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ABSTRACT. In this paper we construct stable homotopy version of Seiberg-Witten
invariant. The construction is given for families of any closed oriented 4-manifolds
parameterized by compact spaces. As an application we show a divisibility of Seiberg-
Witten invariant for non-simple type 4-manifolds.

61. INTRODUCTION.

Let X be a 4-dimensional oriented closed manifold with a spin®-structure. For
simplicity we assume that the first Betti number b; of X is 0. The Seiberg-Witten
invariant is defined as the fundamental homology class of the moduli space of the
monopoles associated with the spin®-structure. Strictly speaking the invariant is
well defined when (1) the rank b of a maximal positive definite subspace H*(X) of
H?(X,R) is odd and larger than 1, and (2) one of the two orientations of HT(X)
is fixed. We denote by as 2p + 1. The formal dimension of the moduli space is
even when b; = 0 and b4 is odd. If we write 2d for the formal dimension, then
the Seiberg-Witten invariant is valued in Hyq(CP>,Z), which is isomorphic to Z
when d > 0. The invariant is zero when d < 0. The following problem is due to
E. Witten [7].

Problem. Is the Seiberg- Witten invariant zero when d > 0%

A 4-manifold satisfying this property is called a simple type manifold. In this
paper we show that when d > 0, there is a restriction on the possible values of the
Seiberg-Witten invariant. To state our result, we need to introduce the coefficients
of the following Taylor expansion:
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Theorem(1.1). When d > 0, the Seiberg- Witten invariant is divisible by the de-
nominators of ap1,ap 2, -, and ap 4.

Note that an integer is zero if and only if it is divisible by every nonzero integers.
So integrality theorems like Theorem(1.1) could be regarded as a small step for the
problem.

On the other hand, when b, = 1 the Seiberg-Witten invariant depends on cham-
bers. It is known, from the wall crossing formula, that there are examples which
have non-zero Seiberg-Witten invariant for some positive d. The above divisibility
still holds in this case for any chamber.

D. Ruberman pointed out to the author that the integrality of L-genus of the
moduli space of monopoles implies a divisibility of the Seiberg-Witten invariant.

What we actually do is to give a refinement of the Seiberg-Witten invariant

as a certain stable homotopy class, which is constructed by using a finite dimen-
sional approximation of the map defined by the monopole equation.

When X is spin and the spin®-structure is the one derived from a spin structure
of X, then the construction of the stable homotopy class is given in [5]. One
purpose of the present paper is to show that the construction is extended to any
spin‘-structure.

The second purpose of this paper is to give a definition of the refinement for
a general setting. We consider the case when b; is not necessarily zero. We also
extend the construction to families of oriented closed 4-manifolds parameterized by
compact spaces. The stable homotopy class is well defined for any such family. For
example, it is defined for a family of homotopy 4-spheres.

The well-definedness of the stable homotopy class could be regarded as a topo-
logical version of an argument showing that renormalization groups preserve expec-
tation values.

We obtain the original Seiberg-Witten invariant when we detect the stable ho-
motopy class by using the ordinary cohomology theory. If we use K-theory instead
of the ordinary cohomology theory, then we obtain a K-theory version of Seiberg-
Witten invariant. The K-theory version is related to the original invariant through
a map defined by Chern character with Todd class as correction term. Abstractly,
the Chern character gives rise to two lattice structures on a certain single vec-
tor space over Q, and the two invariants, each of which sits on the corresponding
lattice are identified with each other. Then measuring the difference of the two
lattices implies a property of an integrality of the identified invariants. The differ-
ence is described by the Todd class which appears when the Thom classes in the
two cohomology theories are compared. The formal power series mentioned above
is essentially equal to the Todd class of a vector bundle over CP°°. This kind of
argument is standard in applications of K-theory ([1],[2]).

In [3] S. Bauer independently defined stable homotopy version of the Seiberg-
Witten invariant and gave applications to topology of algebraic surfaces.

In Section 2, We recall the monopole equation. In Section 3, we give the def-
inition of the refinement of the Seiberg-Witten invariant in Section 3 by using a
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finite dimensional approximation of the monopole equation. In Section 4, we use
cohomology theories to explicitly detect the refined invariant and see that it is in
fact a refinement. In Section 5, we compare the ordinary cohomology with the
K-theory. We use the assumptions, b1(X) = 0 and b4 (X) > 1, only in Sections 4
and 5.

§2. MONOPOLE EQUATION.

In this section we formulate the monopole equation for a spin®-structure of X
in a line following [5]. Let H be the quaternion numbers, Sp; the group of the
quaternions with norm 1 and S*! the intersection of Sp; with C in H.

