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Abstra
t. In this paper we 
onstru
t stable homotopy version of Seiberg-Witten

invariant. The 
onstru
tion is given for families of any 
losed oriented 4-manifolds

parameterized by 
ompa
t spa
es. As an appli
ation we show a divisibility of Seiberg-

Witten invariant for non-simple type 4-manifolds.

x1. Introdu
tion.

Let X be a 4-dimensional oriented 
losed manifold with a spin




-stru
ture. For

simpli
ity we assume that the �rst Betti number b

1

of X is 0. The Seiberg-Witten

invariant is de�ned as the fundamental homology 
lass of the moduli spa
e of the

monopoles asso
iated with the spin




-stru
ture. Stri
tly speaking the invariant is

well de�ned when (1) the rank b

+

of a maximal positive de�nite subspa
e H

+

(X) of

H

2

(X;R) is odd and larger than 1, and (2) one of the two orientations of H

+

(X)

is �xed. We denote b

+

as 2p + 1. The formal dimension of the moduli spa
e is

even when b

1

= 0 and b

+

is odd. If we write 2d for the formal dimension, then

the Seiberg-Witten invariant is valued in H

2d

(CP

1

;Z), whi
h is isomorphi
 to Z

when d � 0. The invariant is zero when d < 0. The following problem is due to

E. Witten [7℄.

Problem. Is the Seiberg-Witten invariant zero when d > 0?

A 4-manifold satisfying this property is 
alled a simple type manifold. In this

paper we show that when d > 0, there is a restri
tion on the possible values of the

Seiberg-Witten invariant. To state our result, we need to introdu
e the 
oeÆ
ients

of the following Taylor expansion:
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Theorem(1.1). When d > 0, the Seiberg-Witten invariant is divisible by the de-

nominators of a

p;1

; a

p;2

; � � � ; and a

p;d

.

Note that an integer is zero if and only if it is divisible by every nonzero integers.

So integrality theorems like Theorem(1.1) 
ould be regarded as a small step for the

problem.

On the other hand, when b

+

= 1 the Seiberg-Witten invariant depends on 
ham-

bers. It is known, from the wall 
rossing formula, that there are examples whi
h

have non-zero Seiberg-Witten invariant for some positive d. The above divisibility

still holds in this 
ase for any 
hamber.

D. Ruberman pointed out to the author that the integrality of L-genus of the

moduli spa
e of monopoles implies a divisibility of the Seiberg-Witten invariant.

What we a
tually do is to give a re�nement of the Seiberg-Witten invariant

as a 
ertain stable homotopy 
lass, whi
h is 
onstru
ted by using a �nite dimen-

sional approximation of the map de�ned by the monopole equation.

When X is spin and the spin




-stru
ture is the one derived from a spin stru
ture

of X, then the 
onstru
tion of the stable homotopy 
lass is given in [5℄. One

purpose of the present paper is to show that the 
onstru
tion is extended to any

spin




-stru
ture.

The se
ond purpose of this paper is to give a de�nition of the re�nement for

a general setting. We 
onsider the 
ase when b

1

is not ne
essarily zero. We also

extend the 
onstru
tion to families of oriented 
losed 4-manifolds parameterized by


ompa
t spa
es. The stable homotopy 
lass is well de�ned for any su
h family. For

example, it is de�ned for a family of homotopy 4-spheres.

The well-de�nedness of the stable homotopy 
lass 
ould be regarded as a topo-

logi
al version of an argument showing that renormalization groups preserve expe
-

tation values.

We obtain the original Seiberg-Witten invariant when we dete
t the stable ho-

motopy 
lass by using the ordinary 
ohomology theory. If we use K-theory instead

of the ordinary 
ohomology theory, then we obtain a K-theory version of Seiberg-

Witten invariant. The K-theory version is related to the original invariant through

a map de�ned by Chern 
hara
ter with Todd 
lass as 
orre
tion term. Abstra
tly,

the Chern 
hara
ter gives rise to two latti
e stru
tures on a 
ertain single ve
-

tor spa
e over Q, and the two invariants, ea
h of whi
h sits on the 
orresponding

latti
e are identi�ed with ea
h other. Then measuring the di�eren
e of the two

latti
es implies a property of an integrality of the identi�ed invariants. The di�er-

en
e is des
ribed by the Todd 
lass whi
h appears when the Thom 
lasses in the

two 
ohomology theories are 
ompared. The formal power series mentioned above

is essentially equal to the Todd 
lass of a ve
tor bundle over CP

1

. This kind of

argument is standard in appli
ations of K-theory ([1℄,[2℄).

In [3℄ S. Bauer independently de�ned stable homotopy version of the Seiberg-

Witten invariant and gave appli
ations to topology of algebrai
 surfa
es.

In Se
tion 2, We re
all the monopole equation. In Se
tion 3, we give the def-

inition of the re�nement of the Seiberg-Witten invariant in Se
tion 3 by using a
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�nite dimensional approximation of the monopole equation. In Se
tion 4, we use


ohomology theories to expli
itly dete
t the re�ned invariant and see that it is in

fa
t a re�nement. In Se
tion 5, we 
ompare the ordinary 
ohomology with the

K-theory. We use the assumptions, b

1

(X) = 0 and b

+

(X) > 1, only in Se
tions 4

and 5.

x2. Monopole equation.

In this se
tion we formulate the monopole equation for a spin




-stru
ture of X

in a line following [5℄. Let H be the quaternion numbers, Sp

1

the group of the

quaternions with norm 1 and S

1

the interse
tion of Sp

1

with C in H.

We de�ne �ve Spin




4

-modules

�

H

+

,

+

H,

�

H,

+

H

+

and

~

C as follows. As real

ve
tor spa
es, the �rst four modules are just four 
opies of H. The a
tions of

(q

�

; q

+

; z) 2 Spin




4

= (Sp

1

� Sp

1

� S

1

)=f(1; 1; 1; )(�1;�1;�1)g on a 2

�

H

+

,

� 2

+

H,  2

�

H and ! 2

+

H

+

are de�ned by q

�

aq

+

�1

, q

+

�z

�1

, q

�

 z

�1

and

q

+

!q

+

�1

respe
tively. The last one is a 
omplex one-dimensional representation

~

C

de�ned by the multipli
ation of z

2

.

