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Some invariants for closed orientable 3-manifolds are defined using a series of representations of the symplec-

tic groups and the theory of Heegaard splittings. They are natural extensions of the U(1) Chern-Simons-

Witten invariants. These representations come from the functional equation satisfied by the theta functions

of level k. We analyze the values of these invariants for lens spaces.
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0 . INTRODUCTION

The aim of this paper is to construct invariants of 3-manifolds using the endomorphisms of
1-homologies of surfaces determined by Heegaard splittings and representations of the symplectic
group. This leads us to the study of actions of such endomorphisms on the space of theta functions
on the Siegel space. The construction goes as follows. Any three manifold can be given an Heegaard
decomposition, and hence can be written as the union of two handlebodies identified along a homeo-
morphism of the surface boundary. After a choice of a basis of the 1-homology the homeomorphism
induces an element of the symplectic group. The indeterminacy in the choice of this matrix can be
analyzed to give invariants of the three manifold in question. We develop a particular invariant using
actions on spaces of modular forms and analyze it in the case of lens spaces.

Although the idea to consider theta functions is transparent from the notes of Oxford seminar [2]
there is not an explicit treatment of Abelian Witten’s theory, from this perspective, on the author’s
knowledge. Thus the goal of the present paper is to provide such a rigorous construction and a
natural extension of it which leads us to some more general Abelian invariants.

In ([12, 9]) the U(1) invariants are introduced as complex numbers modulo U(1) (or the group of
roots of unity). In [26] some invariants are constructed in terms of the linking matrices of 3-manifolds,
and their absolute value is the U(1) invariant. Our first task will be to establish a family of invariants
using representations of the symplectic group, and to check for the smallest group of roots of unity
which have to appear as indeterminacy. Roughly speaking the usual U(1) gauge theory comes with
a one dimensional vacuum vector associated to a handlebody and corresponding to a theta function
with trivial characteristics. We generalize it to the case where the vacuum is degenerate, and is
represented by a vector subspace of the space associated to the surface. Alternatively this amounts
to consider a new representation of the symplectic group which is an exterior power of the former.
This way we derive nontrivial refinement fp,k of the usual Abelian invariants fk,k which depend on
the level k and a divisor p of k. The interest in considering such an extension is that, starting with
the standard U(1) TQFT we obtain other invariants (and furthermore also TQFT) which contain
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more topological information, as it can be deduced from the computations on lens spaces. It seems
that this procedure could be carried on over some other TQFT.

Another construction of 3-manifold invariants via representations of the mapping class groups was
obtained by Kohno [20] for the SU(2) TQFT. Our invariants are certainly less sensitive than Kohno’s
invariants: in particular the SU(2)-invariants can in some cases distinguish between a homology
sphere and the standard sphere, but our invariants cannot do that, because they are defined on the
symplectic group level rather than the mapping class group. However it is not at all clear whether
all our invariants fp,k can be deduced from the SU(2)-invariants.

Some of the results of this paper have been announced in [9] and several related articles appeared
(see [12, 26, 24, 7, 30, 31, 23]). Another semi-Abelian version was described in [11].

Aknowledgements. I am indebted to my thesis advisor V.Poénaru for the discussions we had on
this subject, to V.Turaev and L.Guillou for their pertinent observations which improved the clarity
of this paper. This paper is an expanded and updated version of the first chapter of the author’s
Ph.D. thesis at University of Paris-Sud.

1 . STATEMENT OF THE MAIN RESULT

Let M3 be a closed connected and oriented 3-manifold. Consider a Heegaard splitting of M 3 =
Tg ∪ϕ T g into two handlebodies of genus g glued together along their common surface Σg using the
homeomorphism ϕ : Σg −→ Σg. Notice that ϕ is not uniquely determined by the Heegaard splitting.
In fact it can be composed (to the left and to the right) by any homeomorphism which extends to
the whole handlebody Tg bounding the surface (i.e. an extendable homeomorphism as considered by
Suzuki [28] and Kohno [20]). Set Mg for the mapping class group of the genus g surface and M+

g for
the image in Mg of the subgroup of extendable homeomorphisms. We have a canonical surjection
s : Mg −→ Sp(2g,Z) onto the symplectic group. Assume that a symplectic basis in the homology
of the surface Σg is chosen. Therefore s(M+

g ) = Sp+(2g,Z) can be easily described as the set of

symplectic matrices having the form

[

A B
0 D

]

with respect to the usual splitting into g×g matrices.

Remark that the tower of groups Sp(2g,Z) has an exterior multiplication law, namely the symplectic
sum

⊕s : Sp(2g,Z) × Sp(2h,Z) −→ Sp(2(g + h),Z),

given by the formula:
[

A B
C D

]

⊕s

[

A′ B′

C ′ D′

]

=

[

A ⊕ A′ B ⊕ B′

C ⊕ C ′ D ⊕ D′

]

.

Let A denote an arbitrary set.

Definition 1.1. The set of functions Fg : Sp(2g,Z) −→ A, g ∈ Z+, is called an Abelian invariant
if the following two conditions are fulfilled:

1. Fg(axb) = Fg(x), for all x ∈ Sp(2g,Z), a, b ∈ Sp+(2g,Z), g ∈ Z+,

2. Fg+1(x ⊕s τ) = Fg(x), for all x ∈ Sp(2g,Z), g ∈ Z+, where τ =

[

0 −1
1 0

]

∈ SL(2,Z).
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Observe that an (Abelian) invariant defines a topological invariant for closed 3-manifolds by means
of the formula:

F (M3) = Fg(s(ϕ)).

The two conditions stated above for F∗ and the Reidemester-Singer theorem (see [6, 27]) prove the
independence on the various choices which can be made on the right hand term.

The natural way to get Abelian invariants is to use the representations of Sp(2g,Z).

Definition 1.2. A tensor representation of the symplectic group consists in the following data:

1. The hermitian vector spaces Wg ⊂ Vg satisfying Wg = W⊗g
1 , Vg = V ⊗g

1 .

2. A sequence of unitary representations ρg : Sp(2g,Z) −→ U(Vg) which fulfills the conditions

• ρg+h(x ⊕s y) = ρg(x) ⊗ ρh(y) for all x, y, g, h appropriately chosen.

• Wg is ρg(Sp+(2g,Z))-invariant.

• Let πWg
denote the projection of Vg onto Wg. For x ∈ End(Vg) set detWg

(x) = det(πWg
◦x).

We will assume that

– detW1ρ1(τ) 6= 0,

– 0 does not belong to
⋃

g>0 detWg
(ρg(Sp+(2g,Z))),

hold.

We denote by R(ρ∗, V∗, W∗) the (multiplicative) group generated by
⋃

g>0 detWg
(ρg(Sp+(2g,Z))) ⊂

C∗.

From such data we can find an invariant by means of

LEMMA 1.3. To each tensor representation ρ = (ρ∗, V∗, W∗) of the symplectic group we can
associate an Abelian invariant Fg(ρ) : Sp(2g,Z) −→ C/R(ρ), by means of the following formula:

Fg(ρ; x) = [detW1ρ1(τ))]−g
[

detWg
(ρg(x))

]m(g)
,

where m(g) = (dim(W1))
1−g.

Proof. The following equality

detWg
(ρg(cx)) = detWg

(ρg(c))detWg
(ρg(x))

holds whenever c ∈ Sp+(2g,Z), because Wg is ρg(Sp+(2g,Z))-invariant. Next we derive that

detWg+1(ρg+1(x ⊕s τ)) = detWg⊗W1(ρg(x) ⊗ ρ1(τ)) =
[

detWg
(ρg(x))

]dimW1

[detW1(ρ1(τ))]dimWg ,

so our claim follows. 2

Our main result consists in the construction of a tensor representation of the symplectic group.
We need first some notations:

Vg(k) = C < θm; m ∈ (Z/kZ)g >, for even k,
Wg(p, k) = C < θpm; m ∈ (Z/kZ)g >, where p divides k.
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Let us denote l = k
p
. Then set Rk,p for the group of roots of unity generated by exp

(

p π
√
−1

N(k,p)

)

and

exp
(

π
√
−1k
8p

)

, where N(k, p) = g.c.d.(l(mod 6), 6). Here l(mod 6) ∈ {1, 2, 3, 4, 5, 6} is the residue of l
mod 6.

It is well-known ([3, 25]) that Sp(2g,Z) is generated by the matrices having one of the following

forms:

[

1g B
0 1g

]

where B = B> has integer entries,

[

A 0
0 (A>)−1

]

where A ∈ GL(g,Z), and
[

0 −1g

1g 0

]

. We set:

ρg

[

1g B
0 1g

]

= diag(exp(
π
√
−1

k
< m, Bm >)).(1)

ρg

[

A 0
0 (A>)−1

]

= (δA>m,n)m,n∈(Z/kZ)g .(2)

ρg

[

0 −1g

1g 0

]

= k−g/2 exp(−2π
√
−1k−1 < m, l >)m,l∈(Z/kZ)g .(3)

We will prove that these formulas define a representation ρg of Sp(2g,Z) in U(Vg(k))/R8. Here R8

the group of roots of unity of order 8 is viewed as a subgroup of scalar matrices in the unitary group.
Let us denote Fp,k = (ρ∗, V∗(k), W∗(p, k)).

THEOREM 1.1. Let consider an even number k and p a divisor of k such that g.c.d.( k
p
, p) = 1.

Then the collection Fp,k is a tensor representation of the symplectic group, up to an eighth root of
unity indeterminacy.

According to the preceding lemma we have

COROLLARY 1.1. F (Fp,k) ∈ C/Rk,p is a topological invariant for closed oriented 3-manifolds.

