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Abstract. Let X be an algebraic curve defined over a finite field Fq and let G be a smooth

affine group scheme over X with connected fibers whose generic fiber is semisimple and

simply connected. In this paper, we affirm a conjecture of Weil by establishing that the
Tamagawa number of G is equal to 1.
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1. Overview

Let K be a number field, let A denote the ring of adeles of K, and let G be a connected
semisimple algebraic group over K. A conjecture of Weil (now a theorem, thanks to the work
of Kottwitz, Lai, and Langlands) asserts that if G is simply connected, then the Tamagawa
measure µTam(G(K)\G(A)) is equal to 1. Our goal in this paper is to prove an analogous
result in the case where K is the function field of an algebraic curve defined over a finite field.
In this section, we will recall the statement of Weil’s conjecture, translate the function-field
analogue into a problem in algebraic geometry, and outline our approach to that problem.

We begin in §1.1 by reviewing the Smith-Minkowski-Siegel mass formula for integral qua-
dratic forms (Theorem 1.1.15). We then reformulate the mass formula as a statement about
the volumes of adelic groups (following ideas of Tamagawa and Weil) and state the general
form of Weil’s conjecture. In §1.2 we consider the function field analogue of Weil’s conjecture.
Reversing the chain of reasoning given in §1.1, we reformulate this conjecture as a problem of
counting principal G-bundles on an algebraic curve X defined over a finite field Fq (here we
take G to be a group scheme over the curve X, whose generic fiber is an algebraic group over
the function field KX).

Principal G-bundles on X can be identified with points of an algebraic stack BunG(X),
called the moduli stack of G-bundles on X. In §1.3, we will state a version of the Grothendieck-
Lefschetz trace formula for BunG(X) which reduces the problem of counting G-bundles on
X to the problem of computing the trace of the (arithmetic) Frobenius endomorphism of the
cohomology ring H∗(BunG(X) ×Fq Fq; Z`). Our goal then is to understand the topology of
the moduli stack BunG(X). In §1.4, we discuss the analogous problem in the case where X
is defined over the field of complex numbers, and describe several “local-to-global” principles
which can be used to compute algebro-topological invariants of BunG(X) in terms of the local
structure of G at the points of X. The bulk of this paper is devoted to developing analogous
ideas over an arbitrary algebraically closed ground field (such as Fq); we provide a brief outline
in §1.5.

Acknowledgements. We would like to thank Alexander Beilinson, Vladimir Drinfeld, Bene-
dict Gross, and Xinwen Xhu for helpful conversations related to the subject of this paper.
We also thank Brian Conrad for suggesting the problem to us and for offering many helpful
suggestions and corrections. The second author would like to thank Stanford University for
its hospitality during which much of this paper was written. This work was supported by the
National Science Foundation under Grant No. 0906194.

1.1. The Mass Formula and Weil’s Conjecture. Let R be a commutative ring and let V
be an R-module. A quadratic form on V is a map q : V → R satisfying the following conditions:

(a) The construction (v, w) 7→ q(v+w)−q(v)−q(w) determines an R-bilinear map V ×V →
R.

(b) For every element λ ∈ R and every v ∈ V , we have q(λv) = λ2q(v).

A quadratic space over R is a pair (V, q), where V is a finitely generated projective R-module
and q is a quadratic form on V .

One of the basic problems in the theory of quadratic forms can be formulated as follows:
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Question 1.1.1. Let R be a commutative ring. Can one classify quadratic spaces over R (up
to isomorphism)?

Example 1.1.2. Let V be a vector space over the field R of real numbers. Then any quadratic
form q : V → R can be diagonalized: that is, we can choose a basis e1, . . . , en for V such that

q(λ1e1 + · · ·+ λnen) = λ2
1 + · · ·+ λ2

a − λ2
a+1 − · · · − λ2

a+b

for some pair of nonnegative integers a, b with a+b ≤ n. Moreover, the integers a and b depend
only on the isomorphism class of the pair (V, q) (a theorem of Sylvester). In particular, if we
assume that q is nondegenerate (in other words, that a + b = n), then the isomorphism class
(V, q) is completely determined by the dimension n of the vector space V and the difference
a− b, which is called the signature of the quadratic form q.

Example 1.1.3. Let Q denote the field of rational numbers. There is a complete classification
of quadratic spaces over Q, due to Minkowski (later generalized by Hasse to the case of an
arbitrary number field). Minkowski’s result is highly nontrivial, and represents one of the great
triumphs in the arithmetic theory of quadratic forms: we refer the reader to [49] for a detailed
and readable account.

Let us now specialize to the case R = Z. We will refer to quadratic spaces (V, q) over Z as
even lattices (since the associated bilinear form b(x, y) = q(x+y)−q(x)−q(y) has the property
that b(x, x) = 2q(x) is always even). The classification of even lattices up to isomorphism is
generally regarded as an intractable problem (see Remark 1.1.17 below). Let us therefore focus
on the following variant of Question 1.1.1:

Question 1.1.4. Let (V, q) and (V ′, q′) be even lattices. Is there an effective procedure for
determining whether or not (V, q) and (V ′, q′) are isomorphic?

Let (V, q) be a quadratic space over a commutative ring R, and suppose we are given a ring
homomorphism φ : R → S. We let VS denote the tensor product S ⊗R V . An elementary
calculation shows that there is a unique quadratic form qS : VS → S for which the diagram

V
q //

��

R

φ

��
VS

qS // S

is commutative. The construction (V, q) 7→ (VS , qS) carries quadratic spaces over R to quadratic
spaces over S; we refer to (VS , qS) as the extension of scalars of (V, q). If (V, q) and (V ′, q′) are
isomorphic quadratic spaces over R, then extension of scalars yields isomorphic quadratic spaces
(VS , qS) and (V ′S , q

′
S) over S. Consequently, if we understand the classification of quadratic

spaces over S and can tell that (VS , qS) and (V ′S , q
′
S) are not isomorphic, it follows that (V, q)

and (V ′, q′) are not isomorphic.

Example 1.1.5. Let q : Z → Z be the quadratic form given by q(n) = n2. Then the even
lattices (Z, q) and (Z,−q) cannot be isomorphic, because they are not isomorphic after extension
of scalars to R: the quadratic space (R, qR) has signature 1, while (R,−qR) has signature −1.

Example 1.1.6. Let q, q′ : Z2 → Z be the quadratic forms given by

q(m,n) = m2 + n2 q′(m,n) = m2 + 3n2.

Then (Z2, q) and (Z2, q′) become isomorphic after extension of scalars to R (since both qua-
dratic forms are positive-definite). However, the quadratic spaces (Z2, q) and (Z2, q′) are not
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isomorphic, since they are not isomorphic after extension of scalars to the field F3 = Z/3Z (the
quadratic form qF3 is nondegenerate, but q′F3

is degenerate).

Using variants of the arguments provided in Examples 1.1.5 and 1.1.6, one can produce
many examples of even lattices (V, q) and (V ′, q′) that cannot be isomorphic: for example,
by arranging that q and q′ have different signatures (after extension of scalars to R) or have
nonisomorphic reductions modulo n for some integer n > 0 (which can be tested by a finite
calculation). This motivates the following definition:

Definition 1.1.7. Let (V, q) and (V ′, q′) be positive-definite even lattices. We say that (V, q)
and (V ′, q′) of the same genus if (V, q) and (V ′, q′) are isomorphic after extension of scalars to
Z/nZ, for every positive integer n (in particular, this implies that V and V ′ are free abelian
groups of the same rank).

Remark 1.1.8. One can also define study genera of lattices which are neither even nor positive
definite, but we will restrict our attention to the situation of Definition 1.1.7 to simply the
exposition.

More informally, we say that two even lattices (V, q) and (V ′, q′) are of the same genus if we
cannot distinguish between them using variations on Example 1.1.5 or 1.1.6. It is clear that
isomorphic even lattices are of the same genus, but the converse is generally false. However,
the problem of classifying even lattices within a genus has a great deal of structure. One can
show that there are only finitely many isomorphism classes of even lattices in the same genus as
(V, q). Moreover, the celebrated Smith-Minkowski-Siegel mass formula allows us to say exactly
how many (at least when counted with multiplicity).

Notation 1.1.9. Let (V, q) be a quadratic space over a commutative ring R. We let Oq(R)
denote the automorphism group of (V, q): that is, the group of R-module isomorphisms α : V →
V such that q = q ◦ α. We will refer to Oq(R) as the orthogonal group of the quadratic space
(V, q). More generally, if φ : R → S is a map of commutative rings, we let Oq(S) denote the
automorphism group of the quadratic space (VS , qS) over S obtained from (V, q) by extension
of scalars to S.

Example 1.1.10. Suppose q is a positive-definite quadratic form on an real vector space V
of dimension n. Then Oq(R) can be identified with the usual orthogonal group O(n). In

particular, Oq(R) is a compact Lie group of dimension n2−n
2 .

Example 1.1.11. Let (V, q) be a positive-definite even lattice. For every integer d, the group
Oq(Z) acts by permutations on the set V≤d = {v ∈ V : q(v) ≤ d}. Since q is positive-definite,
each of the sets V≤d is finite. Moreover, for d� 0, the action of Oq(Z) on V≤d is faithful (since
an automorphism of V is determined by its action on a finite generating set for V ). It follows
that Oq(Z) is a finite group.

Let (V, q) be a positive-definite even lattice. The mass formula gives an explicit formula for
the sum

∑
(V ′,q′)

1
|Oq′ (Z)| , where the sum is taken over all isomorphism classes of even lattices

(V ′, q′) in the genus of (V, q). The explicit formula is rather complicated in general, depending
on the reduction of (V, q) modulo p for various primes p. For simplicity, we will restrict our
attention to the simplest possible case.

Definition 1.1.12. Let (V, q) be an even lattice. We will say that (V, q) is unimodular if the
bilinear form b(v, w) = q(v + w) − q(v) − q(w) induces an isomorphism of V with its dual
Hom(V,Z).
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Remark 1.1.13. Let (V, q) be a positive-definite even lattice. The condition that (V, q) be
unimodular depends only on the reduction of q modulo p for all primes p. In particular, if (V, q)
is unimodular and (V ′, q′) is in the genus of (V, q), then (V ′, q′) is also unimodular. In fact, the
converse also holds: any two unimodular even lattices of the same rank are of the same genus
(though this is not obvious from the definitions).

Remark 1.1.14. The condition that an even lattice (V, q) be unimodular is very strong: for
example, if q is positive-definite, it implies that the rank of V is divisible by 8.

Theorem 1.1.15 (Mass Formula: Unimodular Case). Let n be an integer which is a positive
multiple of 8. Then

∑
(V,q)

1

|Oq(Z)|
=

Γ( 1
2 )Γ( 2

2 ) · · ·Γ(n2 )ζ(2)ζ(4) · · · ζ(n− 4)ζ(n− 2)ζ(n2 )

2n−1πn(n+1)/4

=
Bn/4

n

∏
1≤j<n/2

Bj
4j
.

Here ζ denotes the Riemann zeta function, Bj denotes the jth Bernoulli number, and the sum
is taken over all isomorphism classes of positive-definite even unimodular lattices (V, q) of rank
n.

Example 1.1.16. Let n = 8. The right hand side of the mass formula evaluates to 1
696729600 .

The integer 696729600 = 21435527 is the order of the Weyl group of the exceptional Lie group
E8, which is also the automorphism group of the root lattice of E8 (which is an even unimodular
lattice). Consequently, the fraction 1

696729600 also appears as one of the summands on the left
hand side of the mass formula. It follows from Theorem 1.1.15 that no other terms appear on
the left hand side: that is, the root lattice of E8 is the unique positive-definite even unimodular
lattice of rank 8, up to isomorphism.

Remark 1.1.17. Theorem 1.1.15 allows us to count the number of positive-definite even uni-
modular lattices of a given rank with multiplicity, where a lattice (V, q) is counted with mul-
tiplicity 1

|Oq(Z)| . If the rank of V is positive, then Oq(Z) has order at least 2 (since Oq(Z)

contains the group 〈±1〉), so that the left hand side of Theorem 1.1.15 is at most C
2 , where C is

the number of isomorphism classes of positive-definite even unimodular lattices. In particular,
Theorem 1.1.15 gives an inequality

C ≥
Γ( 1

2 )Γ( 2
2 ) · · ·Γ(n2 )ζ(2)ζ(4) · · · ζ(n− 4)ζ(n− 2)ζ(n2 )

2n−2πn(n+1)/4
.

The right hand side of this inequality grows very quickly with n. For example, when n = 32, we
can deduce the existence of more than eighty million pairwise nonisomorphic (positive-definite)
even unimodular lattices of rank n.

We now describe a reformulation of Theorem 1.1.15, following ideas of Tamagawa and Weil.
Suppose we are given a positive-definite even lattice (V, q), and that we wish to classify other
even lattices of the same genus. If (V ′, q′) is a lattice in the genus of (V, q), then for every
positive integer n we can choose an isomorphism αn : V/nV ' V ′/nV ′ which is compatible
with the quadratic forms q and q′. Using a compactness argument (or some variant of Hensel’s
lemma) we can assume without loss of generality that the isomorphisms {αn}n>0 are compatible
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with one another: that is, that the diagrams

V/nV
αn //

��

V ′/nV ′

��
V/mV

αm // V ′/mV ′

commute whenever m divides n. In this case, the data of the family {αn} is equivalent to the

data of a single isomorphism α : Ẑ ⊗Z V → Ẑ ⊗Z V ′, where Ẑ ' lim←−n>0
Z/nZ denotes the

profinite completion of the ring Z.

By virtue of the Chinese remainder theorem, the ring Ẑ can be identified with the product∏
p Zp, where p ranges over all prime numbers and Zp denotes the ring lim←−Z/pkZ of p-adic

integers. It follows that (V, q) and (V ′, q′) become isomorphic after extension of scalars to
Zp, and therefore also after extension of scalars to the field Qp = Zp[p

−1] of p-adic rational
numbers. Since the lattices (V, q) and (V ′, q′) are positive-definite and have the same rank,
they also become isomorphic after extending scalars to the field of real numbers. It follows
from Minkowski’s classification that the quadratic spaces (VQ, qQ) and (V ′Q, q

′
Q) are isomorphic

(this is known as the Hasse principle: to show that quadratic spaces over Q are isomorphic, it
suffices to show that they are isomorphic over every completion of Q; see §3.3 of [49]). We may
therefore choose an isomorphism β : VQ → V ′Q which is compatible with the quadratic forms q

and q′.

Let Af denote the ring of finite adeles: that is, the tensor product Ẑ⊗Z Q. The isomorphism

Ẑ '
∏
p Zp induces an injective map

Af ' Ẑ⊗Z Q ↪→
∏
p

(Zp ⊗Z Q) '
∏
p

Qp,

whose image is the restricted product
∏res
p Qp ⊆

∏
p Qp: that is, the subset consisting of those

elements {xp} of the product
∏
p Qp such that xp ∈ Zp for all but finitely many prime numbers

p. The quadratic spaces (V, q) and (V ′, q′) become isomorphic after extension of scalars to Af

in two different ways: via the isomorphism α which is defined over Ẑ, and via the isomorphism
β which is defined over Q. Consequently, the composition β−1◦α can be regarded as an element
of Oq(Af ). This element depends not only the quadratic space (V ′, q′), but also on our chosen
isomorphisms α and β. However, any other isomorphism between (VẐ, qẐ) and (V ′

Ẑ
, q′

Ẑ
) can be

written in the form α ◦ γ, where γ ∈ Oq(Ẑ). Similarly, the isomorphism β is well-defined up
to right multiplication by elements of Oq(Q). Consequently, the composition β−1 ◦ α is really
well-defined as an element of the set of double cosets

Oq(Q)\Oq(Af )/Oq(Ẑ).

Let us denote this double coset by [V ′, q′].
It is not difficult to show that the construction (V ′, q′) 7→ [V ′, q′] induces a bijection from

the set of isomorphism classes of even lattices (V ′, q′) in the genus of (V, q) with the set

Oq(Q)\Oq(Af )/Oq(Ẑ) (the inverse of this construction is given by the procedure of reglu-
ing; see Construction 1.2.15). Moreover, if γ ∈ Oq(Af ) is a representative of the double coset
[V ′, q′], then the group Oq′(Z) is isomorphic to the intersection

Oq(Ẑ) ∩ γ−1 Oq(Q)γ.
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Consequently, the left hand side of the mass formula can be written as a sum∑
γ

1

|Oq(Ẑ) ∩ γ−1 Oq(Q)γ|
,(1)

where γ ranges over a set of double coset representatives.
At this point, it will be technically convenient to introduce two modifications of the calcu-

lation we are carrying out. For every commutative ring R, let SOq(R) denote the subgroup
of Oq(R) consisting of those automorhisms of (VR, qR) which have determinant 1 (if R is an
integral domain, this is a subgroup of index at most 2). Let us instead attempt to compute the
sum ∑

γ

1

|SOq(Ẑ) ∩ γ−1 SOq(Q)γ|
,(2)

where γ runs over a set of representatives for the collection of double cosets

X = SOq(Q)\ SOq(Af )/ SOq(Ẑ).

If q is unimodular, expression (2) differs from the expression (1) by an overall factor of 2 (in
general, the expressions differ by a power of 2).

Remark 1.1.18. Fix an orientation of the Z-module V (that is, a generator of the top exterior
power of V ). Quantity (2) can be written as a sum

∑
1

| SOq′ (Z)| , where the sum is indexed by

all isomorphism classes of oriented even unimodular positive-definite lattices (V ′, q′) which are
isomorphic to (V, q) as oriented quadratic spaces after extension of scalars to Z/nZ, for every
integer n > 0.

Let A denote the ring of adeles: that is, the ring Af ×R. Then we can identify X with

the collection of double cosets SOq(Q)\SOq(A)/ SOq(Ẑ × R). The virtue of this maneuver
is that A has the structure of a locally compact commutative ring containing Q as a discrete
subring. Consequently, SOq(A) is a locally compact topological group which contains SOq(Q)

as a discrete subgroup and SOq(Ẑ×R) as a compact open subgroup.
Let µ be a Haar measure on the group SOq(A). One can show that the group SOq(A)

is unimodular: that is, the measure µ is invariant under both right and left translations. In
particular, µ determines a measure on the quotient SOq(Q)\SOq(A), which is invariant under

the right action of SOq(Ẑ ×R). We will abuse notation by denoting this measure also by µ.

Write SOq(Q)\ SOq(A) as a union of orbits
⋃
x∈X Ox for the action of the group SOq(Ẑ×R).

If x ∈ X is a double coset represented by an element γ ∈ SOq(A), then we can identify the

orbit Ox with the quotient of SOq(Ẑ×R) by the finite subgroup SOq(Ẑ×R) ∩ γ−1 SOq(Q)γ.
We therefore have∑

γ

1

|SOq(Ẑ×R) ∩ γ−1 SOq(Q)γ|
=

∑
x∈X

µ(Ox)

µ(SOq(Ẑ×R))
(3)

=
µ(SOq(Q)\ SOq(A))

µ(SOq(Ẑ×R))
.(4)

Of course, the Haar measure µ on SOq(A) is only well-defined up to scalar multiplication.
Rescaling the measure µ has no effect on the right hand side of the preceding equation, since
µ appears in both the numerator and the denominator of the right hand side. However, it is
possible to say more: it turns out that there is a canonical normalization of the Haar measure,
known as Tamagawa measure.
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Construction 1.1.19. Let G be a linear algebraic group of dimension d over the field Q of
rational numbers. Let Ω denote the collection of all left invariant d-forms on G, so that Ω is a
1-dimensional vector space over Q. Choose a nonzero element ω ∈ Ω.

The vector ω determines a left-invariant differential form of top degree on the smooth man-
ifold G(R), which in turn determines a Haar measure µR,ω on G(R). For every prime number
p, an analogous construction yields a measure µQp,ω on the p-adic analytic manifold G(Qp).
Assuming that G is connected and and has no nontrivial characters, one can show that the
product of these measures determines a measure µTam on the restricted product

G(R)×
res∏
p

G(Qp) ' G(A).

Let λ be a nonzero rational number. Then an elementary calculation gives

µR,λω = |λ|µR,ω µQp,λω = |λ|pµQp,ω;

here |λ|p denotes the p-adic absolute value of λ. Combining this with the product formula∏
p |λ|p = 1

|λ| , we deduce that µTam is independent of the choice of nonzero element ω ∈ Ω. We

will refer to µTam as the Tamagawa measure of the algebraic group G.

If (Λ, q) is a positive-definite even lattice, then the restriction of the functor R 7→ SOq(R)
to Q-algebras can be regarded as a semisimple algebraic group over Q. We may therefore
apply Construction 1.1.19 to obtain a canonical measure µTam on the group SOq(A). We may
therefore specialize equation (4) to obtain an equality∑

γ

1

|SOq′(Z)|
=

µTam(SOq(Q)\ SOq(A))

µTam(SOq(Ẑ×R))
,(5)

where it makes sense to evaluate the numerator and the denominator of the right hand side
independently.

Remark 1.1.20. The construction R 7→ Oq(R) also determines a semisimple algebraic group
over Q. However, this group is not connected, and the infinite product

∏
p µQp,ω does not

converge to a measure on the restricted product
∏res
p Oq(Qp) = Oq(Af ). This is one reason for

preferring to work with the group SOq in place of Oq.

Remark 1.1.21. The numerator on the right hand side of (5) is called the Tamagawa number
of the algebraic group SOq. More generally, if G is a connected semisimple algebraic group
over Q, we define the Tamagawa number of G to be the Tamagawa measure of the quotient
G(Q)\G(A).

The denominator on the right hand side of (5) is computable: if we choose a differential form
ω as in Construction 1.1.19, it is given by the product

µR,ω(SOq(R))
∏
p

µQp,ω(SOq(Zp)).

The first term is the volume of a compact Lie group, and the second term is a product of local
factors which are related to counting problems over finite rings. Carrying out these calculations
leads to a very pretty reformulation of Theorem 1.1.15:

Theorem 1.1.22 (Mass Formula, Adelic Formulation). Let (V, q) be a nondegenerate quadratic
space over Q. Then µTam(SOq(Q)\ SOq(A)) = 2.
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The appearance of the number 2 in the statement of Theorem 1.1.22 results from the fact
that the algebraic group SOq is not simply connected. Let Spinq denote the (2-fold) universal
cover of SOq, so that Spinq is a simply connected semisimple algebraic group over Q. We then
have the following more basic statement:

Theorem 1.1.23. Let (V, q) be a positive-definite quadratic space over Q. Then

µTam(Spinq(Q)\ Spinq(A)) = 1.

Remark 1.1.24. For a deduction of Theorem 1.1.22 from Theorem 1.1.23, see [43].

Theorem 1.1.23 motivates the following:

Conjecture 1.1.25 (Weil’s Conjecture on Tamagawa Numbers). Let G be a simply connected
semisimple algebraic group over Q. Then µTam(G(Q)\G(A)) = 1.

Conjecture 1.1.25 was proved by Weil in a number of special cases. The general case was
proven by Langlands in the case of a split group ([31]), by Lai in the case of a quasi-split group
([29]), and by Kottwitz for arbitrary simply connected algebraic groups satisfying the Hasse
principle ([28]; this is now known to be all simply connected semisimple algebraic groups over
Q, by work of Chernousov).

The goal of this paper is to address the function field analogue of Conjecture 1.1.25, which
we will discuss in the next section.

1.2. Weil’s Conjecture for Function Fields. In this section, we will review the definition
of Tamagawa measure for algebraic groups G which are defined over function fields. We will
then state the function field analogue of Weil’s conjecture, and explain how to reformulate it
as a counting problem (using the logic of §1.1 in reverse).

Notation 1.2.1. Let Fq denote a finite field with q elements, and let X be an algebraic curve
over Fq (which we assume to be smooth, proper, and geometrically connected). We let KX

denote the function field of the curve X (that is, the residue field of the generic point of X).
We will write x ∈ X to mean that x is a closed point of the curve X. For each point x ∈ X,

we let κ(x) denote the residue field of X at the point x. Then κ(x) is a finite extension of
the finite field Fq. We will denote the degree of this extension by deg(x) and refer to it as the
degree of x. We let Ox denote the completion of the local ring of X at the point x: this is a
complete discrete valuation ring with residue field κ(x), noncanonically isomorphic to a power
series ring κ(x)[[t]]. We let Kx denote the fraction field of Ox.

For every finite set S of closed point of X, let AS denote the product
∏
x∈S Kx ×

∏
x/∈S Ox.

We let A denote the direct limit
lim−→
S⊆X

AS .

We will refer to A as the ring of adeles of KX . It is a locally compact commutative ring,
equipped with a ring homomorphism KX → A which is an isomorphism of KX onto a discrete
subset of A. We let A0 =

∏
x∈X Ox denote the ring of integral adeles, so that A0 is a compact

open subring of A.

Let G0 be a linear algebraic group of dimension d defined over the field KX . It will often be
convenient to assume that we are given an integral model of G0: that is, that G0 is given as the
generic fiber of a smooth affine group scheme G over the curve X.

Remark 1.2.2. If G0 is a simply connected semisimple algebraic group over KX , then it is
always possible to find a smooth affine group scheme with generic fiber G0. See, for example,
[12] or §7.1 of [11].
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Remark 1.2.3. In what follows, it will sometimes be convenient to assume that the group
scheme G → X has connected fibers. This can always be arranged by passing to an open
subgroup G◦ ⊆ G (which does not injure our assumption that G is an affine group scheme over
X, since the open immersion G◦ ↪→ G is complementary to a Cartier divisor and is therefore
an affine morphism).

For every commutative ring R equipped with a map SpecR → X, we let G(R) denote the
group of R-points of G. Then:

• For each closed point x ∈ X, G(Kx) is a locally compact group, which contains G(Ox)
as a compact open subgroup.
• We can identify G(A) with the restricted product

∏res
x∈X G(Kx): that is, with the

subgroup of the product
∏
x∈X G(Kx) consisting of those elements {gx}x∈X such that

gx ∈ G(Ox) for all but finitely many values of X.
• The group G(A) is locally compact, containing G(KX) as a discrete subgroup and
G(A0) '

∏
x∈X G(Ox) as a compact open subgroup.

1.2.1. Let us now review the construction of Tamagawa measure on the locally compact group
G(A). Let ΩG/X denote the relative cotangent bundle of the smooth morphism π : G → X.

Then ΩG/X is a vector bundle on G of rank d = dim(G0). We let ΩdG/X denote the top exterior

power of ΩG/X , so that ΩdG/X is a line bundle on G. Let L denote the pullback of ΩdG/X
along the identity section e : X → G. Equivalently, we can identify L with the subbundle of
π∗Ω

d
G/X consisting of left-invariant sections. Let L0 denote the generic fiber of L, so that L0 is

a 1-dimensional vector space over the function field KX . Fix a nonzero element ω ∈ L0, which
we can identify with a left-invariant differential form of top degree on the algebraic group G0.

For every point x ∈ X, ω determines a Haar measure µx,ω on the locally compact topological
group G(Kx). Concretely, this measure can be defined as follows. Let t denote a uniformizing
parameter for Ox (so that Ox ' κ(x)[[t]]), and let GOx denote the fiber product SpecOx×XG.
Choose a local coordinates y1, . . . , yd for the group GOx near the identity: that is, coordinates

which induce a map u : GOx → Ad
Ox

which is étale at the origin of GOx . Let vx(ω) denote the
order of vanishing of ω at the point x. Then, in a neighborhood of the origin inGOx , we can write
ω = tvx(ω)λdy1∧· · ·∧dyd, where λ is an invertible regular function. Let mx denote the maximal
ideal of Ox, and let G(mx) denote the kernel of the reduction map G(Ox) → G(κ(x)). Since
y1, . . . , yd are local coordinates near the origin, the map u induces a bijection G(mx) → mdx.
The measure defined by the differential form dy1∧· · ·∧dyd on G(mx) is obtained by pulling back
the “standard” measure on Kd

x along the map u, where this standard measure is normalized so

that Odx has measure 1. It follows that the measure of G(mx) (with respect to the differential
form dy1 ∧ · · · ∧ dyd) is given by 1

|κ(x)|d . We then define

µx,ω(G(mx)) = q− deg(x)vx(ω) 1

|κ(x)|d
.

The smoothness of G implies that the map G(Ox)→ G(κ(x)) is surjective, so that we have

µx,ω(G(Ox)) = q− deg(x)vx(ω) |G(κ(x))|
|κ(x)|d

.

Remark 1.2.4. Since G(Ox) is a compact open subgroup of G(Kx), there is a unique left-
invariant measure µ on G(Ox) satisfying

µ(G(Ox)) = q− deg(x)vx(ω) |G(κ(x))|
|κ(x)|d

.
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The reader can therefore take this expression as the definition of the measure µx,ω. However,
the analytic perspective is useful for showing that this measure is independent of the choice of
integral model chosen. We refer the reader to [57] for more details.

The key fact is the following:

Proposition 1.2.5. Suppose that G0 is connected and semisimple, and let ω be a nonzero
element of L0. Then the measures µx,ω on the groups G(Kx) determine a well-defined product
measure on G(A) =

∏res
x∈X G(Kx). Moreover, this product measure is independent of ω.

Proof. To check that the product measure is well-defined, it suffices to show that it is well-
defined when evaluated on a compact open subgroup of G(A), such as G(A0). This is equivalent
to the absolute convergence of the infinite product∏

x∈X
µx,ω(G(Ox)) =

∏
x∈X

q− deg(x)vx(ω) |G(κ(x))|
|κ(x)|d

,

which we will discuss in §6.5.
The fact that the product measure is independent of the choice of ω follows from the fact

that the infinite sum ∑
x∈X

deg(x)vx(ω) = deg(L)

is independent of ω. �

Definition 1.2.6. Let G0 be a connected semisimple algebraic group over KX . Let d denote
the dimension of G0, and let g denote the genus of the curve X. The Tamagawa measure on
G(A) is the Haar measure given informally by the product

µTam = qd(1−g)
∏
x∈X

µx,ω

Remark 1.2.7. Equivalently, we can define Tamagawa measure µTam to be the unique Haar
measure on G(A) which is normalized by the requirement

µTam(G(A0)) = qd(1−g)−deg(L)
∏
x∈X

|G(κ(x))|
|κ(x)|d

.

Remark 1.2.8. To ensure that the Tamagawa measure µTam is well-defined, it is important

that the quotients |G(κ(x))|
|κ(x)|d converge swiftly to 1, so that the infinite product

∏
x∈X

|G(κ(x))|
|κ(x)|d is

absolutely convergent. This can fail dramatically if G0 is not connected. However, it is satisfied
for some algebraic groups which are not semisimple: for example, the additive group Ga.

Remark 1.2.9. If the group G0 is semisimple, then any left-invariant differential form ω of top
degree on G0 is also right-invariant. It follows that the group G(A) is unimodular. In particular,
the measure µTam on G(A) descends to a measure on the quotient G(KX)\G(A), which is
invariant under the action of G(A) by right translation. We will denote this measure also by
µTam, and refer to it as Tamagawa measure. It is characterized by the following requirement:
for every positive measurable function f on G(A), we have∫

x∈G(A)

f(x)dµTam =

∫
y∈G(KX)/G(A)

(
∑

π(x)=y

f(x))dµTam,(6)

where π : G(A)→ G(KX)\G(A) denotes the projection map.
An important special case occurs when f is the characteristic function of a coset γH for

some compact open subgroup H ⊆ G(A). In this case, each element of π(γH) has exactly o(γ)
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preimages in U , where o(γ) denotes the order of the finite group G(KX) ∩ γHγ−1 (this group
is finite, since it is the intersection of a discrete subgroup of G(A) with a compact subgroup of

G(A)). Applying formula (6), we deduce that µTam(π(γH)) = µTam(H)
o(γ) .

Example 1.2.10. Let G = Ga be the additive group. Then the dimension d of G is equal
to 1, and the line bundle L of left-invariant top forms is isomorphic to the structure sheaf OX
of X. Moreover, we have an equality |G(κ(x))| = |κ(x)| for each x ∈ X. Consequently, the
Tamagawa measure µTam is characterized by the formula µTam(G(A0)) = q1−g. Note that we
have an exact sequence of locally compact groups

0→ H0(X;OX)→ G(A0)→ G(KX)\G(A)→ H1(X;OX)→ 0,

so that the Tamagawa measure of the quotient G(KX)\G(A) is given by

|H1(X;OX)|
|H0(X;OX)|

µTam(G(A0)) =
qg

q
q1−g = 1.

Remark 1.2.11. One might ask the motivation for the auxiliary factor qd(1−g) appearing in the
definition of the Tamagawa measure. Remark 1.2.10 provides one answer: the auxiliary factor
is exactly what we need in order to guarantee that Weil’s conjecture holds for the additive
group Ga.

Another answer is that the auxiliary factor is necessary to obtain invariance under Weil
restriction. Suppose that f : X → Y is a separable map of algebraic curves over Fq. Let KY

be the fraction field of Y (so that KX is a finite separable extension of KY ), let AY denote
the ring of adeles of KY , and let H0 denote the algebraic group over KY obtained from G0 by
Weil restriction along the field extension KY ↪→ KX . Then we have a canonical isomorphism of
locally compact groups G0(A) ' H0(AY ). This isomorphism is compatible with the Tamagawa
measures on each side, but only if we include the auxiliary factor qd(1−g) indicated in Definition
1.2.6. See [42] for more details.

1.2.2. Our goal in this paper is to address the following version of Weil’s conjecture:

Conjecture 1.2.12 (Weil). Suppose that G0 is semisimple and simply connected. Then

µTam(G(KX)\G(A)) = 1.

Let us now reformulate Conjecture 1.2.12 in more elementary terms. Note that the quotient
G(KX)\G(A) carries a right action of the compact group G(A0). We may therefore write
G(KX)\G(A) as a union of orbits, indexed by the collection of double cosets

G(KX)\G(A)/G(A0).

Applying Remark 1.2.9, we calculate

µTam(G(KX)\G(A)) =
∑
γ

µTam(G(A0))

|G(A0) ∩ γ−1G(KX)γ|

= qd(1−g)−deg(L)(
∏
x∈X

|G(κ(x))|
|κ(x)|d

)
∑
γ

1

|G(A0) ∩ γ−1G(KX)γ|
.

We may therefore reformulate Weil’s conjecture as follows:

Conjecture 1.2.13 (Weil). Suppose that G0 is semisimple and simply connected. Then we
have an equality ∏

x∈X

|κ(x)|d

|G(κ(x))|
= qd(1−g)−deg(L)

∑
γ

1

|G(A0) ∩ γ−1G(KX)γ|
,
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where the sum on the right hand side is taken over a set of representatives for the double
quotient G(KX)\G(A)/G(A0).

Remark 1.2.14. In the statement of Conjecture 1.2.13, the product on the left hand side and
the sum on the right hand side are generally both infinite. The convergence of the left hand
side is equivalent to the well-definedness of Tamagawa measure µTam, and the convergence of
the right hand side is equivalent to the statement that µTam(G(KX)\G(A)) is finite.

1.2.3. We now give an algebro-geometric interpretation of the sum appearing on the right hand
side of Conjecture 1.2.13. In what follows, we will assume that the reader is familiar with the
theory of principal G-bundles; we will give a brief review in §A.1.

Construction 1.2.15 (Regluing). Let γ be an element of the group G(A). We can think of γ
as given by a collection of elements γx ∈ G(Kx), having the property that there exists a finite
set S such that γx ∈ G(Ox) whenever x /∈ S.

We define a G-bundle Pγ on X as follows:

(a) The bundle Pγ is equipped with a trivialization φ on the open set U = X − S.
(b) The bundle Pγ is equipped with a trivialization ψx over the scheme SpecOx of each

point x ∈ S.
(c) For each x ∈ S, the trivializations of Pγ |SpecKx determined by φ and ψx differ by

multiplication by the the element γx ∈ G(Kx).

Note that the G-bundle Pγ is canonically independent of the choice of S, so long as S contains
all points x such that γx /∈ G(Ox).

Remark 1.2.16. Let γ, γ′ ∈ G(A). The G-bundles Pγ and Pγ′ come equipped with trivializa-
tions at the generic point of X. Consequently, giving an isomorphism between the restrictions
Pγ |SpecKX and Pγ′ |SpecKX is equivalent to giving an element β ∈ G(KX). Unwinding the
definitions, we see that this isomorphism admits an (automatically unique) extension to an iso-
morphism of Pγ with Pγ′ if and only if γ′−1βγ belongs to G(A0). This has two consequences:

(a) The G-bundles Pγ and Pγ′ are isomorphic if and only if γ and γ′ determine the same
element of G(KX)\G(A)/G(A0).

(b) The automorphism group of the G-torsor Pγ is the intersection G(A0) ∩ γ−1G(KX)γ.

Remark 1.2.17. Let P be a G-bundle on X. Then P can be obtained from Construction
1.2.15 if and only if the following two conditions are satisfied:

(i) There exists an open set U ⊆ X such that P |U is trivial.
(ii) For each point x ∈ X − U , the restriction of P to SpecOx is trivial.

By a direct limit argument, condition (i) is equivalent to the requirement that P |SpecKX be

trivial: that is, that P is classified by a trivial element of H1(SpecKX ;G0). If G0 is semisimple
and simply connected, then H1(SpecKX ;G0) vanishes (see [24]).

If the map G→ X is smooth and has connected fibers, then condition (ii) is automatic (the
restriction P |Specκ(x) can be trivialized by Lang’s theorem (see [30]), and any trivialization of
P |Specκ(x) can be extended to a trivialization of P |SpecOx by virtue of the assumption that G
is smooth.

Suppose now that G has connected fibers. Combining Remarks 1.2.16 and 1.2.17, we obtain
the formula

µTam(G(KX)\G(A)) ' qd(1−g)−deg(L)(
∏
x∈X

|G(κ(x))|
|κ(x)|d

)
∑
P

1

|Aut(P)|
.

Here the sum is taken over all isomorphism classes of generically trivial G-bundles on X. We
may therefore reformulate Conjecture 1.2.12 as follows:
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Conjecture 1.2.18 (Weil). Let G→ X be a smooth affine group scheme with connected fibers
whose generic fiber is semisimple and simply connected. Then∏

x∈X

|κ(x)|d

|G(κ(x))|
= qd(1−g)−deg(L)

∑
P

1

|Aut(P)|
.

The assertion of Conjecture 1.2.18 can be regarded as a function field version of Theorem
1.1.15. More precisely, we have the following table of analogies:

Classical Mass Formula Conjecture 1.2.18

Number field Q Function field KX

Quadratic space (VQ, qQ) over Q Algebraic Group G0

Even lattice (V, q) Integral model G

Even lattice (V ′, q′) of the same genus Principal G-bundle P∑
q′

1
|Oq′ (Z)|

∑
P

1
|Aut(P)| .

1.2.4. There are a number of tools that are available for attacking Conjecture 1.2.18 that have
no analogue in the case of a number field. More specifically, we would like to take advantage of
the fact that the collection of all G-bundles on X admits an algebro-geometric parametrization.

Notation 1.2.19. For every Fq-algebra R, let BunG(X)(R) denote the category of principal
G-bundles on the relative curve XR = SpecR ×Spec Fq X (where morphisms are given by
isomorphisms of G-bundles). The construction R 7→ BunG(X)(R) determines an algebraic
stack, which we will denote by BunG(X) and refer to as the moduli stack of G-bundles on X.

By definition, we can identify Fq-valued points of BunG(X) with principal G-bundles on X.
We will denote the sum

∑
P

1
|Aut(P)| by |BunG(X)(Fq)|: we can think of it as a (weighted) count

of the objects of BunG(X)(Fq), which properly takes into account the fact that BunG(X)(Fq)
is a groupoid rather than a set.

Remark 1.2.20. One can show that BunG(X) is a smooth algebraic stack over Fq. Moreover,
for every G-bundle P on X, the dimension of BunG(X) at the point determined by P is given
by the Euler characteristic

−χ(gP) = H1(X; gP)−H0(X; gP),

where gP denotes the vector bundle on X obtained by twisting the Lie algebra g of G using the
torsor P. Since the generic fiber G0 is semisimple, the group G acts trivially on the top exterior

power
∧d

g, so that
d∧
gP '

d∧
g ' L∨ .

It follows that the vector bundle gP has degree − deg(L), so that so that the Riemann-Roch
theorem gives χ(gP) = d(1 − g) − deg(L) is independent of P. Applying the same analysis to
any R-valued point of BunG(X), we conclude that BunG(X) is equidimensional of dimension
d(g − 1) + deg(L). We may therefore rewrite the right hand side of Conjecture 1.2.18 as a
fraction

|BunG(X)(Fq)|
qdim(BunG(X))

.
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Heuristically, this is a normalized count of the number G-bundles on X, where the normaliza-
tion factor qdim(BunG(X)) can be regarded as a naive estimate determined by the dimension of
BunG(X).

1.2.5. For every closed point x ∈ X, let Gx denote the fiber product Specκ(x) ×X G, so that
Gx is a connected algebraic group over κ(x). Let BGx denote the classifying stack of Gx: this
is a smooth algebraic stack of dimension −d over Specκ(x). Then BGx(Fq) is the category of
Gx-bundles on Specκ(x). If Gx is connected, then Lang’s theorem implies that every Gx-bundle
on Specκ(x) is trivial. Moreover, the automorphism group of the trivial Gx-bundle is given by
Gx(κ(x)) = G(κ(x)). Consequently, we have an identity

|κ(x)|d

|G(κ(x))|
=
|BGx(κ(x))|
|κ(x)|dim(BGx)

.

We may therefore rewrite Weil’s conjecture in the suggestive form

|BunG(X)(Fq)|
qdim(BunG)

=
∏
x∈X

|BGx(κ(x))|
|κ(x)|dim(BGx)

.(7)

Roughly speaking, formula (7) reflects the idea that BunG(X) can be viewed as a “continuous
product” of the classifying stacks BGx, where x ranges over the closed points of X. Most of
this paper will be devoted to making this heuristic idea more precise.

1.3. Cohomological Formulation. Throughout this section, we let X denote an algebraic
curve defined over a finite field Fq and G a smooth affine group scheme over X. The analysis
given in §1.2 shows that Weil’s conjecture can be reduced to the problem of computing the
sum

∑
P

1
|Aut(P)| , where P ranges over all isomorphism classes of G-bundles on X. Roughly

speaking, we can think of this quantity as counting the number of Fq-points of the moduli stack
BunG(X).

1.3.1. Let us begin by discussing the analogous counting problem where we replace BunG(X)
by an algebraic variety Y defined over Fq. Let Fq be an algebraic closure of Fq, and let

Y = Spec Fq ×Spec Fq Y denote the associated algebraic variety over Fq. We let Frob : Y → Y

denote the product of the identity map from Spec Fq to itself with the absolute Frobenius map
from Y to itself. We refer to Frob as the geometric Frobenius map on Y . If Y is a quasi-
projective variety equipped with an embedding j : Y ↪→ Pn, then the map Frob is given in
homogeneous coordinates by the construction

[x0 : · · · : xn] 7→ [xq0 : · · ·xqn]

(this map carries Y to itself, since Y can be described using homogeneous polynomials with
coefficients in Fq).

Let Y (Fq) denote the finite set of Fq-points of Y . Then Y (Fq) can be identified with the

fixed point locus of the map Frob : Y → Y . Weil had the beautiful insight that one should be
able to compute the integers |Y (Fq)| using the Lefschetz fixed-point formula, provided that one
had a sufficiently robust cohomology theory for algebraic varieties. Motivated by this heuristic,
he made a series of famous conjectures about the behavior of the integers |Y (Fq)|.

Weil’s conjectures were eventually proven by the Grothendieck school using the theory of
`-adic cohomology. We will give a brief summary here, and a more detailed discussion in §2. Fix
a prime number ` which is invertible in Fq. To every algebraic variety V over Fq, the theory of
`-adic cohomology assigns `-adic cohomology groups {Hn(V ; Q`)}n≥0 and compactly supported
`-adic cohomology groups {Hn

c (V ; Q`)}n≥0, which are finite dimensional vector spaces over Q`.
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If Y is an algebraic variety over Fq, then the geometric Frobenius map Frob : Y → Y is proper

and therefore determines a pullback map from H∗c(Y ; Q`) to itself. We will abuse notation by
denoting this map also by Frob. We then have the following:

Theorem 1.3.1 (Grothendieck-Lefschetz Trace Formula). Let Y be an algebraic variety over
Fq. Then the number of Fq-points of Y is given by the formula

|Y (Fq)| =
∑
i≥0

(−1)i Tr(Frob |Hi
c(Y ; Q`)).

1.3.2. For our purposes, it will be convenient to write the Grothendieck-Lefschetz trace formula
in a slightly different form. Suppose now that Y is a smooth variety of dimension n over Fq.
Then, from the perspective of `-adic cohomology, Y behaves as if it were a smooth manifold of
dimension 2n. In particular, it satisfies Poincare duality: that is, there is a perfect pairing

µ : Hi
c(Y ; Q`)⊗Q`

H2n−i(Y ; Q`)→ Q` .

This pairing is not quite Frob-equivariant: instead, it fits into a commutative diagram

Hi
c(Y ; Q`)⊗Q`

H2n−i(Y ; Q`)
µ //

Frob⊗Frob

��

Q`

qn

��
Hi
c(Y ; Q`)⊗Q`

H2n−i(Y ; Q`)
µ // Q`,

reflecting the idea that the geometric Frobenius map Frob : Y → Y has degree qn. In particular,
pullback along the geometric Frobenius map Frob induces an isomorphism from H∗(Y ; Q`) to
itself, and we have the identity

q−n Tr(Frob |Hi
c(Y ; Q`)) ' Tr(Frob−1 |H2n−i(Y ; Q`)).

We may therefore rewrite Theorem 1.3.1 as follows:

Theorem 1.3.2 (Grothendieck-Lefschetz Trace Formula, Dual Version). Let Y be an algebraic
variety over Fq which is smooth of dimension n. Then the number of Fq-points of Y is given
by the formula

|Y (Fq)|
qn

=
∑
i≥0

(−1)i Tr(Frob−1 |Hi(Y ; Q`)).

1.3.3. We would like to apply an analogue of Theorem 1.3.2 to the problem of counting G-
bundles on an algebraic curve X.

Notation 1.3.3. Let C denote the field of complex numbers, and fix an embedding ι : Z` ↪→ C.
Let M be a Z`-module for which C⊗Z` M is a finite-dimensional vector space over C. If ψ is
any endomorphism of M as a Z`-module, we let Tr(ψ|M) ∈ C denote the trace of C-linear map
C⊗Z` M → C⊗Z` M determined by ψ. More generally, if ψ is an endomorphism of a graded
Z`-module M∗, we let Tr(ψ|M∗) denote the alternating sum

∑
i≥0(−1)i Tr(ψ|M i) (provided

that this sum is convergent).
Let BunG(X) denote the moduli stack of G-bundles on X. We let BunG(X) denote the

fiber product Spec Fq ×Spec Fq BunG(X), which we regard as a smooth algebraic stack over Fq.

For every Fq-algebra R, we can identify the category of R-valued points of BunG(X) with the
category of principal G-bundles on the relative curve XR = SpecR×Spec Fq X.

Note that if R is an Fq-algebra, then the construction a 7→ aq determines an Fq-algebra
homomorphism from R to itself, and therefore induces a map FrobR : XR → XR (which is
the identity on X). If P is a principal G-bundle on XR, then Frob∗R P is another principal
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G-bundle on XR. The construction P 7→ Frob∗R P determines a morphism of algebraic stacks
Frob : BunG(X) → BunG(X), which we will refer to as the geometric Frobenius morphism on
BunG(X).

We let H∗(BunG(X); Z`) denote the `-adic cohomology ring of the algebraic stack BunG(X)
(for a definition, see §2.3). The geometric Frobenius map Frob : BunG(X) → BunG(X) de-
termines an endomorphism of H∗(BunG(X); Z`), which we will denote also by Frob. One can
show that this map is an automorphism of H∗(BunG(X); Z`) (it is inverse to the map given by
pullback along the Frobenius automorphism of Spec Fq).

Weil’s conjecture is an immediate consequence of the following pair of results:

Theorem 1.3.4. [Grothendieck-Lefschetz Trace Formula for BunG(X)] Assume that the fibers
of G are connected and that the generic fiber of G is semisimple. Then we have an equality

|BunG(X)(Fq)|
qdim(BunG(X))

= Tr(Frob−1 |H∗(BunG(X); Z`)).

Theorem 1.3.5 (Weil’s Conjecture, Cohomological Form). Suppose that G has connected fibers
and that the generic fiber of G is semisimple and simply connected. Then there is an equality

Tr(Frob−1 |H∗(BunG(X); Z`)) =
∏
x∈X

|BGx(κ(x))|
|κ(x)|dim(BGx)

In particular, the sum on the left hand side and the product on the right hand side are both
absolutely convergent.

Warning 1.3.6. Neither the left or right hand side of the identity asserted by Theorem 1.3.4
is a priori well-defined. We should therefore state it more carefully as follows:

(a) For each integer i, the tensor product C ⊗Z` Hi(BunG(X); Z`) is a finite-dimensional

vector space over C, so that the trace Tr(Frob−1 |Hi(BunG(X); Z`)) is well-defined.
(b) The sum

Tr(Frob−1 |H∗(BunG(X); Z`)) =
∑
i≥0

(−1)i Tr(Frob−1 |Hi(BunG(X); Z`))

is absolutely convergent (note that, in contrast with the situation of Theorem 1.3.2,
this sum is generally infinite).

(c) The sum |BunG(X)(Fq)| =
∑

P
1

|Aut(P)| is convergent.

(d) We have an equality

|BunG(X)(Fq)|
qdim(BunG)

= Tr(Frob−1 |H∗(BunG(X); Z`)).

Remark 1.3.7. Assertion (b) of Warning 1.3.6 relies crucially on the fact that we are sum-
ming eigenvalues of the arithmetic Frobenius map Frob−1 (which are small), rather than the
eigenvalues of the geometric Frobenius Frob (which are large).

Remark 1.3.8. For each closed point x ∈ X, the stack BGx satisfies the Grothendieck-
Lefschetz trace formula. In particular, if we set

BGx = Spec Fq ×Specκ(x) BGx

and let Frobx denote the geometric Frobenius morphism of BGx, then we have equalities

|BGx(κ(x))|
|κ(x)|dim(BGx)

= Tr(Frob−1
x |H

∗(BGx; Z`))
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(see Remark 1.2.20). Theorem 1.3.5 can therefore be reformulated as an identity

Tr(Frob−1 |H∗(BunG(X); Z`)) =
∏
x∈X

Tr(Frob−1
x |H

∗(BGx; Z`)).(8)

We can regard Theorem 1.3.4 as an analogue of Theorem 1.3.1, where the smooth Fq-scheme
Y is replaced by the algebraic stack BunG(X). The principal difficulty in verifying Theorem
1.3.4 comes not from the fact that BunG(X) is a stack, but from the fact that it fails to be
quasi-compact. For every quasi-compact open substack U ⊆ BunG(X), one can write U as the

stack-theoretic quotient of an algebraic space Ũ by the action of an algebraic group H over Fq
(for example, we can take Ũ to be a fiber product U ×BunG(X) BunG(X,D), where BunG(X,D)
denotes the moduli stack of G-bundles on X which are equipped with a trivialization on some
sufficiently large effective divisor D ⊆ X). One can then show that U satisfies the Grothendieck-

Lefschetz trace formula by applying Theorem 1.3.2 to Ũ and H (see §10.1). One might hope
to prove Theorem 1.3.4 by writing BunG(X) as the union of a sequence of well-chosen quasi-
compact open substacks

U0 ↪→ U1 ↪→ U2 ↪→ · · · ,
and making some sort of convergence argument. Using this method, Behrend has proven
Theorem 1.3.4 in a number of special cases (see [5]). In §10, we will use the same technique to
prove the general case of Theorem 1.3.4.

The bulk of this paper is devoted to the proof of Theorem 1.3.5. Roughly speaking, the
idea of the proof is to show that H∗(BunG(X); Z`) is the cohomology of a chain complex
C∗(BunG(X); Z`), which can be identified (in a Galois-equivaraint way) with a continuous
tensor product of chain complexes C∗(BGx; Z`), where x ranges over the points of X. In §1.4,
we will formulate this “local-to-global” principle in more detail, using ideas which are inspired
by homotopy theory and the theory of chiral algebras.

1.4. Analyzing the Homotopy Type of BunG(X). Let X be an algebraic curve over an
algebraically closed field k, let G be a smooth affine group scheme over X, and let BunG(X)
denote the moduli stack of G-bundles on X. Our objective in this paper is to describe the
cohomology of BunG(X). In the special case where X and G are actually defined over a finite
field Fq ⊆ k, understanding the structure of the `-adic cohomology ring H∗(BunG(X); Z`)
(along with the action of Frobenius) is the key to proving Theorem 1.3.5. In this section, we
summarize (without proofs) the “classical” situation where k is the field C of complex numbers,
where we can identify X with a compact Riemann surface (in particular, it is a real manifold
of dimension 2). For a more detailed discussion, we refer the reader to [4].

1.4.1. To simplify the discussion, let us assume that all fibers of the group scheme G are
semisimple and simply connected. Fix a G-bundle Psm in the category of smooth manifolds.
The tangent bundle of Psm is a G-equivariant vector bundle on Psm, and can therefore be
written the pullback of a smooth vector bundle E on X. This vector bundle fits into an exact
sequence

0→ E0 → E→ TX → 0,(9)

where E0 denotes the vector bundle associated by Psm to the adjoint representation of G. In
particular, we can regard E0 as a complex vector bundle on X. A ∂-connection on Psm is a
choice of complex structure on the vector bundle E for which (9) is an exact sequence of complex
vector bundles on X. Let Ω denote the collection of all ∂-connections on X. Then Ω can be
regarded as a torsor for the infinite-dimensional vector space of C-antilinear bundle maps from
TX into E0: in particular, it is an infinite-dimensional affine space, and therefore contractible.
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Proposition 1.4.1. Let G = Aut(Psm) denote the group of all automorphisms of the smooth
G-bundle Psm. Then the moduli stack BunG(X) can be identified, as a differentiable stack, with
the quotient of the contractible space Ω by the action of the G. In particular, BunG(X) has the
homotopy type of the classifying space BG.

Sketch. Every G-bundle ρ : P → X is a fiber bundle with simply connected fibers, and is
therefore trivial in the category of smooth G-bundles (since X is real manifold of dimension
2). In particular, for every complex-analytic G-bundle P on X, we can choose an isomorphism
of smooth G-bundles α : Psm → P. We can identify isomorphism classes of pairs (P, α) with
complex-analytic structures on the bundle Psm; since X has dimension ≤ 1, these are in bijection
with points of Ω. Then G acts on the space Ω, and the homotopy quotient of Ω by G classifies
complex-analytic G-bundles on X. Since X is a projective algebraic variety, the category of
complex-analytic G-bundles on X is equivalent to the category of algebraic vector bundles on
X. �

Remark 1.4.2. The argument we sketched above really proves that the groupoid BunG(X)(C)
of C-valued points of BunG(X) can be identified with the groupoid quotient of Ω (regarded as
a set) by G (regarded as a discrete group). To formulate a stronger claim, we would need to be
more precise about the procedure which associates a homotopy type to an algebraic stack over
C. A reader who is concerned with this technical point should feel free to take Principle 1.4.1
as a definition of the homotopy type of BunG(X).

Warning 1.4.3. The validity of Principle 1.4.1 relies crucially on the fact that X is an algebraic
curve. If X is a smooth projective variety of higher dimension, then smooth G-bundles on X
need not be trivial, and ∂-connections on a smooth G-bundle Psm need not be integrable.
Consequently, the homotopy type of BunG(X) is not so easy to describe.

Note that since the G-bundle Psm is trivial, we can identify the gauge group G with the space
of all smooth sections of the projection map G→ X. We would like to use this information to
describe the homotopy type of the classifying space of BG in terms of the individual classifying
spaces {BGx}x∈X . We next outline three approaches to this problem: the first allows us to
express H∗(BG; Q) as the cohomology of a certain differential graded Lie algebra (Theorem
1.4.4), while the remaining two express H∗(BG; Q) and H∗(BG; Q) as the homology of certain
factorization algebras on X (Theorems 1.4.9 and 1.4.13).

1.4.2. First Approach: Rational Homotopy Theory. Let H be a path-connected topological
group. Then the homology H∗(H; Q) has the structure of a cocommutative Hopf algebra: the
multiplication on H∗(H; Q) is given by pushforward along the product map H×H → H, and the
comultiplication on H∗(H; Q) is given by pushforward along the diagonal map δ : H → H ×H.
With more effort, one can construct an analogue of this Hopf algebra structure at the level
of chains, rather than homology. More precisely, Quillen’s work on rational homotopy theory
gives a functorial procedure for associating to each topological group H a differential graded
Lie algebra g(H) (defined over the field of rational numbers) with the following properties:

(a) Let H∗(g(H)) denote the homology groups of the underlying chain complex of g(H).
Then we have a canonical isomorphism

Q⊗π∗H ' H∗(g(H)).

Under this isomorphism, the Whitehead product on π∗+1 BH ' π∗H corresponds to
the Lie bracket on H∗(g(H)).



WEIL’S CONJECTURE FOR FUNCTION FIELDS 21

(b) The singular chain complex C∗(H; Q) is canonically quasi-isomorphic to the universal
enveloping algebra U(g(H)). This quasi-isomorphism induces a Hopf algebra isomor-
phism

H∗(U(g(H))) ' H∗(H; Q).

(c) The differential graded Lie algebra g(H) is a complete invariant of the rational homo-
topy type of the classifying space BH. More precisely, from g(H) one can functorially
construct a pointed topological space Z for which there exists a pointed map BH→ Z
which induces an isomorphism on rational cohomology. In particular, the cohomology
ring H∗(BH; Q) can be functorially recovered as the Lie algebra cohomology of g(H).

Let us now apply the above reasoning to our situation. For every open subset U ⊆ X, let
GU denote the (topological) group of all smooth sections of the projection map G×X U → U ,
and let g(GU ) be the associated differential graded Lie algebras. The construction U 7→ g(GU )
is contravariantly functorial in U . For each integer n, let Fn denote the presheaf of rational
vector spaces on X given by Fn(U) = g(GU )n, and let Fn be the associated sheaf. Ignoring
the Lie algebra structures on the differential graded Lie algebras g(GU ) and remember only the
underlying chain complexes, we obtain a chain complex of presheaves

· · · → F2 → F1 → F0 → F−1 → F−2 → · · · ,

hence a chain complex of sheaves

· · · → F2 → F1 → F0 → F−1 → F−2 → · · · .

In this language, we can formulate a local-to-global principle as follows:

Theorem 1.4.4. The canonical map

g(G) = Γ(X;F∗)→ Γ(X;F∗)→ RΓ(X;F∗)

is a quasi-isomorphism of differential graded Lie algebras. In other words, the cohomology
groups of the differential graded Lie algebra g(G) can be identified with the hypercohomology

groups of the chain complex F∗ of sheaves on X.

Proof. This follows from the compatibility of the construction H 7→ g(H) with (suitable) ho-
motopy inverse limits. �

Remark 1.4.5. Fix a point x ∈ X. If U ⊆ X is an open disk containing x, then evaluation at
x induces a homotopy equivalence of topological groups GU → Gx. Passing to the direct limit,
we obtain a quasi-isomorphism of chain complexes F∗,x ' F∗,x → g(Gx). In particular, the nth

homology of the complex F∗ is a locally constant sheaf on X. Theorem 1.4.4 then supplies a
convergent spectral sequence

Hs(X; Q⊗πt(G•))⇒ Q⊗πt−s G,

where Q⊗πt(G•) denotes the local system of rational vector spaces on X given by x 7→
Q⊗πt(Gx).

Example 1.4.6 (Atiyah-Bott). Suppose that G is constant: that is, it is the product of X
with a simply connected semisimple algebraic group G0 over C. In this case, the chain complex
F∗ is quasi-isomorphic to the chain complex of constant sheaves with value g(G0). In this case,
Theorem 1.4.4 supplies a quasi-isomorphism

g(G) ' C∗(X; Q)⊗Q g(G0)

.
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The rational cohomology of the classifying space BG0 is isomorphic to a polynomial ring
Q[t1, . . . , tr], where r is the rank of the semisimple algebraic group G0 and each ti is a homo-
geneous element of H∗(BG0; Q) of some even degree di. From this, one can deduce that the
differential graded Lie algebra g(G0) is formal: that is, it is quasi-isomorphic to a graded vector
space V on generators t∨i of (homological) degree di − 1, where the differential and the Lie
bracket vanish. It follows that g(G) is quasi-isomorphic to the tensor product H∗(X; Q)⊗Q V ,
where the differential and Lie bracket vanish. From this, one can deduce that H∗(BunG(X); Q)
is isomorphic to a (graded) symmetric algebra on the graded vector space H∗(X; Q)⊗QV

∨[−1].
In other words, H∗(M; Q) is a tensor product of a polynomial ring on 2r generators in even
degrees with an exterior algebra on 2gr generators in odd degrees.

1.4.3. Second Approach: Factorization Homology. Theorem 1.4.4 asserts that that the differ-
ential graded Lie algebra g(G) can be recovered as the hypercohomology of a “local system” of
differential graded Lie algebras given by x 7→ g(Gx). Roughly speaking, this reflects the idea
that the gauge group G can be identified with a “continuous product” of the groups Gx, and
that the construction H 7→ g(H) is compatible with “continuous products” (at least in good
cases).

Our ultimate goal is to formulate a local-to-global principle which will allow us to compute
the rational cohomology ring H∗(BunG(X); Q) ' H∗(BG; Q). It is possible to formulate such a
principle directly, without making a detour through the theory of differential graded Lie alge-
bras. However, the basic mechanism of the local-to-global principle takes a more complicated
form.

Definition 1.4.7. For each open set U ⊆ X, let B(U) denote the rational cochain complex
C∗(BGU ; Q). Then the construction U 7→ B(U) determines a covariant functor from the
partially ordered set of open subsets of X to the category of chain complexes of rational vector
spaces.

Let U denote the collection of all open subsets of X which can be written as a disjoint union
of disks. We let

∫
B denote a homotopy colimit of the diagram {B(U)}U∈U (in the category of

chain complexes of rational vector spaces). We refer to the homology of the chain complex
∫
B

as the factorization homology of B.

Example 1.4.8. Suppose that U ⊆ X is an open set which can be written as a disjoint
union U1 ∪ · · · ∪ Un, where each Ui is an open disk. Choose a point xi ∈ Ui for 1 ≤ i ≤ n.
Then GU is homeomorphic to a product

∏
1≤i≤n GUi , and evaluation at the points xi determine

homotopy equivalences GUi → Gxi . Consequently, there is a canonical quasi-isomorphism of
chain complexes ⊗

1≤i≤n

C∗(BGxi ; Q)
∼→

⊗
1≤i≤n

C∗(BGUi ; Q)

∼→ C∗(BGU ; Q)

= B(U).

In other words, each term in the diagram {B(U)}U∈U can be identified with a tensor product⊗
x∈S C

∗(BGx; Q), where S is some finite subset of X. We can therefore think of the factor-

ization homology
∫
B as a kind of continuous tensor product

⊗
x∈X C

∗(BGx; Q). We refer the
reader to [35] for more details.

We can now formulate a second local-to-global principle for describing the cohomology of
BunG(X):
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Theorem 1.4.9. If the fibers of G are semisimple and simply connected, then the canonical
map ∫

B = hocolimU∈U B(U)→ B(X) = C∗(BG; Q) = C∗(BunG(X); Q)

is a quasi-isomorphism. In other words, we can identify the cohomology of the moduli stack
BunG(X) with the factorization homology of B.

1.4.4. Third Approach: Nonabelian Poincare Duality. The local-to-global principle expressed
by Theorem 1.4.9 is based on the idea of approximating the moduli stack BunG(X) ' BG “from
the right”. For any finite set S ⊆ X, evaluation at the points of S defines a map of classifying
spaces

BG→
∏
x∈S

BGx,

hence a map of cochain complexes

µS :
⊗
x∈S

C∗(BGx; Q)→ C∗(BG; Q).

Roughly speaking, Theorem 1.4.9 asserts that if we allow S to vary continuously over all finite
subsets of X, then we can use these maps to recover the chain complex C∗(BunG(X); Q) up
to quasi-isomorphism. We now explore an parallel approach, which is based on the idea of
realizing BG as direct limit, rather than an inverse limit.

Notation 1.4.10. For each open set U ⊆ X, let GcU denote the subgroup of G consisting of
those automorphisms of Psm which are the identity outside of a compact subset of U , and let
A(U) denote the chain complex C∗(BGcU ; Q). Note that GcU ⊆ GcV whenever U ⊆ V , so that we
can regard the construction U 7→ A(U) is a covariant functor from the partially ordered set of
open subsets of X to the category of chain complexes.

Let U denote the collection of all open subsets of X which can be written as a disjoint union
of disks. We let

∫
A denote a homotopy colimit of the diagram {A(U)}U∈U (in the category of

chain complexes of rational vector spaces). We refer to the homology of the chain complex
∫
A

as the factorization homology of A.

Example 1.4.11. Let U ⊆ X be an open disk containing a point x ∈ X. Then U ×X G is
diffeomorphic to a product U × Gx, so that GcU can be identified with the space of compactly
supported maps from U into Gx. A choice of homeomorphism U ' R2 then determines a
homotopy equivalence of GcU with the two-fold loop space Ω2(Gx), so that BGcU can be identified
with Ω2(BGx) ' Ω(Gx).

More generally, if U can be written as a disjoint union of disks U1∪· · ·∪Un containing points
xi ∈ Ui, then GcU is homeomorphic to a product

∏
1≤i≤n G

c
Ui , so we obtain a quasi-isomorphism

of chain complexes ⊗
1≤i≤n

C∗(Ω
2 BGxi ; Q) '

⊗
1≤i≤n

C∗(BGcUi ; Q)

' C∗(BGcU ; Q)

= A(U).

In other words, each term in the diagram {A(U)}U∈U can be identified with a tensor product⊗
x∈S

C∗(Ω
2(BGx); Q),

where S is some finite subset of X. We can therefore think of the factorization homology
∫
A

as a kind of continuous tensor product
⊗

x∈X C∗(Ω
2(BGx); Q).
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Remark 1.4.12. The double loop space Ω2(BGx) is homotopy equivalent to the quotient
space G(Kx)/G(Ox), where Ox denotes the completed local ring of X at x, and Kx denotes its
fraction field. We will denote this quotient by GrG,x and refer to it as the affine Grassmannian
of the group G at the point x. This paper depends crucially on the fact that GrG,x admits an
algebro-geometric incarnation (as the direct limit of a sequence of algebraic varieties) and can
be defined over ground fields different from C.

We have the following analogue of Theorem 1.4.9:

Theorem 1.4.13 (Nonabelian Poincare Duality). The canonical map∫
A = hocolimU∈U A(U)→ A(X) = C∗(BG; Q) = C∗(BunG(X); Q)

is a quasi-isomorphism. In other words, we can identify the homology of the moduli stack
BunG(X) with the factorization homology of A.

Remark 1.4.14. Theorem 1.4.13 can be regarded as version of Poincare duality for the mani-
fold X with coefficients in the nonabelian group G. We will explain this idea in more detail in
§3.

1.4.5. Let us now outline the relationship between Theorems 1.4.4, 1.4.9, and 1.4.13.

• Theorem 1.4.4 is the weakest of the three results. It only gives information about the
rational homotopy type of the moduli stack BunG(X), while Theorems 1.4.9 and 1.4.13
remain valid with integral coefficients. In fact, Theorem 1.4.13 is even true at the
“unstable” level: that is, it gives a procedure for reconstructing the space BG itself,
rather than just the singular chain complex of BG). However, Theorem 1.4.4 gives
information in a form which is most amenable to further calculation, since it articulates
a local-to-global principle using the familiar language of sheaf cohomology, rather than
the comparatively exotic language of factorization homology.

• Theorem 1.4.13 can also be regarded as the strongest of the three results because it
requires the weakest hypotheses: if it is formulated correctly, we only need to assume
that the fibers of the map G→ X are connected, rather than simply connected.

• Theorems 1.4.13 and 1.4.9 can be regarded as duals of one another. More precisely, the
construction x 7→ C∗(BGx; Q) determines a factorization algebra on X which is Koszul
dual to the factorization algebra x 7→ C∗(Ω

2 BGx; Q). Using this duality, one can
construct a duality pairing between the chain complexes

∫
A and

∫
B, which identifies

each with the Q-linear dual of the other (under the assumption that the fibers of G are
simply connected).

• Theorems 1.4.4 and 1.4.9 can also be regarded as duals of one another, but in a different
sense. Namely, each of the differential graded Lie algebras g(Gx) can be regarded as
the Koszul dual of C∗(BGx; Q), which we regard as an E∞-algebra over Q. One can
exploit this to deduce Theorem 1.4.4 from Theorem 1.4.9 and vice versa.

1.5. Summary of this Paper. Fix an algebraically closed field k, an algebraic curve X over
k, and a smooth affine group scheme G over X. Let BunG(X) denote the moduli stack of
G-bundles on X and let ` denote the a prime number which is invertible in k. Our main goal
in this paper is to formulate and prove various “local-to-global” principles which can be used
to compute the `-adic cohomology ring H∗(BunG(X); Z`), which are analogous to Theorems
1.4.4, 1.4.9, and 1.4.13 in the case k = C.

We begin in §3 by proving an analogue of nonabelian Poincare duality (Theorem 1.4.13)
in the algebro-geometric setting. Let RanG(X) denote the Beilinson-Drinfeld Grassmannian
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of G, which classifies pairs (P, γ), where P is a G-bundle on X and γ is a trivialization of
P outside of a finite subset of X (see Definition 3.2.3). Our main result (Theorem 3.2.9)
asserts that if the generic fiber of G is semisimple and simply connected, then the evident
map RanG(X) → BunG(X) induces an isomorphism on `-adic cohomology (and homology).
Roughly speaking, the idea of the proof is to show that for each G-bundle P, the fiber product
RanG(X)×BunG(X) {P} (which parametrizes “rational sections” of P) is contractible.

Let BG denote the classifying stack of G (which we regard as an algebraic stack over X),
let π : BG → X denote the projection map, and let ωX denote the `-adic dualizing complex
of X. Then the `-adic complex π∗π

∗ωX can be regarded as a factorizable `-adic complex on
X. In particular, it extends naturally to a sheaf B on the space Ran(X) of all nonempty finite
subsets of X. In §4, we introduce an analogue of factorization homology in the setting of `-adic
sheaves, and construct a map of chain complexes

ρ :

∫
B→ C∗(BunG(X); Z`).

The second main result of this paper asserts that the map ρ induces an isomorphism from the
factorization homology of B to the `-adic cohomology of BunG(X) (Theorem 5.4.5). The proof
of this result will be given in §9. Roughly speaking, the idea is to reduce Theorem 5.4.5 to
Theorem 3.2.9 using Verdier duality on the space Ran(X). Since Ran(X) is infinite-dimensional,
the theory of Verdier duality is somewhat subtle: to guarantee that it is well-behaved, we will
need to work with sheaves on Ran(X) which have (degreewise) finite-dimensional support. The
sheaf B does not satisfy this condition. To address this point (and others of the same nature), it
will be convenient to introduce “reduced” version of B, which we will denote by Bred. In §8, we
show that the process of replacing B by Bred has a very mild effect on factorization homology:
in particular, Theorem 5.4.5 implies that the factorization homology of Bred can be identified
with the reduced `-adic cohomology of BunG(X) (Theorem 8.2.18).

Specializing to the case where k = Fq is the algebraic closure of a finite field (and where X
and G are defined over Fq), the above suggests that we should be able to use the Grothendieck-
Lefschetz trace formula to compute the trace of Frobenius on H∗red(BunG(X); Z`) as a sum of
“local” contributions coming from Fq-valued points of Ran(X). Ignoring issues of convergence,
this leads to a heuristic proof of Theorem 1.3.5. In §6, we address the convergence problem
by using Theorem 5.4.5 to deduce an `-adic analogue of Theorem 1.4.4. More precisely, we
show that the cochain complex C∗(BunG(X); Z`)[`

−1] admits an exhaustive filtration whose
successive quotients can be identified with the symmetric powers of a particular chain complex
of Q`-modules M , which can be computed as the hypercohomology of an `-adic complex M(G)
on X (here M can be described as the “cotangent fiber” of C∗(BunG(X); Z`)[`

−1] as an E∞-
algebra over Q`, and M(G) bears a similar relationship to the sheaf B). By applying the
(usual) Grothendieck-Lefschetz trace formula to the sheaf M(G), we will compute the trace of
(arithmetic) Frobenius on the symmetric powers of M and therefore also on the cohomology
H∗(BunG(X); Z`). Combining this calculation with the Grothendieck-Lefschetz trace formula
for BunG(X) (which we prove in §10), we will complete the proof of Weil’s conjecture.

Throughout this paper, we will make extensive use of the theory of `-adic cohomology, both
of algebraic varieties and of more exotic algebro-geometric objects (such as Ran(X)). In §2 and
§4, we supply a quick introduction to the formalism of `-adic sheaves, using the language of
∞-categories developed in [34] and [35]. For convenience, we will adopt the following reference
conventions:

(HTT ) We will indicate references to [34] using the letters HTT.
(HA) We will indicate references to [35] using the letters HA.

(SAG) We will indicate references to [36] using the letters SAG.
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For example, Theorem HTT.6.1.0.6 refers to Theorem 6.1.0.6 of [34].

2. Generalities on `-adic Homology and Cohomology

The ultimate goal of this paper is to describe the `-adic cohomology ring H∗(BunG(X); Z`),
where X is an algebraic curve defined over an algebraically closed field k, and G is a (sufficiently
nice) group scheme over X. However, we will first need to address a more basic question: how
is the ring H∗(BunG(X); Z`) defined? Theories of of `-adic sheaves on Artin stacks have been
developed by a number of authors (see, for example, [7] and [32]). However, we will also need
to work with more exotic algebro-geometric objects (like the “space” Ran(X) of nonempty fi-
nite subsets of X), which are infinite-dimensional in nature and cannot be realized as algebraic
stacks. Moreover, at several points we will need to make “homotopy coherent” constructions
which are not easily described using the traditional formalism of derived categories. Conse-
quently, we devote this section to giving an exposition of `-adic cohomology from a perspective
which is adequate for our needs.

We begin in §2.1 by giving a brief overview of the theory of ∞-categories (also known as
quasi-categories and weak Kan complexes in the literature). In particular, we introduce the
∞-category ModΛ whose objects are chain complexes of Λ-modules, where Λ is an arbitrary
commutative ring. This is a mathematical object which can be regarded as intermediate between
the ordinary category Chain(Λ) of chain complexes of Λ-modules and the derived category D(Λ)
obtained from Chain(Λ) by inverting quasi-isomorphisms, and furnishes a convenient language
for various constructions in homological algebra.

Let k be an algebraically closed field, and let ` be a prime number which is invertible in k.
In §2.2, we define the `-adic cohomology groups

H∗(Y ; Z/`dZ) H∗(Y ; Z`) H∗(Y ; Q`)

as well as the (formally dual) `-adic homology groups

H∗(Y ; Z/`dZ) H∗(Y ; Z`) H∗(Y ; Q`)

associated to a quasi-projective k-scheme Y , and review some of their basic properties (referring
to the literature for proofs).

In §2.3, we introduce the notion of a prestack over the field k. Roughly speaking, a prestack
is a rule which associates to every finitely generated k-algebra R a category CR, which depends
functorially on R. The collection of prestacks can be organized into a 2-category which contains
the category of finite-type k-schemes as a full subcategory. It also contains several other objects
which will be relevant to us in this paper, such as the moduli stack BunG(X) of G-bundles on
X. After reviewing the basic definitions, we will explain how to generalize the theory of `-adic
homology and cohomology to the setting of prestacks, and establish some of their basic formal
properties.

In §2.4, we introduce a prestack Ran(X), called the Ran space of X, which parametrizes
nonempty finite subsets of X. We then prove show that if X is connected, then Ran(X) is
acyclic with respect to Z`-homology (an `-adic version of a basic foundational result of Beilinson
and Drinfeld).

The formation of `-adic cohomology is functorial: every map of prestacks f : Y → Z induces
a pushforward map f∗ : H∗(Z; Z`)→ H∗(Y ; Z`) on `-adic cohomology groups. In the course of
this paper, we will encounter many situations in which we want to prove that the map f∗ is an
isomorphism. In §2.5, we will show that this condition holds whenever f is a universal homology
equivalence: roughly speaking, this means that the “fibers” of f are acyclic with respect to Z`-
homology (the caveat is that one must consider the “fiber” of f over any R-valued point of



WEIL’S CONJECTURE FOR FUNCTION FIELDS 27

Z, where R is a finitely generated k-algebra). We then use the theory of universal homology
equivalences to compare several different version of the prestack Ran(X) (Theorem 2.4.5).

Throughout this section, we will confine our attention to the case of `-adic cohomology with
constant coefficients. This is all that we will need in §3 to formulate and prove the first main
result of this paper (Theorem 3.2.9), an `-adic version of nonabelian Poincare duality). In the
later portions of this paper, we will need the more robust formalism of `-adic sheaves, which
we will review in §4.1.

2.1. Higher Category Theory.

2.1.1. Homological Algebra. Let Λ be a commutative ring. Throughout this section, we let
Chain(Λ) denote the abelian category whose objects are chain complexes

· · · → V2 → V1 → V0 → V−1 → V−2 → · · ·
of Λ-modules. We will always employ homological conventions when discussing chain complexes
(so that differential on a chain complex lowers degree). If V∗ is a chain complex, then its
homology H∗(V∗) is given by

Hn(V∗) = {x ∈ Vn : dx = 0}/{x ∈ Vn : (∃y ∈ Vn−1)[x = dy]}.
Any map of chain complexes α : V∗ →W∗ induces a map H∗(V∗)→ H∗(W∗). We say that α is
a quasi-isomorphism if it induces an isomorphism on homology.

For many purposes, it is convenient to treat quasi-isomorphisms as if they are isomorphisms
(emphasizing the idea that a chain complex is just a vessel for carrying information about its
homology). One can make this idea explicit using Verdier’s theory of derived categories. The
derived category D(Λ) can be described as the category obtained from Chain(Λ) by formally
inverting all quasi-isomorphisms.

The theory of derived categories is a very useful tool in homological algebra, but has a
number of limitations. Many of these stem from the fact that D(Λ) is not very well-behaved
from a categorical point of view. The category D(Λ) does not generally have limits or colimits,
even of very simple types. For example, a morphism f : X → Y in D(Λ) generally does not
have a cokernel in D(Λ). However, there is a substitute: every morphism f in D(Λ) fits into a
“distinguished triangle”

X
f→ Y → Cn(f)→ ΣX.

Here we refer to Cn(f) is called the cone of f , and it behaves in some respects like a cokernel:
every map g : Y → Z such that g ◦ f = 0 factors through Cn(f), though the factorization is
generally not unique. The object Cn(f) ∈ D(Λ) (and, in fact, the entire diagram above) is
well-defined up to isomorphism, but not up to canonical isomorphism: there is no functorial
procedure for constructing the cone Cn(f) from the data of a morphism f in the category D.
And this is only a very simple example: for other types of limits and colimits (such as taking
invariants or coinvariants with respect to the action of a group), the situation is even worse.

Let f, g : V∗ → W∗ be maps of chain complexes. Recall that a chain homotopy from f∗ to
g∗ is a collection of maps hn : Vn →Wn+1 such that fn − gn = d ◦ hn + hn−1 ◦ d. In this case,
we say that f and g are chain-homotopic. Chain-homotopic maps induce the same map from
H∗(V∗) to H∗(W∗), and have the same image in the derived category D(Λ). In fact, there is an
alternative description of the derived category D(Λ), which places an emphasis on the notion
of chain-homotopy rather than quasi-isomorphism. More precisely, one can define a category
D′(Λ) equivalent to D(Λ) as follows:

Definition 2.1.1. • The objects of D′(Λ) are the K-injective chain complexes of Λ-
modules, in the sense of [51]. A chain complex V∗ is K-injective if, for every chain
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complex W∗ ∈ Chain(Λ) and every subcomplex W ′∗ ⊆W∗ which is quasi-isomorphic to
W∗, every chain map f : W ′∗ → V∗ can be extended to a chain map f : W∗ → V∗.
• A morphism from V∗ to W∗ in D′(Λ) is a chain-homotopy equivalence class of chain

maps from V∗ to W∗.

Remark 2.1.2. If V∗ ∈ Chain(Λ) is K-injective, then each Vn is an injective Λ-module. The
converse holds if Vn ' 0 for n � 0 or if the commutative ring Λ has finite injective dimension
(for example, if Λ = Z), but not in general. For example, the chain complex of Z/4Z-modules

· · · → Z/4Z
2→ Z/4Z

2→ Z/4Z
2→ Z/4Z→ · · ·

is not K-injective.

From the perspective of Definition 2.1.1, categorical issues with the derived category stem
from the fact that we are identifying chain-homotopic morphisms in D′(Λ) without remembering
how they are chain-homotopic. For example, suppose that we wish to construct the cone of a
morphism [f ] : V∗ →W∗ in D′(Λ). By definition, [f ] is an equivalence class of chain maps from
V∗ to W∗. If we choose a representative f for the equivalence class [f ], then we can construct the
mapping cone Cn(f) by equipping the direct sum W∗ ⊕ V∗−1 with a differential which depends
on f . If h is a chain-homotopy from f to g, we can use h to construct an isomorphism of chain
complexes αh : Cn(f) ' Cn(g). However, the isomorphism αh depends on h: different choices
of chain homotopy can lead to different isomorphisms, even up to chain-homotopy.

