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• p3 Diminution for [1.1] Four of the eight axioms are redundant!p3 Diminution for [1.1] Four of the eight axioms are redundant!p3 Diminution for [1.1] Four of the eight axioms are redundant!p3 Diminution for [1.1] Four of the eight axioms are redundant!p3 Diminution for [1.1] Four of the eight axioms are redundant!
(Thanks to Martin Knopman):

The axioms:
xy is defined iff x2 = 2y,
(2x)x = x and x(x2) = x,
x(yz) = (xy)z

• p3 [1.13] should now start with:p3 [1.13] should now start with:p3 [1.13] should now start with:p3 [1.13] should now start with:p3 [1.13] should now start with:

(2x)2 = 2x because (2x)x is defined, similarly 2(x2) = x2. If xy is defined then
(xy)(y2) is defined (because (xy)(y2) = x(y(y2))) hence (xy)2 = 2(y2) = y2. Similarly,
if xy is defined then 2(xy) = 2x. Using the convention for [1] we have (xy)2 y2 and
2(xy) 2x.

• p5 [1.17] A footnote for the word “ groupoid ”:p5 [1.17] A footnote for the word “ groupoid ”:p5 [1.17] A footnote for the word “ groupoid ”:p5 [1.17] A footnote for the word “ groupoid ”:p5 [1.17] A footnote for the word “ groupoid ”:

The roots of category theory lie in algebraic topology and the word “groupoid” has been
used in this way since at least Paul Smith’s 1949 “Homotopy groups of certain algebraic
systems.” (Proc. Nat. Acad. Sci.) Smith cites Reidemeister’s 1932 Einführung in die kombi-
natorische topologie (Braunschweig : F. Vieweg & So W.) for his usage The notion is usually
credited to H Brandt, “Über eine Verallgemeinerung des Gruppengriffes” Math. Ann. 96,
360-366, 1926. Indeed, there was a time when categories were most quickly described as
“Brandt semigroupoids.” But, be warned: in some communities “groupoid” means a set with
any binary operation without restriction.

• p21 A one-to-one correspondence from the last paragraph of [1.364] made explicit:p21 A one-to-one correspondence from the last paragraph of [1.364] made explicit:p21 A one-to-one correspondence from the last paragraph of [1.364] made explicit:p21 A one-to-one correspondence from the last paragraph of [1.364] made explicit:p21 A one-to-one correspondence from the last paragraph of [1.364] made explicit:

Given 0 ∈ S ⊂ A the Cantor-Bernstein-Schroeder theorem delivers a one-to-one corre-
spondence from S×A? to A?. It can be described as follows, in which n is a natural number,
w ∈ A?, a ∈ A \ S, s ∈ S \ {0} : 〈0, 0n〉 → 0n

〈0, 0naw〉 → 0naw
〈0, 0nsw〉 → 0n+1sw
〈s, w〉 → sw

1[ ] \begin{picture}(17,7)\qbezier(5,6.5)(6,5)(12,5)\qbezier(5,1.5)(6,3)(12,3)\end{picture}



AMPLIFICAATIONS, DIMINUTIONS, SUBSCOORINGS

• p50 Add small-print comment to end of [1.461]:p50 Add small-print comment to end of [1.461]:p50 Add small-print comment to end of [1.461]:p50 Add small-print comment to end of [1.461]:p50 Add small-print comment to end of [1.461]: (Thanks to Peter Selinger!)

The category composed of local homeomorphisms has equalizers and, rather surprisingly,
it actually does have products, indeed all non-empty diagrams have limits. The construction
of pullbacks and equalizers, however, is much easier than the construction of even binary
products, Unlike pullbacks, products are not preserved by forgetful functors. The product of
the space of rational numbers with itself, for example, is uncountably large. (And for every
infinite cardinal there’s a space whose product with itself has the next power-cardinal as its
size.)

• p52 [1.475] remove last sentence (see Corrections) and add:p52 [1.475] remove last sentence (see Corrections) and add:p52 [1.475] remove last sentence (see Corrections) and add:p52 [1.475] remove last sentence (see Corrections) and add:p52 [1.475] remove last sentence (see Corrections) and add:

For an example of a one-valued non-special cartesian category let the objects be topological
unital rings in which the topology is either discrete or the other extreme, indiscrete (the only
open sets are empty or entire). The maps are continuous ring homomorphisms. The one-
element ring is a strict terminator, that is, the only maps therefrom are isomorphisms. The
only constant maps in this category are those targeted at the terminator, hence for any map
either its source must be discrete or its target must be indiscrete. Equalizers can be obtained
using the standard construction. For binary products topologize the standard ring product
with the indiscrete topology when both factors are indiscrete (otherwise with the discrete
topology). Then A×− is faithful iff A is indiscrete. (Instead of rings one could use semi-
lattices or, for that matter, any equational theory [2] with constants 0 and 1 and a binary
operation such that 0x = 0 and 1x = x. For a less algebraic example use posets with top and
bottom.) By adding a strict coterminator to any one-valued non-special cartesian category
one may obtain a two-valued example.

• p55 Footnote for the first paragraph of [1.493 small print]:p55 Footnote for the first paragraph of [1.493 small print]:p55 Footnote for the first paragraph of [1.493 small print]:p55 Footnote for the first paragraph of [1.493 small print]:p55 Footnote for the first paragraph of [1.493 small print]:

A more conceptual description: first lexicographically order the product of the f -targets.
Then 〈T ; f1, . . . , fn〉 ∈ τ iff the induced map from T to the product preserves order.

• p66 Footnote for the middle paragraph of [1.4(12) small print]:p66 Footnote for the middle paragraph of [1.4(12) small print]:p66 Footnote for the middle paragraph of [1.4(12) small print]:p66 Footnote for the middle paragraph of [1.4(12) small print]:p66 Footnote for the middle paragraph of [1.4(12) small print]:

A more conceptual description: 〈a1, . . . , an〉 < 〈b1, . . . , bm〉 iff for all sufficiently large x,
a1x

n + a2x
n−1 + · · ·+ anx < b1x

m + b2x
m−1 + · · ·+ bmx.

• p68–69 Correction for [1.512] remove top sentence on p69 and add two new entries:p68–69 Correction for [1.512] remove top sentence on p69 and add two new entries:p68–69 Correction for [1.512] remove top sentence on p69 and add two new entries:p68–69 Correction for [1.512] remove top sentence on p69 and add two new entries:p68–69 Correction for [1.512] remove top sentence on p69 and add two new entries:

• p69 New entry [1.515]:p69 New entry [1.515]:p69 New entry [1.515]:p69 New entry [1.515]:p69 New entry [1.515]: The class of covers is closed under left cancellation (if A→ B → C
is a cover, then so must be B → C). In a category with pullbacks the class of covers is closed
under composition.

because: Left cancellation is immediate For composition, suppose that A → B and
B → C are covers and that a monic D → C allows their composition. Let

E → B
↓ ↓
D → C

be a pullback. Since E → B is monic and allows A→ B it must be an isomorphism. We thus
obtain a map from B to D which shows that D → C allows B → C. Hence D → C is an
isomorphism.

2[ ] Sometimes “algebraic theory.” The problem with that name is the theory of fields—the quintessential theory of algebra for
most mathematicians—would not be an algebraic theory.
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• p69 New entry [1.516 small print]:p69 New entry [1.516 small print]:p69 New entry [1.516 small print]:p69 New entry [1.516 small print]:p69 New entry [1.516 small print]:

In a category without pullbacks, covers need not be closed under composition. Consider
the subcategory of the category of sets with three objects named 1,2,3 each with the indicated
number of elements. Allow no maps from 1 or 2 into 3 but allow all other maps. (The only
maps targeted at 3 are endomorphisms.) Any endomorphism on 3 is, by default, a cover. To
obtain a counterexample, compose a constant endomorphism on 3 with an onto map from 3
to 2. Each is a cover but the composition is not.

• p74 New entry [1.536]:p74 New entry [1.536]:p74 New entry [1.536]:p74 New entry [1.536]:p74 New entry [1.536]:

In the previous small-print exploration of τ -categories we defined a universal property
for slice categories [1.4(11)6]. It’s worth describing the material without the full uniqueness
allowed by the τ -structure:

For an object in a cartesian category B ∈ A define the generic point in A/B to be the
map g : ∆1→ ∆B carried by Σ to the diagonal map B → B×B.

The slice category A/B is the result of freely adjoining a point to the object B.

That is, given any representation of cartesian categories T : A → C and point 1 b→ T (B)
there is a representation, unique up to natural equivalence, T ′ : A/B → C that carries the
generic point to b and each ∆f to Tf .

Given an object a : A→ B construct T ′a by using the pullback:

T ′a→ TA
↓ ↓ Ta
1 b→ TB

• p109 Add to end of [1.641]:p109 Add to end of [1.641]:p109 Add to end of [1.641]:p109 Add to end of [1.641]:p109 Add to end of [1.641]:

For the same reason, given any f : A → B in a boolean pre-logos, the map induced by
inverse-images, f# : Sub(B)→ Sub(A), preserves complements.

• p117 [1.7] Add to very top:p117 [1.7] Add to very top:p117 [1.7] Add to very top:p117 [1.7] Add to very top:p117 [1.7] Add to very top:

Recall that in a regular category the inverse image and direct image operations satisfy:
f(A′) ⊂ B′ iff A′ ⊂ f#(B′) [1.51].

