$\mathcal{N}=2$ Dualities and $2 d$ TQFT

Abhijit Gadde

with L. Rastelli, S. Razamat and W. Yan

$$
\begin{aligned}
& \text { arXiv:0910.2225 } \\
& \text { arXiv:1003.4244 } \\
& \text { arXiv:1104.3850 } \\
& \text { arXiv:1110:3740 }
\end{aligned}
$$

California Institute of Technology

Indian Israeli String Meeting 2012

A new paradigm for $4 \mathrm{~d} \mathcal{N}=2 \mathrm{SCFTs}$ [Gaiotto,

Compactify of the $6 d(2,0) A_{N-1}$ theory on a 2 d surface Σ, with punctures. $\Longrightarrow \mathcal{N}=2$ superconformal theories in four dimensions.

A new paradigm for $4 \mathrm{~d} \mathcal{N}=2$ SCFTs |caioto

Compactify of the $6 d(2,0) A_{N-1}$ theory on a 2 d surface Σ, with punctures. $\Longrightarrow \mathcal{N}=2$ superconformal theories in four dimensions.

- Space of complex structures $\Sigma=$ parameter space of the 4 d theory.
- Mapping class group of $\Sigma=$ (generalized) 4d S-duality
- Punctures: $S U(2) \rightarrow S U(N)=$ Flavor symmetry: Commutant

A new paradigm for $4 \mathrm{~d} \mathcal{N}=2$ SCFTs |caioto

Compactify of the $6 d(2,0) A_{N-1}$ theory on a 2 d surface Σ, with punctures. $\Longrightarrow \mathcal{N}=2$ superconformal theories in four dimensions.

- Space of complex structures $\Sigma=$ parameter space of the 4 d theory.
- Mapping class group of $\Sigma=$ (generalized) 4d S-duality
- Punctures: $S U(2) \rightarrow S U(N)=$ Flavor symmetry: Commutant
- We will focus on "maximal" puncture: with $S U(N)$ flavor symmetry

A new paradigm for $4 \mathrm{~d} \mathcal{N}=2$ SCFTs |caioto

Compactify of the $6 d(2,0) A_{N-1}$ theory on a 2 d surface Σ, with punctures.
$\Longrightarrow \mathcal{N}=2$ superconformal theories in four dimensions.

- Space of complex structures $\Sigma=$ parameter space of the 4 d theory.
- Mapping class group of $\Sigma=$ (generalized) 4d S-duality
- Punctures: $S U(2) \rightarrow S U(N)=$ Flavor symmetry: Commutant
- We will focus on "maximal" puncture: with $S U(N)$ flavor symmetry
- Sphere with 3 punctures $=$ Theories without parameters
- Free hypermultiplets
- Strongly coupled fixed points

Vast generalization of " $\mathcal{N}=4 \mathrm{~S}$-duality as modular group of T^{2} ".

A new paradigm for $4 \mathrm{~d} \mathcal{N}=2$ SCFTs |Gaioto

Compactify of the $6 d(2,0) A_{N-1}$ theory on a 2 d surface Σ, with punctures. $\Longrightarrow \mathcal{N}=2$ superconformal theories in four dimensions.

- Space of complex structures $\Sigma=$ parameter space of the 4 d theory.
- Mapping class group of $\Sigma=$ (generalized) 4d S-duality
- Punctures: $S U(2) \rightarrow S U(N)=$ Flavor symmetry: Commutant
- We will focus on "maximal" puncture: with $S U(N)$ flavor symmetry
- Sphere with 3 punctures $=$ Theories without parameters
- Free hypermultiplets
- Strongly coupled fixed points

Vast generalization of " $\mathcal{N}=4 \mathrm{~S}$-duality as modular group of T^{2} ".
$6=4+2$: beautiful and unexpected $4 \mathrm{~d} / 2 \mathrm{~d}$ connections. For ex.,

- Correlators of Liouville/Toda on Σ compute the 4 d partition functions (on S^{4})

In this talk we will discuss the implications of another interesting connection:

- A protected 4d quantity, the superconformal index, is computed by topological QFT on Σ.

In this talk we will discuss the implications of another interesting connection:

- A protected 4 d quantity, the superconformal index, is computed by topological QFT on Σ.
Superconformal Index
$=$ twisted partition function on $S^{3} \times S^{1}$
$=$ Witten index in radial quantization
- Independent of the gauge theory coupling and invariant under S-duality.
- Independent of coupling $=$ Independent of complex structure on $\Sigma \Longrightarrow$ 2d Topological QFT
- It encodes the protected spectrum of the 4 d theory. Useful tool to understand physics.

