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Abstrat. In this paper we onstrut stable homotopy version of Seiberg-Witten

invariant. The onstrution is given for families of any losed oriented 4-manifolds

parameterized by ompat spaes. As an appliation we show a divisibility of Seiberg-

Witten invariant for non-simple type 4-manifolds.

x1. Introdution.

Let X be a 4-dimensional oriented losed manifold with a spin



-struture. For

simpliity we assume that the �rst Betti number b

1

of X is 0. The Seiberg-Witten

invariant is de�ned as the fundamental homology lass of the moduli spae of the

monopoles assoiated with the spin



-struture. Stritly speaking the invariant is

well de�ned when (1) the rank b

+

of a maximal positive de�nite subspae H

+

(X) of

H

2

(X;R) is odd and larger than 1, and (2) one of the two orientations of H

+

(X)

is �xed. We denote b

+

as 2p + 1. The formal dimension of the moduli spae is

even when b

1

= 0 and b

+

is odd. If we write 2d for the formal dimension, then

the Seiberg-Witten invariant is valued in H

2d

(CP

1

;Z), whih is isomorphi to Z

when d � 0. The invariant is zero when d < 0. The following problem is due to

E. Witten [7℄.

Problem. Is the Seiberg-Witten invariant zero when d > 0?

A 4-manifold satisfying this property is alled a simple type manifold. In this

paper we show that when d > 0, there is a restrition on the possible values of the

Seiberg-Witten invariant. To state our result, we need to introdue the oeÆients

of the following Taylor expansion:
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Theorem(1.1). When d > 0, the Seiberg-Witten invariant is divisible by the de-

nominators of a

p;1

; a

p;2

; � � � ; and a

p;d

.

Note that an integer is zero if and only if it is divisible by every nonzero integers.

So integrality theorems like Theorem(1.1) ould be regarded as a small step for the

problem.

On the other hand, when b

+

= 1 the Seiberg-Witten invariant depends on ham-

bers. It is known, from the wall rossing formula, that there are examples whih

have non-zero Seiberg-Witten invariant for some positive d. The above divisibility

still holds in this ase for any hamber.

D. Ruberman pointed out to the author that the integrality of L-genus of the

moduli spae of monopoles implies a divisibility of the Seiberg-Witten invariant.

What we atually do is to give a re�nement of the Seiberg-Witten invariant

as a ertain stable homotopy lass, whih is onstruted by using a �nite dimen-

sional approximation of the map de�ned by the monopole equation.

When X is spin and the spin



-struture is the one derived from a spin struture

of X, then the onstrution of the stable homotopy lass is given in [5℄. One

purpose of the present paper is to show that the onstrution is extended to any

spin



-struture.

The seond purpose of this paper is to give a de�nition of the re�nement for

a general setting. We onsider the ase when b

1

is not neessarily zero. We also

extend the onstrution to families of oriented losed 4-manifolds parameterized by

ompat spaes. The stable homotopy lass is well de�ned for any suh family. For

example, it is de�ned for a family of homotopy 4-spheres.

The well-de�nedness of the stable homotopy lass ould be regarded as a topo-

logial version of an argument showing that renormalization groups preserve expe-

tation values.

We obtain the original Seiberg-Witten invariant when we detet the stable ho-

motopy lass by using the ordinary ohomology theory. If we use K-theory instead

of the ordinary ohomology theory, then we obtain a K-theory version of Seiberg-

Witten invariant. The K-theory version is related to the original invariant through

a map de�ned by Chern harater with Todd lass as orretion term. Abstratly,

the Chern harater gives rise to two lattie strutures on a ertain single ve-

tor spae over Q, and the two invariants, eah of whih sits on the orresponding

lattie are identi�ed with eah other. Then measuring the di�erene of the two

latties implies a property of an integrality of the identi�ed invariants. The di�er-

ene is desribed by the Todd lass whih appears when the Thom lasses in the

two ohomology theories are ompared. The formal power series mentioned above

is essentially equal to the Todd lass of a vetor bundle over CP

1

. This kind of

argument is standard in appliations of K-theory ([1℄,[2℄).

In [3℄ S. Bauer independently de�ned stable homotopy version of the Seiberg-

Witten invariant and gave appliations to topology of algebrai surfaes.

In Setion 2, We reall the monopole equation. In Setion 3, we give the def-

inition of the re�nement of the Seiberg-Witten invariant in Setion 3 by using a
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�nite dimensional approximation of the monopole equation. In Setion 4, we use

ohomology theories to expliitly detet the re�ned invariant and see that it is in

fat a re�nement. In Setion 5, we ompare the ordinary ohomology with the

K-theory. We use the assumptions, b

1

(X) = 0 and b

+

(X) > 1, only in Setions 4

and 5.

x2. Monopole equation.

In this setion we formulate the monopole equation for a spin



-struture of X

in a line following [5℄. Let H be the quaternion numbers, Sp

1

the group of the

quaternions with norm 1 and S

1

the intersetion of Sp

1

with C in H.

We de�ne �ve Spin



4

-modules

�

H

+

,

+

H,

�

H,

+

H

+

and

~

C as follows. As real

vetor spaes, the �rst four modules are just four opies of H. The ations of

(q

�

; q

+

; z) 2 Spin



4

= (Sp

1

� Sp

1

� S

1

)=f(1; 1; 1; )(�1;�1;�1)g on a 2

�

H

+

,

� 2

+

H,  2

�

H and ! 2

+

H

+

are de�ned by q

�

aq

+

�1

, q

+

�z

�1

, q

�

 z

�1

and

q

+

!q

+

�1

respetively. The last one is a omplex one-dimensional representation

~

C

de�ned by the multipliation of z

2

.

Let X be a losed 4-manifold. For a prinipal Spin



4

-bundle P on X, we have

�ve assoiated vetor bundles T , S

+

, S

�

, � and L from the Spin



4

-modules

�

H

+

,

+

H,

�

H,

+

H

+

and

~

C.