• p129 Small print addition for [1.74(10)]:p129 Small print addition for [1.74(10)]:p129 Small print addition for [1.74(10)]:p129 Small print addition for [1.74(10)]:p129 Small print addition for [1.74(10)]:

The Freyd curve may be described with a four-state automaton with states E′,E,N,N′, and
inputs “−,◦,+.” (we’re suppressing the 1s):

Next State Output
E′ E N N′

+ E N E N
◦ E E′ N′ N
− E N E N

E′ E N N′

+ + + − −
◦
− − − + +

For an open onto map any one of the states may be taken as initial. (To get the function
described above start at E.) Each next state is always an adjacent state as defined by the list
E′,E,N,N′. The ◦ input toggles E′,E and N,N′. The two non-◦ inputs have the same next-state
behavior: they both always target one of the two middle positions which fact together with
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AMPLIFICAATIONS, DIMINUTIONS, SUBSCOORINGS

the fact that all next states are adjacent determines their action. In the diagram below the
gray (double) arrows show the next-state behavior for the ◦ input.

E′ →↔ E ↔ N ←↔ N′

As for output: when ◦ is the input there is no output; in the first two states, E′,E the
output echoes the non-◦ input; in the last two, N,N′, it negates.

The first task is to show that the resulting function is defined not just on sequences but
on elements of [−1

2
,+1

2
], that is, the same output is engendered by sequences that name the

same interval element. We need to consider the output of two machines that have been fed
the same initial inputs but one machine will henceforth hear ◦++++ · · · and the other
+−−−− · · · . We’ll do better with a single machine but with two demons jumping from
state to state each according to the commands issued by its appointed sequence. We feed
them both the same initial sequence that brings them to the same state. For each of those
four possible states the jump then commanded by the input ◦+ produces the same output
as that commanded by + but the demons will land in different states Each will be at one of
the two center states, E,N, but not the same center state. Thereafter they will continue to
exchange position forever and that means that when one machine echoes the other negates.
Which is just what is needed for the output engendered by a constant sequence of +s on
one machine to be the same as that engendered by a constant sequence of −s on the other
machine. All of this easily dualizes for the pair ◦−−−− · · · and −++++ · · ·.

Another four Freyd curves may also be described with a four-state automaton:

Next State Output

E E′ N N′

+ E N N E
◦ E′ E N′ N
+ E N N E

E E′ N N′

+ + + − −
◦
− − − + +

The ◦ input toggles E,E′ and N,N′. The two non-◦ inputs have the same next-state behavior:
E and N are stationary and the only targets. In the diagram below, the vertical gray (double)
arrows show the next-state behavior for the ◦ input:l≺

E←N′

l l
E′→ l≺N

As for output: when ◦ is the input there is no output; in the two left-hand states, E,E′, the
output echoes the non-◦ input; in the two right-hand states, N,N′, it negates.

For this machine when we start two demons in the same state, one listening to ◦++++ · · ·
and the other +−−−− · · · the jump commanded by the input + again produces the same
output as that commanded by ◦+ but the demons will land in different states One will be
in E the other N and there they’ll stay forever. One of the demons will echo the input, the
other will negate it, which is—again—just what is needed for the output engendered by a
constant sequence of +s on one machine to be the same as that engendered by a constant
sequence of −s on the other machine. All this, again, easily dualizes.
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• p118 New entry [1.715]:p118 New entry [1.715]:p118 New entry [1.715]:p118 New entry [1.715]:p118 New entry [1.715]:

A Boolean pre-logos is a logos.

because: f##(A′) = ¬f(¬A′). That is, B′ ⊂ ¬f(¬A′) iff f(¬A′) ⊂ ¬B′ iff
¬A′ ⊂ f(¬B′) iff ¬A′ ⊂ ¬f(B′) iff f#(B′) ⊂ A′, using the definition of direct
image, [1.641] and the fact that complementation is order-reversing. Thus a Boolean pre-logos
is automatically a boolean logos, and representations of Boolean pre-logoi are automati-
cally representations of Boolean logoi.

• p133 Insert after first two sentences of [1.77]:p133 Insert after first two sentences of [1.77]:p133 Insert after first two sentences of [1.77]:p133 Insert after first two sentences of [1.77]:p133 Insert after first two sentences of [1.77]:

Note that (R◦)+ = (R+)◦. (If T is transitive then so is T ◦, and since R◦ ⊂ (R+)◦ we
have (R◦)+ ⊂ (R+)◦ and since R = (R◦)◦ ⊂ ((R◦)+)◦ we have R+ ⊂ ((R◦)+)◦ therefore
(R+)◦ ⊂ (R◦)+. ) Similarly (R◦)? = (R?)◦.

• p196 Add to end of [2.1]:p196 Add to end of [2.1]:p196 Add to end of [2.1]:p196 Add to end of [2.1]:p196 Add to end of [2.1]:

See 2.113.

• p197 Insert in [2.113 small print] after “MODULAR LATTICE”:p197 Insert in [2.113 small print] after “MODULAR LATTICE”:p197 Insert in [2.113 small print] after “MODULAR LATTICE”:p197 Insert in [2.113 small print] after “MODULAR LATTICE”:p197 Insert in [2.113 small print] after “MODULAR LATTICE”:

The Horn sentence is equivalent to the equation (A ∪X) ∩ (A ∪B) = A ∪ (X ∩ (A ∪B))
which is equivalent to the containment (A ∪X) ∩ (A ∪B) ⊂ A ∪ (X ∩ (A ∪B))

since in any lattice [3] A ∪ (X ∩ (A ∪B)) ⊂ (A ∪X) ∩ (A ∪B)

[3]
When catenation is to be interpreted as union the universally quantified contain-
ment in the middle line is easily equivalent with the universally quantified containment
RS ∩ T ⊂ (R ∩ TS)S. [4]

• p198 Add to end of [2.13]:p198 Add to end of [2.13]:p198 Add to end of [2.13]:p198 Add to end of [2.13]:p198 Add to end of [2.13]:

The important families of endo-relations, reflexive/symmetric/transitive/coreflexive/equivalence,
are each closed under intersection:

Reflexive: 1 ⊂ 1 ∩ 1 ⊂ R ∩ S.
Symmetric: (R ∩ S)

◦ ⊂ R
◦

and (R ∩ S)
◦ ⊂ S

◦
.

Transitive: (R ∩ S)2 ⊂ R2 ⊂ R and (R ∩ S)2 ⊂ S2 ⊂ S.

• p199–200 A better version of [2.135]:p199–200 A better version of [2.135]:p199–200 A better version of [2.135]:p199–200 A better version of [2.135]:p199–200 A better version of [2.135]:

The isomorphisms in A and Map(A) coincide. That is:

If R is an isomorphism then R is a map and R-1 = R
◦
.

Or, using the convention for :

R-1 R
◦

hence all isomorphisms are maps.

This is an immediate consequence of a much better lemma [indeed, the most conspicuous
omission in the published book]:

1 ⊂ RS and SR ⊂ 1 iff R is a map and S is its reciprocal (S = R
◦
).

because: R is entire since RS is. Hence S ⊂ S1 ⊂ SRR
◦ ⊂ 1R

◦ ⊂ R
◦
. But we also

have 1 ⊂ S
◦
R
◦

and R
◦
S
◦ ⊂ 1 and the same argument yields R

◦ ⊂ S.

3[ ] A ⊂ (A ∪X), A ⊂ (A ∪B), (X ∩ (A ∪B)) ⊂ X ⊂ (A ∪X) and (X ∩ (A ∪B)) ⊂ (A ∪B).
4[ ] Assuming the middle line specialize X, A, B to R, S, T for RS ∩ T = (X ∪ A) ∩ B ⊂ (A ∪ X) ∩ (A ∪ B) ⊂

A ∪ (X ∩ (A ∪ B)) = S(R ∩ ST ) = (R ∩ TS)S. For the converse specialize R, S, T to X, A, (A ∪ B) for
(A ∪X) ∩ (A ∪B) = SR ∩ T = RS ∩ T ⊂ (R ∩ TS)S = (X ∩ ((A ∪B) ∪A)) ∪A = A ∪ (X ∩ (A ∪B)).
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(If an allegory is viewed as a 2-category, then the hypothesis, 1 ⊂ RS and SR ⊂ 1,
says that S and R form an adjoint pair.)

• p200 New entry [2.137 small print]:p200 New entry [2.137 small print]:p200 New entry [2.137 small print]:p200 New entry [2.137 small print]:p200 New entry [2.137 small print]:

A von Neumann allegory is an allegory that obeys the equation:

RR
◦
R = R [5]

Since one containment is a consequence of the standard axioms it is enough to require:

RR
◦
R ⊂ R

A von Neumann regular category is a regular category whose associated allegory is
von Neumann.

An equational theory is a mal′cev theory if a mal′cev operator can be constructed,
to wit, a ternary operator, traditionally denoted as t and whose values are traditionally
denoted as txyz, that satisfies the equations:

txxz = z and txzz = x

Given any equational theory, the category of its models is regular and the forgetful functor to
sets is a faithful representation. As we sill see, the category of models of an equational theory
is von Neumann regular iff the theory is Mal ′cev.