In this talk we will discuss the implications of another interesting connection:

- A protected 4 d quantity, the superconformal index, is computed by topological QFT on Σ.
Superconformal Index
$=$ twisted partition function on $S^{3} \times S^{1}$
$=$ Witten index in radial quantization
- Independent of the gauge theory coupling and invariant under S-duality.
- Independent of coupling $=$ Independent of complex structure on $\Sigma \Longrightarrow$ 2d Topological QFT
- It encodes the protected spectrum of the 4 d theory. Useful tool to understand physics.

Our aim: To compute the superconformal index of these $\mathcal{N}=2$ theories (even the strongly coupled ones) by exploiting TQFT structure.

Outline

(1) Short review of superconformal index
(2) 2d TQFT and orthogonal polynomials

- TQFT structure
- Example: Hall-Littlewood polynomials
(3) Results and Applications
- Large N limit
- Instanton partition function

Outline

(1) Short review of superconformal index
(2) 2d TQFT and orthogonal polynomials

- TQFT structure
- Example: Hall-Littlewood polynomials
(3) Results and Applications
- Large N limit
- Instanton partition function

The Superconformal Index

- The SC index is the Witten index

$$
\mathcal{I}=\operatorname{Tr}(-1)^{F} e^{-\beta H+M}
$$

Here M is a generic combination of charges (weighted by chemical potentials) which commutes with S and Q.

- States with $H>0$ come in pairs, boson + fermion, and cancel out,so \mathcal{I} is β-independent.

The SC Index counts (with signs) the (semi)short multiplets, up to equivalence relations that sets to zero \oplus_{i} Short $_{i}=$ Long.

The Superconformal Index

- The SC index is the Witten index

$$
\mathcal{I}=\operatorname{Tr}(-1)^{F} e^{-\beta H+M}
$$

Here M is a generic combination of charges (weighted by chemical potentials) which commutes with S and Q.

- States with $H>0$ come in pairs, boson + fermion, and cancel out,so \mathcal{I} is β-independent.

The SC Index counts (with signs) the (semi)short multiplets, up to equivalence relations that sets to zero \oplus_{i} Short $_{i}=$ Long.
Consider a 4 d SCFT. On $S^{3} \times \mathbb{R}$ (radial quantization), $Q^{\dagger}=S$.

- The superconformal algebra implies (taking $Q=\bar{Q}_{1-}$)

$$
2\{S, Q\}=\Delta-2 j_{2}-2 R+r \equiv H \geq 0
$$

where Δ is the conformal dimension, $\left(j_{1}, j_{2}\right)$ the $S U(2)_{1} \otimes S U(2)_{2}$ Lorentz spins, and (R, r) the quantum numbers under the $S U(2)_{R} \otimes U(1)_{r}$ R-symmetry.

$$
\mathcal{I}(p, q, t, \ldots)=\operatorname{Tr}(-1)^{F} p^{j_{1}+j_{2}-r} q^{-j_{1}+j_{2}-r} t^{R+r} \ldots
$$

The Superconformal Index

- The SC index is the Witten index

$$
\mathcal{I}=\operatorname{Tr}(-1)^{F} e^{-\beta H+M}
$$

Here M is a generic combination of charges (weighted by chemical potentials) which commutes with S and Q.

- States with $H>0$ come in pairs, boson + fermion, and cancel out,so \mathcal{I} is β-independent.
The SC Index counts (with signs) the (semi)short multiplets, up to equivalence relations that sets to zero \oplus_{i} Short $_{i}=$ Long.
Consider a 4 d SCFT. On $S^{3} \times \mathbb{R}$ (radial quantization), $Q^{\dagger}=S$.
- The superconformal algebra implies (taking $Q=\bar{Q}_{1-}$)

$$
2\{S, Q\}=\Delta-2 j_{2}-2 R+r \equiv H \geq 0
$$

where Δ is the conformal dimension, $\left(j_{1}, j_{2}\right)$ the $S U(2)_{1} \otimes S U(2)_{2}$ Lorentz spins, and (R, r) the quantum numbers under the $S U(2)_{R} \otimes U(1)_{r}$ R-symmetry.