Let X be a 
losed 4-manifold. For a prin
ipal Spin




4

-bundle P on X, we have

�ve asso
iated ve
tor bundles T , S

+

, S

�

, � and L from the Spin




4

-modules

�

H

+

,

+

H,

�

H,

+

H

+

and

~

C.

Suppose we are given a pair of a prin
ipal Spin




4

-bundle P and an isomorphism

TX

�

=

T . Then, sin
e T has a natural orientation and a natural Riemannian

metri
, the pair indu
es an orientation and a Riemannian metri
 of X. We 
all the

homotopy 
lass of (P; TX

�

=

T ) a spin




-stru
ture.

The Spin




4

-equivariant map

�

H

+

�

+

H !

�

H de�ned by (a; �) 7! a� indu
es

the Cli�ord multipli
ation C : T 
 S

+

! S

�

. Similarly the Spin




4

-equivariant map

�

H

+

�

�

H

+

!

+

H

+

de�ned by (a; b) 7! �ab indu
es a twisted Cli�ord multipli
ation

�

C : T 
 T ! �.

Sin
e

�

H

+

�

~

C is a faithful representation of the Lie algebra of Spin




4

, a pair

of metri
 
onne
tions on T and on L indu
es a prin
ipal 
onne
tion on P . We use

the Riemannian 
onne
tion on T = TX and a �xed 
onne
tion A

0

on L. Then we

have the 
ovariant derivatives r

1

on �(S

+

) and r

2

on �(T ). Let D

1

and D

2

be

the twisted Dira
 operators

D

1

= Cr

1

: �(S

+

)! �(S

�

) and D

2

=

�

Cr

2

: �(T )! �(�):

Let D be the dire
t sum of D

1

and D

2

:

D = D

1

�D

2

: �(S

+

� T )! �(S

�

� �):

LetQ be a quadrati
 map from S

+

�T to S

�

�� indu
ed from the Spin




4

-equivariant

map

+

H�

�

H

+

!

�

H�

+

H

+

; (�; a) 7! (a�i; �i

�

�):

We shall 
onsider the nonlinear map

D +Q : V !W;
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where V is the L

2

4

-
ompletion of �(S

+

�T ) andW is the L

2

3

-
ompletion of �(S

�

�

~

�).

Remark. We 
an identify the imaginary part of �(�) with the self-dual 2-forms ([5℄

Se
tion 2 Remark(1)). Let F

+

A

0

be the self-dual part of the 
urvature of A

0

. Then

an element v of V is 
alled monopole when (D +Q)v + F

+

A

0

= 0.

Next, we 
onsider the symmetry of the map D + Q under a group a
tion of

Harm(X;S

1

) whi
h is de�ned as the kernel of the 
omposition of the exterior de-

rivative d : Map(X;S

1

) ! �(T ) and D

2

: �(T ) ! �(�). Here we identify T with

its dual T

�

by using the Riemannian metri
 and we regard Map(X;S

1

) as a group

by using the multipli
ation of S

1

. Then Harm(X;S

1

) 
onsists of the harmoni


maps from X to S

1

. (See [5℄ Se
tion 2 Remark(2).) Note that the 
enter of Spin




4

is S

1

= f1g � f1g � S

1

and it naturally a
ts on ea
h �ber of S

+

and S

�

. We


an identify the 
onne
ted 
omponent of Harm(X;S

1

) 
ontaining 1 with the 
en-

ter of Spin




4

. Then Harm(X;S

1

) a
ts from the right on S

+

and S

�

by the right

multipli
ation. We want to de�ne an a
tion of Harm(X;S

1

) on T and � so that

D + Q is Harm(X;S

1

)-equivariant. When we lo
ally write e

if

for an element of

Harm(X;S

1

), we have:

D

1

(�e

if

) = Cr

1

(�e

if

) = C((r

1

�)e

if

+ df 
 �e

if

i) = (D

1

�)e

if

+ df�e

if

i;

D

2

(a� df) = D

2

a�D

2

df = D

2

a;

Q(�e

if

; a� df) = (a� df)�e

if

i� �e

if

ie

�if

�

� = a�e

if

i� df�e

if

i� �i

�

�

and hen
e

(D +Q)(�e

if

; a� df) = (D

1

�+ a�i)e

if

�D

2

a+ �i

�

�

Now we de�ne the a
tion of Harm(X;S

1

) on � as trivial a
tion. The a
tion on

T is de�ned by looking at the above relation. Note that we have the exa
t sequen
e

1 �! S

1

�! Harm(X;S

1

) �! H

1

(X;Z)! 0;

and df is the image of e

if

written in terms of harmoni
 1-form. The a
tion on T is

de�ned through the additive a
tion of H

1

(X;Z) if H

1

(X;Z) is identi�ed with the

harmoni
 1-forms with integral periods.

On the other hand, it is easy to 
he
k that D

1

, D

2

, and Q 
ommute with the

S

1

-a
tions.

We de
ompose V and W into L

2

-dire
t sums:

V = H

1

(X;R)�

�

V ; W = H

0

(X;R)�

�

W;

where H

i

(X;R) is the spa
e of harmoni
 i-forms. Then the image of D + Q is


ontained in

�

W ([5℄). We regard D +Q as a family of maps from

�

V to

�

W param-

eterized by H

1

(X;R). The a
tion of Harm(X;S

1

) on V preserves the dire
t sum.

We de
omposed this a
tion into two parts 
orresponding to the dire
t summands.

First, �x a splitting of the above exa
t sequen
e and identify Harm(X;S

1

) with

the produ
t H

1

(X;Z) � S

1

. The a
tion of H

1

(X;Z) on V preserves the orthog-

onal de
omposition and the a
tion is free on H

1

(X;R) sin
e it is just given by

translation.
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Now we have a family of S

1

-equivariant maps from

�

V to

�

W parameterized by

the torus H

1

(X;R)=H

1

(X;Z). For this parameter spa
e we use the notation T

0

.

The a
tions of S

1

on

�

V and

�

W are just the restri
tions of its a
tions on V and W

respe
tively.

We shall 
onstru
t a �nite dimensional approximation of this family. The Seiberg-

Witten invariant is de�ned by using the approximation.