2.1.2. The Differential Graded Nerve. It is possible to correct many of the deficiencies of the
derived category by keeping track of more information. To do so, it is useful to work with
mathematical structures which are a bit more elaborate than categories, where the primitive
notions include not only “object” and “morphism” but also a notion of “homotopy between
morphisms.” Before giving a general definition, let us spell out the structure that is visible in
the example of chain complexes over Λ.

Construction 2.1.3. We define a sequence of sets S0, S1, S2, . . . as follows:

• Let S0 denote the set of objects under consideration: in our case, these are chain
complexes X of K-injective chain complexes of Λ-modules (strictly speaking this is not
a set but a proper class, because we are trying to describe a “large” category).

• Let S1 denote the set of morphisms under consideration. That is, S1 is the collection
of all chain maps f : X → Y , where X and Y are chain complexes of injective abelian
groups.

• Let S2 denote the set of all pairs consisting of a non-necessarily commutative diagram

Y
f12

��
X

f01

>>

f02 // Z

together with a chain homotopy f012 from f02 to f12 ◦ f01. Here X, Y , and Z are chain
complexes of injective abelian groups.
• More generally, we let Sn denote the collection of all n-tuples {X(0), X(1), . . . , X(n)}

of chain complexes of injective abelian groups, together with chain maps fi,j : X(i)→
X(j) which are compatible with composition up to coherent homotopy. More precisely,
this means that for every subset I = {i− < i1 < . . . < im < i+} ⊆ {0, . . . , n}, we
supply a collection of maps fI : X(i−)k → X(i+)k+m satisfying the identities

d(fI(x)) = (−1)mfI(dx) +
∑

1≤j≤m

(−1)j(fI−{ij}(x)− (f{ij ,...,i+} ◦ f{i−,...ij})(x)).
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Suppose we are given an element ({X(i)}0≤i≤n, {fI}) of Sn. Then for 0 ≤ i ≤ n, we can
regard X(i) as an element of S0. If we are given a pair of integers 0 ≤ i < j ≤ n, then f{i,j}
is a chain map from X(i) to X(j), which we can regard as an element of S1. More generally,
given any nondecreasing map α : {0, . . . ,m} → {0, . . . , n}, we can define a map α∗ : Sn → Sm
by the formula

α∗({X(j)}0≤j≤n, {fI}) = ({X(α(j))}0≤j≤m, {gJ}),
where

gJ(x) =


fα(J)(x) if α|J is injective

x if J = {j, j′} and α(j) = α(j′)

0 otherwise.

This motivates the following:

Definition 2.1.4. A simplicial set X• consists of the following data:

• For every integer n ≥ 0, a set Xn (called the set of n-simplices of X•).
• For every nondecreasing map of finite sets α : {0, 1, . . . ,m} → {0, 1, . . . , n}, a map of

sets α∗ : Xn → Xm.

This data is required to be be compatible with composition: that is, we have

id∗(x) = x (α ◦ β)∗(x) = β∗(α∗(x))

whenever α and β are composable nondecreasing maps.
If X• is a simplicial set, we will refer to Xn as the set of n-simplices of X•.

Example 2.1.5 (The Nerve of a Category). Let C be a category. We can associate to C a
simplicial set N(C)•, whose n-simplices are given by chains of composable morphisms

C0 → C1 → · · · → Cn

in C. We refer to N(C)• as the nerve of the category C.

Example 2.1.6. Let Λ be a commutative ring and let Chain′(Λ) denotes the full subcategory of
Chain(Λ) spanned by the K-injective chain complexes of Λ-modules. Construction 2.1.3 yields a
simplicial set {Sn}n≥0 which we will denote by ModΛ. The simplicial set ModΛ can be regarded
as an enlargement of the nerve N(Chain′(Λ))• (more precisely, we can identify N(Chain′(Λ))•
with the simplicial subset of ModΛ whose n-simplices are pairs ({X(i)}0≤i≤n, {fI}) for which
fI = 0 whenever I has cardinality > 2.

The construction Chain′(Λ) 7→ ModΛ can be regarded as a variant of Example 2.1.5 which
takes into account the structure of Chain′(Λ) as a differential graded category. We refer to
§HA.1.3.1 for more details.

From the nerve of a category C, we can recover C up to isomorphism. For example, the
objects of C are just the 0-simplices of N(C)• and the morphisms of C are just the 1-simplices of
N(C)•. Moreover, given a pair of morphisms f : X → Y and g : Y → Z in C, the composition
h = g ◦ f is the unique 1-morphism in C for which there exists a 2-simplex σ ∈ N(C)2 satisfying

α∗0(σ) = g α∗1(σ) = h α∗2(σ) = f,

where αi : {0, 1} → {0, 1, 2} denotes the unique injective map whose image does not contain i.
If C and D are categories, then there is a bijective correspondence between functors F : C→ D

and maps of simplicial sets N(C)• → N(D)•. We can summarize the situation as follows: the
construction C 7→ N(C)• furnishes a fully faithful embedding from the category of (small)
categories to the category of simplicial sets. It is therefore natural to ask about the essential
image of this construction: which simplicial sets arise as the nerves of categories? To answer
this question, we need a bit of terminology:
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Notation 2.1.7. Let X• be a simplicial set. For 0 ≤ i ≤ n, we define a set Λni (X•) as follows:

• To give an element of Λni (X•), one must give an element σJ ∈ Xm for every subset
J = {j0 < · · · < jm} ⊆ {0, . . . , n} which does not contain {0, 1, . . . , i− 1, i+ 1, . . . , n}.
These elements are subject to the compatibility condition σI = α∗σJ whenever I =
{i0 < · · · < i`} ⊆ {j0 < · · · < jm} and α satisfies ik = jα(k).

More informally, Λni (X•) is the set of “partially defined” n-simplices of X•, which are missing
their interior and a single face. There is an evident restriction map Xn → Λni (X•).

Proposition 2.1.8. Let X• be a simplicial set. Then X• is isomorphic to the nerve of a
category if and only if, for each 0 < i < n, the restriction map Xn → Λni (X•) is bijective.

For example, the bijectivity of the map X2 → Λ2
1(X•) encodes the existence and uniqueness

of composition: it says that every pair of composable morphisms f : C → D and g : D → E
can be completed uniquely to a commutative diagram

D
g

  
C

f
>>

h // E.

Example 2.1.9. Let Z be a topological space. We can associate to Z a simplicial set Sing(Z)•,
whose n-simplices are continuous maps ∆n → Z (here ∆n denotes the standard n-simplex: that
is, the convex hull of the standard basis for Rn+1). The simplicial set Sing(Z)• is called the
singular simplicial set of Z.

From the perspective of homotopy theory, the singular simplicial set Sing(Z)• is a complete
invariant of X. More precisely, from Sing(Z)• one can functorially construct a topological
space which is (weakly) homotopy equivalent to Z. Consequently, the simplicial set Sing(Z)•
can often serve as a surrogate for Z. For example, there is a combinatorial recipe for extracting
the homotopy groups of Z directly from Sing(Z)•. However, this recipe works only for a special
class of simplicial sets:

Definition 2.1.10. Let X• be a simplicial set. We say that X is a Kan complex if, for 0 ≤ i ≤ n,
the map Xn → Λni (X•) is surjective.

Example 2.1.11. For any topological space Z, the singular simplicial set Sing(Z)• is a Kan
complex. To see this, let H denote the topological space obtained from the standard n-simplex
∆n by removing the interior and the ith face. Then Λni (Sing(Z)•) can be identified with the
set of continuous maps from H into Z. Any continuous map from H into Z can be extended
to a map from ∆n into Z, since H is a retract of ∆n.

The converse of Example 2.1.11 fails: not every Kan complex is isomorphic to the singular
simplicial set of a topological space. However, every Kan complex X• is homotopy equivalent
to the singular simplicial set of a topological space, which can be constructed explicitly from
X•. In fact, something stronger is true: the construction Z 7→ Sing(Z)• induces an equivalence
from the homotopy category of nice spaces (say, CW complexes) to the homotopy category of
Kan complexes (which can be defined in a purely combinatorial way).

Example 2.1.12. A simplicial Λ-module is a simplicial set X• for which each of the sets Xn

is equipped with the structure of a Λ-module, and each of the maps α∗ : Xn → Xm is a Λ-
module homomorphism homomorphism. One can show that every simplicial Λ-module is a Kan
complex, so that one has homotopy groups {πnX•}n≥0. According to the classical Dold-Kan
correspondence, the category of simplicial Λ-modules is equivalent to the category Chain≥0(Λ) ⊆
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Chain(Λ) of nonnegatively graded chain complexes of Λ-modules. Under this equivalence, the
homotopy groups of a simplicial Λ-module X• can be identified with the homology groups of
the corresponding chain complex.

The hypothesis of Proposition 2.1.8 resembles the definition of a Kan complex, but is different
in two important respects. Definition 2.1.10 requires that every element of Λni (X•) can be
extended to an n-simplex of X. Proposition 2.1.8 requires this condition only in the case
0 < i < n, but demands that the extension be unique. Neither condition implies the other, but
they admit a common generalization:

Definition 2.1.13. A simplicial set X• is an ∞-category if, for each 0 < i < n, the map
Xn → Λni (X•) is surjective.

Remark 2.1.14. A simplicial set X• satisfying the requirement of Definition 2.1.13 is also
referred to as a quasi-category or a weak Kan complex in the literature.

Example 2.1.15. Any Kan complex is an∞-category. In particular, for any topological space
Z, the singular simplicial set Sing(Z)• is an ∞-category.

Example 2.1.16. For any category C, the nerve N(C)• is an ∞-category.

By virtue of the discussion following Example 2.1.5, no information is lost by identifying a
category C with the simplicial set N(C)•. It is often convenient to abuse notation by identifying
C with its nerve, thereby viewing a category as a special type of ∞-category. We will generally
use category-theoretic notation and terminology when discussing ∞-categories. Here is a brief
sampler; for a more detailed discussion of how the basic notions of category theory can be
generalized to this setting, we refer the reader to the first chapter of [34].

• Let C = C• be an ∞-category. An object of C is an element of the set C0 of 0-simplices
of C. We will indicate that x is an object of C by writing x ∈ C.
• A morphism of C is an element f of the set C1 of 1-simplices of C. More precisely,

we will say that f is a morphism from x to y if α∗0(f) = x and α∗1(f) = y, where
αi : {0} ↪→ {0, 1} denote the map given by αi(0) = i. We will often indicate that f is
a morphism from x to y by writing f : x→ y.
• For any object x ∈ C, there is an identity morphism idx, given by β∗(x) where β :
{0, 1} → {0} is the unique map.
• Given a pair of morphisms f, g : x→ y in C, we say that f and g are homotopic if there

exists a 2-simplex σ ∈ C2 whose faces are as indicated in the diagram

y
idy

��
x

f
??

g // y.

In this case, we will write f ' g, and we will say that σ is a homotopy from f to g.
One can show that homotopy is an equivalence relation on the collection of morphisms
from x to y.
• Given a pair of morphisms f : x → y and g : y → z, it follows from Definition 2.1.13

that there exists a 2-simplex with boundary as indicated in the diagram

y
g

  
x

f
??

h // z.
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Definition 2.1.13 does not guarantee that the morphism h is unique. However, one can
show that h is unique up to homotopy. We will generally abuse terminology and refer
to h as the composition of f and g, and write h = g ◦ f .
• Composition of morphisms in C is associative up to homotopy. Consequently, we can

define an ordinary category hC as follows:
– The objects of hC are the objects of C.
– Given objects x, y ∈ C, the set of morphisms from x to y in hC is the set of

equivalence classes (under the relation of homotopy) of morphisms from x to y in
C.

– Given morphisms [f ] : x → y and [g] : y → z in hC represented by morphisms f
and g in C, we define [g] ◦ [f ] to be the morphism from x to z in hC given by the
homotopy class of g ◦ f .

We refer to hC as the homotopy category of C.
• We will say that a morphism f in C is an equivalence if its image [f ] is an isomorphism

in hC (in other words, f is an equivalence if it admits an inverse up to homotopy). We
say that two objects x, y ∈ C are equivalent if there exists an equivalence f : x→ y.

The theory of∞-categories allows us to treat topological spaces (via their singular simplicial
sets) and ordinary categories (via the nerves) as examples of the same type of object. This is
often very convenient.

Definition 2.1.17. Let C and D be∞-categories. A functor from C to D is a map of simplicial
sets from C to D.

Remark 2.1.18. Let C be an ∞-category. The homotopy category of C admits another char-
acterization: it is universal among ordinary categories for which there exists a functor from C

to (the nerve of) hC.

Example 2.1.19. Let Z be a topological space and let C be a category. Unwinding the
definitions, we see that a functor from Sing(Z)• to N(C)• consists of the following data:

(1) For each point z ∈ Z, an object Cz ∈ C.
(2) For every path p : [0, 1] → Z, a morphism αp : Cp(0) → Cp(1), which is an identity

morphism if the map p is constant.
(3) For every continuous map ∆2 → Z, which we write informally as

y
q

��
x

p
??

r // z,

we have αr = αq ◦ αp (an equality of morphisms from Cx to Cz).

Here condition (3) encodes simultaneously the assumption that the map αp depends only on
the homotopy class of p, and that the construction p 7→ αp is compatible with concatenation
of paths. Moreover, it follows from condition (3) that each of the maps αp is an isomorphism
(since every path is invertible up to homotopy). Consequently, we see that the data of a functor
from Sing(Z)• into N(C)• recovers the classical notion of a local system on Z with values in C.

One of the main advantages of working in the setting of ∞-categories is that the collection
of functors from one ∞-category to another can easily be organized into a third ∞-category.

Notation 2.1.20. For every integer n ≥ 0, we let ∆n denote the simplicial set given by the
nerve of the linearly ordered set {0 < 1 < · · · < n}. We refer to ∆n as the standard n-simplex.
By definition, anm-simplex of ∆n is given by a nondecreasing map {0, 1, . . . ,m} → {0, 1, . . . , n}.
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Let X and Y be simplicial sets. We let Fun(X,Y ) denote the simplicial of maps from X to
Y . More precisely, Fun(X,Y ) is the simplicial set whose n-simplices are maps ∆n × X → Y
(more generally, giving a map of simplicial sets Z → Fun(X,Y ) is equivalent to giving a map
Z ×X → Y ).

One can show that if the simplicial set Y is an ∞-category, then Fun(X,Y ) is also an ∞-
category (for any simplicial set X). Note that the objects of Fun(X,Y ) are functors from X to
Y , in the sense of Definition 2.1.17. We will refer to Fun(X,Y ) as the ∞-category of functors
from X to Y .

Example 2.1.21. Let C and D be ordinary categories. Then the simplicial set

Fun(N(C)•,N(D)•)

is isomorphic to the nerve of the category of functors from C to D. In particular, there is a
bijection between the set of functors from C to D (in the sense of classical category theory) to
the set of functors from N(C)• to N(D)• (in the sense of Definition 2.1.17).

Remark 2.1.22. It follows from Example 2.1.21 that no information is lost by passing from
a category C to the associated ∞-category N(C). For the remainder of this paper, we will
generally abuse notation by identifying each category C with its nerve.

Example 2.1.23. Let Λ be a commutative ring and let ModΛ = {Sn}n≥0 denote the simplicial
set introduced in Construction 2.1.3. Then ModΛ is an∞-category, which we will refer to as the
derived ∞-category of Λ-modules. It can be regarded as an enhancement of the usual derived
category D(Λ) of Λ-modules, in the sense that the homotopy category of ModΛ is equivalent
to D(Λ) (in fact, the homotopy category of ModΛ is isomorphic to the category D′(Λ) defined
above).

Notation 2.1.24. Let Λ be a commutative ring. For every integer n, the construction M∗ 7→
Hn(M∗) determines a functor from the ∞-category ModΛ to the ordinary abelian category of
Λ-modules. We will say that an object M∗ ∈ ModΛ is discrete if Hn(M∗) ' 0 for n 6= 0. One
can show that the construction M∗ 7→ H0(M∗) induces an equivalence from the ∞-category
of discrete objects of ModΛ to the ordinary category of Λ-modules. We will generally abuse
notation by identifying the abelian category of Λ-modules with its inverse image under this
equivalence. We will sometimes refer to Λ-modules as as discrete Λ-modules or ordinary Λ-
modules, to distinguish them from more general objects of ModΛ.

Remark 2.1.25. The ∞-category ModΛ is, in many respects, easier to work with than the
usual derived category D(Λ). For example, we have already mentioned that there is no functorial
way to construct the cone of a morphism in D(Λ). However, ModΛ does not suffer from the
same problem: the formation of cones is given by a functor Fun(∆1,ModΛ)→ ModΛ.

The theory of ∞-categories is a robust generalization of ordinary category theory. In par-
ticular, many important notions of ordinary category theory (adjoint functors, Kan extensions,
Pro-objects and Ind-objects, . . .) can be generalized to the setting of ∞-categories in a natural
way. We will make use of these notions throughout this paper. For a detailed introduction
(including complete definitions and proofs of the basic categorical facts we will need), we refer
the reader to [34].

Notation 2.1.26. Let C and D be∞-categories. Throughout this paper, we will often need to
consider a limit or colimit of a functor F : C→ D. Roughly speaking, a limit of F is an object
D ∈ D which is universal among those objects which are equipped with a family of morphisms
{D → F (C)}C∈C (together with appropriate higher coherence data), and a colimit of F is an
object D′ ∈ D which is universal among those objects equipped with a compatible family of
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morphisms {F (C) → D}C∈C (together with higher coherence data). We refer the reader to
§HTT.1.2.13 for a more detailed discussion.

The limit and colimit of a functor F : C → D are determined uniquely up to equivalence if
they exist. We will generally abuse terminology by referring to the limit or colimit of a functor
F , which we will denote by lim←−C∈C F (C) and lim−→C∈C F (C), respectively.

If F is given instead as a functor from the opposite ∞-category Cop to D, we will generally
denote a limit and colimit of F also by the notation

lim←−
C∈C

F (C) lim−→
C∈C

F (C).

There is little danger of conflict between these notations, provided that it is clear from context
whether the domain of the functor F is the ∞-category C or its opposite Cop.

2.2. `-adic Cohomology of Algebraic Varieties. Let k denote an algebraically closed field
and ` a prime number which is invertible in k. In this section, we will review the theory of
`-adic cohomology in the setting of quasi-projective k-schemes.

Remark 2.2.1. The restriction to quasi-projective k-schemes is not essential in what follows;
we could just as well work in the category of k-schemes of finite type, or even some larger
category. However, such generalizations will be subsumed by the setting of prestacks which we
discuss in §2.3.

Definition 2.2.2. Let Schk denote the category of quasi-projective k-schemes, and let C be an
∞-category which admits limits. A C-valued presheaf on Schk is a functor Schop

k → C.
Let F : Schop

k → C be a C-valued presheaf on Schk. We will say that F is a C-valued sheaf on
Schk if the following condition is satisfied:

(∗) Let X be a quasi-projective k-scheme and suppose we are given a jointly surjective
collection of étale morphisms uα : Uα → X. Let U denote the category of quasi-
projective k-schemes Y equipped with a map Y → X which factors through some uα
(the factorization need not be specified). Then F induces an equivalence

F(X)→ lim←−
Y ∈U

F(Y )

in the ∞-category C.

Example 2.2.3. Let C be an ordinary category which admits limits and let N(C)• be its nerve.
Then the data of a N(C)•-valued sheaf on Schk (in the sense of Definition 2.2.2) is equivalent
to the data of a C-valued sheaf on Schk (in the sense of classical category theory).

Example 2.2.4. Let C be an arbitrary ∞-category. For each object M ∈ C, the constant
functor Schop

k → C taking the value of M is a C-valued presheaf on Schk, which we will denote
by cM .

Definition 2.2.5. Let ModZ denote the derived ∞-category of abelian groups (see Example
2.1.23). We let Sh(Schk; Z) denote the full subcategory of Fun(Schop

k ,ModZ) spanned by those
functors F which are ModZ-valued sheaves.

One can show that the inclusion

Sh(Schop
k ; Z) ↪→ Fun(Schop

k ,ModZ)

admits a left adjoint, which assigns to each presheaf F : Schop
k → ModZ its sheafification F†

with respect to the étale topology.
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Definition 2.2.6. Let M be a finite abelian group, which we regard as an object of ModZ, and
let cM : Schop

k → ModZ denote the constant presheaf taking the value M . We will denote the
sheafification of cM by X 7→ C∗(X;M). For each quasi-projective k-scheme X, we will refer to
C∗(X;M) as the complex of M -valued cochains on X.

Remark 2.2.7. Let Ab denote the ordinary category of abelian groups. Then each finite
abelian group M , we can regard cM as an Ab-valued presheaf on Schk. This presheaf admits a
sheafification (in the ordinary category of Ab-valued presheaves on Schk) which we will denote
by M . Concretely, the functor M assigns to each quasi-projective k-scheme X the group of all
continuous M -valued functions on X. Note that we can regard M as a ModZ-valued presheaf
on Schk (via the inclusion Ab ↪→ ModZ), but that it is not a ModZ-valued sheaf (since the
inclusion Ab ↪→ ModZ does not preserve inverse limits).

Let A denote the abelian category of Ab-valued sheaves on Schk. The abelian category A

has enough injectives, so that we can choose an injective resolution

0→M → I0 → I1 → · · ·

in the category A. The construction X 7→ I∗(X) determines a functor from Schop
k to the cate-

gory Chain(Z) of chain complexes of abelian groups, hence also a functor Schop
k → ModZ. One

can show that the evident maps M → I∗(X) exhibit the functor X 7→ I∗(X) as a sheafification
of cM (see Proposition SAG.2.1.1.8).

In other words, the object C∗(X;M) ∈ ModZ can be explicitly described described as the
chain complex

· · · → 0→ I0(X)→ I1(X)→ · · · .
In particular, the cohomology groups of the chain complex C∗(X;M) can be identified with
the usual étale cohomology groups of X with values in M , which we will denote simply by
H∗(X;M).

Definition 2.2.6 makes sense also in the case where the abelian groupM is not finite. However,
it is generally badly behaved if M = Z or M = Q. Consequently, we will use the notation
C∗(X;M) for a slightly different chain complex in general.

Definition 2.2.8. Let Z` denote the ring of `-adic integers. For every quasi-projective k-scheme
X, we let C∗(X; Z`) denote the limit lim←−C

∗(X; Z/`dZ), formed in the ∞-category ModZ. We

will refer to C∗(X; Z`) as the complex of Z`-valued cochains on X.

Warning 2.2.9. The construction X 7→ C∗(X; Z`) is a sheaf for the étale topology, in the
sense of Definition 2.2.2. However, it is not the sheafification of the constant functor cZ` . It

can be described instead as the `-adic completion of the sheafification c†Z` .

Definition 2.2.10. The inclusion Z ↪→ Z[`−1] determines a base change functor ModZ →
ModZ[`−1], which we will denote by M 7→ M [`−1]. For every quasi-projective k-scheme X, we
define

C∗(X; Q`) = C∗(X; Z`)[`
−1].

We will denote the cohomology groups of the chain complexes C∗(X; Z`) and C∗(X; Q`) by
H∗(X; Z`) and H∗(X; Q`), respectively. We refer to either of these as the `-adic cohomology of
X.

2.2.1. The Cup Product. If X is a quasi-projective k-scheme, then one can define a cup-product
map

Hp(X; Z`)×Hq(X; Z`)→ Hp+q(X; Z`)
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which endows H∗(X; Z`) with the structure of a graded commutative ring. In fact, one can
be more precise: the cup product arises from a multiplication on the `-adic cochain complex
C∗(X; Z`) itself. In this section, we will describe how this structure arises from an∞-categorical
point of view.

We begin by observing that the ∞-category ModZ admits a symmetric monoidal structure:
that is, it is equipped with a tensor product functor

⊗Z : ModZ×ModZ → ModZ

which is commutative and associative up to coherent homotopy (see Definition HA.2.0.0.7).
Concretely, this can be described as the left derived functor of the usual tensor product (to
compute with it, it is convenient to work with an alternative definition of ModZ using chain
complexes of free modules rather than chain complexes of injective modules).

Since ModZ is a symmetric monoidal ∞-category, it makes sense to consider associative
or commutative algebra objects of ModZ (see §HA.2.1.3). These can be thought of as chain
complexes of abelian groups which are equipped with an algebra structure which is required to
be associative (respectively commutative and associative) up to coherent homotopy. In the case
of associative algebras, it is always possible to rectify the multiplication by choosing a quasi-
isomorphic chain complex which is equipped with a multiplication which is strictly associative:
that is, a differential graded algebra (see Proposition HA.7.1.4.6). In the commutative case
this is not always possible: in concrete terms, a commutative algebra structure on an object of
ModZ is equivalent to the data of an E∞-algebra over Z.

The symmetric monoidal structure on ModZ induces a symmetric monoidal structure on
the functor ∞-category Fun(Schop

k ,ModZ), given by pointwise tensor product (see Remark
HA.2.1.3.4):

(F⊗F′)(X) = F(X)⊗Z F′(X).

One can show that this symmetric monoidal structure determines a symmetric monoidal struc-
ture on the subcategory Sh(Schk; Z) ⊆ Fun(Schop

k ,ModZ) whose underlying tensor product
⊗ : Sh(Schk; Z)× Sh(Schk; Z)→ Sh(Schk; Z) fits into a diagram

Fun(Schop
k ,ModZ)× Fun(Schop

k ,ModZ)
⊗ //

��

Fun(Schop
k ,ModZ)

��
Sh(Schk; Z)× Sh(Schk; Z)

⊗ // Sh(Schk; Z)

which commutes up to equivalence, where the vertical maps are given by the sheafification func-
tors. It follows that the sheafification functor carries commutative algebra objects of the ∞-
category Fun(Schop

k ,ModZ) to commutative algebra objects of Fun(Schop
k ,ModZ). In particular,

since each of the constant functors cZ/`dZ is a commutative algebra object of Fun(Schop
k ,ModZ),

we can regard the construction X 7→ C∗(X; Z/`dZ) as a functor which takes values in com-
mutative algebra objects of ModZ. This structure passes to the limit in d (see §HA.3.2.2),
and determines commutative algebra structures on C∗(X; Z`) and C∗(X; Q`). At the level of
cohomology, this endows the groups

H∗(X; Z/`dZ) H∗(X; Z`) H∗(X; Q`)

with the structure of a graded-commutative ring (which agrees with the usual cup product of
cohomology classes).

Remark 2.2.11. Any commutative ring object Λ can be identified with a commutative algebra
object of the ∞-category ModZ. Moreover, one can identify the ∞-category of Λ-modules in
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ModZ with the ∞-category ModΛ of Example 2.1.23 (Proposition HA.7.1.1.15). In particular,
ModΛ inherits the structure of a symmetric monoidal ∞-category (see §HA.4.5.2).

For Λ ∈ {Z/`Z,Z`,Q`}, our assumption that k is algebraically closed implies that we have
a canonical equivalence

C∗(Spec k; Λ) ' Λ.

For every quasi-projective k-scheme X, we have morphism

Λ ' C∗(Spec k; Λ)→ C∗(X; Λ)

of commutative algebra objects of ModZ. This implies that C∗(X; Λ) can be promoted to a
(commutative algebra) object of the ∞-category ModΛ.

Warning 2.2.12. The tensor product functor ⊗Λ on ModΛ does not agree with the usual
tensor product on discrete Λ-modules. If M and N are discrete Λ-modules, then the tensor
product M⊗ΛN (formed in ModΛ) is obtained by tensoring M with some projective resolution
of N , or vice versa. In particular, we have canonical isomorphisms

Hi(M ⊗Λ N) = TorΛ
i (M,N).

In particular M ⊗Λ N is discrete if and only if the groups TorΛ
i (M,N) ' 0 for i > 0 (this is

automatic, for example, if M or N is flat over Λ).
Unless otherwise specified, we will always use the notation ⊗Λ to indicate the tensor product

in the ∞-category ModΛ, rather than the ordinary category of discrete Λ-modules.

Let Λ be a commutative ring. An object M ∈ ModΛ is said to be perfect if it is a compact
object of ModΛ: that is, if the functor N 7→ MapModΛ

(M,N) preserves filtered colimits. Equiv-
alently, M is perfect if it is quasi-isomorphic to a finite complex of finitely generated projective
Λ-modules.

Let us now study the behavior of the chain complexes C∗(X; Λ) as the ring Λ varies.

Proposition 2.2.13. Let X be a quasi-projective k-scheme. For every d ≥ 0, the canonical
map

θ : (Z/`dZ)⊗Z C
∗(X; Z`)→ C∗(X; Z/`dZ)

is an equivalence in the ∞-category ModZ/`dZ.

Proof. For every object M ∈ ModZ` , let c†M : Schop
k → ModZ` denote the sheafification of the

constant functor cM : Schop
k → ModZ` taking the value M . Then θ factors as a composition

(Z/`dZ)⊗Z` lim←−{c
†
Z/`eZ}e≥0

θ0→ lim←−{Z/`
dZ⊗Z` c

†
Z/`eZ(X)}e≥0

θ1→ lim←−{c
†
Md,e

(X)}e≥0

θ2→ c†
Z/`dZ

(X),

where Md,e denotes the (left-derived) tensor product (Z/`dZ) ⊗Z` (Z/`eZ). The maps θ0 and
θ1 are equivalences by virtue of the fact that Z/`dZ is perfect as a Z`-module, and the map θ2

is determined by the identification of Z/`dZ with the group TorZ`
0 (Z/`dZ,Z/`eZ) for e ≥ d. It

follows that the fiber of θ2 can be identified (up to suspension) with the limit

lim←−
e≥d

c†
Tor

Z`
1 (Z/`dZ,Z/`eZ)

(X).

This limit vanishes, because the tower {TorZ`
1 (Z/`dZ,Z/`eZ)}e≥d is trivial as a pro-object in

the abelian category of Z`-modules. �
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Corollary 2.2.14. Let 0 ≤ d ≤ e be integers and let X be a quasi-projective k-scheme. Then
the canonical map

Z/`dZ⊗Z/`eZ C
∗(X; Z/`eZ)→ C∗(X; Z/`dZ)

is an equivalence in ModZ/`dZ.

Proposition 2.2.15. Let X be a quasi-projective k-scheme and let Λ ∈ {Z/`dZ,Z`,Q`}. Then
C∗(X; Λ) is a perfect object of ModΛ.

Proof. Using either Proposition 2.2.13 or the definition, we obtain an equivalence

C∗(X; Λ) ' Λ⊗Z` C
∗(X; Z`).

It therefore suffice to treat the case where Λ = Z`. Since C∗(X; Z`) is `-complete (see Definition
4.3.1), it is a perfect object of ModZ` if and only if Z/`Z ⊗Z` C

∗(X; Z`) ' C∗(X; Z/`Z) is a
perfect object of ModZ/`Z: that is, if and only if the total cohomology H∗(X; Z/`Z) is a
finite-dimensional vector space over Z/`Z. This is proven in [13] (Theorem 1.1 of the seventh
part). �

Definition 2.2.16. Let C be a symmetric monoidal category with unit object 1. Recall that
an object M ∈ C is said to be dualizable if there exists another object M∨ ∈ C together with
maps

e : M∨ ⊗M → 1 c : 1→M ⊗M∨

for which the composite maps

M
c×id−→ M ⊗M∨ ⊗M id×e−→ M

M∨
id×c−→ M∨ ⊗M ⊗M∨ e×id−→ M∨

are equal to idM and idM∨ , respectively.
If C is a symmetric monoidal ∞-category, we say that an object M ∈ C is dualizable if it is

dualizable as an object of the homotopy category of C.

Example 2.2.17. Let Λ be a commutative ring and let M ∈ ModΛ. Then M is dualizable if
and only if it is perfect (see Proposition HA.7.2.5.4). In this case, the dual M∨ is canonically
determined. More precisely, the construction M 7→ M∨ determines a contravariant functor

from the full subcategory Modpf
Λ ⊆ ModΛ of perfect Λ-modules to itself. We will refer to M∨

as the dual of M , or as the Λ-linear dual of M if we wish to emphasize its dependence on the
ring Λ.

Definition 2.2.18. If X is a quasi-projective k-scheme, then Proposition 2.2.15 asserts that the
cochain complex C∗(X; Λ) is perfect for Λ ∈ {Z/`dZ,Z`,Q`}. We will denote their respective
duals by

C∗(X; Z/`dZ) ∈ ModZ/ldZ C∗(X; Z`) ∈ ModZ` C∗(X; Q`) ∈ ModQ`
.

We will refer to C∗(X; Λ) as the complex of Λ-valued chains on X. For each integer n, we will
denote the nth homology groups of these chain complexes by

Hn(X; Z/ldZ) Hn(X; Z`) Hn(X; Q`).

We refer to these groups as the `-adic homology groups of X.

Remark 2.2.19. Let X be a quasi-projective k-scheme. Then we have canonical isomorphisms

H∗(X; Q`) ' H∗(X; Z`)[`
−1] H∗(X; Q`) ' H∗(X; Z`)[`

−1],

and (noncanonically split) “universal coefficient” exact sequences

0→ ExtZ`(H
n+1(X; Z`),Λ)→ Hn(X; Λ)→ HomZ`(H

n(X; Z`); Λ)→ 0
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for Λ ∈ {Z/`dZ,Q`}. The homology groups Hn(X; Z/`Z) and Hn(X; Q`) can be described more
concretely as the duals of the (finite-dimensional) vector spaces Hn

et(X; Z/`Z) and Hn
et(X; Q`).

Let X and Y be quasi-projective k-schemes and let X × Y = X ×Spec k Y denote their
product. Then the multiplication on C∗(X × Y ; Λ) induces a map

C∗(X; Λ)⊗Λ C
∗(Y ; Λ) → C∗(X × Y ; Λ)⊗Λ C

∗(X × Y ; Λ)

→ C∗(X × Y ; Λ).

Passing to Λ-linear duals, we also have a map

C∗(X × Y ; Λ)→ C∗(X; Λ)⊗Λ C∗(Y ; Λ).

Theorem 2.2.20 (Künneth Formula). For every pair of quasi-projective k-schemes X and Y ,
if Λ ∈ {Z/`dZ,Z`,Q`}, then the canonical maps

C∗(X; Λ)⊗Λ C
∗(Y ; Λ)→ C∗(X × Y ; Λ)

C∗(X × Y ; Λ)→ C∗(X; Λ)⊗Λ C∗(Y ; Λ)

are equivalences in ModΛ.

See Remark 4.6.6 for a proof (assuming some of the fundamental base change properties for
étale sheaves).

Remark 2.2.21. When Λ ∈ {Z/`Z,Q`} is a field, Theorem 2.2.20 asserts that we have canon-
ical isomorphisms

H∗(X × Y ; Λ) ' H∗(X; Λ)⊗Λ H∗(Y ; Λ)

H∗(X × Y ; Λ) ' H∗(X; Λ)⊗Λ H∗(Y ; Λ).

2.2.2. Cohomological Descent. The category Schk admits many Grothendieck topologies dif-
ferent from the étale topology. In particular, we have the following variation on Definition
2.2.2:

Variant 2.2.22. Let F : Schop
k → ModZ be a ModZ-valued presheaf on Schop

k . We will say
that F is an fppf sheaf if the following condition is satisfied

(∗) Let X be a quasi-projective k-scheme and suppose we are given a jointly surjective col-
lection of flat morphisms uα : Uα → X. Let U denote the category of quasi-projective
k-schemes Y equipped with a map Y → X which factors through some uα (the factor-
ization need not be specified). Then F induces an equivalence

F(X)→ lim←−
Y ∈U

F(Y )

in the ∞-category ModZ.

Let Shfppf(Schk; Z) denote the full subcategory of Fun(Schop
k ,ModZ) spanned by those func-

tors which are fppf sheaves. Then the inclusion Shfppf(Schk; Z) ↪→ Fun(Schop
k ,ModZ) admits

a left adjoint. Applying this left adjoint to the constant functor cM : Schop
k → ModZ, when

M is a finite abelian group, we obtain a new functor Schop
k → ModZ which we will denote by

X 7→ C∗fppf(X;M).
Every sheaf for the fppf topology on Schk is also a sheaf for the étale topology on Schk. In

particular, the construction X 7→ C∗fppf(X;M) is an étale sheaf. We therefore obtain a map

αX : C∗(X;M) → C∗fppf(X;M) which depends functorially on X. At the level of cohomology,

this induces the usual map from the étale cohomology of X to the fppf cohomology of X (with
coefficients in the finite abelian group M), which is an isomorphism (Theorem 11.7 of [22]). It
follows that each of the maps αX is an equivalence, so that the construction X 7→ C∗(X;M) is
a sheaf for the fppf topology.
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Remark 2.2.23. The collection of those functors Schop
k → ModZ which are sheaves with

respect to the fppf topology is closed under inverse limits. It follows that the construction
X 7→ C∗(X; Z`) is also a sheaf for the fppf topology.

Notation 2.2.24. Let ∆ denote the category whose objects are the linearly ordered sets
[n] = {0 < 1 < · · · < n} for n ≥ 0, and whose morphisms are nondecreasing maps of linearly
ordered sets. If C is an ∞-category, we will refer to functors ∆op → C as simplicial objects of
C. If C• is a simplicial object of C, then we define its geometric realization to be the colimit
lim−→[n]∈∆op Cn, provided that the colimit exists in C. We will denote the geometric realization

of C• by |C•|.

Proposition 2.2.25. Let u : U0 → X be a faithfully flat map between quasi-projective k-
schemes and let U• be the simplicial scheme given by the nerve of f (so that Un is the (n+1)-fold
fiber power of U0 over X). Then:

(1) The canonical map |C∗(U•; Z`)| → C∗(X; Z`) is an equivalence in ModZ` .
(2) For every integer d ≥ 0, the canonical map |C∗(U•; Z/`dZ)| → C∗(X; Z/`dZ) is an

equivalence in ModZ/`dZ.
(3) The canonical map |C∗(U•; Q`)| → C∗(X; Q`) is an equivalence in ModQ`

.

Proof. We will prove (1); assertions (2) and (3) are then immediate consequences. Let K denote
the fiber of the map lim−→C∗(U•; Z`)→ C∗(X; Z`) in the ∞-category ModZ` , and let K∨ denote

its Z`-linear dual. Then K∨ is the cofiber of the canonical map C∗(X; Z`) → lim←−C
∗(U•; Z`),

which is an equivalence by virtue of Remark 2.2.23. It follows that K∨ ' 0, and we wish to

prove that K ' 0. Note that the fiber of the map K∨
`→ K∨ can be identified with the Z/`Z-

linear dual of K0 = (Z/`Z)⊗Z`K. Since Z/`Z is a field, it follows that K0 ' 0, so that the map

K
`→ K is an equivalence and therefore the homology groups of K are vector spaces over Q`.

We will complete the proof by showing that the homology groups of K are finitely generated
as Z`-modules. Since C∗(X; Z`) is a perfect object of ModZ` , its homology groups are finitely
generated modules over Z`. It will therefore suffice to show that the homology groups of the
limit lim−→C∗(U•; Z`) are finitely generated over Z`. For each integer m ≥ 0, the skeleton

lim−→
[p]∈∆,p≤m

C∗(U•; Z`)

is a finite colimit of perfect objects of ModZ` , hence perfect, and therefore has finite-dimensional
homology in each degree. The desired result now follows from the observation that the map

lim−→
[p]∈∆,p≤m

C∗(U•; Z`)→ lim−→
[p]∈∆

C∗(U•; Z`)

induces an isomorphism on homology in degree n provided that m� n. �

2.3. `-adic Cohomology of Prestacks. Let k be an algebraically closed field and let ` be a
prime number which is invertible in k. In §2.2, we reviewed the theory of `-adic cohomology
for quasi-projective k-schemes. Unfortunately, this is not sufficiently general for our purposes:
in this paper, we will need to study the `-adic cohomology of more general algebro-geometric
objects, such as the moduli stack BunG(X). In this section, we will extend the theory of `-adic
cohomology to arbitrary (pre)stacks over k. We begin with a brief review of the language of
prestacks.

Notation 2.3.1. For every commutative ring R, we let RingR denote the category of finitely
generated commutative R-algebras (we will use this notation only when R is Noetherian, in
which case RingR can also be described as the category of finitely presented R-algebras).
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If X is a k-scheme and R ∈ Ringk, then an R-valued point of X is a map SpecR → X in
the category of k-schemes. The collection of all R-valued points of X forms a set X(R). The
construction R 7→ X(R) determines a functor from Ringk to the category of sets. We refer
to this functor as the functor of points of X. If X is of finite type over k (or if we were to
enlarge Ringk to include k-algebras which are not finitely generated), then X is determined by
its functor of points up to canonical isomorphism. In this case, we will generally abuse notation
by identifying X with its functor of points.

Suppose that G is a smooth affine group scheme over an algebraic curve X. We would like
to introduce an algebro-geometric object BunG(X) which parametrizes G-bundles on X. In
other words, we would like the R-points of BunG(X) to be G-bundles on the relative curve
XR = SpecR×Spec k X. Here some caution is in order. The collection of all G-bundles on XR

naturally forms a category, rather than a set. Let us denote this category by BunG(X)(R).
If φ : R → R′ is a k-algebra homomorphism, then φ determines a map of categories φ∗ :
BunG(X)(R)→ BunG(X)(R′), given on objects by the formula

φ∗ P = XR′ ×XR P .

However, this construction is not strictly functorial: given another ring homomorphism ψ :
R′ → R′′, the iterated pullback

ψ∗(φ∗ P) = XR′′ ×XR′ (XR′ ×XR P)

is canonically isomorphic to XR′′ ×XR P, but might not be literally identical.
It is possible to axiomatize the functorial behavior exhibited by the construction R 7→

BunG(X)(R) using the language of 2-categories (or ∞-categories). However, it is often more
convenient to encode the same data in a different package, where the functoriality is “implicit”
rather than “explicit”.

Definition 2.3.2. Let X be an algebraic curve over k and let G be a smooth group scheme
over X. We define a category BunG(X) as follows:

(1) The objects of BunG(X) are pairs (R,P), where R is a finitely presented k-algebra and
P is a G-bundle on the relative curve XR = SpecR×Spec k X.

(2) A morphism from (R,P) to (R′,P′) consists of a k-algebra homomorphism φ : R→ R′

together with a G-bundle isomorphism α between P′ and XR′ ×XR P.

We will refer to BunG(X) as the moduli stack of G-bundles.

By construction, the assignment (R,P) 7→ R determines a forgetful functor π : BunG(X)→
Ringk. For every finitely generated k-algebra R, we can recover the category BunG(X)(R) as
the fiber product BunG(X) ×Ringk {R}. Moreover, the map π also encodes the functoriality
of the construction R 7→ BunG(X)(R): given an object (R,P) ∈ BunG(X)(R) and a ring
homomorphism φ : R→ R′, we can choose any lift of φ to a morphism (φ, α) : (R,P)→ (R′,P′)
in BunG(X). Such a lift then exhibits P′ as a fiber product XR′ ×XR P.

More generally, for any functor π : C → D and any object D ∈ D, let CD denote the fiber
product C×D{D}. We might then ask if CD depends functorially on D, in some sense. This
requires an assumption on the functor π.

Definition 2.3.3. Let π : C → D be a functor between categories. We say that a morphism
α : C → C ′ in C is π-coCartesian if, for every object C ′′ ∈ C, composition with α induces a
bijection

HomC(C ′, C ′′)→ HomC(C,C ′′)×HomD(πC,πC′′) HomD(πC ′, πC ′′).
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We will say that π is a coCartesian fibration if, for every object C ∈ C and every morphism
α0 : πC → D in the category D, there exists an π-coCartesian morphism α : C → D with
α0 = π(α).

Remark 2.3.4. The definition of a coCartesian fibration can be generalized to the setting of
∞-categories. We refer the reader to §HTT.2.4 for more details.

Remark 2.3.5. A functor π : C → D between categories is said to be a Cartesian fibration if
the induced map Cop → Dop is a coCartesian fibration.

Remark 2.3.6. A functor π : C → D satisfying the requirements of Definition 2.3.3 is more
often referred to as an op-fibration or cofibration of categories. We use the term coCartesian
fibration to remain consistent with [34] and to avoid conflict with other uses of the word “cofi-
bration” in homotopy theory.

Example 2.3.7 (Grothendieck Construction). Let D be a category, and let U be a functor
from D to the category Cat of categories. We can define a new category DU as follows:

(1) The objects of DU are pairs (D,u) where D is an object of D and u is an object of the
category U(D).

(2) A morphism from (D,u) to (D′, u′) consists of a pair (φ, α), where φ : D → D′ is a
morphism in D and α : U(φ)(u)→ u′ is a morphism in U(D′).

The construction (D,u) 7→ D determines a forgetful functor DU → D which is a coCartesian
fibration. The passage from U to DU is often called the Grothendieck construction.

For any coCartesian fibration F : C → D, the category C is equivalent to DU , for some
functor U : D → Cat. Moreover, the data of F and the data of the functor U are essentially
equivalent to one another (in a suitable 2-categorical sense).

Definition 2.3.8. A prestack is a category C equipped with a coCartesian fibration π : C →
Ringk.

Warning 2.3.9. Definition 2.3.8 is not standard: many authors use the term prestack to refer
to a coCartesian fibration π : C→ Ringk which satisfies some weak form of descent with respect
to a Grothendieck topology on Ringk (see Remark 2.3.23).

Remark 2.3.10. We will generally abuse notation by identifying a prestack π : C → Ringk
with its underlying category C and simply say that C is a prestack, or that π exhibits C as a
prestack.

Example 2.3.11. The forgetful functor BunG(X) → Ringk is a coCartesian fibration, and
therefore exhibits BunG(X) as a prestack.

Remark 2.3.12. Let π : C → Ringk be a prestack. For every finitely generated k-algebra
R, we let C(R) denote the fiber product C×Ringk{R}. According to Example 2.3.7, the data
of the prestack π is essentially equivalent to the data of the construction R 7→ C(R). We will
often describe prestacks informally by specifying the categories C(R), rather than the “total
category” C.

Example 2.3.13. Let X be a k-scheme. We can associate to X a category CX , which we call
the category of points of X. By definition, an object of CX is a pair (R,φ), where R is a finitely
presented k-algebra and φ : SpecR → X is a map of k-schemes. A morphism from (R,φ) to
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(R′, φ′) is a k-algebra homomorphism ψ : R→ R′ for which the diagram

SpecR′
Spec(ψ) //

φ′

##

SpecR
φ

{{
X

commutes. The construction (R,φ) 7→ R defines a coCartesian fibration CX → Ringk, so that
we can view CX as a prestack. For any commutative ring R, we have a canonical equivalence
CX(R) ' X(R), where we view the set X(R) as a category with only identity morphisms. In
other words, the prestack CX → Ringk encodes (via the Grothendieck construction) the functor
of points of X.

Definition 2.3.14. Let π : C→ Ringk be a functor. We say that π is a prestack in groupoids if
it is prestack with the property that each of the categories C(R) is a groupoid. We will say that
C is a prestack in sets if each of the categories C(R) is discrete (that it, if it has only identity
morphisms).

Remark 2.3.15. Let π : C → Ringk be a prestack. Then C is a prestack in groupoids if and
only if every morphism in C is π-coCartesian.

Example 2.3.16. For every k-scheme X, the category of points CX is a prestack in sets. The
moduli stack BunG(X) of Definition 2.3.2 is a prestack in groupoids.

Remark 2.3.17. Though prestacks in groupoids are often technically easier to work with,
many of the prestacks which we study in this paper (such as the Ran space Ran(X)) are more
conveniently described as prestacks which do not satisfy the requirement of Definition 2.3.14.

Definition 2.3.18. Let π : C→ Ringk and π′ : C′ → Ringk be prestacks. A weak morphism of
prestacks from C to C′ is a functor F : C→ C′ for which the diagram

C
F //

!!

C′

||
Ringk

commutes. A morphism of prestacks from C to C′ is a weak morphism of prestacks which carries
π-coCartesian morphisms to π′-coCartesian morphisms.

The collection of all morphisms of prestacks from C to C′ forms a category Hom(C,C′),
where a morphism from F : C → C′ to G : C → C′ is a natural transformation of functors
α : F → G such that, for each object C ∈ C, the map π′(αC) is an identity morphism in Ringk.
If π′′ : C′′ → Ringk is another prestack, we have evident composition functors

Hom(C,C′)×Hom(C′,C′′)→ Hom(C,C′′).

We can summarize the situation by saying that the collection of all prestacks forms a (strict)
2-category.

Remark 2.3.19. Let C and D be prestacks. If D is a prestack in groupoids, then every weak
morphism of prestacks from C to D is automatically a morphism of prestacks from C to D.

Remark 2.3.20. Let π : C → D be a morphism of prestacks, where D is a prestack in
groupoids. Then π is a coCartesian fibration if and only if it satisfies the following condition:

(∗) For each object C ∈ C and each isomorphism α : π(C) → D in D, there exists an
isomorphism α : C → D in C with π(α) = α.
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We can always arrange that condition (2) is satisfied by replacing C by an equivalent prestack.

Remark 2.3.21. Let X and Y be k-schemes, and let Homk(X,Y ) be the set of k-scheme maps
from X to Y . We regard Homk(X,Y ) as a category, having no morphisms other than the
identities. We have an evident functor Homk(X,Y ) → Hom(CX ,CY ). If X is locally of finite
type over k, then this map is an isomorphism of categories. In particular, the construction
X 7→ CX determines a fully faithful embedding from the ordinary category of schemes which
are locally of finite type over k to the 2-category of prestacks. In other words, if X is a
scheme which is locally of finite type over k, then X can be functorially reconstructed from
the associated prestack CX . Because of this, we will generally abuse notation by identifying X
with the prestack CX .

Example 2.3.22. Let R be a finitely generated k-algebra, and let SpecR be the associated
affine scheme. Then the prestack associated to SpecR is equivalent to the category RingR
of finitely generated R-algebras (viewed as a prestack via the functor RingR → Ringk which
“forgets” the R-algebra structure).

Remark 2.3.23. Let π : C → Ringk be a prestack. We say that π is a stack for the
étale topology if the following condition is satisfied:

(∗) Let R be a finitely generated k-algebra, let {Rα} be a collection of étale R-algebras for
which the map

∐
SpecRα → SpecR is surjective, and let D be the full subcategory of

RingR spanned by those finitely generated R-algebras A which admit the structure of
an Rα algebra for some α. Then the forgetful functor

C(R) ' Hom(RingR,C)→ Hom(D,C)

is an equivalence of categories. Here Hom(D,C) denotes the category of prestack mor-
phisms from D to C, in the sense of Definition 2.3.18.

We say that a morphism of prestacks f : C→ C′ exhibits C′ as an étale stackification of C if C′

is a stack for the étale topology and, for every prestack C′′ which is a stack for the étale topology,
composition with f induces an equivalence of categories Hom(C′,C′′) → Hom(C,C′′). One can
show that an étale stackification of C always exists and is uniquely determined up to equivalence
(in the 2-category of prestacks).

Many of the prestacks we are interested in (such as the moduli stack BunG(X)) are stacks
for the étale topology. However, it will be technically convenient to work with prestacks which
do not satisfy this condition.

Variant 2.3.24. In Remark 2.3.23, we can replace the étale topology on Ringk by any other
Grothendieck topology, such as the Zariski topology on the fppf topology.

Definition 2.3.25. Let Λ ∈ {Z`,Q`,Z/`
dZ}, where ` is a prime number which is invertible in

k. For any prestack π : C → Ringk, we define chain complexes C∗(C; Λ) and C∗(C; Λ) by the
formulae

C∗(C; Λ) = lim←−
C∈C

C∗(Specπ(C); Λ) C∗(C; Λ) = lim−→
C∈C

C∗(Specπ(C); Λ).

Here the limit and colimit are computed in the ∞-category ModΛ.
We let H∗(C; Λ) denote the cohomology groups of C∗(C; Λ), and H∗(C; Λ) the homology

groups of C∗(C; Λ). We refer the groups H∗(C; Λ) (H∗(C; Λ)) as the `-adic (co)homology groups
of C with coefficients in Λ.

Remark 2.3.26. The notation of Definition 2.3.25 is slightly abusive: the chain complexes
C∗(C; Λ) and C∗(C; Λ) depend not only on the category C, but also the coCartesian fibration
π : C→ Ringk.
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Example 2.3.27. Let X ∈ Schk be a quasi-projective k-scheme, and let CX be the associated
prestack. If X = SpecR is affine, then the category CX has a final object (given by the pair
(R, id)), so we have canonical equivalences

C∗(CX ; Λ) ' C∗(SpecR; Λ) C∗(CX ; Λ) ' C∗(SpecR; Λ).

Using the fact that the functor X 7→ C∗(X; Λ) is a sheaf for the étale topology, we deduce the
existence of equivalences

C∗(CX ; Λ) ' C∗(X; Λ) C∗(CX ; Λ) ' C∗(X; Λ)

for any quasi-projective k-scheme X.

Warning 2.3.28. Let C be a prestack. Then C∗(C; Λ) can be identified with the Λ-linear dual
of C∗(C; Λ). In particular, if Λ ∈ {Q`,Z/`Z} is a field, then we have canonical isomorphisms

Hi(C; Λ) ' Hi(C; Λ)∨.

However, C∗(C; Λ) need not be the Λ-linear dual of C∗(C; Λ) (if Λ is a field, this is true if and
only if each Hi(C; Λ) is a finite-dimensional vector space).

Warning 2.3.29. Let C be a prestack. Then C∗(C; Q`) is equivalent to C∗(C; Z`)[`
−1], since

the process of “inverting `” commutes with colimits. However, it generally does not commute
with limits, so that the canonical map

C∗(C; Z`)[`
−1]→ C∗(C; Q`)

is not an equivalence in general.

Remark 2.3.30. Suppose that C is an algebraic stack which is of finite type over k Then we
can present C by a simplicial scheme X• where each Xn is an affine scheme of finite type over
k. In this case, the canonical map

θ : C∗(C; Z`)[`
−1]→ C∗(C; Q`)

is an equivalence: it can be identified with the natural map

Tot(C∗(X•; Z`))[`
−1]→ lim←−Tot(C∗(X•; Z`)[`

−1]),

and the formation of totalizations commutes with filtered colimits in the∞-category (ModZ`)≤0.

Warning 2.3.31. For every prestack C, we have a canonical equivalence

C∗(C; Z`) ' lim←−C
∗(C; Z/`dZ).

However, the canonical map C∗(C; Z`)→ lim←−C∗(C; Z/`dZ) need not be an equivalence in gen-
eral, since the formation of colimits generally does not commute with the formation of limits.

Remark 2.3.32. Let Λ ∈ {Z/`dZ,Z`,Q`}. The constructions C 7→ C∗(C; Λ) and C 7→ C∗(C; Λ)
depend functorially on C. More precisely, every weak morphism (see Definition 2.3.18) of
prestacks f : C→ C′ induces pushforward and pullback maps

f? : C∗(C; Λ)→ C∗(D; Λ) f? : C∗(D; Λ)→ C∗(C; Λ),

and every natural transformation α : f → g (which projects to the identity in Ringk) determines
homotopies f? ' g? and f? ' g?. Note that this holds regardless of whether or not α is an
isomorphism: the existence of a noninvertible 2-morphism from f to g is enough to guarantee
that f and g induce the same map at the level of homology and cohomology.
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Remark 2.3.33. Let f : C→ D be a morphism of prestacks which exhibits D as the stackifi-
cation of C with respect to the étale topology (or the Zariski topology, or the fppf topology).
Then the induced maps

f? : C∗(C; Λ)→ C∗(D; Λ) f? : C∗(D; Λ)→ C∗(C; Λ)

are equivalences (for Λ ∈ {Z`,Q`,Z/`Z}). This is a formal consequence of the fact that
the construction X 7→ C∗(X; Λ) introduced in §2.2 is a sheaf for the étale topology (Zariski
topology, fppf topology; see Variant 2.2.22).

Proposition 2.3.34. Let R be a finitely generated k-algebra and suppose we are given a map of
prestacks ν : C→ SpecR. Suppose we are given a faithfully flat morphism of finitely generated
k-algebras φ : R → R0, and let R• be the associated cosimplicial ring (so that Rn is given by
the (n+ 1)st tensor power of R0 over R). Then the canonical map

θ : |C∗(SpecR• ×SpecR C; Λ)| → C∗(C; Λ)

is an equivalence for Λ ∈ {Z/`Z,Z`,Q`}.
Before giving the proof of Proposition 2.3.34, it will be convenient to review of a bit of

category theory.

Notation 2.3.35. Let C be any category, and let C ∈ C be an object. We let CC/ denote the
category whose objects are morphisms f : C → D in C, and whose morphisms are given by
commutative diagrams

C
f

��

f ′

!!
D // D′.

The construction (f : C → D) 7→ D determines a forgetful functor CC/ → C. We will generally
abuse notation by not distinguishing between an object of CC/ and its image in C (in other
words, we will simply refer to D as an object of CC/ if the map f is understood).

There is an evident dual construction, which produces a category C/C whose objects are
morphisms f : D → C in the original category C.

Example 2.3.36. Let π : C → Ringk be a prestack in groupoids. Then for any object C ∈ C

with π(C) = R ∈ Ringk, the functor π induces an equivalence of categories

CC/ → (Ringk)R/ ' RingR .

In other words, a choice of object C ∈ C(R) determines a morphism of prestacks SpecR → C

which restricts to an equivalence SpecR→ CC/.

Remark 2.3.37. We say that a category C is weakly contractible if its nerve N(C)• is a weakly
contractible simplicial set (in other words, if C is nonempty and every map from N(C)• to a
Kan complex X is homotopic to a constant map).

Let F : C → D be a functor between categories. We will say that F is left cofinal if, for
every object D ∈ D, the fiber product C×D DD/ is weakly contractible. We say that F is right
cofinal if, for every object D ∈ D, the fiber product C×D D/D is weakly contractible. For every
∞-category E and every functor G : D→ E, we have canonical maps

φ : lim−→
C∈C

(G ◦ F )(C)→ lim−→
D∈D

G(D) ψ : lim←−
D∈D

G(D)→ lim←−
C∈C

(G ◦ F )(C)

(provided that the relevant limits and colimits exist in E). The map φ is an equivalence whenever
F is left cofinal, and the map ψ is an equivalence whenever F is right cofinal. We refer the
reader to §HTT.4.1 for more details.
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Note that F is left cofinal if and only if the opposite functor F op : Cop → Dop is right cofinal,
and vice-versa. Consequently, for any functor G : Dop → E, the canonical map lim−→C∈C(G ◦
F )(C) → lim−→D∈DG(D) is an equivalence when F is right cofinal, and the canonical map

lim←−D∈DG(D) → lim←−C∈C(G ◦ F )(C) is an equivalence when F is left cofinal (see Notation

2.1.26).

Remark 2.3.38. Let F : C → D be a functor between categories. Then F admits a right
adjoint G if and only if, for each object D ∈ D, the category C×D D/D has a final object. In
particular, if F admits a right adjoint, then F is right cofinal. Similarly, if F admits a left
adjoint, then it is left cofinal.

Remark 2.3.39. Let R be a finitely generated k-algebra and let ν : C→ SpecR be a coCarte-
sian fibration between prestacks. For every finitely generated R-algebra R′, the projection
map

SpecR′ ×SpecR C→ C

admits a left adjoint F , which carries an object C ∈ C to the codomain of a ν-coCartesian
morphism C → F (C) covering the ring homomorphism ν(C)→ ν(C)⊗R R′. Since the functor
F admits a right adjoint, it is right cofinal (Remark 2.3.38). We therefore have a canonical
equivalence

C∗(SpecR′ ×SpecR C; Λ) ' lim−→
C∈C

C∗(Spec(ν(C)⊗R R′); Λ)

for Λ ∈ {Z/`Z,Z`,Q`}.

Proof of Proposition 2.3.34. Replacing C by an equivalent prestack if necessary, we may assume
that ν is a coCartesian fibration (see Remark 2.3.20). Using Remark 2.3.39, we can identify θ
with a colimit of maps of the form

|C∗(Spec(R• ⊗SpecR A); Λ)| → C∗(SpecA; Λ),

each of which is a quasi-isomorphism by Proposition 2.2.25. �

Let Λ ∈ {Z`,Q`,Z/`Z} be a commutative ring. Then Λ-linear duality determines a con-
travariant equivalence of the symmetric monoidal ∞-category of perfect objects of ModΛ with
itself. If X is a quasi-projective k-scheme, then we can view C∗(X; Λ) as a commutative algebra
object of ModΛ, so that C∗(X; Λ) inherits the structure of a commutative coalgebra object of
ModΛ (see Remark 2.2.11), depending functorially on X. It follows that if π : C → Ringk is a
prestack, then the chain complexes

C∗(C; Λ) ' lim←−
C∈C

C∗(Specπ(C); Λ) C∗(C; Λ) = lim−→
C∈C

C∗(Specπ(C); Λ)

inherit the structure of commutative algebra and coalgebra objects of ModΛ, respectively. In
particular, for every pair of k-prestacks C and C′, we have a canonical map

C∗(C×Spec k C
′; Λ) → C∗(C×Spec k C

′; Λ)⊗Λ C∗(C×Spec k C
′; Λ)

→ C∗(C; Λ)⊗Λ C∗(C
′; Λ).

Proposition 2.3.40 (Künneth Formula for Prestacks). Let Λ ∈ {Z`,Q`,Z/`
dZ}. Then, for

every pair of prestacks π : C→ Ringk and π′ : C′ → Ringk, the canonical map

C∗(C×Spec k C
′; Λ)→ C∗(C; Λ)⊗Λ C∗(C

′; Λ)

is an equivalence in ModΛ.
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Proof. We have an evident functor g : C×Ringk C
′ → C×C′. This functor admits a G admits a

left adjoint f : C×C′ → C×Ringk C
′, given by (C,C ′) 7→ (CA, C

′
A), where A = π(C)⊗k π′(C ′),

CA denotes the image of C under the functor C(π(C)) → C(A), and C ′A is defined similarly.
Since the functor f admits a right adjoint, it is right cofinal. Combining this observation with
Proposition 2.2.20, we obtain equivalences

C∗(C×Ringk C
′; Λ) ' lim−→

(C,C′)∈C×C′

C∗(Spec(π(C)⊗k π′(C ′); Λ)

' lim−→
(C,C′)∈C×C′

C∗(Specπ(C); Λ)⊗Λ C∗(Specπ′(C ′); Λ)

' ( lim−→
C∈C

C∗(Specπ(C); Λ))⊗Λ ( lim−→
C′∈C′

C∗(Specπ′(C ′); Λ))

' C∗(C; Λ)⊗Λ C∗(D; Λ).

�

Remark 2.3.41. One can use Proposition 2.3.40 to show that the construction C 7→ C∗(C; Λ)
determines a symmetric monoidal functor from the 2-category of prestacks (with symmetric
monoidal structure given by the Cartesian product) to the ∞-category ModΛ (with symmetric
monoidal structure given by tensor product over ZΛ). This observation has several useful
consequences:

(1) Suppose that G is a group-valued prestack: that is, a prestack in sets equipped with
a multiplication map G ×Spec k G → G which determines a group structure on each
of the sets G(R). Then the `-adic chain complex C∗(G; Λ) inherits the structure of
an associative algebra object of ModΛ: that is, it can be viewed as an E1-algebra
over Λ (and is therefore quasi-isomorphic to a differential graded algebra over Λ; see
Proposition HA.7.1.4.6).

(2) Let G be a group-valued prestack and let X be a prestack in sets equipped with a (left)
action of G. Then the `-adic chain complex C∗(X; Λ) inherits the structure of a (left)
modue over the algebra C∗(G; Λ).

(3) Let G be a group-valued prestacks and suppose we are given prestacks in sets Y and
X equipped with right and left actions of G, respectively. Let Z denote the prestack in
sets obtained from Y ×Spec k X by dividing out by the diagonal action of G. Then we
have a canonical map

C∗(Y ; Λ)⊗C∗(G;Λ) C∗(X; Λ)→ C∗(Z; Λ).

(4) Taking Y = Spec k in (3), we obtain a canonical map

Λ⊗C∗(G;Λ) C∗(X; Λ)→ C∗(G\X; Λ).

If G acts freely on X, then this map is an equivalence.

For later use, we record the following consequence of Remark 2.3.41:

Corollary 2.3.42. Let Λ ∈ {Z`,Q`,Z/`
dZ}, let ι : G0 ↪→ G be a monomorphism between

group-valued prestacks, and suppose that that the canonical map G/G0 → Spec k induces an
isomorphism

H∗(G/G0; Λ)→ H∗(Spec k; Λ) ' Λ.

Then:

(a) If ι induces an isomorphism H0(G0; Λ) → H0(G; Λ), then it induces an isomorphism
H∗(G0; Λ) ' H∗(G; Λ).
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(b) If the induced map H0(G0; Λ)→ H0(G; Λ) factors through the augmentation

H0(G0; Λ)→ H0(Spec k; Λ) ' Λ,

then H0(G; Λ) ' Λ (that is, G is connected).

Proof. We first prove (a). Remark 2.3.41 supplies an equivalence

Λ⊗C∗(G0;Λ) C∗(G; Λ) ' Λ.

Consequently, if K denotes the cofiber of the canonical map C∗(G0; Λ) → C∗(G; Λ), then we
have K ⊗C∗(G0;Λ) C∗(G; Λ) ' 0. If K 6= 0, then there exists some smallest integer m such that
Hm(K) 6= 0. In this case we obtain an isomorphism

Tor
H0(G0;Λ)
0 (Hm(K),H0(G; Λ)) ' Hm(K ⊗C∗(G0;Λ) C∗(G; Λ)) ' 0

(see Corollary HA.7.2.1.23). If H0(G0; Λ) ' H0(G; Λ), we conclude that Hm(K) ' 0, contrary
to our assumption on m.

We now prove (b). Note that Corollary HA.7.2.1.23 also supplies an isomorphism

Tor
H0(G0;Λ)
0 (Λ,H0(G; Λ)) ' H0(G/G0; Λ) ' Λ.

In other words, the augmentation ideal of H0(G; Λ) is generated by the image of the augmen-
tation ideal of H0(G0; Λ). In particular, if the map H0(G0; Λ) → H0(G; Λ) annihilates the
augmentation ideal of H0(G0; Λ), then the augmentation H0(G; Λ)→ Λ is an isomorphism. �

For every pair of objects M,N ∈ ModΛ, we have an evident map M∨⊗ΛN
∨ → (M ⊗ΛN)∨.

This map is an equivalence whenever either M or N is perfect, but not in general. Combining
this observation with Proposition 2.3.40, we obtain:

Corollary 2.3.43. Let Λ ∈ {Z`,Q`,Z/`
dZ}. Let C be a prestack for which C∗(C; Λ) ∈ ModΛ

is perfect. Then, for every prestack C′, the canonical map

C∗(C; Λ)⊗Λ C
∗(C′; Λ)→ C∗(C×Spec k C

′; Λ)

is an equivalence.

Warning 2.3.44. The analogous Künneth formula does not necessarily hold for cochain com-
plexes C∗(C; Λ), because in general the formation of tensor products does not distribute over
inverse limits. This is one reason that it will be convenient for us to work with the homology
of prestacks.

2.4. Acyclicity of the Ran Space.

2.4.1. The Ran Space in Topology. Let M be a topological space, and let Ran(M) denote
the collection of all nonempty finite subsets of M . For every collection of disjoint open
sets U1, . . . , UM ⊆ M , let Ran(U1, . . . , Um) denote the subset of Ran(M) consisting of those
nonempty finite sets S ⊆M satisfying

S ⊆ U1 ∪ · · · ∪ Um S ∩ U1 6= ∅ · · · S ∩ Um 6= ∅.
The collection of sets Ran(U1, . . . , Um) form a basis for a topology on Ran(M). Following [9],
we will refer to Ran(M) as the Ran space of M .

Remark 2.4.1. Suppose that the topology on M is defined by a metric d. Then the topology
on Ran(M) is also defined by a metric, where the distance from a nonempty finite set S ⊆ M
to another nonempty finite set T ⊆M is given by

max{max
s∈S

min
t∈T

d(s, t),max
t∈T

min
s∈S

d(s, t)}.
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2.4.2. The Ran Space in Algebraic Geometry. In this section, we will study an analogue of the
construction M 7→ Ran(M) in the setting of algebraic geometry. Fix an algebraically closed
field k and a prime number ` which is invertible in k. For every quasi-projective k-scheme
X, we will define an algebro-geometric object Ranu(X) which parametrizes nonempty finite
subsets of X. Since the collection of such points is “infinite-dimensional”, it is unreasonable
to expect to realize Ranu(X) as a k-scheme: instead, we will describe it as a prestack over k,
whose R-valued points are nonempty finite subsets of X(R):

Definition 2.4.2. Let X be a quasi-projective k-scheme. We define a category Ranu(X) as
follows:

(1) The objects of Ranu(X) are pairs (R,S) where R is a finitely generated k-algebra and
S is a nonempty finite subset of X(R).

(2) A morphism from (R,S) to (R′, S′) in Ranu(X) is a k-algebra homomorphism φ : R→
R′ having the property that S′ is the image of the induced map S ⊆ X(R)

X(φ)→ X(R′).

The construction (R,S) 7→ R determines a forgetful functor Ranu(X) → Ringk. It is easy to
see that this functor is a coCartesain fibration, so that we can regard Ranu(X) as a prestack.
We will refer to Ranu(X) as the unlabelled Ran space of X.

Remark 2.4.3. We can regard Ranu(X) as obtained by performing the Grothendieck con-
struction (Example 2.3.7) using the set-valued functor which assigns to each R ∈ Ringk the set
of all nonempty finite subsets of X(R). In particular, it is a prestack in groupoids.

Warning 2.4.4. The prestack Ranu(X) usually not a stack for the étale topology. For example,
suppose that X = SpecR is an affine k-scheme equipped with a free action of a finite group Γ.
Every element γ ∈ Γ determines an automorphism of X, which we can regard as an R-valued
point of X. Then (R, {γ}γ∈Γ) is an R-valued point of the prestack Ranu(X) which is invariant
under the action of Γ. However, this point does not descend to an RΓ-valued point of Ranu(X)
unless we can choose a section of the quotient map X → X/Γ.

We can now state the main result of this section:

Theorem 2.4.5 (Beilinson-Drinfeld). Suppose that X ∈ Schk is connected, and let Λ ∈
{Z`,Q`,Z/`

dZ}. Then the canonical map Ranu(X)→ Spec k induces a quasi-isomorphism

C∗(Ranu(X); Λ)→ C∗(Spec k; Λ).

In other words, we have canonical isomorphisms

H∗(Ranu(X); Λ) '

{
Λ if ∗ = 0

0 otherwise.

Remark 2.4.6. For any prestack C, we have a fiber sequence

Cred
∗ (C; Z`)

`→ Cred
∗ (C; Z`)→ Cred

∗ (C; Z/`Z).

If Cred
∗ (C; Z/`Z) is acyclic, then multiplication by ` induces a quasi-isomorphism from the chain

complex Cred
∗ (C; Z`) to itself. In this case, we have Cred

∗ (C; Z`) ' Cred
∗ (C; Q`). Consequently,

to prove Theorem 2.4.5, it will suffice to treat the special cases where Λ ∈ {Q`,Z/`Z} is a field.

Notation 2.4.7. For any prestack C, we let Cred
∗ (C; Λ) denote the fiber of the canonical map

C∗(C; Λ) → C∗(Spec k; Λ). We will refer to Cred
∗ (C; Λ) as the reduced chain complex of C

with coefficients in Λ. Theorem 2.4.5 is equivalent to the assertion that the chain complex
Cred
∗ (Ranu(X); Λ) is acyclic.
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We will prove Theorem 2.4.5 by reducing to the following special case, which we will establish
at the end of this section:

Proposition 2.4.8. Suppose that X ∈ Schk is connected. Then the map Ranu(X) → Spec k
induces an isomorphism of abelian groups H0(Ranu(X); Λ)→ H0(Spec k; Λ) ' Λ.

Proof of Theorem 2.4.5. Using Remark 2.4.6, we may assume that Λ is a field (though this
reduction is not really essential). By virtue of Proposition 2.4.8, it will suffice to show that
Hn(Ranu(X); Λ) ' 0 for n > 0. Proceeding by induction on n, we may assume without loss
of generality that Hi(Ranu(X); Λ) ' 0 for 0 < i < n. Set V = Hn(Ranu(X); Λ). Using
Propositions 2.4.8 and 2.3.40, we obtain an isomorphism

Hn(Ranu(X)×Spec k Ranu(X); Λ) ' V ⊕ V.
We have an evident “multiplication” map m : Ranu(X)×Spec k Ranu(X)→ Ranu(X), given on
objects by the formula

((R,S), (R,S′)) 7→ (R,S ∪ S′).
Passing to homology, we obtain a map λ : V ⊕ V → V , which we can identify with a pair of
maps λ1, λ2 : V → V . By symmetry, we have λ1 = λ2. Note that the composite map

Ranu(X)
δ→ Ranu(X)×Spec k Ranu(X)

m→ Ranu(X)

is the identity. From this, we deduce that v = λ(v, v) = λ1(v) + λ2(v) = 2λ2(v) for v ∈ V .
Choose a k-rational point x ∈ X. Then {x} can be identified with a k-rational point of

Ranu(X): that is, with a map of prestacks ι : Spec k → Ranu(X). Let F denote the composite
map

Ranu(X) ' Spec k ×Spec k Ranu(X)
(ι,id)−→ Ranu(X)×Spec k Ranu(X)

m→ Ranu(X).

Note that the point x determines a map Spec k → Ranu(X) which induces an isomorphism
Λ ' H0(Spec k; Λ) ' H0(Ranu(X); Λ). It follows that on homology, F induces the map from V
to V given by v 7→ λ2(v). Since F 2 = F , we have

2λ2(v) = 2λ2(λ2(v)) = λ2(v),

so that λ2(v) = 0 and therefore v = 2λ2(v) = 0. Since this is true for all v ∈ V , we conclude
that V ' 0. �

To execute the proof of Proposition 2.4.8 (and many other arguments throughout this paper),
it will be convenient to work with a slight variant of Ranu(X), whose points are parametrized
finite subsets of X.

Definition 2.4.9. Let X be a quasi-projective k-scheme. We define a category Ran(X) as
follows:

• An object of Ran(X) is a triple (R,S, µ) where R is a finitely generated k-algebra, S is
a nonempty finite set, and µ : S → X(R) is a map of sets.

• A morphism from (R,S, µ) to (R′, S′, µ′) in Ran(X) consists of a k-algebra homomor-
phism φ : R → R′ together with a surjection of finite sets S → S′ for which the
diagram

S //

µ

��

S′

µ′

��
X(R)

X(φ) // X(R′)

commutes.



52 DENNIS GAITSGORY AND JACOB LURIE

It is easy to see that the forgetful functor (R,S, µ) 7→ R determines an coCartesain fibration
Ran(X)→ Ringk, so that we can regard Ran(X) as a prestack.

Remark 2.4.10. More informally, we can describe Ran(X) as the prestack which assigns to
each finitely generated k-algebra R the category whose objects are pairs (S, µ), where S is a
nonempty finite set and µ : S → X(R) is a map of sets.

Warning 2.4.11. The prestack π : Ran(X)→ Ringk is not a stack in groupoids. A morphism
(R,S, µ)→ (R′, S′, µ′) in Ran(X) is π-coCartesian if and only if the map of finite sets S → S′

is bijective.

Let us now describe the relationship between Ran(X) and Ranu(X). We have an evident
functor F : Ran(X) → Ranu(X), which carries a map of µ : S → X(R) to its image µ(S) ⊆
X(R). We can regard F as a map of prestacks from Ran(X) to Ranu(X). The functor F
admits a right adjoint G, which carries a subset T ⊆ X(R) to the inclusion map ι : T → X(R).
The functor G is a weak morphism of prestacks (in the sense of Definition 2.3.18), but does
not preserve coCartesian morphisms (since a map of k-algebras R → R′ need not induce an
injective map X(R)→ X(R′)). Nevertheless, Remark 2.3.32 yields the following:

Lemma 2.4.12. Let X ∈ Schk and let Λ ∈ {Z`,Q`,Z/`
dZ}. Then the canonical map

Ran(X)→ Ranu(X) induces an isomorphism

H∗(Ran(X); Λ)→ H∗(Ranu(X); Λ).

Proof of Proposition 2.4.8. By virtue of Lemma 2.4.12, it will suffice to show that the canonical
map H0(Ran(X); Λ)→ H0(Spec k; Λ) is an isomorphism.

Let Fins denote the category whose objects are nonempty finite sets and whose morphisms
are surjections. The construction (R,S, µ) 7→ S determines a Cartesian fibration of categories
φ : Ran(X) → Fins (see Remark 2.3.5), whose fiber over an object S ∈ Fins can be identified
with XS (which we regard as a prestack). We therefore obtain

C∗(Ran(X); Λ) ' lim−→
S∈Finsop

C∗(X
S ; Λ)

in the ∞-category ModΛ.
Each of the chain complexes C∗(X

S ; Λ) is connective: that is, its homologies are concen-
trated in non-negative degrees. It follows that we can identify H0(Ran(X); Λ) with the direct
limit lim−→S∈Finsop H0(XS ; Λ), computed in the ordinary category of abelian groups. Since X is

connected, the construction S 7→ H0(XS ; Λ) is equivalent to the constant functor taking the
value Λ. The category Fins has weakly contractible nerve (since it has a final object), so that
the colimit lim−→S∈Fins H0(XS ; Λ) is also isomorphic to Λ. �

Corollary 2.4.13 (Acyclicity of the Ran Space). If X ∈ Schk is connected, then the reduced
chain complex Cred

∗ (Ran(X); Λ) is acyclic for Λ ∈ {Z`,Q`,Z/`
dZ}.

Proof. Combine Lemma 2.4.12 with Theorem 2.4.5. �

2.5. Universal Homology Equivalences. Fix an algebraically closed field k and a prime
number ` which is invertible in k. At many points in this paper, we will need to argue that a
(weak) morphism of prestacks f : C → D induces an isomorphism of `-adic homology groups
f? : H∗(C; Z`)→ H∗(D; Z`) (and therefore also an isomorphism f? : H∗(D; Z`)→ H∗(C; Z`), by
duality). We have already encountered several formal conditions on f which guarantee this:

• The map f? is an isomorphism if f is right cofinal (see Remark 2.3.37).
• The map f? is an isomorphism if f admits an adjoint (on either side) which is compatible

with the projection to Ringk (this is an immediate consequence of Remark 2.3.32).
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• The map f? is an isomorphism if f induces an equivalence after stackification with
respect to the fppf topology (Remark 2.3.33).

In this section, we will study another class of morphisms f which induce isomorphisms on
`-adic cohomology, which we call universal homology equivalences.

Definition 2.5.1. Suppose we are given a morphism of prestacks

C
F //

π
""

D

π′{{
Ringk .

We say that F is a universal homology equivalence if, for each object D ∈ D, the canonical map

lim−→
C∈C×D DD/

C∗(Specπ(C); Z`)→ C∗(Specπ′(D); Z`)

is an equivalence in ModZ` .

Remark 2.5.2. In the situation of Definition 2.5.1, suppose that the functor F : C → D is a
Cartesian fibration. Then, for each object D ∈ D, the inclusion

C×D{D} → C×D DD/

is right cofinal. Consequently, π is a universal homological equivalence if and only if, for each
object D ∈ D, the canonical map

lim−→
π(C)=D

C∗(Specπ(C); Z`)→ C∗(Specπ′(D); Z`)

is an equivalence in ModZ` .

Remark 2.5.3. In the situation of Definition 2.5.1, suppose that F is a universal homology
equivalence. It follows immediately that for each object D ∈ D, the canonical maps

lim−→
C∈C×D DD/

C∗(Specπ(C); Λ)→ C∗(Specπ′(D); Λ)

lim←−
C∈C×D DD/

C∗(Specπ(C); Λ)→ C∗(Specπ′(D); Λ)

are equivalences in ModΛ, for Λ ∈ {Z`,Q`,Z/`
dZ}.

Example 2.5.4. In the situation of Definition 2.5.1, we can identify the direct limit

lim−→
C∈C×D DD/

C∗(Specπ(C); Z`)

with the complex of Z`-chains on the prestack C×D DD/.
Suppose that D is a prestack in groupoids, and let D ∈ D be an object with π′(D) = R.

Then π′ induces an equivalence DD/ ' RingR (Example 2.3.36). We may therefore identify
the forgetful functor DD/ → D with a map SpecR→ D. In this case, Definition 2.5.1 requires
that the canonical map

C∗(C×D SpecR; Z`)→ C∗(SpecR; Z`)

be an equivalence.
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Remark 2.5.5. Let F : C→ D be a functor between (small) ∞-categories. Then composition
with F induces a functor F ∗ : Fun(Dop,ModZ`) → Fun(Cop,ModZ`). Under some mild set-
theoretic hypotheses on C and D, one can show that the functor F ∗ admits a left adjoint
F! : Fun(Cop,ModZ`)→ Fun(Dop,ModZ`). Concretely, the functor F! is given by the formula

F!(F)(D) = lim−→
C∈C×D DD/

F(C).

We refer to F!(F) as a left Kan extension of F along D.
Suppose now that F is a map of prestacks

C
F //

π
""

D

π′{{
Ringk .

Define functors F : Cop → Ringk, F′ : Dop → Ringk by the formulae

F(C) = C∗(Specπ(C); Z`) F′(D) = C∗(Specπ′(D); Z`).

