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Theorem: Let T be a category of base-pointed topolog-
ical spaces including all finite-dimensional
cw-complexes. Let T : T → S be any set-valued
functor that is homotopy-invariant. There exists
f : X → Y such that f is not null-homotopic but
T (f) = T (?), where ? is null-homotopic.

Corollary:

Let κ be any cardinal number. There exist finite-
dimensional cw-complexes X,Y and a map
f : X → Y not null-homotopic but such that
f |X ′ is null-homotopic whenever X ′ ⊂ X is a sub-
cw-complex with fewer than κ cells.

The corollary follows from the theorem as
follows: let Z be the wedge[1] of all cw-complexes
with fewer than κ cells. The theorem says that there
must exist f : X → Y not null-homotopic such that

[Z,X] [Z, f ]→ [Z, Y ] is constant. For any X ′ ⊂ X
with fewer than κ cells there exists X ′ → Z → X ′ =
1X′ , from which we may conclude that

[X ′, X] [X ′, f ]→ [X ′, Y ] is constant and in particular
that f |X ′ is null-homotopic.

Let H be the homotopy category obtained
from T . Its objects are the objects of T , its maps are
homotopy-classes of maps. The theorem says that
H may not be faithfully embedded in the category
of sets—or in the language of Kurosh— H is not
concrete. There is no interpretation of the objects
of H so that the maps may be interpreted as functions
(in a functorial way, at least). H has always been the
best example of an abstract category, historically and
philosophically. Now we know that it was of necessity
abstract, mathematically.

The theorem says a bit more: H has a
zero-object, that is, an object 0 such that for any
X there is a unique 0→ X and a unique X → 0, and
consequently for any X,Y a unique X → 0→ Y , the

∗ This paper appeared first in Streenrod’s Festschrift The
Steenrod Algebra and its Applications, Lecture Notes in Math-
ematics, Vol. 168 Springer, Berlin 1970. A few rewordings
and all of the footnotes and the three addenda (p-Height Done
Right, Topology Done Fast, The 2-Sphere Is Huge) are new.
(An earlier draft of this reprise appeared in Repr. Theory Appl.
Categ. No. 6 (2004), 110.)

1[ ] “Wedge” is the topologist’s word for the coproduct in T .

zero-map from X to Y .

We shall shortly restrict our attention to
zero-preserving functors between categories with zero.
Instead of functors into the category of sets, S we’ll
consider functors into the category of base-pointed
sets S? and only those functors that preserve zero.
But first:

Proposition:

If C is a category with zero and
T : C → S any functor, then there exists a zero-
preserving functor T? : C → S? such that for all
f, g : A → B in C it is the case that T (f) = T (g)
iff T?(f) = T?(g).

Proof:

Let G be the category of abelian groups and
F : S → G the functor that assigns free groups. F is
faithful, hence T (f) = T (g) iff FT (f) = FT (g). Let
Z be the constant functor valued FT (0). There exist
transformations Z → FT → Z = 1Z , and FT splits
as Z ⊕ Z ′ (remember that the category of functors
from G to G is an abelian category) where Z ′ is the
kernel of FT → Z. Z ′ preserves zero and FT (f) =
FT (g) iff Z ′(f) = Z ′(g). Finally, let U : G → S? be
the forgetful functor and define T? = UZ ′. [2]

2[ ] There are two other lemmas of a somewhat similar nature
that should, perhaps, be pointed out here. I had assumed—
until I learned otherwise—that each of these lemmas went with-
out saying. The first is that we can easily replace any pointed-
set-valued functor with an equivalent functor that is an in-
jection as far as objects go: given T define T ′ by T ′(A) =
T (A)×{A}. The second is that we can replace any set-valued
“pre-functor” (one that preserves composition but not identi-
ties) with a functor: given T define T ′ with the slogan:

T ′(A
f
→B) = Image(T (1A))

T (f)
→ Image(T (1B)).

Actually, I did know that this last lemma needed saying: when,
at the original exposition, I explained what I meant by “homo-
topy is not concrete” the most honored member of the audience
interrupted with a putative faithful functor. At that time, the
best I could do was point out that the putative functor did not
preserve identity maps. Later, when I was writing the paper, I
decided to forget the whole thing.
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In light of this proposition the main theorem is
equivalent with:

For any zero-preserving functor T : H → S?, there
exists f in H such that f 6= ? and T (f) = ?.