First, a few examples of Mal ′cev theories. In any theory that contains the theory of
groups we can construct txyz as xy-1z. For Heyting algebras, txyz may be taken as
((x → y) → z) ∧ ((z → y) → x). [6] [7] For a less symmetric example take the theory of
colonies: a single binary operation, with values denoted x : y, subject to just one equation
x : (y :x) = y (equivalently (x :y) :x = y [8]) take txyz = (x :x) : (z : (x :y)) [9] or any of the
other 23 terms of the same size that do the trick.[10] (Examples of colonial operations include
x :y = (xy)-1 in any group.)[11]

Colonies are a special case of the theory of quasigroups, that is, the theory of binary
operations—associative or not—with unique left and right division. The equational formu-

5[ ] A von Neumann regular ring is one with an anti-involution such that xx∗x = x all x.
6[ ] To see that txxz = z note that the first half, ((x → x) → z), is equal to 1 → z = z and it suffices to show the second

half is at least z, but z ≤ (z → x)→ x is equivalent to z ∧ (z → x) ≤ x which, of course, is equivalent to z → x ≤ z → x.
7[ ] An orthomodular lattice, beloved by physicists, is a lattice with 0, 1 and an anti-involution x′ such that x ∨ x′

= 1, plus one consequence of modularity, to wit, a ∨ (a′ ∧ (a ∨ b)) = a ∨ b (e.g., the lattice of closed subspaces of a
Hilbert space). Take txyz = (x ∨ (y′ ∧ (y ∨ z))) ∧ (z ∨ (y′ ∧ (y ∨ x))). Then txzz = (x ∨ (z′ ∧ (z ∨ z))) ∧ (z ∨ (z′ ∧ (z ∨ x))) =
(x ∨ (z′ ∧ z)) ∧ (z ∨ x) = (x ∨ 0) ∧ (z ∨ x) = x.

8[ ] If (x :y) :x = y all x, y then x : (y :x) = ((y :x) :y) : (y :x) = y.
9[ ] txxz = (x :x) : (z : (x :x)) = z and txzz = (x :x) : (z : (x :z)) = (x :x) :x = (x :x) : (x : (x :x)) = x.

10[ ] This is the simplest possible consistent Mal ′cev theory (inconsistent means all equations are provable). The proof is an
exercise in equational theories. There’s no way of obtaining a ternary operator without having an n-ary operation with n ≥ 2
and if we have any such then we have one for n = 2. We need, of course, at least one equation. There’s no way of deducing a
singular equation—that is, one in the form s = y where y is a “naked” variable and s is not—from nonsingular equations,
hence if we have just one equation it has to be singular. If y does not appear in s then we deduce y = y′ (hence all equations)
from s = y and s = y′. If y appears in the extreme right position of s then a model of the theory is one in which all
terms are equal to their far right variable, that is, there are models that can not have a Mal ′cev operator. Ditto for the far left
side. In particular s can not have just one instance of the binary operation. Assuming just two instances, there are two ways
of putting in the parentheses but symmetry says—for our present purpose—that it doesn’t matter which. If the one equation is
(x :y) :z = y then we can deduce x :z = y (since x :z = ((x :x) :y) :z = y) thus returning to the case s = y where y is absent
from s. All of which says that the only equational axioms left are (x :y) :x = y and x : (y :x) = y.

11[ ] The motivating example of colonies for this writer arose from “orientable surfaces without diagonals,” that is, triangulated
orientable surfaces in which the 1-skeleton is the complete graph on the vertices. Define x :y for distinct vertices x, y to be the
vertex one reaches when one moves from x to y and then takes the “first right turn.” Define x :x = x. The two known examples
yield colonies arising from the Galois fields of order 4 and 7 with x : y = −cx − c2y where c is a primitive cube root of 1
(i.e., c2+c+1 = 0).
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lation requires three binary operations and four equations, to wit, any two of the following
three rows:

(x/y) y = x = (x y)/ y
y (y\x) = x = y\(y x)

(y/x)\y = x = y/(x\y) [12]

[12]For quasigroups one may take txyz = (x/x)\((x/y)z). [13]

We will see yet another Mal ′cev theory in [2.34] (below, in these amplifications). For the

theory of scales,[14] take txyz =
̂

(x|z) |
∨
(
.
y|⊥).

For the connection between the von Neumann equation on the allegory of relations and
the existence of a Mal ′cev operator, first observe that given a relation R :A →B between
Mal ′cev algebras, suppose that aRb, a′Rb, and a′Rb′. If we view R as a subalgebra of
A×B then t〈a, b〉〈a′, b〉〈a′, b′〉 = 〈taa′a′, tbbb′〉 = 〈a, b′〉 must be in R, in other words, aRR

◦
Rb′

implies aRb′. A corollary, using [1.593], is that

Abelian categories are von Neumann regular categories.

For the reverse connection, suppose that the von Neumann equation holds in the allegory
of relations between algebras of a given equational theory. Let F be the free model on two
genterators, a and b. Let R ⊂ F×F be the submodel generated by pairs 〈a, a〉, 〈a, b〉, 〈b, b〉.
When we view R as a relation the von Newmann equation says that RR◦R ⊂ R and since
bRbR◦aRa we obtain bRa hence 〈b, a〉 ∈ R. But for any equational theory we obtain the
subalgebra generated by three elements as the set of values of all ternary operators (primitive
and derived) applied to those three elements. That is, there must be a ternary operator t
such that t〈a.a〉〈a, b〉〈b, b〉 = 〈b, a〉 which says, of course, that t〈a.a〉〈a, b〉〈b, b〉 = 〈taab, tbba〉 =
〈b, a〉, hence that t is a Mal ′cev operator.

In a von Neumann allegory in which symmetric idempotents split we may define (up to
isomorphism) an image for a relation R; because RR

◦
and R

◦
R are symmetric idempotents—

one on the domain of R, one on its codomain—with R and R
◦

yielding an inverse pair of
isomorphisms between their splittings.

The von Neumann equation implies two conditions on endomorphisms: reflexive implies
symmetric (risrisrisrisris), that is, 1 ⊂ R implies R

◦
= R; and reflexive implies transitive (ritritritritrit),

that is, 1 ⊂ R implies RR ⊂ R (if 1 ⊂ R then R
◦ ⊂ 1R

◦
1 ⊂ RR

◦
R ⊂ R and

RR ⊂ R1R ⊂ RR
◦
R ⊂ R.) [15]

Both ris and rit imply equivalence relations commute (ercercercercerc): if E and F are equivalence
relations then since 1 ⊂ EF ris implies EF = (EF )

◦
= F

◦
E
◦
= FE and rit implies FE ⊂

1FE1 ⊂ EFEF = (EF )2 ⊂ EF , similarly EF ⊂ FE. When EF = FE we know that

12[ ] Colonies are quasigroups in which xy = y\x = y/x = x :y.
13[ ] First use the 4th equation to obtain txxz = (x/x)\((x/x)z) = z, then use the 1st, 4th, and the 1st equation again to obtain

txzz = (x/x)\((x/z)z) = (x/x)\x = (x/x)\((x/x)x) = x. It is curious that only two of the defining equations are needed. There
is a transitive group of symmetries on the six-element set of operations and their “twists” that preserve the equations and we
obtain six pairs of equations each of which suffices for the construction of a Mal ′cev operator. There are no other such pairs.
There are usually an infinity of Mal ′cev terms if there’s one, e.g., tx(tx(txyz)z)z. (There’s only one txyz in the free abelian
group generated by x, y, z. When the word “abelian” is dropped there are infinitely many, e.g., xz-1xy-1zx-1z.) In the case
of quasigroups if we stick to terms of the same size there are 72 versions. Heavenly.

14[ ] http://www.math.upenn.edu/~pjf/analysis.pdf
15[ ] Both ris and rit can be strengthened: it is enough to assume that a morphism in a von Neumann allegory con-

tains both its domain and codomain to imply symmetry and it is enough to assume that it contains the intersection of its
domain and codomain to imply transitivity: if Dom(R), Dom(R◦) ⊂ R then Dom(R◦)R◦Dom(R) ⊂ RR◦R ⊂ R;
if Dom(R◦) ∩Dom(R) ⊂ R then (using 2.121) RR ⊂ R Dom(R◦)Dom(R)R = R

`
Dom(R◦) ∩Dom(R)

´
R ⊂ RR◦R.
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EF is itself an equivalence relation, which makes it the smallest equivalence relation contain-
ing both E and F. In [2.113], particularly as amplified on page 5 of these amplifications, any
lattice of pairwise commuting equivalence relations was seen to be automatically modular (for
Mal ′cev theories this is usually stated as the modularity of the congruence lattices).[16]

Without further conditions ris and rit are independent. For a one-object allegory where
ris holds but not rit let R be a reflexive symmetric morphism in any allegory. Consider
the suballegory generated by R. All of its elements remain reflexive symmetric. They are all
transitive only if R was transitive. (If one starts with the allegory of relations on a three-
element set and takes R to be any one of the three reflexive symmetric non-transitive relations,
this construction yields a three-element allegory. If one starts with the natural numbers and
takes R to be the adjacency-relation-made-reflexive then this construction yields an allegory
with an infinite number of reflexive relations all of which are symmetric and only one is
transitive.)

For a one-object allegory where rit holds but not ris let R be a reflexive transitive relation
in any allegory and suppose further that R defines a total order (e.g., on a 2 element set).
Assuming that R 6= 1, the suballegory generated by R has exactly four elements all of which
are reflexive transitive but only two of which are symmetric.