Then F = F ∗ F′, so we obtain a canonical map α : F! F → F′. The map F is a universal
homology equivalence if and only if the natural transformation α is an equivalence.

Remark 2.5.6. Suppose that F : C → E is a Cartesian fibration between categories. Then,
for every object E ∈ E, the inclusion functor

CE = C×E{E} ↪→ C×E EE/

is right cofinal. It follows that for each object F ∈ Fun(Cop,ModZ`), the left Kan extension
F!(F) is given by the formula F!(F)(E) = lim−→C∈CE

F(C).

Remark 2.5.7. Suppose we are given a map of prestacks F : C → D, and auxiliary category
E, and a commutative diagram

C
F //

G

��

D

H

��
E

where the vertical maps are Cartesian fibrations. Let α : F! F → F′ be as in Remark 2.5.5. Then
F induces a map on Z`-valued chains C∗(C; Z`)→ C∗(D; Z`) which is given by the composition

C∗(C; Z`) ' lim−→
E∈E

(G! F)(E)

' lim−→
E∈E

H!(F! F)

F!(α)→ lim−→
E∈E

(H! F
′)(E)

' C∗(D; Z`)

By virtue of Remark 2.5.6, to show that F induces an isomorphism on Z`-homology, it will
suffice to show that the induced map

lim−→
C∈CE

F(C)→ lim−→
D∈DE

F′(D)

is an equivalence for each object E ∈ E.
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The construction which carries a functor F : Cop → ModZ` to its colimit lim−→C∈C F(C) ∈
ModZ` can be regarded as a special kind of left Kan extension: namely, left Kan extension
along the projection map C → ∆0. Invoking the transitivity of the formation of left Kan
extensions, we obtain the following:

Proposition 2.5.8. Let F : C→ D be a universal homology equivalence of prestacks. Then F
induces an equivalence C∗(C; Z`)→ C∗(D; Z`).

Corollary 2.5.9. Let u : C → D be a universal homology equivalence of prestacks. Then u
induces equivalences

C∗(C; Z/`dZ)→ C∗(D; Z/`dZ) C∗(C; Z`)→ C∗(D; Z`) C∗(C; Q`)→ C∗(D; Q`)

C∗(D; Z/`dZ)→ C∗(C; Z/`dZ) C∗(D; Z`)→ C∗(C; Z`) C∗(D; Q`)→ C∗(C; Q`).

Remark 2.5.10. The collection of universal homology equivalences is closed under composi-
tion. This follows immediately from the characterization of universal homology equivalences
supplied by Remark 2.5.5.

Proposition 2.5.11. Suppose we are given a pullback diagram of prestacks

C′
f ′ //

��

D′

u

��
C

f // D

where u is a coCartesian fibration. If f is a universal homology equivalence, then f ′ is a
universal homology equivalence.

Proof. To prove this, it suffices to show that for every object D′ ∈ D′ having image D ∈ D,
the canonical map C′×D′ D

′
D′/ → C×D DD/ is right cofinal. In fact, this functor has a right

adjoint, by virtue of our assumption that D′ → D is a coCartesian fibration. �

Corollary 2.5.12. Let f : C→ D be a morphism of prestacks, and suppose that D is a prestack
in groupoids. The following conditions are equivalent:

(1) The morphism f is a universal homology equivalence.
(2) For every homotopy pullback diagram

C′ //

f ′

��

D′

u

��
C

f // D

in the 2-category of prestacks, the morphism f ′ is a universal homology equivalence.
(3) For every homotopy pullback diagram

C′ //

f ′

��

D′

u

��
C

f // D

in the 2-category of prestacks, the morphism f ′ induces an isomorphism of `-adic ho-
mology groups

f ′? : H∗(C
′; Z`)→ H∗(D

′; Z`)

.
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(4) For every map η : SpecR→ D, the induced map

H∗(SpecR×D C; Z`)→ H∗(SpecR; Z`)

is an equivalence.

Proof. The implication (1) ⇒ (2) follows from Proposition 2.5.11 and Remark 2.3.20. The
implication (2)⇒ (3) follows from Proposition 2.5.8. The implication (3)⇒ (4) is immediate,
and the equivalence (1)⇔ (4) follows from Example 2.3.36. �

Example 2.5.13. Let π : C→ Ringk be a prestack. Then π is a universal homology equivalence
(when regarded as a morphism from C to Spec k in the 2-category of prestacks) if and only if it
induces an isomorphism

H∗(C; Z`)→ H∗(Spec k; Z`) ' Z`.

The “only if” direction is clear, and the converse follows from Proposition 2.3.40.

Example 2.5.14. Let X be a k-scheme of finite type, and let E be a vector bundle over X.
Then the projection map E → X is a universal homology equivalence. To prove this, we must
show that for every map SpecR→ X, the induced map

C∗(SpecR×X E; Z`)→ C∗(SpecR; Z`)

is an equivalence. By virtue of Proposition 2.3.34, this assertion can be tested locally with
respect to the Zariski topology on SpecR. We may therefore reduce to the case where SpecR×X
E ' SpecR×Spec k An. Using Proposition 2.3.40, we are reduced to proving that C∗(A

1; Z`) '
Z`, which follows from our assumption that ` is invertible in the field k.

Proposition 2.5.15. Let R be a finitely generated k-algebra, and suppose we are given a
diagram of prestacks σ :

C

##

// D

{{
SpecR.

Let R′ be a finitely generated R-algebra for which the map SpecR′ → SpecR is faithfully flat.
If the map SpecR′×SpecR C→ SpecR′×SpecRD is a universal homology equivalence, then the
map C→ D is a universal homology equivalence.

Proof. Fix an object D ∈ D whose image in SpecR is a finitely generated R-algebra A, and let
E denote the fiber product C×D DD/. We wish to prove that the canonical map E → SpecA
induces an equivalence C∗(E; Z`) → C∗(SpecA; Z`). Let R• denote the cosimplicial R-algebra
determined by R′ (so that Rn is the (n+1)st tensor power of R′ over R) and set A• = R•⊗RA.
We have a commutative diagram

|C∗(SpecR• ×SpecR E; Z`)| //

��

|C∗(SpecA•; Z`)|

��
C∗(E; Z`) // C∗(SpecR; Z`),

where the vertical maps are equivalences by virtue of Proposition 2.3.34. We are therefore re-
duced to proving that each of the maps C∗(SpecRn×SpecRE; Z`)→ C∗(SpecAn; Z`) is an equiv-
alence, which follows from our assumption that the map SpecR′×SpecR C→ SpecR′×SpecRD

is a universal homology equivalence. �
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We now describe some examples of universal homology equivalences which are related to the
constructions of §2.4.

Construction 2.5.16. Let X be a quasi-projective k-scheme. We define a category Ran+(X)
as follows:

• The objects of Ran+(X) are pairs (R,S) where R is a finitely generated k-algebra, and
S is a (possibly empty) finite subset of X(R).
• A morphism from (R,S) to (R′, S′) is a k-algebra homomorphism φ : R→ R′ for which

the induced map X(R)→ X(R′) carries S to a subset of S′.

Put more informally: the category Ran+(X) is defined in the same way as the category
Ranu(X), except that we do not require our subsets of X to be nonempty or the maps be-
tween them to be surjective. Note that we can regard Ranu(X) as a (non-full) subcategory of
Ran+(X).

Remark 2.5.17. Heuristically, we can think of the prestack Ran+(X) as a geometric object
obtained from Ran(X) by adding a new point (corresponding to the empty set) and drastically
modifying its topology, so that a finite subset S ⊆ X lies in the closure of a finite subset S′ ⊆ X
whenever S′ ⊆ S. In particular, the empty subset ∅ ⊆ X can be regarded as a “generic point”
of Ran+(X).

Remark 2.5.18. Let X be a quasi-projective k-scheme. The empty set ∅ ⊆ X(k) determines a
k-valued point Spec k → Ran+(X), which is a section of the projection map Ran+(X)→ Spec k.
It follows immediately from the definitions that these morphisms are adjoint (in the 2-category of
prestacks), and therefore induce mutually inverse isomorphisms on the level of `-adic homology
and cohomology (Remark 2.3.32). In particular, we obtain isomorphisms

H∗(Ran+(X); Z`) '

{
Z` if ∗ = 0

0 otherwise.

Theorem 2.5.19. Let X be a quasi-projective k-scheme. If X is connected, then the maps

Ran(X)→ Ranu(X)→ Ran+(X)

are universal homology equivalences.

Remark 2.5.20. If X ∈ Schk is connected, then Theorem 2.5.19 and Remark 2.5.18 supply
isomorphisms

H∗(Ran(X); Z`) ' H∗(Ranu(X); Z`) '

{
Z` if ∗ = 0

0 otherwise,

which is the content of Theorem 2.4.5 (and Corollary 2.4.13). However, this result does not
come for free: we will use Theorem 2.4.5 in our proof of Theorem 2.5.19.

Example 2.5.21. Let us outline an application of Theorem 2.5.19 which we will need in §7.7.
Let X be a connected quasi-projective k-scheme and suppose we are given nonempty closed
subscheme Y ⊆ X. Let Ran+(X)′ denote the full subcategory of Ran+(X) consisting of those
pairs (R,S ⊆ X(R)) having the property that for every k-valued point η ∈ SpecR, the image
of S in X(k) has nonempty intersection with Y (k). Let Ran(X)′ denote the inverse image of
Ran+(X)′ in Ran(X). We claim that the inclusion maps

u : Ran(X)′ ↪→ Ran(X) u+ : Ran+(X)′ ↪→ Ran+(X)
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induce isomorphisms on Z`-homology. Note first that the inclusion Ran+(X)′ ↪→ Ran+(X) is
a coCartesian fibration (since the condition that the image of a map S → X(k) intersects Y (k)
is stable under enlarging S). Applying Proposition 2.5.11 to the pullback diagram

Ran(X)′

u

��

Ran+(X)′

u+

��
Ran(X) // Ran+(X),

we deduce from Theorem 2.5.19 that horizontal arrows are universal homology equivalences.
Consequently, to prove that u induces an isomorphism on Z`-homology, it will suffice to show
that u+ induces an isomorphism on Z`-homology. To prove this, choose a point y ∈ Y (k),
and for each R ∈ Ringk let yR denote the image of y in Y (R). The construction (R,S) 7→
(R,S ∪ {yR}) determines a morphism of prestacks v : Ran+(X) → Ran+(X)′. Applying the
two-out-of-six property to the diagram

Ran+(X)′
u+

→ Ran+(X)
v→ Ran+(X)′

u+

→ Ran+(X),

we are reduced to proving that the composite maps

v ◦ u+ : Ran+(X)′ → Ran+(X)′

u+ ◦ v : Ran+(X)→ Ran+(X)

induce isomorphisms on homology. Both of these maps are the identity on homology, since they
are related to the identity map by a 2-morphism (in the 2-category of prestacks); see Remark
2.3.32.

We can break the statement of Theorem 2.5.19 into two parts:

Proposition 2.5.22. Let X be a quasi-projective k-scheme. Then the prestack morphism
Ran(X)→ Ranu(X) is a universal homology equivalence.

Proposition 2.5.23. Let X ∈ Schk be a connected quasi-projective k-scheme. Then the inclu-
sion Ranu(X)→ Ran+(X) is a universal homology equivalence.

Proof of Proposition 2.5.22. The proof is a slight elaboration Lemma 2.4.12 (which can be
regarded as a special case). Fix an R-valued point of Ranu(X) given by a nonempty finite
subset S ⊆ X(R), and let C = Ran(X) ×Ranu(X) Ranu(X)(R,S)/. We wish to prove that the
projection map f : C → SpecR induces an isomorphism on Z`-homology. For every finitely
generated R-algebra R′, let SR′ denote the image of S under the induced map X(R)→ X(R′).
Unwinding the definitions, we can identify the objects of C with triples (R′, S′, µ), where R′ is
a finitely generated R-algebra, S′ is a nonempty finite set, and µ : S′ → X(R′) is a map of sets
with µ(S′) = SR′ . The functor f admits a right adjoint, given on objects by R′ 7→ (R′, SR′ , id).
It follows that the maps f and g induce mutually inverse isomorphisms on the level of homology
(Remark 2.3.32).

�

Proof of Proposition 2.5.23. Fix an object of Ran+(X) given by a pair (R,S) where R is a
finitely generated k-algebra and S is a finite subset of X(R). Let C denote the fiber product
Ranu(X) ×Ran+(X) Ran+(X)(R,S)/. We wish to show that the canonical map θ : C∗(C; Z`) →
C∗(SpecR; Z`) is a quasi-isomorphism.

For every finitely generated R-algebra R′, let SR′ denote the image of S in X(R′). Let us
identify the fiber product SpecR ×Spec k Ranu(X) with the prestack whose objects are pairs
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(R′, S′), where R′ is a finitely generated R′-algebra and S′ is a nonempty finite subset of X(R′).
Unwinding the definitions, we see that there is a fully faithful embedding

f : C ↪→ SpecR×Spec k Ranu(X),

whose essential image consist of those pairs (R′, S′) for which S′ contains SR′ . The functor f
admits a left inverse g, given on objects by the formula g(R′, S′) = (R′, S′ ∪SR′). We therefore
have a commutative diagram

C∗(C; Z`)
f //

θ

��

C∗(SpecR×Spec k Ranu(X); Z`) //

θ′

��

C∗(C; Z`)

θ

��
C∗(SpecR; Z`) // C∗(SpecR; Z`) // C∗(SpecR; Z`),

where the upper horizontal composition is the identity map. By a diagram chase, we are reduced
to proving that the map θ′ is a quasi-isomorphism. This follows immediately from Proposition
2.3.40 and Theorem 2.4.5. �

3. Nonabelian Poincare Duality

Let k be an algebraically closed field, let X be an algebraic curve over k, and let ` be a
prime number which is invertible in k. To every smooth affine group scheme over X, we can
associate a moduli stack BunG(X) of principal G-bundles on X. Our goal in this section is to
prove an `-adic version of Theorem 1.4.13: that is, to articulate a “local-to-global” principle
which controls the structure of the `-adic chain complex C∗(BunG(X); Z`) (and, by extension,
the structure of the `-adic homology and cohomology of BunG(X)). We begin in §3.1 by
giving a more leisurely exposition of the theory of nonabelian Poincare duality in the setting
of classical topology. In §3.2, we adapt this discussion to the algebraic setting by introducing a
prestack RanG(X) which classifies principal G-bundles trivialized away from a finite subset of X
(Definition 3.2.3). We then formulate our main result: the forgetful map RanG(X)→ BunG(X)
induces an isomorphism on `-adic homology (Theorem 3.2.9) whenever the generic fiber of G is
semisimple and simply connected.

The remainder of this section is devoted to the proof of Theorem 3.2.9. Roughly speaking,
the idea is to show that the map RanG(X)→ BunG(X) has acyclic fibers. For a more detailed
outline of our strategy, we refer the reader to the end of §3.3.

Remark 3.0.1. The material of §3.1 is presented purely for motivation, and is not logically
necessary for our proof of Theorem 3.2.9. Readers suffering from a surfeit of motivation can
safely skip directly to §3.2.

3.1. Motivation: Poincare Duality in Topology. Recall the statement of Poincare duality
for (possibly noncompact) oriented manifolds:

Theorem 3.1.1 (Poincare Duality). Let M be an oriented topological manifold of dimension
n and let A be an abelian group. Then there is a canonical isomorphism

H∗c(M ;A) ' Hn−∗(M ;A);

here H∗c(M ;A) denotes the compactly supported cohomology of M with coefficients in A.

In this section, we will discuss a generalization of Theorem 3.1.1 to the case of “nonabelian”
coefficients. This result can be regarded as a prototype (in the setting of classical topology) for
the main result of §3. The material here is presented purely for motivation, and may be safely
skipped by the reader who prefers to work entirely in the setting of algebraic geometry. Since
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the rest of the paper is logically independent of these ideas, we will not give any proofs; for a
more detailed discussion, we refer the reader to §HA.5.5.6 (see also [48], [39], and [46] for some
related results.).

3.1.1. Poincare Duality for Abelian Coefficients. Let M be an oriented n-manifold. We let
U(M) denote the partially ordered set of all open subsets of M and U0(M) the subset of U(M)
consisting of open subsets U which are homeomorphic to Euclidean space Rn. For each open
set U ∈ U(M), let C∗(U ;A) denote the singular chain complex of U , and let C∗c (U ;A) denote
the compactly supported cochain complex of U . Then the constructions

U 7→ C∗(U ;A) U 7→ C∗c (U ;A)

can be regarded as functors from U(M) to the category Chain of chain complexes of abelian
groups, or to the ∞-category ModZ introduced in §2.1. Theorem 3.1.1 is an immediate conse-
quence of the following three facts:

Proposition 3.1.2. The constructions U 7→ C∗c (U ;A) and U 7→ C∗−n(U ;A) determine equiv-
alent functors from U0(M) into ModZ.

Proposition 3.1.3. The canonical map

lim−→
U∈U0(M)

C∗(U ;A)→ C∗(M ;A)

is an equivalence (here the colimit is computed in the ∞-category ModZ).

Proposition 3.1.4. The canonical map

lim−→
U∈U0(M)

C∗c (U ;A)→ C∗c (M ;A)

is an equivalence (here the colimit is computed in the ∞-category ModZ).

Remark 3.1.5. Proposition 3.1.2 amounts to a local calculation: the compactly supported
cohomology of Euclidean space is given by

H∗c(R
n; Z) '

{
Z if ∗ = n

0 otherwise.

H∗c(R
n;A) ' H∗c(R

n; Z)⊗Z A.

The isomorphism Hn
c (Rn; Z) ' Z is unique up to a sign, and a choice of isomorphism is

equivalent to the choice of an orientation on the manifold Rn.
It follows that if U ⊆M is homeomorphic to Rn, then the homologies of the chain complexes

C∗c (U ;A) and C∗(U ;A) are concentrated in a single degree. A choice of orientation of U
determines an isomorphism of abelian groups Hn

c (U ;A) ' H0(U ;A) which lifts to an equivalence
between C∗c (U ;A) and C∗(U ;A) (after applying a suitable shift). An orientation of the manifold
M allows us to choose these equivalences functorially in U .

Remark 3.1.6. Let C be an ∞-category which admits colimits and let F : U(M) → C be a
functor. We say that F is a C-valued cosheaf on M if the following condition is satisfied:

(∗) For every open set U ⊆M and every open cover {Uα} of U , the canonical map

lim−→
V

F(V )→ F(U)

is an equivalence in C, where the colimit is taken over all open sets V ⊆ M which are
contained in some Uα.
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Using the fact that M has finite covering dimension and that U0(M) forms a basis for the
topology of M , one can show that any C-valued cosheaf F determines an equivalence

lim−→
U∈U0(M)

F(U)→ F(M).

Propositions 3.1.3 and 3.1.4 can be deduced from the following more basic facts:

(a) For any topological spaceM , the construction U 7→ C∗(U ;A) determines a ModZ-valued
cosheaf on M .

(b) For any locally compact topological space M , the construction U 7→ C∗c (U ;A) deter-
mines a ModZ-valued cosheaf on M .

Assertions (a) and (b) articulate the idea that homology and compactly supported cohomol-
ogy satisfy excision. For example, if U and V are open subsets of M , then condition (a) implies
that the diagram

C∗(U ∩ V ;A) //

��

C∗(U ;A)

��
C∗(V ;A) // C∗(U ∪ V ;A)

is a pushout square in ModZ, which in turn implies (and is morally equivalent to) the existence
of a long exact Mayer-Vietoris sequence

· · · → H∗(U ∩ V ;A)→ H∗(U ;A)⊕H∗(V ;A)→ H∗(U ∪ V ;A)→ H∗−1(U ∩ V ;A)→ · · ·

3.1.2. Poincare Duality for Nonabelian Coefficients. Recall that cohomology is a representable
functor on the homotopy category of spaces. More precisely, for every abelian group A and
every integer n ≥ 0, one can construct a topological space K(A,n) and a cohomology class
η ∈ Hn(K(A,n);A) with the following universal property: for any sufficiently nice space M ,
the pullback of η induces a bijection

[M,K(A,n)] ' Hn(M ;A),

where [M,K(A,n)] denotes the set of homotopy classes of maps from M into K(A,n). The
space K(A,n) is called an Eilenberg-MacLane space. It is characterized (up to weak homotopy
equivalence) by the existence of isomorphisms

πiK(A,n) '

{
A if i = n

0 otherwise.

When n = 1, one can define an Eilenberg-MacLane space K(G,n) even when the group G
is nonabelian. In this case, K(G, 1) is called a classifying space of G, and denoted by BG. It
can be constructed as the quotient of a contractible space by a free action of G. This motivates
one possible definition of nonabelian cohomology:

Definition 3.1.7. Let G be a discrete group and let M be a manifold (or any other reasonably
nice topological space). We let H1(M ;G) denote the set of homotopy classes of maps from M
into K(G, 1) = BG.

Definition 3.1.7 has many other formulations: the set H1(M ;G) can be identified with the
set of isomorphism classes of G-torsors on M , or (in the case where M is connected) with the
set of conjugacy classes of group homomorphisms π1M → G. However, the formulation given
above suggests a much broader notion of nonabelian cohomology:
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Definition 3.1.8. Let Y be a topological space, and let M be a manifold (or any other
sufficiently nice space). Then the cohomology of M with coefficients in Y is the set of homotopy
classes of maps from M into Y , which we will denote by [M,Y ].

We have the following table of analogies:

Abelian Cohomology Nonabelian Cohomology

Abelian group A Pointed topological space (Y, y)

Hn(M ;A) [M,Y ] = π0 Map(M,Y )

C∗(M ;A) Map(M,Y )

C∗c (M ;A) Mapc(M,Y )

C∗(M ;A) ???

Here Map(M,Y ) denotes the space of continuous maps from M into Y , and Mapc(M,Y )
denotes the subspace consisting of maps which are compactly supported: that is, maps f :
M → Y such that the set {x ∈ M : f(x) 6= y} has compact closure (to avoid technicalities,
it is sometimes convenient to view Map(M,Y ) and Mapc(M,Y ) as simplicial sets, rather than
topological spaces; we will ignore the distinction in what follows).

We can now ask if there is any analogue of Poincare duality in the above setting. That is,
if M is a manifold, does the space Mapc(M,Y ) of compactly supported maps from M into Y
admit some sort of “homological” description? By analogy with classical Poincare duality, we
can break this question into two parts:

(a) What does the mapping space Mapc(M,Y ) look like when M ' Rn?
(b) Can we recover the mapping space Mapc(M,Y ) from the mapping spaces Mapc(U, Y ),

where U ranges over the open disks in M?

Question (a) is easy to address. The space of compactly supported maps from Rn into a
pointed space (Y, y) is homotopy equivalent to the space of maps which are supported in the
unit ball of Rn: that is, the n-fold based loop space Ωn(Y ).

To address question (b), we note that the construction U 7→ Mapc(U, Y ) can be regarded as
a covariant functor of U : any compactly supported map from U into Y can be extended to a
compactly supported map on any open set containing U (by carrying the complement of U to
the base point of Y ). We can regard this construction as a functor from the partially ordered
set U(M) to the ∞-category S of spaces. We might then ask the following:

Question 3.1.9. Let (Y, y) be a topological space. Is the construction U 7→ Mapc(U, Y ) a
S-valued cosheaf on M?

For example, Question 3.1.9 asks if, for any pair of open sets U, V ⊆ M , the diagram of
spaces

Mapc(U ∩ V, Y ) //

��

Mapc(U, Y )

��
Mapc(V, Y ) // Mapc(U ∪ V, Y )



WEIL’S CONJECTURE FOR FUNCTION FIELDS 63

is a pushout square in the∞-category S (such a diagram of spaces is commonly referred to as a
homotopy pushout square). This is an unreasonable demand: if it were true, then the diagram

π0 Mapc(U ∩ V, Y ) //

��

π0 Mapc(U, Y )

��
π0 Mapc(V, Y ) // π0 Mapc(U ∪ V, Y )

would be a pushout square in the ordinary category of sets. In other words, any compactly
supported map from U ∪ V into Y would need to be homotopic (through compactly supported
maps) to a map which is supported either in U or in V . This is generally not true.

To understand why Question 3.1.9 has a negative answer, we should emphasize that the ∞-
categories S and ModZ have very different behavior. The cosheaf property for the functor U 7→
C∗c (U ;A) implies (and is essentially equivalent to) the existence of Mayer-Vietoris sequences

· · · → H∗c(U ∩ V ;A)→ H∗c(U ;A)⊕H∗c(V ;A)→ H∗c(U ∪ V ;A)
δ→ H∗+1

c (U ∩ V ;A)→ · · ·

The existence of such a sequence says that any compactly supported cohomology class u ∈
Hm
c (U ∪ V ;A) satisfying the condition δ(u) = 0 can be written as a sum u = u′ + u′′, where u′

is supported on U and u′′ is supported on V . Here it is crucial that we can add cohomology
classes (and the cocycles that represent them): there is no reason to expect that we can arrange
that u′ or u′′ is equal to zero.

In the setting of nonabelian cohomology, there is generally no way to “add” a compactly
supported map u′ : U → Y to a compactly supported map u′′ : V → Y to obtain a compactly
supported map from u : U ∪ V → Y . However, there is an obvious exception: if U and V are
disjoint, then there is a canonical homeomorphism Mapc(U, Y )×Mapc(V, Y ) ' Mapc(U∪V, Y ),
which we can think of as a type of “addition”. It turns out that if we take this structure into
account, then we can salvage Proposition 3.1.4.

Theorem 3.1.10 (Nonabelian Poincare Duality for Manifolds). Let M be a manifold of di-
mension n, let U1(M) denote the collection of all open subsets of M which are homeomorphic
to a disjoint union of finitely many open disks, and let Y be a pointed topological space which
is (n− 1)-connected. Then the canonical map

lim−→
U∈U1(M)

Mapc(U, Y )→ Mapc(M,Y )

is an equivalence in the ∞-category S. In other words, Mapc(M,Y ) can be realized as the
homotopy colimit of the diagram lim−→U∈U1(M)

Mapc(U, Y ).

For a proof, we refer the reader to Theorem HA.5.5.6.6.

Remark 3.1.11. The formation of singular chain complexes T 7→ C∗(T ; Z) determines a
functor of ∞-categories S → ModZ which preserves colimits and carries products of spaces
to tensor products in ModZ. Consequently, Theorem 3.1.10 implies that the chain complex
C∗(Mapc(M,Y ); Z) can be realized as a colimit

lim−→
U1,...,Un

C∗(Mapc(U1 ∪ · · · ∪ Un, Y ); Z) ' lim−→
U1,...,Un

⊗
C∗(Mapc(Ui, Y ); Z),

where the Ui range over all collections of disjoint open disks in M . This expresses the informal
idea that C∗(Mapc(M,Y ); Z) can be obtained as a continuous tensor product of copies of
cochain complex C∗(Ω

nY ; Z), indexed by the points of M (or open disks in M).



64 DENNIS GAITSGORY AND JACOB LURIE

Warning 3.1.12. When Y = K(A,m) is an Eilenberg-MacLane space, the homotopy groups
of the mapping space Mapc(M,Y ) can be identified with the compactly supported cohomology
groups H∗c(M ;A). However, Theorem 3.1.10 is perhaps better understood as supplying infor-
mation about the homology groups of the mapping space Mapc(M,Y ) (see Remark 3.1.11).
Nevertheless, Theorem 3.1.10 can be regarded as a generalization of classical Poincare duality.
More precisely, it can be used to deduce the local-to-global principle articulated by Proposition
3.1.4. To prove this, we first note that the singular chain complex construction X 7→ C∗(X; Z)
determines a functor from the ∞-category of spaces to the ∞-category ModZ. This functor
admits a right adjoint, which we will denote by N∗ 7→ K(N∗). More concretely, this right ad-
joint carries a chain complex of abelian groups N∗ to the generalized Eilenberg-MacLane space
K(N∗), whose homotopy groups are given by

πnK(N∗) ' Hn(N∗)

In particular, if N∗ is quasi-isomorphic to the chain complex consisting of a single abelian
group A concentrated in homological degree n, then K(N∗) can be identified with the usual
Eilenberg-MacLane space K(A,n)). More generally, for every manifold M and every integer
m ≥ 0, there is a canonical homotopy equivalence

K(C∗+mc (M ;A)) ' Mapc(M,K(A,m)).

To prove Proposition 3.1.4, we wish to show that the composition

lim−→
U∈U0(M)

C∗c (U ;A)
φ→ lim−→
U∈U1(M)

C∗c (U ;A)
ψ→ C∗c (M ;A)

is an equivalence in ModZ. Using the additivity of the ∞-category ModZ, one shows that the
construction (U ∈ U1(M)) 7→ C∗c (U ;A) is left Kan extension of its restriction to U0(M), so
that the map φ is an equivalence. To prove that ψ is an equivalence, it will suffice to show that
the induced map of spaces

K(ψ) : K( lim−→
U∈U1(M)

C∗+mc (U ;A))→ K(C∗+mc (M ;A)) ' Mapc(M,K(A,m))

is a homotopy equivalence for m� 0. Unwinding the definitions, this map fits into a commu-
tative diagram

lim−→U∈U1(M)
Mapc(U,K(A,m))

θ //

ρ

**

K(lim−→U∈U1(M)
C∗+mc (U ;A))

K(ψ)

tt
Mapc(M,K(A,m)).

If m ≥ dim(M), then one can show that the map θ is a homotopy equivalence (in other words,
that passage to the colimit commutes with the functor K), and the map ρ is a homotopy
equivalence by virtue of Theorem 3.1.10. For more details, we refer the reader to §HA.5.5.6.

Remark 3.1.13. Theorem 3.1.10 provides a convenient mechanism for analyzing the homo-
topy type of the mapping space Mapc(M,Y ): the partially ordered set U1(M) indexing the
colimit depends only on manifold M , and the individual terms Mapc(U, Y ) are (noncanoni-
cally) homotopy equivalent to products of finitely many copies of ΩnY , which depends only on
Y .

Remark 3.1.14. The hypothesis that Y be (n−1)-connected is necessary for Theorem 3.1.10.
For example, if n > 0 and Y is disconnected, then the constant map from a compact manifold
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M to a point y′ ∈ Y belonging to a different connected component than the base point y ∈ Y
cannot be homotopic to a map which is supported in a union of open disks of M .

On the other hand, suppose that Y is (n− 1)-connected and that M is a compact manifold
which admits a triangulation. Then any continuous map f : M → Y is nullhomotopic on the
(n − 1)-skeleton of M , and therefore homotopic to a map which is support on the interiors of
the n-simplices of M . This implies that the map lim−→U∈U1(M)

Mapc(U, Y ) → Mapc(M,Y ) is

surjective on connected components.

Theorem 3.1.10 asserts the existence of a homotopy equivalence

lim−→
U∈U1(M)

Mapc(U, Y )→ Mapc(M,Y ),

whose codomain can be viewed as a kind measuring the (compactly supported) nonabelian
cohomology of the manifold M with coefficients in Y . As in the case of classical Poincare
duality, the left hand side can be viewed as a kind of homology. However, it is not the homology
of M itself, but of the Ran space Ran(M).

Theorem 3.1.15 (Nonabelian Poincare Duality). Let M be a topological manifold of dimension
n, let Y be a pointed space which is (n − 1)-connected, and let Ran(M) be defined as in §2.4.
Then there exists an S-valued cosheaf F on the topological space Ran(M) with the following
property: for every collection of disjoint connected open sets U1, . . . , Uk ⊆M , we have

F(Ran(U1, . . . , Uk)) ' Mapc(U1, Y )× · · · ×Mapc(Uk, Y ).

Theorem 3.1.15 is essentially a reformulation of Theorem 3.1.10. If M is connected, it implies
that we can recover Mapc(M,Y ) ' F(M) as a homotopy colimit

lim−→
U1,...,Uk

Mapc(U1, Y )× · · · ×Mapc(Uk, Y ),

where the colimit is taken over all collections of disjoint open disks in M (this follows from the
fact that sets of the form Ran(U1, . . . , Uk) form a basis for the topology of Ran(M)). This is
essentially the same as the colimit which appears in the statement of Theorem 3.1.10 (though
there are a few subtleties; see §HA.5.5.6 for a more detailed discussion).

Remark 3.1.16. The cosheaf F appearing in the statement of Theorem 3.1.15 is not lo-
cally constant. Unwinding the definitions, one can identify the costalk of F at a point S =
{x1, . . . , xm} ∈ Ran(M) with the product

∏
i Mapc(Ui,M), where {Ui}1≤i≤m is a collection of

disjoint open disks around the points {xi}1≤i≤m. In particular, the costalk of F at S is non-
canonically equivalent to Ωn(Y )m: a homotopy type which depends only on the target space
Y , and not on the manifold M .

3.1.3. Heuristic Reformulation. Let f : E → B be any map of topological spaces (not neces-
sarily a fibration). For each open set V ⊆ B, let F(V ) = f−1(V ). Then F can be regarded
as a covariant functor from the partially ordered set of open subsets of B to the ∞-category
S. One can show that this construction determines a S-valued cosheaf on B. Conversely, any
sufficiently nice S-valued cosheaf F on B arises via this construction (this is true, for example,
if F is constructible with respect to some triangulation of B). We therefore obtain the following
heuristic version of Theorem 3.1.15:

(∗) Let M be an n-manifold and let Y be an (n − 1)-connected pointed space. Then
there should exist a map π : E → Ran(M) with the following property: for every
finite collection of disjoint connected open sets U1, . . . , Uk ⊆ M , the inverse image
f−1 Ran(U1, . . . , Uk) is homotopy equivalent to Mapc(U1 ∪ · · · ∪ Uk, Y ). In particular,
if M is connected, then E ' Mapc(M,Y ).
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Remark 3.1.17. The singular cochain functor T 7→ C∗(T ; Z) determines a contravariant
functor which carries colimits in S to limits in the ∞-category ModZ. It therefore follows
from Theorem 3.1.15 that if M is an n-manifold and Y is an (n − 1)-connected space, then
there exists a ModZ-valued sheaf A on Ran(M) with the property that A(Ran(U1, . . . , Um)) '
C∗(

∏
i Mapc(Ui, Y ); Z) when the Ui are disjoint connected open subsets of M (take A(V ) =

C∗(F(V ); Z)). If π : E → Ran(M) is as in (∗), then the sheaf A can be described by the formula
A(U) = C∗(π−1(U); Z).

If M is connected, then the cochain complex C∗(Mapc(M,Y ); Z) is given by the global
sections of the sheaf A. One of the main goals of this paper will be to construct an analogue
of the sheaf A in the setting of algebraic geometry (where we replace M by an algebraic curve
and Y by the moduli stack of principal bundles).

3.2. Statement of the Theorem. Fix an algebraically closed field k, a prime number ` which
is invertible in k, and an algebraic curve X over k. Let G0 be an algebraic group over k and let
BG0 denote its classifying stack, so that the moduli stack of G0-bundles on X can be identified
with the moduli stack of maps from X into BG0. Our goal in this section is to formulate an
analogue of Theorem 3.1.10, which asserts that the `-adic cohomology of this moduli stack does
not change if we restrict our attention to maps which are supported on a finite subset of X
(Theorem 3.2.9).

For our applications, it will be convenient to consider a more general situation:

• We replace the algebraic group G0 over k with a smooth affine group scheme G over X,
which we do not assume to be constant (so our result can more properly be regarded
as version of Poincare duality for a non-constant coefficient system).
• We formulate our result not only for G-bundles on X, but also “compactly supported”
G-bundles on nonempty open subsets U ⊆ X (which we take to mean G-bundles on X
which are trivialized on some divisor with support X − U).

We begin by introducing some notation.

Definition 3.2.1. Let G be a smooth affine group scheme over X, and let D ⊆ X be an
effective divisor. For every finitely generated k-algebra R, we let DR denote the fiber product
D×Spec k SpecR, which we regard as an effective divisor in the relative curve XR. We define a
category BunG(X,D) as follows:

• The objects of BunG(X,D) are triples (R,P, γ) whereR is a finitely generated k-algebra,
P is a G-bundle on XR, and γ is a trivialization of P |DR .
• A morphism from (R,P, γ) to (R′,P′, γ′) in BunG(X,D) consists of a k-algebra homo-

morphism R → R′ together with an isomorphism of G-bundles P×XRXR′ ' P′ which
carries γ to γ′.

The construction (R,P, γ) 7→ R determines a coCartesian fibration of categories BunG(X,D)→
Ringk, which exhibits BunG(X,D) as a prestack. We will refer to BunG(X,D) as the moduli
stack of G-bundles on X with a trivialization along D.

Remark 3.2.2. In the situation of Definition 3.2.1, the prestack BunG(X,D) is a smooth
algebraic stack over k (in particular, it satisfies descent for the fppf topology). In the special
case where D is empty, BunG(X,D) is isomorphic to the moduli stack BunG(X) introduced in
Definition 2.3.2.

We next introduce the Beilinson-Drinfeld Grassmannian RanG(X) associated to a group
scheme G over X. Roughly speaking, RanG(X) parametrizes G-bundles on X which are
equipped with a trivialization outside of a (specified) finite subset of X. We begin by for-
mulating a more precise definition:
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Definition 3.2.3. Let G be a smooth affine group scheme over X. We define a category
Ran+

G(X) as follows:

• The objects of Ran+
G(X) are quadruples (R,P, S, γ) where R is a finitely generated

k-algebra, P is a G-bundle on the relative curve XR = SpecR ×Spec k X, S is a finite
subset of X(R), and γ is a trivialization of P on the open set XR − |S| determined by
S.
• A morphism from (R,P, S, γ) to (R′,P′, S′, γ′) in Ran+

G(X) consists of a k-algebra
homomorphism φ : R→ R′ which carries S ⊆ X(R) into S′ ⊆ X(R), together with an
isomorphism of G-bundles XR ×XR P ' P′ which carries γ to γ′.

The construction (R,P, S, γ) 7→ (R,S) determines a forgetful functor θ : Ran+
G(X) →

Ran+(X). It follows immediately from the definitions that θ is a coCartesian fibration, so
that Ran+

G(X) can be regarded as a prestack and θ as a morphism of prestacks.
We define two more prestacks by the formulae

RanG(X) = Ran(X)×Ran+(X) Ran+
G(X) RanuG(X) = Ranu(X)×Ran+(X) Ran+

G(X).

Remark 3.2.4. Each of the prestacks introduced in Definition 3.2.3 can be described informally
as a “moduli space for G-bundles on X which are trivialized away from a finite set S ⊆ U”,
where U is a nonempty open subset of X. They differ slightly in details of implementation:
whether the set S is given as an abstract set or as a subset of U , and whether we require maps
between our finite sets to be surjections.

Remark 3.2.5. In the situation of Definition 3.2.3, we need not require the algebraic curve
X to be complete. In particular, for every nonempty open subset U ⊆ X, we can consider the
prestack Ran+

G(U), which is equivalent to the fiber product

Ran+
G(X)×Ran+(X) Ran+(U).

That is, we can identify Ran+
G(U) with the full subcategory of Ran+

G(X) spanned by those
quadruples (R,P, S, γ) where S is contained in the subset U(R) ⊆ X(R) (similar remarks apply
to the variants RanuG(U) and RanG(U)).

Example 3.2.6. Suppose that the group scheme G is trivial. Then the projection maps

RanG(U)→ Ran(U) RanuG(U)→ Ranu(U) Ran+
G(U)→ Ran(U)

are equivalences of prestacks.

Remark 3.2.7. The definition of the Beilinson-Drinfeld Grassmannian RanG(X) is local with
respect to the étale topology. More precisely, suppose we are given an étale morphism f : U →
V between smooth (not necessarily complete) algebraic curves over k. Let GV be a smooth
affine group scheme over V and let GU = U ×V GV . Suppose that R is a finitely generated
k-algebra and S is a finite subset of U(R) having image f(S) in V (R) for which the map of
divisors |S| → |f(S)| is bijective. Then the commutative diagram

UR − |S| //

��

UR

��
VR − |f(S)| // VR
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determines a pullback square of categories of G-torsors

TorsGU (UR − |S|) TorsGU (UR)oo

TorsGV (XR − |f(S)|)

OO

TorsG(XR)

OO

oo

(see Notation A.1.3). It follows that we have a canonical equivalence of prestacks

RanGV (V )×Ran(V ) Ran′(V ) ' RanGU (V )×Ran(U) Ran′(V ),

where Ran′(V ) denotes the full subcategory of Ran(V ) spanned by those triples (R,S, µ) for
which the map of divisors |µ(S)| → |f(µ(S))| is bijective. In particular, we have a canonical
equivalence

RanGV (V )×Ran(V ) V ' RanGU (U)×Ran(U) V.

Since the forgetful functor θ : Ran+
G(U) → Ran+(U) is a coCartesian fibration, Proposition

2.5.11 and Theorem 2.5.19 immediately yield the following result:

Proposition 3.2.8. Let G be a smooth affine group scheme over X and let U ⊆ X be a
nonempty open subset. Then the maps

RanG(U)→ RanuG(U)→ Ran+
G(U)

are universal homology equivalences.

We can think of the prestack RanG(U) as parametrizing G-bundles on X which are trivialized
away from a finite subset S ⊆ U , and are therefore “supported” on a union of small (formal)
disks around the points of S. Heuristically, this is an algebro-geometric incarnation of the
homotopy colimit

lim−→
V1,...,Vk⊆U

Mapc(V1,BG)× · · · ×Mapc(Vk,BG)

appearing in Proposition 3.1.10 (at least in the case where G is a constant group). We have
the following table of analogies:

Abelian Cohomology Nonabelian Cohomology Algebraic Geometry

Manifold M Manifold M Open Curve U = X −D

Abelian group A Pointed space (Y, y) G (or BG)

C∗c (M ;A) Mapc(M,Y ) BunG(X,D)

Open disk V ⊆M Open disk V ⊆M Completion of U at x ∈ U

C∗c (V ;A) Mapc(V, Y ) G-bundles trivialized on X − {x}

C∗(M ;A) lim−→V1,...,Vk

∏
Mapc(Vi, Y ) RanG(U)

Note that if D ⊆ X is an effective divisor, we have an evident forgetful functor

RanuG(X −D)+ → BunG(X,D),
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given on objects by the formula (R,P, S, γ) 7→ (R,P, γ|DR). Composing with the forgetful
functor RanG(X −D)→ RanuG(X −D)+, we obtain a map RanG(X −D)→ BunG(X,D). We
can now formulate the first main result of this paper:

Theorem 3.2.9 (Nonabelian Poincare Duality). Let G be a smooth affine group scheme over
X, let D ⊆ X be an effective divisor, and suppose that the generic fiber of G is semisimple
and simply connected. Then the forgetful functor ρ : RanG(X −D)→ BunG(X,D) induces an
isomorphism

H∗(RanG(X −D); Z`)→ H∗(BunG(X,D); Z`).

Remark 3.2.10. The hypothesis that the generic fiber of G be simply connected can be
considerably weakened. Our proof depends only on the fact that the character lattice of the
geometric generic fiber of G is a permutation representation of the Galois group of the fraction
field of X. This is also true if the generic fiber of G is split reductive or has trivial center.

Remark 3.2.11. In the special case where the group scheme G is trivial, Theorem 3.2.9 reduces
to Theorem 2.4.5.

Taking the divisor D to be empty in Theorem 3.2.9, we obtain the following:

Corollary 3.2.12. Let G be a smooth affine group scheme over X suppose that the generic fiber
of G is semisimple and simply connected. Then the forgetful functor ρ : RanG(X)→ BunG(X)
induces an isomorphism

H∗(RanG(X); Z`)→ H∗(BunG(X); Z`).

We will deduce Theorem 3.2.9 from the following slightly stronger result:

Theorem 3.2.13. Let G be a smooth affine group scheme over X whose generic fiber is
semisimple and simply connected and let D ⊆ X be an effective divisor. Then the forgetful
functor

Ran+
G(X −D)→ BunG(X,D)

is a universal homology equivalence.

Remark 3.2.14. The projection map θ : RanG(X−D)→ BunG(X,D) factors as a composition

RanG(X −D)→ Ran+
G(X −D)→ BunG(X,D).

Consequently, it follows from Theorem 3.2.13 (together with Proposition 3.2.8) that θ is a
universal homology equivalence. Similarly, the map θu : RanuG(X)→ BunG(X,D) is a universal
homology equivalence.

3.3. Outline of Proof. Throughout this section, we fix an algebraically closed field k, a prime
number ` which is invertible in k, an algebraic curve X over k, and an effective divisor D ⊆ X.

Because BunG(X,D) is a prestack in groupoids, Theorem 3.2.13 is equivalent to the assertion
that for every map η : SpecR→ BunG(X,D), the projection map

π : SpecR×BunG(X,D) Ran+
G(X −D)→ SpecR

induces an isomorphism on Z`-homology (Corollary 2.5.12). We can identify the map η with
a pair (P, γ0), where P is a G-bundle on the curve XR, and γ0 is a trivialization of P on the
divisor DR. Let us denote the domain of the projection map π by SectD(P). Roughly speaking,
we can think of SectD(P) as a moduli space for rational trivializations of P, which are defined
and equal to γ0 on the divisor DR. Unwinding the definitions, we can describe the prestack
SectD(P) as follows:
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• The objects of SectD(P) are triples (A,S, γ), where A is a finitely generated R-algebra,
S is a finite subset of X(A) such that |S| ∩DA = ∅, and γ is a map of schemes which
fits into a commutative diagram

XA − |S|
γ //

$$

P

��
XR

whose restriction to DA is given by γ0.
• A morphism from (A,S, γ) to (A′, S′, γ′) is an R-algebra homomorphism φ : A → A′

having the property that S′ contains the image of S under the induced map X(A) →
X(A′), and the diagram of schemes

XA′ − |S′|
γ′

$$$$

// XA − |S|
γ

{{
P

commutes.

Using Corollary 2.5.12, we can reformulate Theorem 3.2.13 as follows:

Theorem 3.3.1 (Acyclicity of Spaces of Rational Sections). Let G be a smooth affine group
scheme over X whose generic fiber is semisimple and simply connected, let R be a finitely
generated k-algebra, let P be a G-bundle on XR, and let γ0 be a trivialization of P along the
divisor DR ⊆ XR. Then the canonical map

H∗(SectD(P); Z`)→ H∗(SpecR; Z`)

is an isomorphism.

The remainder of §3 is devoted to the proof of Theorem 3.3.1. Our strategy is to first treat
the following special case, which we will discuss in §3.4:

Theorem 3.3.2. Let G be a smooth affine group scheme over X whose generic fiber is semisim-
ple and simply connected and let γ0 : D → G be the restriction to D of the identity section of
G. Then the canonical map

H∗(SectD(G); Z`)→ H∗(Spec k; Z`) ' Z`

is an isomorphism.

Example 3.3.3. Consider the case where D = ∅ and G is the constant group scheme associated
to the multiplicative group Gm (strictly speaking, this is not a special case of Theorem 3.3.2,
because the multiplicative group Gm is not semisimple). In this case, we can think of SectD(G)
as a parameter space for rational maps from the algebraic curve X into Gm. We can therefore
embed SectD(G) into a larger prestack SectD(G), which parametrizes rational maps from X into
the affine line A1. The prestack SectD(G) behaves like an affine space of infinite dimension (it
is an algebro-geometric incarnation of the function field KX of the curve X), and the prestack
SectD(G) behaves as if it were obtained from SectD(G) by removing the origin. From this
heuristic description, it is natural to expect that SectD(G) and SectD(G) are both acyclic with
respect to Z`-homology.
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In order to reduce Theorem 3.3.1 to Theorem 3.3.2, the main obstacle we need to overcome
is that a G-bundle P on a relative curve XR need not be trivial. However, since we are
only interested in studying rational sections, the following weaker condition can serve as a
replacement:

Definition 3.3.4. Let R be a finitely generated k-algebra and let U be an open subset of XR.
We will say that U is full if the composite map U ↪→ XR → SpecR is surjective. In other
words, U is full if it contains the generic point of each fiber of the map XR → SpecR.

Let D ⊆ X be an effective divisor, let P be a G-bundle on XR, and let γ0 be a trivialization
of P along the divisor DR. We say that γ0 extends to a rational trivialization of P if there exists
a full open subset U ⊆ XR which contains DR, and a trivialization of P |U which extends γ0.

Remark 3.3.5. If the divisor D ⊆ X has positive degree, then any open set U ⊆ XR which
contains DR is automatically full.

The second main ingredient in our proof of Theorem 3.3.1 is the following result, which we
will prove in §3.7

Theorem 3.3.6 (Existence of Rational Trivializations). Let R be a finitely generated k-algebra,
and let P be a G-bundle on XR equipped with a trivialization γ0 on DR. Then, after passing to
an étale covering of SpecR, we can arrange that γ0 extends to a rational trivialization of P.

We devote the remainder of this section to the deduction of Theorem 3.3.1 from Theorems
3.3.2 and 3.3.6. The main idea is that the classification of rational maps depends only on the
generic behavior of the G-bundle P.

Definition 3.3.7. Let R be a finitely generated k-algebra, let P be a G-bundle on XR equipped
with a trivialization γ0 over the relative divisor DR ⊆ XR. Suppose we are given a finite subset
S0 ⊆ X(R) such that |S0| ∩DR = ∅.

We let Sect⊇S0

D (P) denote the full subcategory of SectD(P) spanned by those triples (A,S, γ)
for which S contains the image of the map S0 ⊆ X(R)→ X(A).

In the situation of Definition 3.3.7, the inclusion functor Sect⊇S0

D (P) ↪→ SectD(P) admits a
left adjoint (in the 2-category of prestacks), given on objects by (A,S, γ) 7→ (A,S′, γ′), where
S′ is the union of S with the image of S0, and γ′ is the restriction of γ. Applying Remark
2.3.32, we obtain the following:

Lemma 3.3.8. In the situation of Definition 3.3.7, the inclusion Sect⊇S(P) → Sect(PR) in-
duces an equivalence

C∗(Sect⊇SD (P); Z`)→ C∗(SectD(P); Z`)

in ModZ` .

Proof of Theorem 3.3.1. Let R be a finitely generated k-algebra and let P be a G-bundle on
XR equipped with a trivialization γ0 on the relative divisor DR. We will show that the map
SectD(P) → SpecR is a universal homology equivalence. By virtue of Proposition 2.5.15, this
assertion can be tested locally with respect to the fppf topology on SpecR. We may therefore
use Theorem 3.3.6 and Corollary A.2.10 to reduce to the case where there exists a finite subset
S ⊆ X(R) such that |S| ∩ DR = ∅ and γ0 extends to a trivialization γ of P |XR−|S|. Then γ

determines an equivalence of prestacks Sect⊇SD (P) ' Sect⊇SD (G ×X XR) (where the projection
map G ×X XR → XR is equipped with the unit section over D). Using Lemma 3.3.8, we can
replace P by the trivial G-bundle G×X XR (and γ0 by its tautological section). In this case, P
and γ0 are defined over k. We may therefore assume without loss of generality that R = k, in
which case the desired result follows from Theorem 3.3.2 (together with Example 2.5.13). �
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3.4. Proof of Theorem 3.3.2. Throughout this section, we fix an algebraically closed field
k, a prime number ` which is invertible in k, and an algebraic curve X over k.

Suppose that D ⊆ X is an effective divisor, and that G is a smooth affine group scheme
over X whose generic fiber is semisimple and simply connected. Our goal is to show that that
the projection map SectD(G)→ Spec k induces an isomorphism on `-adic homology (where the
prestack SectD(G) is defined using the map D → G given by the identity section). To prove
this, we will exploit the fact that the generic fiber of G is automatically quasi-split, so that
there is a close relationship between sections of the map G → X and equivariant maps from

some ramified cover X̃ of X into an algebraic group which is split over k. To formulate this
relationship more precisely, it will be convenient to introduce a bit of notation.

Notation 3.4.1. Let X̃ be an algebraic curve over k and let Γ be a finite group with a faithful

(but not necessarily free) action on X̃ for which the quotient X̃/Γ is isomorphic to X (here the

quotient is formed in the category of k-schemes). Let D ⊆ X be an effective divisor, and let D̃

denote the fiber product D ×X X̃ (which we regard as an effective divisor in X̃).

For every finitely generated k-algebra R, we let X̃R denote the fiber product SpecR×Spec kX̃,

and XR the quotient X̃R/Γ ' SpecR ×Spec k X. Let DR = D ×Spec k SpecR and D̃R =

D̃ ×Spec k SpecR.

Definition 3.4.2. Suppose we are given a finitely generated k-algebra R, a k-scheme Y

equipped with an action of Γ, and a Γ-equivariant map π : Y → X̃R equipped with a Γ-

equivariant section α0 : D̃R → Y over the relative divisor D̃R ⊆ X̃R.
We define a category SectΓ,D(Y ) as follows:

• The objects of SectΓ,D(Y ) are triples (A,S, α) where A is a finitely generated R-algebra,

S is a finite subset of X(A) such that |S| ∩DA = ∅, and α : X̃ ×X (XA − |S|)→ Y is

a Γ-equivariant map of X̃R-schemes whose restriction to D̃R coincides with α0.
• A morphism from (A,S, α) to (A′, S′, α′) in SectΓ,D(Y ) is an R-algebra homomorphism
A→ A′ which carries S ⊆ X(A) to a subset of S′ ⊆ X(A′), and for which the diagram

X̃ ×X (XA′ − |S′|) //

α′

''

X̃ ×X (XA − |S|)

α

xx
Y

commutes.

In the special case where D = ∅, we will denote SectΓ,D(Y ) by SectΓ(Y ). If, in addition, the
group Γ is trivial, we will denote SectΓ(Y ) by Sect(Y ).

Remark 3.4.3. In the special case where the group Γ is trivial and P → XR is a bundle
for some group scheme G on X, the prestack SectΓ,D(P) agrees with the prestack SectD(P)
introduced in §3.2.

Remark 3.4.4. In the situation of Notation 3.4.2, the construction (A,S, α) 7→ A determines
a coCartesian fibration SectΓ,D(Y ) → Ringk, so that we can regard SectΓ,D(Y ) as a prestack.
We will refer to SectΓ,D(Y ) as the prestack of Γ-equivariant rational sections of π extending α0.

The following result is the main technical ingredient in our proof of Theorem 3.3.2:

Proposition 3.4.5. Let X̃, D, and Γ be as in Notation 3.4.1. Let G be a simply connected
semisimple algebraic group over the field k, and suppose that we are given an action of Γ on

G which preserves a pinning (see §A.4), and consider the constant Γ-equivariant map D̃ → G
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given by the identity element of G. Then the canonical map SectΓ,D(X̃ ×Spec k G)→ Spec k is
a universal homology equivalence.

The proof of Proposition 3.4.5 will be given in §3.5. The remainder of this section is devoted
to the deduction of Theorem 3.3.2 from Proposition 3.4.5. We begin by introducing some
notation.

Notation 3.4.6. Let H be a smooth affine group scheme over X. For each integer n ≥ 0, let
H(−nD) denote the X-scheme obtained from H by dilitation of H at the divisor nD along its
identity section (that is, the scheme obtained by iteratively taking the (nλi)th order dilitation
at the points xi, if D =

∑
λixi); see §A.3. Then each H(−nD) is a smooth affine group scheme

over X, equipped with a map H(−nD) → H which is an isomorphism over the open subset
X −D ⊆ X. Moreover, if n > 0, then the fiber of H(−nD) at a point x ∈ D is a vector group
(that is, it is isomorphic to a product of finitely many copies of the additive group).

Our proof of Theorem 3.3.2 depends on the following:

Lemma 3.4.7. Let n be a nonnegative integer. Then:

(a) If the canonical map ι : SectD(G(−nD))→ SectD(G) induces an isomorphism

H0(SectD(G(−nD)); Z`)→ H0(SectD(G); Z`),

then it induces isomorphisms Hi(SectD(G(−nD)); Z`) → Hi(SectD(G); Z`) for all i ≥
0.

(b) If the map H0(SectD(G(−nD)); Z`)→ H0(SectD(G); Z`) factors through the augmenta-
tion ε : H0(SectD(G(−nD)); Z`)→ H0(Spec k; Z`) ' Z`, then H0(SectD(G); Z`) ' Z`.

Proof of Theorem 3.3.2. Let G be a smooth affine group scheme over X whose generic fiber
is semisimple and simply connected. Since the ground field k is algebraically closed, Tsen’s
theorem implies that the function field KX has dimension 1 (that is, every finite extension of
KX has trivial Brauer group). It follows that the generic fiber G0 = SpecKX ×X G is quasi-
split (see [10]). Let G′ denote the split form of G0, regarded as a semisimple algebraic group

over k. Since G0 is quasi-split, we can choose a finite Galois extension K̃X of KX with Galois

group Γ = Gal(K̃X/KX), an action of Γ on G′ which preserves a pinning, and a Γ-equivariant
isomorphism

u0 : Spec K̃X ×Spec k G
′ ' Spec K̃X ×X G.

The field K̃X is the function field of an algebraic curve X̃ over k, which comes equipped with

a faithful action of Γ and an isomorphism X̃/Γ ' X. Let H = X̃ ×Spec k G
′, which we regard

as Γ-equivariant group scheme over X̃. For each open subset U ⊆ X, let Ũ denote the inverse

image of U in X̃. Choosing U sufficiently small, we may assume that Γ acts freely on Ũ and
that u0 extends to a Γ-equivariant isomorphism

u : Ũ ×X̃ H ' Ũ ×X G.

If the divisorD were contained in U (this is automatic, for example, if the divisorD is empty),
then the desired result would easily from Proposition 3.4.5. To handle the general case, we will
need to work a bit harder. Shrinking U if necessary, we may assume that U = X − (D ∪D′),
where D′ ⊆ X is an effective divisor which does not intersect D. Let D̃ and D̃′ denote the
(scheme-theoretic) inverse images of D and D′ in X̃, respectively. Using Proposition A.3.11,
we can choose an integer n� 0 with the property that the map

Ũ ×X̃ H(−nD̃)→ Ũ ×X̃ H
u→ Ũ ×X G
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extends (uniquely) to a map of (X̃ − D̃′)-schemes

u : (X̃ − D̃′)×X̃ H(−nD̃)→ (X̃ − D̃′)×X G.

Similarly, we can choose an integer m� n such that the inverse u−1 extends to a map

v : (X̃ − D̃′)×X G(−mD)→ (X̃ − D̃′)×X̃ H(−nD̃).

Note that u and v are Γ-equivariant homomorphisms between group schemes over X̃−D̃′ (since

this can be checked over the dense open subscheme Ũ ⊆ X̃ − D̃′).
Note that the natural map SectD(G(−mD))→ SectD(G) factors through

SectΓ,D(H(−nD̃)) ' SectΓ,(n+1)D(H)

(see Remark A.3.10). Proposition 3.4.5 implies that the projection map

SectΓ,(n+1)D(H)→ Spec k

induces an isomorphism on homology, so that the map

H0(SectD(G(−mD); Z`)→ H0(SectD(G); Z`)

factors through H0(Spec k; Z`) ' Z`. Applying (b) of Lemma 3.4.7, we deduce that that
SectD(G) is connected: that is, we have H0(SectD(G); Z`) ' Z`. Applying the same argument
to G(−mD), we obtain H0(SectD(G(−mD))) ' Z`, so that the map SectD(G(−mD)) →
SectD(G) induces an isomorphism on degree zero homology. Combining this with part (a) of
Lemma 3.4.7, we conclude that the natural map

H∗(SectD(G(−mD)); Z`)→ H∗(SectD(G; Z`)

is an isomorphism. It follows that the commutative diagram

H∗(SectD(G(−mD)) //

φ

��

H∗(SectΓ,D(H(−nD̃)); Z`) //

φ′

��

H∗(SectD(G); Z`)

φ′′

��
H∗(Spec k; Z`)

id // H∗(Spec k; Z`)
id // H∗(Spec k; Z`).

exhibits φ′′ as a retract of φ′. Since φ′ is an isomorphism(Proposition 3.4.5), it follows that φ
is an isomorphism, so that the projection map SectD(G)→ Spec k induces an isomorphism on
`-adic homology and is therefore a universal homology equivalence (Example 2.5.13). �

The proof of Lemma 3.4.7 will require a bit more preparation.

Notation 3.4.8. Let H be a smooth affine group scheme over X and let D ⊆ X be a divisor.
For every finitely generated k-algebra A and each finite subset S ⊆ X(A) with |S| ∩DA = ∅,
let F (S,A) denote the set of all X-scheme morphisms γ : XA − |S| → H which vanish on the
divisor D. Let F (A) denote the direct limit lim−→S

F (S,A), where S ranges over all finite subsets

of X(A) such that |S| ∩DA = ∅. We let SectgD(H) denote the prestack in sets determined by
the functor F (so that the objects of SectgD(H) are given by pairs (A, η) where A ∈ Ringk and
η ∈ F (A)). Note that:

• We can regard F as a functor from Ringk to the category of groups, so that SectgD(H)
is a group-valued prestack in the sense of Remark 2.3.41.
• There is an evident forgetful functor SectD(H) → SectgD(H), given on objects by

(A,S, γ) 7→ (A, γ). This functor is right cofinal, and therefore induces an equivalence
C∗(SectD(H); Z`) ' C∗(SectgD(H); Z`).
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• Let n ≥ 0 be an integer, and let HnD denote the group scheme given by the Weil
restriction of nD ×X H along the finite flat map nD → Spec k. Then restriction to
nD yields a map of group-valued prestacks SectgD(H)→ HnD, and the composite map
SectgD(H)→ HnD → HD vanishes.

Remark 3.4.9. The prestack SectgD(H) can be regarded as an alternate version of SectD(H)
which is slightly more convenient for some purposes (for example, it is a prestack in sets).

Lemma 3.4.10. For each integer n > 0, the restriction map

SectgD(G)→ ker(GnD → GD)

becomes a surjection after sheafification with respect to the fppf topology.

Remark 3.4.11. Lemma 3.4.10 implies in particular that the sequence

SectgD(G)→ GnD → GD

is exact at the level of k-valued points. This can be proven by a more elementary argument: it
suffices to show that any section of G over nD can be extended to a section of G over an open
subset of X, which is a special case of Lemma 3.9.7.

Proof of Lemma 3.4.7, assuming Lemma 3.4.10. Note that we have a commutative diagram

SectD(G(−nD)) //

��

SectD(G)

��
SectgD(G(−nD))

θ // SectgD(G),

where the vertical maps induce isomorphisms on homology (see Notation 3.4.8). Note that
we can regard θ as an inclusion between group-valued prestacks, let C denote the quotient of
SectgD(G) by the action of SectgD(G(−nD)). Then restriction of germs defines fully faithful
embedding of prestacks θ : C ↪→ ker(GnD → GD), and Lemma 3.4.10 (together with Remark
A.3.10) shows that θ becomes an equivalence after sheafification with respect to the fppf topol-
ogy. Since G is smooth, the kernel ker(GnD → GD) is isomorphic to a finite extension of vector

groups and is therefore isomorphic (in the category of k-schemes) to an affine space Ad. It
follows that

H∗(C; Z`) '

{
Z` if ∗ = 0

0 otherwise.

Assertions (a) and (b) now follows immediately from the corresponding assertions of Corollary
2.3.42. �

Proof of Lemma 3.4.10. Let H = G(−D) and let H0 be the generic fiber of H. Since KX has
dimension 1, the group H0 is quasi-split. We may therefore choose a pair of Borel subgroups
B−, B+ ⊆ G0 which are in general position (so that the intersection B−∩B+ is a maximal torus
in H0). Let U− and U+ denote the unipotent radicals of B− and B+, and let C0 = U−TU+

denote the associated big cell (which we regard as an open subset of G0).
Since H0 is simply connected, the maximal torus T is a product of induced tori and is

therefore isomorphic (as a KX -scheme) to an open subset of an affine space. Similarly, the
unipotent groups U− and U+ admit finite filtrations whose successive quotients are vector
groups, and are therefore isomorphic (as KX -schemes) to affine spaces. We may therefore

choose an open immersion j : C0 ↪→ Ad×Spec k SpecKX , where d is the dimension of G0. By
a direct limit argument, we can choose a dense open subset V ⊆ X, an affine open subset
C ⊆ H ×X V with generic fiber C0, and an open immersion j : C ↪→ Ad×Spec kV extending j.
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Shrinking V if necessary, we may assume that C contains the identity section of H ×X V and
that V = X − (D∪D′), where D′ is a nonempty effective divisor in X which does not intersect
D.

Enlarging D′ if necessary, we may further assume that D′ can be written as the vanishing
locus of a regular function φ on X −D. For each integer q, let jq denote the composition of j
with the open immersion

Ad×Spec k(X − (D ∪D′))→ Ad×Spec k(X −D)

(y1, . . . , yd, x) 7→ (φ(x)qy1, . . . , φ(x)qyd, x).

Form a pushout diagram

C //

jq
��

H ×X (X −D′)

��
Ad×Spec k(X −D) // C(q).

Then C(q) is an X-scheme which is not necessarily separated. However, the scheme C(q) admits

a covering by two open affine subsets (the images of H ×X (X −D′) and Ad×Spec k(X −D))
with affine intersection (by virtue of our assumption that C is affine), so that the diagonal
map C(q) → C(q) ×Spec k C(q) is affine. It follows that the Weil restriction of C(q) along
the projection map X → Spec k is representable by an algebraic space Y (q) which is locally
of finite type over k (see, for example, Theorem SAG.5.4.3.1). Moreover, the unit section
of H ×X (X − D′) extends to a section sq of the projection map C(q) → X, and therefore
determines a k-valued point yq of Y (q).

Note that each C(q) is a smooth X-scheme. Let TC(q)/X denote the relative tangent bundle of
C(q) over X and let Eq denote the vector bundle on X obtained by pullback of TC(q)/X along sq.
Every section of the map C(q)→ X determines a map from a formal neighborhood of D into the
group scheme H; this observation determines a map of algebraic spaces ρq : Y (q) → H(n−1)D

for each integer n > 0. Using obstruction theory, one sees that sq belongs to the smooth

locus of ρq provided that the cohomology group H1(X;Eq(−(n− 1)D)) vanishes. Note that the
vector bundles Eq are related to one another by the formula Eq+1 = Eq(D

′), so that we have

H1(X;Eq(−(n−1)D)) provided that q is sufficiently large (compared with n). We may therefore
choose q � 0 so that sq belongs to the smooth locus of the map ρq. It follows that there exists
an étale map u : SpecR→ H(n−1)D whose image contains the identity element of H(n−1)D such
that u factors through ρq. By definition, u classifies a map u′ : (n− 1)D×X SpecR→ H. The
assumption that u factors through ρq guarantees that u′ extends to a map u′ : XR → C(q).
The inverse image u′−1(H ×X (X − D′)) ⊆ XR is an open subset containing the divisor DR.
Using Corollary A.2.10, we can choose an fppf covering SpecR′ → SpecR and a finite subset
S ⊆ X(R′) such that |S| ∩DR′ = ∅ and u′|XR′−|S| factors through H ×X (X −D′). It follows
that the induced map γ : SpecR′ → H(n−1)D factors through the restriction map

r : SectgD(G)→ ker(GnD → GD) ' H(n−1)D.

Let W ⊆ H(n−1)D be the image of the map γ. Then W is a nonempty open subset of
H(n−1)D, and γ determines a faithfully flat surjection SpecR′ → W . Note that the fibers Hx

are vector groups for x ∈ D, so that H(n−1)D is a finite extension of vector groups and therefore
connected. It follows that H(n−1)D is equal to the union of all translates of W by the elements
of W (k).

Let Z ⊆ H(n−1)D be the sheafification (with respect to the fppf topology) of the essential
image of the map r. Then Z contains W . Since Since r is a group homomorphism, Z is a
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subgroup of H(n−1)D, and therefore contains every translate of W by a point of W (k). It
follows that Z = H(−1)D, as desired. �

3.5. Equivariant Sections. Throughout this section, we let k be an algebraically closed field,

` a prime number which is invertible in k, X̃ an algebraic curve over k which is equipped with a

faithful (but not necessarily free) action of a finite group Γ. Let X = X̃/Γ denote the quotient

of X̃ by the action of Γ (formed in the category of k-schemes), let D ⊆ X be an effective divisor,

and let D̃ denote its inverse image in X.
Our ultimate goal in this section is to give the proof of Proposition 3.4.5, which asserts

the acyclicity of the prestack of Γ-equivariant rational maps from X̃ into a simply connected
semisimple algebraic group G over k (on which Γ acts by pinned automorphisms). The basic
strategy is to compare the space of rational maps into G with the space of rational maps into
the open subset of G given by the “big cell” of the Bruhat decomposition.

Notation 3.5.1. Let R be a finitely generated k-algebra, let Y be a quasi-projective k-scheme

equipped with an action of Γ and a Γ-equivariant map Y → X̃R, and let U ⊆ Y be a Γ-invariant
open subscheme. We let SectΓ,D(U ⊆ Y ) denote the full subcategory of SectΓ,D(Y ) spanned

by those triples (A,S, α) for which the map α−1(U) ⊆ X̃ ×X XA → SpecA is surjective. Then
SectΓ,D(U ⊆ Y ) inherits the structure of a prestack.

Remark 3.5.2. In the situation of Notation 3.4.2, suppose that U ⊆ Y is a Γ-invariant open
set which contains the image of α0. If the divisor D is nonempty, then we have SectΓ,D(U ⊆
Y ) = SectΓ,D(Y ).

Proposition 3.5.3. Let R be a finitely generated k-algebra, let Y be a scheme with an action

of Γ equipped with a Γ-equivariant map π : Y → X̃R, and let α0 : D̃R → Y be a Γ-equivariant

section of π over the relative divisor D̃R ⊆ X̃R. Let U ⊆ Y be a Γ-invariant open subscheme
which contains the image of α0. Then the canonical map SectΓ,D(U) ↪→ SectΓ,D(U ⊆ Y ) is a
universal homology equivalence.

Remark 3.5.4. In the situation of Proposition 3.5.3, suppose that we are given a Γ-equivariant
open embedding U ↪→ Y ′, where Y ′ is another XR-scheme equipped with an action of Γ. Then
the inclusions

SectΓ,D(U ⊆ Y )←↩ SectΓ,D(U) ↪→ SectΓ,D(U ⊆ Y ′)
are universal homology equivalences. We will invoke this principle repeatedly to “simplify” the
codomains of our rational maps.

Proof of Proposition 3.5.3. Fix an object C = (A,S, α) of the category SectΓ,D(U ⊆ Y ) and
let C denote the fiber product

SectΓ,D(U)×SectΓ,D(U⊆Y ) SectΓ,D(U ⊆ Y )C/.

Let K be the image of α−1(Y − U) under the projection map X̃A → XA. Since the map
α−1(U) → SpecA is surjective, K has finite intersection with each fiber of the map XA →
SpecA. Since α0 factors through U , the intersection K ∩DA is empty.

We wish to prove that the canonical map C∗(C; Z`) → C∗(SpecA; Z`) is an equivalence.
This assertion can be tested locally with respect to the fppf topology on SpecA (Proposition
2.5.15). We may therefore apply Corollary A.2.10 to reduce to the case where there exists a
finite subset T0 ⊆ X(A) such that K ⊆ |T0| and DA ∩ |T0| = ∅.

Unwinding the definitions, we see that C can be identified with the category whose objects
are pairs (B, T ), where B is a finitely generated A-algebra and T is a finite subset of X(B)
satisfying the following condition:
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(∗) The set T contains the image of S ⊆ X(A), the divisor |T | contains the inverse image
of K, and |T | ∩DA = ∅.

Let C0 denote the full subcategory of C spanned by those pairs (B, T ) where T contains the
image of T0 ⊆ X(A). Note that the inclusion ι : C0 ↪→ C admits a left adjoint (in the 2-category
of prestacks) given on objects by (B, T ) 7→ (B, T ′), where T ′ is the union of T with the image of
T0. It follows that ι induces an isomorphism H∗(C0; Z`)→ H∗(C; Z`). We are therefore reduced
to proving that the canonical map H∗(C0; Z`)→ H∗(SpecA; Z`) is isomorphism. This is clear,
since the category C0 contains (A,S ∪ T0) as an initial object. �

Corollary 3.5.5. Let R be a finitely generated k-algebra, let Y be a scheme with an action of Γ

equipped with a Γ-equivariant map π : Y → X̃R, and let α0 : D̃R → Y be a Γ-equivariant section

of π over the relative divisor D̃R ⊆ X̃R. Suppose that α0 factors through a Γ-invariant open
subset U ⊆ Y . If D is nonempty, then the inclusion SectΓ,D(U) → SectΓ,D(Y ) is a universal
homology equivalence.

Proof. Combine Remark 3.5.2 with Proposition 3.5.3. �

Proof of Proposition 3.4.5 when D 6= ∅. LetG be an algebraic group over k which is semisimple,
simply connected, and equipped with an action of Γ which preserves a pinning (B, T, {φα}).
Let B′ be the unique Borel subgroup of G which contains T and is in general position with
respect to B. Let U and U ′ denote the unipotent radicals of B and B′, respectively, and set
V = UTU ′ ⊆ G. Then V is a Γ-invariant open subset of G which contains the image of the
map α0. By virtue of Corollary 3.5.5, the inclusion

SectΓ,D(X̃ ×Spec k V ) ↪→ SectΓ,D(X̃ ×Spec k G)

is a universal homology equivalence. It will therefore suffice to show that the projection map

SectΓ,D(X̃ ×Spec k V )→ Spec k induces an isomorphism on Z`-homology.
Using the Bruhat decomposition, we can identify V with the product U ×Spec k T ×Spec k U

′

as a k-scheme. Let π : V → T be the projection onto the middle factor, and let ι : T → V be
the inclusion map. We will show that the maps π and ι induce mutually inverse isomorphisms

between the `-adic homology of SectΓ,D(X̃ ×Spec k V ) and SectΓ,D(X̃ ×Spec k T ).
Let α1, . . . , αr : T → Gm be the system of simple roots of G determined by the choice of

Borel subgroup G. Then composition with {αi}1≤i≤r determines a group homomorphism

Hom(Gm, T )→
∏

1≤i≤r

Hom(Gm,Gm) ' Zr.

This is an injective map between free abelian groups of the same rank, and is therefore a rational
isomorphism. In particular, we can choose an integer n > 0 and a cocharacter β : Gm → T

such that αi ◦ β is given by the nth power map Gm
n→ Gm for 1 ≤ i ≤ r. Note that β is

invariant under the action of Γ. Consider the map h : Gm ×Spec k V → V given on k-points by
the formula

h(λ, utu′) = β(λ)uβ(λ)−1tβ(λ)−1u′β(λ).

Then h extends uniquely to a map h : A1×Spec kV → V , whose restriction to {0} ×Spec k V

coincides with the composition ι ◦ π : V → V . The map h induces a map of prestacks

θ : A1×Spec k SectΓ,D(X̃ ×Spec k V )→ SectΓ,D(X̃ ×Spec k V ).

Note that the composition of θ with the inclusion

e1 : {1} ×Spec k SectΓ,D(X̃ ×Spec k V ) ↪→ A1×Spec k SectΓ,D(X̃ ×Spec k V )
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is the identity map, and therefore induces an isomorphism on Z`-homology. Since e1 also
induces an isomorphism on Z`-homology, it follows from the Künneth formula (Proposition
2.3.40) that θ induces an isomorphism of Z`-homology. It follows that the composition of θ
with the inclusion

e0 : {0} ×Spec k SectΓ,D(X̃ ×Spec k V ) ↪→ A1×Spec k SectΓ,D(X̃ ×Spec k V )

induces an isomorphism on Z`-homology, so that the composite map

SectΓ,D(X̃ ×Spec k V )
π→ SectΓ,D(X̃ ×Spec k T )

ι→ SectΓ,D(X̃ ×Spec k V )

also induces an isomorphism on Z`-homology. We are therefore reduced to proving that the

projection map SectΓ,D(X̃ ×Spec k T )→ Spec k induces an isomorphism on Z`-homology.
Since the group G is simply connected, the simple coroots {α∨i : Gm → T} determine a Γ-

equivariant isomorphism Gr
m ' T , where Γ acts on Gr

m by permuting the factors. In particular,
there is a Γ-equivariant open immersion j : T ↪→ Ar, where Γ acts linearly on Ar. Modifying
this open immersion by a translation if necessary, we may suppose that it carries the identity of
T to the origin in Ar. Corollary 3.5.5 implies that j induces a universal homology equivalence

SectΓ,D(X̃ ×Spec k T )→ SectΓ,D(X̃ ×Spec k Ar).

We are therefore reduced to proving that the projection map

SectΓ,D(X̃ ×Spec k Ar)→ Spec k

induces an isomorphism on Z`-homology.
Note that the map A1×Ar → Ar given by (λ, v) 7→ v determines a A1-homotopy from the

identity map id : Ar → Ar to the zero map Ar → Spec k
e→ Ar. Arguing as above, we reduce to

proving that the map g : SectΓ,D(X̃)→ Spec k induces an isomorphism on Z`-homology. This
follows from Remark 2.3.32, since g admits a left adjoint f (in the 2-category of prestacks). �

The remainder of this section is devoted to the proof of Proposition 3.4.5 in the case D = ∅.
This will require some preliminaries.

Proposition 3.5.6. Let R be a finitely generated k-algebra, let Y be a k-scheme equipped with

an action of Γ, and let π : Y → X̃R be a Γ-equivariant map. Suppose we are given a finite
collection of Γ-invariant open subsets U1, . . . , Un ⊆ Y . For every subset I ⊆ {1, . . . , n}, let UI =⋂
i∈I Ui. If the forgetful functor SectΓ(UI ⊆ Y ) → SpecR is a universal homology equivalence

for every nonempty subset I ⊆ {1, . . . , n}, then the forgetful functor SectΓ(
⋃
Ui ⊆ Y )→ SpecR

is a universal homology equivalence.

We begin by proving Proposition 3.5.6 in the special case n = 2.

Lemma 3.5.7. In the situation of Definition 3.4.2, suppose we are given a pair of Γ-invariant
open subsets U, V ⊆ Y . Let C denote the full subcategory of SectΓ(Y ) given by the union of
SectΓ(U ⊆ Y ) and SectΓ(V ⊆ Y ). Then the inclusion C ↪→ SectΓ(U ∪ V ⊆ Y ) is a universal
homology equivalence.

Proof. Suppose we are given an object C = (A,S, α) ∈ SectΓ(U ∪ V ⊆ Y ), and let CC/ denote
the category C×SectΓ(U∪V⊆Y ) SectΓ(U ∪ V ⊆ Y )C/. We wish to prove that the canonical map

C∗(CC/; Z`)→ C∗(SpecA; Z`)

is an equivalence in ModZ` . In fact, we claim that the map θ : CC/ → SpecA is a universal

homology equivalence. Let W0 ⊆ SpecA denote the image of α−1U , and let W1 ⊆ SpecA
denote the image of α−1V . By assumption we have W0 ∪W1 = SpecA.
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By virtue of Proposition 2.5.15, the assertion that θ is a universal homology equivalence
can be tested locally with respect to the fppf topology. We may therefore assume that either
W0 = SpecA or W1 = SpecA. In this case, the map θ is an equivalence and there is nothing
to prove. �

Remark 3.5.8. Let C be a category containing full subcategories C0,C1 ⊆ C which satisfy the
following conditions:

• The subcategories C0 and C1 are cosieves in C: that is, for any morphism f : C → D
in C, if C belongs to Ci, then so does D.
• Every object of C belongs to either C0 or C1.

Then the diagram of simplicial sets

N(C0 ∩C1) //

��

N(C0)

��
N(C1) // N(C)

is a pushout square. It follows that for any∞-category D which admits colimits and any functor
F : C→ D, the diagram

lim−→C∈C0 ∩C1
F (C) //

��

lim−→C∈C0
F (C)

��
lim−→C∈C1

F (C) // lim−→C∈C F (C)

is a pushout square in D (see §HTT.4.2.3).

Proof of Proposition 3.5.6. Using induction on n, we can reduce to the case where n = 2. Let

π : Y → X̃R be as in Definition 3.4.2. For each Γ-invariant open set U ⊆ Y , the full subcategory
SectΓ(U ⊆ Y ) ⊆ SectΓ(Y ) is a cosieve. If V is another Γ-invariant open subset of Y , then the

irreducibility of X̃ gives an equality

SectΓ(U ∩ V ⊆ Y ) = SectΓ(U ⊆ Y ) ∩ SectΓ(V ⊆ Y ).

Combining Remark 3.5.8 with Lemma 3.5.7, we obtain a pushout diagram

C∗(SectΓ(U ∩ V ⊆ Y ); Z`) //

��

C∗(SectΓ(U ⊆ Y ); Z`)

��
C∗(SectΓ(V ⊆ Y ); Z`) // C∗(SectΓ(U ∪ V ⊆ Y ); Z`)

in the ∞-category ModZ` . �

The main ingredient we will need is for the proof of Proposition 3.4.5 is the following result,
which we will prove in §3.6:

Proposition 3.5.9. Let E be a Γ-equivariant vector bundle on X̃, let R be a finitely generated

k-algebra, let V ⊆ X̃R be a Γ-invariant open subset, let Y be a Γ-equivariant E-torsor over
V , and let U ⊆ Y be a Γ-invariant open subset such that the projection map U → SpecR is
surjective. Then the map C∗(SectΓ(U ⊆ Y ); Z`)→ C∗(SpecR; Z`) is an equivalence in ModZ` .