Remark. We 
an identify �(T ) with the spa
e of 
onne
tions on L by the 
orre-

sponden
e a 7! A

0

+ ai. The moduli spa
e of S

1

-
onne
tions on L whi
h has the

same 
urvature with A

0

is parameterized by T

0

= H

1

(X;R)=H

1

(X;Z). The spa
e

of all the gauge-equivalen
e 
lasses of 
onne
tions on L is a produ
t of T

0

and an

in�nite dimensional ve
tor spa
e. The �(T )-part of the above de
omposition of V

is identi�ed with this produ
t stru
ture if we 
onsider only the kernel of D

2

in order

to take a sli
e for the gauge group a
tion.

x3. Finite dimensional approximation.

We have a family of maps D + Q :

�

V !

�

W . Here everything is parameterized


ontinuously by the �nite dimensional torus T

0

, but we suppress the notation for

its parameter.

Sin
e the zero set of D+Q is 
ompa
t ([6℄), we 
an take a large R so that D+Q

does not have zero on the sphere of radius R in

�

V . Sin
e the parameter spa
e is


ompa
t, we 
an take R uniformly.

We 
onstru
t a �nite dimensional approximation of this family. It is a non-linear

analogue of the 
onstru
tion of index for a family of Fredholm operators [2℄.

step 1

Let

�

W

�

be the subspa
e of

�

W spanned by eigenspa
es of DD

�

with eigenvalues

less than or equal to �. Similarly we de�ne

�

V

�

by using the eigen-de
omposition

with respe
t to D

�

D. Let p

�

:

�

W !

�

W

�

be the orthogonal proje
tion.

In [5℄, it is shown that for large enough �, D + p

�

Q is a good �nite dimensional

approximation of D+Q in that it does not vanish on the �nite dimensional sphere

in

�

V

�

of radius R 
entered in 0 while the image of this sphere is 
ontained in the

�nite dimensional ve
tor spa
e

�

W

�

. We denote this sphere as S

R

(

�

V

�

).

The proof of [5℄ implies that we 
an take � uniformly again. However the or-

thogonal proje
tion p

�

:

�

W !

�

W

�

does not vary 
ontinuously with respe
t to the

parameter. A
tually the spa
e

�

W

�

itself may jump. It is ne
essary to modify the

proje
tion so that we have a 
ontinuous family of maps.

Let � : (�1; 0) ! [0;1) be a 
ompa
t-supported smooth non-negative 
ut-o�

fun
tion whose integral over (�1; 0) is 1. For ea
h � > 1, let ~p

�

:

�

W !

�

W

�

be the

smoothing of the proje
tion de�ned by

Z

0

�1

�(�+ t)p

�+t

dt

The 
omposition of ~p

�

with the in
lusion

�

W

�

!

�

W varies 
ontinuously.
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Then the proof in [5℄ 
an immediately be extended to obtain:

Lemma(3.1). For large �, D + ~p

�

Q does not vanish on the sphere S

R

(

�

V

�

). Here

� 
an be taken uniformly with respe
t to the family.

step 2

Sin
e

�

W

�

does not vary 
ontinuously with respe
t to the parameter, we want to

repla
e

�

W

�

with a ve
tor bundle

�

W

f

. We follow the pro
edure to de�ne index for

a family of Fredholm operators ([2℄). We modify the argument slightly in order to


onsider a nonlinear term in Step 3.

Lemma(3.2). There is an S

1

-equivariant ve
tor bundle

�

W

f

over the parameter

spa
e T

0

and an S

1

-equivariant bundle homomorphism � :

�

W

f

!

�

W whi
h have the

following properties.

(1) For ea
h parameter, the image of � 
ontains

�

W

�

.

(2) There is an S

1

-equivariant homomorphism s :

�

W !

�

W

f

for ea
h parameter,

and the restri
tion of the 
omposition �s on

�

W

�

is the identity.

(3) There is an S

1

-equivariant isomorphism from

�

W

f

to the produ
t bundle T

0

�

(C

b

�R




) for some b and 
.

Note that (1) is an immediate 
onsequen
e of (2).

Proof. Take an open 
overing U

i

of the parameter spa
e T

0

so that there is �

i

> �

whi
h is not equal to the eigenvalues of DD

�

or D

�

D for every parameter in U

i

.

Then

�

W

�

i

varies 
ontinuously for parameters in U

i

. (This 
ontinuity is shown by

using a min-max prin
iple to 
hara
terize eigenspa
es [4℄.) When we repla
e the

open 
overing with a �ner one, if ne
essary, we 
an assume that the family

�

W

�

i

makes a trivial S

1

-equivariant ve
tor bundle over U

i

. Fix a trivialization and let

�

W

f

i

be the obvious extension of this bundle over the whole parameter spa
e T

0

.

Now the 
onstru
tion of

�

W

f

, � and s is as follows. We take the dire
t sum �

i

�

W

f

i

for

�

W

f

. For parameters in U

i

, let �

i

be the in
lusion

�

W

�

i

!

�

W and let s

i

be the

orthogonal proje
tion

�

W !

�

W

�

i

. They are de�ned only on U

i

. Take a partition of

unity f�

i

g for the open 
overing and de�ne � and s as

� =

X

i

�

i

�

i

; s =

X

i

�

i

s

i

:

The right-hand-sides are well de�ned and they satisfy (1) and (2).

Consider the kernel of the surje
tive map

D + � :

�

V �

�

W

f

!

�

W:

>From (1) in Lemma (3.2) we 
an show that this map is always surje
tive. Hen
e

the kernel has a 
onstant dimension given by

dim

�

V

�

� dim

�

W

�

+ rank

�

W

f

= index(D :

�

V !

�

W ) + rank

�

W

f

:
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Hen
e

�

V

f

:= Ker(D + �) is an S

1

-equivariant (�nite rank) ve
tor bundle over the

parameter spa
e.

Now we 
an repla
e the family of linear map D :

�

V

�

!

�

W

�

with the following


ontinuous family D

f

.

Lemma(3.3). The family

D

f

:

�

V

f

!

�

W

f

; (v; e) 7! e

depends 
ontinuously on the parameter spa
e T

0

.

The formal di�eren
e [

�

V

f

℄ � [

�

W

f

℄ gives the index of the family D :

�

V

�

!

�

W

�

([2℄).

step 3

Now we have the 
ontinuous family of linear maps D

f

between �nite dimensional

ve
tor spa
es and the 
ontinuous family of nonlinear maps ~p

�

Q between in�nite

dimensional ve
tor spa
es. Let us de�ne a 
ontinuous family of nonlinear maps Q

f

between �nite dimensional ve
tor spa
es as

Q

f

:

�

V

f

!

