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Let f : R → R be a function not constantly 0 such that for all x, y in the unit interval

((1−x+y)fx−fy)2 ≤= (x−y)4

Then
f1/f0 = e

Let g : R → R be a function such that for all x, y in the unit interval

(gx−gy)(1 + x2)−x+y∣ ≤= (x−y)2

Then
4(g1 − π0)  =     π

There’s some conjuring going on here. One way, of course, to get such results is to impose 
impossible hypotheses: all sorts of conclusions are then available. (We’ll get to a theorem 
that tells us—in some generality—that there really are f and g as required.)

As every conjurer knows, a little distraction can turn even the simplest of phenomena 
into magic; the two conditions have been written to distract the viewer. To bring a little 
transparency to the matter note first that when x=y the conditions are vacuous and when 
x 6=y you can rewrite to advantage. For f :∣∣∣∣fx− fyx− y

− fx
∣∣∣∣ ≤= |x− y| [1]

hence ∣∣∣∣ limy→x

fx− fy
x− y

− fx
∣∣∣∣ ≤= lim

y→x
|x− y| = 0

thus f ′x = fx and there’s a constant A such that

fx = Aex

For g we can rewrite to obtain∣∣∣∣gx− gyx− y
− 1

1 + x2

∣∣∣∣ ≤= |x− y|
1 + x2

≤= |x− y|

1[ ] If |a− bc| ≤ c2 then
|a−bc|
|c| ≤

|c2|
|c| hence

˛̨
a
c
− b

˛̨
=

˛̨̨
a−bc

c

˛̨̨
=
|a−bc|
|c| ≤

|c2|
|c| = |c|.
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and we can—in the same manner—conclude

gx = A+ arctanx

So the conditions on f and g do the trick, But we don’t yet have much reason to believe
that f and g satisfy the semiquations. So:

Limit-Free Characterization of Lipschitz Derivatives:

For real-valued functions h0, h1 on a non-trivial real interval I:

There exists K such that
∣∣∣h0x− h0y − (x− y)h1x

∣∣∣ ≤= K(x− y)2 for all x, y

iff

h1 is a Lipschitz function and it is the derivative of h0.

(For the first example this makes it all very easy since after finding a K we can make it
disappear by changing A to K-1. For the second example, the unique inflexion point of g′ in
the unit interval is when x = 1/

√
3 and

∣∣g′′(1/√3)
∣∣ is easily less than 2.)

One part (as we have seen) of the theorem is very easy. Rewrite the semiquation
|h0x− h0y − (x− y)h1x| ≤= K(x− y)2 as:∣∣∣∣h0x− h0y

x− y
− h1x

∣∣∣∣ ≤= K|x− y|

then: ∣∣∣∣ limy→x

h0x− h0y

x− y
− h1x

∣∣∣∣ ≤= lim
y→x

K|x− y| = 0

which yields, of course, h′0 = h1.

That h1 is Lipschitz also has (when found!) a surprisingly easy proof. Rewrite the
semiquation as a pair of semiquations (which pair we’ll call the expanded semiquation):

−K(x− y)2 ≤= h0x− h0y − (x− y)h1x ≤= K(x− y)2

write another pair obtained by flipping the two variables:

−K(y − x)2 ≤= h0y − h0x− (y − x)h1y ≤= K(y − x)2

and then add the two rows to obtain:

−2K(x− y)2 ≤= (x− y)(h1y − h1x) ≤= 2K(x− y)2

which—presto!—says that 2K works as a Lipschitz number for h1:

|h1x− h1y| ≤= 2K|x− y|.

For the converse we replace each h0 with h, each h1 with h′ and take K to be half of a
Lipschitz number for h′. The expanded semiquation becomes:

−K(x− y)2 ≤= hx− hy − (x− y)h′x ≤= K(x− y)2.

We’ll start with the left half of the expanded semiquation; what we need is

0 ≤= K(x− y)2 + hx− hy − (x− y)h′x.
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Pick an arbitrary constant a ∈ I and define a unary function s by

st = K(a− t)2 + ha− ht− (a− t)h′a.

What we need is that s is nonnegative for all t and, since (clearly) sa = ṡa = 0, we need to
show that a is an absolute minimal point and for that it suffices to show the pair of lemmata
(t ≤= a) ⇒ (ṡt ≤= 0) and (a ≤= t) ⇒ (0 ≤= ṡt). It turns out to be easier to show the single
lemma (t1 ≤= t2)⇒ (ṡt1 ≤= ṡt2). [2]

Thus the left half of the expanded semiquation follows from the lemma:

t1 ≤= t2 ⇒ −2K(a− t1)− h′t1 + h′a ≤= − 2K(a− t2)− h′t2 + h′a

which immediately simplifies to:

t1 ≤= t2 ⇒ h′t2 − h′t1 ≤= 2K(t2 − t1)

a clear consequence of the choice of K. Each half of the expanded semiquation is equivalent
to the other half when h is replaced with its negation, hence the right half follows from:

t1 ≤= t2 ⇒ −h′t2 + h′t1 ≤= 2K(t2 − t1)

an equally clear consequence. Done. [3]

[3] All of this is just a piece of an ongoing effort to “algebratize” a lot of analysis in the special
sense of reducing everything to operators and (universally quantified) equations.[4] We develop
a theory with the special property that all of its consistent Lipschitz
extensions have Archimedean models, [5] and that obviates all sorts of constructability
problems and—when there’s only one Archimedean model—many issues of computability.