Let denote this invariant by fp,k. The geometric interpretation which will be given in the last
section enables us to consider fp,p be the exact Abelian Witten’s theory, as already considered in
[12, 26]. Therefore | fk,k(M

3) |∈ R can be expressed in terms of classical cohomology invariants, as
follows:

| fk,k(M) | =

{

| H1(M,Z/kZ) |1/2, if α ∪ α ∪ α = 0, ∀α ∈ H1(M,Z/kZ),
0 elsewhere

The calculations for lens spaces show that in general fp,k do not vanish although α ∪ α ∪ α 6= 0,
and thus they represent a non trivial extension of fk,k.

If we had relaxed the requirement Vg = V ⊗g
1 , to the weaker inclusion condition Vg ⊗ Vh ↪→ Vg+h

(and accordingly for the ρg action), in definition 1.2., then we would find that for each tensor
representation with arbitrary vacuum space Wg there exists another representation (in this broader
sense) which yields the same topological invariants for 3-manifolds and has a one dimensional vacuum
space in all genera. We just replace Vg, Wg and ρg by

∧dimWg Vg,
∧dim Wg Wg and

∧dimWg ρg.
In the third part we analyze the values of these invariants for lens spaces. Motivated by these we

give a definition of the invariant in terms of some linking matrix and some additional homological
structure of the manifold, likewise the case k = p. It seems that fp,k are homotopic invariants.
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2 . PROOF OF THE THEOREM

2.1. Preliminaries on theta functions

Let Sg be the Siegel space of g×g symmetric matrices Ω of complex entries having the imaginary
part ImΩ positive defined. There is a natural Sp(2g,Z) action on Cg × Sg given by

γ · (z, Ω) = ((((CΩ + D)>)−1)z, (AΩ + B)(CΩ + D)−1).(4)

The dependence of the classical theta function θ(z, Ω) on Ω is expressed by a functional equation
which describes its behaviour under the action of Sp(2g,Z). Let Γ(1, 2) be the so-called theta group
consisting of elements γ ∈ Sp(2g,Z) which preserve the quadratic form

Q(n1, n2, ..., n2g) =
g
∑

i=1

nini+g ∈ Z/2Z,

which means that Q(γ(x)) = Q(x)(mod 2). We represent any element γ ∈ Sp(2g,Z) as

[

A B
C D

]

where A, B, C, D are g × g matrices. Then Γ(1, 2) may be alternatively described as the set of those
elements γ having the property that the diagonals of A>C and B>D are even. Let <, > denote the
standard hermitian product on C2g. The functional equation, as stated in [25] is:

θ((CΩ + D)>
−1

z, (AΩ+B)(CΩ+D)−1) = ζγdet(CΩ+D)1/2 exp(π
√
−1 < z, (CΩ+D)−1Cz >)θ(z, Ω),

for γ ∈ Γ(1, 2), where ζγ is a certain 8th root of unity.
If g = 1 we may suppose that C > 0 or C = 0 and D > 0 so the imaginary part Im(CΩ+D) ≥ 0

for Ω in the upper half plane. Then we will choose the square root (CΩ+D)1/2 in the first quadrant.
Now we can express the dependence of ζγ on γ as follows:

1. for even C and odd D, ζγ =
√
−1

(D−1)/2
( C
|D|),

2. for odd C and even D, ζγ = exp(−π
√
−1C/4)(D

C
),

where (x
y
) is the usual Jacobi symbol ([14]).

For g > 1 it is less obvious to describe this dependence. We fix first the choice of the square root

of det(CΩ + D) in the following manner: let det
1
2

(

Z√
−1

)

be the unique holomorphic function on Sg

satisfying
(

det
1
2

(

Z√
−1

))2

= det

(

Z√
−1

)

,

and taking in
√
−11g the value 1. Next define

det
1
2 (CΩ + D) = det

1
2 (D)det

1
2

(

Ω√
−1

)

det
1
2

(

−Ω−1 − D−1C√
−1

)

,

where the square root of det(D) is taken to lie in the first quadrant. Using this convention we may
express ζγ as a Gauss sum for invertible D (see [8],p.26-27)

ζγ = det−
1
2 (D)

∑

l∈Zg/DZg

exp(π
√
−1 < l, BD−1l >),(5)
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and in particular we recover the formula from above for g = 1. On the other hand for γ =
[

A 0
0 (A>)−1

]

we have ζγ = (detA)−1/2. When γ =

[

1g B
0 1g

]

then the multiplier system is

trivial, ζγ = 1, and eventually for γ =

[

0 −1g

1g 0

]

we have ζγ = exp(π
√
−1g/4). Actually this data

determines completely ζγ.

Denote det
1
2 (CΩ + D) = j(γ, Ω). Then there exists a map

s : Sp(2g,R)× Sp(2g,R) −→ {−1, 1}

satisfying
j(γ1γ2, Ω) = s(γ1, γ2)j(γ1, γ2Ω)j(γ2, Ω).

We recall that a multiplier system ([8]) for a subgroup Γ ⊂ Sp(2g,R) is a map m : Γ −→ C∗ such
that

m(γ1) = s(γ1, γ2)m(γ1)m(γ2).

An easy remark is that, once a multiplier system m is chosen, the product A(γ, Ω) = m(γ)j(γ, Ω)
verifies the cocycle condition

A(γ1γ2, Ω) = A(γ1, γ2Ω)A(γ2, Ω),

for γi ∈ Γ. Then another formulation of the dependence of ζγ on γ is to say that it is the multiplier
system defined on Γ(1, 2). Remark that using the theorem of Mennicke any two multiplier systems
defined on a subgroup of the theta group are identical on some congruence subgroup.

Consider now the level k theta functions. For m ∈ (Z/kZ)g these are defined by

θm(z, Ω) =
∑

l∈m+kZg

exp

(

π
√
−1

k
(< l, Ωl > +2 < l, z >)

)

(6)

or, equivalently, by
θm(z, Ω) = θ(m/k, 0)(kz, kΩ).

where θ(∗, ∗) are the theta functions with rational characteristics ([25]) given by

θ(a, b)(z, Ω) =
∑

l∈Zg

exp

(

π
√
−1

k
(< l + a, Ω(l + a) > +2 < l + a, z + b >)

)

(7)

for a, b ∈ Qg. Obviously θ(0, 0) is the usual theta function.
Let us denote by R8 ⊂ C the group of 8th roots of unity. Then R8 becomes also a subgroup of

the unitary group U(n) acting by scalar multiplication. Consider also the theta vector of level k:

Θk(z, Ω) = (θm(z, Ω))m∈(Z/kZ)g .

2.2. The functional equation

In order to prove the theorem we need first to show that ρg is indeed a representation of the symplectic
group. This will be done by noticing that the level k theta vector satisfies a functional equation:

PROPOSITION 2.1. The theta vector satisfies the following functional equation:

Θk(γ · (z, Ω)) = ζγdet(CΩ + D)1/2 exp(kπ
√
−1 < z, (CΩ + D)−1Cz >)ρg(γ)(Θk(z, Ω))(8)

where

6



1. γ belongs to the theta group Γ(1, 2) if k is odd and to Sp(2g,Z) elsewhere.

2. ζγ ∈ R8 is the (fixed) multiplier system described above.

3. ρg : Γ(1, 2) −→ U(Vg(k)) is a group homomorphism. For even k the corresponding map ρg :
Sp(2g,Z) −→ U(Vg(k)) becomes a group homomorphism (denoted also by ρg when no confusion
arises) when passing to the quotient U(Vg(k))/R8.

4. ρg is determined by the formulas (1-3).

Remark 2.1. This result is stated also in [17] for some modified theta functions but in less explicit
form.

Proof of the proposition. Remark first that the map

w(γ, z, Ω) = exp(kπ
√
−1 < z, (CΩ + D)−1Cz >),

verifies
w(γ1γ2, (z, Ω)) = w(γ1, γ2 · (z, Ω))w(γ2, (z, Ω)),

for all γ1, γ2 ∈ Sp(2g,Z). We observed before that A(γ, (z, Ω)) = ζγj(γ, Ω) verifies the cocycle
identity:

A(γ1γ2, (z, Ω)) = A(γ1, γ2(z, Ω))A(γ2, (z, Ω)),

for all γ1, γ2 ∈ Γ(1, 2)(see also [8] p.14). Therefore if the equation (8) holds for γ1 and γ2, then it
will be fulfilled also by γ1γ2 with ρg(γ1γ2) replaced by ρg(γ1)ρg(γ2). But the theta functions of level
k form a basis for the vector space H0(AbΩ, Θk), where AbΩ = Cg/(Zg ⊕ΩZg) is the Abelian variety
corresponding to Ω and Θ is the theta line bundle (giving the principal polarization) over AbΩ (see
[13]). Thus we obtain in fact a representation of the theta group Γ(1, 2) and it is sufficiently to check
the relation (8) for a system of generators. It is known that Γ(1, 2) is generated by the matrices of

the form

[

A 0
0 (A>)−1

]

with A ∈ GL(g,Z),

[

0 −1g

1g 0

]

, and

[

1g B
0 1g

]

, where B is symmetric,

integral with even diagonal.
We remark that the theta functions of level k can be expressed as

θm(z, Ω) = exp

(

π
√
−1

k
< m, Ωm + 2kz >

)

θ(kz + Ωm, kΩ)(9)

This relation follows immediately from [17] p.50.
We check now the relation (8) for the generators. The first case is

θm(z, Ω + B) = exp

(

π
√
−1

k
< m, (Ω + B)m + 2kz >

)

θ(kz + (Ω + B)m, k(Ω + B)).

