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Maps to Rn

• Maps f : X → Rn appear in science and engineering

• Used to define (nonlinear) optimization problems
• Model dynamic systems (game theory)
• Physical quantities (MRI, ultrasound scans)

• In many cases, the preimage of zero (or any single point in
Rn) plays a crucial role.

• Often we have access only to an approximation of the actual
map.
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Robust features of zero sets

Given f : X → Rn, compute features of the zero set f −1(0)
that are “stable” with respect to perturbations of f .

• Interesting cases: dim X ≥ n

• Stability/robustness is measured by a parameter r ∈ (0,∞)
yielding persistence of features
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Robust features of zero sets

Given f : X → Rn, compute properties of the zero set f −1(0)
that are “stable” wrt perturbations of f .
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Robust features of zero sets

Given f : X → Rn, compute properties of the zero set f −1(0)
that are “stable” wrt perturbations of f .

0

g−1(0)

‖g − f‖ < r3

R

arbitrary
closed set



Formalization
For f : X → Rn and r > 0, let

Zr (f ) := {g−1(0) : g : X → Rn s.t. ‖g − f ‖ < r}

Some robust features of zero sets (properties of Zr (f )) to study:

• The fundamental geometric property of Zr (f ):
set of potential zeros

⋃
Zr (f ) = {x : |f (x)| < r}

• Robust non-emptyness: ∅
?

/∈ Zr (f )

• Robust optima: inf
Z∈Zr (f )

sup
x∈Z

c(x) for some objective c : X → R

• Robust volume: inf
Z∈Zr (f )

Hm−n(Z ) where m = dim X
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Descriptors of Zr (f )

0

R

|f | < rAr

The surprising recipe is
not to study f where it is small
but rather where it is big
(here the restriction of f defines a
map to a sphere)

Theorem (A)

Let f : X → Rn and X be compact. If Ar := {x : |f (x)| ≥ r} is
given, then Zr (f ) is determined by the homotopy class of
f /|f | : Ar → Sn−1.
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From perturbations to homotopy
perturbations

Key idea: perturbations (g with ‖g − f ‖ < r) can be replaced by
”homotopy perturbations”:

Lemma
{g−1(0) : ‖g − f ‖ < r} = {e−1(0) : e|Ar = f |Ar }

Sketch of proof.

• ⊆ (g  e):
g |Ar ∼ f |Ar via straight-line homotopy
extends to a homotopy unaffecting the zero set
its endpoint is the desired e

• ⊇ (e  g):
multiply e by a scalar function that is 1 of Ar and goes
quickly to 0 elsewhere.
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Robust nonemptiness

Immediate consequence:

∅ /∈ Zr (f )⇔ f /|f | : Ar → Sn−1 can be extended to X → Sn−1

The extendability problem is in decidable when dim X ≤ 2n − 3 (or
n = 1, 2 or n even) and is undecidable otherwise.



Descriptors of Zr (f ) continued

Theorem (A)

Let f : X → Rn and X be compact. If Ar := {x : |f (x)| ≥ r} is
given, then Zr (f ) is determined by the homotopy class of
f /|f | : Ar → Sn−1.

Moreover, if Ar ⊆ X are CW complexes and dim X ≤ 2n − 3, then
Zr (f ) is determined by the δ-image of the above homotopy class,
where δ is the “connecting homomorphism” in the sequence

. . . → [X ,Sn−1]
i∗→ [Ar ,S

n−1]
δ→ [X/Ar ,S

n]

∈ ∈

[f /|f |] 7→ [f/Ar
]
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Descriptors of Zr (f )

. . . → [X , Sn−1]
i∗→ [Ar ,S

n−1]
δ→ [X/Ar ,S

n]

∈ ∈

[f /|f |] 7→ [f/Ar
]

• The cohomotopy sets are Abelian groups if dim X ≤ 2n − 4

• If dim X ≤ 2n − 4, the sequence is exact (LES of cohomotopy
groups)

⇒ Each [f/Ar
] uniquely corresponds to the coset

[f /|f |] + i∗[X ,Sn−1] in [A,Sn−1].

• We denote Im δ by πr (group of all descriptors)

• The theorem does not give recipes for how to decode
particular robust features from the homotopy class... but it
yields a persistence-like tool for distinguishing
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When r grows...

[f/Ar
] ∈ πr determines [f/As

] ∈ πs for r < s in a structured way,
formally:

• If r < s then the inclusion Ar ⊇ As induces
[Ar ,S

n−1]→ [As ,S
n−1]

• Similarly, there is a map πr → πs
that takes [f/Ar

] to [f/As
]



When r grows...

[f/Ar
] ∈ πr determines [f/As

] ∈ πs for r < s in a structured way,
formally:

• If r < s then the inclusion Ar ⊇ As induces
[Ar ,S

n−1]→ [As ,S
n−1]

• Similarly, there is a map πr → πs
that takes [f/Ar

] to [f/As
]



When r grows...