Our proofs of Proposition 3.4.5 and Proposition 3.5.9 both depend on the following “transi-
tivity” result:
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Lemma 3.5.10. Let R be a finitely generated k-algebra, let Y and Z be schemes equipped with
an action of Γ, and suppose we are given a commutative diagram of Γ-equivariant maps

Y

  

φ // Z

~~
X̃R.

Let U ⊆ Y be a Γ-invariant open set, let V = φ(U), and assume that V is open. Suppose that
the following condition is satisfied:

(∗) For every object (A,S, α) ∈ SectΓ(V ⊆ Z), set Y0 = Y ×Z (X̃ ×X (XA − |S|)) and set
U0 = Y0 ×Y U . Then the canonical map C∗(SectΓ(U0 ⊆ Y0); Z`) → C∗(SpecA; Z`) is
an equivalence.

Then the map SectΓ(U ⊆ Y ) → SectΓ(V ⊆ Z) is a universal homology equivalence. In partic-
ular, if the map SectΓ(V ⊆ Z) → SpecR is a universal homology equivalence, then the map
SectΓ(U ⊆ Y )→ SpecR has the same property.

Proof. Fix an object C = (A,S, α) ∈ SectΓ(V ⊆ Z), and set C = SectΓ(U ⊆ Y ) ×SectΓ(V⊆Z)

SectΓ(V ⊆ Z)C/. We wish to prove that the map C∗(C; Z`) → C∗(SpecA; Z`) is a quasi-
isomorphism. Define U0 ⊆ Y0 as in (∗). Unwinding the definitions, we can identify C with the
full subcategory of SectΓ(U0 ⊆ Y0) spanned by those objects (B, T, β) where T contains the
image of S in X(B). The inclusion C ↪→ SectΓ(U0 ⊆ Y0) admits a left adjoint (in the 2-category
of prestacks), given on objects by (B, T, β) 7→ (B, T ∪SB , β′) where SB denotes the image of S
in X(B) and β′ is the restriction of β. It follows that C∗(C; Z`) ' C∗(SectΓ(U0 ⊆ Y0); Z`), so
that the desired result follows from assumption (∗). �

Proof of Proposition 3.4.5 when D = ∅. Write G as a product of simple factors
∏
i∈I Gi, so

that Γ permutes the set I. For each i ∈ I, let Γi denote its stabilizer in Γ. Then the prestack

SectΓ(X̃ ×Spec k G) is equivalent to
∏

SectΓi(X̃ ×Spec k Gi), where the product is taken over a
set of representatives for the orbits of Γ on I. Using the Künneth formula (Proposition 2.3.40),
we can reduce to the case where the group G is simple.

We now argue that it suffices to prove the analogue of Proposition 3.4.5 where the group
G has been replaced by an open subset of the big Bruhat cell of G (assertion (∗) below). Let
(B, T, {φα}) be a pinning of G which is invariant under the action of Γ, and let B′ be the unique
Borel subgroup of G which contains T and is in general position with respect to B. Let U and
U ′ denote the unipotent radicals of B and B′, respectively, and set V = UTU ′ ⊆ G. Then V is
a dense open subset of G. Note that an element g ∈ G(k) belongs to V (k) if and only if gB′g−1

is in general position with respect to B.
Let G0 denote the identity component of the fixed point set GΓ, and let V + denote the

open subset of G given by
⋃
g∈G0(k) gV . Using Propositions A.4.2 and A.4.4, we see that either

V + = G or (in the special case where G = SL2n+1, the characteristic of k is equal to 2, and Γ
is nontrivial) the difference G−V + can be written as a disjoint union of components K−qK+

which are permuted by Γ. Since X̃ is connected, no Γ-invariant map from X̃ to G can factor
through K− qK+, so in any case we have

SectΓ(X̃ ×Spec k V
+ ⊆ X̃ ×Spec k G) = SectΓ(X̃ ×Spec k G).

Since V + is quasi-compact, we can choose finitely many points g1, . . . , gn ∈ GΓ(k) such
V + =

⋃
1≤j≤n gjV . For every subset J ⊆ {1, . . . , n}, let VJ =

⋂
j∈J g

−1
j V . By virtue of
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Proposition 3.5.6, it will suffice to show that the map

SectΓ(X̃ ×Spec k VJ ⊆ X̃ ×Spec k G)→ Spec k

is a universal homology equivalence for every nonempty subset J ⊆ {1, . . . , n}. Choose an
element j ∈ J , so that multiplication by gj determines an isomorphism of VI with a Γ-invariant
open subset of V . We are therefore reduced to proving the following:

(∗) Let W be a nonempty Γ-invariant open subset of the big cell V ⊆ G. Then the forgetful

functor SectΓ(X̃×Spec kW ⊆ X̃×Spec kG)→ Spec k is a universal homology equivalence.

Using Remark 3.5.4, we see that (∗) can be reformulated as follows:

(∗′) Let W be a nonempty Γ-invariant open subset of the big cell V ⊆ G. Then the forgetful

functor SectΓ(X̃×Spec kW ⊆ X̃×Spec kV )→ Spec k is a universal homology equivalence.

Note that U admits a Γ-equivariant filtration

∗ = U0 ⊆ U1 ⊆ · · · ⊆ Ud = U,

where each quotient Ui/Ui−1 is a vector group equipped with a linear action of Γ; choose a
similar filtration

∗ = U ′0 ⊆ U ′1 ⊆ · · · ⊆ U ′d = U ′.

For 0 ≤ i ≤ d, let Vi denote the double quotient Ui\V/U ′i , and let Wi denote the image of W
in Vi. Applying Lemma 3.5.10 and Proposition 3.5.9, we deduce that each of the maps

SectΓ(X̃ ×Spec k Wi ⊆ X̃ ×Spec k Vi)→ SectΓ(X̃ ×Spec k Wi+1 ⊆ X̃ ×Spec k Vi+1)

is a universal homology equivalence.
Note that Vd is isomorphic to a maximal torus T ⊆ G. Consequently, we are reduced to

proving the following:

(∗′′) Let W be a nonempty Γ-invariant open subset of T . Then the map

SectΓ(X̃ ×Spec k W ⊆ X̃ ×Spec k T )→ Spec k

is a universal homology equivalence.

Since G is simply connected, the character lattice of the torus T is freely generated by the
fundamental weights ofG, which are permuted among themselves by the group Γ. Consequently,
there exists a Γ-equivariant open immersion T ↪→ Ar, where r is the rank of G and the group
Γ acts linearly on Ar. Invoking Remark 3.5.4 again, we are reduced to proving the following
assertion:

(∗′′′) Let Ar be an affine space equipped with a linear action of Γ, and letW be a nonempty Γ-

invariant open subset of Ar. Then the map SectΓ(X̃×Spec kW ⊆ X̃×Spec kA
r)→ Spec k

is a universal homology equivalence.

This is a special case of Proposition 3.5.9. �

3.6. Sections of Vector Bundles. Throughout this section, we let k denote an algebraically
closed field, ` a prime number which is invertible in k, and X an algebraic curve over k. Our
goal is to give a proof of Proposition 3.5.9. The main step is to establish the following special
case:

Lemma 3.6.1. Let R be a finitely generated k-algebra and let U ⊆ XR×Spec kA1 be a full open
subset. Then the map

C∗(Sect(U ⊆ XR ×Spec k A1); Z`)→ C∗(SpecR; Z`)

is an equivalence in ModZ` .
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Let us first show that Lemma 3.6.1 implies Proposition 3.5.9.

Proof of Proposition 3.5.9. Let X̃ be an algebraic curve equipped with a faithful action of a

finite group Γ with X = X̃/Γ, let E be a Γ-equivariant vector bundle on X̃, let R be a finitely

generated k-algebra, let V ⊆ X̃R be a Γ-invariant open subset, let Y be a Γ-equivariant E-torsor
over V , and let U ⊆ Y be a Γ-invariant open subset such that the projection map U → SpecR
is surjective. We wish to show that the canonical map

C∗(SectΓ(U ⊆ Y ); Z`)→ C∗(SpecR; Z`)

is an equivalence in ModZ` .

Let W ⊆ X be a dense open subset with the property that the map ν : X̃ ×X W → W

is étale. Over the open subset X̃ ×X W ⊆ X̃, the action of Γ on E furnishes descent data:
that is, we have a Γ-equivariant isomorphism E |X̃×XW ' ν∗ E0, for some vector bundle E0

on W . Shrinking the open set W if necessary, we may suppose that the vector bundle E0 is
trivial. Note that replacing U by U ×X W does not change the category SectΓ(U ⊆ Y ). We
may therefore assume without loss of generality that the set U is contained in the open subset
Y ×X W ⊆ Y . Using Remark 3.5.4, we can replace V by V ×X W . Then the action of Γ on
V is free, so that we can write Y as the pullback of a E0-torsor Y/Γ over the open subscheme
V/Γ ⊆ XR.

Working locally on SpecR, we can use Proposition A.2.8 to reduce to the case whereXR−V/Γ
is contained in a closed subscheme E ⊆ XR which is finite and flat (of positive degree) over
R. Note that replacing U with U ×XR (XR − E) does not change the category SectΓ(U ⊆ Y ).
We may therefore assume without loss of generality that U ⊆ Y ×XR (XR−E). Using Remark
3.5.4 again, we can replace V by the inverse image of XR − E, and thereby reduce to the case
where V/Γ is affine. It follows that every E0-torsor on V/Γ is trivial, so that Y/Γ ' E0×WV/Γ
and we therefore have a Γ-equivariant isomorphism Y ' V ×Spec k An, where Γ acts trivially
on An. Using induction on n and Lemma 3.5.10, we can reduce to the case where n = 1. Using

Remark 3.5.4 again, we can replace Y by X̃R×Spec k A1. Note that the data of a Γ-equivariant

map X̃×X (XA−|S|)→ Y of X̃-schemes is equivalent to the data of a map of X-schemes from
XA− |S| to X ×Spec k A1. We may therefore reduce to the case where the group Γ is trivial, in
which case the desired result follows from Lemma 3.6.1. �

We now turn to the proof of Lemma 3.6.1. Here we invoke the same basic idea as in Example
3.3.3: the prestack Sect(XR ×Spec k A1) behaves like an infinite-dimensional affine space (and
is therefore acyclic), and the prestack

Sect(U ⊆ XR ×Spec k A1)

is obtained from Sect(XR×Spec kA1) by removing a closed subset of infinite codimension (which
has no effect on Z`-homology).

Proof of Lemma 3.6.1. The proof can be broken into three steps:

(a) Every A-valued point of Sect(U ⊆ XR ×Spec k A1) determines an effective divisor
K ⊆ XA (namely, the divisor on which the relevant section is not defined). Using
the acyclicity of the Ran space Ran(X), we reduce the proof of Lemma 3.6.1 to estab-
lishing an analogous result for a variant of the prestack Sect(U ⊆ XR×Spec kA1) where
the divisor K has been fixed (and is nonempty); we will denote this variant by C′.

(b) The collection of regular functions from XA−K into A1 admits a filtration, whose nth
stage consists of those rational functions on XA having poles of order at most n along
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the divisor K. We will define a corresponding filtration

C′(0) ⊆ C′(1) ⊆ C′(2) ⊆ · · ·

of the prestack C′. We are then reduced to the problem of showing that the map
H∗(C

′(m); Z`) ' H∗(SpecR; Z`) is an isomorphism for m� ∗.
(c) We show that the prestack C′(m) is highly connected for m � 0 by showing that it is

equivalent to an open subset of an affine space having large codimension.

We begin with step (a). Note that the forgetful functor Sect(U ⊆ XR×Spec kA
1)→ Ran+(X)

is a coCartesian fibration of categories. Set C = Sect(U ⊆ XR ×Spec k A1) ×Ran+(X) Ran(X).
Using Theorem 2.5.19 (and Proposition 2.5.11), we see that the canonical map

C∗(C; Z`)→ C∗(Sect(U ⊆ XR ×Spec k A1); Z`)

is an equivalence. Unwinding the definitions, we can identify C with the category whose objects
are triples (A,µ : S → X(A), α), where A is a finitely generated R-algebra, S is a nonempty
finite set, µ is a map of sets, and α : XA − |µ| → XR ×Spec k A1 is a map of XR-schemes for
which α−1U ⊆ XA is full.

We wish to prove that the canonical map C∗(C; Z`) → C∗(SpecR; Z`) is an equivalence.
Note that this map factors as a composition

C∗(C; Z`)
θ→ C∗(Ran(X)×Spec k SpecR; Z`)

θ′→ C∗(SpecR; Z`).

It follows from Corollary 2.4.13 (together with Proposition 2.3.40) that θ′ is an equivalence.
It will therefore suffice to show that θ is an equivalence. We have a commutative diagram of
categories

C //

  

Ran(X)×Spec k SpecR

vv
Fins

where the vertical maps are Cartesian fibrations. It will therefore suffice to show that for each
nonempty finite set S, the induced map

CS → (Ran(X)×Spec k SpecR)×Fins {S} ' XS
R

induces an isomorphism on Z`-homology, where CS denotes the fiber product C×Fins{S}.
Because the forgetful functors

Ran(X)×Spec k SpecR→ Fins ← C

are Cartesian fibrations of categories, the canonical maps

C∗(CS ; Z`)→ ((vu)!u
∗ F)(S) C∗(X

S
R; Z`)→ (v! F)(S)

are equivalences. We are therefore reduced to proving that the forgetful functor ψ : CS → XS
R

induces an equivalence C∗(CS ; Z`) → C∗(X
S
R; Z`). In fact, we claim that ψ is a universal

homology equivalence. To prove this, fix a finitely generated R-algebra A and a map of R-
schemes SpecA → XS

R, classifying a map of sets µ : S → X(A). Set C′ = CS ×XSR SpecA.

Unwinding the definitions, we can identify C′ with the category whose objects are pairs (B,α),
where B is a finitely generated A-algebra and α : SpecB ×SpecA (XA − |µ|) → XR ×Spec k A1

is a map of XR-schemes satisfying the following condition:

(∗) The projection map α−1(U)→ SpecB is surjective.
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We now proceed with step (b). We wish to prove that the canonical map C∗(C
′; Z`) →

C∗(SpecA; Z`) is an equivalence. Let C
′

denote the category whose objects are pairs (B,α),
where B is a finitely generated A-algebra and α : SpecB×SpecA (XA− |µ|)→ XR×Spec k A1 is

a map of XR-schemes (so that C′ is the full subcategory of C
′

spanned by those objects which
satisfy condition (∗)).

Let K = |µ| denote the effective divisor in the relative curve XA determined by µ. For each
integer m, we let O(mK) denote the sheaf on XA determined by the divisor mK. If B is a
finitely generated A-algebra, we let O(mK)B denote the pullback of O(mK) to the relative
curve XB , and O(∞K)B the direct limit lim−→O(mK)B . Unwinding the definitions, we see that

C
′

can be identified with the category whose objects are pairs (B,α), where B is a finitely
generated A-algebra and α is a global section of the quasi-coherent sheaf O(∞K)B . For each

integer m ≥ 0, we let C
′
m denote the full subcategory of C

′
spanned by those pairs (B,α) where

α is a section of O(mK)B , and set C′m = C
′
m∩C

′. Let s denote the cardinality of S (so that s is
the degree of the finite flat map K → SpecA). Using the Riemann-Roch theorem, we deduce

that there exists constants m0 and C such that for m ≥ m0, C
′
m is representable by a vector

bundle Em over SpecA of rank C +ms. Applying Example 2.5.14, we deduce that the map

C∗(C
′
m; Z`) = C∗(Em; Z`)→ C∗(SpecA; Z`)

is an equivalence for m ≥ m0. Consequently, to prove that the projection map C∗(C
′; Z`) →

C∗(SpecA; Z`) is an equivalence, it will suffice to show that the natural map

Hd(C
′(m); Z`)→ Hd(C

′
(m); Z`)

is an isomorphism for m� d.
We now carry out step (c). Note that for m ≥ m0, the prestack C′m is representable by an

open subscheme E◦m ⊆ Em. It will now be convenient to use Verdier duality for `-adic sheaves
(see §4.5 for a more detailed discussion). Let ωEm denote the dualizing sheaf of Em, so that we
can identify θ with the canonical map

H−dc (E◦m; j∗ωEm)→ H−dc (Em;ωEm).

Let Ym denote the complement of E◦m in Em and let i denote the inclusion of Ym into Em. We
then have an exact sequence

H−d−1
c (Ym; i∗ωEm)→ H−dc (E◦m; j∗ωEm)→ H−dc (Em;ωEm)→ H−dc (Ym; i∗ωEm).

It will therefore suffice to show that the groups H−d−1
c (Ym; i∗ωEm) and H−dc (Ym; i∗ωEm) vanish

for large values of m.
For m ≥ m0, the map Em → SpecA is smooth of relative dimension ms + C. Since the

dualizing sheaf of SpecA is concentrated in cohomological degrees ≤ 0, we conclude that ωEm
is concentrated in cohomological degrees ≤ −2(ms+C). Note also that the map Ym → SpecA
has finite fibers, so that dim(Ym) ≤ dim(SpecA). It follows that the desired vanishing holds
whenever −2(ms+ C) + 2 dim(SpecA) < −d− 1. �

3.7. Existence of Rational Trivializations. Throughout this section we let k be an alge-
braically closed field, X an algebraic curve over k, D ⊆ X an effective divisor, and G a smooth
affine group scheme over X whose generic fiber G0 is semisimple and simply connected.

Let R be a finitely generated k-algebra, let DR = D×Spec k SpecR, and let P be a G-bundle
on XR which is equipped with a trivialization γ0 on the divisor DR ⊆ XR. To prove Theorem
3.3.6, we would like to show that, after passing to an étale cover of SpecR, we can extend γ0 to
a rational trivializaton of P. When R = k, the existence of a rational trivialization of P follows
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from the vanishing of the cohomology set H1(KX ;G0) (where G0 denotes the generic fiber of
G). Consequently, for each k-valued point y of SpecR, we can choose a trivialization γy of the
fiber Py over a dense open subset U ⊆ X. Moreover, there are no infinitesimal obstructions
to extending this trivialization to a neighborhood of y: if U is affine, then the smoothness of
P implies that γy can be extended to a trivialization of P over U ×Spec k SpecR/mny , where
my denotes the maximal ideal of R determined by the point y. In other words, we can choose
a generic trivialization of P over a formal neighborhood of y in SpecR. However, there is no
obvious way to extend this trivialization from a formal neighborhood to an étale neighborhood,
because the collection of generic trivializations of P is not parametrized by any reasonable finite-
dimensional algebro-geometric object. We might attempt to remedy the situation by studying
trivializations which are defined over the entire curve X: these are parametrized by an affine R-
scheme of finite type (given by the Weil restriction of P along the map XR → SpecR). However,
this Weil restriction could be empty (since G-bundles on X can be globally nontrivial).

Following Drinfeld and Simpson ([15]), we will circumvent these difficulties by first looking
for a weaker structure on the G-bundle P: namely, a reduction of structure group from G to
a Borel subgroup. Since the fraction field KX has dimension 1, the group G0 is automatically
quasi-split ([10]); we may therefore choose a Borel subgroup B0 ⊆ G0. Let B denote the
scheme-theoretic closure of B0 in G. Then B is an affine group scheme which is flat (but not
necessarily smooth) over X. We will deduce Theorem 3.3.6 from the following result, which we
will prove in §3.9:

Theorem 3.7.1. Let G be a smooth affine group scheme over X such that the generic fiber
of G is either semisimple and simply connected or semisimple and adjoint. Let R be a finitely
generated k-algebra, let P be a G-bundle on XR, and let γ0 be a trivialization of P |DR . Then,
étale locally on SpecR, the G-bundle P admits a B-reduction which is compatible with γ0.

Using Theorem 3.7.1, we can reduce the problem of finding rational trivializations of G-
bundles to the problem of finding rational reductions of B-bundles, which we will discuss in
§3.9.

Remark 3.7.2. In the special case where the group scheme G is constant and D = ∅, Theorem
3.7.1 is proven in [15].

The remainder of this section is devoted to the deduction of Theorem 3.3.6 from Theorem
3.7.1. Note that the generic fiber of B is a smooth algebraic group over the fraction field KX .
We may therefore choose a dense open subset U ⊆ X containing D such that B ×X (U −D)
is a smooth affine group scheme over U −D. Shrinking U if necessary, we may further assume
that U is affine and that D is the vanishing locus of a regular function t ∈ OX(U).

Let P be as in the statement of Theorem 3.7.1. Note that both P and B\P are smooth
X-schemes (Lemma 3.9.6). Let us denote their relative tangent bundles by T = TP /X and
T ′ = T(B\P)/X , respectively. Then the projection map π : P → B\P induces a map of vector
bundles e : T → π∗T ′ on P. Note that e is surjective over the open set P×X(U − D). Since
P×X(U − D) is affine, the map e admits a section s over the open set P×X(U − D) ⊆ P.
For n� 0, the product tns extends (uniquely) to a regular map e′ : (π∗T ′)|P×XU → T |P×XU .
Replacing D by nD (and arbitrarily lifting γ0 to a trivialization of P over nD), we may assume
that n = 1. In this case, we have the following result:

Lemma 3.7.3. Suppose we are given a B-reduction of P, given by a map f : XR → B\P.
Suppose that m ≥ 2, and that we are given a map βm+1 : (m + 1)DR → P in the category of
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XR-schemes such that the diagram

(m+ 1)DR

βm+1 //

��

P

��
XR

f // B\P

commutes. Then there exists a map of XR-schemes βm+2 : (m + 2)DR → P such that
βm+1|mDR = βm+2|mDR and the diagram

(m+ 2)DR

βm+2 //

��

P

��
XR

f // B\P

commutes.

Proof. Since P is smooth, we can choose a map βm+2 : (m+ 2)DR → P extending βm+1. Since
m ≥ 2, we can view the structure sheaf of (m+2)DR as a square-zero extension of the structure
sheaf of mDR by an ideal I, so that the collection of all maps (m+ 2)DR → P compatible with
βm+2|mDR can be identified with H0(DR;T |mDR ⊗ I) (so that the identity element corresponds

to βm+2). Similarly, we can identify the set of all maps from (m + 2)DR → B\P compatible

with (πβm+2)|mDR with the set of global sections H0(DR; (π∗T ′)|mDR ⊗ I). In particular, the

restriction f |(m+2)DR determines an element [f ] ∈ H0(DR; (π∗T ′)|mDR ⊗ I). Unwinding the
definitions, we wish to prove that f belongs to the image of the map

H0(DR;T |mDR ⊗ I)→ H0(DR; (π∗T ′)|mDR ⊗ I).

In fact, we claim that [f ] belongs to the image of the composite map

H0(DR; (π∗T ′)|mDR ⊗ I)→ H0(DR;T |mDR ⊗ I)→ H0(DR; (π∗T ′)|mDR ⊗ I),

where the first map is induced by ts : (π∗T ′)|P×XU → T |P×XU . This is equivlent to the
assertion that [f ] is divisible by t, which follows immediately from the commutativity of the
diagram

(m+ 1)DR

βm+1 //

��

P

��
XR

f // B\P .

�

Lemma 3.7.4. In the situation of Theorem 3.3.6, there exists étale covering of SpecR over
which there is a reduction of P to a B-bundle Q ⊆ P such that γ0 extends to a trivialization of
Q over the formal completion of XR along DR.

Proof. Since G is smooth, we can extend γ0 to a map of XR-schemes β3 : 3DR → P. Using
Theorem 3.7.1, we can choose a B-bundle Q ⊆ P such that β3 factors through Q. Repeatedly
applying Lemma 3.7.3, we can choose maps {βm : mDR → Q}m≥3 such that βm+1|mDR =
βm+2|mDR . Then the sequence of restrictions {βm+1|mDR}m≥2 determines a trivialization of Q
on the formal completion of XR along DR. �
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Note that to prove Theorem 3.3.6, we are free to enlarge the divisor D; in particular, we
may always assume that D is nonempty. By virtue of Lemma 3.7.4, we are reduced to proving
the following:

Proposition 3.7.5. Assume that the divisor D is nonempty. Let R be a finitely generated
k-algebra, let Q be a B-bundle on XR, and let γ̂ be a trivialization of Q on the formal com-
pletion D∧R of DR in XR. Then there exists a full open subset U ⊆ XR containing DR and a
trivialization of Q |U which agrees with γ̂ on the divisor DR.

Our proof of Proposition 3.7.5 will rely on the following elementary algebraic fact, whose
proof we defer until the end of this section.

Lemma 3.7.6. Let R be a reduced Noetherian ring such that SpecR is connected. Let f be
an invertible element in the Laurent series ring R((u)) = R[[u]][u−1]. Then f = ung for some
invertible element g in R[[u]].

Proof of Proposition 3.7.5. Our argument will proceed in three steps:

(a) We reduce the proof of Proposition 3.7.5 to a density statement concerning the set of
A-valued points of the torsor Q (assertion (∗) below).

(b) We show that (∗) follows from the analogous assertion for the maximal torus T ⊆ B.
(c) Using the simple connectivity of G, we show that the requisite density statement for

the torus T follows from elementary ring-theoretic considerations.

We begin with step (a). Let G0 be the generic fiber of G. Since KX has dimension 1, the
group G0 is quasi-split (see [10]). It follows that there exists a dense open subset V ⊆ X such
that GV = V ×X G is a quasi-split semisimple group scheme over V . Shrinking V if necessary,
we may assume that D ∩ V = ∅, that V ′ = V ∪D is affine, and that D is the vanishing locus
of a regular function t on V ′.

Let S denote the set of all relative divisorsD′ ⊆ XR such thatD′∩DR = ∅ andXR−D′ ⊆ V ′R.
For each D′ ∈ S, the difference XR − D′ is an affine open subset of XR, which we can write
as SpecAD′ for some finitely generated R-algebra AD′ . We will abuse notation by identifying

t with its image on AD′ , so that XR − (D′ ∪ DR) ' SpecAD′ [t
−1]. Let Â denote the t-adic

completion of AD′ : note that this completion depends only on the divisor D, and not on D′.

Let us regard Â and Â[t−1] as equipped with the t-adic topology. Note that for any affine

A-scheme Y = SpecB, the t-adic topologies on Â and Â[t−1] determine topologies on the sets

Y (Â) and Y (Â[t−1]); we will apply this observation in the case Y = Q.
For every commutative ring C equipped with a map SpecC → XR, we let Q(C) denote the

set of trivializations of Q×XR SpecC: that is, the set of XR-scheme morphisms from SpecC

into Q.Then Q(Â) can be identified with the set of trivializations of Q over the formal completion
D∧R. Under this identification, the collection of those trivializations which coincide with γ on

the divisor D corresponds to an open subset of Q(Â), which we can identify with a nonempty

open subset of W ⊆ Q(Â[t−1]).
For each D′ ∈ S, we have a pullback square

Q(AD′) //

��

Q(AD′ [t
−1])

��
Q(Â) // Q(Â[t−1]).

Consequently, to show that there exists a trivialization of Q over XR − D′ which agrees with

γ̂ on the divisor D, it will suffice to show that the image of the map Q(AD′ [t
−1])→ Q(Â[t−1])

has nonempty intersection with W . To complete the proof, it will suffice to show the following:
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(∗) The union of the images of the maps Q(AD′ [t
−1]) → Q(Â[t−1]) is dense in Q(Â[t−1])

(as D′ ranges over S).

We now proceed with step (b). Note that BV = V ×X B is the scheme-theoretic closure of
B0 in GV , which is a Borel subgroup of GV . It therefore fits into an exact sequence

0→ raduBV → BV → T → 0,

where T is a diagonalizable group scheme over V . Since G0 is simply connected, T is isomorphic
to a finite product of induced tori: that is, there exists a collection of finite étale maps {Vi →
V }1≤i≤m such that T is isomorphic to the product of Weil restrictions∏

1≤i≤m

ResVi/V (Gm ×Spec k Vi).

Without loss of generality, we may assume that each Vi is connected. Let Xi denote the smooth
projective curve having the same fraction field as Vi, so that we have finite maps Xi → X with
Vi ' Xi ×X V . Each of the projection maps BV → T → ResVi/V (Gm ×Spec k Vi) classifies a
map BV ×V Vi → Gm×Spec k Vi of group schemes over Vi. Using Proposition A.1.8, we see that
each of these maps can be extended to a map B×X Xi → Gm×Spec kXi of group schemes over
Xi. In particular, the B-bundle Q on XR determines a line bundle Li on XiR for 1 ≤ i ≤ m.

For each index i, let Di denote the (scheme-theoretic) inverse image of D in Xi, and choose
a k-rational point xi of Xi − Di. Choose an integer N � 0, so that each of the line bundles
Li(Nxi) has degree ≥ 2gi + deg(Di) along each fiber of the map νi : XiR → SpecR. It follows
that H1(XiR;Li(Nxi −DiR)) vanishes, and therefore the restriction map

H0(XiR;Li(Nxi))→ H0(DiR,Li |DiR)

is surjective. Since Q is trivial along the divisor D, the line bundles Li admit trivializations
along the relative divisors DiR. We may therefore lift these trivializations to sections si of
Li(Nxi). Let Ei ⊆ XiR denote the union of {xi}× SpecR with the vanishing locus of si (since
D 6= ∅ and si does not vanish on Di, this vanishing locus is a relative divisor).

Let S′ ⊆ S denote the collection of those divisors D′ ∈ S which contain the image of each
Ei. If D′ ∈ S′, then each of the line bundles Li is trivial on XiR ×XR (XR − D′). It follows
that the T -bundle on XR − (DR ∪ D′) induced from Q is trivial: that is, Q is induced from
a raduBV -bundle over the open set XR − (DR ∪ D′). Since XR − (DR ∪ D′) is affine and
raduBV admits a finite filtration by vector groups, every raduBV -bundle on XR − (DR ∪D′)
is automatically trivial. It follows that Q |XR−(DR∪D′) is trivial, so that we have identifications

Q(AD′ [t
−1]) ' BV (AD′ [t

−1]) Q(Â[t−1]) ' BV (Â[t−1]).

Since S′ is cofinal in S, assertion (∗) can be reformulated as follows:

(∗′) The map

lim−→
D′∈S′

BV (AD′ [t
−1])→ BV (Â[t−1])

has dense image.

Note that assertion (∗′) depends only on the structure of BV as a V -scheme, and not on
the group structure of BV . Since T is affine and radu(BV ) is a successive extension of vector
groups, we have an isomorphism (in the category of V -schemes) BV ' T ×V E, where E is the

total space of a vector bundle over V . It follows easily that the map E(AD′ [t
−1])→ E(Â[t−1])

has dense image for any D′ ∈ S′. We are therefore reduced to proving that the map

lim−→
D′∈S′

T (AD′ [t
−1])→ T (Â[t−1])
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has dense image.

We now carry out step (c). Writing T as a product of induced tori Ti = ResVi/V (Gm×Spec k

Vi), we are reduced to proving that each of the maps lim−→D′∈S′ Ti(AD
′ [t−1]) → Ti(Âi[t

−1]) has

dense image. Write Xi×X (XR−D′) ' SpecAiD′ , where AiD′ is a finite flat AD′ -module, and

let Âi be the t-adic completion of AiD′ (which is independent of D′). We are then reduced to
showing that the map

lim−→
D′∈S′

AiD′ [t
−1]× → lim−→ Âi[t

−1]×

has dense image.
Let {x1, . . . , xm} be the closed points of Xi which belong to the divisor Di. For 1 ≤ j ≤ m,

choose a rational function ui on Xi which vanishes at the point xj , and has neither zeroes
nor poles on the set {x1, . . . , xj−1, xj+1, . . . , xm}. Shrinking V if necessary, we may assume
that each ui is a regular function on Xi ×X V ′, which vanishes only at the point xj . Let

us abuse notation by identifying each uj with its image in AiD′ (for each D′ ∈ S′) and Âi.

Then Âi is isomorphic to the product
∏

1≤j≤mR[[uj ]], and Âi[t
−1] is isomorphic to the product∏

1≤j≤mR((uj)).
Factoring R as a product if necessary, we may assume without loss of generality that SpecR

is connected. Let rad(R) denote the nilradical of R. For each D′ ∈ S′, we have a commutative
diagram of exact sequences

rad(R)⊗R AiD′ //

φ′

��

A×iD′
//

φ

��

(AiD′/ rad(R)AiD′)
×

φ′′

��

// 0

∏
1≤j≤m rad(R)((uj)) // ∏

1≤j≤mR((uj)) // ∏
1≤j≤m(R/ rad(R))((uj)) // 0

where the map φ′ has dense image. Consequently, we may replace R by R/ rad(R) and thereby
reduce to the case where R is reduced. In this case, it follows from Lemma 3.7.6 that the units
in the ring

∏
1≤j≤mR((uj)) are given by

uZ
1 u

Z
2 · · ·uZ

mÂ
×
i .

It will therefore suffice to proving the following:

(∗′′) The map

lim−→
D′∈S′

A×iD′ → Â×i

has dense image.

To prove (∗′′), choose any D′ ∈ S′. Let x be an invertible element in Â×i . For each n ≥ 0,

we can choose an element y ∈ AiD′ whose image in Âi is congruent to x modulo tn. Then y
is a regular function on XiR ×XR (XR −D′) which does not vanish along the divisor DiR. Let
E ⊆ XiR denote the union of D′ ×X Xi with the vanishing locus of y, and let D′′ denote the
image of E in XR. Then D′′ is an effective divisor which contains D′ and does not intersect D′R.
It follows that D′′ belongs to S′, and the image of y in AiD′′ is invertible by construction. Since
n was chosen arbitrarily, it follows that x admits arbitrarily close approximations by elements
of the direct limit lim−→D′∈S′ A

×
iD′ . �

Proof of Lemma 3.7.6. Suppose first that R is an integral domain. For every nonzero f in
R((u)), let λ(f)un(f) denote the monomial of lowest degree which occurs in f . If g is another
nonzero element, we have

λ(fg) = λ(f)λ(g) n(fg) = n(f) + n(g).
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In particular, if fg = 1, then we have λ(f)λ(g) = 1, so that λ(f) is an invertible element of R.
It follows that u−n(f)f ∈ λ(f) + uR[[u]] is an invertible element of R[[u]].

We now treat the general case. Suppose that f is an invertible element of R((u)). Then for
every prime ideal p ⊆ R, the image of f in (R/p)((u)) is invertible. We may therefore write the
image of f as a product un(p)gp, where gp is an invertible element of (R/p)[[u]]. Note that n(p)
is uniquely determined by p. Moreover, if p ⊆ q, then the image of gp in (R/q)[[u]] is invertible,
so that gp = gq and n(p) = n(q). It follows that the function p 7→ n(p) is constant on each
connected component of SpecR. Since SpecR is connected, the function p 7→ n(p) is constant
with value n, for some integer n. Replacing f by u−nf , we may assume that n = 0.

Write f =
∑
ciu

i. The above argument shows that for each prime ideal p ⊆ R, we have
ci ∈ p for i < 0. Consequently, the elements c−1, c−2, . . . ∈ R belong the nilradical of R. Since
R is reduced, we deduce that ci = 0 for i < 0. Moreover, c0 /∈ p for each prime ideal p ∈ R, so
that c0 is invertible in R. It follows that f is an invertible element of R[[u]]. �

3.8. Digression: Maps of Large Degree. Throughout this section, we let k denote an
algebraically closed field, G a semisimple algebraic group defined over k, and Γ a finite group

which acts on G by automorphisms that preserve a pinning (B, T, {uα}) of G (see §A.4). Let X̃
be an algebraic curve over k equipped with a faithful (but not necessarily free) action of Γ and

let X denote the quotient X̃/Γ (formed in the category of k-schemes). Our goal in this section
is to establish the following technical result which will be needed for the proof of Theorem 3.7.1:

Proposition 3.8.1. Let D ⊆ X̃ be an effective divisor and let L be a line bundle on X̃. Then

there exists a map s : X̃ → G/B with the following properties:

(a) The map s is Γ-equivariant.
(b) The restriction s|D is equal to the constant map from D to the base point of G/B.

(c) The cohomology group H1(X̃;L⊗s∗TG/B) vanishes. Here TG/B denotes the tangent
bundle to the flag variety G/B.

Every character λ : B → Gm of the group B determines a G-equivariant line bundle on the

flag variety G/B, which we will denote by Lλ. If s : X̃ → G/B is a map, we let degλ(s) denote
the degree of the line bundle s∗ Lλ. The function λ 7→ degλ(s) is linear in λ, and therefore
given by pairing λ with a coweight deg(s) ∈ Hom(Gm, T ).

Let g denote the Lie algebra of G, and b ⊆ g the Lie algebra of the Borel subgroup B. It fol-
lows from the structure theory of reductive groups that the quotient g/b admits a B-equivariant
filtration, whose successive quotients are one-dimensional representations of B associated to the
characters α : T → Gm where α is a negative root. It follows that the tangent bundle TG/B
admits a finite filtration whose successive quotients are the line bundles Lα where α is a neg-

ative root of G. Consequently, for each line bundle L on X̃ and every map s : X̃ → G/B, the

cohomology group H1(X̃;L⊗s∗TG/B) admits a finite filtration, whose succesive quotients are

subquotients of the groups H1(X̃;L⊗s∗ Lα) where α is a negative root of G. These groups
vanish provided that degα(s) > 2g − 2 + deg(L). Proposition 3.8.1 is therefore an immediate
consequence of the following:

Proposition 3.8.2. Let D ⊆ X̃ be an effective divisor and let C be an integer. Then there

exists a map s : X̃ → G/B with the following properties:

(a) The map s is Γ-equivariant.
(b) The restriction s|D is equal to the constant map from D to the base point of G/B.
(c) For every negative root α of G, we have degα(s) ≥ C.

The proof of Proposition 3.8.2 depends on the following:
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Lemma 3.8.3. Let G be a reductive group and B a Borel subgroup of G. For every dominant
weight µ of G, there exists a map f : P1 → G/B of degree −µ.

Proof. Let BunµB(P1) denote the moduli stack of B-bundles on P1 having degree −µ. For every
such bundle P, let EP denote the vector bundle on P1 associated to the represntation g/b of B.
Note that EP admits a filtration whose successive quotients are line bundles of degree 〈−µ, α〉,
where α ranges over the negative roots of G. Since µ is dominant, the cohomology group
H1(P1;EP) vanishes. It follows that the inclusion of B into G induces a smooth morphism of
algebraic stacks u : BunµB(P1)→ BunG(P1). Since BunµB(P1) is nonempty, the image of u is a
nonempty open substack of BunG(P1). According to [15], the diagonal map BG→ BunG(P1)
is an open immersion with dense image, so that the fiber product BG×BunG(P1) BunµB(P1)

is nonempty. In particular, we can choose a B-bundle P on P1 of degree −µ for which the
associated G-bundle is trivial. Then P is classified by a map P1 → G/B having degree −µ. �

Proof of Proposition 3.8.2. We may assume without loss of generality that D is nonempty,
that G is semisimple and simply connected, and that C > 0. Choose a rational function

on X = X̃/Γ which vanishes on the image of the divisor D. This choice determines a Γ-

equivariant map g : X̃ → P1 (where Γ acts trivially on P1). Composing g with a map from
P1 to itself if necessary, we may suppose that g has degree ≥ C. Consequently, to construct

a map s : X̃ → G/B satisfying conditions (a), (b), and (c), it will suffice to construct a map
s0 : P1 → G/B satisfying the following analogous conditions:

(a′) The map s0 is Γ-equivariant (in other words, s0 factors through the subgroup GΓ ⊆ G).
(b′) The map s0 carries the point 0 ∈ P1 to the base point of G/B.
(c′) For every negative root α of G, we have degα(s0) > 0.

Let G0 denote the identity component of GΓ, and let B0 = B∩G0. Using Remark A.4.8 and
Corollary A.4.7, we see that G0 is a reductive group and that B0 is a Borel subgroup of G0.
According to Lemma 3.8.3, there exists a map u : P1 → G0/B0 such that −deg(u) is a strictly
dominant weight of G0. Without loss of generality, we may assume that this map carries the
origin 0 ∈ P1 to the base point of G0/B0. Then the composite map

P1 → G0/B0 ↪→ G/B

evidently satisfies conditions (a′) and (b′), and satisfies (c′) by virtue of Proposition A.4.10. �

3.9. Existence of Borel Reductions. Throughout this section, we let k denote an alge-
braically closed field, X an algebraic curve over k, G a smooth affine group scheme over X, and
assume that the generic fiber of G is either semisimple and simply connected or semisimple and
adjoint. Let B0 a Borel subgroup of the generic fiber of G, and B the scheme-theoretic closure
of B0 in G. Our goal is to give a proof of Theorem 3.7.1, which asserts that any G-bundle on
XR admits a B-reduction étale locally on SpecR.

Notation 3.9.1. Let R be a finitely generated k-algebra and let P be a G-bundle on XR. Then
B acts on P via a map a : B ×X P→ P. Let π2 : B ×X P→ P denote the projection onto the
second factor. The diagram

P
a← B ×X P

π2→ P

exhibits B ×X P as an fppf equivalence relation on P. We let B\P denote the quotient of P by
this equivalence relation (in the category of fppf sheaves on Ringk). It follows from a general
theorem of Artin that B\P is representable by an algebraic space ([1]).

Remark 3.9.2. In the situation of Notation 3.9.1, we have maps

P
α→ B\P β→ XR,
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where β ◦ α is smooth and α is faithfully flat. It follows that B\P is smooth over XR.

Notation 3.9.3. Let R be a finitely generated k-algebra and let P be a G-bundle on XR. Let
Fl(P) denote the algebraic space obtained by Weil restriction of B\P along the map XR →
SpecR (for a general discussion of Weil restriction, we refer the reader to [41]). In other words,
Fl(P) is the R-scheme whose A-valued points can be identified with commutative diagrams

XA

""

// B\P

��
XR.

Similarly, we let Fl(PDR) denote the Weil restriction of (B\P)×XR DR along the projection
map DR → SpecR. We have an evident restriction map Fl(P)→ Fl(PDR). If γ0 is a trivializa-
tion of P |DR , then γ0 determines a map SpecR→ Fl(PDR); in this case, we let FlD(P) denote
the fiber product

SpecR×Fl(PDR ) Fl(P).

Let R, P, and γ0 be as in Theorem 3.7.1. Unwinding the definitions, we see that there is
a bijective correspondence between A-valued points of FlD(P) and isomorphism classes of B-
reductions of the G-bundle XA ×XR P which are compatible with γ0. Consequently, Theorem
3.7.1 is equivalent to the assertion that the map FlD(P) → SpecR admits étale local sections.
Let FlD(P)◦ denote the smooth locus of the projection map FlD(P)◦ → SpecR. Since a smooth
surjection admits étale local sections, Theorem 3.7.1 will follow if we can show that the map
FlD(P)◦ → SpecR is surjective.

Let y be a k-valued point of SpecR, and let y be a k-valued point of FlD(P) lying over y.
Let Py denote the G-bundle on X determined by y, so that y can be identified with a section
s of the projection map π : B\Py → X which is compatible with η0. The map π is smooth;
let Tπ denote its relative tangent bundle (a vector bundle on B\Py). A standard deformation-

theoretic argument shows that the cohomology group H1(X; (s∗Tπ)(−D)) controls obstructions
to deforming the section s (where the deformation is fixed along the divisor D). In particular,
if the group H1(X; (s∗Tπ)(−D)) vanishes, then y belongs to the smooth locus Fl(P)◦. It will
therefore suffice to show that for each k-valued point y of SpecR, we can choose a section s
(which is compatible with γ0) such that H1(X; (s∗Tπ(−D)) vanishes. In this case, we might as
well replace R by k. It will therefore suffice to prove the following:

Proposition 3.9.4. Let P be a G-bundle on X, let π : B\P→ X be the projection map, and
let s0 : D → B\P be a map of X-schemes which can be lifted to a map D → P. Then s0 can
be extended to a section s of π with the property that H1(X; (s∗Tπ)(−D)) ' 0.

Remark 3.9.5. If the group scheme B is smooth, then the projection map P → B\P is a
smooth surjection. In this case, the existence of a map D → P lifting s0 is automatic.

The proof of Proposition 3.9.4 will require some preliminaries.

Lemma 3.9.6. Let P be a G-bundle on X. Then the quotient B\P is (representable by) a
scheme (automatically separated, since B is closed in G).

Lemma 3.9.7. Let P be a G-bundle on X and let γ0 be a trivialization of P over D. Then
there exists a dense open subset U ⊆ X which contains D and a trivialization of P |U which
extends γ0.

The proofs of Lemmas 3.9.6 and 3.9.7 will be given at the end of this section.
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Lemma 3.9.8. Let P be a G-bundle on X, and let s0 : D → B\P be a map of X-schemes
which can be lifted to a map s0 : D → P. Then s0 can be extended to a section of the projection
map π : B\P→ X.

Proof. Since k is an algebraically closed field, the function field KX has dimension 1. The
generic fiber of G is a connected reductive algebraic group over KX , so that every G-bundle on
SpecKX is trivial (see [10]). Choose a rational trivialization of P, determining bijections giving
isomorphisms P(L) ' G(L) for every field extension L of KX .

Since B0 is a parabolic subgroup of G0, the fiber product B\P×X SpecKX is proper over
SpecKX . It follows that there exists a dense open subset V ⊆ X for which the quotient
B\P×XV is proper over V . Shrinking V if necessary, we may suppose that V ∩ D = ∅.
Enlarging D, we may assume that V = X −D.

Applying Lemma 3.9.7, we deduce that there exists an open set U ⊆ X containing D and a
trivialization of P |U which is compatible with s. This trivialization determines a map f fitting
into a commutative diagram

U

��

f // B\P

��
X

id //

==

X.

We now complete the proof by observing that the map f admits an extension as indicated in the
diagram, by virtue of the valuative criterion of properness for the map (B\P)×X V → V . �

Lemma 3.9.9. Let φ : E′ → E be a map of vector bundles on X which is an epimorphism at
the generic point of X. If H1(X;E′) ' 0, then H1(X;E) ' 0.

Proof. The exact sequence of quasi-coherent sheaves 0 → ker(φ) → E′ → E′ / ker(φ) →
0 determines an exact sequence of cohomology groups H1(X;E′) → H1(X;E′ / ker(φ)) →
H2(X; ker(φ)). Since X is a curve, H2(X; ker(φ)) ' 0. It follows that H1(X;E′ / ker(φ)) ' 0.
The short exact sequence of sheaves

0→ E′ / ker(φ)→ E→ coker(φ)→ 0

determines a short exact sequence

H1(X;E′ / ker(φ))→ H1(X;E)→ H1(X; coker(φ)).

Since φ is generically surjective, the sheaf coker(φ) has finite support so that H1(X; coker(φ)) '
0. It follows that H1(X;E) ' 0 as desired. �

Lemma 3.9.10. Let E be a vector bundle on X and let f : X̃ → X be a finite flat map of

curves which is generically étale. If H1(X̃; f∗ E) ' 0, then H1(X;E) ' 0.

Proof. Since f is generically étale, the trace map f∗ OX̃ → OX induces a generically surjective

map of vector bundles f∗f
∗ E ' f∗ OX̃ ⊗E → E. Because H1(X; f∗f

∗ E) ' H1(X̃; f∗ E) ' 0,

Lemma 3.9.9 implies that H1(X;E) ' 0. �

Proof of Proposition 3.9.4. Let G0 denote the generic fiber of G, let G′ denote a split semisimple
algebraic group over k of the same type as G0, let B′ ⊆ G′ be a Borel subgroup, and let
Y = B′\G′ be the associated flag variety. Since G0 is quasi-split, we can choose a Galois
extension L of KX such that G0 splits over L, an action of the Galois group Γ = Gal(L/KX)
on G′ (via pinned automorphisms), and a Γ-invariant isomorphism

SpecL×X G ' SpecL×Spec k G
′.
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Then L is the fraction field of a smooth curve X̃ equipped with a finite generically étale map

f : X̃ → X.
Choose a map s0 : D → P lifting s0. Using Lemma 3.9.7, we can extend s0 to a trivialization

s of P over some open set V ⊆ X containing D and all points x ∈ X for which the fiber Gx

is not semisimple. The proof of Lemma 3.9.8 shows that the composite map V
s→ P → B\P

extends uniquely to a map s : X → B\P which extends s0.
The trivialization s determines an isomorphism

(B\P)×X SpecKX ' B0\G0,

where we can identify B0\G0 with the quotient of Y ×Spec k SpecL by the diagonal action of Γ.
It follows that there exists a dense open subset U ⊆ V and a Γ-equivariant isomorphism

ρ : Y ×Spec k Ũ → (B\P)×X Ũ ,

where Ũ = U ×X X̃ denotes the inverse image of U in X̃. Shrinking U if necessary, we may

suppose that D ∩ U = ∅. Let r : X̃ → Y ×Spec k X̃ be the map whose projection onto the first
factor is the constant map determined by the base point of Y , and note that the diagram

Ũ //

r|Ũ
��

X

s

����
Y ×Spec k Ũ

ρ // B\P

commutes. Write X̃ − Ũ = {x1, . . . , xm}. Using Lemma 3.9.6 and Proposition A.3.11, we
deduce that there exist integers n1, . . . , nm ≥ 0 and a commutative diagram

Y ×Spec k Ũ
ρ //

��

(B\P)×X Ũ

��
Z

ρ // (B\P)×X X̃,

where Z is obtained from Y ×Spec k X̃ by performing an nith order dilitation along r at the
point xi for each 1 ≤ i ≤ m. Let D′ =

∑
nixi. Enlarging the integers ni if necessary, we may

suppose that D′ is the inverse image of a divisor in X which contains D.

Let p : Z → Y and q : Z → X̃ denote the projection maps. Applying Remark A.3.2
repeatedly, we obtain a canonical isomorphism TZ/X̃ ' p

∗TY ⊗q∗ OX̃(−D′). By construction, r

lifts to a map r : X̃ → Z. Invoking Proposition 3.8.1, we can choose a map r′ : X̃ → Y ×Spec k X̃
with the following properties:

(a) The map r′ is Γ-equivariant.

(b) Let D̃ denote the inverse image of D in X̃. Then the restriction of r′|D̃+D′ is given by

the constant map from D̃ +D′ to the base point of Y .

(c) The cohomology group H1(X̃; (r′)∗(TY � OX̃(−D̃ −D′)) vanishes.

Using (b) and Proposition A.3.7 (applied to the maps r, r′ : X̃ → Y ), we deduce that r′ = p◦r′

for some map r′ : X̃ → Z such that ρ ◦ r′|D̃ is compatible with s0. Using (c), we deduce that

H1(X̃; (r′∗TZ/X̃)(−D̃)) ' 0. Let s̃′ = ρ ◦ r′, which we identify with a map from X̃ into B\P.

Then ρ induces a map of vector bundles

r′∗TZ/X̃ → s̃′∗Tπ
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which is a generic isomorphism. Applying Lemma 3.9.9, we conclude that the cohomology

group H1(X̃; (s̃′∗Tπ)(−D̃)) vanishes. Since s̃′ is Γ-invariant, it descends to a map s′ : X '
X̃/Γ→ B\P. Then s′ is a section of the projection π : B\P→ X, and the cohomology group
H1(X; (s′∗Tπ)(−D)) vanishes by virtue of Lemma 3.9.10. �

We now turn to the proofs of Lemmas 3.9.6 and 3.9.7.

Proof of Lemma 3.9.6. Let U ⊆ X be an affine open subset; we will show that U ×X (B\P)
is a scheme. Write U = SpecA and let U ×X G = SpecH, where H is a Hopf algebra over
A. Then we can write U ×X B = SpecH ′, where H ′ is the quotient of H by a Hopf ideal
I ⊆ H. Let us view H as a left comodule over itself, and note that H is A-flat. Since A is a
Dedekind ring, we can write H as a filtered colimit lim−→Hα, where each Hα is a submodule of H
which is projective of finite rank over A and invariant under the right coaction of H on itself.
Let Iα = Hα ∩ I. Then we have an injective map Hα/Iα ↪→ H ′. Since B is flat over X, H ′

is a torsion-free A-module so that Hα/Iα is also torsion-free. Note that I =
⋃
α Iα. We may

therefore choose an index α such that I is generated by Iα (as an ideal in H). Let E denote
the vector bundle on U determined by Hα, let d denote the rank of Iα as an A-module, and let
Grd(E) denote the U -scheme which parametrizes subbundles of E having rank d. The choice of
submodule Iα ⊆ Hα determines a map of U -schemes s : U → Grd(E).

The H-comodule structure on Hα determines a right action of GU = U ×X G on E, and
therefore also on the scheme Grd(E). Since I is a Hopf ideal, the comultiplication map ∆ :
H → H ⊗A H carries I into I ⊗A H +H ⊗A I, so that the composite map

I ↪→ H
∆→ H ⊗A H → H ⊗A H ′

carries I into I ⊗A H ′. It follows that this map also carries Iα into Iα ⊗A H ′, so that s is
invariant under the action of BU = U ×X B on Grd(E). We claim that BU = U ×X B is
precisely the stabilizer of the section s. To prove this, we let A′ denote an arbitrary A-algebra,
and suppose we are given a point g ∈ G(A′), which is classified by an A-algebra homomorphism
φ : H → A′. If g fixes the section s, then the composite map

Iα ↪→ H
∆→ H ⊗A H

φ→ H ⊗A A′

carries Iα into Iα ⊗A A′. Let ε : H → A denote the augmentation on A, so that ε annihilates
Iα. Then the composite map

Iα ↪→ H
∆→ H ⊗A H

ε⊗φ−→ A⊗A A′ ' A′

vanishes. It follows that φ annihilates Iα and therefore (since Iα generates the ideal I) the
element g belongs to the subgroup B(A′) ⊆ G(A′), as desired.

Let B\G denote the quotient of G by the left action of B, so that evaluation on the section
s determines a monomorphism of algebraic spaces

U ×X (B\G)→ Grd(E).

This map is G-invariant, and therefore determines a map

µ : U ×X (B\P)→ Grd(E)×G P,

where Grd(E)×GP denotes the quotient of Grd(E)×X P by the diagonal action of G. Then µ is
a quasi-compact monomorphism of algebraic spaces, hence quasi-affine ([27]). Consequently, to
prove that U ×X (B/P) is a scheme, it will suffice to show that Grd(E)×G P is a scheme. This
is clear: the product Grd(E)×G P can be identified with Grd(E

′), where E′ is the vector bundle
on U ×X XR determined by E and P (so that Grd(E)×G P is projective over U ×X XR). �
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Our proof of Lemma 3.9.7 will use the following fact, which was communicated to us by
Brian Conrad:

Lemma 3.9.11. Let R be a complete discrete valuation ring with maximal ideal m, let K be
the fraction field of R, let Y be a smooth affine K-scheme, and let U ⊆ Y be a dense open set.
Then U(K) is dense in Y (K) (where we equip Y (K) with the m-adic topology).

Proof. The assertion is local with respect to the Zariski topology on Y . We may therefore
assume without loss of generality that there exists an étale morphism of k-schemes φ : Y → Ad,
where d is the dimension of Y . Let Z denote the complement of U In Y . Since U is dense, we
have dim(Z) < d, so that the image under φ of Z is contained in a proper closed subscheme of

Ad. We may therefore choose a nonzero polynomial f(x1, . . . , xd) which vanishes on the points
of φ(Z(K)), so that φ(Z(K)) cannot contain any nonempty open subset of Kn. It follows from
Hensel’s lemma that φ induces an open map Y (K) → Kd, so that Z(K) cannot contain any
open subset of Y (K) and therefore U(K) is dense in Y (K), as desired. �

Proof of Lemma 3.9.7. By Tsen’s theorem, the fraction field KX is a field of dimension 1. It
follows that the G-bundle P is trivial at the generic point of X (see [10]). Let us view this
trivialization as a map η : SpecKX → P fitting into a commutative diagram

SpecKX
η //

$$

P

��
X .

Using a direct limit argument, we see that η can be extended to a map of X-schemes V → P,
where V is a dense open subset of X. Shrinking V if necessary, we may assume that V ∩D = ∅.
Let U be the open subset of X given by the union of V and D. We wish to show that
after modifying the set V and the trivialization η, we can arrange that η and s extend to a
trivialization of P |U .

Write D = {x1, . . . , xn}. Since G is smooth, we can extend γ0 to a trivialization γ of P

over q SpecOxi , where Oxi denotes the complete local ring of X at the point xi (so that Oxi
is noncanonically isomorphic to a power series ring k[[t]]). For 1 ≤ i ≤ n, let Kxi denote the
fraction field of Oxi , so that η and γ determine two different trivializations of P |SpecKxi

. These

trivializations differ by some elements gi ∈ G(Kxi). Let di denote the multiplicity of xi in the
divisor D, let mi denote the maximal ideal of Oxi , and let Si denote the kernel of the reduction

map G(Oxi) → G(Oxi /m
di
i ). Unwinding the definitions, we see that γ is compatible with η if

and only if each gi belongs to the set Si.
To complete the proof, we wish to show that we can change the trivialization η to arrange

that each gi belongs to Si. In other words, we wish to prove that we can choose g ∈ G(KX) so
that each of the products ggi ∈ G(Kxi) belongs to Si.

Let us regard each G(Kxi) as a topological space as in Lemma 3.9.11. By construction, the
product

∏
1≤i≤n Sig

−1
i is a nonempty open subset of

∏
1≤i≤nG(Kxi). It will therefore suffice

to prove the following:

(∗) The map G(KX)→
∏

1≤i≤nG(Kxi) has dense image.

Let G0 be the generic fiber of G. Since the field KX has dimension 1, the group G0 is
quasi-split. Let B0 be a Borel subgroup of G0, let T0 ⊆ B0 be a maximal torus, let B′0 be the
unique Borel subgroup of G0 which contains T0 and is in general position with respect to B0,
and let U0 and U ′0 be the unipotent radicals of B0 and B′0, respectively. Then W = U ′0T0U0 is
a Zariski-dense open subset of G0, so that Lemma 3.9.11 implies that

∏
1≤i≤nW (Kxi) is dense
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in
∏

1≤i≤nG(Kxi). It will therefore suffice to show that the map W (KX) →
∏

1≤i≤nW (Kxi)
has dense image.

Using the lower central series of U0, we obtain a sequence of surjective algebraic group
homomorphisms

U0 → U1 → U2 → · · · → Um = {0}.
Each of the kernels of these maps is a vector group over KX , and therefore isomorphic (as a
scheme) to an affine space over KX . Since each Ui is an affine scheme, the maps Ui → Ui+1

admit sections (in the category of schemes), so that U0 is isomorphic (as a scheme) to a product
of finitely many copies of the affine line A1 over KX . Similarly, U ′0 is isomorphic to a product
of finitely many copies of A1. Using the decomposition W ' U0×T ×U ′0 (and our assumption
that the generic fiber of G is either semisimple or adjoint), we see that the KX -scheme W is
isomorphic to product of finitely many factors Wβ , where each Wβ is isomorphic either to the
affine line A1 over KX or to a restriction of scalars of the multiplicative group Gm from a finite
extension L0 ⊆ L of KX . The desired result now follows from the observations that the maps

KX →
∏

1≤i≤n

Kxi L×0 →
∏

1≤i≤n

(L0 ⊗KX Kxi)
×

have dense image. �

4. The Formalism of `-adic Sheaves

Let k be an algebraically closed field, let ` be a prime number which is invertible in k, let
X be an algebraic curve over k, and let G be a smooth affine group scheme over X. In §3,
we proved that if the generic fiber of G is semisimple and simply connected, then the forgetful
functor RanG(X) → BunG(X) is a universal homology equivalence (see Theorem 3.2.13). In
particular, the pullback map

H∗(BunG(X); Z`)→ H∗(RanG(X); Z`)

is an isomorphism. The formulation and proof of this statement use the language of `-adic
cohomology, but only in its most elementary incarnation: all cohomology (or homology) is
taken with constant coefficients.

Unfortunately, the calculation of H∗(BunG(X); Z`) supplied by Theorem 3.2.13 is not ade-
quate for our needs in this paper. In order to prove Theorem 1.3.5, we will need to establish
`-adic analogues of the other topological formulae for the cohomology of BunG(X) outlined in
§1.4. For this purpose, the language of §2 is not sufficient: we need not only the theory of `-adic
cohomology, but also the more elaborate theory of `-adic sheaves. Consequently, we devote this
section to giving a review of the formalism of `-adic sheaves in a form which is convenient for
our purposes.

We begin in §4.1 by reviewing the theory of étale sheaves. To every scheme Y and every com-
mutative ring Λ, one can associate a stable∞-category Shv(Y ; Λ) of ModΛ-valued étale sheaves
on Y (Notation 4.1.2). This can be regarded as an “enhancement” of the derived category of
the abelian category of sheaves of Λ-modules on Y , whose objects are cochain complexes

· · · → F−2 → F−1 → F0 → F1 → F2 → · · · .
The∞-category Shv(Y ; Λ) contains a full subcategory Shvc(Y ; Λ) of constructible perfect com-
plexes, which we will discuss in §4.2. However, the∞-category Shvc(Y ; Λ) is too small for many
of our purposes: it fails to contain many of the objects we are interested in (for example, the
cochain complex C∗(BunG(X); Z/`Z) typically has cohomology in infinitely many degrees), and
does not have good closure properties under various categorical constructions we will need to
use (such as the formation of infinite direct limits). On the other hand, allowing arbitrary chain
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complexes (in particular, chain complexes which are not bounded below) raises some technical
convergence issues. We will avoid these issues by restricting our attention to the case where
the scheme Y has finite type over an algebraically closed field. In this case, the étale site of
Y has finite cohomological dimension, which implies that Shv(Y ; Λ) is compactly generated by
the subcategory Shvc(Y ; Λ) (Proposition 3.5.4).

The construction Y 7→ Shv(Y ; Λ) depends functorially on Λ: every map of commutative
rings Λ→ Λ′ induces base change functors

Shv(Y ; Λ)→ Shv(Y ; Λ′) Shvc(Y ; Λ)→ Shvc(Y ; Λ′).

In particular, we have a tower of ∞-categories

· · · → Shvc(Y ; Z/`3)→ Shvc(Y ; Z/`2)→ Shvc(Y ; Z/`Z).

We will denote the (homotopy) inverse limit of this tower by Shvc`(Y ), and refer to it as the
∞-category of constructible `-adic sheaves on Y . In §4.3, we will study the Ind-completion
Shv`(Y ) = Ind(Shvc`(Y )) of Shvc`(Y ), which we refer to as the ∞-category of `-adic sheaves
on Y . These ∞-categories provide a convenient formal setting for formulating most of the
constructions of this paper: the ∞-category Shv`(Y ) contains all constructible `-adic sheaves
F ∈ Shvc`(Y ) as well as other objects obtained by limiting procedures (such as localizations of
the form F[`−1]). Many important foundational results in the theory of étale cohomology (such
as the smooth and proper base change theorems) can be extended to the setting of `-adic sheaves
in a purely formal way; we will review the situation in §4.5. However, it is sometimes necessary
to make convergence arguments which require us to restrict our attention to `-adic sheaves
satisfying boundedness conditions; we therefore devote §4.4 to a review of the construction of
a t-structure on Shvc`(Y ) (which formally determines a t-structure on the ∞-category Shv`(Y )
as well).

For any quasi-projective k-scheme Y , the usual (left derived) tensor product of sheaves
determines a symmetric monoidal structure on the ∞-category Shv`(Y ), whose underlying
tensor product functor we denote by

⊗ : Shv`(Y )× Shv`(Y )→ Shv`(Y ).

In §4.6, we will study the Verdier dual of this operation: this determines a second symmetric
monoidal structure on Shv`(Y ), whose underlying tensor product we denote by

⊗! : Shv`(Y )× Shv`(Y )→ Shv`(Y ).

The unit object of Shv`(Y ) with respect to this second tensor product is not the constant sheaf,
but instead the dualizing complex of Y which we denote by ωY ∈ Shv`(Y ).

4.1. Étale Sheaves. Let X be a scheme and let Λ be a commutative ring. One can associate
to X an abelian category A of étale sheaves of Λ-modules on X. The derived category D(A)
provides a useful setting for performing a wide variety of sheaf-theoretic constructions. However,
there are other basic constructions (such as the formation of mapping cones) which cannot be
carried out functorially at the level of derived categories. One way to remedy the situation is
to introduce an ∞-category Shv(X; Λ) whose homotopy category is equivalent to the derived
category D(A). It is possible to produce such an ∞-category by applying a purely formal
procedure to the abelian category A (see §HA.1.3.2 and §HA.1.3.5). However, it will be more
convenient for us to define Shv(X; Λ) directly as the ∞-category of (hypercomplete) ModΛ-
valued sheaves on X. Our goal in this section is to give a brief introduction to this point of
view, and to review some of the basic properties of étale sheaves which will be needed in the
later sections of this paper. We will confine our attention here to the most formal aspects of the
theory, where the coefficient ring Λ can be taken to be arbitrary; for the essential base change
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and finiteness results for étale cohomology, which require additional hypotheses on Λ, will be
discussed in §4.3 and 4.5.

Remark 4.1.1. Since the apparatus of étale cohomology is treated exhaustively in other
sources (such as [2] and [13]; see also [17] for an expository account), we will be content to
summarize the relevant definitions and give brief indications of proofs.

Let k be an algebraically closed field, which we regard as fixed throughout this section. To
simplify the exposition, we will restrict our discussion to the setting of étale sheaves on quasi-
projective k-schemes. This is largely unnecessary: much of the theory that we describe can be
carried out for more general schemes. However, some restrictions on cohomological dimension
are needed in the proof of Lemma 4.1.13 (and the many other statements which depend on it).

Notation 4.1.2. Let Schk denote the category of quasi-projective k-schemes. For each X ∈
Schk, we let Schet

X denote the category whose objects are étale maps U → X between quasi-
projective k-schemes. Morphisms in Schet

X are given by commutative diagrams

U //

  

V

~~
X.

We will say that a collection of morphisms {fα : Uα → V } in Schet
X is a covering if the induced

map qUα → V is surjective. The collection of coverings determines a Grothendieck topology
on the category Schet

X , which we refer to as the étale topology.
Let Λ be a commutative ring, and let ModΛ be the ∞-category of chain complexes over Λ

(see Example 2.1.23). A ModΛ-valued presheaf on X is a functor of ∞-categories

F : (Schet
X)op → ModΛ .

If F is a ModΛ-valued presheaf on X and U ∈ Schet
X , then we can regard F(U) as a chain complex

of Λ-modules. For each integer n, the construction U 7→ Hn(F(U)) determines a presheaf of
abelian groups on X. We let πn F denote the étale sheaf of abelian groups on X obtained by
sheafifying the presheaf U 7→ Hn(F(U)). We will say that F is locally acyclic if, for every integer
n, the sheaf πn F vanishes.

We let Shv(X; Λ) denote the full subcategory of Fun((Schet
X)op,ModΛ) spanned by those

ModΛ-valued presheaves F which have the following property: for every locally acyclic object
F′ ∈ Fun((Schet

X)op,ModΛ), every morphism α : F′ → F is nullhomotopic.

Remark 4.1.3. Let F : (Schet
X)op → ModΛ be a ModΛ-valued presheaf on a quasi-projective

k-scheme X. Then F ∈ Shv(X; Λ) if and only if the following conditions are satisfied:

(1) The presheaf F is a sheaf with respect to the étale topology on Schet
X . That is, for every

covering {fα : Uα → V }, the canonical map F(V ) → lim←−F(U) is an equivalence in

ModΛ, where the limit is taken over all objects U ∈ Schet
V for which the map U → V

factors through some fα.
(2) The ModΛ-valued sheaf F is hypercomplete, in the sense of Definition SAG.1.2.1.15

(this is a technical hypothesis which is necessary only because we consider potentially
unbounded complexes, where descent for Čech coverings does not necessarily imply
descent for arbitrary hypercoverings).

Example 4.1.4. Let M be a finite abelian group equipped which is a module over some
commutative ring Λ. For every quasi-projective k-scheme X, the construction U 7→ C∗(U ;M)
(see Definition 2.2.6) satisfies conditions (1) and (2) of Remark 4.1.3, and can therefore be
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regarded as an object of Shv(X; Λ). Condition (1) follows immediately from the definition,
and condition (2) is automatic since the cochain complexes C∗(U ;M) are concentrated in
nonnegative cohomological degrees.

Example 4.1.5. If X = Spec k, then the ∞-category Shv(X; Λ) is equivalent to ModΛ. Con-
cretely, this equivalence is implemented by the global sections functor F 7→ F(X) ∈ ModΛ.

Remark 4.1.6. Let X and Λ be as in Notation 4.1.2. For each integer n ∈ Z, we let
Shv(X; Λ)≤n denote the full subcategory of Shv(X; Λ) spanned by those objects F for which
πm F ' 0 for m > 0, and we let Shv(X; Λ)≥n denote the full subcategory of Shv(X; Λ)
spanned by those objects F for which πm F ' 0 for m < 0. Then the full subcategories
(Shv(X; Λ)≥0,Shv(X; Λ)≤0) determine a t-structure on Shv(X; Λ). Moreover, the construction
F 7→ π0 F determines an equivalence of categories from the heart

Shv(X; Λ)♥ = Shv(X; Λ)≥0 ∩ Shv(X; Λ)≤0

of Shv(X; Λ) to the abelian category of étale sheaves of Λ-modules on X (see Proposition
SAG.2.1.1.3). In what follows, we will use this equivalence to identify the abelian cate-
gory of sheaves of Λ-modules on X with a full subcategory of Shv(X; Λ)♥. In particular, if
F ∈ Shv(X; Λ), we will generally identify the sheaves πn F with the corresponding objects of
Shv(X; Λ)♥.

Warning 4.1.7. In this paper, we will use homological indexing conventions when working
with t-structures on triangulated categories, rather than the cohomological conventions which
can be found (for example) in [8]. One can translate between conventions using the formulae

C≤n = C≥−n C≥n = C≤−n .

Warning 4.1.8. Let X and Λ be as in Notation 4.1.2, and let F be an object of the abelian
category A of étale sheaves of Λ-modules on X. Then there are two different ways in which F

can be interpreted as a ModΛ-valued presheaf on X:

(a) One can view F as a presheaf with values in the abelian category Mod♥Λ of (discrete)
Λ-modules, which determines a functor

F0 : (Schet
X)op → Mod♥Λ ⊆ ModΛ .

(b) Using the equivalence of abelian categories A ' Shv(X; Λ)♥, one can identify F with
an object

F1 ∈ A ' Shv(X; Λ)♥ ⊆ Shv(X; Λ) ⊆ Fun((Schet
X)op,ModΛ).

The functors F0 and F1 are generally not the same. By construction, the functor F0 has the
property that for every étale X-scheme U , the chain complex F0(U) ∈ ModΛ has homology
concentrated in degree zero, but the homologies of F1(U) are given by the formula

Hn(F1(U)) ' H−net (U ;F |U ).

Note also that F1 is a ModΛ-valued sheaf with respect to the étale topology on Schet
X but F0 is

not (in fact, F1 can be identified with the sheafification of F0 with respect to the étale topology).

Remark 4.1.9 (Functoriality). Let f : X → Y be morphism of quasi-projective k-schemes and
let Λ be a commutative ring. Then f determines a base-change functor Schet

Y → Schet
X , given

by U 7→ U ×Y X. Composition with this base-change functor induces a map Shv(X; Λ) →
Shv(Y ; Λ), which we will denote by f∗ and refer to as pushforward along f . The functor
f∗ admits a left adjoint, which we will denote by f∗ and refer to as pullback along f . If
F ∈ Shv(Y ; Λ), we will sometimes denote the pullback f∗ F by F |X , particularly in those cases
when f exhibits X as a subscheme of Y .
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Example 4.1.10. Let f : X → Y be an étale morphism between quasi-projective k-schemes.
Then composition with f induces a forgetful functor u : Schet

X → Schet
Y . The pullback functor

f∗ : Shv(Y ; Λ) → Shv(X; Λ) is then given by composition with u. From this description, we
immediately deduce that f∗ preserves limits and colimits. Using Corollary HTT.5.5.2.9, we
deduce that f∗ admits a left adjoint which we will denote by f!. In the special case where f is
an open immersion, we will refer to f! as the functor of extension by zero along f .

Proposition 4.1.11. Let X be a quasi-projective k-scheme, and let F ∈ Shv(X; Λ) for some
commutative ring Λ. The following conditions are equivalent:

(1) The sheaf F vanishes.
(2) For every k-valued point η : Spec k → X, the stalk η∗ F ∈ Shv(Spec k; Λ) ' ModΛ

vanishes.

Proof. The implication (1) ⇒ (2) is trivial. Suppose that F satisfies (2); we will show that
F ' 0 by proving that the identity map id : F → F is nullhomotopic. For this, it will suffice to
show that F is locally acyclic: that is, each of the sheaves of abelian groups πn F vanishes. We
may therefore assume without loss of generality that F belongs to the heart of Shv(X; Λ). We
will abuse notation by identifying F with the corresponding sheaf of abelian groups on Schet

X .
Choose an object U ∈ Schet

X and a section s ∈ F(U); we wish to show that s = 0. Let V ⊆ U
be the largest open subset for which s|V = 0. Suppose for a contradiction that V 6= U . Then
we can choose a point ηU : Spec k → U which does not factor through V . Let η denote the
composition of ηU with the map U → X, so that η∗ F ' 0 by virtue of (2). It follows that the
map ηU factors as a composition

Spec k → Ũ → U,

where s|Ũ = 0. We conclude that s vanishes on the open subset of U given by the union of V

with the image of Ũ , contradicting the maximality of V . �

Proposition 4.1.12. Suppose we are given a diagram of quasi-projective k-schemes σ :

UX
f ′ //

j′

��

UY

j

��
X

f // Y,

where j′ and j are étale. If σ is a pullback diagram, then the associated diagram of∞-categories

Shv(UX ; Λ) Shv(UY ; Λ)oo

Shv(X; Λ)

OO

Shv(Y ; Λ)oo

OO

satisfies the Beck-Chevalley property: that is, the induced natural transformation j′!f
′∗ → f∗j!

is an equivalence of functors from Shv(UY ; Λ) to Shv(X; Λ) (see §4.5 for a more detailed dis-
cussion).

Proof. Passing to right adjoints, we are reduced to proving that the canonical map j∗f∗ → f ′∗j
′∗

is an equivalence. Let F ∈ Shv(X; Λ). Using the descriptions of the pullback and pushforward
functors supplied by Remark 4.1.9 and Example 4.1.10, we must show that for every object
V ∈ Schet

UY , the restriction map F(UX×UY V )→ F(X×Y V ) is an equivalence. This is evidently
satisfied whenever σ is a pullback square. �
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The theory of étale sheaves makes sense for arbitrary schemes, not just those which are
quasi-projective over an algebraically closed field k. However, technical difficulties can arise
when dealing with unbounded chain complexes. In the setting of quasi-projective k-schemes,
these difficulties can be circumvented using the finiteness of cohomological dimension:

Lemma 4.1.13. Let X be a quasi-projective k-scheme of Krull dimension d, and let F be an
étale sheaf of abelian groups on X. Then the cohomology groups Hn(X;F) vanish for n > 2d+1.

Proof. Let ShvNis(X; Z) denote the full subcategory of Fun((Schet
X)op,ModZ) spanned by those

functors which are sheaves with respect to the Nisnevich topology, and let ι : Shv(X; Z) ↪→
ShvNis(X; Z) denote the inclusion map. Let F′ denote the object of the heart Shv(X; Z)♥

corresponding to F, so that we have a canonical isomorphism Hn(X;F) ' H−n F
′(X). Since

the ∞-topos of Nisnevich sheaves on X has homotopy dimension ≤ d (see SAG.1.1.5), it will
suffice to show that F′ belongs to ShvNis(X; Λ)≥−d−1. To prove this, it will suffice to show
that for every map η : SpecR → X which exhibits R as the Henselization of X with respect
to some finite extension of some residue field of X, the cohomology groups Hm(SpecR; η∗ F)
vanish for m > d + 1. Let κ′ denote the residue field of R, and let η0 : Specκ′ → X be the
restriction of η. Then κ′ is an extension of κ of trancendence degree ≤ d, and is therefore a
field of cohomological dimension ≤ d (see [50]). Since the ring R is Henselian, the canonical
map Hm(SpecR; η∗ F) → Hm(Specκ′; η∗0 F) is an isomorphism so that that Hm(SpecR; η∗ F)
vanishes for m > d+ 1 as desired. �

To any Grothendieck abelian category A, one can associate a stable∞-category D(A) called
the (unbounded) derived ∞-category of A, whose homotopy category is the classical derived
category of A; see §HA.1.3.5 for details.

Proposition 4.1.14. Let X be a quasi-projective k-scheme and let Λ be a commutative ring.
Then the inclusion Shv(X; Λ)♥ ↪→ Shv(X; Λ) extends to an equivalence of ∞-categories θ :
D(Shv(X; Λ)♥) ' Shv(X; Λ). In particular, the homotopy category of Shv(X; Λ) is equivalent
to the unbounded derived category of Shv(X; Λ)♥.

Proof. When restricted to chain complexes which are (cohomologically) bounded below, this
follows from the fact that the Grothendieck site Schet

X is an ordinary category (rather than
an ∞-category) and that Λ is an ordinary ring (rather than a ring spectrum); see Proposi-
tion SAG.2.1.1.8. It follows from Lemma 4.1.13 that the equivalence extends to unbounded
complexes; see Proposition SAG.2.1.1.11 for more details. �

Remark 4.1.15. Let X be a quasi-projective k-scheme and let Λ be a commutative ring. Then
an object F ∈ Shv(X; Λ) belongs to Shv(X; Λ)≥0 if and only if, for every point η : Spec k →
X, the stalk η∗ F ∈ Shv(Spec k; Λ) ' ModΛ belongs to (ModΛ)≥0. Similarly, F belongs to
Shv(Spec k; Λ)≤0 if and only if each stalk η∗ F belongs to (ModΛ)≤0.

Proposition 4.1.16. Let X be a quasi-projective k-scheme. Then, for every commutative ring
Λ, the full subcategory Shv(X; Λ) ⊆ Fun((Schet

X)op,ModΛ) is closed under colimits.

Proof. The inclusion Shv(X; Λ) ↪→ Fun((Schet
X)op,ModΛ) is a left exact functor between stable

∞-categories and therefore preserves finite colimits. It will therefore suffice to show that it
preserves filtered colimits. Let {Fα} be a filtered diagram of objects of Shv(X; Λ) having
colimit F. We wish to prove that for each U ∈ Schet

X , the canonical map lim−→Fα(U) → F(U)
is an equivalence. In other words, we want to show that for each integer n, the induced map
lim−→πn Fα(U) → πn F(U) is an isomorphism of abelian groups. Shifting if necessary, we may
suppose that n = 0. Replacing each Fα by a truncation if necessary, we may suppose that
each Fα belongs to Shv(X; Λ)≥0. Using Lemma 4.1.13, one can show that there exists an
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integer N � 0 such that the canonical map π0 G(U) → π0(τ≤N G)(U) is an isomorphism, for
each G ∈ Shv(X; Λ). Replacing each Fα by τ≤N Fα, we may assume that {Fα} is a diagram in
Shv(X; Λ)≤N for some integer N . The desired result now follows formally from the fact that the

Grothendieck topology on Schet
X is finitary (that is, every covering admits a finite refinement);

see Corollary SAG.1.3.2.20 for more details. �

Corollary 4.1.17. Let f : X → Y be a morphism of quasi-projective k-schemes. Then, for
every commutative ring Λ, the pushforward functor f∗ : Shv(X; Λ) → Shv(Y ; Λ) preserves
colimits.

Remark 4.1.18. Let f : X → Y be as in Corollary 4.1.17. Applying Corollary HTT.5.5.2.9,
we deduce that the functor f∗ admits a right adjoint. In the special case where f is proper,
we will denote this right adjoint by f !. We will refer to f ! as the exceptional inverse image
functor. We will primarily be interested in the functor f ! in the special case where f is a closed
immersion.

Warning 4.1.19. If the coefficient ring Λ is finite, there is a good definition of the exceptional
inverse image functor f ! for an arbitrary morphism f : X → Y . However, the functor f ! is
right adjoint to the compactly supported direct image functor f!, rather than the usual direct
image functor f∗. Since we do not wish to address the homotopy coherence issues which arise in
setting up an “enhanced” six-functor formalism, we will not consider this additional generality:
that is, we consider the functor f ! as defined only when f is proper, and the functor f! as
defined only when f is étale (a special case of the relationship between f ! and f! is articulated
in Example 4.5.15).

Example 4.1.20. Let n be a positive integer which is invertible in k and let Λ = Z/nZ. For
every k-scheme X, let µnX denote the invertible object of the abelian category Shv(X; Λ)♥

corresponding to the sheaf of abelian groups U 7→ {f ∈ OX(U) : fn = 1}. If f : X → Y is
a proper smooth morphism of relative dimension d, then the main result of [56] supplies an
equivalence

f ! F ' Σ2dµ⊗dnX ⊗Λ f
∗ F .

Remark 4.1.21. Let X be a quasi-projective k-scheme which is smooth of dimension d, let n
be a positive integer which is invertible in k, and let η : Spec k → X be a point of X. Then
there is an equivalence

η!Z/nZ ' Σ−2dµ⊗−dn ,

where µn = µn Spec k ∈ Shv(Spec k; Z/nZ). To prove this, we can work locally with respect to
the étale topology on X, and thereby reduce to the case where X = Pn so that there exists a
proper morphism π : X → Spec k. In this case, Example 4.1.20 supplies an equivalence

η!Z/nZ ' η!(π!Σ−2dµ⊗−dn )

' (π ◦ η)!Σ−2dµ⊗−dn

' Σ−2dµ⊗−dn

Proposition 4.1.22. Let i : Y ↪→ X be a closed immersion of quasi-projective k-schemes.
Then:

(1) The functor i! preserves filtered colimits.
(2) The functor i∗ preserves compact objects.