$$
\mathcal{I}(p, q, t, \ldots)=\operatorname{Tr}(-1)^{F} p^{j_{1}+j_{2}-r} q^{-j_{1}+j_{2}-r} t^{R+r} \ldots
$$

$\mathcal{I}\left(p, q, t ; x_{1}, \ldots, x_{i}\right)=\operatorname{Tr}(-1)^{F} p^{j_{1}+j_{2}-r} q^{-j_{1}+j_{2}-r} t^{R+r} x_{1}^{F_{1}} \ldots x_{i}^{F_{i}}$

The Superconformal Index

- The SC index is the Witten index

$$
\mathcal{I}=\operatorname{Tr}(-1)^{F} e^{-\beta H+M}
$$

Here M is a generic combination of charges (weighted by chemical potentials) which commutes with S and Q.

- States with $H>0$ come in pairs, boson + fermion, and cancel out,so \mathcal{I} is β-independent.
The SC Index counts (with signs) the (semi)short multiplets, up to equivalence relations that sets to zero \oplus_{i} Short $_{i}=$ Long.
Consider a 4 d SCFT. On $S^{3} \times \mathbb{R}$ (radial quantization), $Q^{\dagger}=S$.
- The superconformal algebra implies (taking $Q=\bar{Q}_{1-}$)

$$
2\{S, Q\}=\Delta-2 j_{2}-2 R+r \equiv H \geq 0
$$

where Δ is the conformal dimension, $\left(j_{1}, j_{2}\right)$ the $S U(2)_{1} \otimes S U(2)_{2}$ Lorentz spins, and (R, r) the quantum numbers under the $S U(2)_{R} \otimes U(1)_{r}$ R-symmetry.

$$
\mathcal{I}(p, q, t, \ldots)=\operatorname{Tr}(-1)^{F} p^{j_{1}+j_{2}-r} q^{-j_{1}+j_{2}-r} t^{R+r} \ldots
$$

$\mathcal{I}\left(p, q, t ; x_{1}, \ldots, x_{i}\right)=\operatorname{Tr}(-1)^{F} p^{j_{1}+j_{2}-r} q^{-j_{1}+j_{2}-r} t^{R+r} x_{1}^{F_{1}} \ldots x_{i}^{F_{i}} \equiv \mathcal{I}(p, q, t ; \mathbf{x})$.

The Index as a Matrix Integral

If the theory has Lagrangian description there is a simple recipe to compute the index.

- One defines a single-letter partition function as the index evaluated on the set of the basic objects (letters) in the theory with $H=0$ and in a definite representation of the gauge and flavor groups:

$$
f^{\mathcal{R}_{j}}(p, q, t)
$$

where \mathcal{R}_{j} labels the representation.

- Then the index is computed by enumerating the gauge-invariant words,

$$
\mathcal{I}(p, q, t, \mathbf{V})=\int[d \mathbf{U}] \exp \left(\sum_{n=1}^{\infty} \frac{1}{n} \sum_{j} f^{\mathcal{R}_{j}}\left(p^{n}, q^{n}, t^{n}\right) \cdot \chi_{\mathcal{R}_{j}}\left(\mathbf{U}^{n}, \mathbf{V}^{n}\right)\right)
$$

Here \mathbf{U} is the matrix of the gauge group, \mathbf{V} the matrix of the flavor group and \mathcal{R}_{j} label representations of the fields under the flavor and gauge groups.

- $\chi_{\mathcal{R}_{j}}(\mathbf{U})$ is the character of the group element in representation \mathcal{R}_{j}.
- The measure of integration $[d \mathbf{U}]$ is the invariant Haar measure.

$$
\int[d \mathbf{U}] \prod_{j=1}^{n} \chi_{\mathcal{R}_{j}}(\mathbf{U})=\# \text { of singlets in } \mathcal{R}_{1} \otimes \cdots \otimes \mathcal{R}_{n}
$$

Outline

(1) Short review of superconformal index
(2) 2d TQFT and orthogonal polynomials

- TQFT structure
- Example: Hall-Littlewood polynomials
(3) Results and Applications
- Large N limit
- Instanton partition function

Outline

(1) Short review of superconformal index
(2) 2d TQFT and orthogonal polynomials

- TQFT structure
- Example: Hall-Littlewood polynomials
(3) Results and Applications
- Large N limit
- Instanton partition function

Any punctured Riemann surface can be obtained by gluing pair of pants in more than one way.

