Combinators;

or, a semantic argument for the extensional principle *

Peter Freyd
University of Pennsylvania

pjfQ@upenn.edu

January 27, 2017

Combinator Algebra has always struck me as a subject almost impossible to watch: it’s a
lousy spectator sport but has a reputation for being habit-forming as a participator sport. It
is only with reluctance that I was talked into ever writing this up: I was particularly dubious
about the newness of the proof of the extensional principle; it seemed too easy to have been
overlooked.!!]

Let A be a set with a binary operation denoted by catenation. Every element a € A
names a unary operation on A, to wit, the operation that sends x to ax. The first goal
of combinatorial logic is to obtain a non-trivial A such that every unary operation is so
nameable. In the usual foundations and with the usual interpretation of the word ‘every’ this
is, of course, impossible. Let us, here, tinker with the notion of ‘every’; we seek an A such
that every unary operation that can be described with a term is nameable by an element of
A. Before we get to a formal definition we’ll consider a few special cases: A must have an
element | that names the identity operation, that is, that satisfies the equation:

lz =2

For each element z € A we will need another element 2’ that names the constant operation
whose unique value is . But this is itself a unary operation (from x to z’) and it needs a
name. Hence A must have an element K that satisfies the equation:

(Ka)y = o

We will henceforth use the standard combinator convention that in the absence of
parentheses the binary operation is performed from left to right: zyz = (xy)z. Hence the
above equation may be rewritten:

Koy =z [2]

For the next example note that for each element x we need an element that names the

operation obtained by evaluating at x, and the unary operation that delivers this name is

*

An earlier draft of this paper appeared in Categories in computer science and logic (Boulder, CO, 1987) Contemp. Math.,
92, Amer. Math. Soc., Providence, RI, 1989

(11 J.P.Seldin in MathReviews said “Although the author expresses doubts about the newness of the proof of the extensional
principle, the reviewer has never seen it and finds it interesting: if the proof is not new, it is an interesting presentation of an old
proof.” (But be warned: M.W.Bunder in zbMATH said “[T]he surprisingly short algebraic proof that [the extensional principle]
does hold. .. not clear to the reviewer.”)

(2] So we’ll never start with “(” and we’ll never have “((” anywhere.

COMBINATORS

itself named by an element E, that is, an element that satisfies the equation:

Exy = yx

Our requirement for unary operations forces a requirement about binary operations. For
example the composition operation: given two elements z and y let x oy denote the operation
defined by (zoy)z = x(yz). For each x and y there must be an element that names the
operation x oy. For each x there must be a unary operation that sends y to the element
that names x oy. There must be an element that names the operation that sends x to the
element that names the operation that sends each y to the element that names x oy. This
last element is traditionally denoted B. All is summarized by the equation:

Bryz = z(yz2)

The binary operation that sends the pair x,y to x oy is named by B since Bxy = zoy.

The standard notation for undoing this mess of words is, of course, Alonzo Church’s
A-calculus: xoy = Az.z(yz), Br = A y.xoy, B = \ryz.z(yz).

(It is worth noting that |,K and E are easily interpretable as binary operations: in
reverse order, E names the binary operation that is the ‘transpose’ of the binary operation
we started with; K names the binary operation usually called the left projection operation.
| names the binary operation we started with. The right projection operation is named
by Kl (since Klzy = ly = y).

The first goal of combinatorial logic is now formalizable as follows: for any expression
¢ in the language and for any variable z we need an expression 1 that names the opera-
tion that carries x to ¢. That is, ¥x = ¢ where x does not appear in ?. (In the language of
A-calculus, we are requiring the set of expressions to be closed under A-abstraction.)
Moses Schonfinkel solved the existential side back in the early 1920s: define a
combinator algebra as a set with a binary operation denoted with catenation and
constants K and S satisfying the equations:

Ky = x Szyz = x2(yz)

That’s all. Note first that if we define | as SKK then we may easily verify the equation
|z = x. The proof of functional completeness—as it is usually called—proceeds as follows:
if does not occur in a term ¢ then we may take v to be K¢, if x is ¢ then ¢ may be taken to
be I; in the remaining case ¢ is necessarily of the form ¢'¢” and by induction we may assume
that ¢" and " are z-free terms such that 'z = ¢’ and "z = ¢” so that we may take 1 to
be Sy'y”.

(It’s worth checking that E is definable as S(K(SI))K and B as S(KS)K.!3l The adven-
turous might go on to find a variable-free term Y such that Yz = SII(Bz(Sll)). Then
Yz = Bx(SI)(Bxz(S)) = z(SH(Bz(SIl))) = z(Yx), that is, Y names a function which
delivers a fixed-point for any named unary function.!))

Given a combinator algebra A, elements a and o’ are extensionally equivalent if they
name the same unary operation, that is, if for all z € A it is the case that ax = d'z.
The extensional principle says that extensional equivalence implies equality. It is the
uniqueness condition for functional completeness and it may be viewed as a cancellation

condition:
(3]
[4]

There’s an appendix below devoted to subscoring. Take a look.

