Challenge: What's Wrong with this Proof of the Fundamental Theorem of Algebra

Peter Freyd University of Pennsylvania pjf@upenn.edu

January 3, 2020

The fundamental theorem of algebra is a Q is a polynomial such that $Q(0) = 1$. pretty quick consequence of the following:

Lemma: If P is a non-constant onevariable polynomial with complex coefficients and if $P(0) \neq 0$ then there's a complex number w such that

| P(w)| < | P(0)|.

One uses the immediate corollary that for any u such that $P(u) \neq 0$ we can find w such that $|P(w)| \leq |P(u)|$ (just use the lemma for the polynomial that sends z to $P(u+z)$ and that's enough to imply that if P has a value closest to 0 then that value is 0. But first-semester (real) analysis allows us to find that value closest to 0 once we've proven that when z is far from 0 then so is $P(z)$. [1]

So what's wrong with this proof of the lemma: start by rewriting $P(z)$ as $P(0) + z^m c Q(z)$ where m is a positive integer, c a complex number (necessarily not 0) and Chose an s so that

$$
s^m = -P(0)/c. \quad \text{[2]}
$$

Then for any non-negative real number r :

$$
P(rs) = P(0) + rmsmcQ(rs) =
$$

$$
P(0) (1 - rmQ(rs)).
$$

What we need, therefore, is to show that for sufficiently small but positive r :

$$
\left|1 - r^m \, Q(rs)\right| \, < \, 1.
$$

 $\overline{}$

Put another way, we need $r^m Q(rs)$ to be in the open disk of radius 1 centered at 1. But for $0 < r < 1$ if $Q(rs)$ is in that open convex set with 0 on its boundary—then so is $r^m Q(rs)$ and the continuity of Q says that there's a real $\delta > 0$ such that $Q(rs)$ is in that disk if $|rs| < \delta$. Hence $|P(rs)| < |P(0)|$ whenever r is positive but less than both 1 and $\delta/|s|$.

How could such an easy proof for such a big theorem be so unknown? What's wrong?

example →

Available at http://www.math.upenn.edu/~pjf/FTA.pdf And check out http://www.math.upenn.edu/~pjf/Hamilton.pdf

 \int

 \int

^[2] Any complex number is of the form $r(\cos\theta + i\sin\theta)$ where r and θ are real numbers and r is non-negative. High-school trigonometry suffices to show that the product of $\cos \alpha + i \sin \alpha$ and $\cos \beta + i \sin \beta$ is $\cos(\alpha + \beta) + i \sin(\alpha + \beta)$. An mth root of $r(\cos \theta + i \sin \theta)$ is thus constructable as An *m* root of $r(\cos \theta + i \sin \theta)$.
 $\sqrt[m]{r} (\cos(\theta/m) + i \sin(\theta/m))$.

^[1] If the degree of P is n and its leading coefficient is C then $|z^{-n}P(z)|$ is close to $|C|$ for large z and that says there's a real K such that $|z| > K$ implies $|P(z)| > \frac{1}{2}|z^n C|$. (It's worth noting that this is the only place where we will use that P is a polynomial; the proof of the lemma—about to comeappears to work for any convergent complex power series.)