�

W

f

; (v; e) 7! �s~p

�

Q:

Then a good �nite dimensional approximation of D + Q is given by D

f

+ Q

f

in

the following sense. Fix an S

1

-invariant metri
 on

�

W

f

. Let S

(R;R

1

)

(

�

V

f

) be the

topologi
al sphere bundle over T

0

de�ned as the boundary of the topologi
al disk

bundle

�

V

f

\ (B

R

(

�

V )� B

R

1

(

�

W

f

)):

Lemma(3.4). For large R

1

, D

f

+Q

f

does not vanish on the sphere bundle S

(R;R

1

)

(

�

V

f

).

Proof. Take (v; e) in the interse
tion of

�

V

f

and B

R

(

�

V ). Assume that (D

f

+Q

f

)(v; e) =

0. It suÆ
es to show that (1) v does not lie on the boundary sphere S

R

(

�

V ) and

that (2) e is bounded. >From the de�nition of

�

V

f

, we have Dv + �e = 0. >From

the de�nition of D

f

and Q

f

, we have e � s~p

�

Q(v) = 0. Sin
e the image of ~p

�

is


ontained in

�

W

�

, we obtain the following equation.

�Dv = �e = �s~p

�

Q(v) = ~p

�

Q(v):

>From Lemma(3.1), we 
an show that v is 
ontained inside the disk B

R

(

�

V ) and does

not lie on the boundary sphere S

R

(

�

V ). Moreover, sin
e v is bounded, e = s�~p

�

Q(v)

is also bounded.

In the above argument we did not use any parti
ular property of the parameter

spa
e T

0

ex
ept its 
ompa
tness. For a family of 4-manifolds X parameterized by a


ompa
t spa
e K, we 
an obtain a �nite approximation of the family of monopole

equation, where the total parameter spa
e is a bundle over K with �ber T

0

. Stri
tly

speaking, we have to �x a family of spin




-stru
ture. (Later we shall 
onsider all the

spin




-stru
tures.) Let us denote the family of spin




-stru
tures as 
.
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Now we de�ne a Seiberg-Witten invariant as a 
ertain stable homotopy 
lass of

a map. We de�ne it for family of 4-manifolds. We do not assume any inequality for

b

+

(X) in this de�nition. For example it gives an invariant of homotopy 4-spheres,

though we do not know how to dete
t it expli
itly. Later on, when we dete
t this

invariant by using 
ohomology theories, we will use an assumption for b

+

(X).

Fix a family of Riemannian metri
 of the �ber whi
h varies 
ontinuously in

C

1

-topology. Let T

0

be the total spa
e of the �ber bundle over K with �ber

T

0

= H

1

(X;R)=H

1

(X;Z). This is a �ber bundle over K.

>From the above argument, we 
an 
onstru
t a �nite approximation D

f

+ Q

f

:

�

V

f

!

�

W

f

parameterized by T

0

sin
e the lemmas 
an be extended to any family of

4-manifolds parameterized by a 
ompa
t set.

Let R be the trivial real 1-dimensional representation spa
e of S

1

, and C be the

standard 
omplex 1-dimensional representation spa
e.

De�nition(3.2). Let M(X) be the set of the isomorphism 
lasses of the triples

(E;F; f), where

(1) E is a trivial S

1

-equivariant ve
tor bundle over T

0

whose �ber is a dire
t

sum of �nitely many R's and C's,

(2) F is an S

1

-equivariant real �nite-rank ve
tor bundle over T

0

and

(3) f is an S

1

-equivariant bundle map from S(E) to S(F ).

By using the extended lemmas and the �nite approximation we 
an give the

element (

�

V

f

;

�

W

f

; S(D

f

+ Q

f

)) in M(X). To de�ne a topologi
al invariant, whi
h

should be independent of the 
hoi
es to 
onstru
t the �nite dimensional approx-

imation, we need to take a quotient of M(X) by an equivalen
e relation. Before

that, we re
all the de�nition of join. Suppose S

0

and S

1

are some subsets of ve
tor

spa
es V

0

and V

1

respe
tively. Assume that S

0

and S

1

does not 
ontain any real

line passing the origin. Then the join of S

0

and S

1

is de�ned to be the set of the

points in the dire
t sum V

0

�V

1

of the form (1�t)a

0

�ta

1

for some a

0

2 S

0

, a

1

2 S

1

and t 2 [0; 1℄. Note that the �ber-wise join of two sphere bundles is topologi
ally

the sphere bundle of the dire
t sum of the asso
iated ve
tor bundles. We 
all it the

join of the sphere bundles. Then, for two maps between sphere bundles, we 
an

naturally 
onstru
t the join of the maps between the joins of the sphere bundles.

De�nition(3.3). Two elements (E

0

; F

0

; f

0

) and (E

1

; F

1

; f

1

) of M(X) are stable

homotopi
 to ea
h other if and only if there are two �nite dimensional representation

spa
es G

0

and G

1

of S

1

satisfying the following 
onditions.

(1) The two representations are dire
t sums of �nitely many R's and C's.

(2) We regard G

0

and G

1

as trivial ve
tor bundles over K. Then E

0

� G

0

is

isomorphi
 to E

1

�G

1

and F

0

�G

0

is isomorphi
 to F

1

�G

1

.

(3) The join of f

0

and the identity on S(G

0

) is an S

1

-equivariant bundle map

from S(E

0

� G

0

) to S(F

0

� G

0

). Similarly we have an S

1

-equivariant map from

S(E

1

� G

1

) to S(F

1

� G

1

). Then, through the isomorphism in (2), the two joins

are homotopi
 to ea
h other.
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De�nition(3.4)(stable homotopy version of Seiberg-Witten invariant).

(1) Let M(X) be the set of all the stable homotopy 
lasses

of M(X).

(2) De�ne SW (X; 
) to be the stable homotopy 
lass of (

�

V

f

;

�

W

f

; S(D

f

+Q

f

)).

Remark. The set M(X) has a natural stru
ture of Abelian semi-group.

One of the purposes of this paper is to show the well-de�nedness of SW (X; 
).

The proof is parallel to that of the well-de�nedness of the index of family of Fred-

holm operators.

