THE BRAID GROUPS

R. FOX and L. NEUWIRTH¹

1. Introduction.

The braid groups B_n , $n=1,2,3,\ldots$, were introduced in 1926 by E. Artin [1] and have been the subject of numerous investigations. Although there is a well-known presentation of B_n that has been derived several times the derivations that appear in the literature e.g. [1], [2] are all, in one way or another, somewhat devious. Our principal object is to give a straightforward derivation of this presentation, based on the previously unnoted remark that B_n may be considered as the fundamental group of the space E^{2n} of configurations of n undifferentiated points in the plane.

Our derivation uses a method of computation that has never been published, although knowledge of it is probably widely distributed. It is proposed to publish the details of this method in a later paper; however the ideas involved are transparent enough to be believably communicated very briefly, and this we do in § 2 of the present paper.

By examining a certain covering of \tilde{E}^{2n} and using the results of [3] it is shown that \tilde{E}^{2n} is aspherical, and certain consequences of this fact are noted. In particular it follows immediately that B_n has no elements of finite order; we believe that this was not previously known.

2. Computation of π_1 .

If X is a regular cell-complex, then we consider mappings of X onto X/R where R is a relation obtained from a family Φ of identifications of the cells of X. Φ is required to satisfy the following conditions:

- 0) Each φ in Φ is a homeomorphism with domain a closed cell of X.
- i) If U is a cell of X, $\varphi: \overline{U} \to \overline{U}$ is in Φ if and only if φ is the identity.
- ii) If $\varphi \in \Phi$, $\varphi : \overline{U}_1 \to \overline{U}_2$ then $\varphi^{-1} : \overline{U}_2 \to \overline{U}_1$ is in Φ .
- iii) If $\varphi: \overline{U}_1 \to \overline{U}_2$ and $\varphi^1: \overline{U}_2 \to \overline{U}_3$ are in Φ , so is $\varphi^1 \varphi: \overline{U}_1 \to \overline{U}_3$.
- iv) If $\varphi: \overline{U}_1 \to \overline{U}_2$ is in Φ and V_1 is a cell contained in \overline{U}_1 then $V_2 = \varphi(V_1)$ is also a cell, and $\varphi|\overline{V}_1: \overline{V}_1 \to \overline{V}_2$ is in Φ .

Received April 10, 1961.

¹⁾ Part of this paper was prepared while the latter author held an N.S.F. regular post-doctoral fellowship 49164.

In what follows X and X/R will be manifolds of dimension n, and we shall compute π_1 of the complement of an (n-2)-dimensional subcomplex K of X/R.

The algorithm for the computation is roughly as follows: Select in X/Ra maximal n-dimensional "cave" \mathscr{C} of n-dimensional, and oriented (n-1)dimensional cells (this will be dual to a maximal tree in a dual cell decomposition). To each oriented (n-1)-cell not in the cave will correspond a generator of π_1 . This generator is represented by a loop that penetrates the (n-1) cell once with intersection number 1 but otherwise lies entirely in \mathscr{C} . To each (n-2)-cell of X/R that does not belong to K will correspond a relation, obtained from the "non-abelian coboundary" of the (n-2)-cell in question. More precisely, a small loop about an (n-2)-cell σ will intersect, in a certain order and sense, all the (n-1)-cells having σ on their boundary. Joining this loop to the base point will give a representative of an element of the fundamental group of the union of the n, and (n-1)-cells of X/R-K. In this way a set of elements of the free group generated by the (n-1)-cells not in $\mathscr C$ is defined. This set of elements, one for each (n-2)-cell not in K, will be a complete set of relations for $\pi_1(X/R-K)$.

3. A cellular decomposition of S^{2n} .

An ordered n-tuple (p_1, \ldots, p_n) of points of the plane E^2 may be considered to be a point p of 2n-dimensional space E^{2n} . If the coordinates of p_i are x_i, y_i , the coordinates of the corresponding point p are

$$x_1, y_1, x_2, y_2, \ldots, x_n, y_n$$
.