But for allegories arising from regular categories (or equivalently, as explained below, for
tabular allegories) both ris and rit imply the von Neumann equation because each implies
erc and erc implies the von Neumann equation: given a relation R that is spanned by
a pair of maps, f , g, that is, such that R = f ◦g, erc implies RR

◦
R = (f ◦g)(f ◦g)

◦
(f ◦g) =

f ◦(gg◦)(ff ◦)g = f ◦(ff ◦)(gg◦)g = (f ◦f)f ◦g(g◦g) ⊂ 1f ◦g1 = R. To summarize the connections,
let vnevnevnevnevne mean the von Neumann equation Then for all allegories:

vne

↗
ris
↘

↘
rit
↗

erc

The two counterexamples above show that neither vertical arrow may be inserted (and hence
none of the arrows may be reversed) in the context of all allegories. But—as just seen—for
those allegories in which there are enough maps:

vne

↗
ris
↘

←−
↘

rit [17]

↗
erc

[17]

16[ ] erc is equivalent to equivalence relations being closed under composition. Indeed, for equivalence relations EF = FE
iff EF is an equivalence relation: if EF = FE then EF is immediately symmetric and imminently transitive (EFEF =
EEFF = EF ); if EF is an equivalence relation then it’s symmetric and EF = (EF )◦ = F ◦E◦ = FE. Put another way:
erc could just as well have stood for equivalence relations compose.

17[ ] What does it mean if there’s a Mal ′cev operator in a category, in particular suppose there’s a Mal ′cev operator in the
category of models of a Mal ′cev theory. Put another way suppose that t is a Mal ′cev operator that is a homomorphism with
respect to t.

In general, given an m’ary operator f and an n’ary operator g then f is a homomorphism with respect to g means that
for any m×n matrix of variables if we apply f to each of the n columns and then g to the resulting row, we obtain the
same as if we had applied g to each of the m rows and then f to the resulting column. (Yes, it’s a symmetric condition: f
is a homomorphism with respect to g iff g is a homomorphism with respect to f.)
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• p205 Amplifications for [2.157 small print]:p205 Amplifications for [2.157 small print]:p205 Amplifications for [2.157 small print]:p205 Amplifications for [2.157 small print]:p205 Amplifications for [2.157 small print]:

We say that a modular lattice whose only elements aside from the top and bottom are its
atoms and co-atoms satisfies the theorem of Desargues iff for any six atoms a1, b1, c1, a2, b2, c2:

(a1 ∨ a2) ∧ (b1 ∨ b2) ≤= c1 ∨ c2

implies
(a1 ∨ b1) ∧ (a2 ∨ b2) ≤=

(
(a1 ∨ c1) ∧ (a2 ∨ c2)

)
∨
(
(c1 ∨ b1) ∧ (c2 ∨ b2)

)
Note that every “− ∨−” is a co-atom.[18]

[See diagram on next page.]

When f = g = t and m = n = 3 and the matrix of variables is:

a b c
d e f
g h i

we obtain the equation
t(tabc)(tdef)(tghi) = t(tadg)(tbeh)(tcfi)

This equation plus the two Mal ′cev equations turn out to be defining what may be described as the result of removing zero from
the theory of abelian groups. In imitation (but pronounceably) of Jacobson we’ll call this the theory of grups.

Given an element a in a grup G we can obtain an abelian-group structure by defining

0a = a
x +a y = txay
−ax = taxa

The Mal ′cev equations immediately yield x +a 0a = x = 0a +a x. Using the variables
u a v
a a a
x a y

we obtain the equation

(u +a v) +a (x +a y) = (u +a x) +a (v +a y) which in [1.591] on p88 was shown to imply that +a is commutative and associative.

Use the variables
a a x
x a a
a a a

to obtain −ax +a x = 0a. We’ll denote the resulting abelian group as Ga.

Given a pair of elements in G the canonical isomorphism from Ga to Gb is given by txab. Use the variables
x a b
a a b
y a b

to

obtain t(x +a y)ab = (txab) +b (tyab). When a = b we get the identity function. If we first apply the function named by txab

then the one named by txbc use
x a b
a a b
c c c

to prove that we obtain the one named by txac.

An abelian group has, of course, a grup structure (as always in the presence of an abelian group structure txyz is x− y + z).
Note that translation by a , that is, the function that sends x to x + a is a grup-automorphism. Given a pair of abelian
groups, the grup-homomorphisms from the first to the second are precisely the group-homomorphisms followed by a translation
by an element of the second. (When abelian groups are replaced by vector spaces such functions are, of course, called “affine
transformations.”) The resulting category just misses being equivalent to the category of grups. What we miss hitting is the
empty grup. Hence add a new strict initial object to the category of abelian groups and grup-homomorphisms and we obtain a
category equivalent to the category of grups.

Finally, what if we have a pair of Mal ′cev operators, t, t′ each a homomorphism with respect to the other? Just as in [1.591]
we can prove t = t′.

18[ ] We’re using the fact that the variables name six atoms.
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(a1 ∨ a2) ∧ (b1 ∨ b2) = p
(a1 ∨ b1) ∧ (a2 ∨ b2) = w
(a1 ∨ c1) ∧ (a2 ∨ c2) = u
(c1 ∨ b1) ∧ (c2 ∨ b2) = v

a1

b1

c1

p

a2 b2

c2

u

v w

In the allegory of sets (hence for relations in any regular category)
(A1A2 ∩B1B2) ⊂ C1C2

implies
(A
◦
1B1 ∩ A2B

◦
2) ⊂ (A

◦
1C1 ∩ A2C

◦
2)(C

◦
1B1 ∩ C2B

◦
2).

Given the hypothesis and elements x, y such that x(A
◦
1B1 ∩ A2B

◦
2)y

we need to show x(A
◦
1C1 ∩ A2C

◦
2)(C

◦
1B1 ∩ C2B

◦
2)y.

Actually we’re given elements x, s1, s2, y satisfying:
xA
◦
1s1B1y and xA2s2B

◦
2y.

The hypothesis then says that since
s1(A1A2 ∩B1B2)s2 [because s1A1xA2s2 and s1B1yB2s2 ]

there must be z such that s1C1zC2s2. And that yields
x(A

◦
1C1 ∩ A2C

◦
2)z [because xA

◦
1s1C1z and xA2s2C

◦
2z ] and

z(C
◦
1B1 ∩ C2B

◦
2)y [because zC

◦
1s1B1y and zC2s2B

◦
2y ] hence,

finally, x(A
◦
1C1 ∩ A2C

◦
2)z(C

◦
1B1 ∩ C2B

◦
2)y.

• p211 Add to end of [2.162]:p211 Add to end of [2.162]:p211 Add to end of [2.162]:p211 Add to end of [2.162]:p211 Add to end of [2.162]:

Note that R is necessarily simple.

• p213 A simplification for [2.216(10)] 14th line up:p213 A simplification for [2.216(10)] 14th line up:p213 A simplification for [2.216(10)] 14th line up:p213 A simplification for [2.216(10)] 14th line up:p213 A simplification for [2.216(10)] 14th line up:

Define G′ by G′ = G ∩ FR.

• p214 Add to end of [2.16(11)]:p214 Add to end of [2.16(11)]:p214 Add to end of [2.16(11)]:p214 Add to end of [2.16(11)]:p214 Add to end of [2.16(11)]:

(The word “neighbors” was chosen for its intransitivity. Let a, b, c be idempotent functions
on the set {0, 1, 2} defined by the array:

a b c
0 0 0 1
1 2 0 1
2 2 2 2

Then a and b are neighbors; b and c are neighbors; a and c are not.)
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• p215 New entry [2.16(15) small print]:p215 New entry [2.16(15) small print]:p215 New entry [2.16(15) small print]:p215 New entry [2.16(15) small print]:p215 New entry [2.16(15) small print]:

By a functor between allegories is meant a functor between their underlying categories
(as opposed to a representation of allegories). A functor between allegories is said to be
a 2-functor if it preserves the partial order on morphisms (The term is dictated by the
theory of 2-categories.) An immediate consequence of [2.135] (new version, above) is that
a 2-functor preserves maps and their reciprocals. If the source allegory is tabular than a
2-functor preserves reciprocals of arbitrary morphisms, hence preserves such properties as
entirety, simplicity, symmetry and, of course, reflexivity and transitivity.

Let F be a 2-functor between tabular allegories. If we view F as a functor between the
corresponding categories of maps we obtain a functor that preserves monics and covers but
not (necessarily) pullbacks. Define a near-pullback to be a diagram of the form:

y
A → C

x ↓ ↓ g
B → D

f

such that the induced map from A to the pullback of f, g is a cover The restriction of a
2-functor between allegories restricts to a functor that preserves near-pullbacks between their
categories of maps. (The diagram is a near-pullback iff x◦y = fg◦.) Conversely: Any functor
between the corresponding categories of maps that preserves near-pullbacks extends uniquely
to a 2-functor between the allegories. Note that f is a monic/cover iff the first/second diagram
below is a near-pullback:

1
A → A

1 ↓ ↓ f
A → B

f

f
A → B

f ↓ ↓ 1
B → B

1

Hence: A functor between regular categories preserves near-pullbacks iff it preserves covers
and carries plain pullbacks to near-pullbacks.

• p215 New entry [2.16(16) small print]:p215 New entry [2.16(16) small print]:p215 New entry [2.16(16) small print]:p215 New entry [2.16(16) small print]:p215 New entry [2.16(16) small print]:

R is co-semi-simple if there exist simple F and G such that R = FG
◦
. Co-semi-simplicity

implies RR
◦
R ⊂ R (because (FG

◦
)(FG

◦
)
◦
(FG

◦
) = F (G

◦
G)(F

◦
F )G

◦ ⊂ F12G
◦

= FG
◦
). If

symmetric idempotents split then the converse holds: given RR
◦
R ⊂ R we have that RR

◦
is a

symmetric idempotent and if it splits then necessarily we have simple F such that FF
◦
= RR

◦
.