But

[

1g kB
0 1g

]

belongs to Γ(1, 2) for even k (arbitrary B) or odd k and B having an even diagonal.

Therefore from the functional equation satisfied by the classical theta function we obtain:

θ(kz + (Ω + B)m, k(Ω + B)) = θ(kz + (Ω + B)m, kΩ).
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Since θ is periodic we obtain

θ(kz + (Ω + B)m, kΩ) = θ(kz + Ωm, kΩ).

Using (9) it follows that

θm(z, Ω + B) = exp(
π
√
−1

k
< m, Bm >)θm(z, Ω)(10)

holds. This yields (1).
In the second case we have

θm(Az, AΩA>) = exp(
π
√
−1

k
< m, AΩA>m + 2kAz >)θ(kAz + AΩA>m, kAΩA>m)).

We derive
θ(Az, kAΩA>) = ζγ(detA)−1/2θ(z, kΩ),

which leads to:
θm(Az, AΩA>) = ζγ(detA)−1/2θA>m(z, Ω)(11)

and (2) is verified.
In order to handle the last case we recall first the well-known Poisson summation formula ([25]):

LEMMA 2.2. Let f be a smooth function on Rg which decreases to zero faster than any rational
function at infinity and

f#(ξ) =
∫

Rg
f(x) exp(2π

√
−1 < x, ξ >)dx

be its Fourier transform. Then the following identity
∑

n∈Zg

f(n) =
∑

n∈Zg

f#(n)(12)

holds.

Consider now f(x) = exp(π
√
−1 < kx + m, k−1Ω(kx + m) + 2z >). A simple computation gives us

f#(ξ) = ζ(detΩ)1/2k−g/2 exp(−2π
√
−1k−1 < m, ξ >) exp(−π < z + k−1ξ, kΩ−1(z + k−1ξ >).

Here ζ = exp(π
√
−1g
4

). Next we are interested in computing:

Sl =
∑

ξ∈−l+kZg

exp(−π
√
−1 < z + k−1ξ, kΩ−1(z + k−1ξ) >)

=
∑

η∈Zg

exp(−π
√
−1 < z − η − k−1l, kΩ−1(z − η − k−1l) >)

= exp(−π
√
−1 < η, kΩ−1z >) exp(−π

√
−1 < l, Ω−1l >) exp(2π

√
−1 < l, Ω−1z >) ×

(
∑

η∈Zg

exp(−π
√
−1 < η, kΩ−1l > +2π

√
−1 < η,−Ω−1l + kΩ−1z >)

= exp(−π
√
−1 < z, kΩ−1z >) exp(−π < l, Ω−1l >) ×

exp(2π
√
−1 < l, Ω−1z)θ(−Ω−1l + kΩ−1z,−kΩ−1)

= exp(−π
√
−1 < z, kΩ−1z >)θl(Ω

−1z,−Ω−1).
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From the Poisson formula (12) we deduce

θm(z, Ω) =
∑

n∈Zg

f(n) =
∑

n∈Zg

f#(n) = ζ(detΩ)−1/2 exp(−π
√
−1 < z, kΩ−1z >)×

∑

l∈(Z/kZ)g

k−g/2 exp(2π
√
−1k−1 < m, l >)θl(Ω

−1z,−Ω−1).

Therefore we have:

ρg

[

0 −1g

1g 0

]

= k−g/2 exp(−2π
√
−1k−1 < m, l >)m,l∈(Z/kZ)g .(13)

This proves the claim for odd k. We observed above that for even k the action of

[

1g B
0 1g

]

on the

theta vector can be computed (and the value is that claimed in (1)) for arbitrary symmetric integral
B. If we add these matrices to the system of generators of Γ(1, 2) then a system generating all of
Sp(2g,Z) is obtained. It suffices then to see to what extent the property to be a homomorphism

is preserved. Set then ζγ = 1, for γ =

[

1g B
0 1g

]

, and j(γ, Ω) = det
1
2 (CΩ + D), for an arbitrary

symplectic matrix γ. If γ = γ1γ2...γn is written in terms of generators γi then we may express each
ρ(γi) using the previous formulas and then collecting all the terms we find that:

Θk(γ(z, Ω)) = ζγ1 ...ζγn
εj(γ, Ω)w(γ, z, Ω)ρ(γ1)...ρ(γn)Θk(z, Ω),

where
j(γ1, γ2...γnΩ)j(γ2, γ3...γnΩ)...j(γn, Ω) = j(γ, Ω)ε, ε ∈ {−1, 1}.

We used the fact that the absolute value | j(γ, Ω) | is a cocycle. Therefore, if we put ρ(γ) =
ρ(γ1)...ρ(γn) is well-defined (i.e. independent on the particular decomposition we choose) up to an
eighth root of unity.

Notice that this indeterminacy is nontrivial. In fact the formulas (1-3) define a representation of
a central extension of Sp(2g,Z). For instance when g = 1 we have a presentation for SL2(Z) with
two generators S, T and relations S4 = 1, (ST )3 = S2. Consider then the central extension by Z8 of
SL2(Z) which has the presentation

< S ′, T ′, C | S ′4 = 1, (S ′T ′)3S2 = C, C8 = 1, [C, S] = [C, T ] = 1 >,

obtained by introducing the central element C of order 8. It follows then that ρ1 defines a genuine

representation for this central extension. Let S ′ acts as ρ1

[

0 −1
1 0

]

and T ′ as ρ1

[

1 1
0 1

]

.

In another words we cannot find an extension (as a multiplier system) of the theta multiplier
system from Γ(1, 2) to all of the symplectic group. If we want to extend it to a plain map, then
A(γ, z, Ω) is no more a cocycle: it should satisfy a relation

A(γ1γ2, (z, Ω)) = µ(γ1, γ2)A(γ1, γ2(z, Ω))A(γ2, (z, Ω)),

for some 2-cocycle µ : Sp(2g,Z) × Sp(2g,Z) −→ R8. This is the 2-cocycle expressing the central
extension of Sp(2g,Z) on which ρg becomes a linear representation. 2
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LEMMA 2.3. We have
ρg(γ1 ⊕s γ2) = ρg(γ1) ⊗ ρg(γ2).(14)

Proof of the lemma. We will use now the fact that ρg arises in fact as a monodromy representation.
Specifically, we consider Ω = Ω1 ⊕ Ω2. From the definition of level k theta functions we find that

θmm′((z1, z2), Ω) = θm(z1, Ω1) θm′(z2, Ω2),

hence
θmm′(γ1 ⊕s γ2((z1, z2), Ω)) = θm(γ1(z1, Ω1)) θm′(γ2(z2, Ω2)).

Since the theta functions of level k give a basis for the vector space H 0(AbΩ, Θk) and A(γ, (z, Ω))
behaves multiplicatively we derive the claim. 2

LEMMA 2.4. Wg(p, k) is a ρg(Sp+(2g,Z))-invariant subspace of Vg(k).

Proof of the lemma. We have

W1(p, k) = {x ∈ V1(k); xm = 0 for m ∈ Z/kZ which is not a multiple of p},

and we have an identification Wg(p, k) = W1(p, k)⊗k. Now a system of generators for Sp+(2g,Z) is

provided by the matrices having the form

[

1g B
0 1g

]

and

[

A 0
0 (A>)−1

]

Matrices of the first type

act diagonally hence leave Wg(p, k) invariant. Next choose γ =

[

A 0
0 (A>)−1

]

and x ∈ Wg(p, k).

Then x has the form
x =

∑

m∈(Z/kZ)g

xpmθpm

hence
ρg(γ)x =

∑

m∈(Z/kZ)g

xpmθpA>m.

and therefore ρg(γ)x ∈ Wg(p, k). 2

This lemma ends the proof of our theorem. 2

Proof of the corollary. It suffices to check the equality R(Fk,p) = Rk,p. Let us consider first

c =

[

A 0
0 (A>)−1

]

. Then ρg(c) is a permutation matrix whose restriction to Wg(p, k) is again a

permutation matrix, so its determinant is 1 or -1. Choose further c =

[

1g B
0 1g

]

. It suffices to check

out the case when B = Est where Est is the matrix having only a non-zero entry which equals 1 and
lies on the st position. Since ρg(c) is diagonal and leaves therefore W∗(p, k) invariant we find

detW∗(p,k)ρg(c) = exp(
g
∑

i=1

k/p
∑

mi=1

π
√
−1

k
p2msmt).

Here m ∈ (Z/kZ)g is a vector whose components are mj, and the sum is taken over all these vectors
m. Then this determinant equals u = exp(π

√
−1(k

p
)g−2pl(l + 1)2/4), if s 6= t (so g > 1), and

v = exp(π
√
−1(k

p
)g−1(l+1)(2l+1)p/6), for s = t. We have to find now the smallest group of roots of

unity containing these numbers for arbitrary g, which it turns to be determined only by the values

10



for g = 2 and respectively g = 1. Set for g = 2 u = exp(π
√
−1U), and for g = 1, v = exp(π

√
−1V ).