Let us write $i_1 < i_2$ whenever the abscissa of p_{i_1} is smaller than the abscissa of p_{i_2} , $i_1
eq i_2$ whenever p_{i_1} and p_{i_3} have the same abscissa, and the ordinate of p_{i_1} is smaller than the ordinate of p_{i_2} , and $i_1 = i_2$ whenever p_{i_1} coincides with p_{i_2} . Information of this sort can be condensed into a single symbol, θ , describing a point set in E^{2n} . Thus, for example, the symbol $(3 < 5 = 1 < 6 \leq 4 \leq 2 = 7)$ denotes the set of all points $(x_1, y_1, \ldots, x_7, y_7)$ in E^{14} such that

$$x_3 < x_5 = x_1 < x_6 = x_4 = x_2 = x_7$$
,
 $y_5 = y_1$, $y_6 < y_4 < y_2 = y_7$.

(Of course the same information is indicated by each of the symbols

$$(3 < 1 = 5 < 6 \le 4 \le 2 = 7)$$
,
 $(3 < 5 = 1 < 6 \le 4 \le 7 = 2)$,
 $(3 < 1 = 5 < 6 \le 4 \le 7 = 2)$;

we shall not distinguish between such equivalent symbols). The same symbol θ will be used to denote the set of all those points p satisfying the indicated conditions.

It is easy to see that each θ is a convex subset of E^{2n} and that, together with the point at infinity, they are the (open) cells of a regular cell-subdivision of the 2n-dimensional sphere $S^{2n}=E^{2n}\cup\infty$. The dimension of the cell θ is obviously equal to 2n minus the sum of the number of occurrences of $\underline{\vee}$ and twice the number of occurrences of $\underline{-}$. The lower dimensional cells that are on the boundary of θ are obtained by replacing instances of $i_1 < i_2$ by $i_1 \underline{\vee} i_2$ or $i_2 \underline{\vee} i_1$ and/or replacing instances of $j_1 \underline{\vee} j_2$ by $j_1 = j_2$ (or $j_2 = j_1$). For example the boundary of the 5-dimensional cell $(1 < 2 \underline{\vee} 3)$ consists of the 4-dimensional cells $(1 \underline{\vee} 2 \underline{\vee} 3)$, $(2 \underline{\vee} 1 \underline{\vee} 3)$, $(1 < 2 \underline{\vee} 3)$, the 3-dimensional cells $(1 \underline{\vee} 2 \underline{\vee} 3)$, $(1 \underline{\vee} 2 \underline{\vee} 3)$, the 2-dimensional cell $(1 \underline{\vee} 2 \underline{\vee} 3)$, and the vertex ∞ .

In what follows we shall be concerned especially with the cells of dimension $\geq 2n-2$. There are n! cells of dimension 2n. One of them is $(1 < 2 < \ldots < n)$, and the others may be obtained from this by permuting the indices $1, 2, \ldots, n$. The (2n-1)-cells on the boundary of

$$(1 < 2 < \ldots < n)$$
 $(1 \le 2 < 3 < \ldots < n)$,
 $(2 \le 1 < 3 < \ldots < n)$,
 $(1 < 2 \le 3 < \ldots < n)$,
 $(1 < 3 \le 2 < \ldots < 2n)$ etc.,