[2.162] Define G = R
◦
F and verify its simplicity: G

◦
G = F

◦
RR

◦
F = F

◦
FF

◦
F ⊂ 1. Then

FG
◦

= FF
◦
R = RR

◦
R = R. Thus an allegory in which all symmetric idempotents split

is a von Neumann allegory [19] iff all morphisms are co-semi-simple. (It’s worth noticing
that unlike semi-simplicity which is hereditary—that is, morphisms contained in semi-simple
morphisms are themselves semi-simple [2.16(10)]—in any unitary allegory all morphisms are
contained in co-semi-simple morphisms.)

19[ ] As defined in the new entry [2.137] above.
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• p216 Expand [2.22]:p216 Expand [2.22]:p216 Expand [2.22]:p216 Expand [2.22]:p216 Expand [2.22]:

In any distributive allegory reciprication establishes an isomorphism (note: not an
anti-isomorphism) between the lattices (α, β) and (β, α) and that yields:

(0R)◦= 0R◦ (R ∪ S)◦= R◦∪ S◦

• p221 New entry [2.21(11) small print]:p221 New entry [2.21(11) small print]:p221 New entry [2.21(11) small print]:p221 New entry [2.21(11) small print]:p221 New entry [2.21(11) small print]:

In a von Neumann [20] distributive allegory all endomorphisms are symmetric: since
(R∩ 1)

◦
= R∩ 1 in any allegory and 1∪R = (1∪R)

◦
in a von Neumann allegory we may use

distributivity to obtain that R = R∩(1∪R) = R∩(1∪R)
◦
= R∩(1∪R◦) = (R∩1)∪(R∩R◦)

is necessarily symmetric. Any map of the form f : A→ A must be an involution (because by
[2.134] f = f ◦ only if f = f-1).

Von Neumann pre-logoi are precisely the categories equivalent to distributive lattices:
that is, identity maps are the the only idempotents (since they’re involutions) hence the only
left or right invertibles are isomorphisms; any diagonal map, A→ A×A, being right invertible
is an isomorphism, hence for any A′ there’s at most one A′ → A; thus any von Neumann
pre-logos is equvalent to its (distributive) lattice of subterminators and any von Neumann
logos is a Heyting algebra.

There are no positive von Neumann pre-logoi.

• p224 Additional comment for [2.228 small print], at the end of the penultimate paragraphp224 Additional comment for [2.228 small print], at the end of the penultimate paragraphp224 Additional comment for [2.228 small print], at the end of the penultimate paragraphp224 Additional comment for [2.228 small print], at the end of the penultimate paragraphp224 Additional comment for [2.228 small print], at the end of the penultimate paragraph
add:add:add:add:add:

Indeed the allegory has arbitrary unions and they all distribute with composition (which
forces it to have a binary partial operation as in the definition of division allegory [2.311]).

• p224 New entry [2.23]:p224 New entry [2.23]:p224 New entry [2.23]:p224 New entry [2.23]:p224 New entry [2.23]:

A boolean allegory is a distributive allegory in which for every pair of objects the
lattice of morphisms, is a boolean algebra It may be formalized via a unary operator whose
values are denoted ¬R with equations:

2(¬R) = 2R;
(¬R)2 = R2;
R ∩ ¬R = 0;

S ∩ (R ∪ ¬R) = (2R)S(R2).

(The 4th equation is equivalent with S ∩ (R ∪ ¬R) S.)

We could be more parsimonious and define 0R as R ∩ ¬R and R ∪ S as ¬(¬R ∩ ¬S) We
leave it to the reader to find the remarkably few equations needed.

A representation of distributive allegories is a representation of boolean allegories iff it
preserves the complements of all 0’s, that is, preserves the the top morphism for every pair
of objects. The category of maps of a unitary tabular boolean allegory is a boolean pre-logos
(therefore a boolean logos).

• p226 Add to bottom of [2.313]:p226 Add to bottom of [2.313]:p226 Add to bottom of [2.313]:p226 Add to bottom of [2.313]:p226 Add to bottom of [2.313]:

Any boolean allegory is a division allegory. Construct R/S as ¬((¬R)S
◦
). Then

T ⊂ ¬((¬R)S
◦
) iff T ∩ (¬R)S

◦
= 0 iff TS ∩ (¬R) = 0 iff TS ⊂ R. (Note that in

any distributive allegory AB ∩ C = 0 implies A ∩ CB◦= 0 since A ∩ CB◦ ⊂ (AB ∩ C)B
◦
. )

20[ ] As defined in the new entry [2.137] above.

12



AMPLIFICAATIONS, DIMINUTIONS, SUBSCOORINGS

• p234 New entry [2.36 small print]:p234 New entry [2.36 small print]:p234 New entry [2.36 small print]:p234 New entry [2.36 small print]:p234 New entry [2.36 small print]:

The equational theory of one-object division allegories is a Mal ′cev theory (as defined in
the new entry [2.137] above) with a Mal ′cev operator given by:

(1 ∩ Y/X)\Z ∩ (1 ∩ Y/Z)\X

(Its mirror image would, of course, work as well, as would both of the possible mixtures of
it and its mirror image.[21]) Heyting algebras first appeared in this work as special cases of
logoi. They may also be viewed as one-object division allegories in which all morphisms are
coreflexive. In that case the present construction of a Mal ′cev operator specializes to the first
construction ((x→ y)→ z) ∧ ((z → y)→ x), previously seen in the new entry [2.137]. (For
the record: the best-known generalization views Heyting algebras not as logoi or division
allegories but as exponential categories.)

In the many-object case the theory of division allegories is an essentially equational theory.
The term above is defined precisely when X, Y and Z are “parallel,” that is, when 2X =
2Y = 2Z and X2 = Y2 = Z2. We thus have an example of a Mal ′cev essentially equational
theory but, alas, such theories do not seem to lead to a connection with von Neumann
allegories.

But for a fixed set of objects one may define the regular category whose objects are division
allegories with the given fixed set of objects and whose morphisms are the representations
of division allegories that preserve the objects is a von Neumann regular category. (This is a
special case of a regular category arising from a “many-sorted” equational theory.)

• p238 New entry [2.419 small print]:p238 New entry [2.419 small print]:p238 New entry [2.419 small print]:p238 New entry [2.419 small print]:p238 New entry [2.419 small print]:

We resolved the “first attempt” in [2.4] to obtain an equational definition of power
allegories by moving to a division allegory. It is not the only resolution.

First, let’s name the various uniqueness conditions.

plain:
If 1 ⊂ SS

◦
and S

◦
S ⊂ 1 then S(23R) = Λ(S3R)

simple:
If F

◦
F ⊂ 1 then F (23R) ⊂ Λ(F 3R)

fancy:
3/3 ∩ (3/3)◦ ⊂ 1

Simple implies plain (using [2.133]) and fancy implies simple (using [2.352]). Note that if
coreflexives split then plain easily implies simple.

If equivalence relations split then plain implies fancy: let E be an equivalence relation such
that E3 = 3 (e.g., E = 3/3 ∩ (3/3)◦); let h be a map such that hh◦= E; then hΛ(h◦3)3
= 3 and plain uniqueness forces hΛ(h◦3) = 1 thus E ⊂ hh◦ ⊂ hΛ(h◦3)Λ◦(h◦3)h◦ ⊂ 1.

We will investigate equational formulations of the simple and fancy conditions in [2.447].
But first we separate the three uniqueness conditions with a pair of examples, both of which
turn out to be the positive completion of a three-element one-object allegory. The objects

21[ ]

X/(Z\Y ∩ 1) ∩ Z/(X\Y ∩ 1)
X/(Z\Y ∩ 1) ∩ (1 ∩ Y/X)\Z
(1 ∩ Y/Z)\X ∩ Z/(X\Y ∩ 1)

13
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may be taken as natural numbers. A morphism from m to n will be an m×n matrix with
entries from the given one-object allegory.

To separate the plain from the simple we will use the three-element linearly ordered (idem-
potent) monoid A with elements 0 < m < 1 viewed as a one-object allegory (of coreflex-
ive morphisms). Intersection coincides with composition and the reciprocation operation is
the identity. To separate the simple from the fancy let B be the same monoid but ordered
0 < 1 < m. In each case the category of maps is isomorphic to the skeletal category of finite
sets. And in each case 3n may be constructed as a 3n×n matrix in which every possible row
appears exactly once. Plain uniqueness is clear in both cases. In the first case, if 31 is taken
to be the column matrix (1,m, 0)> then for F = (m, 0, 0) we have Λ(F 30) = (0, 1, 0) and
the simple condition fails. In the second case, the coreflexives already split in B+ and plain
existence implies simple existence. For the failure of the fancy condition note that 30 is the
unique 1×0 matrix but 30 /30 ∩ (30 /30)◦ is not the 1×1 identity matrix (it’s the maximal
1×1 matrix).[22]

Note that both of these examples are full sub-allegories of Grothendieck topoi. In the first
case, one may use the topos of presheaves on the two-element linearly ordered set and in
the second case one may use the category of M -sets where M is the 4-element monoid of
endofunctions on a two-element set. In the first case the example is the full allegory of finite
copowers of the terminator. In the second case it is the full allegory of finite copowers of the
two-element set on which M is defined as acting.

• p246 Rewording of [2.442–2.443]:p246 Rewording of [2.442–2.443]:p246 Rewording of [2.442–2.443]:p246 Rewording of [2.442–2.443]:p246 Rewording of [2.442–2.443]:

The proof of [2.442] shows that the law of metonymy implies the semi-simplicity of all
straight morphisms and such should be explicitly stated. The argument in [2.443] proves the
converse: metonymy is equivalent with the semi-simplicity of straight morphisms.