Suppose we are given a pair of a prinipal Spin



4

-bundle P and an isomorphism

TX

�

=

T . Then, sine T has a natural orientation and a natural Riemannian

metri, the pair indues an orientation and a Riemannian metri of X. We all the

homotopy lass of (P; TX

�

=

T ) a spin



-struture.

The Spin



4

-equivariant map

�

H

+

�

+

H !

�

H de�ned by (a; �) 7! a� indues

the Cli�ord multipliation C : T 
 S

+

! S

�

. Similarly the Spin



4

-equivariant map

�

H

+

�

�

H

+

!

+

H

+

de�ned by (a; b) 7! �ab indues a twisted Cli�ord multipliation

�

C : T 
 T ! �.

Sine

�

H

+

�

~

C is a faithful representation of the Lie algebra of Spin



4

, a pair

of metri onnetions on T and on L indues a prinipal onnetion on P . We use

the Riemannian onnetion on T = TX and a �xed onnetion A

0

on L. Then we

have the ovariant derivatives r

1

on �(S

+

) and r

2

on �(T ). Let D

1

and D

2

be

the twisted Dira operators

D

1

= Cr

1

: �(S

+

)! �(S

�

) and D

2

=

�

Cr

2

: �(T )! �(�):

Let D be the diret sum of D

1

and D

2

:

D = D

1

�D

2

: �(S

+

� T )! �(S

�

� �):

LetQ be a quadrati map from S

+

�T to S

�

�� indued from the Spin



4

-equivariant

map

+

H�

�

H

+

!

�

H�

+

H

+

; (�; a) 7! (a�i; �i

�

�):

We shall onsider the nonlinear map

D +Q : V !W;
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where V is the L

2

4

-ompletion of �(S

+

�T ) andW is the L

2

3

-ompletion of �(S

�

�

~

�).

Remark. We an identify the imaginary part of �(�) with the self-dual 2-forms ([5℄

Setion 2 Remark(1)). Let F

+

A

0

be the self-dual part of the urvature of A

0

. Then

an element v of V is alled monopole when (D +Q)v + F

+

A

0

= 0.

Next, we onsider the symmetry of the map D + Q under a group ation of

Harm(X;S

1

) whih is de�ned as the kernel of the omposition of the exterior de-

rivative d : Map(X;S

1

) ! �(T ) and D

2

: �(T ) ! �(�). Here we identify T with

its dual T

�

by using the Riemannian metri and we regard Map(X;S

1

) as a group

by using the multipliation of S

1

. Then Harm(X;S

1

) onsists of the harmoni

maps from X to S

1

. (See [5℄ Setion 2 Remark(2).) Note that the enter of Spin



4

is S

1

= f1g � f1g � S

1

and it naturally ats on eah �ber of S

+

and S

�

. We

an identify the onneted omponent of Harm(X;S

1

) ontaining 1 with the en-

ter of Spin



4

. Then Harm(X;S

1

) ats from the right on S

+

and S

�

by the right

multipliation. We want to de�ne an ation of Harm(X;S

1

) on T and � so that

D + Q is Harm(X;S

1

)-equivariant. When we loally write e

if

for an element of

Harm(X;S

1

), we have:

D

1

(�e

if

) = Cr

1

(�e

if

) = C((r

1

�)e

if

+ df 
 �e

if

i) = (D

1

�)e

if

+ df�e

if

i;

D

2

(a� df) = D

2

a�D

2

df = D

2

a;

Q(�e

if

; a� df) = (a� df)�e

if

i� �e

if

ie

�if

�

� = a�e

if

i� df�e

if

i� �i

�

�

and hene

(D +Q)(�e

if

; a� df) = (D

1

�+ a�i)e

if

�D

2

a+ �i

�

�

Now we de�ne the ation of Harm(X;S

1

) on � as trivial ation. The ation on

T is de�ned by looking at the above relation. Note that we have the exat sequene

1 �! S

1

�! Harm(X;S

1

) �! H

1

(X;Z)! 0;

and df is the image of e

if

written in terms of harmoni 1-form. The ation on T is

de�ned through the additive ation of H

1

(X;Z) if H

1

(X;Z) is identi�ed with the

harmoni 1-forms with integral periods.

On the other hand, it is easy to hek that D

1

, D

2

, and Q ommute with the

S

1

-ations.

We deompose V and W into L

2

-diret sums:

V = H

1

(X;R)�

�

V ; W = H

0

(X;R)�

�

W;

where H

i

(X;R) is the spae of harmoni i-forms. Then the image of D + Q is

ontained in

�

W ([5℄). We regard D +Q as a family of maps from

�

V to

�

W param-

eterized by H

1

(X;R). The ation of Harm(X;S

1

) on V preserves the diret sum.

We deomposed this ation into two parts orresponding to the diret summands.

First, �x a splitting of the above exat sequene and identify Harm(X;S

1

) with

the produt H

1

(X;Z) � S

1

. The ation of H

1

(X;Z) on V preserves the orthog-

onal deomposition and the ation is free on H

1

(X;R) sine it is just given by

translation.
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Now we have a family of S

1

-equivariant maps from

�

V to

�

W parameterized by

the torus H

1

(X;R)=H

1

(X;Z). For this parameter spae we use the notation T

0

.

The ations of S

1

on

�

V and

�

W are just the restritions of its ations on V and W

respetively.

We shall onstrut a �nite dimensional approximation of this family. The Seiberg-

Witten invariant is de�ned by using the approximation.

Remark. We an identify �(T ) with the spae of onnetions on L by the orre-

spondene a 7! A

0

+ ai. The moduli spae of S

1

-onnetions on L whih has the

same urvature with A

0

is parameterized by T

0

= H

1

(X;R)=H

1

(X;Z). The spae

of all the gauge-equivalene lasses of onnetions on L is a produt of T

0

and an

in�nite dimensional vetor spae. The �(T )-part of the above deomposition of V

is identi�ed with this produt struture if we onsider only the kernel of D

2

in order

to take a slie for the gauge group ation.

x3. Finite dimensional approximation.