Theorem(3.5). The stable homotopy 
lass SW (X; 
) 2M(X) is

independent of the family of Riemannian metri
 and other 
hoi
es ne
essary to

de�ne it, and hen
e it gives a topologi
al invariant of the pair (X; 
).

Proof.

Step 1

First we �x the family of Riemannian metri
s and show that the stable homotopy


lass does not depend on other 
hoi
es. Let �

0

and �

1

be two large real numbers.

Suppose �

j

:

�

W

f

j

!

�

W and s

j

:

�

W !

�

W

f

j

(j = 0; 1) are the maps satisfying the


ondition of Lemma(3.2). We 
ompare these two and assume for simpli
ity that

the other data are the same for these two 
ases. (The other data 
an be treated

using an argument similar to that in Step 2.) We have two �nite dimensional

approximations D

f

j

+ Q

f

j

:

�

V

f

j

!

�

W

f

j

(j = 0; 1). For j = 0; 1 we denote the triple

(

�

V

f

j

;

�

W

f

j

; S(D

f

j

+ Q

f

j

)) by (E

j

; F

j

; f

j

). Re
all that F

j

=

�

W

f

j

(j = 0; 1) are trivial

ve
tor bundles. Take F

1

and F

0

for G

0

and G

1

respe
tively.

We 
onsider a �nite dimensional approximation parameterized by t 2 [0; 1℄ de-

�ned as follows. For ea
h t 2 [0; 1℄, we use

�(t) = t�

0

+ (1� t)�

1

:

�

W

f

0

�

�

W

f

1

!

�

W;

and

s(t) = ts

0

+ (1� t)s

1

:

�

W !

�

W

f

0

�

�

W

f

1

:

to obtain the �nite approximation D

f

(t) + Q

f

(t) :

�

V

f

(t) !

�

W

f

(t). From this 
on-

stru
tion, D

f

(j) + Q

f

(j) is equal to the dire
t sum of D

f

j

+ Q

f

j

and the identity of

G

j

. This implies that the joins of f

j

and the identity of S(G

j

) for j = 0; 1 are

homotopi
 to ea
h other, and hen
e the two stable homotopy 
lasses are the same.

Step 2

Suppose we have two 
hoi
es for the family of Riemannian metri
s. Then We 
an


onne
t them 
ontinuously as a family parameterized by T

0

� [0; 1℄. Sin
e the 
on-

stru
tion of �nite dimensional approximation works for any family parameterized

by a 
ompa
t spa
e, we 
an 
onstru
t a family of �nite dimensional approximations.

Hen
e the homotopy 
lasses of the �nite dimensional approximations for t = 0 and

t = 1 are the same.
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We 
an easily extend the above 
onstru
tion for all the spin




-stru
tures at on
e.

So far, the symmetry of all the spa
es and maps has been S

1

. If we 
olle
t all

the spin




stru
tures, however, then we have a symmetry of Pin

2

, where Pin

2

is the

normalizer of S

1

in Sp

1

and is generated by S

1

and j.

Let � be the involution of Spin




4

= (Sp

1

�Sp

1

�S

1

)=f�1g de�ned by �(q

�

; q

+

; z) =

(q

�

; q

+

; z

�1

). Then any representation of Spin




4


an be twisted by �. Let

�

H

0

+

,

+

H

0

,

�

H

0

,

+

H

0

+

and

~

C

0

be the the twisting of

�

H

+

,

+

H,

�

H,

+

H

+

and

~

C. Sin
e the

S

1

-
omponent of Spin




4

a
ts trivially on

�

H

+

and

~

C, the Spin




4

-modules

�

H

0

+

and

~

C

0

are 
anoni
ally isomorphi
 to

�

H

+

and

~

C respe
tively. However we introdu
e

another isomorphisms below and it is 
onvenient to distinguish them.

Let

�

j

+

,

+

j,

�

j,

+

j

+

and

~

j be the Spin




4

-equivariant homomorphisms de�ned

by:

�

j

+

:

�

H

+

!

�

H

0

+

; a 7! �a;

+

j :

+

H!

+

H

0

; � 7! �j

�

j :

�

H!

�

H

0

;  7!  j

+

j

+

:

+

H

+

!

+

H

0

+

; ! 7! �!

~

j :

~

C!

~

C

0

; t 7!

�

t:

Let Spin




(X) be the set of spin




stru
tures on X, i.e., Spin




4

(X) is the set of

all the equivalent 
lasses of pair of an Spin




4

-bundle P and an isomorphism T =

P �

Spin




4

�

H

+

�

=

TX. It is well known, from a simple argument of obstru
tion

theory, that Spin




4

(X) is an aÆne spa
e over H

2

(X;Z). The twisting of � indu
es

an involution on Spin




(X). For an Spin




4

-bundle P , let P

0

:= P �

�

Spin




4

be the

twisting of P . We use the notation S

+

0

et
. to denote the ve
tor bundles asso
iated

with P

0

. Then the �ve homomorphisms above give �ve bundle homomorphisms

+

j : S

+

! S

+

0

et
. Note that the 
onne
tions on L 
orrespond to the 
onne
tions

on L

0

= L

�1

bije
tively through �. Take a pair of 
onne
tions A

0

and A

0

0

on P and

P

0


orresponding to ea
h other by this bije
tion. We use the notations D

0

and Q

0

et
. to denote the obje
t asso
iated with P

0

. It is easy to see the following:

Lemma(3.6). The two maps D +Q : V ! W and D

0

+Q : V

0

!W

0


orrespond

to ea
h other via the maps

+

j et
.

For ea
h spin




stru
ture, we want to �x a 
onne
tion A

0

so that they are 
om-

patible with the involution. One minor problem o

urs when the involution on

Spin




(X) has a �xed point. In that 
ase we have to take A

0

so that it is 
ompati-

ble with the involution. We need the next lemma.

Lemma(3.7). If a spin




-stru
ture is preserved by the involution, then the spin




-

stru
ture is redu
ed to a spin stru
ture and hen
e L is topologi
ally trivial. Then

we 
an take a trivial 
onne
tion for A

0

.