We have then the following tables of values for U and V determining the group Rk,p. Remark that
k = pl is even, so that for even l the value of p is necessarily even. The periodicity of U has length
12 and that of V has length 8, but the group Rk,p depends only on l(mod 6). Notice that there is

already the 8-th root of unity indeterminacy which yields one of the generators, namely exp
(

π
√
−1l
4

)

,
for Rk,p. Here are the explicit values for the first 12 terms out of the 24:

l(mod 12) U V The other generator for Rk,p

1 p p 1

2 p/2 p/2 exp
(

pπ
√
−1

2

)

3 4p/6 0 exp
(

pπ
√
−1

3

)

4 3p/2 p exp
(

pπ
√
−1

2

)

5 p p 1

6 7p/6 3p/2 exp
(

pπ
√
−1

6

)

7 0 0 1

8 3p/2 0 exp
(

pπ
√
−1

2

)

9 10p/6 p exp
(

pπ
√
−1

3

)

10 p/2 p/2 exp
(

pπ
√
−1

2

)

11 0 0 1

12 p/6 p exp
(

pπ
√
−1

6

)

This proves our claim.2

3 . COMPUTATIONS FOR LENS SPACES

3.1. The normalization factor d

Let La,b denote the usual lens space. We may choose for s(ϕ) any element

[

b c
a d

]

with bd−ac =

1. If a = 1, b = 0 then La,b is the sphere S3. It is obvious that

fp,k(S
3) = 1.

Remember that l = k/p. Our first task will be now to compute detW1(p,k)ρ1(τ) = d in order to check
that d is indeed nonzero. This is the last requirement to verify in definition 1.2. Equivalently, we
have to compute the invariant for S2 × S1.

PROPOSITION 3.1. If g.c.d.(p, l) 6= 1 then d = 0. If g.c.d.(p, l) = 1 then

fp,k(S
2 × S1) = d−1 = p

l
2 ∈ C/Rk,p

Proof. We obtain S2 × S1 as L0,1. Therefore fp,k(S
2 × S1) = d−1. Further

d = k−l/2det

(

exp

(

2π
√
−1p2mn

k

))

m,n=1,l

11



Now if g.c.d.(l, p) > 1 the above considered determinant vanishes since it have two equal lines. Thus
the invariants are not defined in this case. Consider now g.c.d.(l, p) = 1.

LEMMA 3.1. For g.c.d.(q, l) = 1 the determinant

det

(

exp

(

2π
√
−1qmn

l

))

m,n=1,l

= ll/2
√
−1

l(l−1)
2 (−1)h(q,l) ∈ C/Rql,q

where

h(q, l) =
l(l + 1)

2
+

l−1
∑

r=1

(l − r)
[

rq

l

]

Proof of the lemma: An easy computation shows that the
(

exp

(

2π
√
−1qmn

l

))2

m,n=1,l

= l(δm,−n)m,n=1,l,

where δm,−n is the Kronecker delta defined to be 1 if m + n = 0(mod l) and 0 otherwise. Hence
the absolute value of the considered determinant is ll/2 and its phase is a 4th root of unity, because
its square is 1 or -1. Let compute the phase explicitly. On the other hand, this is a Vandermonde
determinant hence its value is given by

det

(

exp

(

2π
√
−1qmn

l

))

m,n=1,l

=
l
∏

j>h≥1

(

exp

(

2π
√
−1qj

l

)

− exp

(

2π
√
−1qh

l

))

.

We apply the identity

exp(
√
−1x) − exp(

√
−1y) = 2 sin

(

x − y

2

)

exp
(√

−1
x + y

2

)

,

to transform each member of the last product into

exp

(

2π
√
−1qj

l

)

− exp

(

2π
√
−1qh

l

)

= 2
√
−1 sin

(

π(h − j)q

l

)

exp(
π
√
−1(h + j)q

l
).

The phase has now two contributions: that from the sign of the product of sinuses and that from
the rest. The latter gives

πl(l − 1)

2
+

∑

l≥j>h≥1

π(j + h)q

l
=

πl(l − 1)

2
+

πq(l2 − 1)

2
.

The contribution of the sinuses product is

e = (−1)
l(l+1)

2

l
∏

j>h≥1

sgn sin

(

πq(h − j)

l

)

,

after we inverted the order of h and j. Now the argument πq(h−j)
l

is going all over the set {πq
l
, π2q

l
, ..., πq(l−1)

l
},

each value πqr
l

being taken exactly (l − r) times. But the sign of sin πqr
l

is given by (−1)[
qr

l ], so that

e = (−1)h(q,l).

An elementary analysis shows that exp(π
√
−1q(l−1)

2
) ∈ Rql,l, and our claim follows.2

The computation of d is by now straightforward.2
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3.2. The lens spaces La,1

We may restrict ourselves, when working with lens spaces, to the case when 0 < 2b < a (see
[5, 15]) since La,b is homeomorphic to L∗

a,a−b. It is also known that π1(La,b) = Z/aZ. Then La,b is
homeomorphic to La,b′ if and only if b′ = εb(mod a) or bb′ = ε(mod a) where ε ∈ {−1, 1}. Further the
homeomorphism preserves the orientation only if ε = 1. Also there exists a homotopy equivalence
between La,b and La,b′ if and only if b′ = εn2b(mod a) for some integer n, and again, the homotopy
equivalence map preserves the orientation if and only if ε = 1.

Let us denote by G(u, v) the Gauss sum

G(u, v) =
∑

x∈Z/vZ

exp(
2π

√
−1ux2

v
).

According to [21], p.85-91 (there are some errors which can be fixed easily) the value of the Gauss
sum is

G(u, v) = dG(
u

d
,
v

d
), if g.c.d.(u, v) = d,

and for g.c.d.(u, v) = 1 we have

G(u, v) =















ε(v)
(

u
v

)√
v for odd v

0 for v = 2(mod 4)

ε(u)
(

v
u

) (

1+
√
−1√
2

)√
2v for v = 0(mod 4).

.

Here
(

u
v

)

is the Jacobi symbol and

ε(a) =

{

1 if a = 1(mod 4)√
−1 if a = 3(mod 4).

Remember that the Jacobi (or the quadratic) symbol
(

P
Q

)

is defined only for odd Q by the recurrent
formula

(

P

Q

)

=
s
∏

i=1

(

P

qi

)

,

where Q = q1q2...qs is the prime decomposition of Q, and for prime q the quadratic symbol (also
called the Legendre symbol in this setting) is

(

P

q

)

=

{

1 if P = x2(mod q)
−1 otherwise.

The quadratic symbol verifies the following reciprocity law

(

P

Q

)

(

Q

P

)

= (−1)
P−1

2
Q−1

2 ,

in the case when both P and Q are odd.

PROPOSITION 3.2. If g.c.d.(a, k) = 1 then

fp,k(La,1) = 1 ∈ C/Rk,p.

13



Proof. Denote

[

1 a
0 1

]

by t(a). Consider now the classical expansion in continued fraction ([14]):

b
a

= {−a1, a2, ..., (−1)mam}, (−1)mam ≥ 2, (−1)jaj > 0 for all j.

LEMMA 3.2. There exist some natural numbers c, d ∈ Z satisfying the Diophantine equation

bd − ac = 1, such that

[

a d
b c

]

may be decomposed as follows

(−1)[
m+1

2 ]τt(a1)τt(a2)τ...τ t(am)τ.

where the right brackets state for the integer part.

Proof of the lemma: It suffices to prove that
[

a d
b c

]

=

{

s(−a1)t(a2)s(−a3)...s((−1)mam) for odd m
s(−a1)t(a2)s(−a3)...t((−1)mam)τ otherwise,

where

s(a) =

[

1 0
a 1

]

= −τt(−a)τ.

This well-known arithmetical result can be proved by recurrence. We omit the details.2
In our proposition we considered b = 1. We have then:

−kρ1(s(a))mn =
k
∑

r=1

exp

(

−π
√
−1(2(n + m)r + ar2

k

)

=

= exp

(

π
√
−1(n + m)2a∗

k

)

k
∑

r=1

exp

(

−π
√
−1a(r + (n + m)a∗)2

k

)

,

where aa∗ = 1(mod k) and thus a∗ is well-defined in Z/kZ. We remark that the value of the sum
does not change when we consider the sum over any other subset S of Z/2kZ, which has k elements
and maps onto Z/kZ under the natural morphism Z/2kZ → Z/kZ. This is a consequence of the
equality (r + k)2 = r2(mod 2k), for even k. Furthermore

k
∑

r=1

exp

(

−π
√
−1a(r + (n + m)a∗)2

k

)

=
k
∑

r=1

exp

(

−π
√
−1ar2

k

)

=
1

2

2k
∑

r=1

exp

(

−π
√
−1ar2

k

)

.

We obtained this way

ρ1(s(a))mn = −k−1

2
exp

(

π
√
−1(n + m)2a∗

k

)

G(−a, 2k).

We have to compute now the determinant of the submatrix corresponding to m, n divisible by p.
Although a∗ ∈ Z/kZ an expression like exp(πr

√
−1a∗

l
) makes sense since we may consider a∗ also

as an element of Z/lZ using the canonical reduction mod l morphism Z/kZ → Z/lZ. Then the
determinant to compute reads:

det

(

exp

(

π
√
−1p(n + m)2a∗

l

))

m,n=1,l

= det

(

exp

(

π
√
−1p(a∗n2 + a∗m2 + 2a∗mn)

l

))

m,n=1,l

=

l
∏

n=1

exp

(

π
√
−1pa∗n2

l

)

l
∏

m=1

exp

(

π
√
−1pa∗m2

l

)

det

(

exp

(

2π
√
−1pa∗mn

l

))

m,n=1,l

=

exp

(

2π
√
−1pa∗(l + 1)(2l + 1)

6

)

det

(

exp

(

2π
√
−1pa∗mn

l

))

m,n=1,l

.
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Now the matrix (exp( 2π
√
−1pa∗mn

l
))m,n is invertible if and only if pa∗ is invertible, when considered in

Z/lZ. We know already that g.c.d.(p, l) = 1 (since the invariants are defined) and that g.c.d.(a, k) =
1. This shows that indeed pa∗ is invertible, and so, from lemma 3.1 we derive that

fp,k(La,1) = (−1)l+h(pa∗,l)−h(p,l) k
−l/2

2l
G(−a, 2k)l ∈ C/Rk,p,

because exp( 2π
√
−1pa∗(l+1)(2l+1)

6
) ∈ Rk,p. Furthermore 2k = 0(mod 4) because k is even, and thus we

have to replace above the explicit value of the Gauss sum to obtain the claimed result. 2

PROPOSITION 3.3. Let assume that a = −va0, k = vk0, with gcd(a0, k0) = 1, v > 1 and even
a0k0.