We have a family of maps D + Q :

�

V !

�

W . Here everything is parameterized

ontinuously by the �nite dimensional torus T

0

, but we suppress the notation for

its parameter.

Sine the zero set of D+Q is ompat ([6℄), we an take a large R so that D+Q

does not have zero on the sphere of radius R in

�

V . Sine the parameter spae is

ompat, we an take R uniformly.

We onstrut a �nite dimensional approximation of this family. It is a non-linear

analogue of the onstrution of index for a family of Fredholm operators [2℄.

step 1

Let

�

W

�

be the subspae of

�

W spanned by eigenspaes of DD

�

with eigenvalues

less than or equal to �. Similarly we de�ne

�

V

�

by using the eigen-deomposition

with respet to D

�

D. Let p

�

:

�

W !

�

W

�

be the orthogonal projetion.

In [5℄, it is shown that for large enough �, D + p

�

Q is a good �nite dimensional

approximation of D+Q in that it does not vanish on the �nite dimensional sphere

in

�

V

�

of radius R entered in 0 while the image of this sphere is ontained in the

�nite dimensional vetor spae

�

W

�

. We denote this sphere as S

R

(

�

V

�

).

The proof of [5℄ implies that we an take � uniformly again. However the or-

thogonal projetion p

�

:

�

W !

�

W

�

does not vary ontinuously with respet to the

parameter. Atually the spae

�

W

�

itself may jump. It is neessary to modify the

projetion so that we have a ontinuous family of maps.

Let � : (�1; 0) ! [0;1) be a ompat-supported smooth non-negative ut-o�

funtion whose integral over (�1; 0) is 1. For eah � > 1, let ~p

�

:

�

W !

�

W

�

be the

smoothing of the projetion de�ned by

Z

0

�1

�(�+ t)p

�+t

dt

The omposition of ~p

�

with the inlusion

�

W

�

!

�

W varies ontinuously.



6 M. FURUTA

Then the proof in [5℄ an immediately be extended to obtain:

Lemma(3.1). For large �, D + ~p

�

Q does not vanish on the sphere S

R

(

�

V

�

). Here

� an be taken uniformly with respet to the family.

step 2

Sine

�

W

�

does not vary ontinuously with respet to the parameter, we want to

replae

�

W

�

with a vetor bundle

�

W

f

. We follow the proedure to de�ne index for

a family of Fredholm operators ([2℄). We modify the argument slightly in order to

onsider a nonlinear term in Step 3.

Lemma(3.2). There is an S

1

-equivariant vetor bundle

�

W

f

over the parameter

spae T

0

and an S

1

-equivariant bundle homomorphism � :

�

W

f

!

�

W whih have the

following properties.

(1) For eah parameter, the image of � ontains

�

W

�

.

(2) There is an S

1

-equivariant homomorphism s :

�

W !

�

W

f

for eah parameter,

and the restrition of the omposition �s on

�

W

�

is the identity.

(3) There is an S

1

-equivariant isomorphism from

�

W

f

to the produt bundle T

0

�

(C

b

�R



) for some b and .

Note that (1) is an immediate onsequene of (2).

Proof. Take an open overing U

i

of the parameter spae T

0

so that there is �

i

> �

whih is not equal to the eigenvalues of DD

�

or D

�

D for every parameter in U

i

.

Then

�

W

�

i

varies ontinuously for parameters in U

i

. (This ontinuity is shown by

using a min-max priniple to haraterize eigenspaes [4℄.) When we replae the

open overing with a �ner one, if neessary, we an assume that the family

�

W

�

i

makes a trivial S

1

-equivariant vetor bundle over U

i

. Fix a trivialization and let

�

W

f

i

be the obvious extension of this bundle over the whole parameter spae T

0

.

Now the onstrution of

�

W

f

, � and s is as follows. We take the diret sum �

i

�

W

f

i

for

�

W

f

. For parameters in U

i

, let �

i

be the inlusion

�

W

�

i

!

�

W and let s

i

be the

orthogonal projetion

�

W !

�

W

�

i

. They are de�ned only on U

i

. Take a partition of

unity f�

i

g for the open overing and de�ne � and s as

� =

X

i

�

i

�

i

; s =

X

i

�

i

s

i

:

The right-hand-sides are well de�ned and they satisfy (1) and (2).

Consider the kernel of the surjetive map

D + � :

�

V �

�

W

f

!

�

W:

>From (1) in Lemma (3.2) we an show that this map is always surjetive. Hene

the kernel has a onstant dimension given by

dim

�

V

�

� dim

�

W

�

+ rank

�

W

f

= index(D :

�

V !

�

W ) + rank

�

W

f

:
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Hene

�

V

f

:= Ker(D + �) is an S

1

-equivariant (�nite rank) vetor bundle over the

parameter spae.

Now we an replae the family of linear map D :

�

V

�

!

�

W

�

with the following

ontinuous family D

f

.

Lemma(3.3). The family

D

f

:

�

V

f

!

�

W

f

; (v; e) 7! e

depends ontinuously on the parameter spae T

0

.

The formal di�erene [

�

V

f

℄ � [

�

W

f

℄ gives the index of the family D :

�

V

�

!

�

W

�

([2℄).

step 3

Now we have the ontinuous family of linear maps D

f

between �nite dimensional

vetor spaes and the ontinuous family of nonlinear maps ~p

�

Q between in�nite

dimensional vetor spaes. Let us de�ne a ontinuous family of nonlinear maps Q

f

between �nite dimensional vetor spaes as

Q

f

:

�

V

f

!

�

W

f

; (v; e) 7! �s~p

�

Q:

Then a good �nite dimensional approximation of D + Q is given by D

f

+ Q

f

in

the following sense. Fix an S

1

-invariant metri on

�

W

f

. Let S

(R;R

1

)

(

�

V

f

) be the

topologial sphere bundle over T

0

de�ned as the boundary of the topologial disk

bundle

�

V

f

\ (B

R

(

�

V )� B

R

1

(

�

W

f

)):

Lemma(3.4). For large R

1

, D

f

+Q

f

does not vanish on the sphere bundle S

(R;R

1

)

(

�

V

f

).