- Building blocks: 3-punctured sphere $\Leftrightarrow 4 \mathrm{~d}$ SCFT T_{N} with $S U(N)^{3}$ flavor symmetry
- T_{2} : Free hypermultiplet
- T_{3} : Strongly coupled Minahan-Nemeschensky theory with E_{6} symmetry
- T_{N} : Strongly coupled theories
- Gluing pair of pants \Leftrightarrow Gauging the common $S U(N)$ with vector multiplet.

Any punctured Riemann surface can be obtained by gluing pair of pants in more than one way.

- Building blocks: 3-punctured sphere $\Leftrightarrow 4 \mathrm{~d}$ SCFT T_{N} with $S U(N)^{3}$ flavor symmetry
- T_{2} : Free hypermultiplet
- T_{3} : Strongly coupled Minahan-Nemeschensky theory with E_{6} symmetry
- T_{N} : Strongly coupled theories
- Gluing pair of pants \Leftrightarrow Gauging the common $S U(N)$ with vector multiplet.
- Index is independent of the pair of pants decomposition $\Leftrightarrow 2 \mathrm{~d}$ TQFT

Any punctured Riemann surface can be obtained by gluing pair of pants in more than one way.

- Building blocks: 3-punctured sphere $\Leftrightarrow 4 \mathrm{~d}$ SCFT T_{N} with $S U(N)^{3}$ flavor symmetry
- T_{2} : Free hypermultiplet
- T_{3} : Strongly coupled Minahan-Nemeschensky theory with E_{6} symmetry
- T_{N} : Strongly coupled theories
- Gluing pair of pants \Leftrightarrow Gauging the common $S U(N)$ with vector multiplet.
- Index is independent of the pair of pants decomposition $\Leftrightarrow 2 \mathrm{~d}$ TQFT

Any punctured Riemann surface can be obtained by gluing pair of pants in more than one way.

- Building blocks: 3-punctured sphere $\Leftrightarrow 4 \mathrm{~d}$ SCFT T_{N} with $S U(N)^{3}$ flavor symmetry
- T_{2} : Free hypermultiplet
- T_{3} : Strongly coupled Minahan-Nemeschensky theory with E_{6} symmetry
- T_{N} : Strongly coupled theories
- Gluing pair of pants \Leftrightarrow Gauging the common $S U(N)$ with vector multiplet.
- Index is independent of the pair of pants decomposition $\Leftrightarrow 2 \mathrm{~d}$ TQFT

- 4 punctured sphere:
$I\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right)=\oint[d \mathbf{a}][d \mathbf{b}] \quad I\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}\right) \quad \eta(\mathbf{a}, \mathbf{b}) \quad I\left(\mathbf{b}, \mathbf{a}_{3}, \mathbf{a}_{4}\right)$
- S duality $\Rightarrow I\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right)$ is invariant under permutations of $\mathbf{a}_{\mathbf{i}}$.

Discrete basis

- 3 pt function:

$$
I(\mathbf{a}, \mathbf{b}, \mathbf{c})=\sum_{\alpha, \beta, \gamma} C_{\alpha \beta \gamma} \quad f^{\alpha}(\mathbf{a}) f^{\beta}(\mathbf{b}) f^{\gamma}(\mathbf{c})
$$

Discrete basis

- 3 pt function:

$$
I(\mathbf{a}, \mathbf{b}, \mathbf{c})=\sum_{\alpha, \beta, \gamma} C_{\alpha \beta \gamma} f^{\alpha}(\mathbf{a}) f^{\beta}(\mathbf{b}) f^{\gamma}(\mathbf{c})
$$

- S duality \Longrightarrow Associativity: $\quad C_{\alpha \beta \epsilon} C^{\epsilon}{ }_{\gamma \delta}=C_{\alpha \gamma \epsilon} C^{\epsilon}{ }_{\beta \delta}$

Discrete basis

- 3 pt function:

$$
I(\mathbf{a}, \mathbf{b}, \mathbf{c})=\sum_{\alpha, \beta, \gamma} C_{\alpha \beta \gamma} \quad f^{\alpha}(\mathbf{a}) f^{\beta}(\mathbf{b}) f^{\gamma}(\mathbf{c})
$$

