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Theorem: Any finite-dimensional associative
real algebra D without zero divisors is
isomorphic either to a single point, the reals,
the complex numbers or the quaternions.

The one substantive ingredient is the
algebraic completeness of the complex num-
bers, in particular, the fact that every finite
dimensional real field is isomorphic to one
of the two real subfields of the complex num-
bers; the rest is first-semester linear algebra.

But the first step—that D has a unit—
works for any finite-dimensional vector space
over any field. Assuming dim D > 0 let
0 6= a ∈ D. The linear self-map obtained by
multiplying by a, being one-to-one, is onto,
hence there’s an element e such that a = ae.
Since a(ex − x) = 0 we know ex = x, that
is, any right-unit for a is a left-unit for all
x. In particular, e is also a left-unit for a and,
presto!, by the the mirror-image argument it’s
also a right-unit for all x. We will henceforth
denote e as 1 and call the line it spans the
real axis.

For any x not in the real axis the subspace
generated by the powers of x (counting x0 = 1
as a power) is a commutative subalgebra with-
out zero divisors, hence a finite dimensional
field over the reals, isomorphic to the complex
numbers. Every plane containing the real axis
is a copy of the complex numbers.

Assuming dim D > 1 there is such a copy
and we choose i ∈ D such that i2 = −1. Let

∗ Available at www.math.upenn.edu/~pjf/Hamilton.pdf

indI find it hard to believe that this proof of the classification
of associative real division algebras could be new but for many
years now I’ve never found a mathematician who was less than
astounded by the existence of such an easy proof.

f : D → D denote conjugation by i, that is,
fx = ixi-1. Since conjugating with i2 is the
identify function, f is an involution (f 2x = x)
and we obtain a splitting of D as D+⊕D−
where D+ is the set of f -fixed points (fx = x)
and D− the f -negated points (fx = −x). [1]

In the case at hand we may describe the
elements of D+ as those that commute with i
and of D− as those that anti-commute (that
is, xi = −ix). If D+ were to have an
element not in the complex plane containing
i, we would obtain an even larger commuta-
tive subalgebra, hence dim D+ = 2.

Assuming dim D > 2 let 0 6= v ∈ D−.
Using that f is an automorphism on the alge-
braic structure of D and that it is invariant—
but not the identity function—on the plane
spanned by two of its eigenvectors (1 and v)
we obtain a copy of the complex plane on
which f is its unique non-trivial automorphism.
If we let j denote one of its square roots of −1
then necessarily fj = −j. We’ll rewrite this
as ij = −ji.

Define k = ij. We obtain Hamilton’s cele-
brated equations i2 = j2 = k2 = ijk = −1, [2]

that is, D contains a copy of the quaternions.

We thus finish by showing that dim D ≤= 4,
equivalently, that dim D− ≤= 2. If a pair of
elements each anti-commute with i, then
their product must commute with i, [3] hence
multiplication by j induces a one-to-one
linear transformation D− → D+ which, of
course, forces dim D− ≤= dim D+ ≤= 2.

1[ ] Because x = x+fx
2

+ x−fx
2

for all x and the intersec-
tion D+ ∩D− is trivial.

2[ ] Because k2 and ijk are both equal to ijij =
i(−ij)j = ii-1j2 = −1.

3[ ] Because i(xy) = (−xi)y = −x(iy) = −x(−yi) = (xy)i.


