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THE BRAID GROUPS

R. FOX and L. NEUWIRTH!

1. Introduction.

The braid groups B,,n=1,2,3, ..., were introduced in 1926 by E.Ar-
tin {1} and have been the subject of numerous investigations. Although
there is a well-known presentation of B, that has been derived several
times the derivations that appear in the literature e.g, [1], [2] are all, in
one way or another, somewhat devious. Our principal object is to give a
straightforward derivation of this presentation, based on the previcusly
unnoted remark that B, may be considered as the fundamental group of
the space £ of configurations of » undifferentiated points in the plane,

Our derivation uses a method of computation that has never been
published, although knowledge of it is probably widely distributed, It
is proposed to publish the details of this method in a later paper; however
the ideas involved are transparent enough to be believably communicated
very briefly, and this we do in § 2 of the present paper.

By examining a certain covering of £2* and using the results of [3] it is
shown that £ is aspherical, and certain consequences of this fact are
noted. In particular it follows immediately that B, has no elements of
finite order; we believe that this was not previously known.

2. Computation of 7,

If X is a regular cell-complex, then we consider mappings of X onto
X/R where R is a relation obtained from a family & of identifications of
the cells of X. @ is required to satisfy the following conditions:

0} Each ¢ in @ is a homeomorphism with domain a closed cell of X.
i) If Uisacell of X, ¢:U - U is in @ if and only if ¢ is the identity.
i) If pe @, p:U, > U, then ¢~: U, > U, is in &.
iii) If p: T, - U, and ¢: T, - U, are in &, so is ¢l¢: T, - ;.
iv) If : 7, = Uyis in @ and V; is a cell contained in T, then V,=g@(V;)
is also a cell, and ¢|V,: ¥, > V;is in @,
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In what follows X and X/R will be manifolds of dimension », and we
shall compute 5, of the complement of an {n — 2)-dimensional subcomplex
K of X/R.

The algorithm for the computation is roughly as follows: Select in X/R
a maximal n-dimensional “cave’” € of »-dimensgional, and oriented (n —1}-
dimensional cells {this will be dual to a maximal tree in a dual cell de-
compogition). To each oriented (n — 1)-cell not in the cave will correspond
a generator of ;. This generator is represented by a loop that penetrates
the (n— 1) cell once with intersection number 1 but otherwise lies entirely
in €. To each (n—2)-cell of X/E that does not belong to K will cor-
respond a relation, obtained from the “non-abelian coboundary™ of the
(n—2)-cell in guestion. More precisely, a small loop about an (n— 2)-cell
¢ will intersect, in a certain order and sense, all the (n —1)-cells having ¢
on their boundary, Joining this loop to the base point will give a re-
presentative of an element of the fundamental group of the union of
the n, and (r — 1)-cells of XfR— K. In this way a set of elements of the
free group generated by the (n— 1)-cells not in ¥ is defined. This set of
elements, one for each (n—2)-cell not in K, will be a complete set of
relations for =, (X{R- K)}.

3. A cellular decomposition of §°,

An ordered n-tuple (p,, .. .,p,) of points of the plane E* may be con-
sidered to be a point p of 2n-dimensional space E?**. If the coordinates
of p, are z,,7,, the coordinates of the corresponding point p are

xl-’ yl’ xﬂ’ yﬂ’ ] xm yﬂu .

Let us write 4, <i, whenever the abscissa of p,, is smaller than the
abscissa of p,,, ¢, X i, whenever p; and p,, have the same abscissa, and
the ordinate of p, is smaller than the ordinate of p,;,, and i, =i, whenever
p;, coincides with p,,. Information of this sort can be condensed into a
single symbol, 8, describing a point set in £2%. Thus, for example, the sym-
bol (3 <8=1<6¥4dY2="7) denotes the set of all points (z,. 9. ....25. %5
in E'% guch that

Xy < &y =Xy < Tg =Xy = g = &y,
Ys =Y Ys <Yy <Y =Yq:
(Of course the same information is indicated by each of the symbols

B<l=5<b6X4¥2="T),
B<b5=1<6Y4¥T=2),
(3<1=5<6X4¥7=2);

It
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we shall not distinguish between such equivalent symbols), The same
symbol & will be used to denote the set of all those points p satisfying
the indicated conditions.