• Suppose now that v divides p, so that v0 = v/g.c.d.(p, v) = 1. We have then:

fp,k(La,1) = λvl/2,(15)

where

λ = exp

(

−π
√
−1

(

2p0a
∗
0(l + 1)(2l + 1)

6
+

p0(l − 1)

2

))

,(16)

and p0 = p/g.c.d.(p, v).

• Assume that v0, which is a divisor of l, verifies v0 = l. Then

fp,k(La,1) = vl/2l−l/2.(17)

holds.

Proof. We begin with

LEMMA 3.3. Assume that a = −va0, k = vk0, with g.c.d.(a0, k0) = 1 and v > 1. Then the entry
ρ1(s(a))mn has the following form:

• For even a0k0,

ρ1(s(a))mn =

{

−k−1v
∑k0

r=1 exp
(

−π
√
−12sr+a0r2

k0

)

if n + m = sv,

0 if n + m 6= 0(mod v).

• For odd a0k0,

ρ1(s(a))mn =

{

−k−1v
∑k0

r=1 exp
(

−π
√
−1 sr+a0r2

k0

)

if n + m = sv1 with odd s,

0 otherwise.

Proof of the lemma. We have from the definition that ρ1(s(a))mn is equal to:

−k−1
k
∑

r=1

exp

(

−π
√
−1

2(n + m)r + ar2

k

)

=
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= −k−1
v−1
∑

j=0

k0
∑

r=1

exp

(

−π
√
−1

2(n + m)(r + jk0) + a(r + jk0)
2

k

)

=

= −k−1
v−1
∑

j=0

exp

(

−π
√
−1

2(n + m)jk0 + ak2
0j

2

k

)

k0
∑

r=1

exp

(

−π
√
−1

2(n + m)r + ar2 − 2ak0rj

k

)

=

= −k−1
k−1
∑

j=0

exp

(

−π
√
−1

2(n + m)jk0

k
+ a0k0j

2

)

k0
∑

r=1

exp

(

π
√
−1

2(n + m)r + ar2

k

)

.

For even a0k0 we use the identity

v−1
∑

j=0

exp

(

2π
√
−1Nj

v

)

=

{

v if N = 0(mod v),
0 otherwise.

and see that the first sum is zero unless n+m = sv for some s ∈ Z. When replacing it in the second
sum we find

ρ1(s(a))mn =

{

−k−1v
∑k0

r=1 exp
(

−π
√
−12sr+a0r2

k0

)

if n + m = sv,

0 if n + m 6= 0(mod v).

For odd a0k0 the factor exp(π
√
−1a0k0j

2) is alternatively 1 and -1. Moreover since k is even then
v = 2v1 must be even too. We compute first

v−1
∑

j=0

(−1)j exp

(

2π
√
−1Nj

v

)

= 2
v1−1
∑

j=0

exp

(

2π
√
−12Nj

v

)

−
v−1
∑

j=0

exp

(

2π
√
−1Nj

v

)

.

When N = 0(mod v) the first sum is v/2 and the second is v so that their total contribution is 0. If
N 6= 0(mod v1) then both sums are vanishing. The only possibility left is N = sv1 with odd s when
the first sum is v/2 and the second is 0. Then summing up

v−1
∑

j=0

(−1)j exp

(

2π
√
−1Nj

v

)

=

{

v if N = sv1 with odd v,
0 otherwise.

It follows then that for odd a0k0 the entries are;

ρ1(s(a))mn =

{

−k−1v
∑k0

r=1 exp
(

−π
√
−1 sr+a0r2

k0

)

if n + m = sv1 with odd s,

0 otherwise.

This establishes the lemma.2
Let us denote by a∗

0 the inverse of a0 mod k, so that a0a
∗
0 = 1(mod k0).

Assume we have an even a0k0 and that v divides p. The sum of quadratic exponentials can be
expressed as a Gauss sum, as we did before in the proof of proposition 3.2. Then the entries of the
submatrix ρ1(s(a))pm,pn are all nonzero and given respectively by

−k−1v
1

2
G(a0, 2k0) exp

(

−π
√
−1

a∗
0p0(m + n)2

l

)

.

We know that g.c.d.(a0, k0) = 1 so that either a0 is even and k0 odd, or else a0 is odd and k0 is even.
In the former case

G(a0, 2k0) = 2G(
a0

2
, k0) = 2ε(k0)

(

a0

2k0

)

√

k0,
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in the latter

G(a0, 2k0) = ε(a0)

(

2k0

a0

)

(1 +
√
−1)

√

2k0.

The determinant can be therefore computed using the same method as in lemma 3.1. and find then

det(ρ1(s(a)pm,pn)m,n=1,l = λ(−1)l+h(−p0a∗

0 ,l)l−l/2vlk−l 1

2l
G(a0, 2k0)

l(18)

where

λ = exp

(

−π
√
−1

(

2p0a
∗
0(l + 1)(2l + 1)

6
+

p0(l − 1)

2

))

.(19)

In general we cannot get rid of this term λ which is a 12-th root of unity. Now the value of the
invariant is that claimed in the first part of the proposition when mod out the Rk,p indeterminacy.

Consider further the case when the divisor v0 of l reaches its maximum value, namely v0 = l. We
have p(m + n) = 0(mod v) iff m + n = 0(mod v0), so that the only nonzero entries ρ1(s(a))pm,pn are
those for which m + n = l or m + n = 2l. The determinant of such a matrix is therefore (−1)l(l+1)/2

times the product of all its nonzero entries. In our case this gives (−1)l(l+1)/2 exp(π
√
−1p0(l −

1)(−k−1vG(a0, 2k0))
l. Observe that pl = k0 v0 g.c.d.(v, p) so that p0 = k0. Thus for even k0 we have

(−1)p0(l−1) = 1. This establishes our claim.2

PROPOSITION 3.4. Assume now that a = −a0v, k = k0v, with even a0k0 and additionally
l = 2v0. Then k0 is even, a0 is odd and

fp,k(La,1) = vl/2l−l/2dl,

where

dl = (−1)l 2√
5







(

−3 +
√

5

2

)[ l
2 ]−1

−
(

−3 −
√

5

2

)[ l
2 ]−1





 .

Proof. The associated matrix ρ1(s(a))pm,pn has only four nonzero skew diagonals (i.e. parallel to
the diagonal going from the top right corner to the bottom left corner) and the remaining cases are
filled up with zeroes. Moreover these are equidistant, corresponding to m + n ∈ {v0, 2v0, 3v0, 4v0}.
On each skew diagonal all the elements are the same, and the respective common values are (up
to a factor of −k−1vG(a0, 2k0)) α =

√
−1, β = 1, γ =

√
−1, δ = 1. Here we used the fact that

a∗
0p0 is odd. In fact we know that k = k0v = pl, g.c.d.(p, l) = 1 and g.c.d.(a0, k0) = 1. Then

k0 = pl/v = p0l/v0 = 2p0 is even, so that a0 must be odd, since relatively prime with k0. Also l even
implies p odd henceforth p0 is odd. Choose a lift a∗

0 of a∗
0 in the first k0 integers (we will use the

same letter from now on for such lifts); then a0a
∗
0 = 1 + tk0 so a∗

0 is odd.
Let us consider the determinant Dl of the l by l matrix having three equidistant skew diagonals

filled up with α, β, γ respectively, and corresponding to m + n ∈ {
[

l
2

]

, l, 2l −
[

l
2

]

}. Set dl for the

determinant we want to compute, and which has four skew diagonals (the last one is just the bottom
right corner element). For odd l the position of the other diagonals is like that for Dl. Then an easy
induction gives us the recurrence relations:

dl = δDl−1 + γ2Dl−2.

Dl = αγDl−2 + (−1)l−1βDl−1.
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We have then to find out dl for α = γ =
√
−1, β = δ = 1, in a closed form. This can be done as

follows. We have a recurrence relation which can be written as

(Dl, Dl−1) = Al(Dl−1, Dl−2)
>,

where Al =

(

(−1)l−1 −1
1 0

)

. Further we can iterate this formula and get

(D2m, D2m−1) = Bm(D2, D1)
T .

where B = A0A1. We diagonalize B, compute Bm and eventually find that

D2m+2 = − 2√
5

((

−1 +
√

5

2

)(

−3 +
√

5

2

)m

+

(

1 +
√

5

2

)(

−3 −
√

5

2

)m)

,

D2m+1 = − 2√
5

((

−3 +
√

5

2

)m

−
(

−3 +
√

5

2

)m)

.

This establishes our claim.2

PROPOSITION 3.5. For odd a0k0, if v divides p or v/2g.c.d.(p, v/2) = l then

fp,k(La,1) = 0

For odd a0k0 such that v/g.c.d.(p, v/2) = l we have

fp,k(La,1) = l−l/2vl/2.