Proof. Take (v; e) in the intersetion of

�

V

f

and B

R

(

�

V ). Assume that (D

f

+Q

f

)(v; e) =

0. It suÆes to show that (1) v does not lie on the boundary sphere S

R

(

�

V ) and

that (2) e is bounded. >From the de�nition of

�

V

f

, we have Dv + �e = 0. >From

the de�nition of D

f

and Q

f

, we have e � s~p

�

Q(v) = 0. Sine the image of ~p

�

is

ontained in

�

W

�

, we obtain the following equation.

�Dv = �e = �s~p

�

Q(v) = ~p

�

Q(v):

>From Lemma(3.1), we an show that v is ontained inside the disk B

R

(

�

V ) and does

not lie on the boundary sphere S

R

(

�

V ). Moreover, sine v is bounded, e = s�~p

�

Q(v)

is also bounded.

In the above argument we did not use any partiular property of the parameter

spae T

0

exept its ompatness. For a family of 4-manifolds X parameterized by a

ompat spae K, we an obtain a �nite approximation of the family of monopole

equation, where the total parameter spae is a bundle over K with �ber T

0

. Stritly

speaking, we have to �x a family of spin



-struture. (Later we shall onsider all the

spin



-strutures.) Let us denote the family of spin



-strutures as .
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Now we de�ne a Seiberg-Witten invariant as a ertain stable homotopy lass of

a map. We de�ne it for family of 4-manifolds. We do not assume any inequality for

b

+

(X) in this de�nition. For example it gives an invariant of homotopy 4-spheres,

though we do not know how to detet it expliitly. Later on, when we detet this

invariant by using ohomology theories, we will use an assumption for b

+

(X).

Fix a family of Riemannian metri of the �ber whih varies ontinuously in

C

1

-topology. Let T

0

be the total spae of the �ber bundle over K with �ber

T

0

= H

1

(X;R)=H

1

(X;Z). This is a �ber bundle over K.

>From the above argument, we an onstrut a �nite approximation D

f

+ Q

f

:

�

V

f

!

�

W

f

parameterized by T

0

sine the lemmas an be extended to any family of

4-manifolds parameterized by a ompat set.

Let R be the trivial real 1-dimensional representation spae of S

1

, and C be the

standard omplex 1-dimensional representation spae.

De�nition(3.2). Let M(X) be the set of the isomorphism lasses of the triples

(E;F; f), where

(1) E is a trivial S

1

-equivariant vetor bundle over T

0

whose �ber is a diret

sum of �nitely many R's and C's,

(2) F is an S

1

-equivariant real �nite-rank vetor bundle over T

0

and

(3) f is an S

1

-equivariant bundle map from S(E) to S(F ).

By using the extended lemmas and the �nite approximation we an give the

element (

�

V

f

;

�

W

f

; S(D

f

+ Q

f

)) in M(X). To de�ne a topologial invariant, whih

should be independent of the hoies to onstrut the �nite dimensional approx-

imation, we need to take a quotient of M(X) by an equivalene relation. Before

that, we reall the de�nition of join. Suppose S

0

and S

1

are some subsets of vetor

spaes V

0

and V

1

respetively. Assume that S

0

and S

1

does not ontain any real

line passing the origin. Then the join of S

0

and S

1

is de�ned to be the set of the

points in the diret sum V

0

�V

1

of the form (1�t)a

0

�ta

1

for some a

0

2 S

0

, a

1

2 S

1

and t 2 [0; 1℄. Note that the �ber-wise join of two sphere bundles is topologially

the sphere bundle of the diret sum of the assoiated vetor bundles. We all it the

join of the sphere bundles. Then, for two maps between sphere bundles, we an

naturally onstrut the join of the maps between the joins of the sphere bundles.

De�nition(3.3). Two elements (E

0

; F

0

; f

0

) and (E

1

; F

1

; f

1

) of M(X) are stable

homotopi to eah other if and only if there are two �nite dimensional representation

spaes G

0

and G

1

of S

1

satisfying the following onditions.

(1) The two representations are diret sums of �nitely many R's and C's.

(2) We regard G

0

and G

1

as trivial vetor bundles over K. Then E

0

� G

0

is

isomorphi to E

1

�G

1

and F

0

�G

0

is isomorphi to F

1

�G

1

.

(3) The join of f

0

and the identity on S(G

0

) is an S

1

-equivariant bundle map

from S(E

0

� G

0

) to S(F

0

� G

0

). Similarly we have an S

1

-equivariant map from

S(E

1

� G

1

) to S(F

1

� G

1

). Then, through the isomorphism in (2), the two joins

are homotopi to eah other.
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De�nition(3.4)(stable homotopy version of Seiberg-Witten invariant).

(1) Let M(X) be the set of all the stable homotopy lasses

of M(X).

(2) De�ne SW (X; ) to be the stable homotopy lass of (

�

V

f

;

�

W

f

; S(D

f

+Q

f

)).

Remark. The set M(X) has a natural struture of Abelian semi-group.

One of the purposes of this paper is to show the well-de�nedness of SW (X; ).

The proof is parallel to that of the well-de�nedness of the index of family of Fred-

holm operators.

Theorem(3.5). The stable homotopy lass SW (X; ) 2M(X) is

independent of the family of Riemannian metri and other hoies neessary to

de�ne it, and hene it gives a topologial invariant of the pair (X; ).

Proof.

Step 1

First we �x the family of Riemannian metris and show that the stable homotopy

lass does not depend on other hoies. Let �

0

and �

1

be two large real numbers.

Suppose �

j

:

�

W

f

j

!

�

W and s

j

:

�

W !