- S duality \Longrightarrow Associativity: $\quad C_{\alpha \beta \epsilon} C^{\epsilon}{ }_{\gamma \delta}=C_{\alpha \gamma \epsilon} C^{\epsilon}{ }_{\beta \delta}$
- 2 pt function:

$$
\eta(\mathbf{a}, \mathbf{b})=\sum_{\alpha, \beta} \eta^{\alpha \beta} f^{\alpha}(\mathbf{a}) f^{\beta}(\mathbf{b})
$$

- Choose $f^{\alpha}(\mathbf{a})$ to be orthonormal $\Longrightarrow \eta^{\alpha \beta}=\delta^{\alpha \beta}$

Discrete basis

- 3 pt function:

$$
I(\mathbf{a}, \mathbf{b}, \mathbf{c})=\sum_{\alpha, \beta, \gamma} C_{\alpha \beta \gamma} \quad f^{\alpha}(\mathbf{a}) f^{\beta}(\mathbf{b}) f^{\gamma}(\mathbf{c})
$$

- S duality \Longrightarrow Associativity: $\quad C_{\alpha \beta \epsilon} C_{\gamma \delta}^{\epsilon}=C_{\alpha \gamma \epsilon} C^{\epsilon}{ }_{\beta \delta}$
- 2 pt function:

$$
\eta(\mathbf{a}, \mathbf{b})=\sum_{\alpha, \beta} \eta^{\alpha \beta} f^{\alpha}(\mathbf{a}) f^{\beta}(\mathbf{b})
$$

- Choose $f^{\alpha}(\mathbf{a})$ to be orthonormal $\Longrightarrow \eta^{\alpha \beta}=\delta^{\alpha \beta}$
- One can still perform orthogonal transformations on $f^{\alpha}(\mathbf{a})$ and diagonalize $C_{\alpha \beta \gamma} \rightarrow C_{\alpha \alpha \alpha}$

Discrete basis

- 3 pt function:

$$
I(\mathbf{a}, \mathbf{b}, \mathbf{c})=\sum_{\alpha, \beta, \gamma} C_{\alpha \beta \gamma} \quad f^{\alpha}(\mathbf{a}) f^{\beta}(\mathbf{b}) f^{\gamma}(\mathbf{c})
$$

- S duality \Longrightarrow Associativity: $\quad C_{\alpha \beta \epsilon} C^{\epsilon}{ }_{\gamma \delta}=C_{\alpha \gamma \epsilon} C^{\epsilon}{ }_{\beta \delta}$
- 2 pt function:

$$
\eta(\mathbf{a}, \mathbf{b})=\sum_{\alpha, \beta} \eta^{\alpha \beta} f^{\alpha}(\mathbf{a}) f^{\beta}(\mathbf{b})
$$

- Choose $f^{\alpha}(\mathbf{a})$ to be orthonormal $\Longrightarrow \eta^{\alpha \beta}=\delta^{\alpha \beta}$
- One can still perform orthogonal transformations on $f^{\alpha}(\mathbf{a})$ and diagonalize $C_{\alpha \beta \gamma} \rightarrow C_{\alpha \alpha \alpha}$
- $C_{\alpha \beta \gamma} \equiv\left[N_{\alpha}\right]_{\beta}^{\gamma}$

Associativity $\Rightarrow\left[N_{\alpha}, N_{\beta}\right]=0$.
Simultaneously diagonalize N_{α} !

Discrete basis

Conclusion: Choose $f^{\alpha}(\mathbf{a})$ s.t.

$$
\begin{aligned}
\eta^{\alpha \beta} & =\delta^{\alpha \beta} \\
C_{\alpha \beta \gamma} & =C_{\alpha \alpha \alpha} \delta_{\alpha \beta} \delta_{\beta \gamma}!
\end{aligned}
$$

Discrete basis

Conclusion: Choose $f^{\alpha}(\mathbf{a})$ s.t.

$$
\begin{aligned}
\eta^{\alpha \beta} & =\delta^{\alpha \beta} \\
C_{\alpha \beta \gamma} & =C_{\alpha \alpha \alpha} \delta_{\alpha \beta} \delta_{\beta \gamma}!
\end{aligned}
$$

Problem: We don't know $I(\mathbf{a}, \mathbf{b}, \mathbf{c})$ except for $S U(2)$

Discrete basis

Conclusion: Choose $f^{\alpha}(\mathbf{a})$ s.t.

$$
\begin{aligned}
\eta^{\alpha \beta} & =\delta^{\alpha \beta} \\
C_{\alpha \beta \gamma} & =C_{\alpha \alpha \alpha} \quad \delta_{\alpha \beta} \delta_{\beta \gamma}!
\end{aligned}
$$

Problem: We don't know $I(\mathbf{a}, \mathbf{b}, \mathbf{c})$ except for $S U(2)$

Solution: Lift the $S U(2)$ result to $S U(N)$!