Proof. The implication (1) ⇒ (2) follows from Proposition HTT.5.5.7.2. We will prove (1).
Since the functor i∗ is a fully faithful embedding which preserves colimits (Corollary 4.1.18), it
will suffice to show that the composite functor F 7→ i∗i

! F preserves filtered colimits. Using the
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existence of a fiber sequence i∗i
! F → F → j∗j

∗ F, we are reduced to proving that the functor
F 7→ j∗j

∗ F preserves filtered colimits, which follows from Corollary 4.1.17. �

Proposition 4.1.23. Let X be a quasi-projective k-scheme. Then there exists an integer n
with the following property: for every closed immersion i : Y ↪→ X and every commutative ring
Λ, the functor i! carries Shv(X; Λ)♥ into Shv(Y ; Λ)≥n.

Proof. Let d be the Krull dimension of X. We will prove that n = −2d has the desired property.
Let i : Y ↪→ X be a closed immersion, and let j : U → X be the complementary open immersion.
To prove that the functor i! carries Shv(X; Λ)♥ into Shv(Y ; Λ)≥n, it will suffice to show that the
composite functor i∗i

! carries Shv(X; Λ)♥ to Shv(X; Λ)≥n. Using the fiber sequence of functors

Σj∗j
∗ → i∗i

! → id,

we are reduced to proving that the functor j∗ carries Shv(U ; Λ)♥ into Shv(X; Λ)≥n−1. Let
F ∈ Shv(U ; Λ)♥. We will prove that j∗ F ∈ Shv(X; Λ)≥n−1 by proving that (j∗ F)(V ) ∈
(ModΛ)≥n−1 for every étale map V → X. Equivalently, we must show that the cohomology

groups Hi(U ×X V ;F |U×XV ) vanish for i > 2d+ 1, which follows from Lemma 4.1.13. �

Remark 4.1.24. Let i : Y → X be a closed immersion of quasi-projective k-schemes schemes,
let U = X−Y , and let j : U → X be the complementary open immersion. Then the pushforward
functor i∗ : Shv(Y ; Λ) → Shv(X; Λ) is a fully faithful embedding, whose essential image is the
full subcategory of Shv(X; Λ) spanned by those objects F ∈ Shv(X; Λ) such that j∗ F ' 0 (see
Proposition SAG.2.2.1.14)

Let F ∈ Shv(X; Λ). Then the fiber K of the canonical map F → j∗j
∗ F satisfies j∗K ' 0, so

we can write K ' i∗K0 for some K0 ∈ Shv(Y ; Λ). For each G ∈ Shv(Y ; Λ), we have canonical
homotopy equivalences

MapShv(Y ;Λ)(G,K0) ' MapShv(X;Λ)(i∗ G, i∗K0)

' fib(MapShv(X;Λ)(i∗ G,F)→ MapShv(X;Λ)(i∗ G, j∗j
∗ F))

' fib(MapShv(X;Λ)(i∗ G,F)→ MapShv(U ;Λ)(j
∗i∗ G, j

∗ F))

' MapShv(X;Λ)(i∗ G,F).

so that K0 can be identified with the sheaf i! F. In other words, we have a canonical fiber
sequence

i∗i
! F → F → j∗j

∗ F .

Using similar reasoning, we obtain a canonical fiber sequence

j!j
∗ F → F → i∗i

∗ F .

Remark 4.1.25. If i : X → Y is a closed immersion of quasi-projective k-schemes, then Re-
mark 4.1.24 gives an explicit construction of the functor i! (which does not depend on Corollary
4.1.17): namely, for each object F ∈ Shv(X; Λ), we can identify i! with a preimage (under the
functor i∗) of the fiber of the unit map F → j∗j

∗ F.

4.2. Constructible Sheaves. Let k be an algebraically closed field, which we regard as fixed
throughout this section. Let X be a quasi-projective k-scheme and let Λ be a commutative
ring. In §4.1, we introduced the stable ∞-category Shv(X; Λ) of étale sheaves of Λ-modules on
X. In this section, we will show that the ∞-category Shv(X; Λ) is compactly generated, and
that the compact objects of Shv(X; Λ) can be identified with the (perfect) constructible sheaves
on X (Proposition 4.2.5).
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Notation 4.2.1. Let X be a quasi-projective k-scheme, so that there is a unique morphism of
k-schemes f : X → Spec k. Pullback along f determines a functor

ModΛ ' Shv(Spec k; Λ)
f∗→ Shv(X; Λ),

which we will denote by M 7→MX . For each M ∈ ModΛ, we will refer to MX as the constant
sheaf on X with value M . By construction, the functor M 7→ MX is left adjoint to the global
sections functor F 7→ F(X) ∈ ModΛ. In the special case where M = Λ = Z/`dZ, the constant
sheaf MX is given by the formula MX(U) = C∗(U ; Z/`dZ) (see Definition 2.2.6).

Proposition 4.2.2. Let X be a quasi-projective k-scheme and let Λ be a commutative ring.
Then the ∞-category Shv(X; Λ) is compactly generated. Moreover, the full subcategory

Shvc(X; Λ) ⊆ Shv(X; Λ)

spanned by the compact objects is the smallest stable subcategory of Shv(X; Λ) which is closed
under retracts and contains every object of the form j!ΛU , where j : U → X is an object of the
category Schet

X .

Proof. We first show that for each j : U → X in Schet
X , the sheaf j!ΛU is a compact object of

Shv(X; Λ). To prove this, it suffices to show that the functor

F 7→ MapShv(X;Λ)(j!ΛU ,F) ' MapModΛ
(Λ,F(U))

commutes with filtered colimits, which follows immediately from Proposition 4.1.16.
Let C ⊆ Shv(X; Λ) be the smallest full subcategory which contains every object of the

form j!ΛU and is closed under retracts. Since C consists of compact objects of Shv(X; Λ), the
inclusion C ↪→ Shv(X; Λ) extends to a fully faithful embedding F : Ind(C)→ Shv(X; Λ) which
commutes with filtered colimits (Proposition HTT.5.3.5.10). Moreover, since C is closed under
retracts, we can identify C with the full subcategory of Ind(C) spanned by the compact objects.
To complete the proof that Shv(X; Λ) is a compactly generated ∞-category and that C is the
∞-category of compact objects of Shv(X; Λ), it will suffice to show that F is an equivalence of
∞-categories. Using Corollary HTT.5.5.2.9, we deduce that F has a right adjoint G. We wish
to show that F and G are mutually inverse equivalences. Since F is fully faithful, it will suffice
to show that G is conservative. Since G is an exact functor between stable ∞-categories, it
will suffice to show that if F ∈ Shv(X; Λ) satisfies G(F) ' 0, then F ' 0. This is clear, since
G(F) ' 0 implies that

π0 MapC(Σnj!ΛU , G(F)) ' π0 MapShv(X;Λ)(Σ
nj!Λ,F) ' Hn(F(U))

vanishes for each U ∈ Schet
X . �

Remark 4.2.3. For every quasi-projective k-scheme X, we can regard Shv(X; Λ) as a symmet-
ric monoidal∞-category (see §SAG.2.1.1), whose unit object is the constant sheaf ΛX . Suppose
that F is a dualizable object of Shv(X; Λ) with dual F∨. For any diagram of objects {Gα} of
Shv(X; Λ), we have a commutative diagram

lim−→MapShv(X;Λ)(F,Gα) //

��

MapShv(X;Λ)(F, lim−→Gα)

��
lim−→MapShv(X;Λ)(ΛX ,F

∨⊗Gα) // MapShv(X;Λ)(ΛX ,F
∨⊗ lim−→Gα).

Consequently, since ΛX is a compact object of Shv(X; Λ) every dualizable object of Shv(X; Λ)
is compact.

We now give another characterization of the compact objects of Shv(X; Λ).
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Definition 4.2.4. Let X be a quasi-projective k-scheme. We will say that an object F ∈
Shv(X; Λ) is constant if it is equivalent to MX , for some M ∈ ModΛ. We will say that
F is locally constant if there is an étale covering {fα : Uα → X} for which each pullback
f∗α F ∈ Shv(Uα; Λ) is constant.

Proposition 4.2.5. Let X be a quasi-projective k-scheme. Then an object F ∈ Shv(X; Λ) is
compact if and only if the following conditions are satisfied:

(1) There exists a finite sequence of quasi-compact open subsets

0 = U0 ⊆ U1 ⊆ · · · ⊆ Un = X

such that, for 1 ≤ i ≤ n, if Yi denotes the locally closed reduced subscheme of X with
support Ui − Ui−1, then each restriction F |Yi is locally constant.

(2) For every k-valued point η : Spec k → X, the stalk η∗ F ∈ Shv(Spec k; Λ) ' ModΛ is
perfect (that is, it is a compact object of ModΛ).

Definition 4.2.6. We will say that an object F ∈ Shv(X; Λ) is constructible if it satisfies condi-
tions (1) and (2) of Proposition 4.2.5 (equivalently, if it is a compact object of Shv(X; Λ)). We
let Shvc(X; Λ) denote the full subcategory of Shv(X; Λ) spanned by the constructible objects.

Warning 4.2.7. When the commutative ring Λ is finite, some authors use the term con-
structible to refer to sheaves which are required to satisfy some weaker version of condition (2),
such as the finiteness of the graded abelian group H∗(η

∗ F) for each point η : Spec k → X.

Proof of Proposition 4.2.5. We begin by showing that every compact object F ∈ Shv(X; Λ)
satisfies conditions (1) and (2). Using Proposition 4.2.2, we may reduce to the case where
F = j!ΛU for some étale map j : U → X. We first show that F satisfies (1). We may assume
that X 6= ∅, otherwise the result is vacuous. Using Noetherian induction on X (and Proposition
4.1.12), we may suppose that the restriction F |Y is satisfies (1) for every nonempty closed
subscheme Y ⊆ X. It will therefore suffice to show that F |V satisfies (1) for some nonempty
open subscheme V ⊆ X. Passing to an open subscheme, we may suppose that j : U → X is
finite étale of some fixed rank r. In this case, we claim that j!Λ is locally constant. Choose a

finite étale surjection X̃ → X such that the fiber product U ×X X̃ is isomorphic to a disjoint

union of r copies of X̃. Using Proposition 4.1.12, we may replace X by X̃. In this case, the
sheaf j!ΛU ' ΛrX is constant.

We now show that for every étale map j : U → X, the sheaf j!ΛU satisfies condition (2).
Using Proposition 4.1.12, we may replace X by Spec k and thereby reduce to the case where X is
the spectrum of an algebraically closed field. In this case, U is a disjoint union of finitely many
copies of X, so that j!ΛU can be identified with a free module Λr as an object of Shv(X; Λ) '
ModΛ.

Now suppose that F is a sheaf satisfying conditions (1) and (2); we wish to show that F is a
compact object of Shv(X; Λ). Without loss of generality we may suppose that X is nonempty.
Using Noetherian induction on X, we may assume that for every closed immersion i : Y → X
whose image is a proper closed subset of X, the pullback i∗ F is a compact object of Shv(Y ; Λ).
Using Proposition 4.1.22 we deduce that i∗i

∗ F is a compact object of Shv(Y ; Λ). Let j : U → X
denote the complementary open immersion, so that we have a fiber sequence

j!j
∗ F → F → i∗i

∗ F .

It will therefore suffice to show that there exists a nonempty open subset U ⊆ X such that
j!j
∗ F is a compact object of Shv(X; Λ). Since the functor j∗ preserves colimits, j! preserves

compact objects; it will therefore suffice to show that we can choose U such that j∗ F is a
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compact object of Shv(U ; Λ). Since F satisfies (1), we may pass to a nonempty open subscheme
of X and thereby reduce to the case where F is locally constant.

Choose a collection of jointly surjective étale maps jα : Uα → X such that each pullback
j∗α F is constant, hence of the form M(α)

Uα
for some M(α) ∈ ModΛ. Using condition (2), we

deduce that each M(α) is perfect, hence a dualizable object of ModΛ. It follows that each
pullback j∗α F is a dualizable object of Shv(Uα; Λ), so that F is a dualizable object of Shv(X; Λ)
and therefore compact by virtue of Remark 4.2.3. �

Remark 4.2.8 (Extension by Zero). Let i : X → Y be a locally closed immersion between
quasi-projective k-schemes, so that i factors as a composition

X
i′→ X

i′′→ Y

where X denotes the scheme-theoretic closure of X in Y , i′′ is a closed immersion, and i′ is an
open immersion. We let i! denote the composite functor

Shv(X; Λ)
i′!→ Shv(X; Λ)

i′′∗→ Shv(Y ; Λ),

which we will refer to as the functor of extension by zero from X to Y .

Remark 4.2.9. It follows from Proposition 4.2.5 that for every compact object F ∈ Shv(X; Λ),
there exists a finite stratification of X by locally closed subschemes Yα and a finite filtration of
F whose successive quotients have the form iα! Fα, where Fα ∈ Shv(Yα; Λ) is a locally constant
sheaf with perfect stalks, and iα : Yα → X denotes the inclusion map.

Corollary 4.2.10. Let X be a quasi-projective k-scheme and let Λ be a field. If F ∈ Shv(X; Λ)
is compact, then each truncation τ≥n F and τ≤n F is also a compact object of Shv(X; Λ).

Remark 4.2.11. The conclusion of Corollary 4.2.10 holds more generally under the assumption
that Λ is a ring of finite projective dimension; for example, it also holds when Λ = Z.

Proposition 4.2.12. Let X be a quasi-projective k-scheme, let Λ be a field, and let F be an
object of Shv(X; Λ)♥. If F is constructible, then F is a Noetherian object of the abelian category
Shv(X; Λ)♥.

Proof. Proceeding by Noetherian induction, we may suppose that for each proper closed sub-
scheme Y ( X that each constructible object G ∈ Shv(Y ; Λ)♥ is Noetherian.

By virtue of Proposition 4.2.5, it will suffice to prove the following:

(∗n) Let F ∈ Shv(X; Λ)♥ be constructible. Suppose there exists a nonempty connected open
subset U ⊆ X containing a point x such that F |U is locally constant and the stalk Fx
has dimension ≤ n (when regarded as a vector space over Λ). Then F is a Noetherian
object of Shv(X; Λ)♥.

The proof proceeds by induction on n. Let U and F satisfy the hypotheses of (∗n). We will
abuse notation by identifying F with a sheaf of Λ-vector spaces on X. Suppose we are given an
ascending chain of subobjects

F0 ⊆ F1 ⊆ · · ·
of F; we wish to show that it is eventually constant. If each restriction Fm |U vanishes, then we
have Fm ' i∗i∗ Fm. We are therefore reduced to proving that the sequence of inclusions

i∗ F0 ⊆ i∗ F1 ⊆ · · ·
stabilizes, which follows from our inductive hypothesis. We may therefore assume that some
Fm |U 6= 0 for some integer m. Using Proposition 4.2.2 we can write Fm as the colimit of
a filtered diagram {Fα} of constructible objects of Shv(X; Λ). Using Corollary 4.2.10, we
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can assume that each Fα belongs to Shv(X; Λ)♥. Choose an index α for which the map
Fα |U → Fm |U is nonzero. Using Proposition 4.2.5, we can choose a nonempty open subset
U ′ ⊆ U such that Fα |U ′ is locally constant. Choose an étale U -scheme V such that the map
Fα(V )→ Fm(V ) ⊆ F(V ) is nonzero (as a map of vector spaces over Λ), and let V ′ = U ′×U V .
Then V ′ is dense in V , so that the map F(V ) → F(V ′) is injective. Using the commutativity
of the diagram

Fα(V ) //

��

Fα(V ′)

��
F(V ) // F(V ′),

we deduce that the map of vector spaces Fα(V ′)→ F(V ′) is nonzero, so that the map of sheaves
Fα |U ′ → F |U ′ is nonzero. Replacing U by U ′, we may reduce to the case where Fα |U is locally
constant. Note that the cofiber of the map Fα → F is constructible, so that (by virtue of
Corollary 4.2.10) the cokernel G = coker(Fα → F) is a constructible object of Shv(X; Λ)♥. For
any point x ∈ U , we have dimGx < dimFx, so that our inductive hypothesis implies that G

is a Noetherian object of Shv(X; Λ)♥. The sheaf F /Fm is a quotient of G, and therefore also
Noetherian. It follows that the sequence of subobjects {Fm′ /Fm ⊆ F /Fm}m′≥m is eventually
constant, so that the sequence {Fm′ ⊆ F}m′≥m is eventually constant. �

Proposition 4.2.13. Let X be a quasi-projective k-scheme, and let Λ be a field. Then there
exists an integer n with the following property: for every pair of objects F,G ∈ Shv(X; Λ)♥, if
F is compact object of Shv(X; Λ), then ExtmShv(X;Λ)(F,G) ' 0 for m > n.

Proof. Using Proposition 4.1.23, we can choose an integer n′ such that, for every closed immer-
sion i : Y ↪→ X, the sheaf i! G belongs to Shv(Y ; Λ)≥n′ . Let d be the Krull dimension of X. We
will prove that n = n′ + 2d + 1 has the desired property. For this, it will suffice to prove the
following:

(∗) Let H ∈ Shv(X; Λ) have the property that i! H ∈ Shv(Y ; Λ)≥n′ for every closed immer-
sion i : Y → X. Then ExtmShv(X;Λ)(F,H) ' 0 for m > n.

We prove (∗) using Noetherian induction on X. Using Proposition 4.2.5, we can choose an
open immersion j : U → X such that j∗ F is locally constant, hence a dualizable object of
Shv(X; Λ)♥. Let i : Y ↪→ X be a complementary closed immersion, so that we have a fiber
sequence

j!j
∗ F → F → i∗i

∗ F .

We therefore obtain an exact sequence

ExtmShv(U ;Λ)(j
∗ F, j∗H)→ ExtmShv(X;Λ)(F,H)→ ExtmShv(Y ;Λ)(i

∗ F, i! H).

The first group can be identified with Hm(U ; (j∗ F)∨ ⊗Λ j
∗H)), which vanishes for m > n by

virtue of Lemma 4.1.13. The third group vanishes for m > n by the inductive hypothesis, so
that ExtmShv(X;Λ)(F,H) also vanishes for m > n. �

Proposition 4.2.14. Let X be a quasi-projective k-scheme and let F ∈ Shv(X; Z/`dZ) for
d ≥ 1. Then F is constructible if and only if the object (Z/`Z) ⊗Z/`dZ F ∈ Shv(X; Z/`Z) is
constructible.

Proof. It follows from Proposition 4.1.16 that the forgetful functor

Shv(X; Z/`Z)→ Shv(X; Z/`dZ)
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preserves colimits and therefore the left adjoint F 7→ (Z/`Z)⊗Z/`dZF preserves compact objects;

this proves the “only if” direction. For the converse, suppose that F ∈ Shv(X; Z/`dZ) has the
property that (Z/`Z)⊗Z/`dZ F ∈ Shv(X; Z/`Z) is constructible. Let C ⊆ ModZ/`dZ denote the
full subcategory spanned by those objects M for which the functor

G 7→ MapShv(X;Z/`dZ)(F,M ⊗Z/`dZ G)

preserves filtered colimits. Then C contains Z/`Z and is closed under the formation of exten-
sions. It follows that C contains Z/`dZ, so that F is constructible. �

The theory of étale sheaves is particularly well-behaved when the coefficient ring Λ has the
form Z/`dZ, where ` is a prime number which is invertible in k. We close this section by
recalling some of the special features of this situation, which will play an important role in our
discussion of `-adic sheaves in §4.3.

Proposition 4.2.15 (Persistence of Constructibility). Let f : X → Y be a morphism of quasi-
projective k-schemes, let ` be a prime number which is invertible in k, and let d ≥ 0. Then:

(1) The pushforward functor f∗ : Shv(X; Z/`dZ)→ Shv(Y ; Z/`dZ) carries Shvc(X; Z/`dZ)
into Shvc(Y ; Z/`dZ).

(2) The pullback functor f∗ : Shv(Y ; Z/`dZ) → Shv(X; Z/`dZ) carries Shvc(Y ; Z/`dZ)
into Shvc(X; Z/`dZ).

(3) If f is proper, then the exceptional inverse image functor

f ! : Shv(Y ; Z/`dZ)→ Shv(X; Z/`dZ)

carries Shvc(Y ; Z/`dZ) into Shvc(X; Z/`dZ).
(4) If f is étale, then the functor

f! : Shv(X; Z/`dZ)→ Shv(Y ; Z/`dZ)

carries Shvc(X; Z/`dZ) into Shvc(Y ; Z/`dZ).

Remark 4.2.16. Assertions (2) and (4) of Proposition 4.2.15 follow immediately from the fact
that the functors f∗ and f∗ preserve filtered colimits (and remain valid when Z/`dZ is replaced
by an arbitrary commutative ring).

Proof of Proposition 4.2.15. By virtue of Proposition 4.2.14, we can assume without loss of
generality that d = 1. In this case, the desired result is proven as Corollaire 1.5 (“Théorème de
finitude”) on page 234 of [13] (note that our definition of constructibility is different from the
notion of constructibility considered in [13], but the two notions agree in the case d = 1; see
Warning 4.2.7). �

Remark 4.2.17. Let X be a quasi-projective k-scheme, let ` be a prime number which is
invertible in k, and let F be a compact object of Shv(X; Z/`dZ). Using Propositions 4.2.15 and
4.2.5, we see that that there exists a finite collection of locally closed immersions iα : Yα ↪→ X
(having disjoint images) such that F admits a filtration with successive quotients of the form
iα∗ Fα, where each Fα is a locally constant sheaf on Yα with perfect stalks (compare with
Remark 4.2.9).

Corollary 4.2.18. Let f : X → Y be a proper morphism between quasi-projective k-schemes,
let ` be a prime number which is invertible in k, and let d ≥ 0. Then the functor f ! :
Shv(Y ; Z/`dZ)→ Shv(X; Z/`dZ) preserves filtered colimits.

Proof. This is a reformulation of assertion (1) of Proposition 4.2.15. �
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Corollary 4.2.19. Let X be a quasi-projective k-scheme, let ` be a prime number which is
invertible in k, let and let F,G ∈ Shvc(X; Z/`dZ) for some integer d ≥ 0. Then the groups
ExtiShv(X;Z/`dZ)(F,G) are finite.

Proof. Using Proposition 4.2.2, we may reduce to the case where F = j!Z/`
dZ

U
for some

étale morphism j : U → X. In this case, we have

ExtiShv(X;Z/`dZ)(F,G) ' ExtiShv(U ;Z/`dZ)(Z/`
dZ

U
, j∗ G)

' Hi(π∗j
∗ G)

where π : U → Spec k denotes the projection map. The desired result now follows from
Proposition 4.2.15. �

Proposition 4.2.20. Let X be a quasi-projective k-scheme, let ` be a prime number which
is invertible in k, and let F ∈ Shvc(X; Z/`dZ) for some d ≥ 0. The following conditions are
equivalent:

(1) The sheaf F vanishes.
(2) For every point η : Spec k → X, the stalk Fη = η∗ F vanishes.
(3) For every point η : Spec k → X, the costalk η! F ∈ Shv(Spec k; Z/`dZ) vanishes.

Proof. The implications (1)⇒ (2) and (1)⇒ (3) are obvious, and the implication (2)⇒ (1) is
Proposition 4.1.11 (and is valid for any coefficient ring Λ). Assume that F satisfies (3); we will
prove that F ' 0 using Noetherian induction on X. Using Proposition 4.2.5, we can choose
a nonempty open subset U such that F |U is locally constant. Shrinking U if necessary, we
may suppose that U is smooth of dimension n ≥ 0. Let i : Y → X be a closed immersion
complementary to U . Then i! F ∈ Shv(Y ; Z/`dZ) satisfies condition (3), so that i! F ' 0 by the
inductive hypothesis. We may therefore replace X by U , and thereby reduce to the case where
F is locally constant. The assertion that F vanishes is local on X; we may therefore suppose
further that X is smooth and F ∈ Shv(X; Z/`dZ) has the form MX for some perfect object
M ∈ ModZ/`dZ. Arguing as in Remark 4.1.21 (and choosing a primitive `dth root of unity in

k), we see that for any point η : Spec k → X, the pullback η! F is equivalent to Σ−2nM . It then
follows from (3) that M ' 0, so that F ' 0 as desired. �

4.3. `-adic Sheaves. Throughout this section, we fix an algebraically closed field k and a prime
number ` which is invertible in k. Let X be a quasi-projective k-scheme. For every commutative
ring Λ, the theory outlined in §4.1 associates an ∞-category Shv(X; Λ) of (hypercomplete)
ModΛ-valued étale sheaves on X. This theory is very well-behaved when the commutative
ring Λ has the form Z/`dZ for some d ≥ 0, but badly behaved when Λ = Z or Λ = Q. To
remedy the situation, it is convenient to introduce the formalism of `-adic sheaves: roughly
speaking, a (constructible) `-adic sheaf on X is a compatible system {Fd}d≥0, where each Fd
is a (constructible) object of Shv(X; Z/`dZ). The collection of `-adic sheaves on X can be
organized into an ∞-category which we will denote by Shv`(X). Our goal in this section is to
review the definition of the∞-categories Shv`(X) and summarize some of the properties which
we will need later in this paper.

Definition 4.3.1. Let Λ be a commutative ring, and let M be an object of ModΛ. We will say
that M is `-complete if the limit of the diagram

· · · →M
`→M

`→M

vanishes in ModΛ.
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Remark 4.3.2. In the situation of Definition 4.3.1, we have a tower of fiber sequences

{M `d→M → Z/`dZ⊗Z M}d≥0.

Passing to the limit, we see that M is `-complete if and only if the canonical map

M → lim←−((Z/`dZ)⊗Z M)

is an equivalence in the ∞-category ModΛ.

Remark 4.3.3. Let Λ be a commutative ring. Then an object M ∈ ModΛ is `-complete if
and only if each homology group Hn(M) is `-complete, when regarded as a discrete object of
ModΛ. To prove this, we may assume without loss of generality that Λ = Z, in which case M
is noncanonically equivalent to the product

∏
n∈Z Σn Hn(M).

If Λ is Noetherian and each homology group Hn(M) is finitely generated as a Λ-module,
then M is `-complete if and only if each of the homology groups Hn(M) is isomorphic to its
`-adic completion lim←−Hn(M)/`d Hn(M), where the limit is taken in the abelian category of
Λ-modules.

Remark 4.3.4. Let Λ be a commutative ring, let M• be a simplicial object of ModΛ, and let
|M•| ∈ ModΛ denote its geometric realization. Suppose that there exists an integer n ∈ Z such
that the simplicial abelian groups Hm(M•) vanish for m < n. Then if each Mq is `-complete,
the geometric realization |M•| is `-complete. To prove this, it will suffice to show that each
homology group Hi(|M•|) is `-complete (Remark 4.3.3). We may therefore replace M• by a
sufficiently large skeleton, in which case |M•| is a finite colimit of `-complete objects of ModΛ.

Definition 4.3.5. Let X be a quasi-projective k-scheme and let Λ be a commutative ring. We
will say that an object F ∈ Shv(X; Λ) is `-complete if, for every object U ∈ Schet

X , the object
F(U) ∈ ModΛ is `-complete.

Remark 4.3.6. Let F ∈ Shv(X; Λ). The following conditions are equivalent:

(1) The sheaf F is `-complete.
(2) The limit of the tower

· · · → F
`→ F

`→ F

vanishes.
(3) The canonical map F → lim←−(Z/`dZ⊗Z F) is an equivalence in Shv(X; Λ).

Remark 4.3.7. Let X be a quasi-projective k-scheme, let Λ a commutative ring, and let
C ⊆ Shv(X; Λ) be the full subcategory spanned by the `-complete objects. Then the inclusion
functor C ↪→ Shv(X; Λ) admits a left adjoint L, given by the formula

LF = lim←−(Z/`dZ⊗Z F).

We will refer to L as the `-adic completion functor. Note that an object F ∈ Shv(X; Λ) is
annihilated by the functor L if and only if the map ` : F → F is an equivalence.

Remark 4.3.8. Let X be a quasi-projective k-scheme, Λ a commutative ring. We will regard
Shv(X; Λ) as a symmetric monoidal ∞-category, with tensor product we will denote by ⊗Λ.
Suppose we are given objects F,F′ ∈ Shv(X; Λ). If multiplication by ` induces an equivalence
from F to itself, then multiplication by ` also induces an equivalence from F⊗Λ F′ to itself. It
follows that the full subcategory C ⊆ Shv(X; Λ) spanned by the `-complete objects inherits the
structure of a symmetric monoidal ∞-category, with tensor product ⊗̂Λ given by the formula

F ⊗̂Λ F′ = L(F⊗Λ F′)

where L denotes the `-adic completion functor of Remark 4.3.7.
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If φ : Λ → Λ′ is a morphism of commutative rings, then φ induces a base-change functor
Shv(X; Λ) → Shv(X; Λ′) (which is left adjoint to the forgetful functor from Shv(X; Λ′) to
Shv(X; Λ)). In particular, we always obtain a map of ∞-categories

θ : Shv(X; Λ)→ lim←−
d≥0

Shv(X; Λ/`dΛ).

Proposition 4.3.9. Let Λ be a commutative ring and suppose that ` is not a zero-divisor in
Λ. Let X be a quasi-projective k-scheme and let C ⊆ Shv(X; Λ) be the full subcategory spanned
by the `-complete objects. Then the composite functor

C ↪→ Shv(X; Λ)
θ→ lim←−
d≥0

Shv(X; Λ/`dΛ)

is an equivalence of ∞-categories.

Proof. We first prove that θ is fully faithful when restricted to C. Let F and F′ be objects of
Shv(X; Λ). We compute

Map(θ(F), θ(F′)) ' lim←−
d≥0

MapShv(X;Λ/`dΛ)((Z/`
dZ)⊗Z F, (Z/`dZ)⊗Z F′)

' lim←−
d≥0

MapShv(X;Λ)(F, (Z/`
dZ)⊗Z F′)

' MapShv(X;Λ)(F, LF′).

where L is defined as in Remark 4.3.7. If F′ is `-complete, then the canonical map

MapShv(X;Λ)(F,F
′)→ Map(θ(F), θ(F′))

is a homotopy equivalence.
It remains to prove essential surjectivity. Suppose we are given an object of the inverse limit

lim←−d≥0
Shv(X; Λ/`dΛ), which we can identify with a compatible sequence of objects

{Fd ∈ Shv(X; Λ/`dΛ)}d≥0.

Let us abuse notation by identifying each Fd with its image in Shv(X; Λ), and set F = lim←−Fd ∈
Shv(X; Λ). Since each Fd is `-complete, it follows that F is also `-complete. Moreover, we have
a canonical map θ(F)→ {Fd}d≥0 in the ∞-category lim←−d≥0

Shv(X; Λ/`dΛ). To prove that this

map is an equivalence, it will suffice to show that for each integer d ≥ 0, the canonical map

(Λ/`dΛ)⊗Λ lim←−
e≥d

Fe → Fd

is an equivalence in Shv(X; Λ/`dΛ). Since Λ/`dΛ is a perfect Λ-module, we can identify this
with the natural map

lim←−
e≥d

(Λ/`dΛ)⊗Λ Fe ' lim←−
e≥d

((Λ/`dΛ)⊗Λ (Λ/`eΛ))⊗Λ/`eΛ Fe → (Λ/`dΛ)⊗Λ/`eΛ Fe .

This map is an equivalence, since the inverse system {(Λ/`dΛ)⊗Λ (Λ/`eΛ)}e≥d is equivalent to
Λ/`dΛ as a Pro-object of the ∞-category ModΛ. �

Definition 4.3.10. Let X be a quasi-projective k-scheme. We will say that an object F ∈
Shv(X; Z) is a constructible `-adic sheaf if it satisfies the following conditions:

(1) The sheaf F is `-complete.
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(2) For each integer d ≥ 0, the tensor product

(Z/`dZ)⊗Z F ∈ Shv(X; Z/`dZ)

is constructible.

We let Shvc`(X) denote the full subcategory of Shv(X; Z) spanned by the constructible `-adic
sheaves.

Remark 4.3.11. In the situation of Definition 4.3.10, it suffices to verify condition (2) in the
case d = 1, by virtue of Proposition 4.2.14.

Remark 4.3.12. Let F be as in Definition 4.3.10. Then the tensor product (Z/`Z) ⊗Z F is
constructible as an object of Shv(X; Z/`Z) if and only if it is constructible as an object of
Shv(X; Z). Consequently, condition (2) can be rephrased as follows:

(2′) The cofiber of the map ` : F → F is a constructible object of Shv(X; Z).

Remark 4.3.13. It follows from Proposition 4.3.9 that the forgetful functor Shv(X; Z`) →
Shv(X; Z) is an equivalence when restricted to `-complete objects. Consequently, we can replace
Shv(X; Z) by Shv(X; Z`) in Definition 4.3.10 without changing the notion of constructible `-adic
sheaf.

Warning 4.3.14. Let X be a quasi-projective k-scheme. Neither of the full subcategories
Shvc`(X),Shvc(X; Z) ⊆ Shv(X; Z) contains the other. Objects of Shvc(X; Z) are generally not
`-complete (this is true even if we replace Z by Z`), and objects of Shvc`(X) need not be locally
constant when restricted to any nonempty open subset of X.

Proposition 4.3.15. Let X be a quasi-projective k-scheme.

(1) For each integer d ≥ 0, the full subcategory Shvc(X; Z/`dZ) ⊆ Shv(X; Z/`dZ) contains
the unit object and is stable under tensor products.

(2) Let C ⊆ Shv(X; Z) be the full subcategory spanned by the `-complete objects, and regard
C as a symmetric monoidal ∞-category with respect to the completed tensor product ⊗̂Z

of Remark 4.3.8. Then the full subcategory Shvc`(X) ⊆ C contains the unit object of C
and is closed under tensor products.

Proof. Assertion (1) follows from the characterization of constructible sheaves supplied by
Proposition 4.2.5, and assertion (2) follows from (1). �

Remark 4.3.16. Let X be a quasi-projective k-scheme. Then we can identify Shvc`(X) (as
a symmetric monoidal ∞-category) with a homotopy inverse limit of the tower of symmetric
monoidal ∞-categories

· · · → Shvc(X; Z/`3Z)→ Shvc(X; Z/`2Z)→ Shvc(X; Z/`Z).

Proposition 4.3.17. Let X be a quasi-projective k-scheme. Then the equivalence of ∞-
categories Shvc`(X) ' lim←−{Shvc`(X; Z/`dZ)}d≥0 induces an equivalence of homotopy categories

θ : hShvc
`(X)→ lim←−{hShvc

`(X; Z/`dZ)}d≥0.

Remark 4.3.18. Proposition 4.3.17 implies that the homotopy category of Shvc`(X) can be
identified with the constructible derived category of Z`-sheaves considered elsewhere in the
literature (see, for example [8]).

Proof of Proposition 4.3.17. It follows immediately from the definitions that θ is essentially
surjective; we will show that θ is fully faithful. For every pair of objects F,G ∈ Shvc`(X) having
images F(d),G(d) ∈ Shvc(X; Z/`dZ), we have a Milnor exact sequence

0→ lim1{Extn−1(F(d),G(d))} → Extn(F,G)→ lim0{Extn(F(d),G(d))} → 0.
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Since each of the groups Extn−1(F(d),G(d)) is finite (Corollary 4.2.19), the first term of this
sequence vanishes. It follows that the canonical map

MaphShvc
`(X)(F,G)→ lim←−MaphShv(X;Z/`dZ)(F(d),G(d))

is bijective. �

We now discuss the functorial behavior of some of the preceding constructions.

Proposition 4.3.19. Let f : X → Y be a morphism of quasi-projective k-schemes. Then:

(1) The pushforward functor f∗ : Shv(X; Z) → Shv(Y ; Z) carries constructible `-adic
sheaves to constructible `-adic sheaves sheaves.

(2) The resulting map from Shvc`(X) to Shvc`(Y ) admits a left adjoint f∗∧, which carries an
object F ∈ Shvc`(X) to the `-completion of f∗ F.

Proof. The functor f∗ preserves limits, and therefore carries `-complete objects to `-complete
objects. Assertion (1) is now a consequence of Proposition 4.2.15. To prove (2), let L :
Shv(X; Z) → Shv(X; Z) denote the `-completion functor. If F ∈ Shvc`(Y ), then we have a
natural homotopy equivalence

MapShv(Y ;Z)(F, f∗ G) ' MapShv(X;Z)(Lf
∗ F,G)

whenever G ∈ Shv(X; Z`) is `-complete. It will therefore suffice to show that Lf∗ F is con-
structible. By construction, Lf∗ F is `-complete. It will therefore suffice to show that each
tensor product

(Z/`dZ)⊗Z Lf
∗ F ' (Z/`dZ)⊗Z f

∗ F ' f∗(Z/`dZ⊗Z F)

is a constructible object of Shv(X; Z/`dZ) for each d ≥ 0, which follows immediately from
Proposition 4.2.15. �

Warning 4.3.20. In the situation of Proposition 4.3.19, the pullback functor f∗ : Shv(Y ; Z`)→
Shv(X; Z`) does not preserve constructibility. For example, if Y = Spec k and F ∈ Shv(Y ; Z`)
is the constant sheaf with value Z`, then the chain complex (f∗ F)(X) computes the étale
cohomology of X with coefficients in the constant sheaf associated Z`, while the chain complex
(f∗∧ F)(X) computes its `-adic completion C∗(X; Z`).

Proposition 4.3.21. Let f : X → Y be a proper morphism between quasi-projective k-schemes.
Then the functor f ! : Shv(Y ; Z)→ Shv(X; Z) carries Shvc`(Y ) into Shvc`(X).

Proof. The functor f ! preserves limits and therefore carries `-complete objects to `-complete
objects. It will therefore suffice to show that if F ∈ Shvc`(Y ), then

(Z/`dZ)⊗Z f
! F ' f !((Z/`dZ)⊗Z F)

is constructible for each d ≥ 0, which follows from Proposition 4.2.15. �

Remark 4.3.22. In the situation of Proposition 4.3.21, the functor f ! : Shvc`(Y ) → Shvc`(X)
can be identified with the inverse limit of the tower of exceptional inverse image functors

f ! : Shvc(Y ; Z/`dZ)→ Shvc(X; Z/`dZ).

Example 4.3.23. Let Z`(1) denote the inverse limit of the sequence

· · · → µ`3(k)→ µ`2(k)→ µ`(k),
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where µ`d(k) denotes the group of `dth roots of unity in k. For each integer n, we let Z`(n)
denote the nth tensor power of Z`(1). If f : X → Y is a smooth morphism of relative dimension
n, then Example 4.1.20 supplies an equivalence

f ! F ' Σ2nZ`(n)
X
⊗Z` f

∗ F,

which depends functorially on F ∈ Shvc`(Y ). Since both sides commute with filtered colimits in
F, we obtain an equivalence of functors f ! ' Σ2nZ`(n)

X
⊗Z` f

∗.

Proposition 4.3.24. Let f : X → Y be an étale morphism between quasi-projective k-schemes.
Then:

(1) The pullback functor

f∗ : Shv(X; Z)→ Shv(Y ; Z)

carries Shvc`(X) into Shvc`(Y ).
(2) When regarded as a functor form Shvc`(X) to Shvc`(Y ), the functor f∗ admits a left

adjoint f∧! , which carries an object F ∈ Shvc`(X) to the `-completion of f! F.

Proof. We first prove (1). If F ∈ Shv(Y ; Z) is a constructible `-adic sheaf, then Z/`dZ ⊗Z F

belongs to Shvc(Y ; Z/`dZ), so that Proposition 4.2.15 shows that

Z/`dZ⊗Z f
∗ F ' f∗(Z/`dZ⊗Z F) ∈ Shvc(X; Z/`dZ)

for each d ≥ 0. Since f is étale, the pullback functor f∗ preserves limits, and therefore carries
`-complete objects to `-complete objects.

We now prove (2). Let f! denote the left adjoint to the pullback functor f∗ : Shv(Y ; Z) →
Shv(X; Z) (see Example 4.1.10), and let f∧! denote the composition of f! with the `-completion
functor. It follows immediately from the definitions that for every object F ∈ Shv(X; Z) and
every `-complete object G ∈ Shv(Y ; Z), we have a canonical homotopy equivalence

MapShv(Y ;Z)(f
∧
! F,G) ' MapShv(X;Z)(F, f

∗ G).

It will therefore suffice to show that if F is an `-adic constructible sheaf, then f∧! F is an `-adic
constructible sheaf. Since f∧! F is `-complete by construction, we are reduced to proving that
each tensor product

Z/`dZ⊗Z f
∧
! F ' f!(Z/`

dZ⊗Z F)

is a compact object of Shv(Y ; Z/`dZ), which follows from Proposition 4.2.15. �

Proposition 4.3.25. Let X be a quasi-projective k-scheme and let F ∈ Shvc`(X). The following
conditions are equivalent:

(1) The sheaf F vanishes.
(2) For every point η : Spec k → X, the stalk Fη = η∗ F vanishes.
(3) For every point η : Spec k → X, the costalk η! F ∈ Shv`(Spec k) ' ModZ` vanishes.

Proof. Note that since F is `-complete, it vanishes if and only if F1 = (Z/`Z) ⊗Z F vanishes.
Similarly, the stalk (costalk) of F at a point η ∈ X(k) vanishes if and only if the stalk (costalk)
of F1 vanishes at η. The desired result now follows from the corresponding assertion for F1 ∈
Shv(X; Z/`Z) (Proposition 4.2.20). �

For our purposes in this paper, the setting of constructible `-adic sheaves will be too restric-
tive: we will meet many examples of sheaves which are not constructible. To accommodate
these examples, we introduce the following enlargement of Shvc`(X):
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Definition 4.3.26. Let X be a quasi-projective k-scheme. We let Shv`(X) denote the ∞-
category Ind(Shvc`(X)) of Ind-objects of Shvc`(X) (see §HTT.5.3.5). We will refer to Shv`(X)
as the ∞-category of `-adic sheaves on X.

Remark 4.3.27. Let X be a quasi-projective k-scheme. By abstract nonsense, the fully faithful
embedding Shvc`(X) ↪→ Shv(X; Z`) extends to a colimit-preserving functor θ : Shv`(X) →
Shv(X; Z`). However, this functor need not be an equivalence of∞-categories, since the objects
of Shvc`(X) need not be compact in Shv(X; Z`).

Example 4.3.28. If X = Spec k, then the essential image of the inclusion Shvc`(X) ↪→
Shv(X; Z`) ' ModZ` consists precisely of the compact objects of ModZ` . It follows that the
forgetful functor of Remark 4.3.27 induces an equivalence Shv`(X)→ Shv(X; Z`) ' ModZ` .

Remark 4.3.29. Let X be a quasi-projective k-scheme. Then there is a fully faithful exact
functor Shvc`(X)→ Shv`(X). We will generally abuse notation by identifying Shvc`(X) with its
essential image under this embedding.

Notation 4.3.30. Let f : X → Y be a morphism between quasi-projective k-schemes. Then
the adjoint functors

f∗ : Shvc`(X)→ Shvc`(Y ) f∗∧ : Shvc`(Y )→ Shvc`(X)

extend (in an essentially unique way) to a pair of adjoint functors relating the ∞-categories
Shv`(X) and Shv`(Y ), which we will denote by

f∗ : Shv`(X)→ Shv`(Y ) f∗ : Shv`(Y )→ Shv`(X).

If f is proper, then the functor f ! : Shvc`(Y ) → Shvc`(X) admits an essentially unique
extension to a functor Shv`(Y ) → Shv`(X) which commutes with filtrered colimits. This
extension is a right adjoint to the pushforward functor f∗ : Shv`(X) → Shv`(Y ), and will be
denoted by f !.

If f is étale, then the functor f∧! : Shvc`(X)→ Shvc`(Y ) admits an essentially unique extension
to a functor Shv`(X)→ Shv`(Y ) which commutes with filtered colimits. This extension is left
adjoint to the pullback functor f∗ : Shv`(Y )→ Shv`(X), and will be denoted by f!.

Remark 4.3.31. Let X be a quasi-projective k-scheme and let f : X → Spec k be the projec-
tion map. For F ∈ Shv`(X), we will often denote the direct image f∗ F by C∗(X;F).

Warning 4.3.32. There is some potential for confusion, because the operations introduced
in Notation 4.3.30 need not be compatible with the corresponding operations on étale sheaves
studied in §4.1. That is, the diagrams of ∞-categories

Shv`(Y )
f∗ //

��

Shv`(X)

��

Shv`(X)
f! //

��

Shv`(Y )

��
Shv(Y ; Z`)

f∗ // Shv(X; Z`) Shv(X; Z`)
f! // Shv(Y ; Z`)

Shv`(Y )
f !

//

��

Shv`(X)

��
Shv(Y ; Z`)

f !

// Shv(X; Z`)
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need not commute, where the vertical maps are given by the forgetful functors of Remark 4.3.27.
In the first two cases, this is because the definition of f∗ and f! on `-adic sheaves involves the
process of `-completion; in the third, it is because the functor f ! : Shv(Y ; Z`) → Shv(X; Z`)
need not preserve colimits. However, the analogous diagram

Shv`(X)
f∗ //

��

Shv`(Y )

��
Shv(X; Z`)

f∗ // Shv(Y ; Z`)

does commute (up to canonical homotopy).

Remark 4.3.33. Let X be a quasi-projective k-scheme and let η : Spec k → X be a k-valued
point of X. Then the pullback functor η∗ : Shv`(X) → Shv`(Spec k) carries each `-adic sheaf
F ∈ Shv`(X) to an object of Shv`(Spec k) ' ModZ` . We will denote this object by Fη and refer
to it as the stalk of F at the point η.

Warning 4.3.34. Proposition 4.3.25 does not extend to non-constructible `-adic sheaves. It
is possible to have a nonzero object F ∈ Shv`(X) whose stalk Fη vanishes for every k-valued
point η ∈ X(k).

We say that an object F ∈ Shv`(X) is `-complete if the inverse limit of the tower

· · · → F
`→ F

`→ F

vanishes.

Remark 4.3.35. Let X be a quasi-projective k-scheme. An object F ∈ Shv`(X) is `-complete
if and only if, for every object F′ ∈ Shv`(X), the inverse limit of mapping spaces

· · · → MapShv`(X)(F
′,F)

`→ MapShv`(X)(F
′,F)

`→ MapShv`(X)(F
′,F)

is contractible. Moreover, it suffices to verify this condition when F′ ∈ Shvc`(X) is constructible.

Remark 4.3.36. Let X be a quasi-projective k-scheme. Then every constructible `-adic sheaf
F on X is `-complete (this follows from Remark 4.3.35, since F is `-complete when viewed as
an object of Shv(X; Z)).

Let X be a quasi-projective k-scheme. It is generally not true that the vanishing of an `-adic
sheaf F ∈ Shv`(X) can be tested stalkwise: there can exist nonzero objects of Shv`(X) whose
stalks vanish at every point x ∈ X. However, this phenomenon does not arise for `-complete
objects:

Proposition 4.3.37. Let X be a quasi-projective k-scheme and let F ∈ Shv`(X) be `-complete.
The followign conditions are equivalent:

(1) The sheaf F vanishes.
(2) For every étale morphism f : U → X, the object C∗(U ; f∗ F) ∈ ModZ` vanishes.
(3) For every k-valued point x ∈ X(k), the stalk x∗ F vanishes.

Proof. The implication (1) ⇒ (2) is trivial. Conversely, suppose that (2) is satisfied. Write F

as the colimit of a filtered diagram {Fα} in Shvc`(X). For each integer d ≥ 0, let Fd denote the
cofiber of the canonical map `d : F → F, so that Fd can be written as a colimit lim−→α

Fα,d where

Fα,d = cofib(`d : Fα → Fα). Note that we can identify the diagram {Fα,d} with an object of
the Ind-category Ind(Shvc(X; Z/`dZ)) ' Shv(X; Z/`dZ). Using condition (2) we see that this
Ind-object vanishes, so that Fd ' 0. Since F is `-complete, it follows that F ' lim←−Fd ' 0. This
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proves that (2) ⇒ (1). The proof that (1) and (3) are equivalent is similar (using Proposition
4.1.11). �

The existence of the adjunction (f!, f
∗) when f : X → Y is an étale morphism has the

following consequence:

Proposition 4.3.38. Let f : X → Y be an étale morphism between quasi-projective k-schemes.
Then the pullback functor f∗ : Shv`(Y )→ Shv`(X) preserves limits.

In fact, we have the following stronger assertion:

Proposition 4.3.39. Let f : X → Y be a smooth morphism between quasi-projective k-
schemes. Then the functor f∗ : Shv`(Y )→ Shv`(X) preserves limits.

Proof. Using Corollary 4.3.42 and Proposition 4.3.38, we see that the result is local with respect
to the étale topology on X. We may therefore assume without loss of generality that f factors
as a composition

X
f ′→ Pn × Y f ′′→ Y,

where the map f ′ is étale. Since f ′∗ preserves limits (Proposition 4.3.38), we may replace f by
f ′′ and thereby reduce to the case where f is smooth and proper. In this case, the functor f∗

is equivalent to a shift of the functor f ! (Example 4.3.23) and therefore admits a left adjoint
(given by a shift of f∗). �

Remark 4.3.40. Let X be a quasi-projective k-scheme. Then the symmetric monoidal struc-
ture on Shvc`(X) described in Proposition 4.3.15 determines a symmetric monoidal structure on
Shv`(X) = Ind(Shvc`(X)), which is determined uniquely by the requirement that the inclusion
Shvc`(X) ↪→ Shv`(X) be a symmetric monoidal functor and that the associated tensor product
functor

⊗ : Shv`(X)× Shv`(X)→ Shv`(X)

preserves colimits separately in each variable. We will denote the unit object of Shv`(X) by
Z`X . Beware that this notation conflicts with that of Remark 4.3.27: the forgetful functor

Shv`(X) → Shv(X; Z`) of Remark 4.3.27 is not symmetric monoidal in general; in particular,
it does not carry Z`X to the constant sheaf given in Definition 4.2.4.

Let X be a quasi-projective k-scheme. For every commutative ring Λ, the theory of ModΛ-
valued sheaves on X satisfies effective descent for the étale topology: that is, the construction

(U ∈ Schet
X) 7→ Shv(U ; Λ)

is a sheaf of ∞-categories with respect to the étale topology. We now prove the analogous
statement for `-adic sheaves.

Proposition 4.3.41 (Effective Cohomological Descent). Let f : U → X be a surjective
étale morphism between quasi-projective k-schemes, and let U• denote the simplicial scheme
given by the nerve of the map f (so that Um is the (m+ 1)st fiber power of U over X). Then
the canonical map

ψ : Shv`(X)→ lim←− Shv`(U•)

is an equivalence of ∞-categories.

Corollary 4.3.42. Let f : X → Y be a smooth surjection between quasi-projective k-schemes.
Then the functor f∗ : Shv`(Y )→ Shv`(X) is conservative.

Proof. Since f is a smooth surjection, there exists a map g : X ′ → X such that the composite
map f ◦ g is an étale surjection. Replacing X by X ′, we may suppose that f is étale. In this
case, the desired result follows immediately from Proposition 4.3.41. �
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The proof of Proposition 4.3.41 depends on the following result:

Lemma 4.3.43. Let X be a quasi-projective k-scheme. Suppose that F• is an augmented
simplicial object of Shvc`(X) satisfying the following conditions:

(a) There exists an integer n such that Z/`Z ⊗Z F• is an augmented simplicial object of
Shvc(X; Z/`Z)≥n.

(b) The image of F• in Shv(X; Z/`Z) is a colimit diagram (that is, it exhibits (Z/`Z)⊗ZF−1

as a geometric realization of the simplicial object (Z/`Z)⊗Z F•).

Then F• is a colimit diagram in both Shv(X; Z) and Shv`(X).

Proof of Proposition 4.3.41. It follows from Corollary HA.4.7.6.3 (and the Beck-Chevalley prop-
erty given in Variant 4.5.5) that the functor ψ admits a fully faithful left adjoint

φ : lim←− Shv`(U•)→ Shv`(X).

To complete the proof, it will suffice to show that for each object F ∈ Shv`(X), the counit
map v : (φ ◦ ψ)(F) → F is an equivalence in Shv`(X). For each n ≥ 0, let fn : Un → X
denote the projection map. Unwinding the definitions, we can identify v with the natural map
|f•!f∗• F | → F. Writing F as a colimit of constructible `-adic sheaves, we may assume without
loss of generality that F is constructible. By virtue of Lemma 4.3.43, it will suffice to prove
this after tensoring with Z/`Z, in which case the desired result follows from the fact that the
construction U 7→ Shv(U ; Z/`Z) satisfies étale descent. �

Proof of Lemma 4.3.43. We first prove that F• is a colimit diagram in Shv(X; Z): that is, that
the canonical map

α : |F• | → F−1

is an equivalence in Shv(X; Z). Condition (b) implies that α is an equivalence after tensoring
with Z/`Z. Since the codomain of α is `-complete, it will suffice to show that the domain of
α is also `-complete. For each integer m, let F(m) denote the colimit of the m-skeleton of F•
(formed in the ∞-category Shv(X; Z). Then each F(m) belongs to Shvc`(X) and is therefore
`-complete, and we have an equivalence |F• | ' lim−→F(m). Fix an étale map V → X; we wish
to prove that

|F• |(V ) ' lim−→F(m)(V ) ∈ ModZ`

is `-complete. According to Remark 4.3.3, this is equivalent to the assertion that for every
integer i, the abelian group lim−→Hi(F(m)(V )) is `-complete (in the derived sense). To prove

this, it will suffice to show that the direct system of abelian groups {Hi(F(m)(V ))} is eventually
constant. Let K(m) denote the fiber of the map F(m) → F(m + 1), so that we have an exact
sequence

Hi(K(m)(V ))→ Hi(F(m))→ Hi(F(m+ 1)(V ))→ Hi−1(K(m)(V )).

It will therefore suffice to show that the groups Hi(K(m)(V )) vanish for m� i. Since K(m) is
`-complete, we have a Milnor exact sequence

lim1{Hi+1(Z/`dZ⊗Z K(m)(V ))→ Hi(K(m)(V ))→ lim←−{Hi(Z/`
dZ⊗Z K(m)(V ))}.

Corollary 4.2.19 implies that the left hand side vanishes. We are therefore reduced to proving
that Hi(Z/`

dZ⊗Z K(m)(V )) ' 0 for m � i. Using induction on d, we can reduce to the case
d = 1. Using Lemma 4.1.13, we are reduced to the problem of showing that Z/`Z⊗Z K(m) ∈
Shv(X; Z/`Z)≥i for m� i. This follows easily from assumption (a). This completes the proof
that α is an equivalence in Shv(X; Z).
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Note that each F(m) is a constructible `-adic sheaf, and is a colimit of the m-skeleton of
F• in both Shv(X; Z) and Shv`(X). The sheaf F−1 can be identified with the colimit of the
sequence

F(0)→ F(1)→ · · ·
in the ∞-category Shv(X; Z); we wish to show that F is also a colimit of this sequence in
Shv`(X). Equivalently, we wish to show that for every object G ∈ Shvc`(X), the canonical map

lim−→MapShvc`(X)(G,F(m))→ MapShvc`(X)(G,F)

is a homotopy equivalence. For each m ≥ 0, let F′(m) denote the cofiber of the canonical map
F(m)→ F, so that we have a fiber sequence

lim−→MapShvc`(X)(G,F(m))→ MapShvc`(X)(G,F)→ lim−→MapShvc`(X)(G,F
′(m)).

It will therefore suffice to show that the space

lim−→MapShvc`(X)(G,F
′(m))

is contractible. We will prove the following more precise statement: for every integer q, the
mapping space MapShvc`(X)(G,F

′(m)) is q-connective for m sufficiently large (depending on q).

Since F′(m) is `-complete, we can identify MapShvc(X;Z`)
(G,F′(m)) with the limit of a tower of

spaces MapShvc(X;Z`)
(G,Z/`dZ ⊗Z F′(m)). It will therefore suffice to show that each of these

spaces is (q + 1)-connective. Using the existence of a fiber sequence

MapShvc`(X)(G,Z/`Z⊗Z F′(m))

��
MapShvc`(X)(G,Z/`

d+1Z⊗Z F′(m))

��
MapShvc`(X)(G,Z/`

dZ⊗Z F′(m)),

we can reduce to the case d = 1. That is, we are reduced to proving that the mapping spaces
MapShv(X;Z/`Z)(Z/`Z ⊗Z G,Z/`Z ⊗Z F′(m)) are (q + 1)-connective for q � m. This follows

from Proposition 4.2.13, since condition (a) guarantees that the sheaves Z/`Z ⊗Z F′(m) are
highly connected for m� 0. �

4.4. The t-Structure on `-Adic Sheaves. Throughout this section, we fix an algebraically
closed field k and a prime number ` which is invertible in k. In §4.3, we associated to every
quasi-projective k-scheme X an∞-category Shv`(X) of `-adic sheaves on X. In this section, we
will describe the relationship of Shv`(X) with the abelian category of `-adic sheaves introduced
in [23]. Our starting point is the following:

Proposition 4.4.1. Let X be a quasi-projective k-scheme. Then there exists a t-structure
(Shvc`(X)≥0,Shvc`(X)≥0) on the ∞-category Shvc`(X) of constructible `-adic sheaves on X,
which is uniquely characterized by the following property:

• A constructible `-adic sheaf F ∈ Shvc`(X) belongs to Shvc`(X)≥0 if and only if Z/`Z⊗ZF

belongs to Shv(X; Z/`Z)≥0.

Warning 4.4.2. In the situation of Proposition 4.4.1, we can regard Shvc`(X) as a full subcat-
egory of Shv(X; Z), which is equipped with a t-structure by virtue of Remark 4.1.6. However,



122 DENNIS GAITSGORY AND JACOB LURIE

the inclusion Shvc`(X) ↪→ Shv(X; Z) is not t-exact. However, it is left t-exact: see Remark 4.4.5
below.

Example 4.4.3. Let X = Spec k, so that Shvc`(X) can be identified with the ∞-category

Modpf
Z`

of perfect Z`-modules. Under this identification, the t-structure of Proposition 4.4.1

agrees with the usual t-structure of Modpf
Z`

.

Lemma 4.4.4. Let A be an abelian category. For each object M ∈ A, let M/`dM and M [`d]
denote the cokernel and kernel of the map `d : M →M . Suppose we are given a tower of objects

· · · →M3 →M2 →M1 →M0

satisfying the following conditions:

(a) Each of the maps Md+1 →Md induces an equivalence Md+1/`
d 'Md.

(b) The object M1 is Noetherian.

Then, for each integer m ≥ 0, the tower {Md[`
m]}d≥0 is equivalent to a constant Pro-object of

A.

Proof. For each d ≥ 0, let Nd denote the image of the natural map Md+m[`m] → Md[`
m]. If

d ≥ m, multiplication by `d−m induces a map θd : Mm → Md[`
m]. Let N ′d denote the fiber

product Mm×Md
Nd, which we regard as a subobject of Mm. Assumption (a) implies that Mm

admits a finite filtration by quotients of M1, so that Mm is Noetherian by virtue of (b). Note
that N ′d = ker(θd+m) ⊆ N ′d+m, so that the subobjects N ′d ⊆Mm form an ascending chain

N ′m ⊆ N ′2m ⊆ N ′3m ⊆ · · · .
Since Mm is Noetherian, this chain must eventually stabilize. We may therefore choose an
integer a0 such that N ′am = N ′(a−1)m = ker(θam) for a ≥ a0. Using the commutative diagram

of short exact sequences

0 // N ′(a−1)m

��

// Mm
θam //

id

��

Im(θam) //

��

0

0 // N ′am // Mm

θ(a+1)m// Im(θ(a+1)m
// 0,

we see that multiplication by `m induces an isomorphism from Im(θam) to Im(θ(a+1)m) for
a ≥ a0. This isomorphism factors as a composition

Im(θam) ↪→Mam[`m]
`m→ Im(θ(a+1)m),

so that for a ≥ a0 the object Mam[`m] splits as a direct sum Im(θam) ⊕ Nam. Note that
the restriction map M(a+1)m[`m] → Mam[`m] has image Nam and kernel Im(θ(a+1)m), and
therefore restricts to an isomorphism N(a+1)m → Nam for a ≥ a0. It follows that the tower
{Mam[`m]}a≥a0

is isomorphic to the direct sum of a constant tower {Nam}a≥a0
and a tower

{Im(θam)}a≥a0
with vanishing transition maps, and is therefore equivalent to a constant Pro-

object of A. �

Proof of Proposition 4.4.1. For each integer n, let Shvc`(X)≤n denote the full subcategory of
Shvc`(X) spanned by those objects F such that, for each object G ∈ Shvc`(X)≥0, the mapping
space MapShvc`(X)(G,Σ

−m F) is contractible for m > n. To prove Proposition 4.4.1, it will suffice

to show that for each object F ∈ Shvc`(X), there exists a fiber sequence

F′ → F → F′′

where F′ ∈ Shvc`(X)≥0 and F′′ ∈ Shvc`(X)≤−1.
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For each integer d ≥ 0, let Fd = (Z/`dZ)⊗Z F denote the image of F in Shv(X; Z/`dZ), so
that F ' lim←−{Fd}d≥0. Set F′ = lim←−{τ≥0 Fd}d≥0 and F′′ = lim←−{τ≤−1 Fd}d≥0, where the limits

are formed in Shv(X; Z). We will prove that F′ ∈ Shvc`(X)≥0. Assuming this, it follows that
F′′ ∈ Shvc`(X). Note that for G ∈ Shvc`(X)≥0, the mapping space

MapShvc`(X)(G,F) ' lim←−MapShvc`(X)(G, τ≤−1 Fd)

' lim←−MapShv`(X;Z/`dZ)(Z/`
dZ⊗Z G, τ≤−1 Fd)

is contractible, since each tensor product Z/`dZ ⊗Z G belongs to Shv(X; Z/`dZ)≥0. It follows
that F′′ belongs to Shvc`(X)≤−1, as desired.

It remains to prove that F′ ∈ Shvc`(X)≥0. For this, we must establish three things:

(a) The object F′ ∈ Shv(X; Z) is `-complete.
(b) The tensor product (Z/`Z)⊗Z F′ is a compact object of Shv(X; Z/`Z).
(c) The tensor product (Z/`Z)⊗Z F′ belongs to Shv(X; Z/`Z)≥0.

Assertion (a) is obvious (since the collection of `-complete objects of Shv(X; Z) is closed under
limits). We will deduce (b) and (c) from the following:

(∗) The tower

{(Z/`Z)⊗Z τ≥0 Fd}d≥0

is constant when regarded as a Pro-object of Shv(X; Z/`Z).

Note that if a tower {Cd}d≥0 in some ∞-category C is Pro-equivalent to an object C ∈ C, then
C can be identified with a retract of Cd for d � 0. In particular, using assertion (∗) (and the
fact that the construction (Z/`Z)⊗Z • preserves limits), we can identify (Z/`Z)⊗Z F′ with a
retract of some G = (Z/`Z)⊗Z τ≥0 Fd for some d ≥ 0. From this, assertion (c) is obvious and
assertion (b) follows from Proposition 4.2.5.

Note that the tower {(Z/`Z) ⊗Z (Z/`dZ)} determines a constant Pro-object of ModZ, so
that the Pro-objects {(Z/`Z)⊗Z Fd}d≥0 and {τ≥0(Z/`Z⊗Z Fd)}d≥0 are likewise constant. For
each d ≥ 0, form a fiber sequence

(Z/`Z)⊗Z τ≥0 Fd → τ≥0((Z/`Z)⊗Z Fd)→ Gd .

To prove (∗), it will suffice to show that the tower {Gd}d≥0 is constant. Unwinding the defi-
nitions, we see that each Gd belongs to the heart Shv(X; Z)♥, where it can be identified with
the kernel of the map π−1 Fd → π−1 Fd given by multiplication by `. For each integer m, let us
regard πm F as an object of Shv(X; Z)♥, and let (πm F)/`d and (πm F)[`d] denote the cokernel
and kernel of the multiplication map `d : πm F → πm F, so that we have exact sequences

0→ (π−1 F)/`d → π−1 Fd → (π−2 F)[`d]→ 0

which determine an exact sequence of Pro-objects

0→ {(π−1 F)/`d)[`]}d≥0 → {Gd}d≥0 → {(π−2 F)[`]}d≥0.

The last of these Pro-objects is trivial (it has vanishing transition maps), so we are reduced to
proving that the Pro-object {(π−1 F)/`d)[`]}d≥0 is constant. Note that (π−1 F)/` is a subobject
of π−1 F1, and is therefore a Noetherian object of the abelian category Shv(X; Z/`Z)♥ by virtue
of Proposition 4.2.12. The desired result now follows from Lemma 4.4.4. �

Remark 4.4.5. Let X be a quasi-projective k-scheme and let F ∈ Shvc`(X). The proof of
Proposition 4.4.1 shows that F belongs to Shvc`(X)≤0 if and only if the canonical map F →
lim←− τ≤0(Z/`dZ⊗Z F) is an equivalence in Shv(X; Z). In particular, every object of Shvc`(X)≤0

belongs to Shv(X; Z)≤0. In other words, the inclusion Shvc`(X) ↪→ Shv(X; Z) is left t-exact.
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Remark 4.4.6. Let X be a quasi-projective k-scheme and let F ∈ Shvc`(X). For each integer
d ≥ 0, let Fd = (Z/`dZ)⊗ZF ∈ Shvc(X; Z/`dZ). If F ∈ Shvc`(X)≤n, then Remark 4.4.5 implies
that F ∈ Shv(X; Z)≤n so that each Fd belongs to Shv(X; Z/`dZ)≤n+1. Conversely, if F1 belongs
to Shv(X; Z/`Z)≤n+1, then it follows by induction on d that each Fd ∈ Shv(X; Z/`dZ)≤n+1,
so that the proof of Proposition 4.4.1 shows that F ∈ Shvc`(X)≤n+1.

Proposition 4.4.7. Let X be a quasi-projective k-scheme. Then the t-structure on Shvc`(X)
is right and left bounded: that is, we have

Shvc`(X) =
⋃
n

Shvc`(X)≤n =
⋃
n

Shvc`(X)≥−n.

Proof. Let F ∈ Shvc`(X). For each integer d ≥ 0, let Fd = Z/`dZ ⊗Z F ∈ Shvc(X; Z/`dZ).
The characterization of constructibility given by Proposition 4.2.5, we see that there exists an
integer n ≥ 0 such that F1 ∈ Shv(X; Z/`Z)≥−n ∩ Shv(X; Z/`Z)≤n. It follows by induction on
d that each Fd belongs to Shv(X; Z/`dZ)≥−n ∩ Shv(X; Z/`dZ)≥n, so that F ∈ Shvc`(X)≥−n ∩
Shvc`(X)≤n. �

We now discuss the functorial behavior of the t-structure introduced in Proposition 4.4.1.

Proposition 4.4.8. Let f : X → Y be a morphism of quasi-projective k-schemes. Then the
pullback functor f∗ : Shvc`(Y )→ Shvc`(X) is t-exact.

Proof. If F ∈ Shvc`(Y )≥0, then

(Z/`Z)⊗Z f
∗ F ' f∗(Z/`Z⊗Z F)

∈ f∗ Shv(Y ; Z/`Z)≥0

⊆ Shv(X; Z/`Z)≥0.

This proves that the functor f∗ is right t-exact.
To prove left exactness, we must work a little bit harder. Assume that F ∈ Shvc`(Y )≤0, and

for d ≥ 0 set Fd = (Z/`dZ)⊗Z F ∈ Shv(Y ; Z/`dZ). We have

τ≥1f
∗ F ' lim←− τ≥1(Z/`dZ⊗Z f

∗ F)

' lim←− τ≥1f
∗(Z/`dZ⊗Z F)

= lim←− τ≥1f
∗ Fd

' lim←− f
∗τ≥1 Fd .

It will therefore suffice to show that lim←− f
∗τ≥1 Fd vanishes in Shv(X; Z). Since the limit is

`-complete, we are reduced to proving that the limit

Z/`Z⊗Z lim←− f
∗τ≥1 Fd ' lim←− f

∗(Z/`Z⊗Z τ≥1 Fd)

vanishes. Using the characterization of Shvc`(Y )≤0 obtained in the proof of Proposition 4.4.1,
we see that the limit lim←−(Z/`Z⊗Z τ≥1 Fd) vanishes in Shv(Y ; Z/`Z). It will therefore suffice to
show that the natural map

f∗ lim←−(Z/`Z⊗Z τ≥1 Fd)→ lim←− f
∗(Z/`Z⊗Z τ≥1 Fd)

is an equivalence in Shv(X; Z). This follows from assertion (∗) from the proof of Proposition
4.4.1. �

Corollary 4.4.9. Let f : X → Y be a morphism of quasi-projective k-schemes. Then the
pushforward functor f∗ : Shvc`(X)→ Shvc`(Y ) is left t-exact. If f is a finite morphism, then f∗
is t-exact.
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Proof. The left t-exactness of f∗ follows immediately from the right t-exactness of the adjoint
functor f∗ (Proposition 4.4.8). If f is a finite morphism, then for F ∈ Shvc`(X) we have

Z/`Z⊗Z f∗ F ' f∗(Z/`Z⊗Z F)

∈ f∗ Shv(X; Z/`Z)≥0

⊆ Shv(Y ; Z/`Z)≥0,

so that f∗ is left t-exact. �

Corollary 4.4.10. Let f : X → Y be a finite morphism of quasi-projective k-schemes. Then
the functor f ! : Shvc`(Y )→ Shvc`(X) is left t-exact.

Corollary 4.4.11. Let X be a quasi-projective k-scheme. Then:

(a) An object F ∈ Shvc`(X) belongs to Shvc`(X)≥0 if and only if, for each point η : Spec k →
X, the stalk η∗ F ∈ Shvc`(Spec k) ' Modpf

Z`
belongs to (ModZ`)≥0.

(b) An object F ∈ Shvc`(X) belongs to Shvc`(X)≤0 if and only if, for each point η : Spec k →
X, the stalk η∗ F ∈ Shvc`(Spec k) ' Modpf

Z`
belongs to (ModZ`)≤0.

Proof. We will prove (b); the proof of (a) is similar. The “only if” direction follows immediately
from Proposition 4.4.8 and Example 4.4.3. Conversely, suppose that η∗ F belongs to (ModZ`)≤0

for each point η : Spec k → X. Since the functor η∗ is t-exact (Proposition 4.4.8), it follows
that the canonical map α : F → τ≤0 F induces an equivalence after passing to the stalk at each
point, so that α is an equivalence by virtue of Proposition 4.3.25. �

Our next goal is to describe the heart of the t-structure of Proposition 4.4.1. First, we need
to introduce a bit of terminology:

Definition 4.4.12. Let X be a quasi-projective k-scheme and let F ∈ Shv(X; Z/`dZ)♥. We
will say that the sheaf F is imperfect constructible if it satisfies the following conditions:

(1) There exists a finite sequence of quasi-compact open subsets

0 = U0 ⊆ U1 ⊆ · · · ⊆ Un = X

such that, for 1 ≤ i ≤ n, if Yi denotes the locally closed reduced subscheme of X with
support Ui − Ui−1, then each restriction F |Yi is locally constant.

(2) For every k-valued point η : Spec k → X, the pullback η∗ F ∈ Shv(Spec k; Z/`dZ) '
Mod♥

Z/`dZ
is finite (when regarded as an abelian group).

We let Shv◦(X; Z/`dZ) denote the full subcategory of Shv(X; Z/`dZ)♥ spanned by the imperfect
constructible objects.

Example 4.4.13. Let F ∈ Shvc(X; Z/`dZ). Then each of the cohomology sheaves πi F is
imperfect constructible.

Remark 4.4.14. If X is a quasi-projective k-scheme, then the full subcategory

Shv◦(X; Z/`dZ) ⊆ Shv(X; Z/`dZ)♥

is closed under the formation of kernels, cokernels, and extensions. Consequently, it forms an
abelian category.

Remark 4.4.15. For every pair of integers d′ ≥ d ≥ 0, the construction

F 7→ τ≤0((Z/`dZ)⊗Z/`d′Z F)
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carries Shv◦(X; Z/`d
′
Z) into Shv◦(X; Z/`dZ). We therefore have a tower of (abelian) categories

and right-exact functors

· · · → Shv◦(X; Z/`3Z)→ Shv◦(X; Z/`2Z)→ Shv◦(X; Z/`Z).

We will denote the homotopy inverse limit of this tower by Shv◦(X).

Proposition 4.4.16. Let X be a quasi-projective k-scheme, and let

φ : Shvc`(X)≥0 → Shv◦(X)

be the functor given on objects by the formula

φ(F) = {τ≤0(Z/`dZ⊗Z F)}d≥0.

Then θ induces an equivalence of categories Shvc`(X)♥ ' Shv◦(X). In particular, Shv◦(X) is
an abelian category.

Proof. Let ψ : Shv◦(X) → Shv(X; Z) be the functor given by ψ{Fd}d≥0 = lim←−Fd (where

the limit is formed in the ∞-category Shv(X; Z)). The proof of Proposition 4.4.1 shows that
the composite functor ψ ◦ φ : Shvc`(X)≥0 → Shv(X; Z) is given by F 7→ τ≤0 F (where the
truncation is formed with respect to the t-structure of Proposition 4.4.1). Consequently, ψ is
a left homotopy inverse of the restriction φ|Shv(X;Z). To complete the proof, it will suffice to

show that ψ factors through the full subcategory Shvc`(X)♥ ⊆ Shv(X; Z) and that it is a right
homotopy inverse to φ|Shvc`(X)♥ . To prove this, we must prove that for every object {Fd}d≥0 of

Shv◦(X) has the following properties:

(a) The inverse limit F = lim←−Fd (formed in the ∞-category Shv(X; Z)) is `-complete.

(b) The tensor product (Z/`Z)⊗Z F is a constructible object of Shv(X; Z/`Z).
(c) The limit F = lim←−Fd belongs to Shvc`(X)≥0: in other words, the tensor product

(Z/`Z)⊗Z F belongs to Shv(X; Z/`Z)≥0.
(d) The limit F = lim←−Fd belongs to Shvc`(X)≤0.

(e) For each integer d ≥ 0, the canonical map τ≤0(Z/`dZ)⊗Z F)→ Fd is an equivalence in
Shv(X; Z/`dZ)♥.

Assertion (a) is clear. Note that the tensor product (Z/`Z)⊗Z F can be identified with the
limit of the diagram {(Z/`Z)⊗Z Fd}d≥0. For each d ≥ 1, we have

πi(Z/`Z⊗Z Fd) '


F1 if i = 0

ker(` : Fd → Fd) if i = 1

0 otherwise.

Using Lemma 4.4.4 and Proposition 4.2.12, we see that the tower {ker(` : Fd → Fd)}d≥1 is
constant as a Pro-object of Shv◦(X; Z/`Z). It follows that πi(Z/`Z⊗Z F) is F1 when i = 0, a
retract of some ker(` : Fd → Fd) if i = 1, and vanishes otherwise. This proves (b) and (c). To
prove (d), we note that for G ∈ Shvc`(X)≥0, the mapping space

MapShv(X;Z)(G,Σ
−1 F) ' lim←−MapShv(X;Z)(G,Σ

−1 Fd)

' lim←−MapShv(X;Z/`dZ)(Z/`
dZ⊗Z G,Σ−1 Fd)

is contractible because each (Z/`dZ)⊗Z G belongs to Shv(X; Z/`dZ)≥0. To prove (e), we first
observe that for d′ ≥ d, we have

πi((Z/`
dZ)⊗Z Fd′) '


Fd if i = 0

ker(`d : Fd′ → Fd′) if i = 1

0. otherwise
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Using Lemma 4.4.4 and Proposition 4.2.12, we see that the tower {ker(`d : Fd′ → Fd′)}d′≥d is
equivalent to a constant Pro-object of Shv◦(X; Z/`dZ), so that the tower {((Z/`dZ)⊗ZFd′}d′≥d
is constant and we obtain an equivalence

τ≤0 lim←−
d′

((Z/`dZ)⊗Z Fd′)→ lim←−
d′
τ≤0((Z/`dZ)⊗Z Fd′) ' Fd

is an equivalence. �

Notation 4.4.17. Let X be a quasi-projective k-scheme. We let Shv`(X)≥0 and Shv`(X)≤0

denote the essential images of the fully faithful embeddings

Ind(Shvc`(X)≥0) ↪→ Ind(Shvc`(X)) = Shv`(X)

Ind(Shvc`(X)≤0) ↪→ Ind(Shvc`(X)) = Shv`(X).

It follows from Proposition 4.4.1 that the full subcategories (Shv`(X)≥0,Shv`(X)≤0) determine
a t-structure on the ∞-category Shv`(X).

Remark 4.4.18. Let f : X → Y be a morphism of quasi-projective k-schemes. Then
the pullback functor f∗ : Shv`(Y ) → Shv`(X) is t-exact, and the pushforward functor f∗ :
Shv`(X) → Shv`(Y ) is left t-exact. If f is finite, then f∗ : Shv`(X) → Shv`(Y ) is t-exact and
f ! : Shv`(Y ) → Shv`(X) is left t-exact. These assertions follow immediately from Proposition
4.4.8, Corollary 4.4.9, and Corollary 4.4.10. Beware that the analogue of Corollary 4.4.11 for
non-constructible `-adic sheaves is generally false: for example, one can find nonzero objects of
Shv`(X) with vanishing stalks (or costalks) at every point.

Proposition 4.4.19. Let X be a quasi-projective k-scheme. Then the t-structure on Shvc`(X)
is right and left bounded: that is, we have

Shvc`(X) =
⋃
n

Shvc`(X)≤n =
⋃
n

Shvc`(X)≥−n.

Let X be a quasi-projective k-scheme. Then the t-structure on Shv`(X) is right complete (that is,
the canonical map Shv`(X)→ lim←−n Shv`(X)≥−n is an equivalence of ∞-categories). Moreover,

the canonical map

Shv`(X)→ lim←−
n

Shv`(X)≤n

is fully faithful.

Remark 4.4.20. We do not know if the t-structure on Shv`(X) is left complete.

Lemma 4.4.21. Let X be a quasi-projective k-scheme. Then there exists an integer q with
the following property: if F ∈ Shvc`(X)≤0 and G ∈ Shv`(X)≥q, then every morphism F → G is
nullhomotopic.

Proof. By virtue of Proposition 4.2.13, we can choose an integer n for which the groups
ExtmShv(X;Z/`Z)(F

′,G′) vanish whenever F′ ∈ Shvc(X; Z/`Z)♥, G′ ∈ Shv(X; Z/`Z)♥, and m > n.

We will show that q = n+3 has the desired property. Let F ∈ Shvc`(X)≤0 and G ∈ Shv`(X)≥n+3;

we wish to prove that Ext0
Shv`(X)(F,G) ' 0. Writing G is a filtered colimit of objects of

Shvc`(X)≥n+3, we may assume that G is constructible. For each d ≥ 0, set

Fd = (Z/`dZ)⊗Z F Gd = (Z/`dZ)⊗Z G .

Note that F can be regarded as an object of Shv(X; Z)≤0 (Remark 4.4.5), so that each Fd
belongs to Shv(X; Z/`dZ)≤−1. We have a canonical homotopy equivalence

MapShv`(X)(F,G) ' lim←−MapShv(X;Z)(F,Gd)
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which gives rise to Milnor exact sequences

0→ lim1{Ext−1
Shv(X;Z)(F,Gd)} → Ext0

Shv`(X)(F,G)→ lim0{Ext0
Shv(X;Z)(F,Gd)}.

It will therefore suffice to show that the groups ExtiShv(X;Z)(F,Gd) vanish for i ∈ {0,−1}.
Writing Gd as successive extension of finitely many copies of G1, we may reduce to the case
d = 1. We are therefore reduced to showing that the groups ExtiShv(X;Z/`Z)(F1,G1) vanish for

i ∈ {0,−1}. The desired result now follows by writing F1 and G1 as successive extensions of
objects belonging to the heart Shv(X; Z/`Z)♥. �

Proof of Proposition 4.4.19. The right completeness of the Shv`(X) follows formally from the
right boundedness of Shvc`(X) (Proposition 4.4.19). To see this, we first observe that the
full subcategory Shv`(X)≤0 is closed under infinite direct sums. To show that Shv`(X) is right
complete, it will suffice to show that the intersection

⋂
Shv`(X)≤−n consists only of zero objects

(Proposition HA.1.2.1.19). To prove this, let F ∈
⋂

Shv`(X)≤−n. If F 6= 0, then there exists
an object F′ ∈ Shvc`(X) and a nonzero map F′ → F. This is impossible, since F′ belongs
to Shv`(X)≥m for some integer m (by virtue of the right boundedeness of the t-structure on
Shvc`(X)).

To complete the proof, it will suffice to show that for every object G ∈ Shv`(X), the canonical
map G → lim←− τ≤n G is an equivalence. Equivalently, we must show that the object lim←− τ≥n G
vanishes. To prove this, we argue that for each constructible object F ∈ Shvc`(X), the mapping
space MapShv`(X)(F, lim←− τ≥n G) is contractible. We have Milnor exact sequences

lim1{Extm−1
Shv`(X)(F, τ≥n G)}n≥0 → ExtmShv`(X)(F, lim←− τ≥n G)→ lim0{ExtmShv`(X)(F, τ≥n G)}n≥0.