�

W

f

j

(j = 0; 1) are the maps satisfying the

ondition of Lemma(3.2). We ompare these two and assume for simpliity that

the other data are the same for these two ases. (The other data an be treated

using an argument similar to that in Step 2.) We have two �nite dimensional

approximations D

f

j

+ Q

f

j

:

�

V

f

j

!

�

W

f

j

(j = 0; 1). For j = 0; 1 we denote the triple

(

�

V

f

j

;

�

W

f

j

; S(D

f

j

+ Q

f

j

)) by (E

j

; F

j

; f

j

). Reall that F

j

=

�

W

f

j

(j = 0; 1) are trivial

vetor bundles. Take F

1

and F

0

for G

0

and G

1

respetively.

We onsider a �nite dimensional approximation parameterized by t 2 [0; 1℄ de-

�ned as follows. For eah t 2 [0; 1℄, we use

�(t) = t�

0

+ (1� t)�

1

:

�

W

f

0

�

�

W

f

1

!

�

W;

and

s(t) = ts

0

+ (1� t)s

1

:

�

W !

�

W

f

0

�

�

W

f

1

:

to obtain the �nite approximation D

f

(t) + Q

f

(t) :

�

V

f

(t) !

�

W

f

(t). From this on-

strution, D

f

(j) + Q

f

(j) is equal to the diret sum of D

f

j

+ Q

f

j

and the identity of

G

j

. This implies that the joins of f

j

and the identity of S(G

j

) for j = 0; 1 are

homotopi to eah other, and hene the two stable homotopy lasses are the same.

Step 2

Suppose we have two hoies for the family of Riemannian metris. Then We an

onnet them ontinuously as a family parameterized by T

0

� [0; 1℄. Sine the on-

strution of �nite dimensional approximation works for any family parameterized

by a ompat spae, we an onstrut a family of �nite dimensional approximations.

Hene the homotopy lasses of the �nite dimensional approximations for t = 0 and

t = 1 are the same.
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We an easily extend the above onstrution for all the spin



-strutures at one.

So far, the symmetry of all the spaes and maps has been S

1

. If we ollet all

the spin



strutures, however, then we have a symmetry of Pin

2

, where Pin

2

is the

normalizer of S

1

in Sp

1

and is generated by S

1

and j.

Let � be the involution of Spin



4

= (Sp

1

�Sp

1

�S

1

)=f�1g de�ned by �(q

�

; q

+

; z) =

(q

�

; q

+

; z

�1

). Then any representation of Spin



4

an be twisted by �. Let

�

H

0

+

,

+

H

0

,

�

H

0

,

+

H

0

+

and

~

C

0

be the the twisting of

�

H

+

,

+

H,

�

H,

+

H

+

and

~

C. Sine the

S

1

-omponent of Spin



4

ats trivially on

�

H

+

and

~

C, the Spin



4

-modules

�

H

0

+

and

~

C

0

are anonially isomorphi to

�

H

+

and

~

C respetively. However we introdue

another isomorphisms below and it is onvenient to distinguish them.

Let

�

j

+

,

+

j,

�

j,

+

j

+

and

~

j be the Spin



4

-equivariant homomorphisms de�ned

by:

�

j

+

:

�

H

+

!

�

H

0

+

; a 7! �a;

+

j :

+

H!

+

H

0

; � 7! �j

�

j :

�

H!

�

H

0

;  7!  j

+

j

+

:

+

H

+

!

+

H

0

+

; ! 7! �!

~

j :

~

C!

~

C

0

; t 7!

�

t:

Let Spin



(X) be the set of spin



strutures on X, i.e., Spin



4

(X) is the set of

all the equivalent lasses of pair of an Spin



4

-bundle P and an isomorphism T =

P �

Spin



4

�

H

+

�

=

TX. It is well known, from a simple argument of obstrution

theory, that Spin



4

(X) is an aÆne spae over H

2

(X;Z). The twisting of � indues

an involution on Spin



(X). For an Spin



4

-bundle P , let P

0

:= P �

�

Spin



4

be the

twisting of P . We use the notation S

+

0

et. to denote the vetor bundles assoiated

with P

0

. Then the �ve homomorphisms above give �ve bundle homomorphisms

+

j : S

+

! S

+

0

et. Note that the onnetions on L orrespond to the onnetions

on L

0

= L

�1

bijetively through �. Take a pair of onnetions A

0

and A

0

0

on P and

P

0

orresponding to eah other by this bijetion. We use the notations D

0

and Q

0

et. to denote the objet assoiated with P

0

. It is easy to see the following:

Lemma(3.6). The two maps D +Q : V ! W and D

0

+Q : V

0

!W

0

orrespond

to eah other via the maps

+

j et.

For eah spin



struture, we want to �x a onnetion A

0

so that they are om-

patible with the involution. One minor problem ours when the involution on

Spin



(X) has a �xed point. In that ase we have to take A

0

so that it is ompati-

ble with the involution. We need the next lemma.

Lemma(3.7). If a spin



-struture is preserved by the involution, then the spin



-

struture is redued to a spin struture and hene L is topologially trivial. Then

we an take a trivial onnetion for A

0

.

Proof. Suppose we have an isomorphism f : P ! P

0

. Sine P

0

is identi�ed with P

as a set, we an onsider the �xed point P

0

of P . The �xed-point set of the ation of

� on Spin



4

is the subgroup Spin

4

. This implies that P

0

is a prinipal Spin

4

-bundle
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and hene the struture group of P is redued to Spin

4

. The rest of the statement

is obtained immediately.

We take the trivial at onnetion as A

0

for the spin



-struture whih an be

redued to a spin struture. Then the map D + Q : V ! W and its �nite di-

mensional approximation has a natural Pin

2

symmetry [5℄. We hoose A

0

for eah

spin



-struture and assume that they are ompatible with the involution in the

following sense: (1) if the spin



-struture omes from an spin struture, then A

0

is a trivial onnetion and (2) if not, then A

0

and A

0

0

orrespond to eah other by

the involution. By using this hoie we have a family D

f

:

�

V

f

!