H is thus worse than non-concrete: not only must
any T : H → S? confuse two distinct maps, it must
confuse two maps one of which is a zero-map. Such
failure to be concrete is easier to work with than the
more general. We will say that a functor T : C → S?
is faithful-at-zero if T (f) = ? iff f = ? and C
is concrete-at-zero if there exists faithful-at-zero
T : C → S?. [3] We wish to show thatH is not concrete-
at-zero; we shall isolate a property that any concrete-
at-zero category must possess and then demonstrate
its failure in H.

We shall work for a while in an arbitrary category
C with zero. Given A ∈ C we may define an equiv-
alence relation on the monomorphisms into A as fol-
lows: (B1 → A) ≡ (B2 → A) if there exists an isomor-
phism B1 → B2 such that B1 → B2 → A = B1 → A.

A subobject of A is defined to be an equiva-
lence class of monomorphisms. A kernel of a map
A → B is usually defined as a monomorphism into
A satisfying the well-known universal property. We
note here that “the” kernel of A→ B may be defined
as a subobject, removing completely the ambiguity.
(Every monomorphism in the equivalence class must
of necessity be a kernel.) A normal subobject is
one that appears as a kernel. The following will be a
corollary of a later theorem:

If C is concrete-at-zero then each of its objects has
only a set of normal subobjects. Moreover, if every
map in G has a kernel then the converse holds.

This theorem—as it stands—is not useful for H.
There are very few kernels, indeed there are very
few monomorphisms in H. We therefore introduce
another equivalence relation, this time on all the
maps into a fixed object A.

Define (X → A) ≡ (X ′ → A) if they kill the same
maps coming out of A, that is, if for all A → Y it is
the case that X → A→ Y = ? iff X ′ → A→ Y = ?.
We shall call the equivalence classes generalized
normal subobjects, of A. We’ll abbreviate the no-
tion as gns.[4] The connection with normal subob-
jects is this:

3[ ] To see that not being concrete-at-zero is, indeed, strictly
worse than not being concrete, take any non-concrete category
C and formally adjoin a zero object. (To the objects add a
new object, 0, and for each ordered pair of objects, old or new,

A,B add a new map, A 0→B.) There’s an obvious faithful-at-
zero functor to the category of pointed-sets-with-at-most-two-
elements. (Obvious or not it’s what the construction below
yields: every old object has exactly two gnss.)

4[ ] The term I used in 1970 was “abstract normal subobject.”
The reason for changing it here is given below in footnote 11.

Proposition:

If each map in C has a kernel and a cokernel then
each gns uniquely contains a unique normal subob-
ject.

Proof:

One may first check that two normal monomor-
phisms are equivalent in the previous (the “subob-
ject” sense) iff they are equivalent in the new sense
(the “generalized normal subobject” sense). If C has
kernels and cokernels then given f : X → A we note
that Ker(Cok(f)) is equivalent to f .

Theorem:

C is concrete-at-zero iff each object has only a set
of generalized normal subobjects.

Proof:

If TX → TA and TX ′ → TA have the same image
and if T : C → S? is faithful-at-zero then necessarily
(X → A) ≡ (X ′ → A), hence there could not be more
gnss of A then there are subsets of TA.

For the converse, define T : C → S? by letting
TA be the set of gnss of A.[5] Given f : A → B
note that if (X → A) ≡ (X ′ → A) then
(X → A → B) ≡ (X ′ → A → B); thus A → B in-
duces a function TA → TB, clearly seen
to be functorial. If TA → TB were constant then
(A 1→ A → B) ≡ (0 → A → B) and from
A 1→ A → B = ? iff 0 → A → B = ? we
conclude that A→ B = ?.

The previous assertion for categories in which each
map has a kernel: the fact that concreteness-at-zero
is equivalent with each object having only a set of
normal subobjects may be seen by looking at the dual
category, C◦, and noticing that in general (X → A) ≡
(X ′ → A) iff Cok(X → A) = Cok(X ′ → A). This
would yield T : C◦→ S?. However, the contravariant
functor represented by the two-point set is faithful
and we would obtain C → S?.