The desired result now follows from Lemma 4.4.21 (and the left boundedness of Shvc`(X)),
which guarantees that the groups Extm−1

Shv`(X)(F, τ≥n G) and ExtmShv`(X)(F, τ≥n G) are trivial for

n� 0. �

4.5. Base Change Theorems and Dualizing Sheaves. Throughout this section, we fix an
algebraically closed field k and a prime number ` which is invertible in k. In this section, we
recall some nontrivial results in the theory of `-adic sheaves which will be needed in the later
sections of this paper. We begin with a few general categorical remarks.

Notation 4.5.1. Suppose we are given a diagram of ∞-categories and functors σ :

C
f //

g

��

D

g′

��
C′

f ′ // D′

which commutes up to specified homotopy: that is, we are given an equivalence of functors
α : g′ ◦ f ' f ′ ◦ g. Suppose that f and f ′ admit left adjoints fL and f ′L, respectively. Then σ
determines a map β : f ′L ◦ g′ → g ◦ fL, given by the composition

f ′L ◦ g′ → f ′L ◦ g′ ◦ f ◦ fL α→ f ′L ◦ f ′ ◦ g ◦ fL → g ◦ fL

where the first and third maps are given by composition with the unit and counit for the
adjunctions between the pairs (fL, f) and (f ′L, f ′), respectively. We will refer to β as the
left Beck-Chevalley transformation determined by α. We will say that the diagram σ is left
adjointable if the functors f and f ′ admit left adjoints and the natural transformation β is an
equivalence. If f and f ′ admit right adjoints fR and f ′R, then a dual construction yields a
natural transformation

γ : g ◦ fR → f ′R ◦ g′,
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which we will refer to as the right Beck-Chevalley transformation determined by σ. We will
say that σ is right adjointable if the functors f and f ′ admit right adjoints ant the natural
transformation γ is an equivalence.

Remark 4.5.2. In the situation of Notation 4.5.1, suppose that the functors f , f ′, g and g′

all admit left adjoints. We then obtain a diagram σL:

D′
g′L //

f ′L

��

D

fL

��
C′

gL // C

,

which commutes up to (preferred) homotopy, and the vertical maps admit right adjoints g′ and
g. We therefore obtain a right Beck-Chevalley transformation f ′L ◦ g′ → g ◦ fL for σL, which
agrees (up to canonical homotopy) with the left Beck-Chevalley transformation for σ.

Remark 4.5.3. Suppose we are given a diagram of ∞-categories σ :

C
f //

g

��

D

g′

��
C′

f ′ // D′

where the functors f and f ′ admit left adjoints fL and f ′L, and the functors g and g′ admit right
adjoints gR and g′R. Applying the Construction of Notation 4.5.1 to σ and to the transposed
diagram σt :

C
g //

f

��

C′

f ′

��
D

g′ // D′,

we obtain left and right Beck-Chevalley transformations

β : f ′L ◦ g′ → g ◦ fL γ : f ◦ gR → g′R ◦ f ′.
Unwinding the definitions, we see that γ is the natural transformation obtained from β by
passing to right adjoints. In particular, under the assumption that the relevant adjoints exist,
the diagram σ is left adjointable if and only if the diagram σt is right adjointable.

We now specialize to the setting of algebraic geometry. Suppose we are given a commutative
diagram σ :

X ′
f ′ //

p′

��

X

p

��
S′

f // S

of quasi-projective k-schemes. Then σ determines a diagram of ∞-categories

Shv`(S)
p∗ //

f∗

��

Shv`(X)

f ′∗

��
Shv`(S

′)
p′∗ // Shv`(X

′).
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Each functor in this diagram admits a right adjoint, so we obtain a right Beck-Chevalley
transformation β : f∗p∗ → p′∗f

′∗. The following is summarizes some of the main foundational
results in the theory of étale cohomology:

Theorem 4.5.4 (Smooth and Proper Base Change). Suppose we are given a pullback diagram
of quasi-projective k-schemes

X ′

p′

��

f ′ // X

p

��
S′

f // S.

If either p is proper or f is smooth, then the Beck-Chevalley morphism β : f∗p∗ → p′∗f
′∗ is an

equivalence of functors from Shv`(X) to Shv`(S
′).

Proof. Let F ∈ Shv`(X
′); we wish to prove that the canonical map βF : f∗p∗ F → p′∗f

′∗ F

is an equivalence in Shv`(S
′). Writing F as a filtered colimit of constructible `-adic sheaves

(and using the fact that the functors f∗, p∗, p
′
∗, and f ′∗ commute with filtered colimits), we

can reduce to the case where F is constructible. In this case, the domain and codomain of βF
are constructible `-adic sheaves (see Notation 4.3.30). We may therefore identify βF with a
morphism in the ∞-category Shvc`(S

′) ⊆ Shv(S′; Z`). Since the domain and codomain of βF
are `-complete, it will suffice to show that the induced map

(Z/`Z)⊗Z` f
∗p∗ F → (Z/`Z)⊗Z` p

′
∗f
′∗ F

is an equivalence in Shv(S′; Z/`Z). For this, it suffices to show that the diagram of∞-categories

Shvc(S; Z/`Z)
p∗ //

f∗

��

Shvc(X; Z/`Z)

f ′∗

��
Shvc(S′; Z/`Z)

p′∗ // Shvc(X ′; Z/`Z).

is right adjointable: that is, that the canonical map f∗p∗ G→ p′∗f
′∗ G is an equivalence for each

constructible object G ∈ Shv(X; Z/`Z). The constructibility of G implies that it can be written
as a finite extension of suspensions of objects belonging to the heart Shv(X; Z/`Z) (which
we can identify with the abelian category étale sheaves of Z/`Z on X). The desired result
now follows from the usual smooth and proper base change theorems for étale cohomology (see
[13]). �

In the situation of Theorem 4.5.4, suppose that the map f is étale. Then the pullback
functors f∗ and f ′∗ admit left adjoints f! and f ′! . Invoking the dual of Remark 4.5.3, we obtain
the following version of Proposition 4.1.12:

Variant 4.5.5. Suppose we are given a pullback diagram of quasi-projective k-schemes

X ′

p′

��

f ′ // X

p

��
S′

f // S,
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where f is étale. Then the diagram of ∞-categories

Shv`(S)
f∗ //

p∗

��

Shv`(S
′)

p′∗

��
Shv`(X)

f ′∗ // Shv`(X
′).

is left adjointable. In other words, the associated Beck-Chevalley transformation β′ : f ′! p
′∗ →

p∗f! is an equivalence of functors from Shv`(S
′) to Shv`(X).

Remark 4.5.6. It is easy to deduce Variant 4.5.5 directly from Proposition 4.1.12; the full
force of the smooth base change theorem is not required.

In the situation of Theorem 4.5.4, the right adjointability of the diagram

Shv`(S)
p∗ //

f∗

��

Shv`(X)

f ′∗

��
Shv`(S

′)
p′∗ // Shv`(X

′).

is equivalent to the left adjointability of the diagram

Shv`(X
′)

f ′∗ //

p′∗
��

Shv`(X)

p∗

��
Shv`(S

′)
f∗ // Shv`(S)

(Remark 4.5.2). If p is proper, then the vertical maps admit right adjoints given by p! and p′!,
respectively. Invoking Remark 4.5.3, we obtain:

Variant 4.5.7. Suppose we are given a pullback diagram of quasi-projective k-schemes

X ′

p′

��

f ′ // X

p

��
S′

f // S,

where p is proper. Then the diagram of ∞-categories

Shv`(X
′)

p′∗ //

f ′∗
��

Shv`(S
′)

f∗

��
Shv`(X)

p∗ // Shv`(S)

is right adjointable. In other words, the right Beck-Chevalley transformation

β′′ : f ′∗p
′! → p!f∗

is an equivalence of functors from Shv`(S
′) to Shv`(X).
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Construction 4.5.8. Suppose that we are given a pullback diagram of quasi-projective k-
schemes

X ′
f ′ //

p′

��

X

p

��
S′

f // S

where f is étale, so that the diagram of ∞-categories

Shv`(X)
f ′∗ //

p∗

��

Shv`(X
′)

p′∗
��

Shv`(S)
f∗ // Shv`(S

′)

commutes up to canonical homotopy (Theorem 4.5.4). Note that the horizontal maps admit left
adjoints f ′! and f!, respectively, so that there is an associated left Beck-Chevalley transformation
γ : f!p

′
∗ → p∗f

′
! . By virtue of Remark 4.5.2, we can also identify γ with the right Beck-Chevalley

transformation associated to the diagram

Shv`(S
′)

p′∗ //

f!

��

Shv`(X
′)

f ′!
��

Shv`(S)
p∗ // Shv`(X)

of Variant 4.5.5.

Proposition 4.5.9. Suppose that we are given a pullback diagram of quasi-projective k-schemes

X ′
f ′ //

p′

��

X

p

��
S′

f // S,

where f is étale. If p is proper, then the natural transformation γ : f!p
′
∗ → p∗f

′
! of Construction

4.5.8 is an equivalence. In other words, the diagram of ∞-categories

Shv`(X)
f ′∗ //

p∗

��

Shv`(X
′)

p′∗
��

Shv`(S)
f∗ // Shv`(S

′)

is left adjointable, and the diagram of ∞-categories

Shv`(S
′)

p′∗ //

f!

��

Shv`(X
′)

f ′!
��

Shv`(S)
p∗ // Shv`(X)

is right adjointable.
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Proof. Let F ∈ Shv`(X
′); we wish to show that the map γF : f!p

′
∗ F → p∗f

′
! F is an equivalence

in Shv`(S). Writing F as a filtered colimit of constructible `-adic sheaves (and using the fact that
the functors f!, p∗, f

′
! , and p′∗ commute with filtered colimits), we can reduce to the case where

F is constructible. In this case, the domain and codomain of γF are also constructible `-adic
sheaves. Using Proposition 4.3.25, we are reduced to showing that βF induces an equivalence
η∗f!p

′
∗ F → η∗p∗f

′
! F for every point η : Spec k → S. Using Theorem 4.5.4 and Variant 4.5.5,

we can replace S by Spec k. In this case, S′ is isomorphic to a disjoint union of finitely many
copies of Spec k and the result is easy. �

Corollary 4.5.10 (Projection Formula). Let f : X → Y be a proper morphism between quasi-
projective k-schemes. Then for every pair of objects F ∈ Shv`(X) and G ∈ Shv`(Y ), the
canonical map

βF,G : (f∗ F)⊗ G→ f∗(F⊗f∗ G)

is an equivalence in Shv`(Y ).

Proof of Corollary 4.5.10. The construction (F,G) 7→ βF,G commutes with filtered colimits sep-
arately in each variable. We may therefore assume without loss of generality that F and G are
constructible `-adic sheaves. In this case, βF,G is a morphism between constructible `-adic
sheaves. Consequently, to prove that βF,G is an equivalence, it will suffice to show that the im-
age of βF,G in Shv(Y ; Z/`Z) is an equivalence. In other words, it suffices to prove the analogue
of Corollary 4.5.10 when F and G are constructible objects of Shv(X; Z/`Z) and Shv(Y ; Z/`Z),
respectively.

Let us regard F as fixed. Using Remark 4.1.18, we see that the construction G 7→ βF,G
preserves colimits. It follows that the collection of those objects G ∈ Shv(Y ; Z/`Z) for which
βF,G is an equivalence is closed under colimits. Using Proposition 4.2.2, we may suppose that
G = j!Z/`Z

U
for some étale map j : U → Y . Form a pullback diagram

UX
j′ //

f ′

��

X

f

��
U

j // Y.

Unwinding the definitions, we can identify (f∗ F) ⊗ G with the object j!j
∗f∗ F, and F⊗f∗ G

with j′!j
′∗ F. Under these identifications, the map βF,G factors as a composition

j!j
∗f∗ F

β′→ j!f
′
∗j
′∗ β

′′

→ f∗j
′
!j
′∗ F,

where β′ is an equivalence by Theorem 4.5.4 (since j is étale) and β′′ is an equivalence by
Proposition 4.5.9 (since f is proper). �

We also have the following dual version of Construction 4.5.8:

Construction 4.5.11. Suppose that we are given a pullback diagram of quasi-projective k-
schemes

X ′
f ′ //

p′

��

X

p

��
S′

f // S
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where p is proper, so that the diagram of ∞-categories

Shv`(X)
p∗ //

f ′∗

��

Shv`(S)

f∗

��
Shv`(X

′)
p′∗ // Shv`(S

′)

commutes up to canonical homotopy (Theorem 4.5.4). Note that the horizontal maps admit
right adjoints p! and p′!, so that there is an associated right Beck-Chevalley transformation
γ′ : f ′∗p! → p′!f∗ of functors from Shv`(S) to Shv`(X

′). Using Remark 4.5.2, we can also
identify γ′ with the left Beck-Chevalley transformation associated to the diagram

Shv`(S
′)

f∗ //

p′!

��

Shv`(S)

p!

��
Shv`(X

′)
f ′∗ // Shv`(X)

of Variant 4.5.7.

Proposition 4.5.12. Suppose we are given a commutative diagram of quasi-projective k-
schemes

X ′

p′

��

f ′ // X

p

��
S′

f // S

where p is proper. If f is smooth, then the natural transformation γ′ : f ′∗p! → p′!f∗ of Con-
struction 4.5.11 is an equivalence. In other words, the diagram of ∞-categories

Shv`(X)
p∗ //

f ′∗

��

Shv`(S)

f∗

��
Shv`(X

′)
p′∗ // Shv`(S

′)

is right adjointable and the diagram of ∞-categories

Shv`(S
′)

f∗ //

p′!

��

Shv`(S)

p!

��
Shv`(X

′)
f ′∗ // Shv`(X)

is left adjointable.

Remark 4.5.13. In the situation of Proposition 4.5.12, suppose that p is proper and f is
étale. In this case, the natural transformation γ′ : f ′∗p! → p′!f∗ is obtained from the natural
transformation γ : f!p

′
∗ → p∗f

′
! of Construction 4.5.8 by passing to right adjoints. In this case,

Proposition 4.5.12 reduces to Proposition 4.5.9.

Proof of Proposition 4.5.12. Fix an object F ∈ Shv`(S); we wish to show that the map γ′F :
f ′∗p! F → p′!f∗ F is an equivalence. Since the construction F 7→ γ′F preserves filtered colimits,
we may assume without loss of generality that F is a constructible `-adic sheaf. For every point
η : Spec k → X, let iη denote the inclusion of the fiber product X ′ ×X Spec k into X ′. By
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virtue of Proposition 4.3.25, it will suffice to show that i!ηγ
′
F is an equivalence for each η. Let

f ′′ : X ′ ×X Spec k → Spec k denote the projection map, so that i!ηγF fits into a commutative
diagram

i!ηf
′∗p!

η!γ′F

$$
f ′′∗η!p!

β′
::

β′′ // i!ηp
′!f∗.

It will therefore suffice to show that β′ and β′′ are equivalences. We may therefore replace the
map p by either η or p ◦ η, and thereby reduce to the case where p is a closed immersion.

Let j : U → S be an open immersion complementary to p, let U ′ denote the fiber product
U ×S S′, and let j′ : U ′ → S′ denote the projection onto the second factor. If p is a closed
immersion, then the pushforward functor p′∗ is fully faithful. It will therefore suffice to show
that the p′∗γ

′
F is an equivalence. Identifying p′∗f

′∗p! F with f∗p∗p
! F, we see that p′∗γ

′
F fits into

a commutative diagram of fiber sequences

f∗p∗p
! F

p′∗γ
′
F

��

// f∗ F

id

��

// f∗j∗j∗ F

ρ

��
p′∗p
′!f∗ F // f∗ F // j′∗j

′∗f∗ F .

It will therefore suffice to show that ρ is an equivalence. This follows from Theorem 4.5.4, since
f is smooth. �

Example 4.5.14. Let X be a quasi-projective k-scheme, and let j : U → X be an open
immersion whose image is also closed in X. Then j is a proper map, and the diagram

U
id //

id
��

U

j

��
U

j // X

is a pullback square. Then Proposition 4.5.12 supplies a canonical equivalence

j! ' id∗ j! ' id! j∗ ' j∗.

Example 4.5.15. Let f : X → Y be a morphism between quasi-projective k-schemes. Let
U ⊆ X be the locus over which f is étale, let f0 be the restriction of f to U , let j : U ↪→ X
be the inclusion map, and let δ : U → U ×Y X be the diagonal map. Then δ exhibits U as a
direct summand of U ×Y X, so that Example 4.5.14 supplies an equivalence δ! ' δ∗. Applying
Proposition 4.5.12 to the pullback square

U ×Y X
π2 //

π1

��

X

f

��
U

f0 // Y,

we obtain a natural equivalence

j∗f ! ' δ∗π∗2f ! ' δ∗π!
1f
∗
0 ' δ!π!

1f
∗
0 ' f∗0 .
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In particular, if f is both étale and proper, then the functors f ! and f∗ are canonically equivalent
to one another (one can show that this equivalence agrees with the one supplied by Example
4.3.23).

Variant 4.5.16. Suppose we are given a commutative diagram of quasi-projective k-schemes

X ′

p′

��

f ′ // X

p

��
S′

f // S

where p is proper. Let U ⊆ X be an open subset for which the restriction p|U is smooth, and
let U ′ ⊆ X ′ denote the inverse image of U . Then the natural transformation γ′ : f ′∗p! → p′!f∗

of Construction 4.5.11 induces an equivalence

(f ′∗p! F)|U ′ → (p′!f∗ F)|U ′ .
for each object F ∈ Shv`(S). In particular, if p is smooth, then γ′ is an equivalence.

Proof. The assertion is local on U . We may therefore assume without loss of generality that
there exists an étale map of S-schemes g : U → Pn×Spec k S. Let Γ ⊆ U ×Pn denote the graph

of g, let Γ ⊆ X ×Spec k Pn be the closure of Γ and let q : Γ→ X be the projection onto the first
factor. Then q is a proper morphism which restricts to an isomorphism over the open set U .
Using Example 4.5.15, we can replace X by Γ and thereby reduce to the case where g extends
to a map g : Pn ×Spec k S. Using Example 4.5.15 again, we can replace X by Pn ×Spec k S,
and thereby reduce to the case where p is smooth. In this case, the desired result follows from
the description of the functors p! and p′! supplied by Example 4.3.23 (and the fact that this
description is compatible with base change). �

Construction 4.5.17. Suppose that we are given a pullback diagram of quasi-projective k-
schemes

X ′
f ′ //

p′

��

X

p

��
S′

f // S
where p is proper and f is étale. Then Proposition 4.5.12 supplies a commutative diagram of
∞-categories

Shv`(S)
f∗ //

p!

��

Shv`(S
′)

p′!

��
Shv`(X)

f ′∗ // Shv`(X
′).

Note that the horizontal maps admit left adjoints f! and f ′! , so that there is an associated left
Beck-Chevalley transformation δ : f ′! p

′! → p!f! of functors from Shv`(S
′) to Shv`(X). Using

Remarks 4.5.2 and 4.5.13, we see that δ can also be identified with the right Beck-Chevalley
transformation associated to the diagram of ∞-categories

Shv`(X
′)

p′∗ //

f ′!
��

Shv`(S
′)

f!

��
Shv`(X)

p∗ // Shv`(S)
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given by Proposition 4.5.9.

Proposition 4.5.18. Suppose we are given a commutative diagram of quasi-projective k-
schemes

X ′

p′

��

f ′ // X

p

��
S′

f // S

where p is proper and f is étale, and let δ : f ′! p
′! → p!f! be the natural transformation of

Construction 4.5.17. If U is an open subset of X such that p|U is smooth, then δ induces an
equivalence

(f ′! p
′! F)|U → (p!f! F)|U

for each object F ∈ Shv`(S
′). In particular, if p is smooth, then δ is an equivalence, so that the

diagrams of ∞-categories

Shv`(S)
f∗ //

p!

��

Shv`(S
′)

p′!

��

Shv`(X
′)

p′∗ //

f ′!
��

Shv`(S
′)

f!

��
Shv`(X)

f ′∗ // Shv`(X
′) Shv`(X)

p∗ // Shv`(S)

are left and right adjointable, respectively.

Proof. Arguing as in the proof of Variant 4.5.16, we may reduce to the case where p is smooth,
in which case the desired result follows from the desciption of the functors p! and p′! supplied
by Example 4.3.23. �

Construction 4.5.19. Let f : X → Y be a proper morphism of quasi-projective k-schemes
and suppose we are given objects F,G ∈ Shv`(Y ). Tensoring the counit map f∗f

! G → G with
F and applying Corollary 4.5.10, we obtain a map

f∗(f
∗ F⊗f ! G) ' F⊗f∗f ! G→ F⊗G,

which in turn classifies a map

ρF,G : f∗ F⊗f ! G→ f !(F⊗G)

in Shv`(X).

Proposition 4.5.20. Let f : X → Y be a proper morphism between quasi-projective k-schemes.
Let U ⊆ X be an open subset for which f |U is smooth. Then the natural map

ρF,G : f∗ F⊗f ! G→ f !(F⊗G)

induces an equivalence

(f∗ F⊗f ! G)|U → f !(F⊗G)|U
for every pair of objects F,G ∈ Shv`(Y ).

Proof. Let Z`Y denote the unit object of Shv`(Y ). Note that we have a commutative diagram

f∗ F⊗f ! G

&&
f∗ F⊗f∗ G⊗f !Z`Y

ρF⊗G,Z`Y //

ρG,Z`Y

66

f !(F⊗G).
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It will therefore suffice to show that the maps ρG,Z`Y and ρF⊗G,Z`Y
are equivalences over the

open set U . We may therefore reduce to the case where G = Z`Y . Since the construction
F 7→ ρF,Z`Y preserves filtered colimits, we may assume without loss of generality that F is a

constructible `-adic sheaf. In this case, ρF,Z`Y is a morphism of constructible `-adic sheaves.

To prove that it is an equivalence over U , it will suffice to show that its image in Shv(U ; Z/`Z)
is an equivalence. In other words, we are reduced to proving that for each constructible object
F1 ∈ Shv(Y ; Z/`Z), the canonical map

(f∗ F1⊗f !Z/`Z
Y

)|U → (f ! F1)|U
is an equivalence. Using Proposition 4.2.2, we may assume without loss of generality that
F1 = g!Z/`Z

V
where g : V → Y is an étale map. In this case, the desired result follows from

Proposition 4.5.18. �

Notation 4.5.21. If f : X → Y is a proper morphism of quasi-projective k-schemes, we let
ωX/Y ∈ Shv`(X) denote the `-adic sheaf given by f !Z`Y .

In the special case where Y = Spec k, we will denote ωX/Y by ωX , and refer to it as the
dualizing sheaf of X.

Remark 4.5.22. In §4.6, we will extend the definition of ωX to the case where X is an arbitrary
quasi-projective k-scheme (Notation 4.6.15).

Example 4.5.23. If f : X → Y is a proper smooth morphism of relative dimension d, then
Example 4.3.23 supplies an equivalence ωX/Y ' Σ2dZ`(d)

X
. More generally, one can show that

if U ⊆ X is an open subset for which f |U is a smooth morphism of relative dimension d, then
ωX/Y |U is equivalent to Σ2dZ`(d)

X
.

Remark 4.5.24. Suppose we are given a commutative diagram of quasi-projective k-schemes

X ′
f //

��

X

p

��
Y ′ // Y,

where the vertical maps are proper. Then Construction 4.5.11 supplies a canonical map
f∗ωX/Y → ωX′/Y ′ , which is an equivalence over the inverse image of the smooth locus of
p (Variant 4.5.16).

Remark 4.5.25. Let f : X → Y be a proper morphism of quasi-projective k-schemes. For
each object F ∈ Shv`(Y ), Construction 4.5.19 supplies a canonical map

f∗ F⊗ωX/Y → f ! F,

which induces an equivalence over the smooth locus of f (Proposition 4.5.20).

4.6. Künneth Formulae and the !-Tensor Product. Throughout this section, we fix an
algebraically closed field k and a prime number ` which is invertible in k.

Notation 4.6.1. Let Schk denote the category of quasi-projective k-schemes, and let Schpr
k

denote the subcategory of Schk whose morphisms are proper maps of quasi-projective k-schemes.
If X and Y are quasi-projective k-schemes, we let X ×Y denote the Cartesian product of X

and Y in the category Schk: that is, the fiber product X ×Spec k Y in the category of schemes.
This fiber product is equipped with projection maps

X
πX←− X × Y πY−→ Y.
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Given a pair of objects F ∈ Shv`(X), G ∈ Shv`(Y ), we let F�G denote the tensor product
π∗X F⊗π∗Y G, formed in the ∞-category Shv`(X × Y ). We will refer to F�G as the external
tensor product of F and G.

Note that if f : X → Y is a morphism of quasi-projective k-schemes and Z is another
quasi-projective k-scheme, then we have a canonical equivalence

(f × idZ)∗(H�G) ' f∗H�G

for H ∈ Shv`(Y ), G ∈ Shv`(Z). Taking H = f∗ F for F ∈ Shv`(X) (and composing with the
counit map f∗H→ F, we obtain a map

θF,G : f∗ F�G→ (f × idZ)∗(F�G).

Proposition 4.6.2. Let f : X → Y be a morphism of quasi-projective k-schemes and let Z be
a quasi-projective k-scheme. Then for every pair of objects F ∈ Shv`(X) and G ∈ Shv`(Z), the
canonical map

θF,G : (f∗ F) � G→ (f × idZ)∗(F�G)

is an equivalence in Shv`(Y × Z).

Proof. The construction (F,G) 7→ θF,G preserves filtered colimits in F and G. We may therefore
assume without loss of generality that F and G are constructible `-adic sheaves. In this case,
θF,G is a morphism of constructible `-adic sheaves on Y ×Z. Consequently, to prove that θF,G
is an equivalence, it will suffice to show that the image of θF,G in Shv(Y × Z; Z/`Z) is an
equivalence. It will therefore suffice to prove the analogue of Proposition 4.6.2 where F and G

are compact objects of Shv(X; Z/`Z) and Shv(Z; Z/`Z), respectively.
We first consider two special cases:

(a) If the map f is proper, then the desired result follows immediately from the projection
formula (Corollary 4.5.10).

(b) Suppose that Z is smooth and that G is locally constant. In this case, we can assume
that G is the constant sheaf MZ , where M ∈ ModZ/`Z is perfect (since the assertion is
local with respect to the étale topology on Z). The collection of those M for which θF,G
is an equivalence is closed under shifts, retracts, and finite colimits; we may therefore
assume that M = Z/`Z. In this case, the desired result follows from the smooth base
change theorem (Theorem 4.5.4).

We now treat the general case. For the remainder of the proof, we will regard f : X → Y and
F ∈ Shvc(X; Z/`Z) as fixed. Let d denote the dimension of Z; we will proceed by induction on
d. It follows from case (a) that if we are given a proper map g : Z → Z ′, then we can identify
θF,g∗ G with the image of θF,G under the pushforward functor (id×g)∗ : Shv(Y × Z; Z/`Z) →
Shv(Y × Z ′; Z/`Z).

Since the desired conclusion can be tested locally on Z, we may assume without loss of
generality that Z is affine. In this case, we can use Noether normalization to choose a finite
map g : Z → Ad. Then cofib(θF,G) vanishes if and only if g∗ cofib(θF,G) ' cofib(θF,g∗ G)

vanishes. We may therefore replace G by g∗ G, and thereby reduce to the case where Z = Ad is
an affine space.

Using Proposition 4.2.5, we can choose a nonempty open subset U ⊆ Z such that G |U is
locally constant. Applying a translation if necessary, we may suppose that U contains the origin
0 ∈ Ad = Z. Set H = cofib(θF,G), so that H ∈ Shvc(Y × Z; Z/`Z). Using (b), we see that H

vanishes on the open set Y ×U . We wish to prove that H ' 0. Suppose otherwise: then H has
nonvanishing stalk at some closed point (y, z) of Y × Z. Since H vanishes on Y × U , z is not

the origin of Z ' Ad. Applying a linear change of coordinates, we may assume without loss of
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generality that z = (1, 0, . . . , 0). Let Z = P1 ×Ad−1, let j : Z → Z denote the inclusion map,

let G = j! G and H = θF,G ∈ Shvc(Y ×Z; Λ). Let g : Z → Ad−1 denote the projection map onto

the second fiber. Since H vanishes on Y ×Spec k U , the support of H has finite intersection with
the fiber (id×g)−1{(y, 0)}. Using the proper base change theorem (Theorem 4.5.4), we see that

the stalk of H at (y, z) can be identified with a direct summand of the stalk of (id×g)∗H at the

point (y, 0). In particular, we have 0 6= (id×g)∗H ' cofib(θF,g∗G), contradicting our inductive
hypothesis. �

Corollary 4.6.3. Let f : X → Y be a morphism of quasi-projective k-schemes and let Z be
another quasi-projective k-scheme, so that we have a pullback square

X × Z
f ′ //

g

��

Y × Z

g′

��
X

f // Y.

For each sheaf F ∈ Shv`(X), the canonical map g′∗f∗ F → f ′∗g
∗ F is an equivalence.

Proof. Apply Proposition 4.6.2 in the special case G = Z`Z ∈ Shv`(Z). �

Corollary 4.6.4. Let f : X → Y and f ′ : X ′ → Y ′ be morphisms of quasi-projective k-schemes.
For every pair of `-adic sheaves

F ∈ Shv`(X) F′ ∈ Shv`(X
′)

the canonical map

(f∗ F) � (f ′∗ F
′)→ (f × f ′)∗(F�F′)

is an equivalence in Shv`(Y × Y ′).

Corollary 4.6.5. Let X and X ′ be quasi-projective k-schemes. For every pair of `-adic sheaves
F ∈ Shv`(X), F′ ∈ Shv`(X

′), the canonical map

C∗(X;F)⊗Z` C
∗(X ′;F′)→ C∗(X ×X ′;F�F′)

is an equivalence in ModZ` .

Example 4.6.6 (Künneth Formula). Let X and X ′ be quasi-projective k-schemes. It follows
from Corollary 4.6.5 the the canonical map

C∗(X; Z`)⊗Z` C
∗(X ′; Z`)→ C∗(X ×X ′; Z`)

is an equivalence in ModZ` .

In the situation of Proposition 4.6.2, suppose that the morphism f : X → Y is proper. For
every pair of objects F ∈ Shv`(Y ) and G ∈ Shv`(Z), we obtain a canonical map

(f ! F�G)→ f ′!f ′∗(f
! F�G)

θ−1

−→ f ′!(f∗f
! F�G)→ f ′!(F�G).

where f ′ = (f × idZ) : X × Z → Y × Z and θ = θf ! F,G.

Proposition 4.6.7. Let f : X → Y be a proper morphism between quasi-projective k-schemes,
let Z be a quasi-projective k-scheme, and let f ′ = f × idZ : X × Z → Y × Z. Then, for every
pair of objects F ∈ Shv`(Y ) and G ∈ Shv`(Z), the map

µF,G : f ! F�G→ f ′!(F�G)

constructed above is an equivalence.
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Proof. We first treat the case where f is a closed immersion. In this case, f∗(µF,G) can be
identified with a homotopy inverse to the equivalence θf ! F,G of Proposition 4.6.2, and the
desired result follows from the fact that the functor f∗ is fully faithful (and, in particular,
conservative).

To treat the general case, we first choose an immersion i : X ↪→ Pn. Then f factors as a
composition

X
(i,f)−→ Pn × Y π→ Y,

where π denotes the projection onto the second factor. Since f is proper, the map (i, f) :
X → Pn × Y is a closed immersion. Using the first part of the proof, we can replace f by the
projection map π : Pn×Y → Y . In this case, the desired result follows from Proposition 4.5.20
and Remark 4.5.24. �

Corollary 4.6.8. Let f : X → Y and f ′ : X ′ → Y ′ be morphisms of quasi-projective k-
schemes. For every pair of `-adic sheaves F ∈ Shv`(Y ) and F′ ∈ Shv`(Y

′), there is a canonical
equivalence

(f ! F) � (f ′! F′) ' (f × f ′)!(F�F′)

of `-adic sheaves on X ×X ′.

Remark 4.6.9. Proposition 4.6.7 (and Corollary 4.6.8) are also valid for non-proper morphisms
of k-schemes provided that the exceptional inverse image functor has been appropriately defined.

We now discuss some consequences of Proposition 4.6.7.

Construction 4.6.10. Let X be a quasi-projective k-scheme and let δ : X → X ×X denote
the diagonal map. For every pair of `-adic sheaves F,G ∈ Shv`(X), we define

F⊗! G = δ!(F�G) ∈ Shv`(X).

The construction (F,G) 7→ F⊗! G determines a functor ⊗! : Shv`(X) × Shv`(X) → Shv`(X),
which we will refer to as the !-tensor product functor.

Remark 4.6.11. Let X be a quasi-projective k-scheme. We then have a commutative diagram

X

δ{{ δ ##
X ×X s // X ×X

where s denotes the automorphism ofX×X which interchanges the factors. For F,G ∈ Shv`(X),
we obtain equivalences

F⊗! G ' δ!(F�G)

' (s ◦ δ)!(F�G)

' δ!s!(F�G)

' δ!(G�F)

' G⊗! F .

In other words, the !-tensor product ⊗! is commutative up to canonical equivalence. It is also
associative up to equivalence: given a triple of `-adic sheaves F,G,H ∈ Shv`(X), it follows from
Proposition 4.6.7 that the iterated tensor products

(F⊗! G)⊗! H F⊗!(G⊗! H)
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can both be identified with δ(3)!(F�G�H), where δ(3) : X → X ×X ×X denotes the ternary
diagonal.

Combining the preceding arguments with appropriate organizational principles, one can
prove a much stronger assertion: the !-tensor product endows the ∞-category Shv`(X) with
the structure of a symmetric monoidal ∞-category. We will prove this in §5.5.

Remark 4.6.12. Let f : X ↪→ Y be a closed immersion of quasi-projective k-schemes. Then
the diagram

X //

f

��

X ×X

f×f
��

Y // Y × Y
is a pullback square. Using Variant 4.5.7, we deduce that for every pair of `-adic sheaves
F,G ∈ Shv`(X), the canonical map

f∗(F⊗! G)→ f∗ F⊗!f∗ G

is an equivalence.

Proposition 4.6.13. Let X be a quasi-projective k-scheme. Then the !-tensor product on X
is unital. In other words, there exists an object E ∈ Shv`(X) for which the functor

F 7→ E⊗! F

is equivalent to the identity map from Shv`(X) to itself.

Proof. Choose an open embedding j : X → X, where X is a projective k-scheme. Let π : X →
Spec k be the projection map and let ωX = π!Z` denote the dualizing sheaf on X. Let

δX : X → X ×X δX : X → X ×X

denote the diagonal maps, and let π1 : X×X → X be the projection onto the first factor. Using
Proposition 4.6.7, we obtain a canonical equivalence π!

2 G ' ωX�G for each object G ∈ Shv`(X).

Applying the functor δ!
X

, we obtain an equivalence

ωX ⊗
! G ' δ!

X
(ωX � G) ' δ!

X
π!

2 G ' G .

For any object F ∈ Shv!
`(X), we have canonical equivalences

F ' j∗j∗ F

' j∗(ωX ⊗
! j∗ F)

' j∗δ!
X

(ωX � j∗ F)
α' δ!

X(j × j)∗(ωX � j∗ F)

' δ!
X(j∗ωX � j∗j∗ F)

' δ!
X(j∗ωX � F)

= j∗ωX ⊗
! F,

where the equivalence α is obtained by applying Proposition 4.5.12 to the pullback square

X
δX //

��

X ×X

j×j
��

X
δX // X ×X.
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It follows that j∗ωX is a unit for the tensor product ⊗!. �

Remark 4.6.14. In the situation of Proposition 4.6.13, the object E ∈ Shv`(X) is determined
uniquely up to equivalence. To see this, we note that if E and E′ are two objects of Shv`(X)
which satisfy the requirements of Proposition 4.6.13, then we have equivalences

E′ ' E⊗! E′ ' E′⊗! E ' E .

Notation 4.6.15. Let X be a quasi-projective k-scheme. We let ωX denote a unit with respect
to the !-tensor product on Shv`(X). We will refer to ωX as the dualizing sheaf on X. The proof
of Proposition 4.6.13 shows that this notation is compatible with Definition 4.5.21 in the special
case where X is projective.

Remark 4.6.16. Let f : X → Y be a proper morphism between quasi-projective k-schemes.
Using the commutative diagram

X
f //

δX
��

Y

δY
��

X ×X
f×f // Y × Y

and Corollary 4.6.8, we obtain for every pair of `-adic sheaves F,G ∈ Shv`(Y ) a chain of
equivalences

f !(F⊗! G) = f !δ!
Y (F�G)

' δ!
X(f × f)!(F�G)

' δ!
X(f ! F�f ! G)

' (f ! F)⊗! (f ! G).

In fact, much more is true: one can refine f ! to a symmetric monoidal functor between the
∞-categories Shv`(Y ) and Shv`(X); see Corollary 5.5.22.

Let X be a quasi-projective k-scheme. The !-tensor product functor ⊗! factors as a compo-
sition

Shv`(X)× Shv`(X)
�→ Shv`(X ×X)

δ!

→ Shv`(X).

The functor δ! commutes with all limits (because it is a right adjoint), but the external tensor
product functor � does not commute with limits in general. Nevertheless, the !-tensor product
⊗! can be shown to commute with limits in good cases. For later reference, we record one result
to this effect:

Proposition 4.6.17. Let X and Y be quasi-projective k-schemes. Suppose that F• is a cosim-
plicial object of Shv`(X)≤0 and that G• is a cosimplicial object of Shv`(Y )≤0. Then the canonical
map

Tot(F•) � Tot(G•)→ Tot(F•�G•)

is an equivalence in Shv`(X × Y ).
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Lemma 4.6.18. Let X be a quasi-projective k-scheme and let F,G ∈ Shv`(X)≤0. Then F⊗G ∈
Shv`(X)≤2.

Remark 4.6.19. With more effort, one can show that the tensor product functor carries
Shv`(X)≤0× Shv`(X)≤0 into Shv`(X)≤1, but Lemma 4.6.18 will be sufficient for our purposes.

Remark 4.6.20. Let X be a quasi-projective k-scheme and let Λ be a field. Then the tensor
product functor ⊗ : Shv(X; Λ) × Shv(X; Λ) → Shv(X; Λ) is left t-exact: that is, it carries
Shv(X; Λ)≤0 × Shv(X; Λ)≤0 into Shv(X; Λ)≤0. This follows from Remark 4.1.15, since the
tensor product ⊗Λ : ModΛ×ModΛ → ModΛ carries (ModΛ)≤0 × (ModΛ)≤0 into (ModΛ)≤0.

Proof of Lemma 4.6.18. Since Shv`(X)≤1 is closed under filtered colimits and the tensor prod-
uct ⊗ preserves filtered colimits separately in each variable, we may assume without loss of
generality that F and G are constructible, so that F⊗G is likewise constructible. Set F1 =
(Z/`Z)⊗ZF and G1 = (Z/`Z)⊗ZG. Using Remark 4.4.6 we see that F1,G1 ∈ Shv(X; Z/`Z)≤1.
Using Remark 4.6.20, we conclude that the tensor product

(Z/`Z)⊗Z (F⊗G) ' F1⊗Z/`Z G1

belongs to Shv(X; Z/`Z)≤2, so that F⊗G belongs to Shvc`(X)≤2 by Remark 4.4.6. �

Lemma 4.6.21. Let X be a quasi-projective k-scheme, let F ∈ Shv`(X)≤0, and let G• be a
cosimplicial object of Shv`(X)≤0. Then the canonical map

θ : F⊗Tot(G•)→ Tot(F⊗G•)

is an equivalence in Shv`(X).

Proof. For each n ≥ 0, let Totn(G•) denote the nth stage of the Tot-tower of G• (that is,
the limit of the restriction of G to the category ∆≤n of simplices of dimension ≤ n). The
construction G• 7→ Totn(G•) is given by a finite limit, and therefore commutes with any exact
functor. It follows that θ can be identified with the composition

F⊗Tot(G•) ' F⊗ lim←−Totn(G•)

θ′→ lim←−(F⊗Totn(G•))

' lim←−Totn(F⊗G•)

' Tot(F⊗G•).

We are therefore reduced to proving that θ′ is an equivalence. Since Shv`(X) is right complete,
it will suffice to show that the fiber of θ′ belongs to Shv`(X)≤−m for each integer m. For

n ≥ m + 2, let Hn denote the cofiber of the natural map Totn(G•) → Totm+2(G•), so that we
have a pushout square

F⊗ lim←−Totn(G•)
θ′ //

��

lim←−n′≥n(F⊗Totn(G•))

��
F⊗ lim←−Hn

θ′′ // lim←−F⊗Hn

Since each Gq belongs to Shv`(X)≤0, the cofibers Hn belong to Shv`(X)≤−m−2. Using Lemma
4.6.18, we deduce that the domain and codomain of θ′′ belong to Shv`(X)≤−m, so that fib(θ′) '
fib(θ′′) belongs to Shv`(X)≤−m as desired. �
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Proof of Proposition 4.6.17. Embedding X and Y into projective space, we may assume with-
out loss of generality that X and Y are smooth. Let p : X×Y → X and q : X×Y → Y denote
the projection maps onto the first and second factor, respectively. Unwinding the definitions,
we wish to show that the composite map

Tot(F•) � Tot(G•) ' p∗Tot(F•)⊗ q∗ Tot(G•)
θ→ Tot(p∗ F•)⊗ Tot(q∗ G•)

θ′→ Tot(p∗ F•⊗Tot(q∗ G•))

θ′′→ Tot(Tot(p∗ F•⊗q∗ G•))
' Tot(F•�G•)

is an equivalence. The map θ is an equivalence by Proposition 4.3.39, and the maps θ′ and θ′′

are equivalences by virtue of Lemma 4.6.21. �

5. The Product Formula

Let k be an algebraically closed field, let ` be a prime number which is invertible in k, let
X be an algebraic curve over k, and let G be a smooth affine group scheme over X. In §3,
we proved that if the generic fiber of G is semisimple and simply connected, then the forgetful
functor RanG(X)→ BunG(X) induces an isomorphism of `-adic homology groups

H∗(RanG(X); Z`)→ H∗(BunG(X); Z`)

(Corollary 3.2.12). We can regard this as a sort of local-to-global principle for computing the
`-adic (co)homology of the moduli stack BunG(X): rather than contemplating arbitrary G-
bundles on X, it suffices to consider G-bundles which are “supported” on finite subsets of X.
In the special case where X and G are defined over some finite subfield Fq ⊆ k, we would
like to use this principle to compute the trace of the (arithmetic) Frobenius automorphism of
H∗(BunG(X); Z`). For this, it is useful to contemplate the diagram of prestacks

RanG(X)

φ

xx

ψ

&&
BunG(X) Ran(X).

For purposes of motivation, let us suppose that the formalism of `-adic sheaves has been ex-
tended to the setting of prestacks, and let Z` denote the constant `-adic sheaf on RanG(X).
Then Corollary 3.2.12 supplies isomorphisms

H∗(BunG(X); Z`)
φ∗→ H∗(RanG(X); Z`)

' H∗(Ran(X);A),

where A denotes the `-adic sheaf on Ran(X) given by ψ∗Z`.
To understand the structure of the sheaf A, we need to understand the map ψ : RanG(X)→

Ran(X). Let us begin by describing the fibers of π. Let GrG denote the fiber product

RanG(X)×Ran(X) X ' RanG(X)×Fins {〈1〉}.

We will refer to GrG as the affine Grassmannian of G. Unwinding the definitions, we see that
GrG is a prestack whose R-valued points can be identified with triples (s,P, γ) where s ∈ X(R),
P is a G-bundle on XR, and γ is a trivialization of P over the open set XR − |s|, where |s|
denotes the image of the map SpecR → XR determined by s. The construction (s,P, γ) 7→ s
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determines a morphism of prestacks GrG → X. For each k-valued point x ∈ X(k), we let GrxG
denote the fiber product GrG×X{x}.

Fix a point x ∈ X(k). Let Ox denote the completed local ring of X at the point x, and
let Kx denote its fraction field. Unwinding the definitions, we see that the fiber product
RanG(X) ×Ran(X) Spec k is a prestack whose k-points are given by pairs (P, γ), where P is a
G-bundle on X and γ is a trivialization of P over the open set X−{x}. Since k is algebraically
closed and G is smooth, we can always choose a trivialization of P over the formal completion
of X at x. It follows that P is obtained by “regluing”: that is, it can be obtained by gluing
the G-bundle on X − {x} to the trivial G-bundle on SpecOx using some isomorphism over
SpecKx, which we can identify with an element of G(Kx). Here the trivialization of P over
X − {x} is given as part of the data, but we are free to modify the trivialization on SpecOx:
consequently, the k-points of the fiber RanG(X) ×Ran(X) Spec k can be identified with the
quotient G(Kx)/G(Ox).

We will denote the fiber product RanG(X) ×Ran(X) Spec k by GrxG, and refer to it as the
affine Grassmannian of G at the point x. It is generally not representable by a scheme, but
one can show that it is an Ind-scheme: more precisely, it can be written as a the direct limit of
a sequence

Y (0) ↪→ Y (1) ↪→ Y (2) ↪→ · · ·
of quasi-projective k-schemes, where each of the morphisms is a closed embedding. If G is
reductive, then each of the k-schemes Y (m) is actually projective. In fact, even more is true:
if G is reductive, then the projection map ψ : RanG(X)→ Ran(X) itself is Ind-proper, so that
one has base change and Künneth equivalences

A(S)
∼→ C∗(GrSG; Z`)

∼←
⊗
x∈S

C∗(GrxG; Z`).

We may therefore regard the chain complex C∗(Ran(X);A) as a sort of continuous tensor
product of the chain complexes C∗(GrxG; Z`), so that Corollary 3.2.12 supplies a version of the
equivalence ⊗

x∈X
C∗(GrxG; Z`) ' C∗(BunG(X); Z`)

appearing in Example 1.4.11.

Remark 5.0.1. Suppose that k is the field C of complex numbers, and that G is the split
reductive group scheme over C corresponding to a reductive algebraic group G0 over C, so that
G0(C) is a complex Lie group. In this case, we can view the C-points of the affine Grassmannian
of G (at any chosen point x ∈ X) as a topological space, which is given (as a set) by the quotient
G0(C((t)))/G0(C[[t]]). Here G0(C((t))) has the homotopy type of the free loop space of G0(C),
while G0(C[[t]]) has the homotopy type of G0(C) itself. The quotient GrG,x has the homotopy
type of the based loop space ΩG0(C) ' Ω2 BG0(C).

Recall that if Y is a quasi-projective k-scheme and F ∈ Shvc`(Y ) is a constructible `-adic
sheaf on Y , and the pair (Y,F) is defined over a finite field Fq ⊆ k, then the trace of the
geometric Frobenius automorphism Frob on the compactly supported cohomology H∗c(Y ;F)
can be computed using the Grothendieck-Lefschetz trace formula

Tr(Frob |H∗c(Y ;F)) =
∑

y∈Y (Fq)

Tr(Frob |H∗(Fy))

Taking F to be the Verdier dual of another `-adic sheaf G, we can rewrite this formula as

Tr(Frob−1 |H∗(Y ;G)) =
∑

y∈Y (Fq)

Tr(Frob |H∗(D(G)y)).(10)
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Roughly speaking, we would like to prove Theorem 1.3.5 by applying a version of this formula
where Y is replaced by the Ran space Ran(X), and G is replaced by the `-adic sheaf A.

Unfortunately, things are not so simple. The Ran space Ran(X) is an infinite-dimensional
algebro-geometric object and the sheaf A is not constructible, so the usual theory of Verdier
duality is not directly applicable. To address this difficulty, we will need to modify the notion of
sheaf. In §5.2, we will define ∞-category Shv!

`(Ran(X)) whose objects we refer to as !-sheaves

on Ran(X). Roughly speaking, an object F of the ∞-category Shv!
`(Ran(X)) consists of a

collection of `-adic sheaves {F(T ) ∈ Shv`(X
T )} (here T ranges over all nonempty finite sets),

equipped with a coherent family of identifications δ!
T/T ′ F

(T ) ' F(T ′) (where δT/T ′ : XT ′ → XT

denotes the diagonal map associated to a surjection of finite sets T → T ′). Heuristically, we
can think of F as a sheaf on Ran(X) which is generated by its compactly supported sections,

and F(T ) as the !-restriction of F along the map XT → Ran(X). In particular, if T is given as
a finite subset of X(k), then we have a canonical point η : Spec k → XT , and we can consider

the costalk F(T ) = η! F(T ) ∈ ModZ` .
If π : Z → Y is a map of quasi-projective k-schemes, then we let [Z]Y denote the `-adic sheaf

given by π∗π
∗ωY . In §5.1 we will extend the definition of [Z]Y to the case where Z is an arbitrary

prestack. In §5.4, we apply this general constructions to produce a !-sheaf B ∈ Shv!
`(Ran(X)),

whose costalks at a point ν : T → X(k) is given by

ν! B(T ) =
⊗

x∈ν(T )

C∗(BGx; Z`).

The !-sheaf B can be regarded as a sort of Koszul dual to A (more precisely, we will prove in
§9 that certain “reduced” versions of A and B differ by a covariant version of Verdier duality).
In §5.4, we will construct a canonical map

ρ :

∫
B→ C∗(BunG(X); Z`);

here
∫
B denotes the complex of compactly supported cochains on Ran(X) with coefficients in

B (or the chiral homology of B), which we will study in §5.3. The second main result of this
paper (Theorem 5.4.5) asserts that the map ρ is a quasi-isomorphism.

Suppose that T is a union of nonempty finite sets T ′ and T ′′, and that ν : T → X(k) has
the property that ν(T ′) and ν(T ′′) are disjoint. Then we have a canonical equivalence

(ν|T ′)! B(T ′)⊗(ν|T ′′)! B(T ′′) ' ν! B(T )

This equivalence behaves well as ν varies: in fact, it is given by a map of `-adic sheaves

B(T ′) �B(T ′′) → B(T ) .

Letting T ′ and T ′′ vary, we can view these maps as defining a multiplication

m : B ?B→ B,

where ? denotes the convolution product on !-sheaves which we study in §5.5. We will show that
this multiplication B with the structure of a commutative factorization algebra, so that B can be

functorially recovered from the `-adic sheaf B(1) = [BG]X (Theorem 5.6.4); in concrete terms,

the costalk of B at a point given injective map ν : T → X(k) is given by ν! B(T ) ⊗
t∈T ν(t)! B(1).

In §5.7, we will use this observation to give a reformulation of Theorem 5.4.5 which expresses
the cochain complex C∗(BunG(X); Z`) as a “continuous tensor product”

⊗
x∈X C

∗(BGx; Z`)
(Theorem 5.7.1); compare with Theorem 1.4.9.
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5.1. The Cohomology Sheaf of a Morphism. Throughout this section, we fix an alge-
braically closed field k and a prime number ` which is invertible in k. Let X be a quasi-
projective k-scheme and let ωX denote its dualizing sheaf (Notation 4.6.15). Given any mor-
phism f : Y → X of quasi-projective k-schemes, we let [Y ]X ∈ Shv`(X) denote the `-adic
sheaf given by f∗f

∗ωX . We will refer to the `-adic sheaf [Y ]X as the cohomology sheaf of the
morphism f .

Remark 5.1.1. We will primarily be interested in the construction Y 7→ [Y ]X in the special
case where Y is smooth over X. In this case, for any proper morphism of quasi-projective
k-schemes g : X ′ → X, Variant 4.5.5 and Proposition 4.5.12 supply an equivalence of `-adic
sheaves

[Y ×X X ′]X′ ' g![Y ]X .

Taking X ′ = Spec k, we obtain the following informal description of [Y ]X : it is the `-adic sheaf
whose costalk at a point η ∈ X(k) can be identified with the cochain complex C∗(Yη; Z`), where
Yη denotes the fiber Y ×X Spec k of f over the point η.

Our goal in this section is to generalize the construction Y 7→ [Y ]X to the case where Y is
a prestack. For the purpose of setting up the definitions, it will be convenient to consider a
further generalization which depends on a choice of `-adic sheaf F ∈ Shv`(X).

Construction 5.1.2. Let X be a quasi-projective k-scheme and let C be a prestack equipped
with a map π : C→ X. For each object η ∈ C, we let Rη denote its image in Ringk, so that π
determines a map of k-schemes SpecRη → X which we will (by abuse of notation) denote by
η.

For each `-adic sheaf F ∈ Shv`(X), we let [C]F denote the inverse limit

lim←−
η∈C

η∗η
∗ F ∈ Shv`(X).

Example 5.1.3. Let π : Y → X be a morphism of quasi-projective k-schemes. For each
object F ∈ Shv`(X), we can identify [Y ]F with the pushforward π∗π

∗ F. In particular, if
F ∈ Shv`(X)≤n for some integer n, then [Y ]F ∈ Shv`(X)≤n.

Notation 5.1.4. Let X be a quasi-projective k-scheme and let C be a prestack equipped with
a map π : C → X. We let [C]X denote the sheaf [C]ωX ∈ Shv`(X), where ωX is the dualizing
sheaf of X.

Example 5.1.5. Let X = Spec k. Then for every prestack C, we have a canonical equivalence

[C]X ' C∗(C; Z`).

Remark 5.1.6. Let X be a quasi-projective k-scheme and let C be a prestack with a map
C→ X. Then the `-adic sheaf [C]X is `-complete. When C is a quasi-projective k-scheme this
follows from Remark 4.3.35 (since [C]X is constructible), and the general case follows from the
observation that the collection of `-complete objects of Shv`(X) is closed under limits.

Remark 5.1.7 (Functoriality). Let X be a quasi-projective k-scheme, and suppose we are
given a commutative diagram of prestacks

C
f //

  

D

~~
X.
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For every `-adic sheaf F ∈ Shv`(X), the morphism f induces a pullback map

f∗ : [D]F → [C]F.

We can summarize the situation informally by saying that the `-adic sheaf [C]F depends func-
torially on C. We will discuss this functoriality in more detail below and in §A.5.

Remark 5.1.8. Let X be a quasi-projective k-scheme and let F ∈ Shv`(X). Let C be a
prestack equipped with a map π : C→ X. Suppose that C can be realized as a filtered colimit
of prestacks {Cα}. Then the canonical map [C]F → lim←−α[Cα]F is an equivalence in Shv`(X).

We will typically be interested in the special case of Construction 5.1.2 where C is an Artin
stack. In this case, we do not need to use the entire category C to compute the limit [C]F =
lim←−η∈C η∗η

∗ F.

We now establish a generalization of Remark 5.1.1:

Proposition 5.1.9. Let f : X ′ → X be a proper morphism of quasi-projective k-schemes,
let C be an Artin stack with affine diagonal which is equipped with a morphism π : C → X,
and let C′ = C×XX ′. Then for every `-adic sheaf F ∈ Shv`(X), there is a canonical map
[C′]f ! F → f ![C]F, which is an equivalence when π is smooth. In particular (taking F = ωX),

when π is smooth there is a canonical equivalence [C′]X′ ' f ![C]X .

Remark 5.1.10. The assumption that C have affine diagonal is not really needed; however,
it is satisfied in all of our applications and allows for a slightly simpler proof. Similarly, the
hypothesis that f is proper can be removed given a more robust theory of the exceptional
inverse image functor f !.

Lemma 5.1.11. Let X be a quasi-projective k-scheme and let C be an Artin stack with affine
diagonal equipped with a map C → X. Let U0 be a quasi-projective k-scheme equipped with a
surjective map U0 → C, and let U• be the simplicial scheme given by the iterated fiber powers
of U0 over C. For every object F ∈ Shv`(X), the canonical map

[C]F ' Tot[U•]F

is an equivalence in Shv`(X).

Proof. For each object η ∈ C, we can identify η with a map of prestacks SpecRη → C. Then
U• can be identified with a cosimplicial object of C, given by a map ρ : ∆ → C. Let C0 ⊆ C

denote the full subcategory spanned by those objects η ∈ C for which the map SpecRη → C

factors through U0. Note for each object η ∈ C, the fiber product ∆×C C/η is empty if η /∈ C0,
and weakly contractible otherwise. It follows that ρ induces a right cofinal map ∆ → C0. For
any quasi-projective k-scheme X, any morphism π : C → X, and any object F ∈ Shv`(X),
we can regard [U•]F as a cosimplicial object of Shv`(X), whose totalization is equivalent to
[C0]F. The desired result now follows from the observation that the inclusion C0 ↪→ C induces
an equivalence after étale sheafication (by virtue of our assumption that the map U0 → C is
surjective). �

Proof of Proposition 5.1.9. Elementary considerations of functoriality supply a natural com-
parison map

[C′]f ! F → f ![C]F

(see §A.5 for a detailed discussion); we will prove that this map is an equivalence. Writing C as
a union of quasi-compact open substacks, we can reduce to the case where C is quasi-compact
(see Remark 5.1.8). Choose a smooth surjection ρ : U0 → C, where V0 is an affine scheme. Let
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U• be the simplicial (affine) scheme given by the nerve of ρ. For each integer i, let π(i) denote

the composite map Vi → C
π→ X, and form a pullback diagram

U ′i
gi //

π′(i)

��

Ui

π(i)

��
X ′

f // X.

Note that each of the maps π(i) is smooth. We may therefore identify θ with the composition

f ![C]F ' f ! lim←−
[i]∈∆

π(i)∗π(i)∗ F

' lim←−
[i]∈∆

f !π(i)∗π(i)∗ F

' lim←−
[i]∈∆

π′(i)∗g
!
iπ(i)∗ F

' lim←−
[i]∈∆

π′(i)∗π
′(i)∗f ! F

' [C′]f ! F

of equivalences supplied by Proposition 4.5.12 and Remark 5.1.11. �

We will also need a slight variation on Proposition 5.1.9.

Definition 5.1.12. Let f : C → D be a morphism of prestacks in groupoids. We will say
that f is an open immersion if the following conditions is satisfied: for every quasi-projective
k-scheme X and every map X → D, the fiber product C×DX is representable by an open
subscheme U ⊆ X.

Proposition 5.1.13. Let f : Y ′ → Y be a proper morphism between quasi-projective k-schemes,
let π : D → Ringk be a prestack in groupoids, let j : C → Y ×Spec k D be an open immersion,
and form a pullback diagram

C′

π′

��

// C

π

��
Y ′

f // Y.

Then for every object F ∈ Shv`(Y ), the canonical map u : [C′]f ! F → f ![C]F is an equivalence in

Shv`(Y
′). In particular, we have an equivalence [C′]Y ′ ' f ![C]Y .

Remark 5.1.14. Propsition 5.1.13 is valid more generally if the map j : C → Y ×Spec k D is
a smooth relative Artin stack; similarly, the hypothesis that the morphism f be proper can be
removed given a more general theory of the exceptional inverse image functor f !.

Lemma 5.1.15. Let f : Y ′ → Y be a proper morphism of quasi-projective k-schemes, let Z be
a quasi-projective k-scheme, let U be an open subset of Y × Z, and form a pullback diagram

U ′
f ′ //

π′

��

U

π

��
Y ′

f // Y.

Then, for every object F ∈ Shv`(Y ), the natural map γ : π′∗f ! F → f ′!π∗ F is an equivalence in
Shv`(U

′).
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Proof. The assertion is local on U (see Proposition 4.5.12). Enlarging U , we may assume
without loss of generality that U = Y × Z, in which case the desired result is a special case of
Proposition 4.6.7. �

Proof of Proposition 5.1.13. For each object D ∈ D, let UD denote the open subscheme of
Y ×Spec k Specπ(D) given by the fiber product Specπ(D)×D C, and form a pullback square

U ′D
//

π′D
��

UD

πD

��
Y ′

f // Y.

A simple cofinality argument shows that u can be identified with a limit of maps

uD : π′D∗π
′∗
Df

! F → f !πD∗π
∗
D F .

The desired result now follows by combining Variant 4.5.7 with Lemma 5.1.15. �

Example 5.1.16. Let f : X → Y be a proper morphism of quasi-projective k-schemes and let C
be an arbitrary prestack. Then, for each F ∈ Shv`(Y ), the canonical map θ : [C×Spec kX]f ! F →
f ![C×Spec kY ]F is an equivalence in Shv`(X).

Example 5.1.17. Let Y be a projective k-scheme, let X be a quasi-projective k-scheme, and
let C be a prestack. Applying Example 5.1.16 to the projection map X × Y → X, we obtain
an equivalence

[C×Spec k(X × Y )]X×Y ' [C×Spec kX]X � ωY .

In particular, if X = Spec k, we obtain an equivalence

[C×Spec kY ]Y ' C∗(C; Z`)⊗Z` ωY .

We conclude this section with an elaboration on Remark 5.1.7 and Proposition 5.1.9, which
supplies a more complete description of the functorial dependence of the `-adic sheaf [C]X on
both X and C.

Informal Definition 5.1.18. We define an ∞-category Shv!
` informally as follows:

• The objects of Shv!
` are pairs (X,F), where X is a quasi-projective k-scheme and

F ∈ Shv`(X) is an `-adic sheaf on X.

• A morphism from (X,F) to (X ′,F′) in Shv!
` consists of a proper morphism of quasi-

projective k-schemes f : X → X ′ together with a map f∗ F → F′ of `-adic sheaves on
X ′ (or, equivalently, a map F → f ! F′ of `-adic sheaves on X).

Informal Definition 5.1.19. We define a 2-category AlgStack! informally as follows:

• The objects of AlgStack! are pairs (X,C), where X is a quasi-projective k-scheme and C

is a quasi-compact Artin stack with affine diagonal equipped with a smooth morphism
C→ X.
• A morphism from (X,C) to (X ′,C′) in AlgStack! is a proper morphism of k-schemes
f : X → X ′ together with a map X ×X′ C′ → C of Artin stacks over X.

We regard AlgStack! as a symmetric monoidal ∞-category with tensor product given by

(X,C)⊗ (X ′,C′) = (X ×X ′,C×C′).

The following result refines Remark 5.1.7 and Proposition 5.1.9:

Proposition 5.1.20. The construction (X,C) 7→ (X, [C]X) determines a functor Φ from

AlgStack! to Shv!
`.
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For precise definitions of the ∞-categories Shv!
` and AlgStack! and a proof of Proposition

5.1.20, we refer the reader to §A.5.

5.2. !-Sheaves on Ran(X). Throughout this section, we fix an algebraically closed field k and
a prime number ` which is invertible in k. If X is a quasi-projective k-scheme, we let Ran(X)
denote the prestack introduced in Definition 2.4.9, so that the R-valued points of X can be
identified with pairs (T, ν) where T is a nonempty finite set and ν : T → X(R) is any map.
Our goal in this section is to introduce the notion of a !-sheaf on Ran(X).

Definition 5.2.1. Let Schpr
k denote the category whose objects are quasi-projective k-schemes

and whose morphisms are proper maps, let Shv!
` be the ∞-category of Definition 5.1.18, and

let φ : Shv!
` → Schpr

k be the forgetful functor given by φ(X,F) = X. If X is a quasi-projective
k-scheme, then the construction T 7→ XT determines a functor ρ : Finsop → Schpr

k . We define
a lax !-sheaf on Ran(X) to be a functor ρ : (Fins)op → Schpr

k which fits into a commutative
diagram

Shv!
`

φ

��
(Fins)op

F

::

ρ // Schpr
k .

We define a !-sheaf on Ran(X) to be a lax !-sheaf for which F carries each morphism in

Fins to a φ-Cartesian morphism in Shv!
`. We let Shvlax

` (Ran(X)) denote the ∞-category

FunSchpr
k

((Fins)op,Shv!
`) whose objects are lax !-sheaves on Ran(X), and we let Shv!

`(Ran(X))

denote the full subcategory of Shvlax
` (Ran(X)) whose objects are !-sheaves on Ran(X).

Notation 5.2.2. Let X be a quasi-projective k-scheme, and let F ∈ Shvlax
` (Ran(X)). For every

nonempty finite set T , we let F(T ) ∈ Shv`(X
T ) denote the `-adic sheaf obtained by applying F

to T . If T = {1, . . . , n} for some positive integer n, we will denote F(T ) by F(n).

Remark 5.2.3. More informally, a lax !-sheaf on Ran(X) is given by the following:

(a) For every nonempty finite set T , an `-adic sheaf F(T ) ∈ Shv`(X
T ).

(b) For every surjection of nonempty finite sets π : T → T ′, with associated diagonal map

δT/T ′ : XT ′ → XT , a morphism απ : F(T ′) → δ!
T/T ′ F

(T ) of `-adic sheaves on XT ′ (or,

equivalently, a morphism βπ : δT/T ′∗ F
(T ′) → F(T ) of `-adic sheaves on XT ).

(c) Additional coherence data expressing the idea that construction π 7→ απ is compatible
with composition.

A !-sheaf on Ran(X) is a lax !-sheaf for which the morphisms απ appearing in (b) are
equivalences.

Example 5.2.4. Let X be a quasi-projective k-scheme. Then the construction T 7→ ωXT
determines a !-sheaf on Ran(X), which we will denote by ωRan(X). We will refer to ωRan(X) as
the dualizing sheaf on Ran(X).

Remark 5.2.5. Let X be a quasi-projective k-scheme. Then the construction T 7→ Shv`(X
T )

determines a functor from the category Fins to the ∞-category Cat∞ of ∞-categories, which
assigns to each surjection T → T ′ the exceptional inverse image functor δ!

T/T ′ : Shv`(X
T ) →

Shv`(X
T ′). The ∞-category Shv!

`(Ran(X)) is an explicit realization of the (homotopy) inverse
limit lim←−T∈Fins Shv`(X

T ).
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Example 5.2.6. Let X = Spec k. Then the functor T 7→ Shv`(X
T ) is constant. Since the

simplicial set N(Fins) is weakly contractible, it follows that the evaluation functor F 7→ F(1)

induces an equivalence of ∞-categories Shv!
`(Ran(X))→ Shv`(X) ' ModZ` .

Definition 5.2.7. Let X be a quasi-projective k-scheme. We let Shvdiag
` (Ran(X)) denote the

full subcategory of Shvlax
` (Ran(X)) spanned by those commutative diagrams

Shv!
`

φ

��
(Fins)op

F

::

ρ // Schpr
k .

for which F carries each morphism in Fins to a φ-coCartesian morphism in Shv!
`.

Remark 5.2.8. More informally, a lax !-sheaf F ∈ Shvlax
` (Ran(X)) belongs to Shvdiag

` (Ran(X))

if and only if, for each surjection of finite sets π : T → T ′, the associated map βπ : δT/T ′∗ F
(T ′) →

F(T ) is an equivalence of `-adic sheaves on XT .

Remark 5.2.9. The category Fins has a final object, given by the one-element set T = {1}.
It follows that a lax !-sheaf F ∈ Shvlax

` (Ran(X)) belongs to Shvdiag
` (Ran(X)) if and only if it is

a φ-left Kan extension of its restriction to the full subcategory {T} ⊆ (Fins)op (see §HTT.4.3

for a discussion of relative Kan extensions). In particular, the construction F 7→ F(1) induces

an equivalence of ∞-categories Shvdiag
` (Ran(X))→ Shv`(X).

Remark 5.2.10. Let X be a quasi-projective k-scheme. Then the full subcategory

Shvdiag
` (Ran(X)) ⊆ Shvlax

` (Ran(X))

is contained in Shv!
`(Ran(X)). To prove this, consider an arbitrary surjection π : T ′ → T of

nonempty finite sets, so that we have a commutative diagram σ :

X
id //

δT
��

X

δT ′
��

XT
δT/T ′ // XT ′ .

We wish to show that, for each object F ∈ Shv`(X), the canonical map

δT∗ id! F → δ!
T ′/T δT ′∗ F

is an equivalence. This follows from Theorem 4.5.4, since σ is a pullback square and the map
δT ′/T is proper.

Let X be a quasi-projective k-scheme. Then the full subcategory

Shv!
`(Ran(X)) ⊆ Shvlax

` (Ran(X))

is closed under limits and colimits. It follows from the adjoint functor theorem (Corollary

HTT.5.5.2.9) that the inclusion Shv!
`(Ran(X)) ↪→ Shvlax

` (Ran(X)) admits a left adjoint (it also

admits a right adjoint, but we will not need this). In other words, we can regard Shv!
`(Ran(X))

as a localization of Shvlax
` (Ran(X)). Our next result describes this localization more explicitly.
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Proposition 5.2.11. Let X be a quasi-projective k-scheme, let

L : Shvlax
` (Ran(X))→ Shv!

`(Ran(X))

denote a left adjoint to the inclusion functor, and let F ∈ Shvlax
` (Ran(X)). Then L(F) ' 0 if

and only if the following condition is satisfied for every nonempty finite set T :

(∗T ) Let
◦
XT denote the open subset of XT whose k-valued points are injective maps ν : T →

X(k). Then the colimit

lim−→
T ′→T

(δ!
T ′/T F(T ′))| ◦

XT

vanishes in Shv`(
◦
XT ). Here the colimit is indexed by (the opposite of) the category

(Fins)/T .

The proof of Proposition 5.2.11 will require some preliminaries.

Remark 5.2.12. Let X be a quasi-projective k-scheme. For every nonempty finite set T , the
evaluation functor

eT : Shvlax
` (Ran(X))→ Shv`(X

T )

F 7→ F(T )

admits a left adjoint eLT , given by relative left Kan extension along the functor {T} → Fins.
More concretely, we have

(eLT G)(T ′) =
⊕

α:T ′→T
δα∗ G,

where the direct sum is indexed by all surjections α : T ′ → T and δα : XT → XT ′ denotes the
associated diagonal map.

For every object F ∈ Shvlax
` (Ran(X)), we have a canonical equivalence

F ' lim−→
T∈Fins

eLT (F(T )).

In particular, the∞-category Shvlax
` (Ran(X)) is generated under small colimits by the essential

images of the functors {eLT }T∈Fins .

Remark 5.2.13. Let X be a quasi-projective k-scheme and let F ∈ Shvlax
` (Ran(X)). Then

F is a !-sheaf if and only if for every surjection of nonempty finite sets α : T ′ → T and every
object G ∈ Shv`(X

T ), the canonical map

eLT ′(δT ′/T∗ G)→ eLT (G)

induces a homotopy equivalence

MapShvlax
` (Ran(X))(e

L
T (G),F)→ MapShvlax

` (Ran(X))(e
L
T ′(δT ′/T∗ G),F).

Proof of Proposition 5.2.11. Let C denote the full subcategory of Shvlax
` (Ran(X)) spanned by

those objects F for which L(F) ' 0. We first show that every object of C satisfies condition
(∗T ) for every nonempty finite set T . Using Remark 5.2.13, we see that C is generated under
small colimits by cofibers of maps

eLS′(δS′/S∗ G)→ eLS(G)

where S′ → S is a surjection of nonempty finite sets and G ∈ Shv`(X
S). It will therefore suffice

to show that every such cofiber satisfies (∗T ). Equivalently, we must show that the canonical
map

θ : lim−→
T ′→T

δ!
T ′/T e

L
S′(δS′/S∗ G)(T ′) → lim−→

T ′→T
δ!
T ′/T e

L
S(G)(T ′)
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is an equivalence over the open set
◦
XT ⊆ XT .

Appealing to the definition of eLS , we can identify the codomain of θ with

lim−→
T ′→T

⊕
T ′→S

δ!
T ′/T δT ′/S∗ G .

Note that if we are given surjections α : T ′ → T , β : T ′ → S, then the `-adic sheaf
(δ!
T ′/T δT ′/S∗ G)| ◦

XT
vanishes unless α factors as a composition

T ′
β→ S → T,

and is otherwise equivalent to (δ!
S/T G)| ◦

XT
. It follows that over the open set

◦
XT , we can identify

the codomain of θ with (
⊕

S→T δ
!
T/S G)| ◦

XT
. Similarly, over the open set

◦
XT we can identify the

domain of θ with (
⊕

S′→T δ
!
T/S G)| ◦

XT
. It now suffices to observe that if S′ → T is a surjection

which does not factor through the map S′ → S, then δ!
T/S G)| ◦

XT
' 0.

We now prove the converse: suppose that F ∈ Shvlax
` (Ran(X)) satisfies condition (∗T ) for

every nonempty finite set T . The fiber of the canonical map F → LF belongs to the∞-category
C and therefore also satisfies condition (∗T ) for every nonempty finite set T . It follows that LF

also satisfies condition (∗T ) for each T . Since LF is a !-sheaf, we have

lim−→
T ′→T

δ!
T ′/T (LF)(T ′) ' (LF)(T ),

so that (LF)(T )| ◦
XT
' 0 for each T ∈ Fins. It follows by induction that each of the `-adic

sheaves (LF)(T ) vanishes, so that LF ' 0 as desired. �

Remark 5.2.14. Let X be a quasi-projective k-scheme and let

L : Shvlax
` (Ran(X))→ Shv!

`(Ran(X))

denote a left adjoint to the inclusion. For each object F ∈ Shvlax
` (Ran(X)) and each nonempty

finite set T , Proposition 5.2.11 shows that the canonical map

lim−→
T ′→T

δ!
T ′/T F(T ′) → lim−→

T ′→T
δ!
T ′/T (LF)(T ′) ' (LF)(T )

is an equivalence when restricted to the open set
◦
XT ⊆ XT .

Our next goal is produce some nontrivial examples of !-sheaves on Ran(X).

Definition 5.2.15. Let X be a quasi-projective k-scheme. We define a Ran(X)-prestack to be
a category C equipped with a coCartesian fibration C→ Ran(X).

Notation 5.2.16. Let C be a Ran(X)-prestack. For every nonempty finite set T , let C(T )

denote the fiber product C×Fins{T}, so that the map ρ : C → Ran(X) induces a map of

prestacks ρ(T ) : C(T ) → XT . Suppose we are given a surjection of finite sets α : T → T ′.

We can identify C(T )×XTXT ′ with the category comprised of those objects C ∈ C for which
ρ(C) ∈ Ran(X) has the form (R, T, ν), where ν : T → X(R) is provided with a factorization

T
α→ T ′

ν′→ X(R). Since π is a coCartesian fibration, the natural map (R, T, ν) 7→ (R, T ′, ν′)
in Ran(X) can be lifted to a ρ-coCartesian morphism C → C ′ in C. The construction C 7→ C ′

determines a functor

Fα : C(T )×XTXT ′ → C(T ′) .
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Remark 5.2.17. In the situation of Notation 5.2.16, the construction T 7→ (XT ,C(T )) deter-

mines a functor from (Fins)op to the 2-category RelStack! of Construction A.5.14. Conversely,

any functor (Fins)op → RelStack! is equivalent to one which arises in this way, for an essentially
unique Ran(X)-prestack C.

Example 5.2.18. If X is an algebraic curve and G is a smooth affine group scheme over X, then
the Beilinson-Drinfeld Grassmannian RanG(X) (see Definition 3.2.3) is a Ran(X)-prestack.

Construction 5.2.19. Let X be a quasi-projective k-scheme and let ρ : C → Ran(X) be a
Ran(X)-prestack. We let [C]Ran(X) denote the lax !-sheaf on Ran(X) given objectwise by the
formula

[C]
(T )
Ran(X) = [C(T )]XT ∈ Shv`(X

T ),

where C(T ) is defined as in Notation 5.2.16 and [C(T )]XT is defined as in §5.1. More formally,

[C]Ran(X) is defined by composing the functor (Fins)op → RelStack! of Remark 5.2.17 with the

functor Ψ! : RelStack! → Shv!
` of Remark A.5.24. We will refer to [C]Ran(X) as the cohomology

sheaf of the morphism ρ.

Example 5.2.20. The identity map id : Ran(X) → Ran(X) exhibits Ran(X) as a Ran(X)-
prestack, and its relative cohomology sheaf [Ran(X)]Ran(X) can be identified with the dualizing
sheaf ωRan(X) of Example 5.2.4.

5.3. Chiral Homology. Throughout this section, we fix an algebraically closed field k and a
prime number ` which is invertible in k. Let X be a quasi-projective k-scheme. In §5.2, we
defined the ∞-category Shv!

`(Ran(X)) of !-sheaves on the Ran space of X. In this section, we
will introduce a functor ∫

: Shv!
`(Ran(X))→ ModZ` ,

which we will refer to as the chiral homology functor. Heuristically, we can think of an object
F ∈ Shv!

`(X) as a rule which assigns to each “compact subset” K of Ran(X) a space of sections
supported on K, and

∫
F can be described as the direct limit of these spaces as the size of K

increases.

Remark 5.3.1. While the chiral homology functor
∫

: Shv!
`(Ran(X))→ ModZ` can be defined

for any quasi-projective k-scheme X, we will consider only the case where X is projective (for
our applications in this paper, we are only interested in the case whereX is a projective algebraic
curve).

We begin with some general remarks.

Construction 5.3.2. Let f : X → Y be a proper morphism of quasi-projective k-schemes.
Then f determines proper morphisms fT : XT → Y T , depending functorially on T ∈ Fins. We
let

Ran(f)! : Shvlax
` (Ran(Y ))→ Shvlax

` (Ran(X))

denote the functor given on objects by the formula (Ran(f)! F)(T ) = fT ! F(T ). We let Ran(f)∗
denote a left adjoint to Ran(f)!, given on objects by the formula (Ran(f)∗ F)(T ) = fT∗ F(T ).

Remark 5.3.3. Let f : X → Y be a proper morphism of quasi-projective k-schemes. Then
the functor Ran(f)! restricts to a functor Shv!

`(Ran(Y )) → Shv!
`(Ran(X)), which we will also

denote by Ran(f)!. However, the functor Ran(f)∗ generally does not carry Shv!
`(Ran(X)) into
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Shv!
`(Ran(Y )): for a surjection of finite sets T → T ′, the induced diagram

XT ′ //

��

XT

��
Y T

′ // Y T

is generally not a pullback square.

Example 5.3.4. Let f : X → Y be a proper morphism of quasi-projective k-schemes. Then
the functor Ran(f)! carries the dualizing sheaf ωRan(Y ) to the dualizing sheaf ωRan(X).

Definition 5.3.5. Let X be a projective k-scheme, and let π : X → Spec k be the projection
map. We let

∫
: Shvlax

! (Ran(X))→ ModZ` denote a left adjoint to the composite functor

ModZ` ' Shv!
`(Ran(Spec k))

Ran(π)!

−→ Shv!
`(Ran(X)) ⊆ Shvlax

` (Ran(X)).

If F is a lax !-sheaf on Ran(X), we will refer to
∫
F as the chiral homology of F.

Remark 5.3.6. We will generally abuse notation by not distinguishing between the chiral
homology functor

∫
and its restriction to the full subcategory Shv!

`(Ran(X)) of !-sheaves on
Ran(X), which can be identified with a left adjoint to the composite functor

ModZ` ' Shv!
`(Ran(Spec k))

Ran(π)!

−→ Shv!
`(Ran(X)).

Remark 5.3.7. For any projective k-scheme X, we can regard the ∞-categories Shv`(X) and

Shvlax
` (Ran(X)) as tensored over the symmetric monoidal ∞-category ModZ` . Unwinding the

definitions, we see that the chiral homology functor F 7→
∫
F is left adjoint to the functor

ModZ` → Shvlax
` (Ran(X))

M 7→M ⊗Z` ωRan(X).

In particular, we have a canonical homotopy equivalence

MapModZ`
(

∫
F,Z`) ' MapShvlax

` (Ran(X))(F, ωX).

Remark 5.3.8. Let X be a projective k-scheme. Then the right adjoint of the chiral homology
functor

∫
can be identified with the composition

ModZ` ↪→ Fun((Fins)op,ModZ`)

' Shvlax
` (Ran(Spec k))

Ran(π)!

−→ Shvlax
` (Ran(X)).

These functors each admit left adjoints, given by Ran(π)∗ and lim−→ : Fun((Fins)op,ModZ`) →
ModZ` , respectively. It follows that the chiral homology functor

∫
is given on objects by the

formula ∫
F = lim−→

T∈Fins

C∗(XT ;F(T )).
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Example 5.3.9. Let X be a projective k-scheme. Then we have∫
ωRan(X) ' lim−→

T∈Fins

C∗(XT ;ωXT )

' lim−→
T∈Fins

C∗(X
T ; Z`)

' C∗(Ran(X); Z`).

If X is connected, then Theorem 2.4.5 supplies an equivalence
∫
ωRan(X) ' Z`.

Example 5.3.10. Let f : X → Y be a proper morphism of quasi-projective k-schemes and
let C be an arbitrary prestack. Then we can regard C×Spec k Ran(X) and C×Spec k Ran(Y ) as
Ran(X) and Ran(Y )-prestacks, respectively. Using Example 5.1.16, we can identify the relative
cohomology sheaf [C×Spec k Ran(X)]Ran(X) with the exceptional inverse image

Ran(f)![C×Spec k Ran(Y )]Ran(Y ).

In particular, if X is projective, we can take Y = Spec k to obtain an equivalence

[C×Spec k Ran(X)]Ran(X) ' Ran(f)!(C∗(C; Z`)⊗Z` ωRan(Spec k)) ' C∗(C; Z`)⊗Z` ωRan(X).

It follows that the chiral homology
∫

[C×Spec k Ran(X)]Ran(X) can be identified with C∗(C; Z`).

Let X be a projective k-scheme. To analyze the chiral homology functor∫
: Shvlax

` (Ran(X))→ ModZ` ,

it is convenient to consider the natural filtration on Ran(X) given by measuring the cardinalities
of finite subsets of X.