�

W

f

parameterized

by Spin



(X)� T

0

. >From the bundle homomorphisms

+

j et we de�ne self maps

J on the families f

�

V g and f

�

Wg. This ation is not an involution, but its order is

4. This map together with the obvious S

1

-ation gives rise to a Pin

2

ation on the

families.

Let

~

R and H be the following real representation spae of Pin

2

:

~

R is the unique

non-trivial 1-dimensional representation andH is the spae of quaternions on whih

Pin

2

ats as right multipliation.

Proposition(3.8). We an take a �nite approximation of D :

�

V !

�

W so that

�

W

f

is a trivial vetor bundle whose �ber is a diret sum of �nitely many

~

R's and

H, and the family D

f

:

�

V

f

!

�

W

f

parameterized by Spin



(X) � T

0

has an Pin

2

symmetry.

Proof. We an just repeat the onstrution of the �nite dimensional approximation

with the ation of Pin

2

. Let

~

T

0

be the total spae of the �ber bundle over K with

�ber Spin



(X)�T

0

. Sine the argument is almost the same exept for replaement

of S

1

, R, C and T

0

by Pin

2

,

~

R, H and

~

T

0

respetively, we omit the details.

Lemma(3.7) implies that this family is preserved by the ation of J . Sine this

family already has the S

1

-symmetry, we totally have a symmetry of Pin

2

whih is

generated by S

1

and J .

Remark. The above argument using Lemma(3.7) is not atually neessary to de�ne

the ation of Pin

2

. If we use the original monopole equation D+Q+F

A

0

= 0, then

it does not depend on the hoie of A

0

and we an easily de�ne the Pin

2

-ation

whih preserves this equation.

We now formulate the invariant without �xing a spin



-struture. Suppose X

is a �ber bundle with �ber X over K, where X is a losed oriented 4-manifold.

Fix a family of Riemannian metri of the �ber whih varies ontinuously in C

1

-

topology. Reall that

~

T

0

is the total spae of the �ber bundle over K with �ber

Spin



(X)�T

0

. We regard it as a Pin

2

-equivariant �ber bundle overK, where Pin

2

-

ation on T

0

= H

1

(X;R)=H

1

(X;Z) fators through multipliation of f�1g = hJi

while its ation on Spin



(X) also fators through the involution.

>From the above argument we an onstrut a �nite dimensional approximation

D

f

+Q

f

:

�

V

f

!

�

W

f

parameterized by

~

T

0

, whih now has a Pin

2

-symmetry.

Parallel to De�nition(3.2), we use the notation

~

M(X) to denote the set of the

isomorphism lasses of the triples (E;F; f), where
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(1) E is a trivial Pin

2

-equivariant vetor bundle over

~

T

0

whose �ber is a diret

sum of �nitely many

~

R's and H's,

(2) F is a Pin

2

-equivariant real �nite-rank vetor bundles over

~

T

0

and

(3) f is a Pin

2

-equivariant bundle map from S(E) to S(F ).

Similarly we de�ne the set of stable homotopy lasses

~

M(X) by using the obvious

equivalene relation similar to De�nition(3.3).

The rest of the argument is also quite parallel to the previous argument. We

de�ne SW (X) to be the stable homotopy lass of (

�

V

f

;

�

W

f

; S(D

f

+ Q

f

)). Then we

obtain:

Theorem(3.9). The stable homotopy lass SW (X) 2

~

M(X) is independent of the

family of Riemannian metri and other hoies to de�ne it, and hene it gives a

topologial invariant of X

x4. Evaluation of the Seiberg-Witten

invariant using ohomology theory

In this setion we show how to detet the stable homotopy version of the Seiberg-

Witten invariant in the simplest ase. We onsider a single oriented losed 4-

manifold X satisfying b

1

(X) = 0 and b

+

(X) > 1. We also assume that b

+

(X) is

odd and write b

+

(X) as 2p+1. Moreover we �x a spin



-struture  and onsider the

stable homotopy lass SW (X; ). In this ase the �nite dimensional approximation

is just an S

1

-equivariant map between two representation spaes of S

1

. >From an

index alulation, the map is de�ned as a map from C

a+m

�R

n

to C

m

�R

2p+1+n

,

where a = (

1

(L)

2

�sign(X))=8, andm and n are some non-negative integers. When

p is larger than or equal to a, it is easy to see that there is only one homotopy lass

of S

1

-equivariant map from S(C

a+m

� R

n

) to S(C

m

� R

2p+1+n

). In the rest of

this setion we assume that p < a.

Let f

0

be an S

1

-equivariant map between spheres representing the lass SW (X).

By taking suspension, we an extend f

0

to be an S

1

-equivariant map from the pair

(B(C

a+m

�R

n

); S(C

a+m

�R

n

)) to the pair (B(C

m

�R

2p+1+n

); S(C

m

�R

2p+1+n

)).

The S

1

-equivariant map f preserves the �xed point sets of the S

1

-ation. The re-

strition of f

0

on the �xed point sets is a map from the pair (B(R

n

); S(R

n

))

to the pair (B(R

2p+1+n

); S(R

2p+1+n

)). If we perturb this map slightly, the ori-

gin of B(R

2p+1+n

) does not lie on the image of B(R

n

). The perturbation is

not unique. However, sine we are assuming that 2p + 1 > 1, the relative ho-

motopy lass of the perturbed map from the pair (B(R

n

); S(R

n

)) to the pair

(B(R

2p+1+n

)nf0g; S(R

2p+1+n

)) is uniquely determined. Sine S(R

2p+1+n

) is a re-

tration of B(R

2p+1+n

) nf0g, the map an be perturbed further to a map from the

pair (B(R

n

); S(R

n

)) to the pair (S(R

2p+1+n

); S(R

2p+1+n

)). >From homotopy ex-

tension property we an extend the perturbation to a perturbation of f

0

supported

in the interior of B(C

a+m

�R

n

). Average it linearly by using the S

1

-ation, then

we an assume that the perturbed map f

1

is still S

1

-equivariant.