Proof. For odd a0k0 we want first to compute the elements of the matrix ρ1(s(a))pm,pn. In order
that the entry on the position pm, pn be nonzero we must have p(m + n) = sv1, where v = 2v1 and
odd s. Then k0 is odd and there exists some s′ for which s = 2s′(mod k0) (actually s′ = 2∗s). Notice
that we don’t have any control on the parity of 2∗. We know however that 2s′ = s + µk0 implies µ
is odd and thus:

k0
∑

r=1

exp

(

π
√
−1

sr + a0r
2

k0

)

=
k0
∑

r=1

(−1)r exp

(

π
√
−1

2s′r + a0r
2

k0

)

=

(

exp

(

−π
√
−1a∗

0s
′2

k0

))

k0
∑

r=1

(−1)r exp

(

π
√
−1a0(r + s′a∗

0)
2

k0

)

.

Let us check the value of the last sum, which up to a factor of (−1)s′ = (−1)s′a∗

0 coincides with

k0
∑

r=1

(−1)r exp

(

π
√
−1a0r

2

k0

)

= 2
k0/2
∑

r=1

exp

(

4π
√
−1a0r

2

k0

)

−
k0
∑

r=1

exp

(

π
√
−1a0r

2

k0

)

.

Now k0 is odd k0 = 2k1 + 1, and by switching r into k0 − r we obtain:

k1
∑

r=1

exp

(

4π
√
−1a0r

2

k0

)

=
2k1
∑

r=k1+1

exp

(

4π
√
−1a0r

2

k0

)

,
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from which we derive that

2
k0/2
∑

r=1

exp

(

4π
√
−1a0r

2

k0

)

= G(2a0, k0) − 1.

On the other hand, if we change r into 2k0 − r we derive

k0
∑

r=1

exp

(

πa0r
2

k0

)

=
2k0−1
∑

r=k0

exp

(

πa0r
2

k0

)

,

so that
k0
∑

r=1

exp

(

πa0r
2

k0

)

=
1

2
(G(a0, 2k0) − 1 + (−1)k0).

Now k0 is odd implies that G(a0, 2k0) = 0 and thus for those m, n for which the corresponding entry
is non-zero, we have

−kv−1ρ1(s(a))mn = (−1)s′G(2a0, k0)

(

exp

(

−π
√
−1a∗

0s
′2

k0

))

.

Observe that s′ = 2∗p(m + n)/v1, so that the last term is actually a 2l-th root of unity. Suppose
now that v = 2v1 divides p, or equivalently that v1 divides p and p is even. Then p(m + n) is always
an even number times v1 so that all the entries of the matrix are zero. It follows that the invariant
vanishes in this case.

We discard for the moment the factor −k−1vG(2a0, k0), which is common to all entries of the
matrix.

Let consider v2 = v1/g.c.d.(v1, p). Then p(m+n) = 0(mod v1) is equivalent to m+n = 0(mod v2).
It is possible to have v2 = l and a necessary condition is that the maximal power of 2 which divides
p is at least equal to that corresponding to v. Then we have v2 = v/g.c.d.(v, p). For instance if p is
odd then 2v2 is a divisor of l hence v2 ≤ l/2. It follows that all the non-zero entries sit on the skew
diagonal m+n = l, because m+n = 2l is forbidden. Then the determinant is zero, so the invariants
are zero too.

The following case is 2v2 = l. Then we obtain a determinant of the same shape as dl, which was
considered previously, with the new parameters α = γ = 1, β = δ = 0. The value of this determinant
is then -1, using the recurrence formulas provided above. This ends the proof of the proposition.2

3.3. La,b and generalized Gauss sums

We consider now the general case of lens spaces La,b with b ≥ 2, which we will treat in the same
manner. Let us define the sequences ∆(a1, a2, ..., an) by the recurrence relations

∆(a1) = a1,

∆(a1, a2) = a1a2 − 1,

∆(a1, a2, ..., an+1) = an+1∆(a1, a2, ..., an) − ∆(a1, a2, ..., an−1).

Then it is easy to check out that ∆ = ∆(a1, a2, ..., am) = (−1)[
m+1

2 ]a, ∆(a1, a2, ..., am−1) = (−1)[
m
2 ]d,

∆(a2, a3, ..., am) = (−1)[
m
2 ]b. Assume now a is invertible in Z/2kZ and so there exists an inverse

a∗ ∈ Z/2kZ. Set then:
A = A(a1, ..., am) = ∆∗∆(a2, ..., am),
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B = B(a1, ..., am) = ∆∗∆(a1, ..., am−1).

PROPOSITION 3.6. If a is invertible in Z/kZ then fp,k(La,b) = 1.

Proof. Let us denote by G(Q, n) the generalized Gauss sum G(Q, k) =
∑

rj=1,k exp(2πi
k

Q(r1, r2, ..., rm)),
where Q states for a quadratic form in m variables. If w = (a1, a2, ..., am) set also

Qw(r1, r2, ..., rm) =
∑

j=1,m

ajr
2
j + 2

∑

j=1,m−1

rjrj+1.

We will establish first a weaker claim, namely:

LEMMA 3.4. If a is invertible in Z/kZ, then we have

fp,k(La,b) = p
l
2 k− l(m+1)

2
1

2ml
G(Qw, 2k)l,

where w = (a1, a2, ..., am).

Proof. From lemma 3.2 together with the explicit forms for the matrices ρ1(τ) and ρ1(t(a)) we
derive that:

(−1)[
m+1

2 ]k
m+1

2 ρ1(

[

b c
a d

]

)st =
k
∑

r1,...,rm=1

exp

(

−π
√
−1

k

(

m
∑

i=1

air
2
i + 2

m−1
∑

i=1

riri+1 + 2sr1 + 2rmt

))

so we have to compute the right hand side sum, which is very close to be a generalized Gauss sum.

LEMMA 3.5. If a is invertible mod k then the formula:

(−1)[
m+1

2 ]k
m+1

2 ρ1(

[

b c
a d

]

)st =
1

2m
exp

(

−π
√
−1

k

(

As2 + Bt2 + 2(−1)ma∗st
)

)

G(Qw, 2k).

holds.

Notice that the exponential on the right hand side makes sense since A, B ∈ Z/2kZ.
Proof of the lemma. Let us consider the matrix

L =

















a1 1 0 ... 0 0 0
1 a2 1 0 ... 0 0
0 1 a3 1 0 ... 0
. . . . . . .
0 0 ... 0 0 1 am

















.

Then a recurrence argument shows that ∆(a1, ..., am) = det(L). Since a = −∆ was supposed
invertible mod k (and thereby mod 2k because k is even) there exist solutions λj ∈ Z/2kZ of the
linear equation Lλ = (s, 0, 0, ...0, t)>. Let us check that

Qw(λ) = As2 + Bt2 + 2(−1)ma∗st.
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In fact, we know that Qw(λ) = λ1s + λmt, and λ = L−1(s, 0, ..., 0, t). All we need from the matrix
L−1 are the entries sitting on the corners, which can be easily found

L−1
11 = A, L−1

mm = B, L−1
1m = L−1

m1 = (−1)m+1∆∗.

We can replace the original sum over the integer rj’s with a sum over the first k classes mod 2k, as
we already observed. On the other hand we have

Qw(r + λ) = Qw(r) + 2sr1 + 2trm + Qw(λ) ∈ Z/2kZ,

and thus

∑

rj=1,k

exp

(

−π
√
−1

k
(Qw(r) + 2sr1 + 2trm)

)

=
∑

rj=1,k

exp

(

−π
√
−1

k
(Qw(r + λ) − Qw(λ)

)

=

= exp

(

−π
√
−1

k
(As2 + Bt2 + 2(−1)m+1∆∗st)

)

∑

rj=1,k

exp

(

−π
√
−1

k
Qw(r + λ)

)

=

= exp

(

−π
√
−1

k
(As2 + Bt2 + 2(−1)ma∗st)

)

1

2m
G(Qw, 2k).

This proves the lemma 3.5.2
In the last equality we used the fact that the sum over any k consecutive classes we choose out

of the 2k elements of Z/2kZ is independent on the choice we made.
It remains therefore to compute the determinant of

(

exp

(

π
√
−1

l

(

pAs2 + pBt2 + 2(−1)mpa∗st
)

))

s,t=1,l

.

Here it is understood that A, B, a∗ are reduced mod l. We already encountered such a determinant
in the m = 1 case. Specifically we have

det

(

exp

(

π
√
−1

l

(

pAs2 + pBt2 + 2pCst
)

))

s,t=1,l

= exp

(

−π
√
−1p(A + B)(l + 1)(2l + 1)

6

)

det

(

exp

(

−2π
√
−1pCst

l

))

s,t=1,l

.

Now pa∗ ∈ Z/2lZ must be invertible so from the lemma 3.1 the last determinant equals

(−1)h((−1)mpa∗,l)
√
−1

l(l−1)
2 ll/2 exp(−π

√
−1p(l − 1)

2
).

Since exp(π
√
−1p(A+B)(l+1)(2l+1)

6
) ∈ Rk,p the lemma 3.4. follows. 2

Observe that the generalized Gauss sums G(Q, 2k) may be computed as a product of usual Gauss
sums if the matrix L can be diagonalized over Z/2kZ. Actually the monoid of symmetric (or skew)
bilinear forms over a finite Abelian group was computed by Wall ([32]) for all p-groups with p > 2 and
completed by Kawauchi and Kojima ([19]) for p = 2. Thus G(Q, n) can be, in principle, calculated
but this method is rather cumbersome. Another, more direct, way to calculate it was given in [26].
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Consider L be an arbitrary m-by-m matrix with integer entries, N a fixed natural number and q a
primitive root of unity of order N if N is odd, and of order 2N for even N . Then set, after [26]:

GN(L, q) =
∑

x∈(Z/NZ)m

q<Lx,x>,

where <, > is the standard scalar product. Notice that for even N the scalar product is a map

<, >: (Z/NZ)m × (Z/NZ)m −→ Z/2NZ,

and thus the sum is well-defined. In our case, since k is even, we have

G(< Lx, x >, 2k) = 2mGk(L, exp

(

π
√
−1

k

)

).