Construction 5.3.11. For each integer d ≥ 0, we Fins≤d denote the full subcategory of Fins

spanned by the nonempty finite sets having cardinality ≤ d. If X is a projective k-scheme and

F is a lax !-sheaf on Ran(X), we let
∫ (d)

F denote the colimit lim−→T∈Fins≤d
C∗(XT ;F(T )). We

regard the construction F 7→
∫ (d)

F as a functor from Shvlax
` (Ran(X)) to ModZ` .

Remark 5.3.12. The category Fins can be identified with the (filtered) colimit of the sequence
of full subcategories

∅ = Fins≤0 ⊂ Fins≤1 ⊂ Fins≤2 ⊂ · · ·

It follows that the chiral homology functor
∫

: Shvlax
` (Ran(X)) → ModZ` is a colimit of the

sequence of functors {
∫ (d)}d≥0.

The individual functors
∫ (d)

have the following convenient property (which is not shared by

the chiral homology functor
∫

= lim−→
∫ (d)

itself):

Proposition 5.3.13. Let X be a projective k-scheme and let d ≥ 0 be an integer. Then the

functor
∫ (d)

: Shvlax
` (Ran(X))→ ModZ` preserves limits when restricted to Shv!

`(Ran(X)).

The proof of Proposition 5.3.13 will require some preliminaries.

Lemma 5.3.14. Let X be a projective k-scheme and let ∆ ⊆ X2 be the closed subscheme given
by the image of the diagonal map X → X2. For each d ≥ 1, let ∆(d) ⊆ Xd denote the “fat
diagonal” given by the union of the closed subschemes {p−1

ij ∆}1≤i,j≤d, where pij : Xd → X2
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denotes the projection onto the ith and jth factors. Let
◦
Xd ⊆ Xd be the complement of ∆(d).

Then for each F ∈ Shv!
`(Ran(X)), we have a canonical fiber sequence∫ (d−1)

F →
∫ (d)

F → C∗(
◦
Xd,F(d) | ◦

Xd
)Σd ,

in the ∞-category ModZ` .

Lemma 5.3.15. Let Y be a quasi-projective k-scheme equipped with a free action of a finite
group G, so that G also acts on the ∞-category Shv`(Y ). Let F be a G-equivariant object of
Shv`(Y ), so that C∗(Y ;F) is a G-equivariant object of ModZ` (where the group G acts trivially
on ModZ`). Then the norm map Nm : C∗(Y ;F)G → C∗(Y ;F)G is an equivalence (for a
definition of group actions and norm maps in the ∞-categorical setting, we refer the reader to
§HA.6.1.6).

Proof of Proposition 5.3.13. We proceed by induction on d. If d = 0, then
∫ (d)

can be identified
with the constant functor taking the value 0 ∈ ModZ` , and there is nothing to prove. To carry
out the inductive step, we note that Lemma 5.3.14 supplies a fiber sequence∫ (d−1)

F →
∫ (d)

F → C∗(
◦
Xd;F(d) | ◦

Xd
)Σd

depending functorially on F ∈ Shv!
`(Ran(X)). It will therefore suffice to show that the func-

tor F 7→ C∗(
◦
Xd;F(d) | ◦

Xd
)Σd preserves limits when restricted to Shv!

`(Ran(X)). This follows

immediately from Lemma 5.3.15, since the symmetric group Σd acts freely on
◦
Xd. �

We now turn to the proofs of Lemmas 5.3.14 and 5.3.15.

Proof of Lemma 5.3.14. Let Fins
+ denote the category whose objects are finite (possibly empty)

sets and whose morphisms are surjections. The construction T 7→ XT determines a functor
Finsop

+ → Schpr
k . We let C+ denote the fiber product (Fins

+)op×Schpr
k

Shv`! . More informally, we

can identify C+ with the ∞-category whose objects are pairs (T,F), where T is a finite set and
F ∈ Shv`(X

T ). Let C denote the full subcategory of C+ spanned by those pairs (T,F) where T

is nonempty, and let q : C→ (Fins)op denote the projection map. Then Shvlax
` (Ran(X)) can be

identified with the∞-category of all sections of q, and Shv!
`(Ran(X)) with the full subcategory

spanned by the Cartesian sections of q.
Suppose that F ∈ Shv!

`(Ran(X)). Let F′ ∈ Shvlax
` (Ran(X)) be a q-left Kan extension of

the restriction F |(Fins≤d−1
)op , so that we have an evident map v : F′ → F which induces an

equivalence
∫ (d)

F′ '
∫ (d−1)

F. It follows that the cofiber of the canonical map
∫ (d−1)

F →∫ (d)
F can be identified with

∫ (d)
F′′, where F′′ = cofib(v). By construction, we have F′′(T ) ' 0

if the cardinality of T is < d. It follows that F′′ |(Fins≤d)op is a left Kan extension of F′′ |(Fins=d)op ,

where Fins=d denotes the full subcategory of Fins spanned by those finite sets having cardinality
exactly d. Note that Fins=d is equivalent to a category having a single object, with automorphism
group Σd. We therefore obtain an equivalence∫ (d)

F′′ = lim−→
T∈Fins≤d

C∗(XT ;F′′(T )) ' lim−→
T∈Fins=d

C∗(XT ;F′′(T )) ' C∗(Xd;F′′(d))Σd .

Note that we have Σd-equivariant maps

C∗(Xd;F′′(d))
α→ C∗(

◦
Xd;F′′(d) | ◦

Xd
)
β← C∗(

◦
Xd;F(d) | ◦

Xd
).
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We will complete the proof by showing that α and β are equivalences.

To show that β is an equivalence, it will suffice to show that F′(d) vanishes on
◦
Xd. Unwinding

the definitions, we see that for each nonempty finite set T , the sheaf F′(T ) ∈ Shv`(X
T ) is given

by the formula

lim−→
E

δ(E)∗ F
T/E ,

where the colimit is taken over all equivalence relations E on T such that T/E has cardinality
< d, and δ(E) : XT/E → XT denotes the corresponding diagonal map. It now suffices to
observe that when T = {1, . . . , d}, each of the maps δ(E) has image contained in the big
diagonal ∆(d) ⊆ Xd.

To prove that α is an equivalence, it will suffice to show that the sheaf F′′(d) ∈ Shv`(X
d) is the

pushforward of a sheaf on
◦
Xd. Note that the complement ∆(d) of

◦
Xd is the union of the images

of the closed embeddings δ(E), where E ranges over all equivalence relations on T = {1, . . . , d}
such that T/E has cardinality < d. It will therefore suffice to show that δ(E)! F′′(d) vanishes

for every such equivalence relation E. Unwinding the definitions, we see that δ(E)! F′′(d) is the
cofiber of the canonical map

θ : lim−→
E′

δ(E)!δ(E′)∗ F
(T/E′) → δ(E)! F(T ),

where the colimit is taken over all equivalence relations E′ on T such that T/E′ has cardinality
< d. For every such equivalence relation E′, let EE′ denote the equivalence relation on S
generated by E and E′, so that we have a pullback diagram of schemes

XT/EE′
δ(E,E′) //

δ(E′,E)
��

XT/E

δ(E)

��
XT/E′

δ(E′) // XT .

Using the proper base change theorem (Theorem 4.5.4), we can identify θ with the canonical
m ap

lim−→
E′

δ(E,E′)∗δ(E
′, E)! F(T/E′) → δ(E)! F(T ) .

Invoking our assumption that F is a !-sheaf, we are reduced to proving that the canonical map

lim−→
E′

δ(E,E′)∗ F
(T/EE′) → FT/E

is an equivalence. Let P denote the partially ordered set of all equivalence relations E′ on

S such that E′ = EE′. The construction E′ 7→ δ(E,E′)∗ F
(T/EE′) factors through the map

E′ 7→ EE′ and is therefore a left Kan extension of its restriction to P . We are therefore reduced
to showing that the canonical map

lim−→
E′∈P

δ(E,E′)∗ F
(T/EE′) → F(T/E)

is an equivalence. This is clear, since the equivalence relation E itself is a final object of P op. �

Proof of Lemma 5.3.15. Let Z denote the quotient Y/G, let q : Y → Z denote the projection
map, and let Γ : Shv`(Z)→ ModZ` denote the global sections functor. Let G = q∗ F, so that we
can identify G with a G-equivariant object Shv`(Z), and we have a G-equivariant equivalence
C∗(Y ;F) ' Γ(G). The functor Γ preserves limits (since it is right adjoint to pullback along
the projection map Z → Spec k) and colimits (since it is defined as the Ind-extension of the
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global sections functor on constructible sheaves). It follows that the norm map Nm can be

identified with the image under Γ of the natural map NmG : GG → GG. We are therefore
reduced to proving that NmG is an equivalence. By virtue of Corollary 4.3.42, it will suffice to
prove that q∗NmG is an equivalence in Shv`(Y ). The functor q∗ admits left and right adjoints
q!, q∗ : Shv`(Y ) → Shv`(Z), and therefore preserves limits and colimits and so commutes
with the formation of norm maps. We are therefore reduced to proving that the norm map
Nmq∗ G : (q∗ G)G → (q∗ G)G is an equivalence in Shv`(Y ). This follows from the observation
that the counit map q∗ G = q∗q∗ F → F exhibits q∗ G as an induced representation of G. �

If we restrict our attention to !-sheaves satisfying appropriate boundedness hypotheses, then
we can prove an analogue of Proposition 5.3.13 for the chiral homology functor F 7→

∫
F itself.

Corollary 5.3.16. Let φ : Z≥0 → Z be a function which is nondecreasing and unbounded, and

let Cφ ⊆ Shv!
`(Ran(X)) denote the full subcategory spanned by those !-sheaves F which satisfy

the following additional condition:

(∗) For each integer d ≥ 1, C∗(
◦
Xd;F(d) | ◦

Xd
) belongs to (ModZ`)≤−φ(d).

Then the functor F 7→
∫
F preserves limits when restricted to Cφ.

Remark 5.3.17. For any nondecreasing unbounded function φ : Z≥0 → Z, the full subcategory

Cφ ⊆ Shvlax
` (Ran(X)) appearing in the statement of Corollary 5.3.16 is closed under limits.

Proof of Corollary 5.3.16. For each integer e, let Te : Shvlax
` (Ran(X)) → (ModZ`)≥−e be the

functor given by Te(F) = τ≥−e
∫
F. We will complete the proof by showing that each of the

functors Te commutes with limits when restricted to Cφ. To prove this, choose an integer d

such that φ(d′) > e for d′ > d. It follows from Proposition 5.3.13 that the functor F 7→
∫ (d)

F

commutes with limits. It will therefore suffice to show that the map τ≥−e
∫ (d)

F → τ≥−e
∫
F is

an equivalence for F ∈ Cφ. In fact, we claim that for each d′ ≥ d, the map

τ≥−e

∫ (d)

F → τ≥−e

∫ (d′)

F

is an equivalence. Using induction on d′, we are reduced to proving that the natural map

τ≥−e

∫ (d′−1)

F → τ≥−e

∫ (d′)

F

is an equivalence for d′ > d. Using Lemma 5.3.14, we are reduced to proving that

C∗(U(d′);F(d′) |U(d′))Σd′

belongs to (ModZ`)≤−e−1. Lemma 5.3.15 supplies an equivalence

C∗(U(d′);F(d′) |U(d′))Σd′ ' C
∗(U(d′);F(d′) |U(d′))

Σd′ .

It will therefore suffice to show that C∗(U(d′);F(d′) |U(d′))
Σd′ ∈ (ModZ`)≤−e−1. Because

(ModZ`)≤−e−1 is closed under limits in ModZ` , we are reduced to proving that

C∗(U(d′);F(d′) |U(d′)) ∈ (ModZ`)≤−e−1,

which follows from (∗) since f(d′) > e. �
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5.4. The Product Formula: First Formulation. Throughout this section, we let k denote
an algebraically closed field and ` a prime number which is invertible in k. Let X be an algebraic
curve over k and let G be a smooth affine group scheme over X. For each point x ∈ X, let
Gx denote the fiber product G ×X {x}, and let BGx denote the classifying stack of Gx. Our
goal is to formulate an algebro-geometric version of Theorem 1.4.9, which expresses the cochain
complex C∗(BunG(X); Z`) as a “continuous direct limit” of cochain complexes of the form
C∗(

∏
x∈T BGx; Z`) where T ranges over all finite subsets of X.

Construction 5.4.1. We define a category RanG(X) as follows:

• The objects of RanG(X) are quadruples (R, T, ν,P) where R is a finitely generated k-
algebra, T is a nonempty finite set, ν : T → X(R) is a map of sets, and P is a G-bundle
on the divisor |ν(T )| ⊆ XR determined by ν.

• A morphism from (R, T, ν,P) to (R′, T ′, ν′,P′) in the category RanG(X) consists of a
morphism (R, T, ν) → (R′, T ′, ν′) in Ran(X), together with a G-bundle isomorphism
P′ ' |ν′(T ′)| ×|ν(T )| P.

The construction (R, T, ν,P) 7→ (R, T, ν) determines a forgetful functor RanG(X)→ Ran(X),

which exhibits RanG(X) as a Ran(X)-prestack. For each nonempty finite set T , we can identify

the prestack RanG(X)(T ) with the classifying stack for the group scheme over XT given by the
Weil restriction of G ×X D along the map D → XT , where D ⊆ X ×Spec k X

T denotes the
“incidence divisor” determined by the natural maps from XT into X. In particular, for each
point x ∈ X(k), the fiber product RanG(X)×Ran(G) Spec k can be identified with the classifying
stack BGx.

Notation 5.4.2. We let B ∈ Shvlax
` (Ran(X)) denote the lax !-sheaf given by the formula

B = [RanG(X)]Ran(X). In situations where it is necessary to emphasize the dependence of B
on the group scheme G (which we will encounter in §7.1), we will denote B by BG.

Proposition 5.4.3. The lax !-sheaf B of Notation 5.4.2 is a !-sheaf on Ran(X).

Proof. For every nonempty finite set T , let ∆T ⊆ XT ×Spec k X be the incidence divisor (con-
sisting of those points ({xt}t∈T , y) where y = xt for some t), and let G(T ) denote the scheme
given by the Weil restriction of G×X ∆T along the finite flat map ∆T → XT . Then the fiber
RanG(X)T = RanG(X) ×Fins {T} can be identified with the classifying stack of G(T ) (where
we regard G(T ) as a group scheme over XT ). For each integer n, we let G(T )n denote the nth
fiber poewr of G(T ) over XT .

Let T ′ → T be a surjection of nonempty finite sets, and let δ : XT → XT ′ be the as-
sociated diagonal map. We wish to show that the canonical map β : [RanG(X)(T )]XT →
δ![RanG(X)(T ′)]XT ′ is an equivalence in Shv`(X

T ). Using Proposition 5.1.9, we can identify

the codomain of β with [RanG(X)(T ′)×XT ′ XT ]XT . It follows that β can be identified with the
map of totalizations induced by a morphism of cosimplicial `-adic sheaves

[G(T )•]XT → [G(T ′)• ×XT ′ X
T ]XT .

To complete the proof, it will suffice to show that the natural map

βn : [G(T )n]XT → [G(T ′)n ×XT ′ X
T ]XT

is an equivalence for each n ≥ 0. Consider the diagram

G(T ′)n ×XT ′ X
T φ→ G(T )n

ψ→ XT .

Unwinding the definitions, we see that βn is given by the map

ψ∗ψ
∗ωXT → ψ∗φ∗φ

∗ψ∗ωXT
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determined by the unit transformation u : id→ φ∗φ
∗. To complete the proof, it will suffice to

show that u is an equivalence. This follows from the observation that, Zariski-locally on XT , u
can be identified with the projection map

Ad×G(T )n → G(T )n

for some integer d ≥ 0 (since the kernel of the map G(T ′)×XT ′ XT → G(T ) is an extension of
vector bundles over XT ). �

Remark 5.4.4. Let ι : Spec k → Ran(X) be the point classifying an inclusion ν : T ↪→ X(k),

so that the fiber product RanG(X) ×Ran(X) Spec k can be identified with the product stack∏
t∈T BGν(t). Using Proposition 5.1.9, we see that the costalk ι! B can be identified with the

cochain complex C∗(
∏
t∈T BGν(t); Z`).

Any G-bundle on the entire curve X can be restricted to any divisor on X. The formation
of restrictions determines a morphism of Ran(X)-prestacks

Ran(X)×Spec k BunG(X)→ RanG(X),

hence a map of !-sheaves

[RanG(X)]Ran(X) → [Ran(X)×Spec k BunG(X)]Ran(X).

We can now formulate our algebro-geometric analogue of Theorem 1.4.9:

Theorem 5.4.5 (Product Formula). Let G be a smooth affine group scheme over X with
connected fibers whose generic fiber is semisimple and simply connected. Then the composite
map ∫

B =

∫
[RanG(X)]Ran(X)

→
∫

[Ran(X)×Spec k BunG(X)]Ran(X)

' C∗(BunG(X); Z`)

is a quasi-isomorphism (here the last equivalence is supplied by Example 5.3.10).

We will give the proof of Theorem 5.4.5 in §9.

5.5. Convolution of !-Sheaves. Throughout this section, we fix an algebraically closed field
k and a prime number ` which is invertible in k. Let X be a quasi-projective k-scheme. In
§5.2, we introduced the ∞-category Shvlax

` (X) of lax !-sheaves on the Ran space Ran(X). In
this section, we will study an operation

? : Shvlax
` (Ran(X))× Shvlax

` (Ran(X))→ Shvlax
` (Ran(X))

called the convolution product, given on objects by the formula

(F′ ?F′′)(T ) =
⊕

T=T ′qT ′′
F′

(T ′)
� F′′

(T ′′)
.

Here the direct sum is taken over the collection of all decompositions of T as a disjoint union into
disjoint nonempty T ′, T ′′ ⊆ T . The main result of this section is to show that the convolution
product induces (nonunital) symmetric monoidal structures on the full subcategories

Shv!
`(Ran(X)),Shvdiag

` (Ran(X)) ⊆ Shvlax
` (Ran(X))

(Propositions 5.5.14 and 5.5.19). In the latter case, this symmetric monoidal structure can be
identified with the !-tensor product on Shv`(X) introduced in §4.6.

We begin with some general categorical remarks.
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Construction 5.5.1 (Day Convolution Product). Let C be a symmetric monoidal∞-category.
Assume that C admits finite coproducts and that the tensor product

⊗ : C×C→ C

preserves finite coproducts separately in each variable.
Given a pair of functors

F ′, F ′′ : (Fins)op → C,

one can define a new functor

F ′ ? F ′′ : (Fins)op → C,

given on objects by the formula

(F ′ ? F ′′)(T ) =
∐

T=T ′qT ′′
F ′(T ′)⊗ F ′′(T ′′),

where the coproduct is taken over all decompositions of T as a disjoint union of subsets T ′, T ′′ ⊆
T . More formally, F ′ ? F ′′ is obtained from the composite functor

(Fins)op × (Fins)op F ′×F ′′−→ C×C
⊗→ C

by left Kan extension along the disjoint union functor

q : (Fins)op × (Fins)op → (Fins)op.

We will refer to F ′ ? F ′′ as the Day convolution product of F ′ and F ′′.
The Day convolution product is commutative and associative up to coherent homotopy. More

precisely, the ∞-category Fun((Fins)op,C) inherits a nonunital symmetric monoidal structure
whose underlying tensor product is given by Day convolution

? : Fun((Fins)op,C)× Fun((Fins)op,C)→ Fun((Fins)op,C).

Remark 5.5.2. In the situation of Construction 5.5.1, there is generally no unit object for the
Day convolution product on Fun((Fins)op,C). We could correct this problem by enlarging the
category Fins to include the empty set, but for our applications it will be more convenient not
to do so.

Remark 5.5.3. Let C be as in Construction 5.5.1 and let F : (Fins)op → C be a functor. Then
the data of a multiplication map m : F ? F → F is equivalent to the data of family of maps
mT ′,T ′′ : F (T ′)⊗ F (T ′′) → F (T ′ q T ′′), depending functorially on T ′ and T ′′. Elaborating on
this observation, one can show that F has the structure of a lax nonunital symmetric monoidal
functor (where we regard Fins as a nonunital symmetric monoidal category via the formation
of disjoint unions) if and only if it has the structure of a commutative algebra object of the
∞-category Fun((Fins)op,C) (with respect to the convolution product). More precisely, we have
an equivalence of ∞-categories

CAlgnu(Fun((Fins)op,C)) ' Funlax((Fins)op,C),

where CAlgnu(Fun((Fins)op,C)) denotes the ∞-category of nonunital commutative algebra ob-

jects of Fun((Fins)op,C) and Funlax((Fins)op,C) denotes the ∞-category of lax nonunital sym-
metric monoidal functors from (Fins)op into C.

Remark 5.5.4. Construction 5.5.1 is functorial. Suppose we are given a symmetric monoidal
functor F : C → D, where the ∞-categories C and D admit finite coproducts and the tensor
product functors

⊗ : C×C→ C D×D→ D
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preserve coproducts separately in each variable. Then composition with F induces a symmetric
monoidal functor

Fun((Fins)op,C)→ Fun((Fins)op,D),

where we regard each side as equipped with the Day convolution product of Construction 5.5.1.

Example 5.5.5. Let Schpr
k denote the category whose objects are quasi-projective k-schemes

and whose morphisms are proper maps. We can regard Schpr
k as a symmetric monoidal category

with respect to the formation of Cartesian products. Note that Schpr
k admits finite coproducts

(given by disjoint unions of k-schemes), and that the Cartesian product functor

× : Schpr
k × Schpr

k → Schpr
k

preserves coproducts separately in each variable. Applying Construction 5.5.1, we can regard
the Fun((Fins)op,Schpr

k ) as a symmetric monoidal category via the Cartesian product. For every
quasi-projective k-scheme X, the construction

T 7→ XT

determines a symmetric monoidal functor from (Fins)op into Schpr
k , which we can view as a

nonunital commutative algebra object of Fun((Fins)op,Schpr
k ) (Remark 5.5.3).

Example 5.5.6. Let Shv!
` denote the ∞-category introduced in Definition 5.1.18: the objects

of Shv!
` are pairs (X,F) where X is a quasi-projective k-scheme and F ∈ Shv`(X) is an `-adic

sheaf, and a morphism from (X,F) to (X ′,F′) is a proper map of k-schemes f : X → X ′

together with a morphism f∗ F → F′ in Shv`(X
′). We regard Shv!

` as a symmetric monoidal
∞-category, with tensor product given by

(X,F)⊗ (X ′,F′) = (X ×X ′,F�F′)

(see §A.5). The ∞-category Shv!
` also admits finite coproducts: the coproduct of (X,F) and

(X ′,F′) is (X qX ′,F′′), where F′′ |X = F and F′′ |X′ = F′. Moreover, the tensor product

⊗ : Shv!
`× Shv!

` → Shv!
`

((X,F), (X ′,F′)) 7→ (X ×X ′,F�F′)

preserves finite coproducts in each variable. It follows that we may regard the ∞-category
Fun((Fins)op,Shv!

`) as a nonunital symmetric monoidal ∞-category with respect to the Day
convolution product. Note that the forgetful functor

π : Shv!
` → Schpr

k

(X,F) 7→ X

is symmetric monoidal and preserves coproducts, and therefore induces a nonunital symmetric
monoidal functor

Fun((Fins)op,Shv!
`)→ Fun((Fins)op,Schpr

k )

(see Remark 5.5.4).

For our applications, we will need a relative version of Construction 5.5.1. We begin with a
general remark.

Construction 5.5.7. Let π : C → D be a coCartesian fibration of ∞-categories. For each
object D ∈ D, set

CD = C×D{D} C/D = C×D D/D,

so that we have an evident inclusion map CD ↪→ C/D. Since π is a coCartesian fibration, every
morphism e : D → D′ in D induces a functor e! : CD → CD′ . Then, for every object D ∈ D,
the inclusion map CD ↪→ C/D admits a left adjoint LD : C/D → CD. Concretely, if we identify
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objects of C/D with pairs (C,α) where C ∈ C and α : π(C)→ D is a morphism in D, then LD
is given by the formula LD(C,α) = α!(C).

Now suppose that the∞-categories C and D are equipped with nonunital symmetric monoidal
structures, and that π is a symmetric monoidal functor. For each nonunital commutative algebra
object A ∈ D, the overcategory D/A inherits the structure of a symmetric monoidal∞-category,
where the tensor product of objects u : M → A and v : N → A is given by the composite map

M ⊗N u⊗v−→ A⊗A m→ A,

where m denotes the multiplication on A (see §HA.2.2.2). It follows that C/A also inherits a
nonunital symmetric monoidal structure. If the collection of π-coCartesian morphisms in D is
closed under tensor products, then the tensor product on C/A is compatible with the localization
functor LA defined above, so that the fiber CA inherits a symmetric monoidal structure which
is determined (up to equivalence) by the requirement that LA is a symmetric monoidal functor
(see §HA.2.2.1). In this case, the inclusion CA ↪→ C/A is a lax symmetric monoidal functor.
Concretely, the tensor product ⊗A : CA×CA → CA is given by the formula

C ⊗A C ′ = m!(C ⊗ C ′).

Remark 5.5.8. In the situation of Construction 5.5.7, suppose that we are given a map e : A→
B between nonunital commutative algebra objects of D. Then the associated map e! : CA → CB
inherits the structure of a nonunital symmetric monoidal functor.

Construction 5.5.9. Let π : Shv!
` → Schpr

k be the forgetful functor of Example 5.5.6. Then π
induces a symmetric monoidal functor

π : Fun((Fins)op,Shv!
`)→ Fun((Fins)op,Schpr

k ).

Let X be a quasi-projective k-scheme and let AX : (Fins)op → Schpr
k be the functor given

by T 7→ XT , so that the inverse image π−1{AX} can be identified with the ∞-category

Shvlax
` (Ran(X)) of lax !-sheaves on Ran(X) introduced in Definition 5.2.1. It follows from

Example 5.5.5 that we can regard the functor AX as a nonunital commutative algebra object
of Fun((Fins)op,Schpr

k ). Applying Construction 5.5.7, we see that Shvlax
` (Ran(X)) inherits a

nonunital symmetric monoidal structure. We will denote the underlying tensor product by

? : Shvlax
` (Ran(X))× Shvlax

` (Ran(X))→ Shvlax
` (Ran(X)).

We will refer to this product as the convolution product on Shvlax
` (Ran(X)).

Remark 5.5.10. Unwinding the definitions, we see that the convolution product is given by
the formula

(F′ ?F′′)(T ) =
⊕

T=T ′qT ′′
F′

(T ′)
� F′′

(T ′′)
.

Warning 5.5.11. For every pair of objects F,F′ ∈ Shvlax
` (Ran(X)), the `-adic sheaf

(F ?F′)(1) ∈ Shv`(X)

vanishes (a set with one element cannot be decomposed as a union of two nonempty subsets).

It follows that the ∞-category Shvlax
` (Ran(X)) does not have a unit object with respect to the

convolution product.

Remark 5.5.12. Let X be a quasi-projective k-scheme and let F be a lax !-sheaf on Ran(X).
Using Remark 5.5.3, we see that the following data are equivalent:

• Nonunital commutative algebra structures on F (with respect to the convolution prod-
uct).
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• Nonunital lax symmetric monoidal structures on the underlying functor (Fins)op →
Shv!

` (that is, a collection of multiplication

(XT ,F(T )⊗(XT ′ ,F(T ′))→ (XTqT ′ ,F(TqT ′))

in Shv!
` which are coherently commutative and and associative) which are compatible

with the lax symmetric monoidal structure on underlying map (Fins)op → Schk given
by T 7→ XT .

Example 5.5.13. Let X be a quasi-projective k-scheme. Then the dualizing sheaf ωRan(X)

can be regarded as a nonunital commutative algebra object of Shvlax
` (Ran(X)).

The full subcategory Shv!
`(Ran(X)) ⊆ Shvlax

` (Ran(X)) is not closed under the convolution
product of Construction 5.5.9. However, we will prove the following:

Proposition 5.5.14. Let X be a quasi-projective k-scheme and let L : Shvlax
` (Ran(X)) →

Shv!
`(Ran(X)) denote a left adjoint to the inclusion functor (see Proposition 5.2.11). Then

there exists an essentially unique nonunital symmetric monoidal structure on Shv!
`(Ran(X))

for which L can be promoted to a nonunital symmetric monoidal functor.

Notation 5.5.15. Let X be a quasi-projective k-scheme and regard Shv!
`(Ran(X)) as equipped

with the nonunital symmetric monoidal structure described in Proposition 5.5.14. We will
denote the underlying tensor product on Shv!

`(Ran(X)) by

� : Shv!
`(Ran(X))× Shv!

`(Ran(X))→ Shv!
`(Ran(X)),

and refer to it as the convolution product on Shv!
`(Ran(X)).

Remark 5.5.16. Let X be a quasi-projective k-scheme. Then the inclusion Shv!
`(Ran(X)) ↪→

Shvlax
` (Ran(X)) is lax symmetric monoidal. Moreover, it induces a fully faithful embedding

CAlgnu(Shv!
`(Ran(X)))→ CAlgnu(Shvlax

` (Ran(X)))

whose essential image consists of those nonunital commutative algebras F of Shvlax
` (Ran(X))

which are !-sheaves.

Remark 5.5.17. Let X be a quasi-projective k-scheme. Then the convolution product on
Shv!

`(Ran(X)) is given by the formula (F�F′) = L(F ?F′), where L : Shvlax
` (Ran(X)) →

Shv!
`(Ran(X)) is a left adjoint to the inclusion. Using the description of L given in Remark

5.2.14, we see that the convolution product can be described concretely by the formula

(F0�F1)(T )| ◦
XT

= lim−→
α:T0qT1→T

δ!
α(F

(T0)
0 �F

(T1)
1 )| ◦

XT
,

where
◦
XT ⊆ XT denotes the open subset whose k-valued points are injective maps ν : T →

X(k), the colimit is taken over the category

C = (Fins×Fins)×Fins (Fins)/T

whose objects are surjections α : T0 q T1 → T , and δα : XT → XT0 × XT1 is the associated
diagonal map. Let C′ denote the full subcategory of C spanned by those objects α : T0qT1 → T
where α|T0

and α|T1
are injective. If F0 and F1 are !-sheaves, then the construction

α 7→ δ!
α(F

(T0)
0 �F

(T1)
1 )
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determines a functor Cop → Shv`(X
T ) which is a left Kan extension of its restriction to C′ op.

It follows that the convolution product can be described more simply by the formula

(F0�F1)(T )| ◦
XT

= (
⊕

T=T0∪T1

δ!
T0,T1

(F
(T0)
0 �F

(T1)
1 )| ◦

XT
,

where the direct sum is taken over all pairs of nonempty (not necessarily disjoint) subsets
T0, T1 ⊆ T such that T0 ∪ T1 = T , and δT0,T1 : XT → XT0 × XT1 denotes the associated
diagonal map.

Example 5.5.18. Let X be a quasi-projective k-scheme and let F0,F1 ∈ Shv!
`(Ran(X)). Then

we have

(F0�F1)(1) ' F
(1)
0 ⊗! F

(1)
1 ,

where the !-tensor product ⊗! is defined as in §4.6.

Proof of Proposition 5.5.14. Let C ⊆ Shvlax
` (Ran(X)) denote the full subcategory spanned by

those objects F such that L(F) ' 0. It will suffice to show that C is an ideal with respect to

the convolution product: that is, that the convolution product carries Shvlax
` (Ran(X))×C into

C (see §HA.2.2.1). Arguing as in the proof of Proposition 5.2.11, we see that C is generated
under colimits by cofibers of maps C is generated under small colimits by cofibers of maps

eLT ′(δT ′/T∗ G)→ eLT (G)

(see Remark 5.2.13), where T ′ → T is a surjection of nonempty finite sets and G ∈ Shv`(X
T ).

Similarly, Shvlax
` (Ran(X)) is generated under small colimits by objects of the form eLS(F) for

F ∈ Shv`(X
S) (see Remark 5.2.12). It will therefore suffice to show that the functor L carries

every morphism of the form

θ : eLS(F) ? eLT ′(δT ′/T∗ G)→ eLS(F) ? eLT (G)

to an equivalence in Shv!
`(Ran(X)). This follows from Remark 5.2.13, since we can identify θ

with the canonical map

eLSqT ′((δSqT ′/SqT )∗(F�G))→ eLSqT (F�G).

�

We now discuss the relationship between the convolution product for sheaves on Ran(X)
and the !-tensor product of `-adic sheaves on X.

Proposition 5.5.19. Let X be a quasi-projective k-scheme. Then the ∞-category Shv`(X)
admits a symmetric monoidal structure whose underlying tensor product is the functor

⊗! : Shv`(X)× Shv`(X)→ Shv`(X)

constructed in §4.6. Moreover, the construction F 7→ F(1) determines a nonunital symmetric
monoidal functor Shv!

`(Ran(X))→ Shv`(X).

Proof. Let U : Shv!
`(Ran(X))→ Shv`(X) be the functor given by U(F) = F(1). The functor U

admits a fully faithful left adjoint, whose essential image is the full subcategory

Shvdiag
` (Ran(X)) ⊆ Shv!

`(Ran(X))

introduced in Definition 5.2.7. We may therefore regard U as a colocalization functor on the
∞-category Shv!

`(Ran(X)). Using Example 5.5.18, we see that U is compatible with the con-
volution product so that Shv`(X) admits an essential unique nonunital symmetric monoidal
structure for which the functor U is nonunital symmetric monoidal (see §HA.2.2.1). Example
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5.5.18 also shows that the tensor product underlying this nonunital symmetric monoidal struc-
ture agrees with the !-tensor product of §4.6. To complete the proof, it will suffice to show
that this nonunital symmetric monoidal structure on Shv`(X) can be promoted to a symmetric
monoidal structure. By virtue of Corollary HA.5.4.4.7, it will suffice to show that there exists
a quasi-unit for the !-tensor product: that is, an object E for which the functor F 7→ F⊗! E is
equivalent to the identity. This follows from Proposition 4.6.13. �

We now discuss the functorial behavior of some of the preceding constructions. Let f : X →
Y be a proper morphism between quasi-projective k-schemes. It follows from Remark 5.5.8
that the induced map

Ran(f)∗ : Shvlax
` (X)→ Shvlax

` (Y )

is a nonunital symmetric monoidal functor. It follows that the right adjoint

Ran(f)! : Shvlax
` (Y )→ Shvlax

` (X)

has the structure of a nonunital lax symmetric monoidal functor. More concretely, for every
pair of objects F,G ∈ Shvlax

` (Y ), we obtain a natural map

(Ran(f)! F) ? (Ran(f)! G)→ Ran(f)!(F ?G).

Unwinding the definitions (using the formula for the convolution product given in Remark
5.5.10), we see that this map is an equivalence. This proves the following:

Proposition 5.5.20. Let f : X → Y be a proper morphism of quasi-projective k-schemes.
Then the functors

Shvlax
` (Ran(X))

Ran(f)∗//Shvlax
` (Ran(Y ))

Ran(f)!

oo

commute with convolution products. More precisely, we can regard Ran(f)∗ and Ran(f)! as (an
adjoint pair of) nonunital symmetric monoidal functors.

In the situation of Proposition 5.5.20, the functor Ran(f)! carries !-sheaves on Ran(Y ) to
!-sheaves on Ran(X), and can therefore be regarded as a lax nonunital symmetric monoidal

functor from Shv!
`(Y ) to Shv!

`(X). More concretely, for every pair of objects F,G ∈ Shv!
`(Y ),

we obtain a canonical map

(Ran(f)! F)�(Ran(f)! G)→ Ran(f)!(F�G).

It follows easily from the description of the functor � given in Remark 5.5.17 that this map is
an equivalence. We therefore obtain the following variant of Proposition 5.5.20:

Corollary 5.5.21. Let f : X → Y be a proper morphism of quasi-projective k-schemes.
Then the functor Ran(f)! : Shv!

`(Ran(Y )) → Shv!
`(Ran(X)) preserves convolution products:

that is, it can be regarded as a nonunital symmetric monoidal functor from Shv!
`(Ran(Y )) to

Shv!
`(Ran(X)).

Corollary 5.5.22. Let f : X → Y be a proper morphism of quasi-projective k-schemes. Then
we can regard f ! : Shv`(Y ) → Shv`(X) as a symmetric monoidal functor, where Shv`(X) and
Shv`(Y ) are equipped with the symmetric monoidal structure of Proposition 5.5.19.
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Proof. Let TX : Shv!
`(Ran(X)) → Shv`(X) denote the functor given by TX(F) = F(1) and

define TY similarly, so that we have a commutative diagram

Shv!
`(Ran(Y ))

Ran(f)!

��

TY // Shv`(Y )

f !

��
Shv!

`(Ran(X))
TX // Shv`(X).

The functor Ran(f)! is nonunital symmetric monoidal by Corollary 5.5.21 and the functor TX
is nonunital symmetric monoidal by construction. It follows that TX ◦ Ran(f)! ' f ! ◦ TY can
be regarded as a nonunital symmetric monoidal functor. Since TY is a nonunital symmetric
monoidal colocalization, the functor f ! inherits a nonunital symmetric monoidal structure. To
complete the proof, it will suffice to show that f ! is quasi-unital: that is, that it carries unit
objects for the !-tensor product on Shv`(Y ) to unit objects for the !-tensor product on Shv`(X).

Since f is proper, we can choose a pullback diagram

X
f //

jX
��

Y

jY
��

X
f // Y ,

where X and Y are projective k-schemes, and the vertical maps are open immersions. The
proof of Proposition 4.6.13 shows ωY = j∗Y ωY is a unit object of Shv`(Y ). We complete the
proof by noting that Proposition 4.5.12 supplies an equivalence

f !j∗Y ωY ' j
∗
Xf

!
ωY ' j

∗
XωX ,

which is a unit object of Shv`(X) (as in the proof of Proposition 4.6.13). �

Remark 5.5.23. Let f : X → Y be a proper morphism of quasi-projective k-schemes. It
follows from Corollary 5.5.22 that the pushforward f∗ : Shv`(X) → Shv`(Y ) can be regarded
as a colax symmetric monoidal functor with respect to the !-tensor product. In particular, for
every pair of `-adic sheaves F,G ∈ Shv`(X), we have a canonical map

f∗(F⊗! G)→ (f∗ F)⊗! (f∗ G).

If f is a closed immersion, then this map is an equivalence (see Remark 4.6.12). In this case, we
can view f∗ as a nonunital symmetric monoidal functor (though it generally does not preserve
unit objects).

In the situation of Corollary 5.5.21, the functor Ran(f)∗ generally does not carry !-sheaves

on Ran(X) to !-sheaves on Ran(Y ). Nevertheless, the functor Ran(f)! : Shv!
`(Ran(Y )) →

Shv!
`(Ran(X)) admits a left adjoint, given by composing Ran(f)∗ with a left adjoint LY to the

inclusion Shv!
`(Ran(Y ))→ Shvlax

` (Ran(Y )). It follows from Propositions 5.5.20 and 5.5.14 that
this construction is compatible with convolution products:

Corollary 5.5.24. Let f : X → Y be a proper morphism of quasi-projective k-schemes. Then
the functor Ran(f)! : Shv!

`(Ran(Y ))→ Shv!
`(Ran(X)) admits a nonunital symmetric monoidal

left adjoint Ran(f)~ : Shv!
`(Ran(X))→ Shv!

`(Ran(Y )).

In the special case where Y = Spec k, the functor Ran(f)~ of Corollary 5.5.24 can be
identified with the functor of chiral homology. This proves the following:



WEIL’S CONJECTURE FOR FUNCTION FIELDS 171

Corollary 5.5.25. Let X be a projective k-scheme. Then the functor of chiral homology∫
: Shv!

`(Ran(X))→ ModZ`

is nonunital symmetric monoidal: that is, it carries convolution products to tensor products.

Remark 5.5.26. In fact, something stronger is true: the functor of chiral homology is nonunital
symmetric monoidal on the entire ∞-category Shvlax

` (Ran(X)) of lax !-sheaves. In concrete
terms, this follows from the calculation∫

F ?G = lim−→
T

C∗(XT ; (F ?G)(T ))

' lim−→
T∈Fins

⊕
T=T ′qT ′′

C∗(XT ;F(T ′) �G(T ′′))

' lim−→
T ′,T ′′∈Fins

C∗(XT ′ ;F(T ′))⊗Z` C
∗(XT ′′ ;G(T ′′))

' ( lim−→
T ′∈Fins

C∗(XT ′ ;F(T ′)))⊗Z` ( lim−→
T ′′∈Fins

C∗(XT ′′ ;G(T ′′)))

' (

∫
F)⊗Z` (

∫
G).

5.6. Commutative Factorization Algebras. Throughout this section, let us fix an alge-
braically closed field k and a prime number ` which is invertible in k. Let X be a quasi-
projective k-scheme. In §5.5 we defined the convolution product on Shv!

`(Ran(X)) and proved
that the restriction map

Shv!
`(Ran(X))→ Shv`(X)

carries convolution products to !-tensor products of `-adic sheaves on X (Proposition 5.5.19).
Our goal in this section is to study the relationship between (nonunital) commutative algebras

in Shv!
`(Ran(X)) and Shv`(X). We begin by introducing some terminology.

Definition 5.6.1. Let X be a quasi-projective k-scheme. A commutative factorization algebra
on X is a nonunital commutative algebra object A of the ∞-category Shv!

`(Ran(X)) which has
the following additional property:

(∗) Let T and T ′ be nonempty finite sets, and let (XT ×XT ′)disj ⊆ XT ×XT ′ be the open
subset whose k-valued points correspond to maps ν : TqT ′ → X(k) with ν(T )∩ν(T ′) =
∅. Then the multiplication on A induces an equivalence of `-adic sheaves

(A(T ) �A(T ′))|(XT×XT ′ )disj
→ A(TqT ′) |(XT×XT ′ )disj

.

Remark 5.6.2. Let X be a quasi-projective k-scheme and let A• be a simplicial object of the
∞-category CAlgnu(Shv!

`(Ran(X))). If each An is a commutative factorization algebra on X,
then the geometric realization |A• | is also a commutative factorization algebra on X.

Remark 5.6.3. Let X be a quasi-projective k-scheme and let A be a nonunital commutative
algebra object of Shv!

`(Ran(X)). Then A is a commutative factorization algebra if and only if,
for every integer n > 0, the canonical map

(A(1))�n → A(n)

is an equivalence of `-adic sheaves over the open subset
◦
Xn ⊆ Xn whose k-valued points are

n-tuples of distinct elements of X(k).

Our main goal in this section is to prove the following:
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Theorem 5.6.4. Let X be a quasi-projective k-scheme and let

G : CAlgnu(Shv!
`(Ran(X)))→ CAlgnu(Shv`(X))

be the the functor given by A 7→ A(1). Then the functor G admits a fully faithful left adjoint
Fact : CAlgnu(Shv`(X)) → CAlgnu(Shv!

`(Ran(X))), whose essential image is the full subcate-

gory of CAlgnu(Shv!
`(Ran(X))) spanned by the commutative factorization algebras on X.

Example 5.6.5. Let X be a quasi-projective k-scheme. Then the dualizing sheaf ωX is the
unit object of Shv`(X) (with respect to the !-tensor product), and therefore inherits the struc-
ture of a nonunital commutative algebra object of Shv`(X). The corresponding commutative

factorization algebra is given by ωRan(X) ∈ Shv!
`(Ran(X)) (see Example 5.5.13).

Apart from the description of the essential image of F , Theorem 5.6.4 is subsumed by the
following general category-theoretic principle:

Proposition 5.6.6. Let C and D be nonunital symmetric monoidal∞-categories. Assume that
C and D are presentable and that the tensor product functors

⊗ : C×C→ C D×D→ D

preserve colimits separately in each variable. Suppose we are given a pair of adjoint functors

C
f //D
g
oo

where g is nonunital lax symmetric monoidal, so that g induces a functor G : CAlgnu(D) →
CAlgnu(C). Then the functor G admits a left adjoint F : CAlgnu(C)→ CAlgnu(D).

Assume further that the functor g is nonunital symmetric monoidal and preserves colimits.
If f is fully faithful, then F is fully faithful.

Proof. Since the functor G preserves limits and filtered colimits, the existence of F follows
from the adjoint functor theorem (Corollary HTT.5.5.2.9). Suppose now that g is a nonunital
symmetric monoidal functor which preserves colimits. The adjoint functor theorem implies
that g admits a right adjoint h : C → D, which then inherits the structure of a lax symmetric
monoidal functor. Since the left adjoint to g is fully faithful, the right adjoint h is also fully
faithful (see §HA.2.2.1). It follows that h induces a fully faithful embedding H : CAlgnu(C)→
CAlgnu(D) which is right adjoint to G. Since the right adjoint to G is fully faithful, it follows
that the left adjoint to G is also fully faithful. �

Example 5.6.7. In the situation of Proposition 5.6.6, if the functor f is nonunital symmetric
monoidal, then F is simply the functor induced by f at the level of nonunital commutative
algebras: in other words, the diagram

CAlgnu(C)
F //

��

CAlgnu(D)

��
C

f // D

commutes (up to preferred homotopy).

Example 5.6.8. Let f : X → Y be a closed immersion of quasi-projective k-schemes. Then the
pushforward functor f∗ : Shv`(X)→ Shv`(Y ) is nonunital symmetric monoidal (with respect to
the !-tensor product; see Remark 5.5.23) and therefore induces a map f∗ : CAlgnu(Shv`(X))→
CAlgnu(Shv`(Y )) which is left adjoint to f ! : CAlgnu(Shv`(Y ))→ CAlgnu(Shv`(X)).
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Example 5.6.9. Let X be a projective k-scheme and let π : X → Spec k be the projection
map. Let us regard Shv`(X) as a symmetric monoidal ∞-category with respect to the !-
tensor product (Proposition 5.5.19) and consider the symmetric monoidal functor π! : ModZ` '
Shv`(Spec k) → Shv`(X) given by π!M = M ⊗ ωX . It follows from Proposition 5.6.6 that the
induced map

CAlgnu(ModZ`)→ CAlgnu(Shv`(X))

admits a left adjoint πnu
? : CAlgnu(Shv`(X)) → CAlgnu(ModZ`). Note that π! factors as a

composition

ModZ` ' Shv!
`(Ran(Spec k))

Ran(π)!

→ Shv!
`(Ran(X))→ Shv`(X).

Using Theorem 5.6.4, Example 5.6.7, and Corollary 5.5.25, we see that πnu
? factors as a compo-

sition

CAlgnu(Shv`(X))
Fact→ CAlgnu(Shv!

`(Ran(X))

∫
→ CAlgnu(ModZ`).

In other words, if A is a commutative factorization algebra on X, then we have a canonical

equivalence πnu
? (A(1)) '

∫
A in the ∞-category CAlgnu(ModZ`).

Many variations on Proposition 5.6.6 are possible. For example, if C and D admit unit
objects (and g is a lax symmetric monoidal functor), then the same argument shows that the
induced map CAlg(D) → CAlg(C) admits a left adjoint. We will be interested in situations
where this left adjoint is compatible with the functor F described in Proposition 5.6.6.

Proposition 5.6.10. Let C and D be symmetric monoidal ∞-categories with unit objects 1C

and 1D. Assume that C and D are presentable and that the tensor product functors

⊗ : C×C→ C D×D→ D

preserve colimits separately in each variable. Suppose we are given a pair of adjoint functors

C
f //D
g
oo

where g is lax symmetric monoidal and let CAlgnu(C)
F //CAlgnu(D)
G
oo be as in Proposition

5.6.6. Suppose that the unit map 1C → G(1D) induces an equivalence α : F (1C)→ 1D. Then:

(1) The functor G+ : CAlg(D)→ CAlg(C) determined by g admits a left adjoint F+.
(2) The diagram

CAlg(C)
F+ //

��

CAlg(D)

��
CAlgnu(C)

F // CAlgnu(D)

commutes (up to canonical homotopy).

Remark 5.6.11. Assertion (1) follows from the proof of Proposition 5.6.6 and does not require
the assumption that α is an equivalence.

Example 5.6.12. Let X be a projective k-scheme, let π : X → Spec k denote the projection
map, and let πnu

? : CAlgnu(Shv`(X)) → CAlgnu(ModZ`) be as in Example 5.6.9. If X is
connected, then the acyclicity of the Ran space implies that the natural map

πnu
? ωX → Z`
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is an equivalence (see Example 5.3.9). Applying Proposition 5.6.10, we deduce that the functor
π! : CAlg(ModZ`)→ CAlg(Shv`(X)) admits a left adjoint π? : CAlg(Shv`(X))→ CAlg(ModZ`)
which fits into a commutative diagram

CAlg(Shv`(X))
π? //

��

CAlg(ModZ`)

��
CAlgnu(Shv`(X))

πnu
? // CAlgnu(ModZ`).

In particular, if A is a commutative factorization algebra on X having the property that A(1) ∈
Shv`(X) admits a unit, then we have a canonical equivalence

π?A
(1) '

∫
A

in CAlgnu(ModZ`).

Proof of Proposition 5.6.10. If B is a nonunital commutative algebra object of D, we say that
a map u : 1D → B is a quasi-unit for B if the composite map

B ' 1D ⊗B
u⊗id−→ B ⊗B m→ B

is homotopic to the identity, where m denotes the multiplication on B. By virtue of Theorem
HA.5.4.4.5, we can identify CAlg(D) with the subcategory of CAlgnu(D) whose objects are
those nonunital commutative algebras which admit quasi-units and whose morphisms are maps
which preserve quasi-units. It will therefore suffice to prove the following:

(a) If A is a commutative algebra object of C, then F (A) ∈ CAlgnu(D) admits a quasi-unit.
(b) If A is a commutative algebra object of C and B is a commutative algebra object of D,

then a map of nonunital commutative algebras F (A)→ B preserves quasi-units if and
only if the associated map A→ G(B) preserves quasi-units.

To prove (a), let u0 : 1C → A denote the unit map of A, so that we can regard u0 as a map
of nonunital commutative algebra objects of A. Let u : 1D → F (A) be the map given by the
composition

1D
α−1

→ F (1C)
F (u0)→ F (A).

We claim that u is a quasi-unit for F (A). To prove that, it will suffice to show that the lower
square in the diagram

F (1C ⊗A)
F (u⊗id) //

s

��

F (A⊗A)

��
F (1C)⊗ F (A)

α⊗id

��

F (u)⊗id// F (A)⊗ F (A)

m

��
1D ⊗ F (A) // F (A),

commutes, wherem denotes the multiplication on F (A). Since (α⊗id)◦s and α are equivalences,
it follows that s is an equivalence. Using the commutativity of the upper square, we are reduced
to proving the commutativity of the outer rectangle. Note that if m′ : A ⊗ A → A is the
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multiplication map, then the diagram

F (1C ⊗A)
F (u⊗id)//

��

F (A⊗A)

F (m′)

��
1D ⊗ F (A) // F (A)

evidently commutes. It will therefore suffice to show that F (m′) is homotopic to the composite
map

F (A⊗A)→ F (A)⊗ F (A)
m→ F (A).

Equivalently, if v : A → GFA denotes the unit for the adjunction between F and G, it will
suffice to show that the diagram

A⊗A m //

v⊗v
��

A

v

��
GFA⊗GFA // G(FA⊗ FA)

G(m) // GFA

commutes, which follows immediately from the fact that v : A → GFA is a map of nonunital
commutative algebras. This completes the proof of (a).

We now prove (b). Let φ : FA → B be a morphism of nonunital commutative algebra
objects of D and let ψ : A → GB be the corresponding morphism of nonunital commutative
algebra objects of C. We wish to prove that ψ ◦ u0 is a quasi-unit for GB if and only if φ ◦ u
is a quasi-unit for B. This follows immediately from the observation that ψ ◦ u0 and φ ◦ u
correspond to one another under the canonical bijection

π0 MapCAlgnu(D)(1D, B) ' π0 MapCAlgnu(C)(1C, GB).

�

Remark 5.6.13. Let C
f //D
g
oo and CAlgnu(C)

F //CAlgnu(D)
G
oo be as in Proposition 5.6.10.

Suppose that m is a nonunital commutative algebra object C, and let mq1C be the commutative
algebra obtained by freely adjoining a unit to m. Then for every commutative algebra object
A ∈ D, we have canonical homotopy equivalences

MapCAlg(D)(F (m)q 1D, A) ' MapCAlgnu(D)(F (m), A)

' MapCAlgnu(C)(m, G(A))

' MapCAlg(C)(mq 1C, G+(A))

where G+ : CAlg(D) → CAlg(C) denotes the functor determined by G. It follows that the
functor F+ : CAlg(C)→ CAlg(D) left adjoint to G+ carries m⊕ 1C to F (m)⊕ 1D.

We now turn to the proof of Theorem 5.6.4. We will need a few preliminaries.

Lemma 5.6.14. Let X be a quasi-projective k-scheme and let f : A → A′ be a morphism of
commutative factorization algebras on X. Then f is an equivalence if and only if the induced

map A(1) → A′(1) is an equivalence in Shv`(X).

Proof. The “only if” direction is clear. Conversely, suppose that f induces an equivalence

A(1) → A′(1). We wish to show that f induces an equivalence A(n) → A′(n) for each integer
n ≥ 1. We proceed by induction on n. Since both A and A′ are !-sheaves, it follows from the
inductive hypothesis that for every diagonal inclusion i : Xm ↪→ Xn where m < n, the induced
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map i! : A(n) → A′(n) is an equivalence of `-adic sheaves on Xm. It will therefore suffice to

prove that f induces an equivalence A(n) | ◦
Xn
→ A′(n) | ◦

Xn
, where

◦
Xn ⊆ Xn denotes the open

subset whose k-valued points are n-tuples of distinct elements of X(k). We have a commutative
diagram

(A(1))�n //

��

(A′(1))�n

��
A(n) // A′(n)

of `-adic sheaves on Xn. The upper horizontal map is an equivalence by assumption, and the

vertical maps are equivalences when restricted to
◦
Xn by virtue of our hypothesis that A and

A′ are commutative factorization algebras (Remark 5.6.3). It follows that the lower horizontal

map is also an equivalence when restricted to
◦
Xn, as desired. �

Lemma 5.6.15. Let X be a quasi-projective k-scheme, let F ∈ Shvdiag
` (Ran(X)), and let

A = Sym>0 F denote the free nonunital commutative algebra object of Shv!
`(Ran(X)) generated

by F. Then A is a commutative factorization algebra on X.

Proof. For each integer n > 0, let
◦
Xn ⊆ Xn denote the open subset whose k-valued points

are n-tuples of distinct elements of X(k). Using the description of the convolution product on

Shv!
`(Ran(X)) given in Remark 5.5.17, we compute

(F�m)(n)| ◦
Xn
'

⊕
α

(F�n)| ◦
Xn
,

where the sum is indexed by all bijections α : {1, . . . ,m} ' {1, . . . , n}. It follows that

A '
⊕
m>0

(F�m)Σm

is described by the formula A(n) | ◦
Xn
' F�n | ◦

Xn
. In particular, we have A(1) ' F, so that

A(n) | ◦
Xn
' (A(1))�n| ◦

Xn
. It is easy to verify that this identification is induced by the multipli-

cation on A, so that A is a commutative factorization algebra by virtue of Remark 5.6.3. �

Proof of Theorem 5.6.4. Let Fact : CAlgnu(Shv`(X)) → CAlgnu(Shv!
`(Ran(X))) be a left ad-

joint to the restriction map. It follows from Proposition 5.6.6 that the functor Fact exists and is
fully faithful. We next prove that for each object A ∈ Shv`(X), the image Fact(A) is a commuta-
tive factorization algebra on X. Using Proposition HA.4.7.4.14, we can write A as the geometric
realization of a simplicial object A• of CAlgnu(Shv`(X)), where each An is the free nonunital
commutative algebra Sym>0 Fn for some `-adic sheaf Fn ∈ Shv`(X). Since the functor Fact pre-
serves colimits, we have Fact(A) ' |Fact(A•)|. By virtue of Remark 5.6.2, it will suffice to show

that each Fact(An) is a commutative factorization algebra. Let F′n ∈ Shvdiag
` (Ran(X)) denote

the image of Fn under the equivalence of ∞-categories Shv`(X) ' Shvdiag
` (Ran(X)). Unwind-

ing the definitions, we see that Fact(An) can be identified with the free nonunital commutative
algebra generated by F′n, and is therefore a commutative factorization algebra by virtue of
Lemma 5.6.15. This completes the proof that the functor Fact takes values in commutative
factorization algebras.

We now prove the converse. Let A be a commutative factorization algebra on X, so that

A(1) ∈ Shv`(X) is a nonunital commutative algebra with respect to the !-tensor product. We

wish to prove that the counit map v : Fact(A(1)) → A is an equivalence in Shv!
`(Ran(X)).
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Since the functor Fact is fully faithful, it follows immediately that v induces an equivalence

Fact(A(1))(1) → A(1). The desired result now follows from Lemma 5.6.14, since both Fact(A(1))
and A are commutative factorization algebras. �

5.7. The Product Formula: Second Formulation. Throughout this section, we fix an
algebraically closed field k, a prime number ` which is invertible over k, and an algebraic curve
X over k. Let G be a smooth affine group scheme over X and let B ∈ Shv!

`(Ran(X)) be the
!-sheaf introduced in Notation 5.4.2. If the fibers of G are connected and the generic fiber of G
is semisimple and simply connected, then Theorem 5.4.5 supplies a quasi-isomorphism∫

B→ C∗(BunG(X); Z`).

If ν is a k-valued point ν of XT which can be identified with an injective map ν : T → X(k),

then the costalk ν! B(T ) can be identified with the tensor product
⊗

t∈T C
∗(BGν(t); Z`). We

therefore have a natural map

fν :
⊗
t∈T

C∗(BGν(t); Z`)→ C∗(XT ;B(T ))→
∫

B .

Heuristically, we can think of the chiral homology
∫
B as a continuous tensor product⊗

x∈X
C∗(BGx; Z`)

obtained by assembling the domains of the maps fν as ν varies. Since each factor C∗(BGx; Z`)
can be regarded as a commutative algebra object of ModZ` , we can regard the tensor product⊗

x∈X C
∗(BGx; Z`) as a “continuous colimit” of the commutative algebras {C∗(BGx; Z`)}x∈X

in the ∞-category CAlg(ModZ`). Our goal in this section is to make this heuristic precise by
establishing the following reformulation of Theorem 5.4.5:

Theorem 5.7.1. The `-adic sheaf [BG]X can be regarded as a commutative algebra object of
the ∞-category Shv`(X) (where we regard Shv`(X) as endowed with the symmetric monoidal
structure given by the !-tensor product; see Proposition 5.5.19), and the canonical map φ :
[BG]X → π!C∗(BunG(X); Z`) can be regarded as a morphism of commutative algebra objects of
CAlg(Shv`(X)).

Let A be a commutative algebra object of ModZ` . If the fibers of G are connected and
the generic fiber of G is semisimple and simply connected, then composition with φ induces a
homotopy equivalence

MapCAlg(Z`)
(C∗(BunG(X); Z`), A)→ MapCAlg(Shv`(X))([BG]X , π

!A).

Remark 5.7.2. The first part of Theorem 5.7.1 is a special case of a much more general fact:
if C is any Artin stack equipped with a smooth map π : C→ X to a quasi-projective k-scheme
X, then the diagonal C→ C×X C induces a map of `-adic sheaves

[C]X ⊗! [C]X → [C]X

which exhibits [C]X as a commutative algebra with respect to the !-tensor product on Shv`(X).
However, the situation of Theorem 5.7.1 is particularly convenient because Construction 5.4.1
supplies an explicit geometric description of the associated commutative factorization algebra
on X.
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Construction 5.7.3. For every nonempty finite set T , let RanG(X)(T ) denote the prestack

RanG(X)×Ran(X) X
T (see Construction 5.4.1). For every pair of nonempty finite sets T, T ′ ∈

Fins, restriction of G-bundles defines a canonical map

mT,T ′ : RanG(X)TqT
′
→ RanG(X)T × RanG(X)T

′
.

Pullback along these restriction maps determines maps of `-adic sheaves

B(T ) �B(T ′) = [RanG(X)T ]XT � [RanG(X)T
′
]XT ′

' [RanG(X)T × RanG(X)T
′
]XTqT ′

→ [RanG(X)TqT
′
]XTqT ′

= B(TqT ′)

which exhibit B as a nonunital commutative algebra object of Shv!
`(Ran(X)).

More formally, we note that the maps mT,T ′ (together with the evident commutativity and

associativity constraints) exhibit the map T 7→ (XT ,RanG(X)T ) as a nonunital lax symmetric

monoidal functor from (Fins)op to the 2-category AlgStack! of Definition 5.1.19. Composing

with the symmetric monoidal functor Φ : AlgStack! → Shv!
` of Construction A.5.26, we can

regard the construction

T 7→ (XT , [RanG(X)T ]XT ) = (XT ,B(T ))

as a nonunital lax symmetric monoidal functor from (Fins)op to Shv!
`, so that B can be regarded

as a nonunital commutative algebra object of Shv!
` by virtue of Remark 5.5.12.

Proposition 5.7.4. For any smooth affine group scheme G over X, Construction 5.7.3 exhibits
B as a commutative factorization algebra on X.

Proof. The lax !-sheaf B is a !-sheaf by virtue of Proposition 5.4.3. It will therefore suffice to
show that if T and T ′ are nonempty finite sets and U ⊆ XT×XT ′ is the open set whose k-valued
points correspond to maps ν : T q T ′ → X(k) with ν(T ) ∩ ν(T ′) = ∅, then the multiplication
on B induces an equivalence

(B(T ) �B(T ′))|U → B(TqT ′) |U
of `-adic sheaves on U . This follows immediately from the observation that the map

RanG(X)TqT
′
×XTqT ′ U → (RanG(X)T × RanG(X)T

′
)×XTqT ′ U

is an equivalence of prestacks. �

Since the construction F 7→ F(1) determines a lax symmetric monoidal functor

Shv!
`(Ran(X))→ Shv`(X)

(see Proposition 5.5.19), it follows from Construction 5.7.3 that we can regard B(1) = [BG]X
as a nonunital commutative algebra object of Shv`(X). Concretely, the multiplication

[BG]X ⊗! [BG]X → [BG]X

is given by pullback along the diagonal map BG→ BG×X BG, as indicated in Remark 5.7.2.

Proposition 5.7.5. Let G be a smooth affine group scheme over X. Then the nonunital
commutative algebra [BG]X ∈ CAlgnu(Shv`(X)) can be promoted (in an essentially unique
way) to a commutative algebra structure on [BG]X .
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Proof. By virtue of Theorem HA.5.4.4.5, it will suffice to show that there exists a map u :
ωX → [BG]X which is a quasi-unit for the multiplication m on [BG]X : that is, for which the
composite map

[BG]X ' ωX ⊗! [BG]X
u→ [BG]X ⊗! [BG]X

m→ [BG]X

is homotopic to the identity. Unwinding the definitions, we see that m is given by the compo-
sition

[BG]X ⊗! [BG]X = δ!([BG]X � [BG]X)

' δ![BG×Spec k BG]X×X

' [BG×X BG]X
φ→ [BG]X ,

where δ : X ×X ×X denotes the diagonal map and φ is given by pullback along the relative
diagonal BG → BG×X BG. From this description, it is easy to see that the map u : ωX =
[X]X → [BG]X given by pullback along the projection BG→ X has the desired property. �

To compare [BG]X with C∗(BunG(X); Z`), we consider another nonunital commutative al-

gebra object of Shv!
`(Ran(X)) (which is not a commutative factorization algebra):

Construction 5.7.6. Let C be a smooth Artin stack over k which is quasi-compact and has
affine diagonal. For every pair of nonempty finite sets T and T ′, the diagonal of C determines
a map

m′T,T ′ : (C×Spec kX
TqT ′)→ (C×Spec kX

T )×Spec k (C×Spec kX
T ′).

As T and T ′ vary, these maps exhibit the construction T 7→ (XT ,C×Spec kX
T ) as a nonunital

lax symmetric monoidal functor from (Fins)op to AlgStack!. Composing with the symmetric

monoidal functor Φ : AlgStack! → Shv!
` of Construction A.5.26, we can regard the construction

T 7→ (XT , [C×Spec kX
T ]XT ) = (XT , C∗(C; Z`)⊗ ωXT )

as a nonunital lax symmetric monoidal functor from (Fins)op to Shv!
`, so that C∗(C; Z`)⊗ωRan(X)

can be regarded as a nonunital commutative algebra object of Shv!
`(Ran(X)) by virtue of

Remark 5.5.12. Note that this nonunital commutative algebra can be defined more directly by
the formula

C∗(C; Z`)⊗ ωRan(X) = Ran(π)!C∗(C; Z`),

where π : X → Spec k is the projection map.

Let U be a quasi-compact open substack of BunG(X). For any nonempty finite set T , we
have an evident evaluation map

U ×Spec k X
T ↪→ BunG(X)×Spec k X

T → RanG(X)T .

These evaluation maps are compatible with the multiplications of Construction 5.7.3 and 5.7.6
and therefore induce a map

B→ C∗(U ; Z`)⊗ ωRan(X)

of nonunital commutative algebras in Shv!
`(Ran(X)). Passing to the inverse limit as U varies,

we obtain a map of nonunital commutative algebras

B→ C∗(BunG(X); Z`)⊗ ωRan(X).

Passing to chiral homology (and invoking Example 5.3.9), we deduce that the canonical map
ρ :

∫
B → C∗(BunG(X); Z`) can be regarded as a map of nonunital commutative algebra

objects of ModZ` .
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Proposition 5.7.7. Let G be a smooth affine group scheme over X. Then the construction
described above determines a map ρ :

∫
B → C∗(BunG(X); Z`) of commutative algebra objects

of ModZ` .

Proof. Proposition 5.7.5 implies that the algebra [BG]X = B(1) admits a unit, which we can
identify with a map of nonunital commutative algebras u0 : ωX → [BG]X in Shv`(X). Let
u : ωRan(X) → B be the induced map of commutative factorization algebras on X. Then the
induced map

Z` '
∫
ωRan(X) →

∫
B

is a quasi-unit for the nonunital commutative algebra structure on
∫
B (see the proof of Propo-

sition 5.6.10). By virtue of Theorem HA.5.4.4.5, it will suffice to show that the composite
map

Z` '
∫
ωRan(X)

∫
u
−→

∫
B

ρ→ C∗(BunG(X); Z`)

is homotopic to the unit map v : Z` → C∗(BunG(X); Z`). Since X is connected, the composite
map

ωRan(X)
u→ B→ C∗(BunG(X); Z`)⊗ ωRan(X).

is homotopic to the tensor product of some map v : Z` → C∗(BunG(X); Z`) with the identity
on ωRan(X); we wish to prove that v is homotopic to v′. This assertion can be tested after
passing to the costalk at any point x ∈ X(k), in which case the desired result follows from the
description of u0 given in the proof of Proposition 5.7.5. �

Let π : X → Spec k denote the projection map. It follows from Example 5.6.12 that the
functor π! : CAlg(ModZ`) → CAlg(Shv`(X)) admits a left adjoint π? : CAlg(Shv`(X)) →
CAlg(ModZ`), and that the functor π? carries [BG]X to the chiral homology

∫
B. Combining

this observation with Proposition 5.7.7, we obtain the following:

Proposition 5.7.8. Let G be a smooth affine group scheme over X. Then:

• The chiral homology
∫
B can be regarded as a commutative algebra object of ModZ` .

• The map ρ :
∫
B→ C∗(BunG(X); Z`) can be regarded as a map of commutative algebra

objects of C.
• There is a canonical map of commutative algebras α : [BG]X →

∫
B with the following

universal property: for any commutative algebra object A ∈ CAlg(ModZ`), composition
with α induces a homotopy equivalence

MapCAlg(ModZ`
)(

∫
B, A)→ MapCAlg(Shv`(X))([BG]X , π

!A).

Proof of Theorem 5.7.1. Combine Proposition 5.7.8 with Theorem 5.4.5. �

Remark 5.7.9. It follows from Proposition 5.7.8 that Theorems 5.4.5 and 5.7.1 are equivalent
to one another. In other words, if G is a smooth affine group scheme over X, then the canonical
map ρ :

∫
B→ C∗(BunG(X); Z`) is an equivalence if and only if the natural map

MapCAlg(Z`)
(C∗(BunG(X); Z`), A)→ MapCAlg(Shv`(X))([BG]X , π

!A)

is a homotopy equivalence for each A ∈ CAlg(ModZ`).
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6. Calculation of the Trace

Let X0 be an algebraic curve defined over a finite field Fq, and let G0 be a smooth affine group

scheme over a X0 with connected fibers. Let X = Spec Fq×Spec FqX0 and G = Spec Fq×Spec Fq

G0 denote the Fq-schemes associated to X0 and G0, respectively. Let ` be a prime number
which is invertible in Fq, and suppose we have fixed an embedding Z` ↪→ C. Recall that our
goal in this paper is to compute the trace

Tr(Frob−1 |H∗(BunG(X); Z`)).

Let B denote the !-sheaf on Ran(X) defined in §5.4. If the generic fiber of G is semisimple
and simply connected, then Theorem 5.4.5 asserts that the canonical map∫

B = lim−→
T

C∗(XT ;B(T ))→ C∗(BunG(X); Z`)

is an equivalence. Let us assume this result for the moment, and see how it relates to the
calculation of Tamagawa numbers.

For every positive integer n, let
◦
Xn ⊆ Xn denote the open subset whose F q-points are n-

tuples of distinct points in X, and let
◦
X(n) denote the quotient of

◦
Xn by the (free) action of

the symmetric group Σn. The restriction B(n) | ◦
Xn

descends to an `-adic sheaf Bn on
◦
X(n), and

we have a canonical equivalence

C∗(
◦
X(n);Bn) ' C∗(

◦
Xn;B(n) | ◦

Xn
)Σn .

Using Lemmas 5.3.14 and 5.3.15, we see that the chiral homology
∫
B admits a filtration

0→
∫ (1)

B→
∫ (2)

B→ · · ·

whose successive quotients can be identified with C∗(
◦
X(n);Bn). Modulo issues of convergence,

this leads to a formula

Tr(Frob−1 |H∗(BunG(X); Z`)) =
∑
n>0

Tr(Frob−1 |H∗(
◦
X(n);Bn)).

Each
◦
X(n) is a quasi-projective F q-scheme which is defined over Fq. Invoking the Grothendieck-

Lefschetz trace formula (in its Verdier dual incarnation, expressed as Theorem 1.3.2 in the case
of constant coefficients), we expect the individual terms to be given by

Tr(Frob−1 |H∗(
◦
X(n);Bn)) =

∑
η

Tr(Frob−1 |η! Bn),

where the sum is taken over the (finite) set of all maps η : Spec Fq →
◦
X(n) which are defined

over Fq. Unwinding the definitions, we can identify such points with subsets T = {y1, . . . , yn} ⊆
X(Fq) which have cardinality exactly n and are invariant under the action of the Galois group

Gal(Fq/Fq). The latter condition holds if and only if we can write T as the inverse image of
a finite set {x1, . . . , xm} of closed points of X0. In this case, we have n = |T | = deg(x1) +
· · ·+ deg(xm). Moreover, the group scheme GT = Gy1

× · · · ×Gyn can be written as a product∏
1≤i≤mGxi , where each Gxi denotes the base change to Fq of the group scheme given by the



182 DENNIS GAITSGORY AND JACOB LURIE

Weil restriction of the fiber G0xi along the map Specκ(xi)→ Spec Fq. We therefore expect the
formula

Tr(Frob−1 |H∗(BunG(X); Z`) =
∑

{x1,...,xm}⊆X0

Tr(Frob−1 |H∗(
∏

BGxi ; Z`))

=
∑

{x1,...,xm}⊆X0

∏
1≤i≤m

Tr(Frob−1 |H∗(BGxi ; Z`))

= −1 +
∏
x∈X0

(1 + Tr(Frob−1 |H∗(BGx; Z`))).

Unfortunately, this heuristic calculation is nonsensical: the infinite product (which is taken
over all closed points of the curve X0) does not converge, since the individual factors 1 +
Tr(Frob−1 |H∗(BGxi ; Z`)) accumulate to 2.

One strategy for resolving the issue is to carry out a “reduced” version of the preceding
discussion. In §8, we will introduce a new !-sheaf Bred ∈ Shv!

`(Ran(X)) whose costalk at a
point T = {y1, . . . , yn} of Ran(X) can be identified with the tensor product⊗

1≤i≤n

C∗red(BGyi ; Z`),

where C∗red(BGyi ; Z`) denotes the reduced `-adic cochain complex of the classifying stack BGyi .
Repeating the preceding calculations, we obtain an expectation

Tr(Frob−1 |
∫

Bred) = −1 +
∏
x∈X0

(1 + Tr(Frob−1 |H∗red(BGx; Z`)))(11)

= −1 +
∏
x∈X0

Tr(Frob−1 |H∗(BGx; Z`)).

Using Theorem 5.4.5, we will show that the chiral homology
∫
Bred can be identified with the

reduced cochain complex C∗red(BunG(X); Z`) (Theorem 8.2.14), from which we can repeat the
above reasoning to obtain the desired product formula

Tr(Frob−1 |H∗(BunG(X); Z`) =
∏
x∈X0

Tr(Frob−1 |H∗(BGx; Z`).

However, we still do not know how to make this heuristic calculation precise. The problem is

that the spaces
◦
X(n) become increasingly complicated as n grows, so it is hard to verify the

convergence of expressions like ∑
n>0

Tr(Frob−1 |H∗(
◦
X(n);Bn)).

To circumvent this difficulty, we will consider a different filtration of the `-adic cochain com-
plex C∗(BunG(X); Z`). Roughly speaking, the idea is to regard the reduced cochain complex
m = C∗red(BunG(X); Z`) as an “ideal” in C∗(BunG(X); Z`) and to filter C∗(BunG(X); Z`) by
the powers of m. More generally, suppose that A is any commutative algebra object of ModZ`

which is equipped with an augmentation ε : A → Z`, and let mA denote the fiber fib(ε). In
§6.1, we will construct a tower

· · · → m
(3)
A → m

(2)
A → m

(1)
A = mA

which can be regarded as a “derived” mA-adic filtration of A. Moreover, we show that successive
quotients appearing in this filtration can be identified with the symmetric algebra on the cofiber

cofib(m
(2)
A → mA) (Proposition 6.1.17), which we will refer to as the cotangent fiber of A and
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denote by cot(A) (the homologies of the chain complex cot(A) are also referred to in the
literature as the topological André-Quillen homology or the Γ-homology of A).

Let us now specialize to the case where A = C∗(C; Z`) for some prestack C over k. We will
show that if H0(C; Z`) ' Z` (a condition which is satisfied when C = BunG(X), by virtue of
Theorem 8.3.1), then the m-adic filtration of A converges after inverting `: in other words, the
inverse limit of the tower

· · · → m
(3)
A [`−1]→ m

(2)
A [`−1]→ m

(1)
A [`−1]

vanishes (see Proposition 6.1.18). It follows that the cohomology of A[`−1] can be computed by
means of a spectral sequence whose second page can be identified with the symmetric algebra
on cot(A)[`−1]. If C is defined over a finite field Fq ⊆ k, we can use this spectral sequence to

calculation the trace of the arithmetic Frobenius Frob−1 on H∗(C; Z`) in terms of the trace of
its powers Frob−n on cot(A) (Proposition 6.3.4). We will describe this calculation (and treat
the relevant convergence issues) in §6.3.

In §6.4, we specialize further to the case where A = C∗(BH; Z`) for some connected algebraic
group H defined over k. In this case, the cotangent fiber cot(A)[`−1] can be identified (up to a
Tate twist) with the motive of the group H, as introduced in [21] (at least for reductive groups
H). In the special case where H is defined over a finite field Fq ⊆ k, we can use Proposition
6.3.4 to infer a version of the Grothendieck-Lefschetz trace formula for the classifying stack BH
(Proposition 6.4.12).

The formalism of §6.1 is quite general, and can be applied to augmented commutative al-
gebras in ∞-categories other than ModZ` . For example, if BG denotes the classifying stack of
G (regarded as a group scheme over X), then the relative cohomology sheaf [BG]X can be re-
garded as a commutative algebra object of the∞-category Shv`(X) (equipped with the !-tensor
product of §4.6), so that we can study the cotangent fiber cot[BG]X ∈ Shv`(X). In §6.2, we
construct a canonical map

ρ0 : C∗(X, cot[BG]X)→ cotC∗(BunG(X); Z`),

which we prove to be an equivalence using Theorem 5.7.1 (Theorem 6.2.4). As we explain in §6.2,
this can be regarded as an analogue of the Atiyah-Bott calculation of H∗(BunGLn(Σ); Q) when
Σ is a compact Riemann surface; consequently, we will refer to Theorem 6.2.4 as the Atiyah-
Bott formula. When combined with the results of §6.3 and the connectivity of BunG(X), the
Atiyah-Bott formula leads immediately to a calculation of Tr(Frob−1 |H∗(BunG(X); Z`)), as
we explain in §6.5.

6.1. The Cotangent Fiber. Let X = SpecA be an affine algebraic variety over a field k and
let x ∈ X(k) be a k-valued point of X, corresponding to a k-algebra homomorphism ε : A→ k.
We let mx = ker(ε), so that mx is a maximal ideal of A. The Zariski cotangent space of X at
the point x is defined to be the k-vector space given by the quotient mx/m

2
x. For each n ≥ 0,

there is an evident surjective map

Symn(mx/m
2
x)→ mnx/m

n+1
x ,

which is an isomorphism if X is smooth at the point x. Consequently, the structure of the

completed local ring Â = lim←−A/m
n
x is in some sense controlled by the finite-dimensional vector

space mx/m
2
x.

Let C be a symmetric monoidal stable ∞-category. Then one can consider commutative
algebra objects A ∈ C equipped with an augmentation ε : A → 1 (here 1 denotes the unit
object of C). For every such pair (A, ε), one can consider an analogue of the Zariski cotangent
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space, which we will refer to as the cotangent fiber of A and denote by cot(A) (Definition 6.1.6).
Our goal in this section is to review some elementary properties of the construction A 7→ cot(A).

Notation 6.1.1. Let C be a symmetric monoidal∞-category which we regard as fixed through-
out this section. We will assume that C is stable, presentable, and that the tensor product

⊗ : C×C→ C

preserves colimits separately in each variable. Let CAlg(C) denote the ∞-category of commu-
tative algebra object of C and let 1 denote the unit object of C, which we identify with the
initial object of CAlg(C).

For A ∈ CAlg(C), we define an augmentation on A to be a map of commutative algebra
objects ε : A → 1. An augmented commutative algebra object of C is a pair (A, ε), where
A is a commutative algebra object of C, and ε is an augmentation on A. The collection of
augmented commutative algebra objects of C can be organized into an∞-category CAlgaug(C) =
CAlg(C)/1.

If C admits a unit object and (A, ε) is an augmented commutative algebra object of C, we
let mA denote the fiber of the augmentation map ε : A → 1. We will refer to mA as the
augmentation ideal of A. Note that mA inherits the structure of a nonunital commutative
algebra object of C. Moreover, the construction A 7→ mA determines an equivalence from the
∞-category CAlgaug(C) of augmented commutative algebra objects of C to the ∞-category
CAlgnu(C) of nonunital commutative algebra objects of C (Proposition HA.5.4.4.10).

Definition 6.1.2. Let Fins denote the category whose objects are finite sets and whose mor-
phisms are surjective maps of nonempty finite sets. For each integer n ≥ 0, we let Fins≥n denote
the full subcategory of Fins spanned by those finite sets which have cardinality ≥ n.

Suppose that A is an augmented commutative algebra object of C. Then the construction

S 7→ m⊗SA determines a functor Fins → C. For each integer n > 0, we let m
(n)
A denote the

colimit
lim−→

S∈Fins≥n

m⊗S .

By convention, we set m
(0)
A = A.

Example 6.1.3. The category Fins≥1 has a final object, given by a 1-element set. It follows
that for every augmented commutative algebra object A of C, we have a canonical equivalence

m
(1)
A ' m.

Example 6.1.4. Let k be a field and let A be an augmented commutative algebra over k (which
we regard as a chain complex concentrated in degree zero), with augmentation ideal mA. Then
we can regard mA as a nonunital commutative algebra object of the symmetric monoidal ∞-

category Modk. Then we can think of the object m
(n)
A ∈ Modk as a “derived version” of the

usual nth power ideal mnA ⊆ A. Multiplication in A determines a compatible family of maps

m⊗SA → mnA, which can be amalgamated to give a map m
(n)
A → mnA. One can show that this

map is an equivalence if k is of characteristic zero and A is smooth over k (this follows from
Proposition 6.1.17 below).

Remark 6.1.5. Let A be an augmented commutative algebra object of C. Then the inclusions
of categories

· · ·Fins
≥3 ↪→ Fins

≥2 ↪→ Fins
≥1

determine maps

· · · → m
(3)
A → m

(2)
A → m

(1)
A ' mA,

depending functorially on A.
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Definition 6.1.6. Let A be an augmented commutative algebra object of C. We let cot(A)

denote the cofiber of the canonical map m
(2)
A → m

(1)
A ' mA. We will refer to cot(A) as the

cotangent fiber of A.

Remark 6.1.7. Let C and D be presentable stable symmetric monoidal∞-categories for which
the tensor product functors

⊗ : C×C→ C ⊗ : D×D→ D

preserve colimits separately in each variable, and let F : C → D be a symmetric monoidal
functor. Then F carries augmented commutative algebra objects A of C to augmented commu-
tative algebra objects F (A) of D. If F preserves colimits, then we have a canonical equivalence
cot(F (A)) ' F (cot(A)) for each A ∈ CAlgaug(C).