5[ ] No one has ever asked me how to make a functor out of
equivalence classes when they’re not sets. Just in case there
is somewhere someone who wants to know (and—further—
doesn’t want to use the axiom of choice) use the Zermelo-
Fraenkel “axiom of foundation” which allows the construction
of the “rank” function from the universe to the ordinals, recur-
sively defined by sending a set to the smallest ordinal larger
than the rank of any of its elements. The axiom in question
implies that every set has a rank and only a set of sets have
a given rank. We then restate the condition of concreteness-
at-zero as the (equivalent) condition that for every object B
there’s an ordinal α such that every A → B is equivalent
to one with with rank smaller than α. Given B let α be the
minimal such ordinal and starting with the set of all maps into
B of rank less than α define TB to be the set of equivalence
classes therin.
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A weak kernel of A→ Y is a map X → A such
that

wk1: X → A→ Y = ?.

wk2: If Z → A → Y = ? then there exists Z → X
such that Z → X → A = Z → A.

Z
↘
A↓

↗
X

(no uniqueness condition).

If both X → A and X ′ → A are weak kernels (of
possibly different things) then (X → A) ≡ (X ′ → A)
iff there exist

X
↘
A↓

↗
X ′

and

X ′
↘
A↓

↗
X

by direct application of the definitions of ≡ and
weakkernels.

In H we have many weak cokernels (indeed, the
suspension of any map is always such). We are
directed, therefore, to look at the dual side, keeping in
mind that a contravariant faithful-at-zero T : H → S?
yields a covariant functor if followed by the faithful
(−, 2). We wish to find a space A, a proper class of
maps {A → Xi}i∈I all of which are weak cokernels
such that for i 6= j not both

Xj↗
A ↓
↘

Xi

and

Xi↗
A ↓
↘

Xj

exist.[6]

From the theory of abelian groups:

Lemma:

For any prime integer p there exists a family of
p-primary torsion abelian groups {Gα}, for α running
through the ordinal numbers and for each Gα a special
element xα ∈ Gα with the properties that xα 6= 0,
pxα = 0 and for any homomorphism f : Gβ → Gα
with β > α it is the case that f(xβ) = 0.

Proof:

We recall the theory of “height” in torsion groups.
Let Gp be the category of p-primary torsion abelian
groups, let I be its identity functor. For each ordinal
α we define a subfunctor inductively by:

I0 = I;

Iα+1 = Image(Iα
p→Iα);

Iα =
⋂
β<α Iβ for α a limit ordinal.

6[ ] Going to the dual is not needed. The maps into A for
which these maps out of A are weak cokernels would necessarily
represent different GNSs.

We must show that this descending sequence con-
tinues to descend forever. Given α we shall find Gα
such that Iα(Gα) 6= 0, Iα+1(Gα) = 0. By letting xα
be a non-zero element in Iα(Gα) we will
achieve the announced end, because if β > α then
Iβ(Gβ)→ Iβ(Gα) but Iβ(Gα) ⊂ Iα+1(Gα) = 0.

Given α let Wα be the set of finite words of ordi-
nals 〈γ1γ2 · · · γn〉 where γ1 < γ2 < · · · < γn ≤ α, in-
cluding the empty word 〈〉. Let Gα be the group gen-
erated by Wα subject to the relations p〈γ1γ2 · · · γn〉 =
〈γ2 · · · γn〉 and 〈〉 = 0. Then Gα is p-primary torsion.
Note that every non-zero element in Gα is express-
ible uniquely as something of the form a1w1 +a2w2 +
· · · + anwn, where 0 < qi < p, wi ∈ Wα − 〈〉. We
may then show, inductively, that Iγ(Gα) is generated
by elements of the form 〈γ1γ2 · · · γn〉 where γ ≤ γ1.
Hence Iα(Gα) is isomorphic to Zp, the cyclic group
with p elements, and Iα+1(Gα) = O. [7]

Let M(G) denote the Moore space, H1(M(G)) '
G.[8] Choose a prime p, a generator x for H1(M(Z2))
and for each ordinal α a map fα : H1(M(Z2)) →
H1(M(Gα)) such that (H1(fα))(x) = xα. We use Σ
to denote the suspension functor.