Discrete basis

Conclusion: Choose $f^{\alpha}(\mathbf{a})$ s.t.

$$
\begin{aligned}
\eta^{\alpha \beta} & =\delta^{\alpha \beta} \\
C_{\alpha \beta \gamma} & =C_{\alpha \alpha \alpha} \quad \delta_{\alpha \beta} \delta_{\beta \gamma}!
\end{aligned}
$$

Problem: We don't know $I(\mathbf{a}, \mathbf{b}, \mathbf{c})$ except for $S U(2)$

Solution: Lift the $S U(2)$ result to $S U(N)$!

$$
f^{\alpha}(a)_{S U(2)} \quad \longrightarrow \quad f^{\alpha}(\mathbf{a})_{S U(N)}
$$

Discrete basis

Conclusion: Choose $f^{\alpha}(\mathbf{a})$ s.t.

$$
\begin{aligned}
\eta^{\alpha \beta} & =\delta^{\alpha \beta} \\
C_{\alpha \beta \gamma} & =C_{\alpha \alpha \alpha} \quad \delta_{\alpha \beta} \delta_{\beta \gamma}!
\end{aligned}
$$

Problem: We don't know $I(\mathbf{a}, \mathbf{b}, \mathbf{c})$ except for $S U(2)$

Solution: Lift the $S U(2)$ result to $S U(N)$!

$$
\begin{array}{rll}
f^{\alpha}(a)_{S U(2)} & \longrightarrow & f^{\alpha}(\mathbf{a})_{S U(N)} \\
\sum_{\alpha, \beta, \gamma \in S U(2) \text { reps } .} & \longrightarrow & \sum_{\alpha, \beta, \gamma \in S U(N) \text { reps }}
\end{array}
$$

Outline

(1) Short review of superconformal index
(2) 2d TQFT and orthogonal polynomials

- TQFT structure
- Example: Hall-Littlewood polynomials
(3) Results and Applications
- Large N limit
- Instanton partition function

Example: Hall-Littlewood polynomial
 $$
p=0, q=0
$$

Free hypermultiplet

$$
\begin{aligned}
I\left(a_{1}, a_{2}, a_{3}\right)_{S U(2)}= & \exp \left(\sum_{n=1}^{\infty} \frac{1}{n} t^{n}\left(a_{1}^{n}+\frac{1}{a_{1}^{n}}\right)\left(a_{2}^{n}+\frac{1}{a_{2}^{n}}\right)\left(a_{3}^{n}+\frac{1}{a_{3}^{n}}\right)\right) \\
\sim & \sum_{\lambda=0}^{\infty} \frac{1}{P_{\lambda}^{H L}\left(t^{\frac{1}{2}}, \left.t^{-\frac{1}{2}} \right\rvert\, t\right)} \prod_{i=1}^{3} P_{\lambda}^{H L}\left(a_{i}, a_{i}^{-1} \mid t\right) \\
& \sum_{\lambda=0}^{\infty} C_{\lambda \lambda \lambda}
\end{aligned}
$$

where,$\quad P_{\lambda}^{H L}(a) \sim \chi_{\lambda}(a)-t \chi_{\lambda-2}(a)$

Example: Hall-Littlewood polynomial
 $$
p=0, q=0
$$

Free hypermultiplet

$$
\begin{aligned}
I\left(a_{1}, a_{2}, a_{3}\right)_{S U(2)}= & \exp \left(\sum_{n=1}^{\infty} \frac{1}{n} t^{n}\left(a_{1}^{n}+\frac{1}{a_{1}^{n}}\right)\left(a_{2}^{n}+\frac{1}{a_{2}^{n}}\right)\left(a_{3}^{n}+\frac{1}{a_{3}^{n}}\right)\right) \\
\sim & \sum_{\lambda=0}^{\infty} \frac{1}{P_{\lambda}^{H L}\left(t^{\frac{1}{2}}, \left.t^{-\frac{1}{2}} \right\rvert\, t\right)} \prod_{i=1}^{3} P_{\lambda}^{H L}\left(a_{i}, a_{i}^{-1} \mid t\right) \\
& \sum_{\lambda=0}^{\infty} C_{\lambda \lambda \lambda} \quad \prod_{i=1}^{3} f^{\lambda}\left(a_{i}\right)
\end{aligned}
$$

where, $\quad P_{\lambda}^{H L}(a) \sim \chi_{\lambda}(a)-t_{\chi_{\lambda-2}}(a)$