Furthermore the absolute value of this more general Gauss sum is easy to compute (suppose N is
even from now on):

| GN(L, q) |2 = Nm
∑

x∈kerL

q<Lx,x>.

Let ϕ be the restriction of the quadratic function < Lx, x > at ker L : Z/NZ −→ Z/NZ, so that
ϕL : ker L −→ {0, N} ⊂ Z/2NZ (q is a 2N -th root of unity). We have then

| GN(L, q) | =

{

Nm/2 | ker L |1/2 if ϕL = 0
0 otherwise.

If L is a symmetric matrix there exists a (framed) link L whose linking matrix is L and the 3-manifold
ML obtained by Dehn surgery on L has the linking matrix L. According to the interpretation given
in [26] we have

| ker L | = | H1(ML,Z/NZ) |,
and ϕL = 0 if and only if α ∪ α ∪ α = 0, for any α ∈ H1(ML,Z/NZ).

On the other hand it is shown that the phase of GN(L, q) is always an eighth root of unity φN(L, q).

Moreover the value φN(M) = φN(L, q)λ
−σ(L)
k is a homotopy invariant, of the 3-manifold M = ML in

terms of the linking matrix L, which generalizes the Brown invariant. Its explicit computation rely
on the formula

GNK(L, q) = GN(L, qK2

)GK(L, qN2

),

which permits first to work out only the cases N = pr, and further to use the stable decomposition
of L into standard components over p-groups, in order to reduce the computation to that of the
generators of the module of bilinear forms. We won’t be concerned with this final evaluation of φk

which is explicit in [26]. This proves the proposition.2
Let us introduce the more general Gauss sums depending on a parameter α ∈ (Z/kZ)m

Gk(L, q)α =
∑

x∈(Z/kZ)m

q<Lx,x>+2<α,x>,

for even k, a primitive 2k-th root of unity q and a symmetric bilinear form L. These sums are the
entries of the matrix ρ1(τt(a1)τ...τ) for the particular αst = (s, 0, 0, ..., 0, t).

Let us begin to compute the absolute value of these:

| GN(L, q)α |2=
∑

x,y∈(Z/kZ)m

q<Lx,x>+2<α,x>−<Ly,y>−2<α,y> =
∑

z∈(Z/kZ)m

q<Lz,z>+2<α,z>
∑

y∈(Z/kZ)m

q2<Lz,y>,
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where z = x − y. It is known that

∑

x∈(Z/kZ)m

q2<α,x> =

{

km if α = 0
0 otherwise.

It follows that the relevant terms in the sum are those for which z ∈ ker L, and then it transforms
into

km
∑

x∈kerL

q<Lz,z>+2<α,z> = km
∑

x∈ker L

χL(z)q2<α,z>,

where
χL(z) = qϕL(z) : ker L −→ {−1, 1}.

Assume first that ϕL = 0.

LEMMA 3.6. If M ⊂ (Z/kZ)m is a Z/kZ-submodule then

∑

x∈M

q2<α,x> =

{

| M | if < α, M >= 0
0 otherwise.

Proof of the lemma. Let Xi be an orthogonal basis for M . Then the sum to be computed
transforms into

∏

i

∑

zi

q2zi<a,Xi>,

which is non-zero, from the 1-dimensional statement, only if < a, Xi >= 0 for all i. 2

Let denote for a submodule M as above by M⊥ the orthogonal submodule formed by those of α
which satisfy < α, M >= 0. As a consequence we derive that, for ϕL = 0 we have:

| Gk(L, q)α | =

{

km/2 | ker L |1/2 if < α, ker L >= 0
0 otherwise.

Consider now the case when ϕL 6= 0. We need more information on the character χL. Set W =
{x; χL(x) = 1} and V = {x; χL(x) = −1}, and pick up some µL ∈ V .

LEMMA 3.7.

1. The function χL is multiplicative, namely χL(z + t) = χL(z)χL(t);

2. W is a Z/kZ-submodule;

3. V = µl + W .

The proof is immediate.2
The sum to compute is therefore

km
∑

x∈kerL

χL(z)q2<α,z> = km
∑

x∈W

q2<α,z> − km
∑

x∈V

q2<α,z> = km
∑

x∈W

q2<α,z>(1 − q2<µL,α>).

The result is a real number, and this forces q2<µL,α> ∈ {−1, 1}. Therefore the previous lemmas give
in the case when ϕL 6= 0

| Gk(L, q)α | =

{

km/2(2 | W |)1/2 if < α, W >= 0, 2 < α, V >= k(mod 2k)
0 otherwise.
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Observe that | W | = | V |, so that 2 | W | = | ker L |. Thus, when non-zero, all the absolute
values | Gk(L, q)α | are the same.

Let work out now the phase φ(L, q)α of Gk(L, q)α. Assume first that ϕL = 0. Then the only
nonzero terms are those for which α ∈ ker L⊥.

LEMMA 3.8. We have ker L⊥ = Im L, where Im L is the image of L.

Proof. It is a general fact that Im L ⊂ ker L⊥. In fact x = Ly implies < x, ker L >=<
Ly, ker L >=< y, L kerL >= 0. Let then Aij be (−1)i+j times the complementary minor of the
element sitting in the ji position. We can suppose that det L 6= 0 (over Z), because this happens in
the case of lens spaces. If g.c.d.(det L, k) = v then a description of Im L is provided by:

Im L = {x;
∑

j

Aijxj = 0(mod v), i = 1, m}.

Furthermore if A is the matrix made of the Aij then LA = det L1m. Let ei = (Ai1, Ai2, ..., Ain).
Then k

v
ei ∈ ker L. Consider x ∈ ker L⊥. Then < x, k

v
ei >= 0, and thus

∑

j
k
v
Aijxj = 0(mod k). This

implies x ∈ Im L according to the previous description of the image. Therefore ker L⊥ ⊂ Im L, and
the claim is proved.2

Then the non-zero GN (L, q)α correspond to α ∈ Im L. Choose some zα for which Lzα = α.

LEMMA 3.9. If ϕL = 0 and α ∈ ker L⊥ then

φk(L, q)α = q−<α,zα>φk(L, q)0.

Proof. The same argument which we used in the proof of lemma 3.4. applies word-by-word now.
2

LEMMA 3.10. Assume that ϕL 6= 0, α, β verify < α, W >=< β, W >= 0 and 2 < α, V >= 2 <
β, V >= k(mod 2k), so that Gk(L, q)α, Gk(L, q)β are nonzero. Then

φ(L, q)α = q−<zα−β ,β>φ(L, q)β,

where Lzα−β = α − β.

Proof. We have

Gk(L, q)αGk(L, q)β =
∑

x,y∈(Z/kZ)m

q<Lx,x>+2<α,x>−<Ly,y>−2<β,y> =

∑

z∈(Z/kZ)m

q<Lz,z>+2<α,z>
∑

y∈(Z/kZ)m

q2<Lz+a−b,y>.

We have < α − β, ker L >= 0, and thus there exists zβ−α such that Lzβ−α = β − α. Therefore we
obtain

km
∑

z∈zβ−α+ker L

q<Lz,z>+2<α,z> = kmq<zβ−α,β>
∑

z∈kerL

q<Lz,z>+2<β,z> = q<zβ−α,β>km2 | W | .

Now the lemma follows.2
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Let consider now, for ϕL = 0:

Yst(L, q) =

{

q−<zαst ,αst> if αst ∈ ker L⊥

0 otherwise.

Y (L, p, q) = (Yps,pt(L, q))s,t=1,l.

If ϕL 6= 0 then put in a similar way:

Yst(L, q) =

{

q−<zαst−u,αst> if αst ∈ W⊥, 2 < αst, V >= k(mod 2k)
0 otherwise.

Y (L, p, q) = (Yps,pt(L, q))s,t=1,l.

where u is a fixed element satisfying < u, W >= 0, 2 < u, V >= k(mod 2k). Then in order to
compute the invariant it remains to find out the determinant of Y (L, p, q). We did not succeeded in
having a general close formula for this determinant, but we can give an alternative form for Y which
is considerably simpler. We resume the calculations only for lens spaces.

LEMMA 3.11. Set ql = qp and assume that ϕL = 0. Then, for lens spaces we have

Y (L, p, q) =







q
−a∗

0p0(
bs+(−1)m+1t

v0
s+

(−1)m+1s+dt

v0
t)

l if bs + (−1)m+1t = 0(mod v0)
0 otherwise.

Proof. We have to identify first {(s, t); αst ∈ Im L} and {(s, t); bs+(−1)m+1t = 0(mod v)}. Let L′

be the matrix obtained from L by deleting the last row and the last column. Then det(L′) = d, as we
remarked before, and g.c.d.(d, v) = 1 since bd−ac = 1. If x(r) is the solution in Z/vZ of the equation
L′x(r) = (s, 0, ..., 0, r), then y = (x(r),−amx(r)m−1) is a solution of Ly = (s, 0, ..., 0, (−1)mbs). This
settles the case when k = v. If k0 6= 1 we set x = y + zv, where y are viewed as integers and
z ∈ Z/k0Z. The equation Lx = (s, 0, ..., (−1)mbs + vt′), viewed as an equation in z has therefore
solutions since det L = a. This proves one inclusion between the two sets. The necessity of the
condition bs+(−1)m+1t = 0(mod v) follows from the form of the corner entries in the inverse matrix
L−1 (over Z). We have furthermore

zαst
= (a∗

o

bs + (−1)m+1

v
, ∗, ∗, ..., ∗, a∗

0

(−1)m+1 + dt

v
),

and now the lemma follows.2

LEMMA 3.12. For lens spaces ϕL 6= 0 is equivalent to a0k0 odd, and consequently v is even,
v = 2v1. Assume that ϕL 6= 0, u = αs0t0 . Then

Y (L, p, q) =







q−a∗

0p2(
bs′+(−1)m+1t′

v
s+

(−1)m+1s′+dt′

v
t) if bs + (−1)m+1t = rv1, odd r

0 otherwise.