We define five Spin§-modules _H,, ;H, _H, . H, and C as follows. As real
vector spaces, the first four modules are just four copies of H. The actions of
(q_,qy,2) € Spin§ = (Sp1 x Sp1 x SY)/{(1,1,1,)(-1,-1,—-1)} on @ € _H,
¢ €  H, 9 € _Hand w e (H, are defined by q_aq, ™!, qr¢2z71, q_1z~! and
qywqy ! respectively. The last one is a complex one-dimensional representation C
defined by the multiplication of 22.

Let X be a closed 4-manifold. For a principal Spin§-bundle P on X, we have
five associated vector bundles T, St,S~, A and L from the Spin§-modules _H,
_|_H, _H, _|_H+ and C.

Suppose we are given a pair of a principal Spin§-bundle P and an isomorphism
TX = T. Then, since T" has a natural orientation and a natural Riemannian
metric, the pair induces an orientation and a Riemannian metric of X. We call the
homotopy class of (P,TX = T) a spin®-structure.

The Spin§-equivariant map _H, x H — _H defined by (a, ¢) — a¢ induces
the Clifford multiplication C: T ® S* — S~. Similarly the SpinS-equivariant map
_H,x_H, — H, defined by (a,b) — ab induces a twisted Clifford multiplication
C:T®T — A.

Since _H, @ C is a faithful representation of the Lie algebra of Sping, a pair
of metric connections on 7" and on L induces a principal connection on P. We use
the Riemannian connection on 7' =T X and a fixed connection Ay on L. Then we

have the covariant derivatives V1 on I'(ST) and Vs on I'(T). Let Dy and D, be
the twisted Dirac operators

Dy =CV:T(8T) - T(S7) and Dy =CV,y: ['(T) — I'(A).
Let D be the direct sum of D; and Ds:
D=D;®Dy:T(STT) = T(S™ @A).
Let @ be a quadratic map from ST®T to S~ @A induced from the Spin§-equivariant

map
+H X —H+ — _H X +H+7 (¢7 a) = (a¢i7 ¢7'(5)

We shall consider the nonlinear map

D+Q:V —>W,
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where V is the L3-completion of I'(ST@T') and W is the L2-completion of I'(S~@®A).

Remark. We can identify the imaginary part of I'(A) with the self-dual 2-forms ([5]
Section 2 Remark(1)). Let FZO be the self-dual part of the curvature of Ay. Then

an element v of V' is called monopole when (D + Q)v + FXO = 0.

Next, we consider the symmetry of the map D + ) under a group action of
Harm(X, S!) which is defined as the kernel of the composition of the exterior de-
rivative d: Map(X,S!) — ['(T) and Ds: I'(T) — T'(A). Here we identify T' with
its dual T* by using the Riemannian metric and we regard Map(X, S') as a group
by using the multiplication of S!. Then Harm(X,S') consists of the harmonic
maps from X to S*. (See [5] Section 2 Remark(2).) Note that the center of Spin§
is St = {1} x {1} x S! and it naturally acts on each fiber of ST and S=. We
can identify the connected component of Harm(X, S') containing 1 with the cen-
ter of Spin§. Then Harm(X,S') acts from the right on ST and S~ by the right
multiplication. We want to define an action of Harm(X,S!) on T and A so that
D + @ is Harm(X, S')-equivariant. When we locally write ¢!/ for an element of
Harm(X, S!), we have:

Dy (pel) = OV (¢e) = C((Vip)e + df @ petli) = (D1¢)e' + df pe/ i,
Dz(a — df) = DQ@ — Dzdf = DQ@,
Q(pe'l a — df) = (a — df ) pei @ petfie™ ¢ = age'li — df peii @ pig

and hence . ' )
(D + Q)(¢e' ,a — df) = (D1 + agi)e’ & Dya + ¢id

Now we define the action of Harm(X, S!) on A as trivial action. The action on
T is defined by looking at the above relation. Note that we have the exact sequence

1 — S' — Harm(X, S') — HY(X,Z) — 0,

and df is the image of e*f written in terms of harmonic 1-form. The action on T is
defined through the additive action of H!(X,Z) if H'(X, Z) is identified with the
harmonic 1-forms with integral periods.

On the other hand, it is easy to check that D;, Ds, and ) commute with the
St actions.

We decompose V and W into L2-direct sums:
V=H X,R)®V, W=HX,R)oW,

where H*(X,R) is the space of harmonic i-forms. Then the image of D + @ is
contained in W ([5]). We regard D + Q as a family of maps from V to W param-
eterized by H'(X,R). The action of Harm(X, S') on V preserves the direct sum.
We decomposed this action into two parts corresponding to the direct summands.
First, fix a splitting of the above exact sequence and identify Harm(X, S!) with
the product H'(X,Z) x S'. The action of H'(X,Z) on V preserves the orthog-
onal decomposition and the action is free on H!(X,R) since it is just given by
translation.
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Now we have a family of S'-equivariant maps from V to W parameterized by
the torus H'(X,R)/H'(X,Z). For this parameter space we use the notation Tj.
The actions of S' on V and W are just the restrictions of its actions on V and W
respectively.