- Immediate nontrivial result: $S U(2) \longrightarrow S U(3)$

Example: Hall-Littlewood polynomial
 $$
p=0, q=0
$$

$$
\begin{aligned}
I\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)_{S U(3)} & \left.\sim \sum_{\lambda \in S U(3)} \frac{1}{r e p .} \begin{array}{l}
P_{\lambda}^{H L}\left(t, t^{-1}, 1 \mid t\right) \\
\prod_{i=1}^{3} P_{\lambda}^{H L}\left(\mathbf{a}_{\mathbf{i}} \mid t\right) \\
P_{\lambda}^{H L}\left(x_{1}, \ldots, x_{k}\right)_{U(k)}
\end{array}\right) \sum_{\sigma \in S_{k}}\left(x_{1}^{\lambda_{1}} \ldots x_{k}^{\lambda_{k}} \prod_{i<j} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)
\end{aligned}
$$

Example: Hall-Littlewood polynomial
 $$
p=0, q=0
$$

$$
\begin{aligned}
& I\left(\mathbf{a}_{1}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{3}}\right) \sum_{\lambda \in S(3)} \frac{1}{P_{\lambda}^{H L}\left(t, t^{-1}, 1 \mid t\right)} \prod_{i=1}^{3} P_{\lambda}^{H}\left(\mathbf{a}_{\mathbf{i}} \mid t\right) \\
& P_{\lambda}^{H L}\left(x_{1}, \ldots, x_{k}\right) U(k) \sim \sum_{\sigma \in S_{k}}\left(x_{1}^{\lambda_{1}} \ldots x_{k}^{\lambda_{k}} \prod_{i<j} \frac{x_{i}-x_{i}-x_{j}}{x_{i}-x_{j}}\right)
\end{aligned}
$$

- $S U(3)^{3}$ flavor symmetry is enhanced: $S U(3)^{3} \rightarrow E_{6}$!

Example: Hall-Littlewood polynomial $\quad p=0, q=0$

$$
\begin{aligned}
I\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)_{S U(3)} & \sim \sum_{\lambda \in S U(3) r e p .} \frac{1}{P_{\lambda}^{H L}\left(t, t^{-1}, 1 \mid t\right)} \prod_{i=1}^{3} P_{\lambda}^{H L}\left(\mathbf{a}_{\mathbf{i}} \mid t\right) \\
P_{\lambda}^{H L}\left(x_{1}, \ldots, x_{k}\right)_{U(k)} & \sim \sum_{\sigma \in S_{k}}\left(x_{1}^{\lambda_{1}} \ldots x_{k}^{\lambda_{k}} \prod_{i<j} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)
\end{aligned}
$$

- $S U(3)^{3}$ flavor symmetry is enhanced: $S U(3)^{3} \rightarrow E_{6}$!
- This expression agrees with the index of E_{6} theory obtained from Argyres-Seiberg duality [AG,Rastelli,Razamat,Yan]

Outline

(1) Short review of superconformal index
(2) 2d TQFT and orthogonal polynomials

- TQFT structure
- Example: Hall-Littlewood polynomials
(3) Results and Applications
- Large N limit
- Instanton partition function

Summary of results

$$
f^{\alpha}(a): \text { Macdonald polynomial }
$$

$f^{\alpha}(a)$: Hall-Littlewood polynomial

$f^{\alpha}(a)$: Schur polynomial

Outline

(1) Short review of superconformal index
(2) 2d TQFT and orthogonal polynomials

- TQFT structure
- Example: Hall-Littlewood polynomials
(3) Results and Applications
- Large N limit
- Instanton partition function

Large N limit

$\mathcal{N}=4$ SYM:

- $1 / 16$ BPS states in $\mathcal{N}=4 \mathrm{SYM} \Leftrightarrow$ gravitons, giant gravitons (D branes), black holes [Gutowski,Reall] in $A d S_{5} \times S^{5}$
- Black hole states grow as N^{2} but the index is independent of N in the large N limit [Kinney,Maldacena,Minwalla,Raju]
- Mysterious cancellations between bosonic and fermionic black hole microstates?