Now f

1

is an S

1

-equivariant map from the pair (B(C

a+m

�R

n

); S(C

a+m

�R

n

)[

B(R

n

)) to the pair (B(C

m

�R

2p+1+n

); S(C

m

�R

2p+1+n

)). We replae these data
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in the following way just for onveniene.

(1) As for the �rst pair of the spaes (B(C

a+m

�R

n

); S(C

a+m

�R

n

)[B(R

n

)),

this is homotopially equivalent to the pair of a disk bundle and its sphere bundle.

In fat if we write S(C

a+m

) for the sphere in the disk B(C

a+m

) entered in 0 with

half radius, then the omplement of S(C

a+m

� R

n

) [ B(R

n

) in B(C

a+m

� R

n

)

is a trivial disk bundle over S(C

a+m

) with �ber R

n+1

. We use the notation S to

denote S(C

a+m

) and E to denote this trivial bundle.

(2) As for the seond pair of the spaes (B(C

m

�R

2p+1+n

); S(C

m

�R

2p+1+n

)),

we multiply it by S in order to regard every spae as an S

1

-equivariant bundle over

S. We use the notation F to denote the trivial vetor bundle over S whose �ber is

C

m

�R

2p+1+n

.

(3) As for the S

1

-equivariant map between the pairs, we use, instead of f

1

, the

bundle map f over S indued from f

1

. We need to use homotopy extension property

to onstrut f .

The geometri data we have now is the S

1

-equivariant homotopy lass of the

S

1

-equivariant bundle map f from the disk bundle of E to the disk bundle of F

whih preserves their boundaries. Sine the S

1

-ation is free on S, we an divide

everything by S

1

to get a bundle map

�

f between disk bundles assoiated with

S �

S

1

E and S �

S

1

F over

�

S = S=S

1

:

�

f : (B(

�

E); S(

�

E))! (B(

�

F ); S(

�

F )):

This is the �nal geometri data we shall use. Instead of using maps between pairs,

we ould formulate everything by using maps between Thom spaes.

It is easy to show that a ertain stable homotopy lass of this map is well de�ned

for X with b

1

= 0 and b

+

> 1. Sine we will not use this well-de�nedness, we omit

the details.

Suppose h is a multipliative generalized ohomology theory for whih

�

E and

�

F

are orientable. We shall use this h to detet the stable homotopy lass.

First we need to �x the orientations of

�

E and

�

F . We shall explain it later for

the ordinary ohomology and the K-theory. We shall need some extra geometri

data to de�ne the orientations. Fixing the orientations of

�

E and

�

F implies, by

de�nition, that h

�

(B(

�

E); S(

�

E)) h

�

(B(

�

F ); S(

�

F )) are free h

�

(

�

S)-modules generated

by given lasses �

h

�

E

and �

h

�

F

respetively.

De�nition(4.1). Suppose X satis�es b

1

= 0 and b

+

> 0. Let  be a spin



-struture

of X. (We also assume that ertain data neessary to de�ne the orientations are

given.) Then the h-version of Seiberg-Witten invariant k

h

(X; ) of (X; ) is de�ned

by using the following relation:

k

h

(X; )�

h

�

E

=

�

f

�

�

h

�

F

:

Remark. The above k

h

(X; ) is de�ned as an element of h

�

(

�

S). However this o-

homology group itself depend on various hoies to de�ne f . Stritly speaking, we

need to onstrut some inverse system of ohomology groups. It would be more
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systemati to use homology rather than ohomology. We shall disuss this point

later for the ordinary ohomology.

Ordinary ohomology

Let k

H

(X; ) be the Seiberg-Witten invariant for ordinary ohomology. To de�ne

it, we need the orientations of

�

E and

�

F . If we hange both of these orientations, the

invariant does not hange. We only need the orientation of the formal di�erene

[E℄�[F ℄ whih is an element of K(point). Sine omplex vetor spaes have natural

orientations, we obtain:

Lemma(4.2). Eah hoie of the orientation of [H

0

(X;R)℄�[H

1

(X;R)℄+[H

+

(X;R)℄

gives the required orientation to de�ne k

H

(X; ).

Proof. The formal di�erene [E℄� [F ℄ is equal to [H

1

(X;R)℄� [H

+

(X;R)℄ modulo

some formal di�erene of omplex vetor spaes.

Sine we assumed that b

1

= 0, it is not neessary to put H

1

(X;R). However we

put it so that the statement is generalized to any X or any family of 4-manifolds.

We �x one of the hoies of the orientations.

The degree of k

H

(X; ) is given by

deg k

H

(X; ) = deg �

H

�

F

�deg �

H

�

E

= dimF�dimE = (2m+2p+1+n)�(n+1) = 2m+2p:

Sine

�

S is a omplex projetive spae of omplex dimension a+m�1, its ohomology

ring is given by

H

�

(

�

S;Z) = Z[�℄; �

a+m

= 0

where � is the �rst Chern lass of hyperplane line bundle. The above relation is

the only one satis�ed by �.

Reall that we are assuming that a > p. The relation between k

H

(X; ) and the

usual Seiberg-Witten invariant is given by the following de�nition and lemma.

De�nition(4.3). De�ne k(X; ) 2 Z by

k

H

(X; ) = k(X; )�

m+p

:

Lemma(4.4). Perturb f if neessary and assume that the equation f(v) = 0 is

transversal. Then the quotient of the spae of the solutions fvjf(v) = 0g divided by

S

1

is an oriented losed submanifold of

�

S�E and its fundamental lass is equal to

k(X; )� [generator℄ in H

2d

(

�

S �E) = Z for d = a� p� 1.

It is not hard to see that the haraterization of k(X; ) in the above lemma

implies that k(X; ) is equal to the usual Seiberg-Witten invariant.

The dimension 2d of fvjf(v) = 0g=S

1

is alulated as follows.