For β > α there is no
ΣM(Gβ)Σfβ→

ΣM(Zp) ↓
Σfα
→

ΣM(Gα).

because application of H2 would contradict the choice
of xα, Gα. Each Σfα is a weak cokernel. Hence each
Σfα represents a different generalized normal quo-
tient object. Hence ΣM(Z2) has more than a set of
generalized normal quotient objects. Hence H is not
concrete-at-zero.

We may be more specific: for any n > 0 consider
the mapping-cone sequence

Σn−1M(Zp)
Σn−1fα→Σn−1M(Gα)

Σn−1f ′α→

Σn−1M(Gα/Zp)
Σn−1f ′′α→ΣnM(Zp)

Σnfα→ΣnM(Gα)

(The mapping cone of M(Zp) → M(Gα) is a
Moore space because Zp → Gα is a monomorphism..)
For β > α the composition ΣnfαΣn−1f ′′β is not null-
homotopic.

Let T : H → S? be any functor. Let β > α be such
that T (Σn−1f ′′β ) and T (Σn−1f ′′α) have the same image
in T (ΣnM(Zp)). Then because T (ΣnfαΣn−1f ′′α) = ?
it must be the case that T (ΣnfαΣn−1f ′′β ) = ?.

7[ ] For a real proof see the first addendum below.
8[ ] This material was written for a crowd of topologists.

(John Moore, as it happened, was in the original audience.)
The second addendum below is an attempt to broaden the au-
dience.
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Note that for each n we have shown that the ho-
motopy category of (n+ 3)-dimensional, n-connected
cw-complexes is not concrete-at-zero. With n ≥ 1
we know that it is not the basepoints that prevent
concreteness.[9] For n ≥ 3 we know that the stable
category is not concrete.[10]

On Concreteness in General

When we move away from zero, the notion of nor-
mal subobjects is not enough. A regular subob-
ject is one that appears as an equalizer. Accord-
ingly define yet another equivalence relation on maps
into A: (X → A) ≡ (X ′ → A) if they equalize the
same pairs of maps coming out of A, that is, if for
all f, g : A → Y it is the case that X → A

f→ Y =

X → A
g→A iff X ′ → A

f→Y = X ′ → A
g→A. We’ll

call the equivalence classes generalized regular
subobjects.[11]

A necessary condition for concreteness is that ev-
ery object have only a set of generalized regular sub-
objects, and I have just recently proved that for cat-
egories with finite products this is a sufficient condi-
tion. For categories without products a different con-
dition is available, discovered by John Isbell (1963):
fixing A,B define

A
↗

X
↘

B

≡
A

↗
X ′
↘

B

iff for all

A
↘
Y

↗
B

it is the case that
A

↗ ↘
X Y
↘ ↗

B

commutes iff

A
↗ ↘

X ′ Y
↘ ↗

B

commutes.

The condition, then, is that for any A,B only a set
of equivalence classes arise. This condition allows us
formally to adjoin finite products in a way to get the

9[ ] That is, both free and strict homotopy fail to be concrete.
10[ ] In his review in the Mathematical Reviews John Isbell

wrote “The author asserts also that the stable category is not
concrete.” He apologized when he next saw me saying “I didn’t
know a stable result when I saw one.” As do most of us category
people, he had been thinking of the stable category as what
one obtains when one forces Σ, the suspension functor, to be
an automorphism of the category. What he was forgetting—
mostly because the author in question didn’t take the trouble
to point it out—was that the subject of stable homotopy began
with the Freudenthal theorem that if X and Y are of dimension
n and at least (n/2)-connected then the suspension functor
induces an isomorphism [X,Y ]→ [ΣX,ΣY ].

11[ ] The term I used in 1970 was “abstract regular subobject”
which yielded the acronym “ARS”. Alas in my 1973 paper,
Concreteness, Journal of Pure and Applied Algebra, Vol. 3,
1973, that acronym, in its repeated use, became a distraction.
So I replaced the “abstract” with “generalized”.

generalized-regular-subobject condition. That condi-
tion allows us formally to adjoin equalizers (while pre-
serving the products) to get the condition that every
object has only a set of regular subobjects. Now the
hard part. A long rather arduous construction takes
place in the category of set-valued functors.