We shall construct a finite dimensional approximation of this family. The Seiberg-
Witten invariant is defined by using the approximation.

Remark. We can identify I'(T') with the space of connections on L by the corre-
spondence a — Ay + ai. The moduli space of S*-connections on L which has the
same curvature with Ag is parameterized by Top = H'(X,R)/H'(X,Z). The space
of all the gauge-equivalence classes of connections on L is a product of Ty and an
infinite dimensional vector space. The I'(T")-part of the above decomposition of V'
is identified with this product structure if we consider only the kernel of D5 in order
to take a slice for the gauge group action.

§3. FINITE DIMENSIONAL APPROXIMATION.

We have a family of maps D 4+ @Q : V. — W. Here everything is parameterized
continuously by the finite dimensional torus Ty, but we suppress the notation for
its parameter.

Since the zero set of D+ @ is compact ([6]), we can take a large R so that D+ Q
does not have zero on the sphere of radius R in V. Since the parameter space is
compact, we can take R uniformly.

We construct a finite dimensional approximation of this family. It is a non-linear
analogue of the construction of index for a family of Fredholm operators [2].

step 1

Let W be the subspace of W spanned by eigenspaces of DD* with eigenvalues
less than or equal to A. Similarly we define V) by using the eigen-decomposition
with respect to D*D. Let py : W — W, be the orthogonal projection.

In [5], it is shown that for large enough A, D + p)@ is a good finite dimensional
approximation of D + () in that it does not vanish on the finite dimensional sphere
in Vy of radius R centered in 0 while the image of this sphere is contained in the
finite dimensional vector space Wy. We denote this sphere as S R(VA).

The proof of [5] implies that we can take A uniformly again. However the or-
thogonal projection py : W — W, does not vary continuously with respect to the
parameter. Actually the space Wy itself may jump. It is necessary to modify the
projection so that we have a continuous family of maps.

Let 8 : (=1,0) — [0,00) be a compact-supported smooth non-negative cut-off
function whose integral over (—1,0) is 1. For each A > 1, let py : W — W), be the
smoothing of the projection defined by

0
/ B+ t)payedt
1

The composition of py with the inclusion Wy — W varies continuously.
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Then the proof in [5] can immediately be extended to obtain:

Lemma(3.1). For large A\, D + prQ does not vanish on the sphere Sp(Vy). Here
A can be taken uniformly with respect to the famaily.

step 2

Since Wy does not vary continuously with respect to the parameter, we want to
replace Wy with a vector bundle Wf. We follow the procedure to define index for
a family of Fredholm operators ([2]). We modify the argument slightly in order to
consider a nonlinear term in Step 3.

Lemma(3.2). There is an S'-equivariant vector bundle _I/T/f over the parameter
space Ty and an S'-equivariant bundle homomorphism x : Wt — W which have the
following properties.

(1) For each parameter, the image of x contains Wy.

(2) There is an St-equivariant homomorphism s : W — W* for each parameter,
and the restriction of the composition xs on Wy 1is the identity.

(3) There is an S*-equivariant isomorphism from W' to the product bundle Ty x
(C* @ R®) for some b and c.

Note that (1) is an immediate consequence of (2).

Proof. Take an open covering U; of the parameter space T so that there is A; > A
which is not equal to the eigenvalues of DD* or D*D for every parameter in Uj;.
Then W), varies continuously for parameters in U;. (This continuity is shown by
using a min-max principle to characterize eigenspaces [4].) When we replace the
open covering with a finer one, if necessary, we can assume that the family Wy,
makes a trivial S!'-equivariant vector bundle over U;. Fix a trivialization and let
Wif be the obvious extension of this bundle over the whole parameter space Tj.

Now the construction of W, y and s is as follows. We take the direct sum @iV_Vif
for WE. For parameters in U;, let x; be the inclusion V_VAZ. — W and let s; be the
orthogonal projection W — Wy.. They are defined only on U;. Take a partition of
unity {p;} for the open covering and define x and s as

X = mez‘, §= Zpisi-
The right-hand-sides are well defined and they satisfy (1) and (2).
Consider the kernel of the surjective map
D+x:Vew!-w.

;From (1) in Lemma (3.2) we can show that this map is always surjective. Hence
the kernel has a constant dimension given by

dim Vi — dim Wy + rank W' = index(D : V — W) + rank W,
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Hence V! := Ker(D + ¢) is an S'-equivariant (finite rank) vector bundle over the
parameter space.

Now we can replace the family of linear map D : V) — W,y with the following
continuous family DF.

Lemma(3.3). The family
Dt vE - W, (v,e) — e
depends continuously on the parameter space Ty.

The formal difference [V] — [W1] gives the index of the family D : V\ — W,y
([2])-
step 3

Now we have the continuous family of linear maps Df between finite dimensional
vector spaces and the continuous family of nonlinear maps p (@) between infinite
dimensional vector spaces. Let us define a continuous family of nonlinear maps Qf
between finite dimensional vector spaces as

Qb vE s wi, (v,€e) = —sPAQ.

