_4) = -\frac{1}{5} \left(\log |x| + A(x) \right)$$

$$\vdots$$

A four-point function

All weights are determined

$$\alpha_{S}(z_{1}|z_{2}, z_{3}, z_{4}) = \frac{1}{5} \left(\log \left| \frac{z_{12}z_{14}}{z_{24}} \right| + A(x) \right)$$

$$\alpha_{S}(z_{1}, z_{2}|z_{3}, z_{4}) = -\frac{1}{5} \left(\log |x| + A(x) \right)$$

$$\vdots$$

$$\left(\left\langle \prod_{i=1}^{4} e^{i\beta_{i}N(z_{i})} \right\rangle = \exp\left[\tilde{\Delta}A(x)\right] \prod_{i< j}^{4} |z_{ij}|^{c_{ij}} \right)$$

$$A(x) = \frac{1}{4} \left[x \, {}_{3}F_{2}(x) + \overline{x} \, {}_{3}F_{2}(\overline{x}) \right] - \operatorname{const} \cdot \left| x(1-x) \right|^{\frac{2}{3}} \left| {}_{2}F_{1}(x) \right|^{2}$$

Operator Product Expansion (fusion rules)

$$\Phi_1(z+\varepsilon)\Phi_2(z) = \sum_{\mathcal{P}} \varepsilon^{\delta_{\mathcal{P}}} \bar{\varepsilon}^{\bar{\delta}_{\mathcal{P}}} C_{12}^{\mathcal{P}} \mathcal{P}(z)$$

Operator Product Expansion (fusion rules)

$$\Phi_1(z+\varepsilon)\Phi_2(z) = \sum_{\mathcal{P}} \varepsilon^{\delta_{\mathcal{P}}} \bar{\varepsilon}^{\bar{\delta}_{\mathcal{P}}} C_{12}^{\mathcal{P}} \mathcal{P}(z)$$

Apply to four-point function

The Virasoro conformal block expansion

$$G(x) = \sum_{\mathcal{P}} C_{34}^{\mathcal{P}} C_{12}^{\mathcal{P}} \mathcal{F}(\mathcal{P}|x) \bar{\mathcal{F}}(\mathcal{P}|\bar{x})$$

$$\Delta_{\mathcal{P}} = \Delta_{12} + \frac{p}{3}$$

$$\bar{\Delta}_{\mathcal{P}} = \Delta_{12} + \frac{p'}{3}$$

$$\Delta - \bar{\Delta} \in \mathbb{Z}$$

$$\Delta_{12} = \frac{\lambda}{10} (1 - \cos(\beta_1 + \beta_2))$$

The Virasoro conformal block expansion

$$G(x) = \sum_{\mathcal{P}} C_{34}^{\mathcal{P}} C_{12}^{\mathcal{P}} \mathcal{F}(\mathcal{P}|x) \bar{\mathcal{F}}(\mathcal{P}|\bar{x})$$

$$\Delta_{\mathcal{P}} = \Delta_{12} + \frac{p}{3}$$

$$\bar{\Delta}_{\mathcal{P}} = \Delta_{12} + \frac{p'}{3}$$

$$\Delta - \bar{\Delta} \in \mathbb{Z}$$

$$\Delta_{12} = \frac{\lambda}{10} (1 - \cos(\beta_1 + \beta_2))$$

contains information about the entire CFT

- \circ Central charge ${\color{red}c}$
- Primary operator spectrum $\Delta_{\mathcal{P}}$
- Three-point function coefficients $C_{ii}^{\mathcal{P}}$

What are the new operators in terms of loops? Define

 $E_{\epsilon}(z) := \text{Centered number of loops whose outer boundaries come } \epsilon\text{-close to } z$

$$\Delta_{\mathcal{E}} = \bar{\Delta}_{\mathcal{E}} = \frac{1}{3}$$

$$(\Delta_{\mathcal{P}}, \bar{\Delta}_{\mathcal{P}}) = (p/3, p'/3)$$
$$\Delta_{\mathcal{P}} - \bar{\Delta}_{\mathcal{P}} = \mathbb{Z}$$

$$(\Delta_{\mathcal{P}}, \bar{\Delta}_{\mathcal{P}}) = (p/3, p'/3)$$
$$\Delta_{\mathcal{P}} - \bar{\Delta}_{\mathcal{P}} = \mathbb{Z}$$