In a paper written just before this one (see bibli-
ography) [12] I show that coscanecof, the category
of small-categories-and-natural-equivalence-classes-of-
functors, is not concrete. I also give an unenlighten-
ing proof that the category of groups-and-conjugacy-
classes-of-homomorphism is concrete, a fact rather
easily seen from the sufficiency of the generalized-
regular-subobject condition. Also, the characteriza-
tion therein of those categories C for which the cate-
gory of “petty” functors from C is concrete becomes
much easier. The Eckmann-Hilton analogue of homo-
topy in abelian categories usually yields non-concrete
categories, as do the notions of homotopy on chain
complexes.[13]

Bibliography:

Freyd, Peter On the concreteness of certain cat-
egories. 1970 Symposia Mathematica, Vol. IV (IN-
DAM, Rome, 1968/69) pp. 431–456 Academic Press,
London

Isbell, J. R. Two set-theoretical theorems in cate-
gories. Fund. Math. 53 1963 43–49.

12[ ] There’s another result from this paper that should be
mentioned here. The Whitehead Theorem says that the (ordi-
nary spherical) homotopy functors jointly reflect isomorphisms
in H and that seems to be saying that H though not concrete
is not as unconcrete as it could be. Not so. In the mentioned
paper I observed that every locally small category has a canon-
ical isomorphism-reflecting set-valued functor. It’s not hard
to construct. First define yet another equivalence relation on
maps targeted at A, to wit, X → A ≡ X′ → A if for all
A → Y it is the case that X → A → Y is an isomorphism
iff X′ → A → Y is an isomorphism. Define F (A) to be the
family of equivalence classes and note that F—if we ignore for
the moment the possibility that it is too big—is easily seen
to be a covariant functor. If there are maps into A that are
not split monos we use ? to denote their (common) equivalence
class. Define F?(A) to be the same as F (A) if there are such
maps into A and F?(A) = F (A) ∪ {?} if not. Clearly F? re-
mains a covariant functor. It isn’t hard to see that it reflects
both right and left invertability and that’s a stronger prop-
erty than merely reflecting isomorphisms. To finish, construct
a partial map from the set, End(A), of endomorphisms of A
to F (A) that hits every element except ?. Given e ∈ End(A)
such that e is a split-idempotent, that is, such that there ex-
ist maps A → X and X → A with A → X → A = e and
X → A→ X = 1 then the equivalence class of X → A is inde-
pendent of choice of splitting and we use that fact to construct
a function as advertised from the set of split-idempotents on A
to the non-trivial elements of F?(A). For a cleaner proof see
http://hans.math.upenn.edu/~pjf/iso-detector.pdf

13[ ] My 1973 paper that is mentioned in footnote 11 showed
that the Isbell condition is not only necessay but sufficient for
concreteness. Also: the necessary and sufficient condition for
an abelian category to have an exact embedding into the cate-
gory of abelian groups is that it be well-powered (which, note,
is necessary for ordinary concreteness). The proofs are painful.
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Addendum: p-Height Done Right

I’m going to construct a leaner Gα (it appears as
a subgroup of the previously defined group). Let Wα

be the set of ascending finite words of ordinals strictly
less than α.

The generators-and-relations construction does
not easily yield the necessary proofs, so I’m going to
use a different approach, one very familiar to logicians
and computer scientists. Let Sα be the set of words on
Wα, which instead of being called words of words will
be called “sentences”. By a “rewrite rule” is meant an
ordered pair of sentences denoted S1 ⇒ S2. By an ap-
plication of such a rule we mean the result of starting
with a sentence S, finding a subsentence equal to S1

and replacing that subsentence with S2. We’ll stipu-
late a set of rewrite rules on Sα and observe that 1)
the rules are “strongly normalizing”, that is, there is
a chain condition on applications of the rewrite rules,
or put another way, starting with any sentence we
must in a finite number of steps reach a “terminal”
sentence, one on which no rewrite rules apply; 2) the
terminal sentence reached is independent of how the
rewrite rules are applied.

Gα is then defined as the set of terminal sentences.
The binary operation applied to elements S and S′ of
Gα is the result of starting with the catenation SS′

and then normalizing. The result is clearly a monoid:
the associativity is an immediate consequence of the
associativity of catenation and the uniqueness of the
terminal sentence reached and the empty sentence is
clearly a unit.