Then a good finite dimensional approximation of D + @ is given by D! + Qf in
the following sense. Fix an S'-invariant metric on Wi Let S(g g,) (V') be the
topological sphere bundle over Ty defined as the boundary of the topological disk
bundle

ViN (Bgr(V) x Bg, (W)).

Lemma(3.4). For large Ry, D'+Q! does not vanish on the sphere bundle S(Rle)(Vf).

Proof. Take (v, e) in the intersection of Vfand Br (V). Assume that (D'+QF)(v,e) =
0. It suffices to show that (1) v does not lie on the boundary sphere Sg(V) and
that (2) e is bounded. ;From the definition of V*, we have Dv + ye = 0. ;From
the definition of D! and Qf, we have e — spyQ(v) = 0. Since the image of p is

contained in Wy, we obtain the following equation.

—Dv = xXe = XSﬁAQ(U) - ﬁ)\Q(U)

;From Lemma(3.1), we can show that v is contained inside the disk Br(V) and does

not lie on the boundary sphere Sg(V'). Moreover, since v is bounded, e = sxprQ(v)
is also bounded.

In the above argument we did not use any particular property of the parameter
space Ty except its compactness. For a family of 4-manifolds X parameterized by a
compact space K, we can obtain a finite approximation of the family of monopole
equation, where the total parameter space is a bundle over K with fiber Tj. Strictly
speaking, we have to fix a family of spin®-structure. (Later we shall consider all the
spin®-structures.) Let us denote the family of spin®-structures as c.
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Now we define a Seiberg-Witten invariant as a certain stable homotopy class of
a map. We define it for family of 4-manifolds. We do not assume any inequality for
b+ (X) in this definition. For example it gives an invariant of homotopy 4-spheres,
though we do not know how to detect it explicitly. Later on, when we detect this
invariant by using cohomology theories, we will use an assumption for by (X).

Fix a family of Riemannian metric of the fiber which varies continuously in
C*°-topology. Let Ty be the total space of the fiber bundle over K with fiber
To = H'(X,R)/H'(X,Z). This is a fiber bundle over K.

_ iFrom the above argument, we can construct a finite approximation Df + QF :
Vi — Wt parameterized by T since the lemmas can be extended to any family of
4-manifolds parameterized by a compact set.

Let R be the trivial real 1-dimensional representation space of S*, and C be the
standard complex 1-dimensional representation space.

Definition(3.2). Let M (X) be the set of the isomorphism classes of the triples
(E,F, f), where

(1) E is a trivial S'-equivariant vector bundle over T whose fiber is a direct
sum of finitely many R’s and C'’s,

(2) F is an Sl-equivariant real finite-rank vector bundle over Ty and

(3) f is an S'-equivariant bundle map from S(E) to S(F).

By using the extended lemmas and the finite approximation we can give the
element (VW S(Df + Qf)) in M(X). To define a topological invariant, which
should be independent of the choices to construct the finite dimensional approx-
imation, we need to take a quotient of M(X) by an equivalence relation. Before
that, we recall the definition of join. Suppose Sy and S; are some subsets of vector
spaces Vp and Vi respectively. Assume that Sy and S; does not contain any real
line passing the origin. Then the join of Sy and S; is defined to be the set of the
points in the direct sum V@ V; of the form (1 —t)ay®ta, for some ag € Sy, a; € Sq
and t € [0,1]. Note that the fiber-wise join of two sphere bundles is topologically
the sphere bundle of the direct sum of the associated vector bundles. We call it the
join of the sphere bundles. Then, for two maps between sphere bundles, we can
naturally construct the join of the maps between the joins of the sphere bundles.

Definition(3.3). Two elements (Ey, Fy, fo) and (Eq, F1, f1) of M(X) are stable
homotopic to each other if and only if there are two finite dimensional representation
spaces G and G of S! satisfying the following conditions.

(1) The two representations are direct sums of finitely many R’s and C’s.

(2) We regard Gy and G; as trivial vector bundles over K. Then Ey ® Gy is
isomorphic to £ & G and Fy & G is isomorphic to F; & G1.

(3) The join of fy and the identity on S(Gy) is an S!-equivariant bundle map
from S(Ey ® Go) to S(Fo & Gp). Similarly we have an S!-equivariant map from
S(E1 @ G1) to S(F1 & G1). Then, through the isomorphism in (2), the two joins
are homotopic to each other.
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Definition(3.4)(stable homotopy version of Seiberg-Witten invariant).
(1) Let M(X) be the set of all the stable homotopy classes
of M(X).
(2) Define SW (X, c) to be the stable homotopy class of (Vi Wt S(Df + QF)).

Remark. The set M(X) has a natural structure of Abelian semi-group.