It is easy to see that each 0 is a convex subset of £2* and that, together
with the point at infinity, they are the (open) cells of a regular cell-
subdivision of the 2n-dimensional sphere 82%=E?* ) co. The dimension
of the cell 9 is obviously equal to 2n minus the sum of the number of
cceurences of ¥ and fwice the number of occurrences of =. The lower
dimensional cells that are on the boundary of # are obtained by replacing
instances of ¢; <%, by i, ¥Xi, or i, ¥, and/or replacing instances of j, ¥ j,
by j, =7 (or j;=74;). For example the boundary of the 5-dimensional cell
(1 < 2 X3) consists of the 4-dimensional cells (1 X2¥3), (2 x1¥3), (1< 2=
3), the 3-dimensional cells (1=2x3), (1x2=23), (2x¥1=3), the 2-dimen-
gional cell (1=2=3), and the vertex oo,

In what follows we shall be concerned especially with the cells of
dimension = 2n—2. There are n! cells of dimension 2n. One of them
is (1 <2 < ... <n}, and the others may be obtained from this by permuting
the indices 1,2, ...,n. The (2n— 1)-cells on the boundary of

(1 <2«<...<n
are
(1X2 <3< ... <n),
(2¥1<3<... <n),
(1<2¥3< ... <«n),
{(l <3 ¥2«<... <2n) ete.,

and the (2n —2)-cells on the boundary of, say, (1x2<3< ... <n) are

(1=2<3«<... <n),
(l1¥2¥3< ... <n),
(1¥Y3N¥2<...<n),
BXY1X¥2<.,., <n),
(1¥2<3X¥4<...<n},
{1 ¥x2<4¥3< ... <n) ete.

4. The action of Z, on S™.
To the permutation

(l 2 n)
By g ... iy

asgociate the autohomeomorphism of S$2* that maps an arbitrary point
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{(P1, Py -+ -, Py) of E* into the point (py,py,, .. ..p;,); thus an action on
8% of the symmetric group X, of permutations of n symbols 1,2,...,n
is defined. Denote the collapsed space by $2*, and the image of E2»
under the collapsing A by E2*, Each of the autohomeomorphisms of 2»
congidered maps oo into o and permutes the cells ¢; the collapsing A
maps one or more m-cells ¢ upon an m-cell T of E*, (not necessarily
homeomorphically). The cells 7, fogether with the image of the point at
oo, constitute a regular cell-subdivision with identifications of 2%, A
symbolic designation of the cells v is readily derived. For example the
cells of 38 are {1<2<3}, {1<2¥3}, {1¥2<3}, {1x2¥3}, {1<2=3),
{1=2<3}, {142=3}, {1=2x3}, {1=2=3}, and .

5. The subcomplex 4.

The points p,,...,p, of E* are distinet if and only if, for each ¢ <j,
{z;—2)%+ (¥, —y;)?> 0. Accordingly we consider the collection A of those
cells 6 of our decomposition of E2* in whose symbols the sign = occurs at
least once. Since boundaries are obtained by changing < to X or ¥ to =,
it is clear that 4 and oo together form a (2n — 2)-dimensional subcomplex
of the cell complex 82*, Furthermore the points p,,...,p, of E** are
distinet if and only if p lies in E*»—A. Let 4 denote the image of 4
under the collapsing A of §%* to §27, Then J U o is a subcomplex of
the cell complex §%», and p,, . . ., p, are distinct if and only if » € £*— 4.
Note that the point » may be considered to be an unordered n-tuple of
points py, .. .,p, of B2 Let B =F¥_ ],

6. The Braid group.

Let 4, denote the braid group on n strings, ¢ the well-known homo-
morphism of #* upon 37, and #* the kernel of ¢. If we look at the plane
cross sections of a braid #, we see that it may be described kinematically
a8 a motion of » distinet points in the plane that ends with these points
back in their original position but permuted as indicated by the permuta-
tion @(f). In particular #belongs to £, if and only if the motion described
returns each point to its original position, From these remarks it should
be clear that the fundamental group of £*"—A4 is £, the fundamental
group of £*—4 is #,, and that E™—/ is the unbranched covering
space of £n—j that belongs to the subgroup .7, of &,.