I do the case p = 2 and mention how to do the
general case. (Note that any prime would suffice for
the non-concreteness of homotopy.)

We stipulate two kinds of rules:

The Order Rules: vu ⇒ uv if u is a shorter word
than v; or if they are the same length and u lexico-
graphically precedes v.

The Shortening Rules: uu ⇒ u′ if u = βu′; and
ee⇒ 0 where e is the empty word and 0 is the empty
sentence.

The terminal sentences are then easily seen to be
just the strictly ascending sequences of words (with
the ordering on words obvious from the order rule).
That the rules are strongly normalizing is clear.

The uniqueness is a clear consequence of the “con-
fluence” property:

Suppose that S1 is a sentence and that S2 and S3

are each the result of a single application of a rewrite
rule to S1. Then, using the rules one may reach a
common sentence S4 from each of S2 and S3.

The verification of the confluence property is clear
if the “domains” of the applications needed to arrive

at S2 and S3 are disjoint. In the case at hand, differ-
ent rules have different domains and all domains are
of length two, hence we need consider only the cases
where S1 is a three-word sentence. A little case analy-
sis reduces the problem to four patterns, to wit, S1 is
uuu, vvu, vuu or wvu where u < v < w. Each of these
three cases is easily dispatched by a follow-your-nose
application of the rewrite rules (as must be the case
if confluence holds).

As already noted, the set of terminal sentences is
clearly a monoid. As such it is generated by one-word
sentences and the order rules say that one-word sen-
tences commute with each other, hence the monoid
is commutative. Switching to additive notation, we
know that each one-word sentence is a torsion ele-
ment: 2n+1u = 0 where n is the length of u. A com-
mutative monoid in which the generators are all tor-
sion is, of course, a torsion monoid. And any torsion
monoid is a group.

We can now easily verify inductively that IβGα,
for β ≤ α, consists of all terminal sentences in which
all ordinals are at least β (and, of course, still less than
α). Hence IαGα has only one non-trivial element (the
one-word sentence whose one word is the empty word)
and Iα+1Gα has none.

(For p > 2 keep the order rules but change the
shortening rules so that they apply to iterated strings
of length p. The terminal sentences are characterized
as those of the form u1u2 · · ·un where ui ≤ ui+1 and
in which no word appears more than p− 1 times.)

This construction of Gα produces a group isomor-
phic to the subgroup of the one produced by the 1970
construction, to wit, the subgroup generated by those
words that end with α. Note that there are natural
inclusions Gα ⊂ Gβ for α ≤ β and that these in-
clusions preserve the distinguished element (the one
named by the empty word).

Addendum: Topology Done Fast

Given X and a subcomplex X ′ ⊂ X denote the
cokernel of the inclusion map X ′ → X as defined
in the category of connected pointed cw-complexes,
T , as X/X ′. It is usually described as the result of
“smashing X ′ to a point.”

The homotopy extension theorem tells us that
X → X/X ′ remains a weak cokernel in the homo-
topy category H because if f : X → Y is such that
f |X ′ is null-homotopic then the homotopy extension
theorem says that f is homotopic to a map g : X → Y
such that g|X ′ is constant. (If the failure of unique-
ness is not evident, consider the case where X is a
closed n-ball and X ′ is its boundary. Then X/X ′ is
an n-sphere.)

All maps in T have weak cokernels—not just inclu-
sions of subcomplexes—indeed, canonically so.

5
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Given X → Y we can replace Y with the mapping
cylinder of f , to wit, the pushout in T :

X
f→ Y

i ↓ ↓
X×I→ Cy(f)

where I is the unit interval and i : X → X×I sends
x to 〈x, 1〉. Then Cy(f) is homotopically equivalent
with Y and we can use that fact to construct the
mapping cone, Cf , as Cy(f)/(X×{0}). [14]

It is easy to check that f ′ : Y → Cf is a weak
cokernel of f . In the case that X → Y is already the
inclusion of a subcomplex this construction obviously
results in a different space but one that can be seen to
be homotopically equivalent. Note that Y automati-
cally appears as a subcomplex of Cf and we can use
the first construction for the weak cokernel of f ′. But
now a startling thing becomes evident. By smashing
Y to a point we have effectively removed all traces
of Y from Cf/Y . Not even f has a trace. This last
weak cokernel is none other than the suspension of
X, denoted ΣX, the result of smashing each of the
two ends of the cylinder, X×I, each to a point.[15]

Thus we obtain a sequence of three maps where
each is the weak cokernel of the previous:

X → Y → Cf → ΣX.