One of the purposes of this paper is to show the well-definedness of SW (X, c).
The proof is parallel to that of the well-definedness of the index of family of Fred-
holm operators.

Theorem(3.5). The stable homotopy class SW (X, c) € M(X) is

independent of the family of Riemannian metric and other choices necessary to
define it, and hence it gives a topological invariant of the pair (X, c).

Proof.
Step 1

First we fix the family of Riemannian metrics and show that the stable homotopy
class does not depend on other choices. Let A\g and A; be two large real numbers.
Suppose x; : W; — W and s; : W — ij (j = 0,1) are the maps satisfying the
condition of Lemma(3.2). We compare these two and assume for simplicity that
the other data are the same for these two cases. (The other data can be treated
using an argument similar to that in Step 2.) We have two finite dimensional
approximations D§ + Qg- : ij — V_ij ( =0,1). For j = 0,1 we denote the triple
(ij, W;,S(D§ + Qg)) by (Ej, Fj, f;). Recall that F; = V_ij (j = 0,1) are trivial
vector bundles. Take F; and F for Gy and G respectively.

We consider a finite dimensional approximation parameterized by ¢ € [0,1] de-
fined as follows. For each t € [0, 1], we use

xt) =txo+ (1 —t)x1: Wi Wi - W,

and
s(t) =tso+ (1 —t)sy : W — Wi Wl

to obtain the finite approximation Df(¢) + Q*(t) : Vi(t) — W(t). From this con-
struction, Df(j) + Q(j) is equal to the direct sum of D; + Q§ and the identity of
G;. This implies that the joins of f; and the identity of S(G; ) for j = 0,1 are
homotopic to each other, and hence the two stable homotopy classes are the same.

Step 2

Suppose we have two choices for the family of Riemannian metrics. Then We can
connect them continuously as a family parameterized by Ty x [0, 1]. Since the con-
struction of finite dimensional approximation works for any family parameterized
by a compact space, we can construct a family of finite dimensional approximations.
Hence the homotopy classes of the finite dimensional approximations for ¢ = 0 and
t = 1 are the same.
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We can easily extend the above construction for all the spin®-structures at once.

So far, the symmetry of all the spaces and maps has been S'. If we collect all
the spin® structures, however, then we have a symmetry of Ping, where Pins is the
normalizer of S in Sp; and is generated by S! and j.

Let ¢ be the involution of Spin§ = (Sp1 xSpyxSt)/{£1} defined by t(q_,q,,2) =
(q_,qv,271). ThNen any representation of Spin§ can be twisted by ¢. Let~ _H/,  H,
_H', {H'_ and C’ be the the twisting of _H_, +H, _H, {H, and C. Since the
Sl-component of Spin§ acts trivially on _ H+ and C, the Sping-modules _H/,_ and

C’ are canonically isomorphic to _H, and C respectively. However we introduce
another isomorphisms below and it is convenient to distinguish them.

Let _j4, +J, -7, +J+ and 7 be the Sping-equivariant homomorphisms defined
by:
_J+:-Hy - _H, a— —a,

+:+H— (H ¢ by
_j:_H— _H, P>y
+i+ i +Hy - H, weo —w
j:C—C, t 1.

Let Spin®(X) be the set of spin® structures on X, i.e., Spin§(X) is the set of
all the equivalent classes of pair of an Sping-bundle P and an isomorphism 7" =
P Xsping ~Hy = TX. It is well known, from a simple argument of obstruction
theory, that Spin§(X) is an affine space over H?(X,Z). The twisting of ¢ induces
an involution on Spin®(X). For an Sping-bundle P, let P’ := P x, Spin§ be the
twisting of P. We use the notation S +" ete. to denote the vector bundles associated
with P’. Then the five homomorphisms above give five bundle homomorphisms
+j: St — St etc. Note that the connections on L correspond to the connections
on L' = L1 bijectively through ¢. Take a pair of connections Ay and A} on P and
P’ corresponding to each other by this bijection. We use the notations D’ and Q'
etc. to denote the object associated with P’. It is easy to see the following:

Lemma(3.6). The two maps D+ Q:V — W and D'+ Q : V' — W' correspond
to each other via the maps 1j etc.

For each spin® structure, we want to fix a connection Ag so that they are com-
patible with the involution. One minor problem occurs when the involution on
Spin¢(X) has a fixed point. In that case we have to take Ay so that it is compati-
ble with the involution. We need the next lemma.

Lemma(3.7). If a spin®-structure is preserved by the involution, then the spin®-
structure is reduced to a spin structure and hence L 1is topologically trivial. Then
we can take a trivial connection for Ay.

Proof. Suppose we have an isomorphism f : P — P’. Since P’ is identified with P
as a set, we can consider the fixed point Py of P. The fixed-point set of the action of
v on Sping is the subgroup Sping. This implies that Py is a principal Spings-bundle
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and hence the structure group of P is reduced to Sping. The rest of the statement
is obtained immediately.