Proof. Suppose we have an isomorphism f : P ! P

0

. Sin
e P

0

is identi�ed with P

as a set, we 
an 
onsider the �xed point P

0

of P . The �xed-point set of the a
tion of

� on Spin




4

is the subgroup Spin

4

. This implies that P

0

is a prin
ipal Spin

4

-bundle
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and hen
e the stru
ture group of P is redu
ed to Spin

4

. The rest of the statement

is obtained immediately.

We take the trivial 
at 
onne
tion as A

0

for the spin




-stru
ture whi
h 
an be

redu
ed to a spin stru
ture. Then the map D + Q : V ! W and its �nite di-

mensional approximation has a natural Pin

2

symmetry [5℄. We 
hoose A

0

for ea
h

spin




-stru
ture and assume that they are 
ompatible with the involution in the

following sense: (1) if the spin




-stru
ture 
omes from an spin stru
ture, then A

0

is a trivial 
onne
tion and (2) if not, then A

0

and A

0

0


orrespond to ea
h other by

the involution. By using this 
hoi
e we have a family D

f

:

�

V

f

!

�

W

f

parameterized

by Spin




(X)� T

0

. >From the bundle homomorphisms

+

j et
 we de�ne self maps

J on the families f

�

V g and f

�

Wg. This a
tion is not an involution, but its order is

4. This map together with the obvious S

1

-a
tion gives rise to a Pin

2

a
tion on the

families.

Let

~

R and H be the following real representation spa
e of Pin

2

:

~

R is the unique

non-trivial 1-dimensional representation andH is the spa
e of quaternions on whi
h

Pin

2

a
ts as right multipli
ation.

Proposition(3.8). We 
an take a �nite approximation of D :

�

V !

�

W so that

�

W

f

is a trivial ve
tor bundle whose �ber is a dire
t sum of �nitely many

~

R's and

H, and the family D

f

:

�

V

f

!

�

W

f

parameterized by Spin




(X) � T

0

has an Pin

2

symmetry.

Proof. We 
an just repeat the 
onstru
tion of the �nite dimensional approximation

with the a
tion of Pin

2

. Let

~

T

0

be the total spa
e of the �ber bundle over K with

�ber Spin




(X)�T

0

. Sin
e the argument is almost the same ex
ept for repla
ement

of S

1

, R, C and T

0

by Pin

2

,

~

R, H and

~

T

0

respe
tively, we omit the details.

Lemma(3.7) implies that this family is preserved by the a
tion of J . Sin
e this

family already has the S

1

-symmetry, we totally have a symmetry of Pin

2

whi
h is

generated by S

1

and J .

Remark. The above argument using Lemma(3.7) is not a
tually ne
essary to de�ne

the a
tion of Pin

2

. If we use the original monopole equation D+Q+F

A

0

= 0, then

it does not depend on the 
hoi
e of A

0

and we 
an easily de�ne the Pin

2

-a
tion

whi
h preserves this equation.

We now formulate the invariant without �xing a spin




-stru
ture. Suppose X

is a �ber bundle with �ber X over K, where X is a 
losed oriented 4-manifold.

Fix a family of Riemannian metri
 of the �ber whi
h varies 
ontinuously in C

1

-

topology. Re
all that

~

T

0

is the total spa
e of the �ber bundle over K with �ber

Spin




(X)�T

0

. We regard it as a Pin

2

-equivariant �ber bundle overK, where Pin

2

-

a
tion on T

0

= H

1

(X;R)=H

1

(X;Z) fa
tors through multipli
ation of f�1g = hJi

while its a
tion on Spin




(X) also fa
tors through the involution.

>From the above argument we 
an 
onstru
t a �nite dimensional approximation

D

f

+Q

f

:

�

V

f

!

�

W

f

parameterized by

~

T

0

, whi
h now has a Pin

2

-symmetry.

Parallel to De�nition(3.2), we use the notation

~

M(X) to denote the set of the

isomorphism 
lasses of the triples (E;F; f), where
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(1) E is a trivial Pin

2

-equivariant ve
tor bundle over

~

T

0

whose �ber is a dire
t

sum of �nitely many

~

R's and H's,

(2) F is a Pin

2

-equivariant real �nite-rank ve
tor bundles over

~

T

0

and

(3) f is a Pin

2

-equivariant bundle map from S(E) to S(F ).

Similarly we de�ne the set of stable homotopy 
lasses

~

M(X) by using the obvious

equivalen
e relation similar to De�nition(3.3).

The rest of the argument is also quite parallel to the previous argument. We

de�ne SW (X) to be the stable homotopy 
lass of (

�

V

f

;

�

W

f

; S(D

f

+ Q

f

)). Then we

obtain:

Theorem(3.9). The stable homotopy 
lass SW (X) 2

~

M(X) is independent of the

family of Riemannian metri
 and other 
hoi
es to de�ne it, and hen
e it gives a

topologi
al invariant of X

x4. Evaluation of the Seiberg-Witten

invariant using 
ohomology theory

In this se
tion we show how to dete
t the stable homotopy version of the Seiberg-

Witten invariant in the simplest 
ase. We 
onsider a single oriented 
losed 4-

manifold X satisfying b

1

(X) = 0 and b

+

(X) > 1. We also assume that b

+

(X) is

odd and write b

+

(X) as 2p+1. Moreover we �x a spin




-stru
ture 
 and 
onsider the

stable homotopy 
lass SW (X; 
). In this 
ase the �nite dimensional approximation

is just an S

1

-equivariant map between two representation spa
es of S

1

. >From an

index 
al
ulation, the map is de�ned as a map from C

a+m

�R

n

to C

m

�R

2p+1+n

,

where a = (


1

(L)

2

�sign(X))=8, andm and n are some non-negative integers. When

p is larger than or equal to a, it is easy to see that there is only one homotopy 
lass

of S

1

-equivariant map from S(C

a+m

� R

n

) to S(C

m

� R

2p+1+n

). In the rest of

this se
tion we assume that p < a.

Let f

0

be an S

1

-equivariant map between spheres representing the 
lass SW (X).

By taking suspension, we 
an extend f

0

to be an S

1

-equivariant map from the pair

(B(C

a+m

�R

n

); S(C

a+m

�R

n

)) to the pair (B(C

m

�R

2p+1+n

); S(C

m

�R

2p+1+n

)).