• p248 A better version of [2.444 small print]:p248 A better version of [2.444 small print]:p248 A better version of [2.444 small print]:p248 A better version of [2.444 small print]:p248 A better version of [2.444 small print]:

The law of metonymy is not a consequence of the other equations. Consider the full sub-
allegory of the allegory of Z-sets (sets, each with a distinguished automorphism) of all those
Z-sets in which no orbit has more than 3 elements For power objects start with the usual
construction then remove all orbits with more than 3 elements. If A is a 5-element Z-set
consisting of two orbits (necessarily one has 2 elements and the other has 3) then the 3
relation from [A] to A is not semi-simple (therefore, neither is the container relation on [A]).
(This example and the three examples in [2.418] are all full allegories of full coreflective
subcategories of topoi.)

• p250 Improvements for [2.446 small print]:p250 Improvements for [2.446 small print]:p250 Improvements for [2.446 small print]:p250 Improvements for [2.446 small print]:p250 Improvements for [2.446 small print]:

Replace the 2nd sentence of the 2nd paragraph with:

Note that R appears in an order-reversing position, hence R ⊂ S implies 0S ⊂ 0R.

Replace the final sentence of the same paragraph with:

Any order-reversing deflationary operation on a poset is idempotent: suppose that
f(x) ≤= x all x and that x ≤= y implies f(y) ≤= f(x); since f(x) ≤= x implies f(x) ≤= f 2(x) and

22[ ] The genesis of the second example was curious. The problem was easily reduced to finding a topos with a coreflective full
subcategory closed under subobject formation but not such that a coreflector—the map from a coreflection—is always monic.
No examples initially presented themselves. A rather painful analysis of all possible coreflective full subcategories closed under
subobject formation that occur in categories of M -sets resulted in the reduction of the existence of such to an elementary
condition on M. The elementary condition allowed the abstract definition of a minimal such M. It had 3 elements. The resulting
one-object allegory B had five elements. Matters were simplified by adding another element to M to obtain the example above.
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since f is deflationary we also have f 2(x) ≤= f(x), that is, we obtain f 2 = f ; an order-reversing
function when applied to itself is order-preserving hence f is both order-preserving and order-
reversing, that is, it is constant on each connected component and since it is deflationary
it delivers the bottom element on each component. There is at most one order-reversing
deflationary operation on a given poset.

While here, replace the word “covariant” in the sentence following the definition of union with
“order-preserving.”

• p250 New entry [2.447 small print]:p250 New entry [2.447 small print]:p250 New entry [2.447 small print]:p250 New entry [2.447 small print]:p250 New entry [2.447 small print]:

In the “first attempt” to define power-allegories we took 3 and Λ as primitive unary
operations subject to containments:

Λ(R)3R = R

1 ⊂ Λ(R)Λ◦(R)

Λ◦(R)Λ(R) ⊂ 1

We resolved the uniqueness question with the “fancy” condition (as named in in the new
entry [2.419] above) which required the division operation and in the presence of division we
noted that Λ was not needed as a primitive, But it is, in fact, possible to make the Λ-definition
equational without taking division as primitive.

First note that the “plain” condition (as named in in the new entry [2.419] above) has two
immediate equational consequences:

Λ(3) = 1

Λ(RS) = Λ(R)Λ(3R S)

In the presence of a union operation that distributes with composition these five displayed
equational conditions allow a construction of division. First show that3/3 is obtainable as
Λ◦(3′3)3′ — where 3′ denotes 33 — by showing that T ⊂ Λ◦(3′3)3′ iff T 3 ⊂ 3.

If T 3 ⊂ 3 then

T ⊂ T ∪ 1 ⊂ Λ(T ∪ 1)3′ ⊂ Λ(T ∪ 1)Λ(3′3)Λ◦(3′3)3′ ⊂

Λ((T ∪ 1)3)Λ◦(3′3)3′ ⊂ Λ(T 3∪3)Λ◦(3′3)3′ ⊂ Λ(3)Λ◦(3′3)3′ ⊂ Λ◦(3′3)3′

(The 4th and 7th containments use the new equations. The 5th containment uses the dis-
tributivity of composition with union. The 6th containment uses the hypothesis T 3 ⊂ 3.)

If T ⊂ Λ◦(3′3) 3′. ′ then

T 3 ⊂ Λ◦(3′3)3′3 ⊂ Λ◦(3′3)Λ(3′3)3 ⊂ 3

In any allegory, if R/S exists then (fR)/(gS) may be constructed as f(R/S)g◦. Hence we
may construct R/S as Λ(R)Λ◦(3′3)3′Λ◦(S). (Essentially the same proof as for f/g = fg◦.)

Thus, plain uniqueness and distributive unions imply a division structure. But one needn’t
require unions; instead one may impose the containment (which says that −/3 is order-
preserving):

Λ(R ∩ S)Λ◦(3′3)3′ ⊂ Λ(S)Λ◦(3′3)3′

The union-free proof that T 3 ⊂ 3 implies T ⊂ Λ◦(3′3)3′ is then:

15
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T ⊂ Λ(T )3′ ⊂ Λ(T )Λ(3′3)Λ◦(3′3)3′ ⊂ Λ(T 3)Λ◦(3′3)3′ ⊂

Λ(T 3 ∩ 3)Λ◦(3′3)3′ ⊂ Λ(3)Λ◦(3′3)3′ ⊂ Λ◦(3′3)3′

Note that we are using the new containment only when S = 3, hence it would suffice to
impose:

Λ(R ∩ 3)Λ◦(3′3)3′ ⊂ Λ(3)Λ◦(3′3)3′

We may further simplify by absorbing the equation Λ(3) = 1 to obtain:

Λ(R ∩ 3)Λ◦(3′3)3′ ⊂ Λ◦(3′3)3′

We may now easily translate the simple and fancy uniqueness conditions to equations. Fancy
uniqueness is, of course:

Λ◦(3′3)3′ ∩ ∈′Λ(3′3) ⊂ 1

Simple uniqueness curiously simplifies. We may quantify over simple morphisms be recalling
that R

1
is always simple and whenever F is already simple then F = F

1
. Simple uniqueness is

easily seen to be equivalent with the containment F ∩ (1/F )◦ ⊂ Λ(F 3). It translates to:

F ∩ (Λ(1)Λ◦(3′′3′)3′′Λ◦(F ))◦ ⊂ Λ(F 3)

We may further complicate to obtain:

Λ(F )3′ ∩ Λ(F ) ∈′′Λ(3′′3′)Λ◦(1) ⊂ Λ(F )Λ(3′3)

If we specialize F to 3 we obtain

3′ ∩ ∈′′Λ(3′′3′)Λ◦(1) ⊂ Λ(3′3)

And that suffices: we may compose with Λ(F ) on both sides and use modularity to obtain
the previous containment.

One final note: we do not have a proof showing that the plain uniqueness is not equivalent
to a set of equations. The first example in the last section, A+, satisfies an equational condition
that implies plain uniqueness (but is very unlikely to be equivalent with plain uniqueness),
to wit:

(1 ∩ Λ(1 ∩ F (1/F ))Λ◦(1))FΛ(1) ⊂ Λ(F )

• p250 New entry [2.448 small print]:p250 New entry [2.448 small print]:p250 New entry [2.448 small print]:p250 New entry [2.448 small print]:p250 New entry [2.448 small print]:

Transitive logoi were defined in [1.77]. A transitive allegory is one in which every
endomorphism R is contained in a minimal transitive, reflexive relation, R?.

Power allegories are transitive allegories. Define a unary operation on endomorphisms:

((1 ∩ (3/(3R)))3)\3

Note first that the variable, R, appears just once and in a covariant position (that is,
R ⊂ S implies R? ⊂ S?). [23] Second, the operation is inflationary, that is, R ⊂ R?

because R ⊂ X\Y iff XR ⊂ Y and (1 ∩ (3 /(3R))) 3 R ⊂ (3 /(3R))(3 R) ⊂ 3 .
23[ ] Actually it appears six times:

((2R ∩ (3R /(3R R)))3R)\3R

But if we restrict attention to R s on a fixed object then all six appearances are, indeed, in covariant positions (because, of
course, five of them are in constant positions).

16
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Third, R? is reflexive because it is of the form (AS)\S where A ⊂ 1 and transitive because
for any such morphism (AS)\S = (AS)\(AS). This last equation can be proved by noting
first that (AS)\(AS) ⊂ (AS)\S using the order-preservation of the ”upper” variable in
the division operation and then noting that (AS)\S ⊂ (AS)\(AS) is equivalent with
AS((AS)\S) ⊂ AS which is immediate if one uses that the leftmost A is equal to AA.

Thus R? is a covariant inflationary operation all of whose values are reflexive transitive.
We need only one further property:

If R is reflexive transitive then R? ⊂ R.

(It should be noted that we have not yet used any property of 3 other than that its target
is the object on which R is an endomorphism and that it depends only on that object.)

Suppose, therefore, that R is reflexive and transitive. Finish by proving the following five
containments:

R? ⊂ (Λ◦(R)Λ(R)3)\3 ⊂ (Λ◦(R)R)\3 ⊂ Λ◦(R)\ 3 ⊂ Λ(R)3 ⊂ R

The 1st containment will be discussed below. The 2nd containment is the first use of the
thickness of 3 : it is a consequence of R ⊂ Λ(R)3 (we are replacing Λ(R)3 with R in an
contravariant position). The 3rd containment is the unique use of the reflexivity of R (we are
replacing R with 1 in a contravariant position). The 4th containment is the second (and last)
use of the thickness of 3, which property is equivalent with the entirety of Λ(R). (For any
entire S, S

◦\T ⊂ SS
◦
(S
◦\T ) ⊂ ST.) The 5th containment follows immediately from the

definition of Λ(R) as R
3 (and not from any properties of 3).