We take the trivial flat connection as Ay for the spin®-structure which can be
reduced to a spin structure. Then the map D 4+ @ : V — W and its finite di-
mensional approximation has a natural Piny symmetry [5]. We choose A for each
spin“-structure and assume that they are compatible with the involution in the
following sense: (1) if the spin®-structure comes from an spin structure, then Ay
is a trivial connection and (2) if not, then Ay and A{, correspond to each other by
the involution. By using this choice we have a family Df : VI — W1 parameterized
by Spin¢(X) x Tp. {From the bundle homomorphisms 4 j etc we define self maps
J on the families {V} and {W}. This action is not an involution, but its order is
4. This map together with the obvious S'-action gives rise to a Pins action on the
families.

Let R and H be the following real representation space of Pins: R is the unique
non-trivial 1-dimensional representation and H is the space of quaternions on which
Ping acts as right multiplication.

Proposition(3.8). We can take a finite approximation of D : V. — W so that
Wt is a trivial vector bundle whose fiber is a direct sum of finitely many R’s and
H, and the family Dt : VI — W parameterized by Spin(X) x Ty has an Ping
symmetry.

Proof. We can just repeat the construction of the finite dimensional approximation
with the action of Pins. Let T be the total space of the fiber bundle over K with
fiber Spin®(X) x Ty. Since the argument is almost the same except for replacement
of S, R, C and T, by Piny, R, H and T, respectively, we omit the details.
Lemma(3.7) implies that this family is preserved by the action of J. Since this
family already has the S!-symmetry, we totally have a symmetry of Piny which is
generated by S* and J.

Remark. The above argument using Lemma(3.7) is not actually necessary to define
the action of Piny. If we use the original monopole equation D+ Q + Fs, = 0, then
it does not depend on the choice of Ag and we can easily define the Pins-action
which preserves this equation.

We now formulate the invariant without fixing a spin®-structure. Suppose X
is a fiber bundle with fiber X over K, where X is a closed oriented 4-manifold.
Fix a family of Riemannian metric of the fiber which varies continuously in C*°-
topology. Recall that T, is the total space of the fiber bundle over K with fiber
Spin®(X)xTy. We regard it as a Ping-equivariant fiber bundle over K, where Pino-
action on Ty = H'(X,R)/H'(X,Z) factors through multiplication of {1} = (J)
while its action on Spin¢(X) also factors through the involution.

. From the above argument we can construct a finite dimensional approximation
Df + Qf : Vf — W parameterized by Ty, which now has a Piny-symmetry.

Parallel to Definition(3.2), we use the notation M(X) to denote the set of the
isomorphism classes of the triples (E, F, f), where



12 M. FURUTA

(1) E is a trivial Ping-equivariant vector bundle over T whose fiber is a direct
sum of finitely many R’s and H’s,

(2) F is a Pins-equivariant real finite-rank vector bundles over Ty and
(3) f is a Ping-equivariant bundle map from S(E) to S(F).

Similarly we define the set of stable homotopy classes M(X) by using the obvious
equivalence relation similar to Definition(3.3).

The rest of the argument is also quite parallel to the previous argument. We
define SW(X) to be the stable homotopy class of (VE, W S(Df + Qf)). Then we
obtain:

Theorem(3.9). The stable homotopy class SW(X) € M(X) is independent of the
family of Riemannian metric and other choices to define it, and hence it gives a
topological invariant of X

§4. EVALUATION OF THE SEIBERG-WITTEN
INVARIANT USING COHOMOLOGY THEORY

In this section we show how to detect the stable homotopy version of the Seiberg-
Witten invariant in the simplest case. We consider a single oriented closed 4-
manifold X satisfying b1(X) = 0 and b4 (X) > 1. We also assume that b4 (X) is
odd and write by (X) as 2p+1. Moreover we fix a spin®-structure ¢ and consider the
stable homotopy class SW (X, c). In this case the finite dimensional approximation
is just an S'-equivariant map between two representation spaces of S'. ;From an
index calculation, the map is defined as a map from C*t"” @R" to C™ @ R?PT1+n,
where a = (c¢1(L)?—sign(X))/8, and m and n are some non-negative integers. When
p is larger than or equal to a, it is easy to see that there is only one homotopy class
of Sl-equivariant map from S(C**™ & R") to S(C™ & R?*T1+"). In the rest of
this section we assume that p < a.