If you want to find how anyone came up with Y try to use Cantor’s “diagonal proof” to show that there must be an
unnameable function and note how that proof critically uses the existence of a fixed-point-free function: using that fx # x for
all Cantor obtains a function gz = f(zz) which if it were already named would lead to a contradiction: gg = f(gg) # gg.

COMBINATORS

If ¢ and o' are z-free terms such that Yx = 'z for all x then ¢ = .

As just one example, note that our definition of | as SKK was a bit arbitrary: SKS would
have done as well. The extensional principle easily implies that SKK = SKS. [*) We can regard
the extensional principle as a rule of inference. It is a remarkable fact—first discovered by
Haskell Curry—that, instead, one needs only a finite number of its equational consequences.
(A combinator algebra satisfying the extensional principle is often called a Curry algebra.)
There’s an apocryphal story to the effect that combinator theorists needed to carry with
them a copy of those finite number of equations.

Our approach starts as follows: let A be a subalgebra of B and b an element of B. The
subalgebra generated by A and b is constructable as Ab = {ab : a € A}. The proof: Ab
is closed under the primitive binary operation because (ab)(a'b) = (Saa’)b; it contains the
constants because (KK)b = K and (KS)b = S; it contains A because (Ka)b = a; it contains b
because |b = b.

The set Ab is the image of the obvious function from A (hence this enlargement of A can
be constructed as a quotient of A). We will specialize to the case that B is the “polynomial
algebra” A[X], the result of freely adjoining a generator X to A and we will take the element b
to be X. The “obvious function” from A to A[X] sends a € A to aX € A[X]. The extensional
principle says that this onto function is one-to-one. It says, therefore, that we can construct
A[X] using A as its underlying set. We may do so as follows:

Given a combinator algebra A define *A (“dot A”) to be the combinator algebra obtained
by taking the same set as that for A and defining the primitive binary operations x -y
(“dot product”) as Szy; defining K (“dot K”) as KK; defining S (“dot S”) as KS. We need
the equations:

EP1°®) K- rTy=c
EP2°) S ry-z=x-2-(y-2)
The undotted versions:

EPl) S (S(KK)z)y =z
EP2) S (s (S(KS)x)y)z = S(Sw2)(Syz)

These are the first two of the four equations we’ll use to obtain the extensional principle.
It is worth checking immediately that they are consequences of the extensional principle:
for EP1) compute S(S(KK)z)yt = S(KK)zt(yt) = KKt(xt)(yt) = K(xt)(yt) = xt; for EP2)
S(S(S(KS)x)y)zt = S(S(KS)z)yt(zt) = S(KS)zt(yt)(zt) = KSt(xt)(yt)(zt) = S(at)(yt)(zt) =
wt(2t)(yt(2t)) = Swzt(Syzt) = S(Sxz)(Syz)t. (See? It’s a lousy spectator sport.%))

The inclusion map from A into A[X] corresponds to what we will call the K-map, the
function that sends a € A to Ka € *A. We will need an equation to say that this is a
homomorphism of combinator algebras:

BP3) K(ay) = (Ka) - (Ky)
The undotted version is:

EP3) K(zy) = S(Kz)(Ky)

(5] Indeed, it implies that SKy is independent of y. Another way of saying this is that both SK and Kl name the right
projection binary operation.
(6] Try the appendix for an effort to make the (mindless!) identity checking a bit more acceptable.

COMBINATORS

The verification of EP3 using the extensional principle is easier than it was for the previous
cases: K(zy)t = xy = Kat(Kyt) = S(Kz)(Ky)t. The fact that the K-map preserves the two

constants is, of course, an immediate consequence of the definitions of K and S. [7)

We will not need the freeness of *A 18] but it continues to serve as a discovery procedure.
It yields our final equation:

EPA*) (Kz) 1=z [
The undotted version is:

EP4) S(Kz)l = =z.
The verification: S(Kz)lt = Kat(It) = xt. [10] 11

The semantic argument is now easy: suppose that ¢ and v’ are z-free terms such that
1r = Y’z in any combinator algebra. Then for any combinator algebra A satisfying EP1-4
the extensional equivalence of ¢ and v’ says that in ®A it is the case that K¢ - | = K¢’ - |
and EP4 implies ¢ = ¢\

But there is a little problem. The last paragraph works for canceling one variable but not
two. Suppose ¥, 1" are both z- and y-free terms such that ¢Yaxy = ¢'xzy. Then, yes, Yr = ¢’z
holds in any combinator algebra satisfying EP1-4 but we have not shown that it holds in any
combinator algebra and there’s no reason to believe that K¢ - 1 = K - | holds in *A.