and the (2n-2)-cells on the boundary of, say, $(1 \le 2 < 3 < \ldots < n)$ are

$$(1 = 2 < 3 < \dots < n),$$

$$(1 \le 2 \le 3 < \dots < n),$$

$$(1 \le 3 \le 2 < \dots < n),$$

$$(3 \le 1 \le 2 < \dots < n),$$

$$(1 \le 2 < 3 \le 4 < \dots < n),$$

$$(1 \le 2 < 4 \le 3 < \dots < n) etc.$$

4. The action of Σ_n on S^{2n} .

To the permutation

are

$$\begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$

associate the autohomeomorphism of S2n that maps an arbitrary point

 (p_1,p_2,\ldots,p_n) of E^{2n} into the point $(p_{i_1},p_{i_2},\ldots,p_{i_n})$; thus an action on S^{2n} of the symmetric group Σ_n of permutations of n symbols $1,2,\ldots,n$ is defined. Denote the collapsed space by \hat{S}^{2n} , and the image of E^{2n} under the collapsing Λ by \hat{E}^{2n} . Each of the autohomeomorphisms of S^{2n} considered maps ∞ into ∞ and permutes the cells θ ; the collapsing Λ maps one or more m-cells σ upon an m-cell τ of \hat{E}^{2n} , (not necessarily homeomorphically). The cells τ , together with the image of the point at ∞ , constitute a regular cell-subdivision with identifications of \hat{S}^{2n} . A symbolic designation of the cells τ is readily derived. For example the cells of \hat{S}^6 are $\{1<2<3\}$, $\{1<2\ge3\}$, $\{1\le2<3\}$, $\{1\le2\le3\}$, $\{1\le3\le4\}$, $\{1\le3\le4$

5. The subcomplex Δ .

The points p_1, \ldots, p_n of E^2 are distinct if and only if, for each i < j, $(x_i - x_j)^2 + (y_i - y_j)^2 > 0$. Accordingly we consider the collection Δ of those cells θ of our decomposition of E^{2n} in whose symbols the sign = occurs at least once. Since boundaries are obtained by changing < to \leq or \leq to =, it is clear that Δ and ∞ together form a (2n-2)-dimensional subcomplex of the cell complex S^{2n} . Furthermore the points p_1, \ldots, p_n of E^{2n} are distinct if and only if p lies in $E^{2n} - \Delta$. Let \hat{A} denote the image of Δ under the collapsing A of S^{2n} to \hat{S}^{2n} . Then $\hat{A} \cup \infty$ is a subcomplex of the cell complex \hat{S}^{2n} , and p_1, \ldots, p_n are distinct if and only if $\hat{p} \in \hat{E}^{2n} - \hat{A}$. Note that the point \hat{p} may be considered to be an unordered n-tuple of points p_1, \ldots, p_n of E^2 . Let $\hat{E}^{2n} = \hat{E}^{2n} - \hat{A}$.

6. The Braid group.

Let \mathscr{B}_n denote the braid group on n strings, φ the well-known homomorphism of \mathscr{B}^n upon Σ^n , and \mathscr{I}^n the kernel of φ . If we look at the plane cross sections of a braid \mathscr{E} , we see that it may be described kinematically as a motion of n distinct points in the plane that ends with these points back in their original position but permuted as indicated by the permutation $\varphi(\mathscr{E})$. In particular \mathscr{E} belongs to \mathscr{I}_n if and only if the motion described returns each point to its original position. From these remarks it should be clear that the fundamental group of $E^{2n} - \Delta$ is \mathscr{I}_n , the fundamental group of $E^{2n} - \Delta$ is the unbranched covering space of $E^{2n} - \widehat{\Delta}$ that belongs to the subgroup \mathscr{I}_n of \mathscr{B}_n .

7. A presentation of \mathcal{R}_n .

To calculate $\pi_1(\hat{E}^{2n} - \hat{\Delta})$ choose the base point in the interior of the 2n-cell $\lambda^{2n} = \{1 < 2 < \ldots < n\}$. Since this is the only 2n-cell of \hat{S}^{2n} , there is a generator σ_1 corresponding to each (2n-1)-cell

$$\lambda_{j}^{2n-1} = \{ \ldots < j \leq j+1 < \ldots \};$$

it is represented by a loop in $\lambda^{2n} \cup \lambda_j^{2n-1}$ that cuts λ_j^{2n-1} exactly once. Let us suppose that λ_j^{2n-1} is so oriented that the motion of $p_1 \cup \ldots \cup p_n$ in E^2 described by a loop representative of σ_j causes the points p_j and p_{j+1} to interchange places (and names) by circling one another in a counterclockwise direction. The motion for σ_j^{-1} is shown in Figure 1.

The braid σ_i^{-1} is shown in Figure 2.