Let fo be an S'-equivariant map between spheres representing the class SW (X).
By taking suspension, we can extend fy to be an S!-equivariant map from the pair
(B(C*tma@R™), S(C*T™@R™)) to the pair (B(C™@R»P+I+n) S(CToR2PTLTT)),
The S'-equivariant map f preserves the fixed point sets of the S'-action. The re-
striction of fy on the fixed point sets is a map from the pair (B(R"),S(R™))
to the pair (B(R2?T1+1m) S(R?PH1+1)). If we perturb this map slightly, the ori-
gin of B(R?T!*") does not lie on the image of B(R™). The perturbation is
not unique. However, since we are assuming that 2p + 1 > 1, the relative ho-
motopy class of the perturbed map from the pair (B(R"),S(R™)) to the pair
(B(R# ™)\ {0}, S(R?T1T7)) is uniquely determined. Since S(R?PT117) is a re-
traction of B(R?P+1+7)\ {0}, the map can be perturbed further to a map from the
pair (B(R™), S(R")) to the pair (S(R**1t7) S(R2?PT1+m)). ;From homotopy ex-
tension property we can extend the perturbation to a perturbation of fy supported
in the interior of B(C*T™ @ R"). Average it linearly by using the S!-action, then
we can assume that the perturbed map f; is still S'-equivariant.

Now f; is an Sl-equivariant map from the pair (B(C*t™@R"), S(C*T™adR")U
B(R™)) to the pair (B(C™ @ R?*11t") §(C™ @ R?*PT1+")). We replace these data
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in the following way just for convenience.

(1) As for the first pair of the spaces (B(C*t™ @ R"), S(C*t™ o R"™)U B(R™)),
this is homotopically equivalent to the pair of a disk bundle and its sphere bundle.
In fact if we write S(C**t™) for the sphere in the disk B(C**t™) centered in 0 with
half radius, then the complement of S(C*t™ ¢ R™) U B(R™) in B(C*™™ & R™)
is a trivial disk bundle over S(C%*t™) with fiber R"*!. We use the notation S to
denote S(C**™) and E to denote this trivial bundle.

(2) As for the second pair of the spaces (B(C™ @ R?*P+11t7) §(C™ g R2PHLT1))
we multiply it by S in order to regard every space as an S'-equivariant bundle over

S. We use the notation F' to denote the trivial vector bundle over S whose fiber is
cm o) R2p+1~|—n.

(3) As for the S'-equivariant map between the pairs, we use, instead of fi, the
bundle map f over S induced from f;. We need to use homotopy extension property
to construct f.

The geometric data we have now is the S'-equivariant homotopy class of the
Sl-equivariant bundle map f from the disk bundle of E to the disk bundle of F
which preserves their boundaries. Since the S'-action is free on S, we can divide
everything by S! to get a bundle map f between disk bundles associated with
S xg1 Eand S xg1 F over S = S/S%:

f:(B(E),S(E)) — (B(F),S(F)).

This is the final geometric data we shall use. Instead of using maps between pairs,
we could formulate everything by using maps between Thom spaces.

It is easy to show that a certain stable homotopy class of this map is well defined
for X with by = 0 and b4 > 1. Since we will not use this well-definedness, we omit
the details.

Suppose h is a multiplicative generalized cohomology theory for which £ and F
are orientable. We shall use this h to detect the stable homotopy class.

First we need to fix the orientations of £ and F. We shall explain it later for
the ordinary cohomology and the K-theory. We shall need some extra geometric
data to define the orientations. Fixing the orientations of £ and F' implies, by

definition, that h*(B(FE),S(E)) h*(B(F),S(F)) are free h*(S)-modules generated

by given classes 7']’53 and 7'1’73 respectively.

Definition(4.1). Suppose X satisfies by = 0 and by > 0. Let ¢ be a spin®-structure
of X. (We also assume that certain data necessary to define the orientations are
given.) Then the h-version of Seiberg-Witten invariant k" (X, ¢) of (X, ¢) is defined
by using the following relation:

(X, c)Th = frrh.

Remark. The above k"(X,c) is defined as an element of h*(S). However this co-
homology group itself depend on various choices to define f. Strictly speaking, we
need to construct some inverse system of cohomology groups. It would be more
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systematic to use homology rather than cohomology. We shall discuss this point
later for the ordinary cohomology.

Ordinary cohomology

Let k¥ (X, c) be the Seiberg-Witten invariant for ordinary cohomology. To define
it, we need the orientations of £ and F. If we change both of these orientations, the
invariant does not change. We only need the orientation of the formal difference
[E]—[F] which is an element of K (point). Since complex vector spaces have natural
orientations, we obtain:

Lemma(4.2). FEach choice of the orientation of [HY(X,R)]-[HY(X,R)]+[H*(X,R)]
gives the required orientation to define k¥ (X, c).

Proof. The formal difference [E] —[F] is equal to [H'(X,R)] — [HT(X,R)] modulo
some formal difference of complex vector spaces.

Since we assumed that b; = 0, it is not necessary to put H'(X, R). However we
put it so that the statement is generalized to any X or any family of 4-manifolds.
We fix one of the choices of the orientations.

The degree of k(X ¢) is given by
deg k™ (X, c) = deg 7H —deg 7§ = dim F—dim E = (2m+2p+1+n)—(n+1) = 2m+2p.