The S

1

-equivariant map f preserves the �xed point sets of the S

1

-a
tion. The re-

stri
tion of f

0

on the �xed point sets is a map from the pair (B(R

n

); S(R

n

))

to the pair (B(R

2p+1+n

); S(R

2p+1+n

)). If we perturb this map slightly, the ori-

gin of B(R

2p+1+n

) does not lie on the image of B(R

n

). The perturbation is

not unique. However, sin
e we are assuming that 2p + 1 > 1, the relative ho-

motopy 
lass of the perturbed map from the pair (B(R

n

); S(R

n

)) to the pair

(B(R

2p+1+n

)nf0g; S(R

2p+1+n

)) is uniquely determined. Sin
e S(R

2p+1+n

) is a re-

tra
tion of B(R

2p+1+n

) nf0g, the map 
an be perturbed further to a map from the

pair (B(R

n

); S(R

n

)) to the pair (S(R

2p+1+n

); S(R

2p+1+n

)). >From homotopy ex-

tension property we 
an extend the perturbation to a perturbation of f

0

supported

in the interior of B(C

a+m

�R

n

). Average it linearly by using the S

1

-a
tion, then

we 
an assume that the perturbed map f

1

is still S

1

-equivariant.

Now f

1

is an S

1

-equivariant map from the pair (B(C

a+m

�R

n

); S(C

a+m

�R

n

)[

B(R

n

)) to the pair (B(C

m

�R

2p+1+n

); S(C

m

�R

2p+1+n

)). We repla
e these data
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in the following way just for 
onvenien
e.

(1) As for the �rst pair of the spa
es (B(C

a+m

�R

n

); S(C

a+m

�R

n

)[B(R

n

)),

this is homotopi
ally equivalent to the pair of a disk bundle and its sphere bundle.

In fa
t if we write S(C

a+m

) for the sphere in the disk B(C

a+m

) 
entered in 0 with

half radius, then the 
omplement of S(C

a+m

� R

n

) [ B(R

n

) in B(C

a+m

� R

n

)

is a trivial disk bundle over S(C

a+m

) with �ber R

n+1

. We use the notation S to

denote S(C

a+m

) and E to denote this trivial bundle.

(2) As for the se
ond pair of the spa
es (B(C

m

�R

2p+1+n

); S(C

m

�R

2p+1+n

)),

we multiply it by S in order to regard every spa
e as an S

1

-equivariant bundle over

S. We use the notation F to denote the trivial ve
tor bundle over S whose �ber is

C

m

�R

2p+1+n

.

(3) As for the S

1

-equivariant map between the pairs, we use, instead of f

1

, the

bundle map f over S indu
ed from f

1

. We need to use homotopy extension property

to 
onstru
t f .

The geometri
 data we have now is the S

1

-equivariant homotopy 
lass of the

S

1

-equivariant bundle map f from the disk bundle of E to the disk bundle of F

whi
h preserves their boundaries. Sin
e the S

1

-a
tion is free on S, we 
an divide

everything by S

1

to get a bundle map

�

f between disk bundles asso
iated with

S �

S

1

E and S �

S

1

F over

�

S = S=S

1

:

�

f : (B(

�

E); S(

�

E))! (B(

�

F ); S(

�

F )):

This is the �nal geometri
 data we shall use. Instead of using maps between pairs,

we 
ould formulate everything by using maps between Thom spa
es.

It is easy to show that a 
ertain stable homotopy 
lass of this map is well de�ned

for X with b

1

= 0 and b

+

> 1. Sin
e we will not use this well-de�nedness, we omit

the details.

Suppose h is a multipli
ative generalized 
ohomology theory for whi
h

�

E and

�

F

are orientable. We shall use this h to dete
t the stable homotopy 
lass.

First we need to �x the orientations of

�

E and

�

F . We shall explain it later for

the ordinary 
ohomology and the K-theory. We shall need some extra geometri


data to de�ne the orientations. Fixing the orientations of

�

E and

�

F implies, by

de�nition, that h

�

(B(

�

E); S(

�

E)) h

�

(B(

�

F ); S(

�

F )) are free h

�

(

�

S)-modules generated

by given 
lasses �

h

�

E

and �

h

�

F

respe
tively.

De�nition(4.1). Suppose X satis�es b

1

= 0 and b

+

> 0. Let 
 be a spin




-stru
ture

of X. (We also assume that 
ertain data ne
essary to de�ne the orientations are

given.) Then the h-version of Seiberg-Witten invariant k

h

(X; 
) of (X; 
) is de�ned

by using the following relation:

k

h

(X; 
)�

h

�

E

=

�

f

�

�

h

�

F

:

Remark. The above k

h

(X; 
) is de�ned as an element of h

�

(

�

S). However this 
o-

homology group itself depend on various 
hoi
es to de�ne f . Stri
tly speaking, we

need to 
onstru
t some inverse system of 
ohomology groups. It would be more
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systemati
 to use homology rather than 
ohomology. We shall dis
uss this point

later for the ordinary 
ohomology.

Ordinary 
ohomology

Let k

H

(X; 
) be the Seiberg-Witten invariant for ordinary 
ohomology. To de�ne

it, we need the orientations of

�

E and

�

F . If we 
hange both of these orientations, the

invariant does not 
hange. We only need the orientation of the formal di�eren
e

[E℄�[F ℄ whi
h is an element of K(point). Sin
e 
omplex ve
tor spa
es have natural

orientations, we obtain:

Lemma(4.2). Ea
h 
hoi
e of the orientation of [H

0

(X;R)℄�[H

1

(X;R)℄+[H

+

(X;R)℄

gives the required orientation to de�ne k

H

(X; 
).

Proof. The formal di�eren
e [E℄� [F ℄ is equal to [H

1

(X;R)℄� [H

+

(X;R)℄ modulo

some formal di�eren
e of 
omplex ve
tor spa
es.

Sin
e we assumed that b

1

= 0, it is not ne
essary to put H

1

(X;R). However we

put it so that the statement is generalized to any X or any family of 4-manifolds.

We �x one of the 
hoi
es of the orientations.

The degree of k

H

(X; 
) is given by

deg k

H

(X; 
) = deg �

H

�

F

�deg �

H

�

E

= dimF�dimE = (2m+2p+1+n)�(n+1) = 2m+2p:

Sin
e

�

S is a 
omplex proje
tive spa
e of 
omplex dimension a+m�1, its 
ohomology

ring is given by

H

�

(

�

S;Z) = Z[�℄; �

a+m

= 0

where � is the �rst Chern 
lass of hyperplane line bundle. The above relation is

the only one satis�ed by �.

