Challenge: What's Wrong with this Proof of the Fundamental Theorem of Algebra

Peter Freyd University of Pennsylvania pjf@upenn.edu

January 3, 2020

The fundamental theorem of algebra is a Q is a polynomial such that Q(0) = 1. pretty quick consequence of the following:

Lemma: If P is a non-constant onevariable polynomial with complex coefficients and if $P(0) \neq 0$ then there's a complex number w such that

One uses the immediate corollary that for any u such that $P(u) \neq 0$ we can find w such that |P(w)| < |P(u)| (just use the lemma for the polynomial that sends z to P(u+z)and that's enough to imply that if P has a value closest to 0 then that value is 0. But first-semester (real) analysis allows us to find that value closest to 0 once we've proven that when z is far from 0 then so is P(z).^[1]

So what's wrong with this proof of the lemma: start by rewriting P(z)as $P(0) + z^m c Q(z)$ where m is a positive integer, c a complex number (necessarily not 0) and Chose an s so that

$$s^m = -P(0)/c.$$
 ^[2]

Then for any non-negative real number r:

$$P(rs) = P(0) + r^m s^m c Q(rs) = P(0) (1 - r^m Q(rs)).$$

What we need, therefore, is to show that for sufficiently small but positive r:

$$1 - r^m Q(rs) | < 1.$$

Put another way, we need $r^m Q(rs)$ to be in the open disk of radius 1 centered at 1. But for 0 < r < 1 if Q(rs) is in that open convex set with 0 on its boundary—then so is $r^m Q(rs)$ and the continuity of Q says that there's a real $\delta > 0$ such that Q(rs) is in that disk if $|rs| < \delta$. Hence |P(rs)| < |P(0)| whenever r is positive but less than both 1 and $\delta/|s|$.

How could such an easy proof for such a big theorem be so unknown? What's wrong?

example \rightarrow

Available at http://www.math.upenn.edu/~pjf/FTA.pdf And check out http://www.math.upenn.edu/~pjf/Hamilton.pdf

^[2] Any complex number is of the form $r(\cos\theta + i\sin\theta)$ where r and θ are real numbers and r is non-negative. High-school trigonometry suffices to show that the product of $\cos \alpha + i \sin \alpha$ and $\cos \beta + i \sin \beta$ is $\cos(\alpha + \beta) + i \sin(\alpha + \beta)$. An m^{th} root of $r(\cos\theta + i\sin\theta)$ is thus constructable as $\sqrt[m]{r} \left(\cos(\theta/m) + i \sin(\theta/m) \right).$

^[1] If the degree of P is n and its leading coefficient is Cthen $|z^{-n}P(z)|$ is close to |C| for large z and that says there's a real K such that |z| > K implies $|P(z)| > \frac{1}{2}|z^n C|$. (It's worth noting that this is the only place where we will use that P is a polynomial; the proof of the lemma—about to comeappears to work for any convergent complex power series.)