Here s′ = s − s0, and t′ = t − t0.

Proof. It is a consequence of the previous proof.2
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PROPOSITION 3.7. We have

fp,k(La,b) = g.c.d.(a, k)ldet(Y (L, p, q)).

Proof. It suffices to identify now (see [26]) ker L and H1(ML,Z/kZ). 2

Notice that we computed these determinants for small values of l/v0 in propositions 3.3-3.5.

Remark 3.1. L7,2 is not distinguished from L7,3 by the fp,k’s. More generally, assume that σ is a
permutation which preserves the set {1, m}, and we have a

b
= {a1, ..., am}, and a′

b′
= {aσ(1), ..., aσ(m)}.

Then we have the equality fp,k(La,b) = fp,k(La′,b′), for any p, k. In particular we cannot expect this
set of invariants fp,k to lead to a classification of lens spaces.

Proof. We remark that the symmetry of the situation will imply that fp,k(L7,2) = fp,k(L7,3), for
all k, p. This is a consequence of the relation fp,k(M

∗) = fp,k(M), and the reality of fp,k for lens
spaces. The most general case follows from the fact that those permutations fixing 1 and m are
symmetries of the quadratic form Qw + 2sr1 + 2rmt, and those interchanging 1 and m change the
matrix into its transpose.

Remark 3.2.

1. We have fp,k(M]N) = fp,k(M)fp,k(N) and fp,k(M
∗) = fp,k(M), where the bar in the right

member denotes the complex conjugation.

2. Every homology sphere could be obtained by twisting the homeomorphism corresponding to
the standard Heegaard decomposition of genus g of S3 by an homeomorphism lying in the
Torelli group ker(Mg → Sp(2g,Z)), (see [3]). Therefore our invariants are trivial for integer
homology spheres.

3.4. Other manifolds

It is known that fk,k can be defined in terms of the linking matrix associated to a Dehn surgery
presentation of the 3-manifold.

The computations made for lens spaces involve only the linking matrix L associated to a surgery
presentation of La,b. We would like to know if there exists such a description of fk,p, in terms
only of the linking matrix for arbitrary manifolds. The straightforward way to do that is to use
the determinant d(L) = det(Gk(L, q)αps,pt

)s,t=1,l, with a certain normalization factor depending on
m, k, l, σ(L). The interesting point is that, in general d(L⊕ (1)) = 0 if g.c.d.(det(L), k) > 1. In fact,
we saw before that the non-zero entries are precisely those for which αst ∈ ker L⊥, if ϕL = 0. Then
αst ∈ ker(L⊕(1))⊥ (here αst has m+1 components) is equivalent to arbitrary t and the m-component
αs0 ∈ ker L⊥. For generic L the last condition singles out values of the type s = 0(mod v). This
means that the matrix associated to L ⊕ (1) has rows filled up with zeroes, thus its determinant
vanishes. Thus the method from [26] cannot be applied in this context in this straightforward way.

However the invariants of type fk,k had a canonical extension to cobordisms between parametrized
surfaces. Let (M, F, F ′) be a 3-dimensional cobordism with connected M , and parametrized (or
rigid) boundaries F and F ′ which are supposed to be connected, of genera g and g ′ respectively. Let
consider 3-valent framed graphs G, G′ and a framed link L, all embedded in S3, such that (G, G′, L)
represent a generalized Dehn surgery presentation of the cobordism (M, F, F ′). This means that M is
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diffeomorphic to ML − (int(N(G))∪ int(N(G′)), where ML is the manifold obtained by Dehn surgery
on L, N means the tubular neighborhood. The boundaries of the tubular neighborhoods are naturally
parametrized by the graph framings, and it is required that this and the former parametrizations
coincide.

Let then A be the linking matrix of G̃∪L∪ G̃′, where G̃ is the link obtained from the loops of the
graph G slightly deformed by the framing. Then G̃, L, G̃′ have respectively g, n, g′ components. We
have also a natural induced basis on the spaces Vg(k) and Vg′(k), given by the theta functions from
the introductions. Therefore the basis correspond to indices in Zg and Zg′ . The invariant associated
to the cobordism is then a linear mapping from Vg(k) to Vg′(k). In terms of the theta basis the
invariant considered in [26] (and extending fk,k) is given by the matrix:

Z(M, k)h,h′ = c(A)
∑

l∈Z/kZ

exp

(

2π
√
−1

k
< A(h′, l, h), (h′, l, h) >

)

,

where c is a normalization factor

c(A) = G(1, k)−σ(A) | G(1, k) |−n− g

2
− g′

2
+σ(A) .

Thus (up to a 8-th root of unity) we can compute also the representation ρg using the invariant
associated to the mapping cylinder, in terms of the linking matrix associated.

Let consider now a closed 3-manifold M with a Heegaard splitting which we write M = H ∪
C(ϕ)∪ H̄. This means we have two handlebodies H and H̄ and we inserted the cylinder C(ϕ) of the
gluing map ϕ on ∂H. Consider therefore a Dehn presentation of C(ϕ) having trivial framings on the
boundaries. Choose for instance two copies of the graph G, the spine of H and an intermediary link
L. Notice that G̃ ∪ L ∪ G̃′ is a link presentation for M , and thus the matrix A is nothing but the
linking matrix of this presentation. However it is not only the plain linking matrix which is needed,
but also the more subtle decompositions of A into blocks. Since we have the trivial framings on the
boundaries we have a linking matrix

A =







0 U 0
U> L V
0 V > 0







where the blocks U and V correspond to the linking matrices of L with G̃, and L with G̃′ respectively.
Therefore the matrix Mh,h′ = ρg(ϕ∗) is given by

Mh,h′ = c(A) G

(

L, exp(
2π

√
−1

k
)

)

I(h,h′)

,

where
I(h, h′) = U>h′ + V h.

It follows that:

PROPOSITION 3.8. For an arbitrary closed 3-manifold M the invariant fp,k can be expressed as
follows:

fp,k(M) = d−gc(A)k1−g

det



G

(

L, exp(
2π

√
−1

k
)

)

I(ph,ph′)





h,h′∈p(Z/kZ)g

.
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The proof follows from the definition of the fp,k. Remark that although L is a block in the linking
matrix A it is not clear if it can be retrieved only from A. For instance assume that a suitable linking
matrix is choosed such that A has the required form: the surgery link contains two trivial copies of
g unlinked circles. Does this matrix come then from a Heegaard splitting ? In general the answer is
negative. A necessary condition is that L should be unimodular, because it describes the mapping
class group representation.

4 . COMMENTS

Consider A an Abelian variety with a principal polarization ω. Then for a positive line bundle
L −→ A with first Chern class ω we have, according to [13] h0(A,O(L)) = 1. Moreover H0(A,O(L))
is generated by the classical theta function θ. Therefore the divisor θ is determined up to translation
by (A, ω). Let now Sg be the Siegel space and Ω ∈ Sg. Then (1, Ω) determine a lattice in Cg, hence
an Abelian variety AbΩ which has a natural principal polarization given by the ample line bundle LΩ.
Now it is known that LΩ’s glue together i.e. they can be viewed as the fibers of a line bundle L −→ Sg

over the Siegel space (see [16, 33, 34]). If Vg(k)(Ω) = H0(AbΩ, L⊗k
Ω ) then Vg(k)(Ω) are also the fibers

of a vector bundle Vg(k) over Sg. Next a local frame for Vg(k) is provided by the theta functions of
level k. Now a result of Welters extended to the non-Abelian case by Hitchin ([16, 33, 34]) asserts
that Vk has a projectively flat connection. This follows from the fact that θm are global solutions
of the heat equation: we identify the tangent space of Sg with the space of symmetric tensors (as
any symmetric tensor give a deformation of the Kahler polarization of a torus). Therefore in this
trivialization the heat operator takes the form

∂Ωst
+

√
−1

4πk
∂2

zszt
.

Thus θm are the covariant constant sections of this connection. Now the vector bundle Vk −→ Sg

support the action of Sp(2g,Z). With respect to this action the above connection is not natural. If
we modify θm as is done in [25] for the case when k equals one, we can obtain a natural connection
on Vg(k) whose covariant constant sections are the modified theta functions. This is explained by
the factor

det(CΩ + D)1/2 exp(π <
√
−1z, (CΩ + D)−1Cz >)

appearing in the equation (5).
However this connection is not flat but only projectively flat. Hence if we compute the holonomy
of this connection (more precisely of the induced connection on the moduli space of principally
polarized Abelian varieties) using the theta functions of level k, we shall obtain not a linear but a
projective unitary representation of the symplectic group. This gives a geometric interpretation for
the messy factor ζγ ∈ R8 ( see also [1]). By choosing carefully the multiplier system ζγ we may lift
the projective representation to a linear representation ρg of a central extension of the symplectic
group. The invariants for 3-manifolds which we derived are defined up to a root of unity lying in Rk,p.
It seems that this ambiguity can be removed by adding a supplementary structure on the 3-manifold
M3, for instance a spin structure.
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