Re
all that we are assuming that a > p. The relation between k

H

(X; 
) and the

usual Seiberg-Witten invariant is given by the following de�nition and lemma.

De�nition(4.3). De�ne k(X; 
) 2 Z by

k

H

(X; 
) = k(X; 
)�

m+p

:

Lemma(4.4). Perturb f if ne
essary and assume that the equation f(v) = 0 is

transversal. Then the quotient of the spa
e of the solutions fvjf(v) = 0g divided by

S

1

is an oriented 
losed submanifold of

�

S�E and its fundamental 
lass is equal to

k(X; 
)� [generator℄ in H

2d

(

�

S �E) = Z for d = a� p� 1.

It is not hard to see that the 
hara
terization of k(X; 
) in the above lemma

implies that k(X; 
) is equal to the usual Seiberg-Witten invariant.

The dimension 2d of fvjf(v) = 0g=S

1

is 
al
ulated as follows.

2d = dim

�

S+dimE�dimF = 2(a+m�1)+(n+1)�(2m+2p+1+n) = 2(a�p�1):

K-
ohomology
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Let k

K

(X; 
) be the Seiberg-Witten invariant for K-
ohomology. To de�ne it,

we need the orientations of

�

E and

�

F . It suÆ
es to give S

1

-invariant weak 
omplex

stru
tures on E and F . Here a weak-
omplex stru
ture of a real ve
tor spa
e is an

obvious equivalen
e 
lass of the 
omplex stru
ture of the dire
t sum of the ve
tor

spa
e and R

l

for some l. (\Weak-spin




-stru
ture" would be enough.) It is ne
essary

to give weak-
omplex stru
tures only on the S

1

-invariant parts. Then we obtains

Lemma(4.5). Ea
h 
hoi
e of the homotopy 
lass of weak-
omplex stru
tures on

H

1

(X;R) and H

+

(X;R) gives the required orientation to de�ne k

K

(X; 
).

Sin
e we assumed that b

1

= 0, it is not ne
essary to give a weak-
omplex stru
-

ture of H

1

(X;R). A 
hoi
e of homotopy 
lass of the weak-
omplex stru
ture of a

real ve
tor spa
e is equivalent to a 
hoi
e of orientation of the spa
e. However if

we 
onsider family of 4-manifolds, we would need to �x more than the the 
hoi
e of

orientation to de�ne the K-theory version of Seiberg-Witten invariant, though we

do not deal with that 
ase in this paper.

We �x one of the 
hoi
es of the orientations of H

+

(X;R) and hen
e a homotopy


lass of weak-
omplex stru
ture on it. For simpli
ity we assume that n is odd so

that the S

1

-invariant parts have a 
omplex stru
ture whi
h is 
ompatible with the

given 
hoi
e. We 
an always 
hoose su
h a representative in the stable homotopy


lass.

Let L be the hyperplane line bundle on the 
omplex proje
tive spa
e

�

S. Then

K

�

(

�

S) (� = 0; 1) is given by

K

�

(

�

S) = Z[�℄; �

a+m

= 0

where � is the K-theoreti
 Euler 
lass of hyperplane line bundle L. More expli
itly

� = 1� [L

�

℄. The degree of � is 0. The above relation is the only one satis�ed by

�. (Here we use the above 
onvention of K-theoreti
 Euler 
lass so that we have


h

1

(�) = �.)

The K-theory Seiberg-Witten invariant is a polynomial in � with integral 
oeÆ-


ient.

k

K

(X; 
) 2 Z[�℄:

In the next se
tion we show that the integrality of ea
h 
oeÆ
ient gives a divisibility

of k(X; 
).

x5. Divisibility.

Theorem(1.1) is immediately shown from the next theorem.

Theorem(5.1). Let a

p;l

be the 
oeÆ
ient of x

l

in the Taylor expansion of (

log(1�x)

x

)

p

.

Then we have the following relation in K(

�

S)
Q.

k

K

(X; 
) = k(X; 
)�

m+p

X

l

a

p;l

�

l

:
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Proof of Theorem(1.1) admitting Theorem(5.1). Sin
e k

K

(X; 
) is a polynomial in

� with integral 
oeÆ
ient, k(X; 
)a

p;n

is an integer as long as �

m+p+n

is not zero,

i.e., m+ p+ n < m+ a. This inequality is equivalent to n � a� p� 1 = d.

To show Theorem we 
ompare the K-
ohomology and the ordinary 
ohomology

by using the Chern 
hara
ter. We use the following lemma.

Lemma(5.2). Suppose a 
omplex ve
tor bundle G over

�

S has a splitting into a

dire
t sum of line bundles:G = �

l

L

l

. We use the notation �

i

to denote 


1

(L

i

) and

�

i

to denote 1� [L

�

i

℄. Then we have


h(�

i

) = 1� e

�x

i

; 
h(log(1� �

i

)) = x

i

;


h(�

K

G

)

Y

i

x

i

1� e

�x

i

= �

H

G

and


h(�

K

G

Y

i

log(1� �

i

)

�

i

) = �

H

G

:

Note that x

i

and �

i

are nilpotent inH

�

(

�

S;Z) and inK

�

(

�

S) respe
tively. However

the expressions of the terms in the above equalities are well de�ned by using Taylor

expansion. All the equalities should be understood in H

�

(

�

S;Q). The �rst two

equalities follows from the de�nition. The third one is the well-known relation that

gives a 
hara
terization of the Todd genus. The fourth equality is equivalent to the

third one.

Proof of Theorem(5.1). >From Lemma we have


h(�

K

�

E

) = �

H

�

E

and


h(�

K

�

F

(

log(1� �)

�

)

m

) = �

H

�

F

:

Hen
e we have


h(k

K

(X; 
)(

log(1� �)

�

)

m

) = k

H

(X; 
):

On the other hand, from k

H

(X; 
) = k(X; 
)�

p+m

, we have


h(k(X; 
)(log(1� �))

p+m

) = k

H

(X; 
):

Sin
e the Chern 
hara
ter is inje
tive on

�

S, we obtain

k

K

(X; 
)(

log(1� �)

�

)

m

= k(X; 
)(log(1� �))

p+m

;

whi
h implies Theorem 5.1.
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