2d = dim

�

S+dimE�dimF = 2(a+m�1)+(n+1)�(2m+2p+1+n) = 2(a�p�1):

K-ohomology
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Let k

K

(X; ) be the Seiberg-Witten invariant for K-ohomology. To de�ne it,

we need the orientations of

�

E and

�

F . It suÆes to give S

1

-invariant weak omplex

strutures on E and F . Here a weak-omplex struture of a real vetor spae is an

obvious equivalene lass of the omplex struture of the diret sum of the vetor

spae and R

l

for some l. (\Weak-spin



-struture" would be enough.) It is neessary

to give weak-omplex strutures only on the S

1

-invariant parts. Then we obtains

Lemma(4.5). Eah hoie of the homotopy lass of weak-omplex strutures on

H

1

(X;R) and H

+

(X;R) gives the required orientation to de�ne k

K

(X; ).

Sine we assumed that b

1

= 0, it is not neessary to give a weak-omplex stru-

ture of H

1

(X;R). A hoie of homotopy lass of the weak-omplex struture of a

real vetor spae is equivalent to a hoie of orientation of the spae. However if

we onsider family of 4-manifolds, we would need to �x more than the the hoie of

orientation to de�ne the K-theory version of Seiberg-Witten invariant, though we

do not deal with that ase in this paper.

We �x one of the hoies of the orientations of H

+

(X;R) and hene a homotopy

lass of weak-omplex struture on it. For simpliity we assume that n is odd so

that the S

1

-invariant parts have a omplex struture whih is ompatible with the

given hoie. We an always hoose suh a representative in the stable homotopy

lass.

Let L be the hyperplane line bundle on the omplex projetive spae

�

S. Then

K

�

(

�

S) (� = 0; 1) is given by

K

�

(

�

S) = Z[�℄; �

a+m

= 0

where � is the K-theoreti Euler lass of hyperplane line bundle L. More expliitly

� = 1� [L

�

℄. The degree of � is 0. The above relation is the only one satis�ed by

�. (Here we use the above onvention of K-theoreti Euler lass so that we have

h

1

(�) = �.)

The K-theory Seiberg-Witten invariant is a polynomial in � with integral oeÆ-

ient.

k

K

(X; ) 2 Z[�℄:

In the next setion we show that the integrality of eah oeÆient gives a divisibility

of k(X; ).

x5. Divisibility.

Theorem(1.1) is immediately shown from the next theorem.

Theorem(5.1). Let a

p;l

be the oeÆient of x

l

in the Taylor expansion of (

log(1�x)

x

)

p

.

Then we have the following relation in K(

�

S)
Q.

k

K

(X; ) = k(X; )�

m+p

X

l

a

p;l

�

l

:



16 M. FURUTA

Proof of Theorem(1.1) admitting Theorem(5.1). Sine k

K

(X; ) is a polynomial in

� with integral oeÆient, k(X; )a

p;n

is an integer as long as �

m+p+n

is not zero,

i.e., m+ p+ n < m+ a. This inequality is equivalent to n � a� p� 1 = d.

To show Theorem we ompare the K-ohomology and the ordinary ohomology

by using the Chern harater. We use the following lemma.

Lemma(5.2). Suppose a omplex vetor bundle G over

�

S has a splitting into a

diret sum of line bundles:G = �

l

L

l

. We use the notation �

i

to denote 

1

(L

i

) and

�

i

to denote 1� [L

�

i

℄. Then we have

h(�

i

) = 1� e

�x

i

; h(log(1� �

i

)) = x

i

;

h(�

K

G

)

Y

i

x

i

1� e

�x

i

= �

H

G

and

h(�

K

G

Y

i

log(1� �

i

)

�

i

) = �

H

G

:

Note that x

i

and �

i

are nilpotent inH

�

(

�

S;Z) and inK

�

(

�

S) respetively. However

the expressions of the terms in the above equalities are well de�ned by using Taylor

expansion. All the equalities should be understood in H

�

(

�

S;Q). The �rst two

equalities follows from the de�nition. The third one is the well-known relation that

gives a haraterization of the Todd genus. The fourth equality is equivalent to the

third one.

Proof of Theorem(5.1). >From Lemma we have

h(�

K

�

E

) = �

H

�

E

and

h(�

K

�

F

(

log(1� �)

�

)

m

) = �

H

�

F

:

Hene we have

h(k

K

(X; )(

log(1� �)

�

)

m

) = k

H

(X; ):

On the other hand, from k

H

(X; ) = k(X; )�

p+m

, we have

h(k(X; )(log(1� �))

p+m

) = k

H

(X; ):

Sine the Chern harater is injetive on

�

S, we obtain

k

K

(X; )(

log(1� �)

�

)

m

= k(X; )(log(1� �))

p+m

;

whih implies Theorem 5.1.

Aknowledgments: The author would like to thank Stefan Bauer for informing

him about his reent works. The author is grateful to the Max-Plank-Institut f�ur

Mathematik in Bonn for its hospitality.



STABLE HOMOTOPY VERSION OF SEIBERG-WITTEN INVARIANT 17

Referenes

[1℄ M. F. Atiyah, K-theory, Benjamin, New York, 1967.

[2℄ M. F. Atiyah and I. M. Singer, The index of ellipti operators IV, Ann. of Math. 93 (1971),

119{138.

[3℄ S. Bauer, Conneted sums of 4-manifolds, in preparation.

[4℄ R. Courant and D. Hilbert, Methods of mathematial physis I, John Wiley & Sons, New

York, 1962.

[5℄ M. Furuta, Monopole equation and the 11=8-onjeture, preprint.

[6℄ P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaes in the projetive plane,

Math. Res. Letters 1 (1994), 797{808.

[7℄ E. Witten, Monopoles and four-manifolds, Math. Res. Letters 1 (1994), 769{796.

Gottfried-Claren-Str. 26, D-53225, Bonn, Germany : Kitashirakawa Sakyo-ku

Kyoto, 606-01, Japan

E-mail address: furuta�mpim-bonn.mpg.de furuta�kurims.kyoto-u.a.jp