Fig. 2.

According to the general theory, a complete set of relations can be found in one to one correspondence with the cells of $\hat{E}^{2n} - \hat{\Delta}$ of dimension 2n-2. These are of two sorts:

$$\lambda_{i,k} = \{ \ldots < i \leq i+1 < \ldots < k \leq k+1 < \ldots \}, \qquad i+1 < k,$$

$$\lambda_{i,i+1} = \{ \ldots < i \leq i+1 \leq i+2 < \ldots \}.$$

Now $\lambda_{i,k}$ is on the boundary of just the (2n-1)-cells λ_i and λ_k . Figure 3 shows a local cross section of E^{2n} by a plane perpendicular to the (2n-2)-cell $(1 < \ldots < i \leq i+1 < \ldots < k \leq k+1 < \ldots < n)$.

Fig. 3.

The relation $r_{i,\,k}$ corresponding to the cell $\lambda_{i,\,k}$ in \hat{E}^{2n} is read as a "non-abelian coboundary" of $\lambda_{i,\,k}$. It is

$$r_{i,k} = \sigma_i \sigma_k \sigma_i^{-1} \sigma_k^{-1}$$

as may be seen by traversing the dotted loop in Figure 3. The motion of (p_1, \ldots, p_n) in E^2 described by $r_{i,k}$ is shown in Figure 4 and its interpretation as a braid in Figure 5.

As for $\lambda_{i,i+1}$, it is on the boundary of λ_i and λ_{i+1} . A local cross section of E^{2n} by a plane perpendicular to the (2n-2)-cell

$$(1 < \ldots < i \leq i+1 \leq i+2 < \ldots < n)$$

is shown in Figure 6.

Fig. 8.

The corresponding relation $r_{i,i+1}$ is

$$r_{i,i+1} = \sigma_i \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \sigma_i^{-1} \sigma_{i+1}^{-1}$$

as may be seen by traversing the dotted loop in Figure 6. The motion of (p_1, \ldots, p_n) in E^2 thereby described is shown in Figure 7, and its interpretation as a braid in Figure 8.

Thus we have derived anew the well-known presentation

$$\mathcal{B}_n = (\sigma_1, \ldots, \sigma_{n-1}; r_{1,2}, r_{1,3}, \ldots, r_{n-2,n-1}).$$

REMARK. The same method could be used to find a presentation of \mathscr{I}_n , but the result could just as well be obtained by applying the Reidemeister-Schreier theorem.

8. Coroliaries.

The covering of \tilde{E}^{2n} corresponding to the representation of \mathcal{B}_n on Σ_n (symmetric group of degree n) is just the space $F_{0,n}^2$ of [3], hence according to [3] has trivial homotopy groups above dimension 1. It follows then that \tilde{E}^{2n} is aspherical. As an immediate corollary we have:

COROLLARY 1. \mathcal{B}_n has no elements of finite order.

PROOF. \tilde{E}^{2n} is a finite dimensional $K(\mathcal{B}_n,1)$ space, hence every subgroup of \mathcal{B}_n must be of finite geometric, hence finite cohomological dimension, but an element of finite order would generate a subgroup of infinite cohomological dimension.

Clearly \tilde{E}^{2n} is an open 2n-dimensional manifold so we have:

Corollary 2. \mathcal{B}_n has the homology groups of an open 2n-dimensional manifold.

REMARK. It seems reasonable to expect that the homology groups of \tilde{E}^{2n} , which by virtue of the asphericity of \tilde{E}^{2n} are those of \mathcal{B}_n , may be calculated from the cellular decomposition of \tilde{E}^{2n} which we have given.

BIBLIOGRAPHY

- 1. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburg 4 (1926), 47-72.
- 2. E. Artin, Theory of braids, Annals of Math. 48 (1947), 101-126.
- 3. E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118.

PRINCETON UNIVERSITY, PRINCETON, N.J., U.S.A.
INSTITUTE FOR DEFENSE ANALYSIS, PRINCETON, N.J., U.S.A.