Since S is a complex projective space of complex dimension a+m—1, its cohomology
ring is given by B
H*(S,Z) = Z[a], QT =0

where « is the first Chern class of hyperplane line bundle. The above relation is
the only one satisfied by a.

Recall that we are assuming that a > p. The relation between k(X ¢) and the
usual Seiberg-Witten invariant is given by the following definition and lemma.

Definition(4.3). Define k(X,c) € Z by

K (X, c) = k(X, c)a™*P.
Lemma(4.4). Perturb f if necessary and assume that the equation f(v) = 0 is
transversal. Then the quotient of the space of the solutions {v|f(v) = 0} divided by

St is an oriented closed submanifold of S x E and its fundamental class is equal to
k(X,c) x [generator] in Hoq(S X E) =Z ford=a—p— 1.

It is not hard to see that the characterization of k(X,c) in the above lemma
implies that (X, c¢) is equal to the usual Seiberg-Witten invariant.

The dimension 2d of {v|f(v) = 0}/S! is calculated as follows.

2d = dim S+dim E—~dim F = 2(a+m—1)+(n+1)— (2m+2p+1+n) = 2(a—p—1).

K-cohomology
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Let k% (X,c) be the Seiberg-Witten invariant for K-cohomology. To define it,
we need the orientations of E and F. It suffices to give S'-invariant weak complex
structures on F and F. Here a weak-complex structure of a real vector space is an
obvious equivalence class of the complex structure of the direct sum of the vector
space and R! for some /. (“Weak-spin-structure” would be enough.) It is necessary
to give weak-complex structures only on the S!-invariant parts. Then we obtains

Lemma(4.5). FEach choice of the homotopy class of weak-complex structures on
HY(X,R) and H* (X, R) gives the required orientation to define k¥ (X, c).

Since we assumed that by = 0, it is not necessary to give a weak-complex struc-
ture of H'(X,R). A choice of homotopy class of the weak-complex structure of a
real vector space is equivalent to a choice of orientation of the space. However if
we consider family of 4-manifolds, we would need to fix more than the the choice of
orientation to define the K-theory version of Seiberg-Witten invariant, though we
do not deal with that case in this paper.

We fix one of the choices of the orientations of H* (X, R) and hence a homotopy
class of weak-complex structure on it. For simplicity we assume that n is odd so
that the S'-invariant parts have a complex structure which is compatible with the
given choice. We can always choose such a representative in the stable homotopy
class.

Let L be the hyperplane line bundle on the complex projective space S. Then
K*(S) (x=0,1) is given by

K*(S)=12z[¢], ¢ =0

where £ is the K-theoretic Euler class of hyperplane line bundle L. More explicitly
& =1 —[L*]. The degree of £ is 0. The above relation is the only one satisfied by
¢. (Here we use the above convention of K-theoretic Euler class so that we have

chi1(§) = a.)

The K-theory Seiberg-Witten invariant is a polynomial in £ with integral coeffi-
cient.

(X, c) € Z[€].
In the next section we show that the integrality of each coefficient gives a divisibility
of k(X,c).
§5. DIVISIBILITY.

Theorem(1.1) is immediately shown from the next theorem.

Theorem(5.1). Let ay; be the coefficient of 2! in the Taylor expansion of(m)

Then we have the following relation in K(S) ® Q.

ER (X c) = k(X 0)¢™ P " ap €.

l
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Proof of Theorem(1.1) admitting Theorem(5.1). Since k¥ (X, ¢) is a polynomial in
¢ with integral coefficient, k(X c)a,  is an integer as long as £™1P+™ is not zero,
i.e., m +p+n < m+ a. This inequality is equivalent ton <a—p—1=d.

To show Theorem we compare the K-cohomology and the ordinary cohomology
by using the Chern character. We use the following lemma.

Lemma(5.2). Suppose a complex vector bundle G over S has a splitting into a
direct sum of line bundles:G = @&;L;. We use the notation «; to denote c¢1(L;) and
& to denote 1 — [LY]. Then we have

ch(§) =1—e"",  ch(log(l - &)) = i,
ch(rf) H TR _xei_mi =8

(3

and |
(& T L(l&_ “y_

Note that z; and &; are nilpotent in H*(S,Z) and in K*(S) respectively. However
the expressions of the terms in the above equalities are well defined by using Taylor
expansion. All the equalities should be understood in H*(S,Q). The first two
equalities follows from the definition. The third one is the well-known relation that
gives a characterization of the Todd genus. The fourth equality is equivalent to the
third one.

Proof of Theorem(5.1). {From Lemma we have

ch(rE)=7f

ch(K¥ (X, @(@)m) — (X, 0).

On the other hand, from k¥ (X, c) = k(X, ¢)a?*™, we have
ch(k(X, ¢)(log(1 — €))P*™) = k7 (X, c).

Since the Chern character is injective on S, we obtain

FR(X, c><@>m — K(X, ¢)(log(1 — €)™,

which implies Theorem 5.1.
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