$$J(z) = (J_{-1}1)(z)$$

$$[J] = (1,0)$$

$$\psi = J_{-m_1}J_{-m_2}\dots\phi$$

$$L_0\phi = \Delta\phi$$

$$L_0\psi = (\Delta + m_1 + m_2 + \dots)\psi$$

 $T(z) = (L_{-2}1)(z)$

$$(\Delta_{\mathcal{P}}, \bar{\Delta}_{\mathcal{P}}) = (p/3, p'/3)$$
$$\Delta_{\mathcal{P}} - \bar{\Delta}_{\mathcal{P}} = \mathbb{Z}$$

$$T(z) = (L_{-2}1)(z)$$

 $J(z) = (J_{-1}1)(z)$
 $[J] = (1,0)$

$$\psi = J_{-m_1} J_{-m_2} \dots \phi$$

$$L_0 \phi = \Delta \phi$$

$$L_0 \psi = (\Delta + m_1 + m_2 + \dots) \psi$$

$$T(z)\phi_i(w) = \frac{\Delta_i}{(z-w)^2}\phi_i(w) + \frac{1}{z-w}\partial_w\phi_i(w)$$

$$(\Delta_{\mathcal{P}}, \bar{\Delta}_{\mathcal{P}}) = (p/3, p'/3)$$
$$\Delta_{\mathcal{P}} - \bar{\Delta}_{\mathcal{P}} = \mathbb{Z}$$

$$T(z) = (L_{-2}\mathbb{1})(z)$$

 $J(z) = (J_{-1}\mathbb{1})(z)$
 $[J] = (1,0)$

$$\psi = J_{-m_1} J_{-m_2} \dots \phi$$

$$L_0 \phi = \Delta \phi$$

$$L_0 \psi = (\Delta + m_1 + m_2 + \dots) \psi$$

$$T(z)\phi_i(w) = \frac{\Delta_i}{(z-w)^2}\phi_i(w) + \frac{1}{z-w}\partial_w\phi_i(w)$$

$$J(z)\phi_i(w) = \frac{t_i}{z - w}\phi_i(w)?$$

Some comments

- The BLS cannot be unitary, at least for c < 1
- We expect unitarity for $\lambda = 1/2$ or c = 1 (free Boson)
- The BLS can be generalized to domains with boundary
- What is the full symmetry algebra / operator spectrum? (Kac-Moody)
- \bullet Where does the BLS lie in the class of CFTs? (minimal models, logarithmic CFTs)

Percolation

percolation on an $M \times M$ square lattice in a square (N = 1), $Ao M \rightarrow \infty$, P approaches a step function (1) that turnes at the critical probability $\rho^{(0)} = 0.3$.

Cardy's connection formula

P(a cluster connects AB and CX) = x

Conformal probability

Modern probability theory studies random fractal objects that are conformally invariant in distribution. (Continuum scaling limit at criticality of percolation, Ising, Potts, O(n), loop-erased random walk, self-avoiding walk, ...)

Conformal probability

Modern probability theory studies random fractal objects that are conformally invariant in distribution. (Continuum scaling limit at criticality of percolation, Ising, Potts, O(n), loop-erased random walk, self-avoiding walk, ...)

Schramm-Loewner evolution (Schramm)

- Control of the second

Conformal loop ensembles (Camia, Newman; Sheffield)

Conformal probability

Modern probability theory studies random fractal objects that are conformally invariant in distribution. (Continuum scaling limit at criticality of percolation, Ising, Potts, O(n), loop-erased random walk, self-avoiding walk, ...)

Schramm-Loewner evolution (Schramm)

Conformal loop ensembles (Camia, Newman; Sheffield)

Brownian loop soup (Lawler, Werner)

Gaussian free field and GMC (Mandelbrot; Kahane, Peyrière)

Summary

Conformal probability provides a link between 2D statistical mechanics and conformal field theory (rigorous approach to CFT).

The Brownian loop soup

- allows a microscopic interpretation of the field theory objects
- \bullet has connections to the free Boson, O(n) model, SLE, CLE, ...
- is a rich model with new features

Summary

Conformal probability provides a link between 2D statistical mechanics and conformal field theory (rigorous approach to CFT).

The Brownian loop soup

- allows a microscopic interpretation of the field theory objects
- \bullet has connections to the free Boson, O(n) model, SLE, CLE, ...
- is a rich model with new features

Based on arXiv:1912.00973, 2109.12116, 2112.00074, TBA with Federico Camia, Alberto Gandolfi, Matthew Kleban

Thanks!