If we apply the same argument to Y → Cf we obtain

Y → Cf → ΣX → ΣY

where the last map turns out to be Σf “turned upside
down”. Fortunately, for purposes of the following as-
sertion we can ignore the phrase in quotes. We obtain
an infinite sequence of weak cokernels:

X
f→Y

f ′→Cf
f ′′→ΣX

Σf→ΣY
Σf ′→ΣCf

Σf ′′→· · ·

This may be formalized as a functor from the cate-
gory whose objects are maps in T to the category of
sequences:

T → → T →→···.

We need the theorem that a homology functor, H,
when applied to

X
f→Y

f ′→Cf

14[ ] For strict homotopy we should use the “reduced cylinder”
obtained by smashing the line {?}×I to a point and then use it
to obtain the “reduced mapping cone”. But, 1) the same homo-
topy extension theorem tells us that smashing a contractable
subcomplex of a cw-complex to a point doesn’t change its ho-
motopy type and 2) for purposes of this paper we could move
the discussion to the realm of simply connected spaces where
strict and free homotopy are the same.

15[ ] If we use the reduced cone we get the “reduced suspen-
sion” (X×I)/{〈x, t〉 | x = ? or t = 0 or t = 1}.

yields an exact sequence of abelian groups

H(X)
H(f)→H(Y )

H(f ′)→H(Cf ).

And that easily says that we get a long exact sequence

H(X)→ H(Y )→ H(Cf )→ H(ΣX)→ · · ·

If one uses the fact that for ordinary homology
Hn+1(ΣX) ' Hn(X) we obtain

Hn+1(X)→ Hn+1(Y )→ Hn+1(Cf )→ Hn(X)→ · · ·

Consider the category, E of exact sequences of
abelian groups of the form

0→
∐
I

Z
f→

∐
J

Z→ G→ 0

We obtain a functor E → T by replicating the map f
as a map between the bouquets[16] of circles,∨
I S

1 f̂→
∨
J S

1, so thatH1(
∨
I S

1) H1(f̂)→H1(
∨
J S

1)

is none other than
∐
I Z f→

∐
J Z. Define

M(0→
∐
I

Z
f→

∐
J

Z→ G→ 0)

to be the mapping cone Cf̂ .

Given a map between sequences we can play the
same game to obtain a functor E → H and the next
step is to note that the values of M depend really
only on the right end of the particular sequence in E .
We obtain, then, a functor M : G → E → H. It’s
called the moore space functor. For our purposes
the critical property is

G M→H H1→G

is naturally equivalent to the identity functor. And
so, consequently, is

G M→H Σn→H Hn+1→G

To recapitulate: given a family in G

{Zp → Gα}α

such that
Gβ↗

Zp ↓
↘

Gα

does not exist for β > α we obtain a family of weak
cokernels in H

{ΣnM(Zp)→ ΣnM(Gα)}α
16[ ] “Bouquet” is the topologist’s word for a coproduct of

spheres in T .

6



TOHOMO OOPY IS N TOO COONCRETE

such that
ΣnM(Gβ)

↗
ΣnM(Zp) ↓

↘
ΣnM(Gα)

does not exist for β > α. And that suffices to show
that ΣnM(Zp) has more than a set of generalized nor-
mal subobjects.

Addendum: The 2-Sphere Is Huge

There’s a wonderful simplification (which occurred
to the writer only after he had communicated what
he thought was the final draft):

ΣM(Z) is the 2-sphere (reduced suspension or not)
and we conclude that it has a proper class of general-
ized normal subobjects. Using the first addendum’s
observation that

ΣM(Gβ)
↗

S2 ↓
↘

ΣM(Gα)

does exist for β < α we further conclude that a strictly
ascending chain of the size of the universe—indeed,
the order-type of all the ordinals—appears in the gns-
poset of little old S2.

J

J

Available at http://www.math.upenn.edu/~pjf/homotopy.pdf
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