Large N limit

$\mathcal{N}=4$ SYM:

- $1 / 16$ BPS states in $\mathcal{N}=4 \mathrm{SYM} \Leftrightarrow$ gravitons, giant gravitons (D branes), black holes [Gutowski,Reall] in $A d S_{5} \times S^{5}$
- Black hole states grow as N^{2} but the index is independent of N in the large N limit [Kinney,Maldacena,Minwalla,Raju]
- Mysterious cancellations between bosonic and fermionic black hole microstates?

Large class of $\mathcal{N}=2$ theories:

- Large N limit of the index of the 4 d theory corresponding to the genus g surface:

$$
\mathcal{I}_{g}^{N \rightarrow \infty}=\prod_{j=2}^{\infty}\left(1-t^{j}\right)^{g-1}
$$

- Index of all the $\mathcal{N}=2$ theories is also independent of N in the large N limit
- Puzzle: what is the reason for this general mysterious cancellation?

Outline

(1) Short review of superconformal index
(2) 2d TQFT and orthogonal polynomials

- TQFT structure
- Example: Hall-Littlewood polynomials
(3) Results and Applications
- Large N limit
- Instanton partition function

Instanton partition function

- Higgs branch of k D3 $=$ Instanton moduli space of k instantons
- Index of rank $k E_{6}$ theory $=k E_{6}$ instanton partition function
- Index of T_{3} theory $=$ partition function of single E_{6} instanton

Reductions to $3 d$

- $4 d$ Superconformal Index: Partition function on $S^{1} \times S^{3}$

Reductions to $3 d$

- $4 d$ Superconformal Index: Partition function on $S^{1} \times S^{3}$
- Reduce on $S^{1} \rightarrow$ Partition function of $3 d$ theories on S^{3} [AG,Yan;Dolan,Spiridonov,Vartanov;Imamura]

Reductions to $3 d$

- $4 d$ Superconformal Index: Partition function on $S^{1} \times S^{3}$
- Reduce on $S^{1} \rightarrow$ Partition function of $3 d$ theories on S^{3} [AG,Yan;Dolan,Spiridonov,Vartanov;Imamura]
- Reduce on Hopf fiber of $S^{3} \rightarrow$ The index of $3 d$ theories [Kim,...]: partition function on $S^{1} \times S^{2}$ [Benini,Nishioka, Yamazaki]

Reductions to $3 d$

- $4 d$ Superconformal Index: Partition function on $S^{1} \times S^{3}$
- Reduce on $S^{1} \rightarrow$ Partition function of $3 d$ theories on S^{3} [AG,Yan;Dolan,Spiridonov,Vartanov;Imamura]
- Reduce on Hopf fiber of $S^{3} \rightarrow$ The index of $3 d$ theories [Kim,...]: partition function on $S^{1} \times S^{2}$ [Benini,Nishioka, Yamazaki]
- I expect one can play similar games in other dimensions and with other exact observables

Summary and Outlook

- We have computed the superconformal index (two parameter) for ALL Gaiotto theories.

Summary and Outlook

- We have computed the superconformal index (two parameter) for ALL Gaiotto theories.
- What about three parameter?

Summary and Outlook

- We have computed the superconformal index (two parameter) for ALL Gaiotto theories.
- What about three parameter?
- Possible to add surface and line operators

Summary and Outlook

- We have computed the superconformal index (two parameter) for ALL Gaiotto theories.
- What about three parameter?
- Possible to add surface and line operators
- Relation to AGT corrrespondence?

Summary and Outlook

- We have computed the superconformal index (two parameter) for ALL Gaiotto theories.
- What about three parameter?
- Possible to add surface and line operators
- Relation to AGT corrrespondence?
- It must be possible to obtain a "microscopic" Lagrangian description of the 2 d TQFT by reduction of the twisted $6 \mathrm{~d}(2,0)$ theory on $S^{3} \times S^{1}$. This would give a uniform description of the index for all A_{n} theories.

Summary and Outlook

- We have computed the superconformal index (two parameter) for ALL Gaiotto theories.
- What about three parameter?
- Possible to add surface and line operators
- Relation to AGT corrrespondence?
- It must be possible to obtain a "microscopic" Lagrangian description of the 2d TQFT by reduction of the twisted $6 \mathrm{~d}(2,0)$ theory on $S^{3} \times S^{1}$. This would give a uniform description of the index for all A_{n} theories.

Thank You!!