Fortunately there’s an easy solution. We can insure that EP1-4 hold in ®*A. The K- and
S-rules are enough to replace any axiom on n variables with a (stronger) axiom of the form
Yrixo ... x, = Y'r129 ... 2y, where 1), 1)" are variable-free. If the axiom 1 = v’ holds in A
then it holds in *A. (2]

EP %) BS(S(KK)) = K

Ep2%) B(BS)(BS(S(KS))) = S(BB(BS(B(BS)S)))(KS)
EP3*) BK = S(BB(BSK))(KK)
EP4*) S(BSK)(KI) = |

Appendix: A few subscorings.!'3l (It is said that “subscoring” is short for “substitution
underscoring.”)

(7l For any non-trivial A it is comforting to check that | is not in the image of the K-map: if a € A were such that | = Ka
then for any a’ € A it would be the case that a’ = la’ = Kaa’' = a.

(8] Given a homomorphism g : A — B and an element of b € B we seek a homomorphism f: ®*A — B so that f(Ka) = ga
forall a € A and fl = b. Define it by fz = gzb. f is a homomorphism because f(z-y) = g(Szydb) = S(gz)(g9y)b = gzb(gyb) =
fx(fy), fK=g(KK)b =KKb=K, fS=g(KS)b=KSb=S. And, further, fl=glb=1b=0b.

(91 EP4 is a special case of the uniqueness condition for the induced maps resulting from freeness: it says that if one chooses B
to be ®A and g to be the K-map and b to be |, then using the previous footnote f has to be the identity function. Conversely
any map f:®*A — B is necessarily definable as fx = gzb where g: A — B is defined by gz = f(Kz) and b is defined as
f1. The proof is immediate: fz = f((Kz)-1) = f(Kz)(fl) = f(gzb). (Actually there’s an entirely soft proof using the fact that
the ®*A-construction is functorial.)

[10] Any finite number of equations can be replaced with just one, e.g. the pair ¢ = ¢, ¥ = ¢’ is equivalent to t¢p = t¢'v)’
for a fresh variable t (because for ¢ = K we obtain ¢ = ¢’ and for ¢t = K| we get ¢ = ¢').

(117 If we call the *A-structure the “derived structure” on A note that we needn’t stop with just one derivation. We obtain
an infinite sequence of combinator-algebra structures, in particular, an infinite sequence of monoid structures on A (beginning
with | and B) each of which distributes over the all the further structures. See Rick Statman’s paper “Freyd’s Hierarchy of
Combinator Monoids” in the Sizth Annual IEEE Symposium on Logic in Computer Science 1991.

[12] We’re used to the fact for that any onto homomorphism the equational axioms holding in its source continue to hold in
its target. Combinator algebras satisfying the extensional principle thus have the special feature that the word “onto” can be
removed.

(13] For other examples check out the ending pages of www.math.upenn.edu/"pjf/amplifications.pdf and the last section of
www.math.upenn.edu/ pjf/analysis.pdf

COMBINATORS

|, E and B:
o Exy Bxyz
SKK S(K(S1))Kzy S(KS)Kazy>
Kz (Kz) K(Shz(Kz)y KSa(Kz)yz
v SI(Kz)y S(Ka)ys
Iy(Kay) Kaz(y2)
oy ~JTIyZ)
Y:
S(B(B(SI1))B)(K(SII))z SI(Bxz(SII))
B(B(SI1))Bx(K(SIN)z) (B (SI))(I(Bz(SI)))
B(SI1)(Bz)(SII) Bx(SI1)(Bx(SII))
SI(Bxz(SI)) 2(SH(Bz(SN)))
— —
EP1-2:
S(S(S(KS)z)y)zt
S(S(KK)z)yt S(S(KS)z)yt(zt)
S(KK)zt(yt) S(KS)zt(yt)(=t)
KKt (zt)(yt) KSt(at)(yt)(21) S(Szz)(Syz)t
K(et)(t) Kayt St Seet(Syzt)
o eaen)
EP3-4:
S(Kz)(Ky)t S(Ka)lt
K(zy)t Kzt (Kyt) Kzt (It) |t

xy xt

COMBINATORS

EPT*:
BS(S(KK))zy
S(S(KK)z)y
EP2*:
B(BS)(BS(S(KS)))zy> B(BS)(BS(S(KS)))zy=
BS(BS(S(KS))x)y~ BS(BS(S(KS))x)y>
S(BS(S(KS))zy)= BS(S(S(KS)z))y)>
S(S(S(KS)z)y)= S(S(S(KS)z)y)=
EP3*—4%:
S(BB(BSK))(KK)zy
BB(BSK)z(KKz)y
B(BSKz)Ky
BKzy BSKu(Ky)
K(zy) S(Kz)(Ky)

J

Available at

S(BB(BS(B(BS)S)))(KS)xyz

BB(BS(B(BS)S))x(KSz)yz

B(BS(B(BS)S)x)Sy=
B(S(B(BS)Sx)Sy:
B(S(BS(Sz)))Sy =
S(BS(Sx))(Sy)=
BS(Sz)z(Syz)

S(Szz)(Syz)

S(BSK)(K1)z

BSKz(Klx)

S(Kz)l

http://www.math.upenn.edu/ pjf/combinators.pdf