Now for the 1st containment We must show:

((1 ∩ (3/(3R)))3)\3 ⊂ (Λ◦(R)Λ(R)3)\3

and (because division is order-reversing in the lower variable) for that it clearly suffices to
show

Λ◦(R)Λ(R)3 ⊂ (1 ∩ (3/(3R)))3
which, of course, is an immediate consequence of

Λ◦(R)Λ(R) ⊂ 1 ∩ (3/(3R))

and that is equivalent to the two containments:

Λ◦(R)Λ(R) ⊂ 1 and Λ◦(R)Λ(R) ⊂ 3/(3R).

The left-hand containment, the simplicity of Λ(R) is the unique use of the straightness of 3.
The right-hand containment is equivalent with Λ◦(R)Λ(R) 3 R ⊂ 3. We need to prove
(using the definition of Λ(R)):

3
R

R

3
3R ⊂ 3

R
RR ⊂ 3

R
R ⊂ 3.

The 1st and 3rd of these last containments use the semi-cancellation [2.35] for symmetric
division and the 2nd is the unique use of the transitivity of R.

Note that if S is symmetric then so is S? : such is easily [24] a consequence of (R?)◦= (R◦)?.

(The matter could be made entirely equational by recalling that R/R is always reflexive
transitive for any R, endomorphism or not, and if R is already reflexive transitive then

24[ ] See addition to [1.77] in these amplifications.
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R = R/R. [25] Thus we need the containment (R/R)? ⊂ R/R, equivalently, (R/R)?R ⊂
R. Since the reverse containment is automatic—it follows easily from the reflexivity of the
values of (−)?—there must be an entirely equational proof, that is, one that starts with the
term on one arbitrary variable:

(((2R ∩ (3R /(3R (R/R))))3R)\ 3R)R

and using a sequence of substitutions—each of which is an instance of one of the equational
axioms for power allegories—transforms it to the term R. [26])

• p258 New entry [2.543]:p258 New entry [2.543]:p258 New entry [2.543]:p258 New entry [2.543]:p258 New entry [2.543]:

The author of the first published paper on elementary topoi thought that its main
aspect was the collective faithfulness of bicartesian representations of elementary topoi into
well-pointed topoi (that is, topoi in which the terminator generates). Note that well-pointed
implies boolean. The last section [2.542] says that it suffices to prove it for a boolean topos,
B, and for boolean topoi we have a stronger theorem:

The topos representations from a boolean topos into well-pointed topoi are collectively
faithful.

First apply the capitalization lemma to obtain a faithful representation B → B where

B is capital, then finish with the observation that B/F is well-pointed for every ultra-filter

F ⊂ Val(B).

• p287–296 Add to SUBJECT INDEX:p287–296 Add to SUBJECT INDEX:p287–296 Add to SUBJECT INDEX:p287–296 Add to SUBJECT INDEX:p287–296 Add to SUBJECT INDEX:

p287 2-category 2.135
p287 2-functor 2.16(15)
p287 boolean allegory 2.23
p287 boolean logos 1.715
p288 co-semi-simple 2.16(16)
p288 colony 2.137
p291 grup 2.137n
p292 mal′cev 2.137
p292 near-pullback 2.16(15)
p292 orthomodular lattice 2.137n
p293 quasigroup 2.137
p296 transitive allegory 2.448
p296 von Neumann 2.137

SUBSCORINGS

It is said that “subscoring” is short for “substitution underscorings,” to wit, an array
wherein the underscores indicate the sub-strings to be replaced.

25[ ] Nice: R ⊂ R/R iff R is transitive; R/R ⊂ R iff R is reflexive.
26[ ] Of course R\R would work as well; show that any R is equal to:

R(((1 ∩ (3/(3(R\R))))3)\3)
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When working with relations we need to indicate whether the replacement string yields a
containment or an equality. In the following a single underline indicates that the upper term
is contained in the lower term, a double underline (or is it a much elongated equal sign?)
indicates equality.[27]

Subscorings for these Amplifications start on page 27.
Subscorings for Cats & Alligators start here.

• p88 [1.591 small print]:p88 [1.591 small print]:p88 [1.591 small print]:p88 [1.591 small print]:p88 [1.591 small print]:

(u +
L
x) +

R
(v +

L
y) (u +

R
v) +

L
(x +

R
y)

(1 1)

(
u
x

)
+
R

(1 1)

(
v
y

)
(u v)

(
1
1

)
+
L

(x y)

(
1
1

)

(1 1)

(u
x

)
+
R

(
v
y

) (
(u v) +

L
(x y)

)(
1
1

)

(1 1)

((
u v
x y

)(
1
1

))
==

(
(1 1)

(
u v
x y

))(
1
1

)

•P93–94 [1.597 small print]:P93–94 [1.597 small print]:P93–94 [1.597 small print]:P93–94 [1.597 small print]:P93–94 [1.597 small print]:

x− 0 = x
x− x = 0

(u− v)− (x− y) = (u− x)− (v − y)
x+ y = (x− (0− y))

x+ 0 0 + x

x− (0− 0) 0− (0− x)

x− 0 (x− x)− (0− x)

x (x− 0)− (x− x)

x− 0

x

Continued →

27[ ] The macro (using the package ulem) {\scor}[1]{\uuline{\rule[-7pt]{0pt}{0pt}#1} is useful. For a single underline use
{\uline{\rule[-7.2pt]{0pt}{0pt}#1}\rule[-14.5pt]{0pt}{0pt}}. For other examples check out the closing pages of

www.math.upenn.edu/~pjf/combinators.pdf www.math.upenn.edu/~pjf/iso-detector.pdf

www.math.upenn.edu/~pjf/analysis.pdf
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(u+ v) + (x+ y) (u+x) + (v+ y)

(u− (0− v))− (0− (x− (0− y)) (u− (0− x))− (0− (v − (0− y))

(u− 0)− ((0− v)− (x− (0− y)) (u− 0)− ((0− x)− (v − (0− y))

(u− 0)− ((0− x)− (v − (0− y)) = (u− 0)− ((0− v)− (x− (0− y))

• p101 [1.62]:p101 [1.62]:p101 [1.62]:p101 [1.62]:p101 [1.62]:

xy◦ = ȳ◦x̄
yx◦ = x̄◦ȳ

1 ⊂ ff ◦

1 ⊂ gg◦
f ◦f ⊂ 1
g◦g ⊂ 1

(ȳf)
◦
ȳf ⊂ 1

(x̄g)
◦
x̄g ⊂ 1

x̄g = ȳf
x◦x ∪ y◦y = 1
R = x◦f ∪ y◦g

1

x◦1x ∪ y ◦1y

x◦ff ◦x ∪ y◦gg◦y

(x◦f ∪ y◦g)(f ◦x ∪ g◦y)

RR
◦

R
◦
R

(x◦f ∪ y◦g)
◦
(x◦f ∪ y◦g)

(f ◦x ∪ g◦y)(x◦f ∪ y◦g)

f ◦xx◦f ∪ f ◦xy◦g ∪ g◦yx◦f ∪ g◦yy◦g

f ◦1f ∪ f ◦ȳ◦x̄g ∪ g◦x̄◦ȳf ∪ g◦1g

f ◦f ∪ (ȳf)
◦
ȳf ∪ (x̄g)

◦
x̄g ∪ g◦g

1 ∪ 1 ∪ 1 ∪ 1

1

xR′ = f
yR′ = g

R′

1R′

(x◦x ∪ y◦y)R′

x◦xR′ ∪ y◦yR′

x◦f ∪ y◦g

R
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• p196 [2.11]:p196 [2.11]:p196 [2.11]:p196 [2.11]:p196 [2.11]:
1

1◦◦

(1◦)◦

(11◦)◦

1◦◦1◦

11◦

1◦

• p198 [2.122]:p198 [2.122]:p198 [2.122]:p198 [2.122]:p198 [2.122]: A ⊂ 1
1 ∩RR◦ ⊂ A

R

1R ∩R

(1 ∩RR◦)R

AR

R ⊂ AR

1 ∩RR◦

1 ∩ ARR◦

A(A
◦
1 ∩RR◦)

AA
◦

A1

A

• p199 [2.124]:p199 [2.124]:p199 [2.124]:p199 [2.124]:p199 [2.124]:
1 ∩RS◦

1 ∩ (1 ∩ (1 ∩RS◦))

1 ∩ (1 ∩ (1S
◦◦∩R)S

◦
)

1 ∩ (1 ∩ (S ∩R)S
◦
)

1 ∩ (S ∩R)(1(S ∩R)
◦∩ S◦)

1 ∩ (S ∩R)((S ∩R)
◦∩ S◦)

1 ∩ (S ∩R)((S ∩R) ∩ S)
◦

1 ∩ (S ∩R)(S ∩R)
◦
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• p199 [2.133]:p199 [2.133]:p199 [2.133]:p199 [2.133]:p199 [2.133]:
f ⊂ g (hence f ◦ ⊂ g◦)

g

1g

ff ◦g

fg◦g

f1

f

• p210 [2.162]:p210 [2.162]:p210 [2.162]:p210 [2.162]:p210 [2.162]:
(RS)