[f/Ar
] ∈ πr determines [f/As

] ∈ πs for r < s in a structured way,
formally:

• If r < s then the inclusion Ar ⊇ As induces
[Ar ,S

n−1]→ [As ,S
n−1]

• Similarly, there is a map πr → πs
that takes [f/Ar

] to [f/As
]



Cohomotopy persistence module

Let X be compact, dim X ≤ 2n − 3. Then to each f : X → Rn we
assign a pointed persistence module Πf

. . . Im(δ) = πr → πs → . . .

∈ ∈

[f/Ar
] 7→ [f/As

]

Formally, it is a functor from R+ to the category of pointed
Abelian groups (a morphism (A, a)→ (B, b) maps a to b).

The assignment f 7→ Πf is stable wrt interleaving distance:
d(Πf ,Πg ) ≤ ‖f − g‖.

After tensoring with a field, Πf may be represented via a pointed
barcode
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Computability of Πf

Theorem (B)

Let X be a finite simplicial complex, f : X → Rn be simplexwise
linear with rational values on vertices and assume dim X ≤ 2n − 3.
Then the isomorphism type of Πf as well as barcode of Πf ⊗ F for
F = Q or F finite can be computed.

Main ingredients:

• Computability of cohomotopy groups [Y ,Sn−1] in the
dimension range dim Y ≤ 2n − 4.
[ Čadek, K., Matoušek , Sergeraert, Voǩŕınek, Wagner,
Computing All Maps into a Sphere ]

• Approximation of Ar (up to homotopy equivalence) by
simplicial subcomplex A∆

r ⊆ X .

• Simplicial approximation of f /|f | : A∆
r → (Sn−1)∆.
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Low dimensional cases

The condition dim X ≤ 2n − 3 is quite strict for small n, but . . .

• If n = 1 (scalar functions) we may easily compute the
homotopy class of f /|f | : Ar → S0 and [Ar , S

0]→ [As ,S
0] for

r < s.

• If n = 2, then f /|f | ∈ [Ar ,S
1]. This is always a group

naturally isomorphic to H1(Ar ,Z).

• n = dim X = 3 already satisfies dim X ≤ 2n − 3.

However, if
dim X = 4 and n = 3 then ∅ ∈ Zr (f ) is undecidable!

• n = 4 is nice: f /|f | ∈ [Ar ,S
3] and [Y ,S3] is a group for any

Y due to quaternion multiplications – computability of
[Y ,S3] is work in progress.
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Related work on descriptors of Zr (f )

• Well groups: capture homological properties common to all
Z ∈ Zr (f ) (informally)

• computability only in special cases: n = 1 or n = dim X
• undecidability for dim X = 2n − 2
• do not determine Zr (f )

• Cap image groups: computable replacement of well groups

• subgroups of well groups
• based on primary obstruction to extending f /|f | : Ar → Sn−1

the primary obstruction is the “first component” of [f/Ar
]

Our coding effort: compute the secondary (terciary)
obstructions and see how much they matter.
Cap image groups can be used to study preimages of all
points in Rn simultaneously in some sense: provide an
alternative to multidimensional persistence.
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Optimality of Πf

Still, the homotopy class [f/Ar
] carries more information than

needed to encode Zr (f ). If Ar is given, then different elements of
πr may determine the same family of zero sets.

This additional information can be described if X is a smooth
manifold.

Definition
Let X be a smooth manifold. A function g is a regular
r -perturbation of f if ‖f − g‖ < r and g is transverse to 0 ∈ Rn.

Let

Z fr
r (f ) := {

(
g−1(0), dg |g−1(0)

)
: g a regular r -perturbation of f }
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Optimality of Πf

Theorem
Assume that X is a smooth compact m-manifolds, r > 0,
Ar = h−1[0,∞) for some regular h, and m ≤ 2n − 3.
Then there is a bijection

{Z fr
r (f ) | f : X → Rn such that Ar = |f |−1[r ,∞)} ←→ πr

satisfying that each Z fr
r (f ) is mapped to [f/A].

Moreover, each element of Z fr
r (f ) determines [f/A].

• So, [f/Ar
] is an invariant of Z fr

r (f )

• The additional information in [f/Ar
] ∈ πr encodes the

infinitesimal behaviour of perturbation(s) around their zero
sets.
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Key idea of the proof

Z fr
r (f ) is a framed cobordism class, then Pontrjagin construction

gives the rest.

• Again, regular perturbations can be replaced by “regular
homotopy perturbations.”

• From a regular homotopy we get a framed cobordism easily.

• The other direction is more difficult.
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Problems

• Follow the approach of cap image groups.
We can construct Πf (c) for any c ∈ Rn, not just c = 0. Can
we compute some data structure built from Πf (c), c ∈ Rn,
that robustly describes f itself (not just the zero set)?

• New approach to multidimensional persistence?

• Understanding persistence modules of (pointed) Abelian
groups.

• Is the interleaving distance computable

• Practical implementation
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