As just one example, starting with x equal to either e
4

or π
4

there is a finite equational
theory with the apecial property and for which there is only one Archimedean model. We
obtain the binary expansion for x by iterating (forever) the procedure below in which
the notation `̀̀̀̀ · · · ≤= · · · means that · · · ≤= · · · is provable using the
(substitution) rules of equational logic (or—as is equivalent—true in the initial model):

If

` x ≤= 1
2

then

emit “0”;
replace x with

2x

 ‖


If

` 1
2
≤= x

then

emit “1”;
replace x with

2x−1


This procedure is using the fact that the Archimedean value of x will never be 1

2
. [6]

2[ ] As is the case for any differential function, this condition is equivalent, of course, to the convexity of s.
[3] There’s a standard way of making the theorem a corollary of one with no existential quantifier. An assertion about Lipschitz 

functions is equivalent to an assertion about the special case of “nonexpansive functions.” So we could replace “Lipschitz” with 
“nonexpansive” by replacing K with 1/2. Since h is Lipschitz iff h/K is nonexpansive for some K we obtain the semiquation 2|h0x − 
h0y − (x − y)h1x| ≤ K(x − y)2 by dividing both hs by K, applying the special case and then multiplying both sides by 2K.

[4] This special sense of algebra is often called “universal algebra.” (Some of us prefer the name “equational theories.”)
Note that all the ≤s can be replaced with =s by using—for example—the absolute-value operator: a ≤ b is equivalent to b − a = |b − 
a|.

[5] See 10.5 in http://www.math.upenn.edu/~pjf/analysis.pdf
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just
using the

[6]  If there’s only one Archimedean model and t, t' are terms such that neither t ≤ t' nor t' ≤ t is provable using the 

equational substitution rules then necessarily t = t'  in that unique Archimedean model. My favorite anomaly is when there are terms for 
which it’s an “iff,” that is, when t = t'  in the Archimedean model precisely when neither ` t ≤ t' nor ` t' ≤ t e.g.     add a constant ε and 
an equation ε2 = 0 (check out “dual numbers” in Wikipedia): then there’s only one possible Archimedean value of   ε but there are    
non-Archimedean models for both positive and negative values.

Lipschitz
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Such is not a problem with either e
4

or π
4

but it’s worth pointing out that we can move
to the interval [−1,+1] and use “signed binary expansions”:



If

` x ≤= 0
then

emit “−1”;
replace x with

2(x+ 1
2
)

 ‖


If

` −1
2
≤= x ≤= + 1

2
then

emit “0”;
replace x with

2x

 ‖


If

` 0 ≤= x
then

emit “+1”;
replace x with

2(x− 1
2
)


The special property and the uniqueness of the Archimedean model insures for every x

that at least one of the three alternatives is provable. [7][8]

J

J
Available at 

https://drive.google.com/drive/
folders/1rPnHnUrm1yfon0MOMFDA2uOiT8yxmwjE

?usp=sharing 

7[ ] Use the uniqueness of the Archimedean model to obtain for any term x that either ` − 1
2
≤ x or ` x ≤ 0 and

1

8[ ] The special property is rare. There is no way of creating a finitely presented equational theory for the entire real numbers
that guarantees nontrivial Archimedean quotients for its finite Lipschitz extensions. In case this has not been known before
consider the following rather complicated proof in which for each natural number n and nth degree polynomial with integer
coefficients P we create an equational theory whose nontrivial Archimedean model would decide whether P (x1, x2, . . . , xn) = 0
has an integral solution. We add a unary function s and n+1 constants p, a1, a2, . . . , an subject to the equational-theory
axioms:

1
˛̨
s(x)−s(y)−s(x+p)(x−y)

˛̨
≤ (x−y)2;

2 s(x+2p) = −s(x);
3 1 ≤ p ≤ 2 and s(0) = 0 and s(p) = 1;
4 s(2pai) = 0 each i;
5 P (a1, a2, ..., an) = 0.

Working in an Archimedean model the first line tells us that s(x + p) is the derivative of s(x). The equation
s(y+2p) = −s(y) tells us that the second derivative of s is its negation. Line 3 finishes the information for proving that
s is the sine function and p is 1

2
π. (The derivative of s2 + s′2 is 2s′(s+ s′′) = 0 hence s2 + s′2 is constant and the difference

between s and any function satisfying all the information from the first three lines will be constantly 0.) Finally, the last two 
lines of equations say that ai is an integer each i and they provide a solution for the diophantine problem.

If the polynomial equation has no integral solution then the theory is inconsistent and such can be shown by proving x = y.
(And, of course, when it does have a solution such can be found.)

All of which would say that Hilbert was right when he stated his 10th problem.

4

,

dually, either ` 0 ≤ x or ` x ≤ 2 .