7. A presentation of #,,.

To caleulate m,(£?" ~ ) choose the base point in the interior of the
2n-cell 2 ={1<2<... <n}. Since this is the only 2n-cell of §%#, there
is a generator ¢; corresponding to each (2n-1)-cell
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Al =l < M+l <)

it is represented by a loop in A" u 21 that cuts 12"~ exactly once.
Let us suppose that 1,°*-! is so oriented that the motion of p, U ... U p,
in E? described by a loop representative of o; causes the points p; and
Psey to interchange places {and names) by circling one another in a
counterclockwise direction. The motion for ;-1 is shown in Figure 1.

. f

TPJJ

Fig. 1.
The braid o,~! is shown in Figure 2.

PJ—I

X

Fig. 2.

According to the general theory, a complete set of relations can be
found in one o one correspondence with the cells of £2r — 4 of dimension
2n—2. These are of two sorts:

Ar={.. <idi+l<... <k Xk+l<...}, +l<k,
o ={ .. <iXi+l Xi+2 < . ..}.
Now 1, ; is on the boundary of just the (2n—1)-cells 1, and 4;. Figure 3

shows a loeal cross section of E2* by a plane perpendicular to the (22 — 2)-

cell l<...<tXit+l< ... <kXEk+l<... <n).

--i<£+1---k<k_:_;g/"5{i+f"'k¥k+1"

i it ik tHI<k

i ME+Toock<E+I--

ceft2<icck<kti-

NIRRT RV WPkl b0 St LS AR A AR S'E RS TRy T 2y TR

Fig. 3.
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The relation r; , corresponding to the cell 4, , in £2* is read as a “non-
L 1] .
abelian coboundary” of 1, ;. It is
- -1 =
Tok = 04050;7 0~

ag may be seen by traversing the dotted loop in Figure 3. The motion
of (py,...,p,) in E? deseribed by r, ; is shown in Figure 4 and its inter-
pretation ag a braid in Figure 5.

i p_:_;. .’Pk pk-ﬁ'f

Fig. 4.

Fig. &.

Ag for 2; ;,;, it is on the boundary of 2, and ;,,. A local cross section
of E?» by a plane perpendicular to the (2n— 2)-cell
(1 < ... <éXi4+1 ¥{+2< ... <n)

is shown in Figure 6.
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The corresponding relation r; ;. is

- -1, -1 -1
Frirl = G0 G0~ O O

as may be seen by traversing the dotted loop in Figure 6, The motion
of {p;,...,p,) in E? thereby described is shown in Figure 7, and its
interpretation as a braid in Figure 8,

Thus we have derived anew the well-known presentation

'@n = (Gl’ s Oy v Ty s P g v e rn—s,n—l) .

Remark. The same method could be used to find a presentation of
#,, but the result could just as well be obtained by applying the Reide-
meister—Schreier theorem,

8. Corollaries.

The covering of E2" corresponding to the representation of &, on X,
(symmetric group of degree n) is just the space F, % of [3], hence ac-
cording to [3] has trivial homotopy groups above dimension 1, Tt follows
then that £ is aspherical. As an immediate corollary we have:

CoroLLARY 1. #, has no elements of finite order.

Proor. E? is a finite dimensional K(%#,,1) space, hence every sub-
group of &, must be of finite geometric, hence finite cohomological
dimension, but an element of finite order would generate a subgroup of
infinite cohomological dimension.

Clearly E** is an open 2n-dimensional manifold so we have:

CoroLrarY 2. B, has the homology groups of an open 2n-dimensional
manifold.

Remark. It seems reasonable to expect that the homology groups of
E?», which by virtue of the asphericity of £?* are those of &,, may be
caleulated from the cellular decomposition of £%* which we have given.
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