◦
= RS SR = 1

R
◦

S
◦

1R
◦

S
◦
1

SRR
◦

S
◦
SR

SS
◦
SRR

◦
S
◦
SRR

◦
R

SS
◦
1R
◦

S
◦
1R
◦
R

S(RS)
◦

(RS)
◦
R

SRS RSR

1S R1

S R
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• p212 [2.166]:p212 [2.166]:p212 [2.166]:p212 [2.166]:p212 [2.166]:
R ⊂ f ◦g

ff ◦∩ gg◦ = 1
h◦h = 1 ∩ fRg◦
hh◦ = 1

(hf)
◦
(hg)

f ◦h◦hg

f ◦1g

f ◦g

R

R

R ∩R

f ◦1g ∩R

(f ◦1 ∩Rg◦)g

f ◦(1 ∩ fRg◦)g

f ◦h◦hg

(hf)
◦
(hg)

(hf)(hf)
◦∩ (hg)(hg)

◦

hff ◦h◦∩ hgg◦h◦

h(ff ◦∩ gg◦)h◦

h1h◦

1

• p214 [2.16(11) small print]:p214 [2.16(11) small print]:p214 [2.16(11) small print]:p214 [2.16(11) small print]:p214 [2.16(11) small print]:

ee = e ee′e = e xy = e x′ = e′x
e′e′ = e′ e′ee′ = e′ yx = 1 y′ = e′y

x′ y′

e′xye′

e′ee′

e′

y′ x′

ye′e′x

1ye′x1

yxye′xyx

yee′ex

yex

yxyx

11

1

Continued →
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A2 = A RS = A SR = 1

(A ∩ A◦)A(A ∩ A◦)

(A ∩ A◦)A(A ∩ A◦) ∩ (A ∩ A◦)A(A ∩ A◦)

AAA ∩ (RS ∩ S◦R◦)RS(RS ∩ S◦R◦)

A ∩ S
◦
(SRS ∩R◦)RS(RSR ∩ S◦)R◦

A ∩ S
◦
(SRS)RS(RSR)R◦

A ∩ S◦1111R◦

A ∩ A
◦

A ∩ A◦

(A ∩ A◦)(A ∩ A◦)(A ∩ A◦)

(A ∩ A◦)A(A ∩ A◦)

A

RS

R1S

R(12 ∩ 1)S

R(SRSR ∩ 1)S

RS(RS ∩ S◦R◦)RS

A(A ∩ A◦)A

A(A ∩ A◦)A

AAA

A

• p246–248 [2.442, 2.443]:p246–248 [2.442, 2.443]:p246–248 [2.442, 2.443]:p246–248 [2.442, 2.443]:p246–248 [2.442, 2.443]:

C= 3/3 ∪∪∪∪∪ = Λ(3′3) ∩∩∩∩∩ = Λ(∈′ \3)

CΛ◦(1)

C( 1
3)
◦

C((1/3) ∩ (3/1)
◦
)
◦

C((1/3)
◦∩ (3/1))

C(3/1)

(3/3)3

3

3

31

3Λ(1)Λ◦(1)

((3Λ(1)3)/3)Λ◦(1)

((31)/3)Λ◦(1)

(3/3)Λ◦(1)

CΛ◦(1)

Continued →
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Λ(f ∪ g)∪∪∪∪∪3

Λ(f ∪ g)Λ(3′3)3

Λ(f ∪ g)3′3

(f ∪ g)3

f3 ∪ g3

Λ(f ∪ g)∩∩∩∩∩ 3
f ∪ g
3′ Λ(∈′\3) 3

f ∪ g
3′ (∈′\3)

(((f ∪ g)/3′) ∩ (3′/(f ∪ g))
◦
))(3◦/( ∈′)◦)◦

(3′/(f ∪ g))
◦
(∈/3′)◦

((∈/3′)(3′/(f ∪ g)))
◦

( ∈/(f ∪ g))
◦

( ∈/f ∩ ∈/g)
◦

(∈f ◦ ∩ ∈g◦)◦

f3 ∩ g3

• p250 [2.446 small print]:p250 [2.446 small print]:p250 [2.446 small print]:p250 [2.446 small print]:p250 [2.446 small print]:
0R = (R/3)

◦\ 3

0R

1 0R

(R/3)(R/3)
◦
0R

(R/3)(R/3)
◦
((R/3)

◦\ 3)

(R/3) 3

R

Continued →
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R ∪ S = ((3/R) ∩ (3/S))\3

R ∪R

((3/R) ∩ (3/R))\3

1(3/R)\3

(R/3)(3/R)((3/R)\3)

(R/3)3

R

``◦= 1 = rr◦ `r◦= 0 = r`◦ R = R1` ∪R2r S = `◦∪ r◦

(R1 ∪R2) ∩ T

(R11 ∪R10 ∪R20 ∪R21) ∩ T

(R1``
◦∪R1`r

◦∪R2r`
◦∪R2rr

◦) ∩ T

(R1` ∪R2r)(`
◦∪ r◦) ∩ T

RS ∩ T

(R ∩ TS◦)S

(R ∩ TS◦)(`◦∪ r◦)

(R ∩ TS
◦
)`◦ ∪ (R ∩ TS

◦
)r◦

(R`◦ ∩ TS
◦
`◦) ∪ (Rr◦ ∩ TS

◦
r◦)

((R1` ∪R2r)`
◦ ∩ T (` ∪ r)`◦) ∪ ((R1` ∪R2r)r

◦ ∩ T (` ∪ r)r◦)

((R1``
◦∪R2r`

◦) ∩ T (``◦∪ `◦)) ∪ ((R1`r
◦∪R2rr

◦) ∩ T (`r◦∪ rr◦))

((R11 ∪R20) ∩ T (1 ∪ 0)) ∪ ((R10 ∪R21) ∩ T (0 ∪ 1))

(R1 ∩ T ) ∪ (R2 ∩ T )
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• p5n in these amplifications [2.113 small print]:p5n in these amplifications [2.113 small print]:p5n in these amplifications [2.113 small print]:p5n in these amplifications [2.113 small print]:p5n in these amplifications [2.113 small print]:

X = R A = S B = T

RS ∩ T

(X ∪ A) ∩B

(A ∪X) ∩ (A ∪B)

A ∪ (X ∩ (A ∪B))

S(R ∩ ST )

S(R ∩ TS)

(R ∩ TS)S

R = X S = A T = (A ∪B)

(A ∪X) ∩ (A ∪B)

SR ∩ T

RS ∩ T

(X ∩ ((A ∪B) ∪ A) ∪ A

(X ∩ (A ∪B)) ∪ A

A ∪ (X ∩ (A ∪B))

• p6—8 in these amplifications [2.137]:p6—8 in these amplifications [2.137]:p6—8 in these amplifications [2.137]:p6—8 in these amplifications [2.137]:p6—8 in these amplifications [2.137]:

R = f ◦g

RR
◦
R

f ◦g(f ◦g)
◦
f ◦g

f ◦(gg◦)(ff ◦)g

f ◦f f ◦g g◦g

1f ◦g1

f ◦g

R

Continued →
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∀x,y x ∨ (x′ ∧ (x ∨ y))) = x ∨ y ∀x x
′ ∧ x = 0

(x ∨ (z′ ∧ (z ∨ z))) ∧ (z ∨ (z′ ∧ (z ∨ x)))

(x ∨ (z′ ∧ z)) ∧ (z ∨ x)

(x ∨ 0) ∧ (z ∨ x)

x

∀x,y (x : y) : x = y

x : (y : x)

((y : x) : y) : (y : x)

y

∀x,y x : (y : x) = y

(x : x) : (z : (x : z))

(x : x) : x

(x : x) : (x : (x : x)

x

• p11 in these amplifications [2.16(16) small print]:p11 in these amplifications [2.16(16) small print]:p11 in these amplifications [2.16(16) small print]:p11 in these amplifications [2.16(16) small print]:p11 in these amplifications [2.16(16) small print]:

FG
◦
= R F

◦
F ⊂ 1 G

◦
G ⊂ 1

RR
◦
R

FG
◦
(FG

◦
)
◦
FG

◦

F G
◦
G F

◦
F G

◦

F 1 1G
◦

FG
◦

R

FF
◦
= RR

◦
F
◦
F ⊂ 1 G = R

◦
F

G
◦
G

(R
◦
F )
◦
R
◦
F

F
◦
RR

◦
F

F
◦
F F

◦
F

1

FG
◦

F (R
◦
F )
◦

FF
◦
R

RR
◦
R

R
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AMPLIFICAATIONS, DIMINUTIONS, SUBSCOORINGS

• p15–16 in these amplifications [2.447]:p15–16 in these amplifications [2.447]:p15–16 in these amplifications [2.447]:p15–16 in these amplifications [2.447]:p15–16 in these amplifications [2.447]:

T 3 ⊂ 3 T ⊂ Λ◦(3′3)3′

T T 3

T ∪ 1 Λ◦(3′3)3′3

Λ(T ∪ 1) 3′ Λ◦(3′3)Λ(3′3)3

Λ(T ∪ 1)13′ 13

Λ(T ∪ 1)Λ(3′3)Λ◦(3′3)3′ 3

Λ((T ∪ 1)3)Λ◦(3′3)3′

Λ(T3 ∪ 3)Λ◦(3′3)3′

Λ(3)Λ◦(3′3)3′

1Λ◦(3′3)3′

Λ◦(3′3)3′

T 3 ⊂ 3
Λ(R∩ 3)Λ◦(3′3)3′ ⊂ Λ◦(3′3)3′

T

Λ(T ) 3′

Λ(T )13′

Λ(T )Λ(3′3)Λ◦(3′3)3′

Λ(T 3)Λ◦(3′3)3′

Λ(T 3 ∩ 3)Λ◦(3′3)3′

Λ◦(3′3)3′

J

J

Available at
http://www.math.upenn.edu/~pjf/amplifications.pdf

See also
http://www.math.upenn.edu/~pjf/corrections.pdf
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