Example 6.1.8. Let V be an object of C and let Sym∗(V ) =
⊕

n≥0 Symn(V ) denote the
free commutative algebra object of C generated by V . The zero map V → 1 determines an
augmentation ε : Sym∗(V )→ 1, whose fiber is given by Sym>0(V ) '

⊕
n>0 Symn(V ). For any

finite set S, we can identify Sym>0(V )⊗S with the colimit lim−→f :T→S V
⊗T , where the colimit is

taken over all surjections f : T → S. For n > 0, we compute

Sym>0(V )(n) ' lim−→
|S|≥n

Sym>0(V )⊗S

' lim−→
|S|≥n

lim−→
f :T→S

V ⊗T

' lim−→
T

lim−→
f :T→S,|S|≥n

V ⊗T

' lim−→
T

{
V ⊗T if |T | ≥ n
0 if |T | < n.

'
⊕
m≥n

Symm(V ).

Here in each colimit, we allow T to range over the category of finite sets and bijections and f
to range over all surjections. In particular, we have a canonical equivalence cot(Sym∗(V )) ' V .

Proposition 6.1.9. The formation of cotangent fibers determines a functor cot : CAlgaug(C)→
C which preserves colimits.

Proof. To show that the functor cot preserves all colimits, it will suffice to show that it preserves
sifted colimits and finite coproducts. Since the tensor product on C preserves colimits separately
in each variable, the functor V 7→ V ⊗S preserves sifted colimits for every finite set S. It

follows that the construction A 7→ cot(m
(n)
A ) commutes with sifted colimits for each n, so that

A 7→ cot(A) commutes with sifted colimits. Since the functor cot clearly preserves initial
objects, we are reduced to showing that it preserves pairwise coproducts. Let A and B be
augmented commutative algebra objects of C; we wish to show that the canonical map

cot(A)⊕ cot(B)→ cot(A⊗B)

is an equivalence. Resolving the augmentation ideal mA by free augmented commutative al-
gebras, we can reduce to the case where A ' Sym∗(V ) for some object V ∈ C. Similarly, we
may suppose that B ' Sym∗(W ) for some W ∈ C. In this case, the desired result follows from
Example 6.1.8. �
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6.1.1. Cotangent Fibers and Square-Zero Extensions. For each object V ∈ C, let 1⊕ V denote
the trivial square-zero extension of 1 by V . The construction V 7→ 1⊕ V determines a functor
Ω∞ : C→ CAlgaug(C).

Proposition 6.1.10. The construction cot : CAlgaug(C) → C is left adjoint to the formation
of trivial square-zero extensions V 7→ 1⊕V . In other words, for every augmented commutative
algebra A ∈ CAlgaug(C) and every object V ∈ C, we have a canonical homotopy equivalence

MapCAlgaug(C)(A,1⊕ V ) ' MapC(cot(A), V ).

Proof. Theorem HA.7.3.4.13 implies that the functor Ω∞ exhibits C as a stabilization of the
∞-category CAlgaug(C). In particular, we have an adjunction

CAlgaug(C)
Σ∞ //C,
Ω∞
oo

where Σ∞ : CAlgaug(C) → C denotes the absolute cotangent complex functor introduced in
Definition HA.7.3.2.14. The functor Σ∞ is universal among colimit-preserving functors from
CAlgaug(C) to stable ∞-categories. It follows from Proposition 6.1.9 that the formation of
cotangent fibers factors as a composition

cot : CAlgaug(C)
Σ∞→ C

λ→ C,

where λ is some functor from C to itself. Using Example 6.1.8, we obtain equivalences of
functors

idC ' cot ◦ Sym∗ ' λ ◦ (Σ∞ ◦ Sym∗) ' λ,
so that λ is equivalent to the identity functor. �

Remark 6.1.11. Let k be a field and let A be an augmented commutative algebra object of
Modk. We can identify I = H∗(mA) with a maximal ideal in the graded-commutative ring
H∗(A). We may therefore consider the (purely algebraic) Zariski cotangent space I/I2. Note
that I2 is contained in the image of the map

H∗(m⊗2
A )→ H∗(mA) = I,

and therefore also in the kernel of the map H∗(mA) → H∗(cot(A)). We therefore obtain a
canonical comparison map

I/I2 → H∗(cot(A)).

Proposition 6.1.12. Let k be a field of characteristic zero, let A be an augmented commutative
algebra object of CAlgk, and suppose that the cohomology H∗(A) is a graded polynomial ring
(that is, H∗(A) is a tensor product of a polynomial ring on generators of even degree and an
exterior algebra on generators of odd degree). Then the comparison map I/I2 → H∗(cot(A)) of
Remark 6.1.11 is an isomorphism.

Proof. Choose homogeneous polynomial generators {ti}i∈I of H∗(A) which are annihilated by
the augmentation map ε : A → k. Let V denote the graded vector space freely generated
by homogeneous elements {Ti}i∈I with deg(Ti) = deg(ti) and regard V as a chain complex
with trivial differential. Then we can choose a map of chain complexes φ0 : V → mA which
carries each Ti to a cycle representing the homology class ti. Then φ0 extends to a map of
augmented commutative algebras φ : Sym∗(V )→ A. The assumption that k has characteristic
zero guarantees that the cohomology of Sym∗(V ) is a graded polynomial ring on the generators
Ti, so that φ is an equivalence. It follows from Example 6.1.8 that φ determines an equivalence

V ' cot(Sym∗(V ))→ cot(A)

in Modk. �
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Example 6.1.13. Let k be a field of characteristic zero (or, more generally, any Q-algebra), and
let A be an augmented commutative k-algebra with maximal ideal mA. The cotangent complex
LA/k is a chain complex of A-modules, obtained from the simplicial A-module A ⊗P• ΩP•/k,
where P • is a simplicial resolution of A by free k-algebras. One can show that the cotangent
fiber cot(A) is given by the (derived) tensor product k⊗A LA/k. This follows from Proposition
6.1.12 when A is a free algebra over k, and the general case can be reduced to the case of free
algebras using Proposition 6.1.9 below.

More generally, if k is arbitrary commutative ring and A ∈ CAlgaug(Modk), then the cotan-
gent fiber cot(A) can be identified with the tensor product k⊗A LtA/k, where LtA/k denotes the

complex of topological André-Quillen chains of A over k (Proposition 6.1.10).

Example 6.1.14 (Rational Homotopy Theory). Let X be a simply connected topological
space, and assume that the cohomology ring H∗(X; Q) is finite-dimensional in each degree. Let
x ∈ X be a base point, so that x determines an augmentation C∗(X; Q)→ C∗({x}; Q) ' Q of
commutative algebra objects of the ∞-category ModQ. We will denote the augmentation ideal
by C∗red(X; Q). Then the cotangent fiber of C∗red(X; Q) is a cochain complex M . One can show
that the cohomologies of this chain complex are given by

Hn(M) = Hom(πn(X,x),Q).

Remark 6.1.15. Let k be a field of characteristic zero, and let A be an augmented commutative
algebra object of Modk. One can show that the shifted dual Σ−1 cot(A)∨ of the cotangent fiber
cot(A) is quasi-isomorphic to the underlying chain complex of a differential graded Lie algebra
which depends functorially on A. In other words, the construction

A 7→ Σ−1 cot(A)∨

determines a contravariant functor from the ∞-category of augmented commutative algebra
objects of Modk to the∞-category of differential graded Lie algebras over k. This construction
is adjoint to the functor g 7→ C∗(g) which carries a differential graded Lie algebra g to the
Chevalley-Eilenberg complex which computes the Lie algebra cohomology of g. See §SAG.4.2
for more details.

6.1.2. The m-adic Filtration. Let k be a field of characteristic zero and let A be an augmented

commutative algebra object of Modk. In good cases, one can recover the tower {cofib(m
(n)
A →

A)}n≥1 from the cotangent fiber cot(A) together with the Lie algebra structure on Σ−1 cot(A)∨.
However, for our applications in this paper, it will be sufficient to describe the successive

quotients of the filtration m
(n)
A . This does not require us to consider Lie algebra structure at

all, and works without any restrictions on A or C:

Construction 6.1.16. Let A be an augmented commutative algebra object of C, so that its
cotangent fiber is given by

cot(A) ' cofib( lim−→
|T |≥2

m⊗TA → lim−→
|T |≥1

m⊗TA ).

An easy calculation shows that for every finite set S, we can identify cot(mA)⊗S with the cofiber

cofib( lim−→
f :T

�→S

m⊗T → lim−→
f :T→S

m⊗TA ),

where the colimits are taken over the category of all finite sets T equipped with a surjection
f : T → S (which, on the left hand side, is required to be non-bijective).

Let J denote the category whose objects are finite sets T equipped with an equivalence
relation E such that |T/E| = n, where a morphism from (T,E) to (T ′, E′) is a surjection
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of finite sets α : T → T ′ such that xEy if and only if α(x)E′α(y). Let J0 denote the full
subcategory of J spanned by those pairs (T,E) where |T | > n. Then the above considerations
determine an equivalence

Symn cot(mA) ' cofib( lim−→
(T,E)∈J0

m⊗TA → lim−→
(T,E)∈J

m⊗TA ).

We have an evident commutative diagram

J0
//

��

J

��
Fins≥n+1

// Fins≥n,

which determines a map

θ : Symn cot(mA)→ cofib(m
(n+1)
A → m

(n)
A ).

Proposition 6.1.17. Let A be an augmented commutative algebra object of C. Then, for each

integer n ≥ 0, Construction 6.1.16 determines an equivalence Symn cot(A) → cofib(m
(n+1)
A →

m
(n)
A ). In other words, we have a fiber sequence

m
(n+1)
A → m

(n)
A → Symn cot(mA).

Proof. The case n = 0 follows immediately from our convention m
(0)
A = A. We will therefore

assume n > 0. Let F : Fins → C denote the functor given by F (S) = mSA. For every category
I equipped with a forgetful functor I → Fins, we let F |I denote the restriction of F to I, and
lim−→(F |I) the colimit of F |I (regarded as a diagram in C). Unwinding the definitions, we wish
to prove that the diagram σ :

lim−→(F |J0
) //

��

lim−→(F |J)

��
lim−→(F |Fins≥n+1

) // lim−→(F |Fins≥n
)

is a pushout diagram in the ∞-category C. We will show that this holds for any functor
F : Fins → C.

Let F ′ : Fins≥n → C be a left Kan extension of the functor F |Fins≥n+1
along the inclusion

Fins≥n+1 ↪→ Fins≥n .

Let U : J → Fins≥n denote the forgetful functor. Note that for every object (T,E) ∈ J, the
functor U induces an equivalence of categories J/(T,E) → (Fins≥n)/T . It follows that F ′ ◦U is a
left Kan extension of F |J0

along the inclusion J0 ↪→ J. We may therefore identify σ with the
commutative diagram

lim−→(T,E)∈J F
′(T ) //

��

lim−→(T,E)∈J F (T )

��
lim−→T∈Fins≥n

F ′(T ) // lim−→T∈Fins≥n
F (T ).
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For T ∈ Fins≥n, let F ′′(T ) denote the cofiber of the canonical map F ′(T )→ F (T ). Unwinding
the definitions, we are reduced to proving that the map

θ : lim−→
(T,E)∈J

F ′′(T )→ lim−→
T∈Fins

≥n

F ′′(T )

is an equivalence. Let Fins=n denote the full subcategory of Fins spanned by those sets having
cardinality n, and let J=n ⊆ J denote the inverse image of Fins=n under U . Note that F ′′(T ) ' 0
if |T | > n, so that F ′′ is a left Kan extension of its restriction to Fins=n and F ′′ ◦ U is a left
Kan extension of its restriction to J=n. We may therefore identify θ with the canonical map

lim−→
(T,E)∈J=n

F ′′(T )→ lim−→
T∈Fins=n

F ′′(T ).

This map is an equivalence because U induces an equivalence of categories J=n → Fins=n. �

6.1.3. Convergence. Let A be an augmented commutative algebra object of C. It follows from
Proposition 6.1.17 that the successive quotients of the filtration

· · · → m
(3)
A → m

(2)
A → m

(1)
A → m

(0)
A = A

can be functorially recovered from the cotangent fiber cot(A). We next study a condition which
guarantees that this filtration is convergent, so that information about the cotangent fiber
cot(A) gives information about the algebra A itself.

Proposition 6.1.18. Suppose that C = Modk, where k is a field of characteristic zero. Let
A be an augmented commutative algebra object of C whose augmentation ideal mA belongs to

(Modk)≤−1. Then, for every integer n > 0, the object m
(n)
A belongs to (Modk)≤−n. In particular,

the inverse limit lim←−m
(n)
A vanishes in C.

The proof of Proposition 6.1.18 depends on the following elementary combinatorial fact about
t-structures:

Lemma 6.1.19. Suppose that the ∞-category C is equipped with a t-structure which is com-
patible with filtered colimits (that is, the full subcategory C≤0 is closed under filtered colimits).
Let P be a partially ordered set, let λ : P → Z≥0 be a strictly monotone function, and suppose
we are given a functor G : N(P )op → C such that G(x) ∈ C≤−n−λ(x) for each x ∈ P . Then the
colimit lim−→G belongs to C≤−n.

Proof of Proposition 6.1.18. We define a category I as follows:

• The objects of I are diagrams

S0
φ1→ S1

φ2→ · · · φd→ Sd,

where each Si is a finite set of cardinality ≥ n, and each of the maps φi is surjective
but not bijective.

• Let ~S = (S0 → S1 → · · · → Sd) and ~T = (T0 → T1 → · · · → Te) be objects of I. A

morphism from ~S to ~T in I consists of a map α : {0, . . . , e} → {0, . . . , d}, together with
a collection of bijections Sα(i) ' Ti for which the diagrams

Sα(i)
//

��

Sα(i+1)

��
Ti // Ti+1

commute.
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We have an evident forgetful functor ρ : I→ Fins≥n, given by (S0 → · · · → Sd) 7→ S0. We first
prove:

(∗) The functor ρ is left cofinal.

Fix a finite set T of cardinality ≥ n, and let IT/ denote the fiber product I×Fins≥n
(Fins≥n)T/.

To prove (∗), we must show that each of the categories IT/ has weakly contractible nerve.
Unwinding the definitions, we can identify objects of IT/ with chains of surjections

T
ψ→ S0

φ1→ S1
φ2→ · · · φd→ Sd,

where the maps φi are not bijective. Let I◦T/ denote the full subcategory of IT/ spanned by

those objects for which ψ is bijective. Since the inclusion I◦T/ ↪→ IT/ admits a right adjoint, it

will suffice to prove that the category I◦T/ has weakly contractible nerve. This is clear, since

I◦T/ contains a final object (given by the map T
id→ T ).

Let F : I→ C denote the functor given by the formula

F (S0 → · · · → Sd) = m⊗S0

A .

It follows from (∗) that we can identify m(d) with the colimit lim−→(F ). Let P denote the set of
all finite subsets of Z≥n, partially ordered by inclusion. The construction

(S0 → S1 → · · · → Sd) 7→ {|S0|, |S1|, . . . , |Sd|}
determines a functor ρ′ : I→ P op. Let G : N(P )op → C denote a left Kan extension of F along
ρ′, so that m(n) ' lim−→J∈P G(J).

Fix a finite subset J ⊆ Z≥n. Since ρ′ is a coCartesian fibration, G is given by the formula

G(J) = lim−→F |J×Pop{J}. For every object ~S = (S0 → · · · → Sd) in J×P op{J}, the set S0

has cardinality ≥ d + |Sd| ≥ d + n = |J | + n − 1. The category J×P op{J} is a groupoid in
which every object has a finite automorphism group. It follows that G(J) can be written as

a direct sum of objects of the form (m⊗TA )Γ, where T is a finite set of cardinality |J | + n − 1

and Γ is a finite group acting on m⊗TA via permutations of T . Since k has characteristic zero, it
follows that G(J) ∈ (Modk)≤1−n−|J|. The desired result now follows from Lemma 6.1.19 (take
λ : P → Z≥0 to be the function given by λ(J) = |J | − 1). �

Proof of Lemma 6.1.19. We will prove the following more general assertion: for every simplicial
subset K ⊆ N(P )op, the colimit lim−→(G|K) belongs to C≤−n. Writing K as a filtered colimit of
finite simplicial sets, we may reduce to the case where K is finite. We proceed by induction
on the number of nondegenerate simplices of K. If K is empty, there is nothing to prove.
Otherwise, we can choose a pushout diagram

∂∆m //

��

K0

��
∆m // K.

Since lim−→(G|K0
) ∈ C≤−n by the inductive hypothesis, it will suffice to prove that the cofiber

of the canonical map θ : lim−→(G|K0) → lim−→(G|K) belongs to C≤−n. For this, we may replace K

by ∆m and K0 by ∂∆m. Let x ∈ P op denote the image of the final vertex {m} ∈ ∆m. We
will prove that cofib(θ) ∈ C≤−n−λ(x). The proof proceeds by induction on m. If m = 0, then
cofib(θ) = G(x) and there is nothing to prove. If m > 0, then the inclusion Λmm ↪→ ∆m is right
anodyne and therefore left cofinal. It follows that the composite map

lim−→(G|Λmm)
θ′→ lim−→(G|∂∆m)

θ→ lim−→(G∆m)
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is an equivalence, so that cofib(θ) ' Σ cofib(θ′). Using the pushout diagram of simplicial sets

∂∆m−1 //

��

∆m−1

ι

��
Λmm // ∂∆m,

we can identify cofib(θ′) with the cofiber of the induced map θ′′ : lim−→(G|∂∆m−1)→ lim−→(G|∆m−1).

Let y ∈ P denote the image of the final vertex of ∆m−1. Then y > x. Since λ is monotone, we
have λ(y) > λ(x). Using the inductive hypothesis, we deduce that

cofib(θ′′) ∈ C≤−n−λ(y) ⊆ C≤−n−1−λ(x),

so that cofib(θ) ' Σ cofib(θ′) ' Σ cofib(θ′′) ∈ C≤−n−λ(x), as desired. �

6.2. The Atiyah-Bott Formula. Let X be a compact Riemann surface of genus g and let
BunGLn(X) be the moduli stack of rank n vector bundles on X. Then we can write BunGLn(X)
as a disjoint union of connected components

qd∈Z BundGLn(X),

where BundGLn(X) denotes the moduli stack of vector bundles on X of rank n and degree d.

Each BundGLn(X) determines a complex-analytic stack which has a well-defined homotopy type.

In [4], Atiyah and Bott show that the cohomology ring H∗(BundGLn(X); Z) is isomorphic to the
free graded-commutative algebra on homogeneous generators

{xi}2≤i≤n {yi,j}1≤i≤n,1≤j≤2g {zi}1≤i≤n
deg(xi) = 2i− 2 deg(yi,j) = 2i− 1 deg(zi) = 2i.

The Atiyah-Bott calculation admits a straightforward generalization to algebraic groups
other than GLn. For simplicity, we will restrict our attention to the case of simply connected
groups. Fix an algebraically closed field k and a prime number ` which is invertible in k. Let
G0 be a simply connected semisimple algebraic group over k and let BG0 denote its classifying
stack. Then the `-adic cohomology H∗(BG0; Q`) is isomorphic to a polynomial ring

Q`[t1, . . . , tr]

where r is the rank of G0 and each generator ti is a homogeneous element of some even degree
di ≥ 4. The integers d1, . . . , dr are called the exponents of the group G0. Let X be an algebraic
curve of genus g over k and let G = G0 × X be the associated constant group scheme over
X. One can show that the cohomology ring H∗(BunG(X); Q`) is isomorphic to a free graded-
commutative algebra on homogenous generators

{xi}1≤i≤r {yi,j}1≤i≤r,1≤j≤2g {zi}1≤i≤r
deg(xi) = di − 2 deg(yi,j) = di − 1 deg(zi) = di.

The proof of this assertion can be broken into two steps:

(a) Let us regard the cochain complex C∗(BunG(X); Q`) as a commutative algebra object
of ModQ`

, with an augmentation

ε : C∗(BunG(X); Q`)→ C∗(Spec k; Q`) ' Q`

given by the base point of BunG(X). Then one can show that the cotangent fiber
cot(C∗(BunG(X); Q`)) is equivalent to the tensor product

C∗(X; Q`)⊗Q`
cot(C∗(BG0; Q`)).
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It follows from Proposition 6.1.12 that the homology of cot(C∗(BG0; Q`)) admits a basis
{Ti}1≤i≤r consisting of homogeneous elements of (cohomological) degree deg(Ti) = di.
One can then calculate that cot(C∗(BunG(X); Q`)) is quasi-isomorphic to a graded
vector space V on homogeneous generators

{xi}1≤i≤r {yi,j}1≤i≤r,1≤j≤2g {zi}1≤i≤r
deg(xi) = di − 2 deg(yi,j) = di − 1 deg(zi) = di.

(b) According to Remark 6.1.15, the dual

Σ−1 cot(C∗(BunG(X); Q`))
∨ ' Σ−1V ∨

is quasi-isomorphic to the underlying chain complex of a canonically determined dif-
ferential graded Lie algebra g. One can show that this Lie algebra is equivalent to an
abelian one and that the natural map

C∗(BunG(X); Q`)→ C∗(g)

is a quasi-isomorphism, where

C∗(g) '
∏
n≥0

(Σg)∨ ' Sym∗(V )

denotes the cohomological Chevalley-Eilenberg complex of g. Passing to cohomology,
it follows that H∗(BunG(X); Q`) is isomorphic to a polynomial ring on generators

{xi}1≤i≤r {yi,j}1≤i≤r,1≤j≤2g {zi}1≤i≤r
deg(xi) = di − 2 deg(yi,j) = di − 1 deg(zi) = di.

Remark 6.2.1. We will not discuss assertion (b) in this paper. However, it should really
be regarded as a formal consequence of (a). Set g = Σ−1 cot(C∗(BunG(X); Q`)) and g0 =
Σ−1 cot(C∗(BG0; Q`)). The constructions outlined below can be used to produce a canonical
map

θ : g→ C∗(X; Q`)⊗Q`
g0,

and the content of assertion (a) is that this map is a quasi-isomorphism. Given a suitably robust
formalism for Koszul duality (which we do not discuss here), one can realize θ as a morphism of
differential graded Lie algebras. Since the cohomology H∗(BG0; Q`) is a polynomial ring, the
Lie algebra g0 can be chosen to be abelian, so that the Lie algebra structure on g can likewise
be chosen abelian.

Remark 6.2.2. Combining assertion (a) with Propositions 6.1.18 and 6.1.17, it follows that
there exists a spectral sequence with second page E∗∗2 ' Sym∗(V ) which converges to the
cohomology ring H∗(BunG(X); Q`). It follows from (b) that this spectral sequence degenerates.
For our purposes, this is irrelevant: our goal is to compute the trace of the arithmetic Frobenius
Frob−1 on the cohomology ring H∗(BunG(X); Q`) (in the special case where X is defined over
a finite field Fq). Modulo issues of convergence (which we will discuss in §6.5), the existence

of the spectral sequence E∗∗∗ shows that this is equal to the trace of Frob−1 on the symmetric
algebra Sym∗(V ), and can therefore be computed directly from the Frobenius eigenvalues of
H∗(X; Q`) and H∗(BG0; Q`).

Remark 6.2.3. In [4], Atiyah and Bott actually show that the integral cohomology of the

moduli stacks BundGLn(X) are graded polynomial rings with the structure indicated above.
However, this description is specific to the case of the group GLn: in general, the cohomology
of the moduli stack BunG(X) has torsion.



WEIL’S CONJECTURE FOR FUNCTION FIELDS 193

We now formulate an analogue (a) for the case of a group scheme G over X which is not
assumed to be constant (Theorem 6.2.4). At this level of generality, we do not expect the
analogue of (b) to hold.

Theorem 6.2.4. Let k be an algebraically closed field, let π : X → Spec k exhibit X as an
algebraic curve over k, let G be a smooth affine group scheme over X with connected fibers
whose generic fiber is semisimple and simply connected, and let ` be a prime number which is
invertible in k. Let us regard [BG]X as a commutative algebra object of Shv`(X) as in §5.7,
with augmentation [BG]X → ωX given by the map X → BG classifying the trivial G-bundle on
X. Then the canonical map

[BG]X → [X ×Spec k BunG(X)]X = π!C∗(BunG(X); Z`)

induces an map cot[BG]X → π! cotC∗(BunG(X); Z`) which determines an equivalence

θ : π∗ cot[BG]X → cotC∗(BunG(X); Z`)

in Shv`(Spec k) ' ModZ` .

Let C∗(X; cot[BG]X) denote the image of π∗ cot[BG]X under the equivalence of∞-categories
Shv`(Spec k) ' ModZ` . We have formulated Theorem 6.2.4 as a result about the integral `-adic
cohomology of BunG(X). However, we will be primarily interested in the following consequence
(obtained by passing to global sections and inverting `):

Corollary 6.2.5. Suppose that the fibers of G are connected and that the generic fiber of
G is semisimple and simply connected, and regard C∗(BunG(X); Z`)[`

−1] as an augmented
commutative algebra object of ModQ`

. Then we have a canonical equivalence

cot(C∗(BunG(X); Z`)[`
−1]) ' C∗(X; cot[BG]X)[`−1].

Remark 6.2.6. One can show that for any prestack C and any base point η : Spec k → C,
the cotangent fiber cotC∗(C; Z/`Z) vanishes (when regarded as an augmented commutative
algebra object of ModZ/`Z. It follows from this that multiplication by ` induces equivalences

` : cotC∗(BunG(X); Z`)→ cotC∗(BunG(X); Z`) ` : cot[BG]X → cot[BG]X ,

so that cotC∗(BunG(X); Z`) and C∗(X, cot[BG]X) already admit the structure of Q`-modules.
In other words, Theorem 6.2.4 and Corollary 6.2.5 are equivalent to one another.

Remark 6.2.7. Let C be an arbitrary prestack. Then there are (at least) two reasonable
definitions for cohomology of C with coefficients in Q`: one can consider the rational cohomology
ring H∗(C; Q`) introduced in §2.3, or consider the integral cohomology ring H∗(C; Z`) and invert
`. These are related by a canonical map

H∗(C; Z`)[`
−1]→ H∗(C; Q`).

This map is an isomorphism if C is an algebraic stack of finite type over k (Remark 2.3.30),
but not in general (since the operation of inverting ` does not commute with inverse limits;
see Warning 2.3.29). For our purposes, it will be more convenient work with the second def-
inition. Consequently, the results of this section will be phrased in terms of the Q`-modules
H∗(BunG(X); Z`)[`

−1] and C∗(BunG(X); Z`)[`
−1]. In fact, this makes no difference: one can

show that the natural map

H∗(BunG(X); Z`)[`
−1]→ H∗(BunG(X); Q`)

is an isomorphism (at least when the generic fiber of G is semisimple and simply connected;
it can fail when BunG(X) has many connected components, for example if G = GLn), but we
will not need this fact.
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Example 6.2.8. In the special case where G = X × G0 is a constant group scheme on X,
Corollary 6.2.5 supplies an equivalence

cot(C∗(BunG(X); Z`)[`
−1]) ' C∗(X, cot[BG]X)[`−1]

' C∗(X, cot(C∗(BG0; Z`)⊗ ωX))[`−1]

' C∗(X, (cotC∗(BG0; Z`))⊗ ωX)[`−1]

' (cotC∗(BG0; Z`))⊗Z` C
∗(X;ωX))[`−1]

' (cotC∗(BG0; Z`)⊗Z` C∗(X; Z`))[`
−1]

' cot(C∗(BG0; Z`)[`
−1])⊗Q`

C∗(X; Q`)

as promised in the introduction to this section.

Proof of Theorem 6.2.4. Fix an object M ∈ ModZ` ; we wish to show that composition with θ
induces a homotopy equivalence

θM : MapModZ`
(cotC∗(BunG(X); Z`),M)→ MapModZ`

(π∗ cot[BG]X ,M).

Using the universal property of the cotangent fiber (Proposition 6.1.10), we obtain homotopy
equivalences

MapModZ`
(cotC∗(BunG(X); Z`),M) ' MapCAlgaug(ModZ`

)(C
∗(BunG(X); Z`),Z` ⊕M)

MapModZ`
(π∗ cot[BG]X ,M) ' MapCAlgaug(Shv`(X))([BG]X , ωX ⊕ π!M).

It will therefore suffice to show that the diagram of spaces

MapCAlg(ModZ`
)(C
∗(BunG(X); Z`),Z` ⊕M) //

��

MapCAlg(Shv`(X))([BG]X , ωX ⊕ π!M)

��
MapCAlg(ModZ`

)(C
∗(BunG(X); Z`),Z`) // MapCAlg(Shv`(X))([BG]X , ωX)

is a homotopy pullback square. In fact, the horizontal maps in this diagram are homotopy
equivalences by virtue of Theorem 5.7.1. �

6.3. Summable Frob-Modules. Let k be an algebraically closed field, let X be an algebraic
curve over k, and let G be a smooth affine group scheme over X. Suppose that X and G
are defined over a finite field Fq ⊆ k, so that the moduli stack BunG(X) is equipped with a
geometric Frobenius map Frob : BunG(X) → BunG(X). To prove Theorem 1.3.5, we need to
compute the trace Tr(Frob−1 |H∗(BunG(X); Z`)). However, this requires some care: typically
the cohomology groups Hn(BunG(X); Z`) are nonzero for infinitely many values of n. We
therefore devote this section to a discussion of some of the convergence issues which arise when
forming infinite sums such as

Tr(Frob−1 |H∗(BunG(X); Z`)) =
∑
n≥0

(−1)n Tr(Frob−1 |Hn(BunG(X); Z`)).

Our main result (Proposition 6.3.4) allows us to deduce the convergence of these sums from the
the structure of the cotangent fiber cotC∗(BunG(X); Z`), which we will discuss in §6.2.

Throughout this section, we fix a prime number ` and an embedding of fields ι : Q` ↪→ C.

Definition 6.3.1. Let V ∗ be a graded vector space over Q` and F an endomorphism of V ∗.
We will say that (V ∗, F ) is summable if the following conditions are satisfied:

(1) The vector space V m is finite dimensional for every integer m.
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(2) For each λ ∈ C and every integer m, let dλ,m denote the dimension of the generalized
λ-eigenspace of F on the complex vector space C⊗Q`

V m. Then the sum∑
m,λ

dλ,m|λ|

is convergent.

If (V ∗, F ) is summable, we let |V ∗|F denote the nonnegative real number
∑
m,λ dλ,m|λ|; we will

refer to |V ∗|F as the norm of the pair (V ∗, F ). We let Tr(F |V ∗) denote the complex number∑
m,λ(−1)mdλ,mλ. Note that this sum converges absolutely, and we have |Tr(F |V ∗)| ≤ |V ∗|F .

Remark 6.3.2. The definition of a summable pair (V ∗, F ), and the trace Tr(F |V ∗) depend on
a choice of embedding ι : Q` → C. However, for the pairs (V ∗, F ) of interest to us, the traces
Tr(F |V ∗) can be shown to be independent of ι.

Remark 6.3.3. Suppose we are given graded Q` vector spaces V ′∗, V ∗, and V ′′∗ equipped
with endomorphisms F ′, F , and F ′′ respectively, together with a long exact sequence

· · · → V ′′n−1 → V ′n → V n → V ′′n → V ′n+1 → · · ·

compatible with the actions of F , F ′, and F ′′. If (V ′∗, F ′) and (V ′′∗, F ′′) are summable, then
(V ∗, F ) is also summable. Moreover, in this case we have

|V ∗|F ≤ |V ′∗|F ′ + |V ′′∗|F ′′ Tr(F |V ∗) = Tr(F ′|V ′∗) + Tr(F ′′|V ′′∗).

Proposition 6.3.4. Let A be an augmented commutative algebra object of ModQ`
equipped with

an automorphism F . We let V = cot(A) denote the cotangent fiber of A, so that F determines
an automorphism of V (which we will also denote by F ). Suppose that the following conditions
are satisfied:

(1) The augmentation ideal mA belongs to (ModQ`
)≤−1.

(2) The graded Q`-vector space H∗(V ) is finite-dimensional.
(3) For every integer i and every eigenvalue λ of F on C⊗Q`

Hi(V ), we have |λ| < 1.

Then (H∗(A);F ) is summable. Moreover, we have

Tr(F |H∗(A)) = exp(
∑
n>0

1

n
Tr(Fn|H∗(V ))),

where the sum on the right hand side is absolutely convergent.

Remark 6.3.5. Proposition 6.3.4 asserts that, under mild hypotheses, the trace of F on the
cohomology of A is equal to the trace of F on the cohomology of the symmetric algebra Sym∗(V ).

Remark 6.3.6. Let V ∗ be a finite-dimensional graded Q`-vector space equipped with an
automorphism F . We define the L-function of the pair (V ∗, F ) to be the rational function of
one variable t given by the formula

LV ∗,F (t) =
∏
m∈Z

det(1− tF |V m)(−1)m+1

.

An easy calculation yields

LV ∗,F (t) = exp(
∑
n>0

tn

n
Tr(Fn|H∗(V ))).



196 DENNIS GAITSGORY AND JACOB LURIE

for |t| < C, where C = sup{ 1
|λ|} where λ ranges over the eigenvalues of F . In particular, if all

of the eigenvalues of F have complex absolute values < 1, then we have

LV ∗,F (1) = exp(
∑
n>0

1

n
Tr(Fn|H∗(V ))).

In the situation of Proposition 6.3.4, we can rewrite the conclusion as

Tr(F |H∗(A)) = LH∗(cotA),F (1) =
∏
m>0

det(1− F |Hm(V ))(−1)m+1

.

Proof of Proposition 6.3.4. Write the graded vector space H∗(V ) as a direct sum Heven(V ) ⊕
Hodd(V ). Let {λ1, . . . , λm} denote the eigenvalues of F on C ⊗Q`

Heven(V ) (counted with

multiplicity), and let {µ1, . . . , µm′} denote the eigenvalues of F on C ⊗Q`
Hodd(V ) (again

counted with multiplicity). For every integer n ≥ 0, we set

sn =
∑

n=n1+···+nm+|S|,S⊆{1,...,m′}

(
∏

1≤i≤m

|λi|ni
∏
j∈S
|µj |)

σn =
∑

n=n1+···+nm+|S|,S⊆{1,...,m′}

(
∏

1≤i≤m

λnii
∏
j∈S
−µj).

It follows from (3) that the sum s0 +s1 +s2 + · · · converges to
∏

1≤i≤m
1

1−|λi|
∏

1≤j≤m′(1+ |µj |),
so that the sum σ0 + σ1 + σ2 + · · · converges absolutely to

∏
1≤i≤m

1
1−|λi|

∏
1≤j≤m′(1− µj).

For each n ≥ 0, we can identify H∗(Symn(V )) with the nth symmetric power of H∗(V ) (in
the category of graded vector spaces with the usual sign convention). It follows that

|H∗(Symn(V ))|F = sn Tr(F |H∗(Symn(V ))) = σn.

Let mA denote the augmentation ideal of A. For each integer n ≥ 1, let m
(n)
A be as in Definition

6.1.2, and set m
(0)
A = A. For every pair of integers i ≤ j, let Qi,j denote the cofiber of the map

m
(j)
A → m

(i)
A . If i < j, then Proposition 6.1.17 supplies a fiber sequence

Qi+1,j → Qi,j → Symi(V ).

Applying Remark 6.3.3 repeatedly, we deduce that each pair (H∗(Qi,j), F ) is summable, with

|H∗(Qi,j)|F ≤ si + · · ·+ sj−1 Tr(F |H∗(Qi,j)) = σi + · · ·+ σj−1.

We next prove the following:

(∗) For each integer n, the pair (H∗(m
(n)
A ), F ) is summable, with

|H∗(m(n)
A )|F ≤ sn + sn+1 + · · · .

For every integer d ≥ 0, set W (d)∗ =
⊕

i≤d Hi(m
(n)
A ). To prove (∗), it will suffice to show

that each of the pairs (W (d)∗, F ) is summable with |W (d)∗|F ≤ sn + sn+1 + · · · . Without
loss of generality we may assume that d > n. It follows from Proposition 6.1.18 that the map

Hi(m
(n)
A )→ Hi(Qn,d+2) is an isomorphism for i ≤ d, so that

|W (d)∗|F ≤ |H∗(Qn,d+2)|F ≤ sn + · · ·+ sd+1 ≤
∑
n′≥n

sn′ <∞,

as desired.
Applying (∗) when n = 0, we deduce that (H∗(A), F ) is summable. Moreover, for every

integer n, applying Remark 6.3.3 to the fiber sequence

m
(n)
A → A→ Q0,n
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gives an inequality

|Tr(F |H∗(A))− σ0 − · · · − σn−1| = |Tr(F |H∗(A))− Tr(F |H∗(Q0,n))|

= |Tr(F |H∗(m(n)
A ))|

≤ |H∗(m(n)
A )|F

≤ sn + sn+1 + · · · .

It follows that Tr(F |H∗(A)) is given by the absolutely convergent sum∑
n≥0

σn =
∏

1≤i≤m

1

1− λi

∏
1≤j≤m′

(1− µj).

In particular, we have

log Tr(F |H∗(A)) =
∑

1≤i≤m

log
1

1− λi
−

∑
1≤j≤m′

log
1

1− µi

=
∑

1≤i≤m

∑
n>0

1

n
λni −

∑
1≤j≤m′

∑
n>0

1

n
µnj

=
∑
n>0

1

n
(
∑

1≤i≤m

λni −
∑

1≤j≤m′
µnj )

=
∑
n>0

1

n
Tr(Fn|H∗(V )).

�

6.4. The Trace Formula for BG. Let Fq denote a finite field, let Y be a smooth algebraic

stack of dimension d over Fq, and let Y = Spec Fq ×Spec Fq Y be the associated algebraic

stack over Fq. Fix a prime number ` which is invertible in Fq and an embedding Z` ↪→ C.

Pullback along the geometric Frobenius map Frob : Y → Y induces an automorphism of the
`-adic cohomology H∗(Y ; Q`), which we will also denote by Frob. If Y is quasi-compact and
quasi-separated, then Behrend proved that (H∗(Y ; Q`); Frob−1) is summable and that its trace
satisfies the following analogue of Theorem 1.3.2:

Tr(Frob−1 |H∗(Y ; Q`)) = q−d
∑

η∈Y (Fq)

1

|Aut(η)|
.

Here the sum is taken over all isomorphism classes of objects in the groupoid Y (Fq); see [6] for
more details.

Let us now specialize to the case where Y = BG, where G is a connected algebraic group
over Fq. In this case, it follows from Lang’s theorem that every G-bundle on Spec Fq is trivial,
so that the sum on the right hand side contains only one term. We therefore obtain the formula

Tr(Frob−1 |H∗(BG; Q`)) =
qdim(G)

|G(Fq)|
.

Our goal in this section is to give a different proof of this identity using a method which can
be adapted to the case where BG is replaced by the moduli stack of bundles on an algebraic
curve.

We begin with some general remarks.
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Notation 6.4.1. Let k be a field, let ` be a prime number which is invertible in k, and let k
be an algebraic closure of k. Let Y be an Artin stack over k, so that Y = Y ×Spec k Spec k can

be regarded as an Artin stack over the algebraically closed field k. We let C∗geom(Y ) denote the

cochain complex C∗(Y ; Z`)[`
−1] ∈ ModQ`

. We will refer to C∗geom(Y ) as the geometric cochain
complex of Y . We let H∗geom(Y ) denote the cohomology of the cochain complex C∗geom(Y );
we will refer to H∗geom(Y ) as the geometric cohomology of Y . Note that the cochain complex
C∗geom(Y ) and its cohomology H∗geom(Y ) equipped with an action of the absolute Galois group

Gal(k/k).

Remark 6.4.2. The definition of the geometric cohomology H∗geom(Y ) depends on a choice of

algebraic closure k of k and on a choice of prime number ` which is invertible in k. However,
to avoid making the exposition too burdensome, we will often neglect to mention these choices
explicitly.

Warning 6.4.3. In the situation of Notation 6.4.1, the geometric cohomology H∗geom(Y ) comes
equipped with a canonical map

θ : H∗geom(Y )→ H∗(Y ; Q`).

This map is an isomorphism if Y is of finite type over k (Remark 2.3.30), but not in general.
For example, if X is a disjoint union of countably many copies of Spec Fq, then θ is given by
the canonical monomorphism (

∏
i≥0 Z`)[`

−1]→
∏
i≥0 Q`).

Remark 6.4.4. Let Y be a smooth algebraic variety of dimension d over a finite field Fq, so
that the geometric cohomology H∗geom(Y ) is equipped with a geometric Frobenius automorphism

Frob. Since H∗geom(Y ) is a finite-dimensional vector space over Q`, the pair (H∗geom(Y ),Frob−1)
is automatically summable. Moreover, the Grothendieck-Lefschetz trace formula yields an
equality Tr(Frob−1 |H∗geom(Y )) = q−d|Y (Fq)| (see Theorem 1.3.2).

Definition 6.4.5. Let G be a connected algebraic group defined over a field k and let I =
H>0

geom(G) denote the (two-sided) ideal in H∗geom(G) generated by homogeneous elements of

positive degree. We define the motive of G to be the quotient I/I2, which we regard as a
representation of the absolute Galois group Gal(k/k).

Remark 6.4.6. For a reductive group G over a field k, the motive M(G) was introduced by
Gross in [21]. Definition 6.4.5 appears in [59]. Beware that our conventions differ from those
of [21] and [59] by a Tate twist (the motive of G is defined in [21] to be the tensor product
Q`(1)⊗Q`

M(G); see Remark 6.5.4 below).

Remark 6.4.7. Let φ : G → H be an isogeny between connected algebraic groups over a
field k. Then φ induces an isomorphism φ∗ : H∗geom(H) → H∗geom(G), which restricts to a

Gal(k/k)-equivariant isomorphism M(H) 'M(G).

Proposition 6.4.8. Let G be a connected algebraic group defined over a field k and let I =
H>0

geom(G). Then the canonical map

M(G) = I/I2 → H∗(cotC∗geom(G))

(see Remark 6.1.11) is an isomorphism.

Proof. The group law m : G×Spec k G→ G induces a comultiplication

m∗ : H∗geom(G)→ H∗geom(G)⊗Q`
H∗geom(G),

which endows H∗geom(G) with the structure of a finite-dimensional graded-commutative Hopf
algebra over Q`. Since G is connected, it follows that H∗geom(G) is isomorphic to an exterior
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algebra on finitely many generators x1, . . . , xr of odd degrees d1, . . . , dr (see [40]). The desired
result now follows from Proposition 6.1.12. �

Remark 6.4.9. Let G be a connected algebraic group over a field k. We have a pullback
diagram of algebraic stacks

G //

��

Spec k

��
Spec k // BG .

Applying Lemma 7.1.7, we obtain a pushout square

C∗geom(G) C∗geom(Spec k)oo

C∗geom(Spec k)

OO

C∗geom(BG)

OO

oo

of augmented commutative algebra objects of ModQ`
, hence a pushout diagram of cotangent

fibers

cotC∗geom(G) 0oo

0

OO

cotC∗geom(BG)

OO

//

see Proposition 6.1.9 (here we regard BG as equipped with the base point Spec k → BG
corresponding to the trivial G-bundle, and G as equipped with the base point Spec k → G
given by the identity section). In other words, we can identify cotC∗geom(G) with the suspen-

sion Σ cotC∗geom(BG). In particular, we obtain a Gal(k/k)-equivariant isomorphism M(G) '
H∗(cotC∗geom(BG)) (which shifts the grading by 1).

Remark 6.4.10. Let G be a connected algebraic group over a field k. One can show that the
geometric cohomology ring H∗geom(BG) is a polynomial ring on generators of even degree. It
follows from Proposition 6.1.12 and Remark 6.4.9 that the motive M(G) can be identified with
the quotient J/J2, where J = H>0

geom(BG) is the ideal generated by elements of positive degree.

Remark 6.4.11. Let G be a reductive algebraic group over a field k and let G′ be a quasi-split
inner form of G. Then there exists a Gal(k/k)-equivariant isomorphism M(G) ' M(G′). To
prove this, we may assume without loss of generality that G and G′ are adjoint (Remark 6.4.7).
In this case, the classifying stacks BG and BG′ are equivalent to one another, so the desired
result follows from the characterization of M(G) and M(G′) given in Remark 6.4.10.

Since G′ is quasi-split, we can choose a Borel subgroup B′ ⊆ G′. Let T ′ ⊆ B′ be a maximal
torus and let Λ be the character lattice of Spec k×Spec kT

′. The Galois group Gal(k/k) acts on Λ

preserving a system of positive roots, and there is a canonical Gal(k/k)-equivariant isomorphism

H∗geom(BT′) ' Sym∗(Q`(−1)⊗Z Λ).

One can show that the restriction map

H∗geom(BG′)→ H∗geom(BT′)

is injective, and its image consists of those elements of H∗geom(BT′) which are invariant under

the action of the Weyl group (N(T ′)/T ′)(k). Combining this observation with Remark 6.4.10,
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we obtain a very explicit description of the motive M(G) ' M(G′), which agrees with the
definition given in [21] (up to a Tate twist); see [59] for a more detailed explanation.

Proposition 6.4.12. Let G be a connected algebraic group of dimension d defined over a finite
field Fq and let BG denote its classifying stack. Assume that ` is invertible in Fq. Then

(H∗geom(BG),Frob−1) is summable, and we have

Tr(Frob−1 |H∗geom(BG)) =
qd

|G(Fq|
.

Moreover, both sides are equal to

exp(
∑
n>0

1

n
Tr(Frob−n |M(G))) = det(1− Frob−1 |M(G))−1,

where M(G) denotes the motive of G.

Lemma 6.4.13. Let G be a connected algebraic group over a finite field Fq. Then each eigen-
value of the Frobenius automorphism Frob on the motive M(G) has complex absolute value ≥ q.
If G is semisimple, then each eigenvalue has complex absolute value ≥ q2.

Proof. Since Fq is perfect, the unipotent radical U of G is defined over Fq. Replacing G by
the quotient G/U , we may reduce to the case where G is reductive. In this case, the assertion
follows immediately from the explicit description of M(G) supplied by Remark 6.4.11. �

Proof of Proposition 6.4.12. Proposition 6.4.8 and Remark 6.4.9 supply Frobenius-equivariant
isomorphisms

H∗(cotC∗geom(BG)) 'M(G) ' H∗(cotC∗geom(G)),

where the groups on the left hand side are concentrated in even degrees and the groups on the
right hand side are concentrated in odd degrees. Applying Proposition 6.3.4 to the augmented
commutative algebras C∗geom(BG) and C∗geom(G) and using Remark 6.4.4, we obtain

Tr(Frob−1 |H∗geom(BG)) = exp(
∑
n>0

1

n
Tr(Frob−n |M(G)))

= exp(
∑
n>0

−1

n
Tr(Frob−n |M(G)))−1

= Tr(Frob−1 |H∗geom(G))−1

= (q−d|G(Fq)|)−1

=
qd

|G(Fq)|
.

�

Remark 6.4.14. We can rewrite the final assertion of Proposition 6.4.12 as a formula

|G(Fq)| = qd det(1− Frob−1 |M(G)) = qd det(1− Frob |M(G)∨)

for the order of the finite group G(Fq); this formula is due originally to Steinberg ([53]).
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6.5. Calculation of the Trace. Throughout this section, we fix a finite field Fq, an algebraic
curve X over Fq, and a smooth affine group scheme G over X with connected fibers whose

generic fiber is semisimple and simply connected. We also fix an algebraic closure Fq of Fq, a
prime number ` which is invertible in Fq, and an embedding Z` ↪→ C. Our goal is to verify
Theorem 1.3.5 by establishing the following:

Theorem 6.5.1. The pair (H∗geom(BunG(X)); Frob−1) is summable. Moreover, we have

Tr(Frob−1 |H∗geom(BunG(X))) =
∏
x∈X

|κ(x)|dim(G)

|G(κ(x))|
,

where the product on the right hand side is absolutely convergent.

We will deduce Theorem 6.5.1 by combining the Atiyah-Bott formula (Theorem 6.2.4), Stein-
berg’s formula (Proposition 6.4.12) and the Grothendieck-Lefschetz trace formula.

Construction 6.5.2. Let X = Spec Fq ×Spec Fq X and let G = Spec Fq ×Spec Fq G. We will
regard Shv`(X) as a symmetric monoidal ∞-category with respect to the !-tensor product of
§4.6. Let BG denote the classifying stack of G so that we can regard the relative cohomology
sheaf [BG]X as an augmented commutative algebra object of Shv`(X), as in §6.2. We define

M(G) ∈ Shv`(X) by the formula

M(G) = (cot[BG]X)[`−1].

We will refer to M(G) as the motive of G relative to X.

The relative motive M(G) is closely related to the motives defined in §6.4.

Remark 6.5.3. Let x ∈ X(Fq). Using Remark 6.1.7 and Proposition 5.1.9, we obtain equiva-
lences

x! M(G) = x!(cot[BG]X)[`−1]

' cot(x![BG]X [`−1])

' cot(C∗(BGx; Q`)).

in the ∞-category ModQ`
. In particular, we can identify the cohomology of the chain complex

x! M(G) with the motive M(Gx) (see Remark 6.4.9).

Remark 6.5.4. Let U be the largest open subset of X over which the group G is semisimple.
Then we can choose a surjective étale morphism V → U and an equivalence

V ×X G ' V ×Spec Fq
H,

where H is a semisimple algebraic group over Fq. We then have

M(G)|V = cot([BG]X)[`−1]|V
' cot([V ×Spec Fq

BH]V )[`−1]

' cot(C∗(BH; Z`)⊗ ωV )[`−1]

' cot(C∗(BH; Q`))⊗ ωV .

It follows that the `-adic sheaf M(G) is lisse when restricted to U (in fact, it is even locally
constant: after base change to V , it is equivalent to a direct sum of finitely many shifted copies
of ωV [`−1]). In particular, for any point x ∈ U(Fq) we have a canonical equivalence

x∗M(G) ' (x! M(G))⊗Q`
Σ2 Q`(1)
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so that the cohomology of x∗M(G) can be identified with the Tate-twisted motive M(Gx)⊗Q`

Q`(1).

Proposition 6.5.5. The cohomology H∗(X;M(G)) is a finite-dimensional vector space over Q`.
Moreover, each eigenvalue of the Frobenius map Frob on H∗(X;M(G)) has complex absolute
value ≥ q.

Proof. This can be deduced from Deligne’s work on the Weil conjectures ([14]). However, we
will proceed in a more elementary way. Let H denote a split form of the generic fiber of G,
regarded as an algebraic group over Fq. Choose a finite generically étale map X ′ → X, where
X ′ is a smooth connected curve over Fq (not necessarily geometrically connected) and the
groups H×Spec Fq X

′ and G×XX ′ are isomorphic at the generic point of X ′. Then there exists
a dense open subset U ′ ⊆ X ′ and an isomorphism

α : H ×Spec Fq U
′ ' G×X U ′

of group schemes over U ′. Shrinking U ′ if necessary, we may assume that U ′ is the inverse
image of a dense open subset U ⊆ X, and that the map U ′ → U is finite étale.

Let {x1, . . . , xn} be the set of closed points of X which do not belong to U . Replacing
Fq by a finite extension if necessary, we may assume that each xi is defined over Fq. Let

fi : Spec Fq → X denote the map determined by xi and let U = Spec Fq ×Spec Fq U , so that we
have an exact sequence⊕

1≤i≤n

H∗(f !
i M(G))→ H∗(X;M(G))→ H∗(U ;M(G)|U ).

It will therefore suffice to prove the following:

(a) For 1 ≤ i ≤ n, the cohomology H∗(f !
i M(G)) is finite-dimensional and each eigenvalue

of Frob on H∗(f !
i M(G)) has complex absolute value ≥ q.

(b) The cohomology H∗(U ;M(G)|U ) is finite-dimensional and each eigenvalue of Frob on

H∗(U ;M(G)|U ) has complex absolute value ≥ q.
Assertion (a) follows immediately from Lemma 6.4.13 and the identification H∗(f !

i M(G)) '
M(Gxi) supplied by Remark 6.5.3. To prove (b), let H = Spec Fq ×Spec Fq H, let U

′
=

Spec Fq ×Spec Fq U
′ and let π : U

′ → U denote the projection map. Then M(G)|U is a di-

rect summand of π∗π
∗M(G)|U , so that H∗(U ;M(G)|U ) is a direct summand of

H∗(U
′
;M(G)|U ′) ' H∗(U

′
; cot(C∗(BH; Q`))⊗ ωU ′)

' M(H)⊗Q`
H∗+2(U

′
; Q`(1)).

The finite-dimensionality of H∗(U ;M(G)|U ) follows immediately. To prove the assertion about

Frobenius eigenvalues, we note that each eigenvalue of Frob on H∗(U
′
; Q`) has complex absolute

value ≥ 1 and therefore each eigenvalue of Frob on H∗(U
′
; Q`(1)) has complex absolute value

≥ q−1. We are therefore reduced to proving that each eigenvalue of Frob on M(H) has complex
absolute value ≥ q2, which follows from Lemma 6.4.13. �

We will also need the following assertion, whose proof will be given in §8.3 (see Theorem
8.3.1):

Proposition 6.5.6. The moduli stack BunG(X) is connected.

Remark 6.5.7. We will prove a stronger version of Proposition 6.5.6 in §8.3 using Theorem
5.4.5 (which we prove in §7). However, it is possible to deduce Proposition 6.5.6 directly from
Theorem 3.2.9 together with some basic facts about the affine Grassmannian of G. Note first
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that if D ⊆ X is an effective divisor, then the map BunG(X,D) → BunG(X) is surjective; it
will therefore suffice to verify the connectedness of BunG(X,D). We can then use Theorem
3.2.9 to reduce to proving the connectedness of RanG(X−D). If D is sufficiently large (so that
G is reductive over the open set X −D ⊆ X), then the projection map π : RanG(X −D) →
Ran(X−D) is Ind-proper (see Lemma 8.5.8). Using the connectedness of Ran(X−D) (Theorem
2.4.5), we are reduced to showing that the fibers of π are connected. Note that if µ is a k-valued
point of Ran(X −D) corresponding to a finite subset S ⊆ X(k), then the fiber of π over the
point µ can be identified with the product

∏
x∈S GrxG. It will therefore suffice to show that

each of the Ind-schemes GrxG is connected, which follows from the fact that G is semisimple and
simply connected at the point x (since x /∈ D); see Lemma 9.5.9.

Using Corollary 6.2.5, we can identify the cotangent fiber cotC∗geom(BunG(X)) with the chain

complex C∗(X;M(G)). It follows from Proposition 6.5.5 that the cohomologies of this chain
complex are finite dimensional and that the eigenvalues of Frob−1 have complex absolute value
< 1. Proposition 6.5.6 implies that the group H0

geom(BunG(X)) is isomorphic to Q`. Applying
Proposition 6.3.4, we obtain the following preliminary version of Theorem 6.5.1:

Corollary 6.5.8. The pair (H∗geom(BunG(X)); Frob−1) is summable. Moreover, we have

Tr(Frob−1 |H∗geom(BunG(X))) = exp(
∑
n>0

1

n
Tr(Frob−n |H∗(X;M(G)))).

In particular, the sum on the right is absolutely convergent.

6.5.1. Application of the Trace Formula. For each integer n > 0, the Grothendieck-Lefschetz
trace formula and Steinberg’s formula (Proposition 6.4.12) supply equalities

1

n
Tr(Frob−n |H∗(X;M(G))) =

1

n

∑
η∈X(Fqn )

Tr(Frob−n |H∗(η! M(G)))

=
∑

η∈X(Fqn )

1

n
Tr(Frob−n |M(Gη))

=
∑

n=e deg(x)

1

e
Tr(Frob−ex |M(Gx))

where the latter sum is taken over all closed points x ∈ X whose degree divides n, and Frobx
denotes the geometric Frobenius at the point x. Combining this with Corollary 6.5.8, we obtain
an equality

Tr(Frob−1 |H∗geom(BunG(X); Q`)) = exp(
∑
n>0

∑
e deg(x)=n

1

e
Tr(Frob−ex |M(Gx)).(12)

Proposition 6.5.9. The double summation appearing in formula (12) is absolutely convergent.

Proof. For each closed point x ∈ X, let λx,1, . . . , λx,mx ∈ C denote the eigenvalues of Frobx on

C⊗Q`
M(Gx), so that Tr(Frob−ex |M(Gx)) =

∑
1≤i≤mx λ

−e
x,i. We will show that the triple sum∑

n>0

∑
e deg(x)=n

1

e

∑
1≤i≤mx

|λ−ex,i|

is convergent.
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For each integer d, set

Cd =
∑

deg(x)=d

∑
e>0

∑
1≤i≤mx

1

e
|λ−ex,i|;

we wish to show that that each Cd is finite and that the sum
∑
d>0 Cd is convergent. Let g

denote the genus of the curve X, so that we have an inequality |X(Fqd)| ≤ qd + 2gq
d
2 + 1.

It follows that the number of closed points of X0 having degree exactly d is bounded above

by d−1(qd + 2gq
d
2 + 1). Let H be a split form of the generic fiber of G and let r denote the

dimension of M(H) as a vector space over Q` (the number r is equal to the rank of the generic
fiber of G, but we will not need to know this). For all but finitely many closed points x ∈ X,
the motive M(Gx) is isomorphic to M(H) as a Q`-vector space (see Remark 6.5.4) so that
mx = r. In this case, each of the eigenvalues λx,i has complex absolute value ≥ q2 (Lemma
6.4.13). For d� 0, we have

Cd ≤ qd + 2gq
d
2 + 1

d
r
∑
e>0

1

e
q−2de

≤ (2g + 2)qdr
∑
e>0

q−2de

≤ (2g + 2)qdr
q−2d

1− q−2d

≤ (2g + 2)r

1− q−2
q−d.

It follows that the series
∑
d>0 Cd is dominated (apart from finitely many terms) by the geo-

metric series
∑
d>0

(2g+2)r
1−q−2 q

−d and is therefore convergent. �

Proof of Theorem 6.5.1. By virtue of Proposition 6.5.9, we are free to rearrange the order of
summation appearing in formula (12). We therefore obtain

Tr(Frob−1 |H∗geom(BunG(X))) = exp(
∑
n>0

∑
e deg(x)=n

1

e
Tr(Frob−ex |M(Gx))

= exp(
∑
x∈X

∑
e>0

1

e
Tr(Frob−ex |M(Gx))

=
∏
x∈X

exp(
∑
e>0

1

e
Tr(Frob−ex |M(Gx))

=
∏
x∈X0

|κ(x)|dim(G)

|Gx(κ(x))|
,

where the last equality follows from Proposition 6.4.12. �

Remark 6.5.10. To the relative motive M(G) we can associate an L-function

LM(G),Frob−1(t) = det(1− tFrob−1 |H∗(X;M(G)))−1,

which is a rational function of t. The proof of Proposition 6.5.9 shows that this L-function
admits an Euler product expansion

LM(G),Frob−1(t) =
∏
x∈X

LM(Gx),Frob−1
x

(t)
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where the product on the right hand side converges absolutely for |t| < q. Combining this
observation with Steinberg’s formula (Proposition 6.4.12), we obtain

LM(G),Frob−1(1) =
∏
x∈X

|κ(x)|dim(G)

|G(κ(x))|
.

The right hand side of this formula is given by

q− dim BunG(X)τ(G)−1
∑
P

1

|Aut(P)|
,

where τ(G) = µTam(G(KX)\G(A)) denotes the Tamagawa number of G (see the discussion
preceding Conjecture 1.2.18). We therefore obtain an equality

τ(G)LM(G),Frob−1(1) = q− dim BunG(X)
∑
P

1

|Aut(P)|
,

which we can regard as a function field analogue of Theorem 9.9 of [21].

7. Decomposition of the Sheaf B

Let k be an algebraically closed field, let ` be a prime number which is invertible in k, let
X be an algebraic curve over k, and let G be a smooth affine group scheme over X. Assume
that the fibers of G are connected and that the generic fiber of G is semisimple and simply
connected, and let B ∈ Shv!

`(Ran(X)) denote the !-sheaf introduced in §5.4.2. In this section,
we begin our proof of Theorem 5.4.5, which asserts that the canonical map

ρ :

∫
B→ C∗(BunG(X); Z`)

is an equivalence (modulo a technical assertion about the compatibility of chiral homology with
inverse limits, which we will establish in §9).

In order to describe our strategy of proof, it will be convenient to first assume for simplicity
that the group scheme G is everywhere reductive. Let RanG(X) denote the Beilinson-Drinfeld
Grassmannian of G (see Definition 3.2.3). It follows from Theorem 3.2.9 that the forgetful
functor RanG(X) → BunG(X) is a universal homology equivalence, and therefore induces a
quasi-isomorphism θ : C∗(BunG(X); Z`)→ C∗(RanG(X); Z`). To prove Theorem 5.4.5, it will
suffice to show that the composite map∫

B
ρ→ C∗(BunG(X); Z`)

θ→ C∗(RanG(X); Z`)

is a quasi-isomorphism.
The prestack RanG(X) admits a Cartesian fibration ψ : RanG(X) → Fins. For every

nonempty finite set S, let RanG(X)S denote the fiber ψ−1{S}, so that we have a canonical
equivalence

C∗(RanG(X); Z`) ' lim←−
S∈Fins

C∗(RanG(X)S ; Z`).

Our strategy will be to find a corresponding decomposition of B as an inverse limit lim←−S∈Fins BS

for certain !-sheaves {BS ∈ Shv!
`(Ran(X))}S∈Fins , so that the composite map θ◦ρ can be written
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as a composition ∫
B

α→
∫

lim←−
S∈Fins

BS(13)

β→ lim←−
S∈Fins

∫
BS(14)

γ→ lim←−
S∈Fins

C∗(RanG(X)S ; Z`)(15)

' C∗(RanG(X); Z`).(16)

Let us now outline the contents of this section. We begin in §7.2 by giving a definition of
the !-sheaves BS and the maps which appear in diagram (13). For the moment, let us give an
informal summary:

(i) If S is a nonempty finite set, then BS can be described informally as follows: its !-fiber
at a point ν : T → X(k) is the cochain complex of the prestack which parametrizes
G-bundles which are defined on an open subset of X containing the divisor |ν(T )|, and
trivialized away from the image of some map µ : S → X.

(ii) Any G-bundle defined on an open neighborhood of the divisor |ν(T )| determines a G-
bundle on the divisor |ν(T )| itself. This observation determines a map of !-sheaves
B → BS which depends functorially on S. Passing to the limit over S, we obtain a
map α : B→ lim←−S BS .

(iii) The prestack described in (i) contains RanG(X)S as a full subcategory (comprised of
those objects which correspond to G-bundles which are defined on the entire curve X).
This observation induces a map

γS :

∫
BS → C∗(RanG(X)S ; Z`).

Passing to the inverse limit over S, we obtain a map

γ : lim←−
S∈Fins

∫
BS → lim←−

S∈Fins

C∗(RanG(X)S ; Z`) ' C∗(RanG(X); Z`).

To prove Theorem 5.4.5, it will suffice to show that the maps α, β, and γ are quasi-
isomorphisms. In this section, we will take the first steps towards this proof by showing that
the map α is a quasi-isomorphism (Theorem 7.2.10). At the level of costalks, this asserts that
the moduli stack parametrizing G-bundles on the divisor |ν(T )| has the same `-adic cohomol-
ogy as the prestack parametrizing G-bundles defined on an open neighborhood of |ν(T )|, and
trivialized away from a finite set which does not meet |ν(T )|. We will outline the proof of this
statement in §7.3, and carry out the details in §7.4, §7.5, and §7.6.

It is relatively straightforward to show that for every nonempty finite set S, the map
γS :

∫
BS → C∗(RanG(X)S ; Z`) described in (iii) is a quasi-isomorphism (Theorem 7.2.11).

Granting this, the proof of Theorem 5.4.5 can be reduced to showing that that the comparison
map

β :

∫
lim←−

S∈Fins

BS → lim←−
S∈Fins

∫
BS

is a quasi-isomorphism. However, this is not a formality: the definition of chiral homology in-
volves an infinite direct limit, and does not commute with inverse limits in general (in fact, the
map β generally fails to be a quasi-isomorphism when the generic fiber of G is not simply con-
nected). The proof of Theorem 5.4.5 which we give in §9 will actually proceed along somewhat
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different lines, and does not make direct use of the statement that γ is a quasi-isomorphism.
We nevertheless include a proof of this fact in §7.7, which the reader can omit if desired.

Our analysis of the map α depends crucially on the fact that for every finite set S, the
Beilinson-Drinfeld Grassmannian RanG(X)S can be written as a direct limit of algebraic va-
rieties which are proper over XS . This statement generally fails when G is not everywhere
reductive. To circumvent this difficulty, we will choose an effective divisor Q ⊆ X such that G
is reductive over X − Q, and therefore each Beilinson-Drinfeld Grassmannian RanG(X − Q)S
is Ind-proper over (X − Q)S (see Lemma 8.5.8). According to the noncompact version of
nonabelian Poincare duality (Theorem 3.2.9), the prestack RanG(X − Q) has the same `-adic
cohomology as BunG(X,Q). If the fibers Gx are vector group for x ∈ Q, then RanG(X − Q)
has the same `-adic cohomology as BunG(X) and we can use it as a replacement for RanG(X)
in the argument outlined above. This can always be arranged by replacing G by an appropriate
dilitation. It will therefore be useful to know that the validity of Theorem 5.4.5 depends only
on the generic fiber of the group scheme G, which we will prove in §7.1 (Proposition 7.1.1).

Remark 7.0.1. Since the theory of Tamagawa numbers depends only on the generic fiber G0

of G, we are free to choose any integral model that we like for the purposes of proving the
equality ∏

x∈X

|κ(x)|d

|G(κ(x))|
= q− dim BunG(X)

∑
P

1

|Aut(P)|
.

of Conjecture 1.2.18. Consequently, for purposes of proving Weil’s conjecture, the results of
§7.1 are not needed: it suffices to show that there exists an integral model G′ of G0 for which
both of the equalities∏

x∈X

|κ(x)|d

|G′(κ(x))|
= Tr(Frob−1 |H∗(BunG′(X); Z`)) = q− dim BunG′ (X)

∑
P

1

|Aut(P)|

are valid, and these equalities requires only that we prove Theorem 5.4.5 for the group scheme
G′. We include §7.1 nevertheless, since it may be of independent interest to know that the
equivalence

∫
B ' C∗(BunG(X); Z`) is valid for any integral model of G0 (provided that it is

smooth, affine, and has connected fibers).

7.1. Independence of G. Throughout this section, we fix an algebraically closed field k, a
prime number ` which is invertible in k, and an algebraic curve X over k. For every smooth
affine group scheme G over X, let BG ∈ Shvlax

` (Ran(X)) be defined as in Notation 5.4.2, and
let ρG :

∫
BG → C∗(BunG(X); Z`) denote the map appearing in the statement of Theorem

5.4.5. Our goal is to prove the following:

Proposition 7.1.1. If the fibers of G are connected, then the statement that ρG :
∫
BG →

C∗(BunG(X); Z`) is an equivalence depends only on the generic fiber of G. In other words, if
G and G′ are smooth affine group schemes over X with connected fibers and the generic fibers
of G and G′ are isomorphic, then ρG is an equivalence if and only if ρG′ is an equivalence.

We will deduce Proposition 7.1.1 from the pair of lemmas:

Lemma 7.1.2. Let G be a smooth affine group scheme over X, let x be a closed point of X, let
ex denote the identity element of the algebraic group Gx, and let G′ denote the smooth affine
group scheme over X obtained by dilitation of G at the point ex (see §A.3). Suppose that Gx
is connected. Then G satisfies the conclusion of Theorem 5.4.5 if and only if G′ satisfies the
conclusion of Theorem 5.4.5. That is, the canonical map

ρG :

∫
BG → C∗(BunG(X); Z`)
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is an equivalence if and only if the canonical map

ρG′ :

∫
BG′ → C∗(BunG′(X); Z`)

is an equivalence.

Lemma 7.1.3. In the situation of Lemma 7.1.2, suppose that the fiber Gx is a vector group.
Then the canonical maps∫

BG →
∫

BG′ C∗(BunG(X); Z`)→ C∗(BunG′(X); Z`)

are equivalences.

Remark 7.1.4. Let G and G′ be as in Lemma 7.1.2. Then the canonical map G′ → G induces
the trivial map G′x → Gx, so that we have a commutative diagram of algebraic stacks

BunG′(X) //

��

Spec k

��
BunG(X) // BGx .

It is not hard to see that this diagram is a pullback square: that is, BunG′(X) can be identified
with principal Gx-bundle BunG(X, {x}) over BunG(X) which classifies G-bundles on X which
are equipped with a trivialization at the point x.

Proof of Proposition 7.1.1. Since the generic fibers of G and G′ are isomorphic, we can choose
an nonempty open set U ⊆ X and an isomorphism

α : U ×X G′ → U ×X G

of group schemes over U . Suppose that ρG′ is an equivalence; we will show that ρG is an
equivalence. Using Lemma 7.1.2 repeatedly, we can replace G by the group scheme obtained
from G by dilitation at the points of X − U , and thereby reduce to the case where Gx is a
vector group for x ∈ X − U .

Using Lemma 7.1.2 and Proposition A.3.11, we can replace G′ by the group scheme obtained
from G′ by finitely many dilitations at the points of X − U and thereby reduce to the case
where α extends to a morphism α : G′ → G of group schemes over X. Similarly, there exists a
group scheme G′′ obtained from G by finitely many dilitations at the points of X − U so that
α−1 extends to a map of group schemes β : G′′ → G′. We then have a commutative diagram∫

BG

ρG

��

//
∫
BG′

ρG′

��

//
∫
BG′′

ρG′′

��
C∗(BunG(X); Z`) // C∗(BunG′(X); Z`) // C∗(BunG′′(X); Z`).

The horizontal composite maps are equivalences by virtue of Lemma 7.1.3 and Remark 7.1.4,
so that this diagram exhibits ρG as a retract of ρG′ . Since ρG′ is an equivalence, it follows that
ρG is also an equivalence. �

The proofs of Lemmas 7.1.2 and 7.1.3 will require a few purely algebraic results whose proofs
will be given at the end of this section.
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Lemma 7.1.5. Let A be an associative algebra object of ModZ` equipped with an augmentation
ε : A → Z`. Suppose that ε induces an isomorphism H0(A) → Z`, that Hi(A) ' 0 for i > 0,
and that H−1(A) is a flat Z`-module. Let φ : M → N be a morphism of left A-module objects
of ModZ` , and suppose that Hi(M) ' Hi(N) ' 0 for i > 0. Then φ is an equivalence if and
only if the induced map Z` ⊗AM → Z` ⊗A N is an equivalence.

Lemma 7.1.6. Let A• be a cosimplicial object of Alg(ModZ`). Suppose we are given a cosim-
plicial right A•-module M• and a cosimplicial left A•-module N• satisfying the following re-
quirements:

(a) For each integer n ≥ 0, the homology groups H∗(M
n), H∗(N

n), and H∗(A
n) vanish for

∗ > 0.
(b) For each integer n ≥ 0, the unit map Z` → H0(An) is an isomorphism.
(c) For each integer n ≥ 0, the homology group H−1(An) is torsion-free.

Then the canonical map

θ : Tot(M•)⊗Tot(A•) Tot(N•)→ Tot(M• ⊗A• N•)

is an equivalence in ModZ` .

Lemma 7.1.7. Let H be a connected algebraic group over k, let BH denote the classifying stack
of H, let C be a prestack equipped with a map π : C→ BH, and form a pullback square

C //

��

C

��
Spec k // BH .

Then the associated diagram of cochain complexes

C∗(C; Z`) C∗(C; Z`)oo

C∗(Spec k; Z`)

OO

C∗(BH; Z`)oo

OO

is a pushout square in CAlg(ModZ`).

Proof. Let U0 = Spec k, and let U• denote the simplicial scheme given by the nerve of the
smooth map U0 → BH (so that Ud ' Hd). For each integer d ≥ 0, the pullback diagram σd:

C×BH Ud

��

// C×BHUd

��
Spec k ×BH Ud // Ud

can be rewritten as

C×Spec k H
d+1 //

��

C×Spec k H
d

��
Hd+1 // Hd.
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Using Corollary 2.3.43, we deduce that σd determines a pushout square

C∗(C×BH Ud; Z`) C∗(C×BHUd; Z`)oo

C∗(Spec k ×BH Ud; Z`)

OO

C∗(Ud; Z`)oo

OO

in ModZ` . We may therefore identify C∗(C) with Tot(M• ⊗A• N•), where A• = C∗(U•; Z`),
M• = C∗(C×BHU•; Z`), and N• = C∗(Spec k ×BH U•; Z`). To prove Lemma 7.1.7, we must
show that the canonical map

θ : Tot(M•)⊗Tot(A•) Tot(N•)→ Tot(M• ⊗A• N•)

is an equivalence in ModZ` . For this, it will suffice to show that A•, M•, and N• satisfy the
hypotheses of Lemma 7.1.6. Hypothesis (a) is obvious, and hypotheses (b) and (c) follows from
our assumption that H is connected. �

Proof of Lemmas 7.1.2 and 7.1.3. Let us identify x with a closed immersion Spec k → X. Set
A = ωX ⊕ x∗C∗red(BGx; Z`). Using Example 5.6.8 and Remark 5.6.13, we see that A can be
regarded as a commutative algebra object of Shv`(X) with the following universal property:
for every commutative algebra object A′ of Shv`(X), the canonical map

MapCAlg(Shv`(X))(A,A
′)→ MapCAlg(ModZ`

)(C
∗(BGx; Z`), x

! A′)

is a homotopy equivalence. In particular, we have a canonical map A → BG for which the
composite map A→ BG → BG′ factors through ωX . We claim that the diagram σ :

A //

��

BG

��
ωX // BG′

is a pushout square in CAlg(Shv`(X)). To prove this, it suffices to show that x!(σ) is a pushout
square in CAlg(ModZ`) and that j∗(σ) is a pushout square in CAlg(Shv`(X − {x})), where
j : X − {x} ↪→ X is the inclusion map. This is clear, since the horizontal maps in the diagram
x!(σ) are equivalences and the vertical maps in j∗(σ) are equivalences.

Let π? : CAlg(Shv`(X)) → CAlg(ModZ`) be as in Example 5.6.12. It follows immediately
from the universal property of A that π?A ' C∗(BGx; Z`). We have a commutative diagram
σ :

C∗(BGx; Z`) //

��

∫
BG

��

ρG // C∗(BunG(X); Z`)

��
Z` //

∫
BG′

ρG′ // C∗(BunG′(X); Z`)

in the ∞-category CAlg(ModZ`), where the left square is given by π?(σ) (and is therefore a
pushout square) and the outer square is obtained from the pullback diagram of algebraic stacks

BunG′(X) //

��

BunG(X)

��
Spec k // BGx,
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and is therefore a pushout diagram by virtue of Lemma 7.1.7 (see Remark 7.1.4). If Gx is a
vector group, then the left vertical map C∗(BGx; Z`) → Z` is an equivalence, so that vertical
maps ∫

BG →
∫

BG′ C∗(BunG(X); Z`)→ C∗(BunG′(X); Z`)

are equivalences; this proves Lemma 7.1.3.
In the general case, we conclude that the right square in the diagram σ is also a pushout, so

that we can identify ρG′ with the induced map

Z` ⊗C∗(BGx;Z`)

∫
BG → Z` ⊗C∗(BGx;Z`) C

∗(BunG(X); Z`)

induced by ρG. It follows immediately that if ρG is an equivalence, then ρG′ is also an equiva-
lence. The converse follows from Lemma 7.1.5 (applied to the algebra A = C∗(BGx; Z`)), since
the cohomologies of C∗(BunG(X); Z`) and

∫
BG are concentrated in nonnegative degrees. In

the first case this is obvious, and in the second it follows from Theorem 8.2.18 and Corollary
8.3.6. This completes the proof of Lemma 7.1.2. �

We now turn to the proof of Lemmas 7.1.5 and 7.1.6.

Lemma 7.1.8. Let A be an associative algebra object of the ∞-category ModZ` equipped with
an augmentation ε : A → Z` and let M be a left A-module in Z`. Suppose that ε induces
an isomorphism H0(A) → Z`, that Hi(A) ' Hi(M) ' 0 for i > 0, and that H−1(A) is a
flat Z`-module. Then the groups Hn(Z` ⊗A M) vanish for n > 0, and the canonical map
H0(M)→ H0(Z` ⊗AM) is injective.

Proof. We first construct a sequence of right A-modules

N0 → N1 → N2 → · · ·
equipped with a compatible collection of maps εj : Nj → Z`. Set N0 = A and ε0 = ε. Assuming
that Nj and εj have been defined, let Kj = fib(εj), and regard Kj as an object of ModZ` . Then
the canonical map Kj → Nj extends to a right A-module morphism θj : Kj⊗Z`A→ Nj , whose
composition with εj is canonically nullhomotopic. We define Nj+1 = cofib(θj), and we let εj+1

be the extension of εj determines by the canonical nullhomotopy of εj ◦ θj . Note that the fiber
of the map εj+1 can be identified with Kj ⊗Z` ΣK0. Since Z` is a principal ideal domain, we
have exact sequences

0→
⊕
p+q=n

TorZ`
0 (Hp(Kj),Hq(K0))→ Hn−1(Kj+1)→

⊕
p+q=n−1

TorZ`
1 (Hp(Kj),Hq(K0))→ 0.

It follows by induction on j that Hn(Kj) ' 0 for n ≥ 0 and that H−1(Kj) is flat as a Z`-module.
By construction, each of the maps fib(εj) → fib(εj+1) is nullhomotopic as a map of Z`-

modules, so that lim−→ fib(εi) ' 0 and therefore Z` is equivalent to the colimit lim−→Nj . We may
therefore compute

Hn(Z` ⊗AM) ' Hn(lim−→Nj ⊗A lim−→M)

' lim−→Hn(Nj ⊗AM).

It will therefore suffice to show that the maps Hn(Nj ⊗AM)→ Hn(Nj+1 ⊗AM) are bijective
for n > 0 and injective when n = 0. We have a fiber sequence

(Kj ⊗Z` A)⊗AM →M ⊗A Nj →M ⊗A Nj+1

which determines a long exact sequence of abelian groups

Hn(Kj ⊗Z` A)→ Hn(Nj ⊗AM)→ Hn(Nj+1 ⊗AM)→ Hn−1(Kj ⊗Z` M)
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We are therefore reduced to proving that the groups Hn(M ⊗Z` Kj) vanish for n ≥ 0. This
follows immediately from the existence of an exact sequence

0→
⊕
p+q=n

TorZ`
0 (Hp(M),Hq(Kj))→ Hn(M ⊗Z` Kj)→

⊕
p+q=n−1

TorZ`
1 (Hp(M),Hq(Kj))→ 0.

�

Example 7.1.9. Let C be a prestack. Then A = C∗(C; Z`) can be regarded as a commutative
algebra object of ModZ` . Writing A as the Z`-linear dual of C∗(C; Z`), we obtain exact sequences

0→ Ext1
Z`

(H1−n(C; Z`),Z`)→ Hn(A)→ Ext0
Z`

(H−n(C; Z`),Z`).

If H0(C; Z`) ' Z`, this gives isomorphisms

Hn(A) '


0 if n > 0

Z` if n = 0

Ext0
Z`

(H1(C; Z`),Z`) if n = −1.

It follows that A satisfies the hypotheses of Lemma 7.1.8.

Proof of Lemma 7.1.5. Let K = cofib(φ); we wish to show that if Z` ⊗A K ' 0, then K ' 0.
Note that Hi(K) ' 0 for i > 0. If K 6= 0, then there exists some largest integer i such that
Hi(K) 6= 0. Applying Lemma 7.1.8, we see that the canonical map Hi(K) → Hi(Z` ⊗A K) is
injective, contradicting our assumption that Z` ⊗A K ' 0. �

Lemma 7.1.10. Let M• be a cosimplicial object of (ModZ`)≤0 and let N ∈ (ModZ`)≤0. Then
the canonical map

Tot(M•)⊗Z` N → Tot(M• ⊗Z` N)

is an equivalence.

Proof. For each integer p ≥ 0, let K(p) denote the pth partial totaliation of M•. Since the oper-
ation of tensoring with N is exact, we can identify K(p)⊗Z`N with the pth partial totalization
of M• ⊗Z` N . It will therefore suffice to show that the canonical map

θ : (lim←−K(p))⊗Z` N → lim←−(K(p)⊗Z` N)

is an equivalence. Note that for each q ≥ 0, we have a commutative diagram

(lim←−K(p))⊗Z` N
θ //

φ

((

lim←−(K(p)⊗Z` N)

ψvv
K(q)⊗Z` N.

where the fibers of φ and ψ belong to (ModZ`)≤−q. It follows that the fiber of θ belongs to
(ModZ`)≤−q for all q, so that θ is an equivalence. �

Lemma 7.1.11. Let M• and N• be cosimplicial objects of (ModZ`)≤0. Then the canonical
map

θ : Tot(M•)⊗Z` Tot(N•)→ Tot(M• ⊗Z` N
•)

is an equivalence.
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Proof. Let ∆ denote the category whose objects are the nonempty linearly ordered sets [n] =
{0, . . . , n} and whose morphisms are nondecreasing maps. Then the diagonal map ∆→∆×∆
is right cofinal (Lemma HTT.5.5.8.4), so that we can identify θ with the natural map

( lim←−
[m]∈∆

Mm)⊗Z` ( lim←−
[n]∈∆

Nn)→ lim←−
[m],[n]∈∆

(Mm ⊗Z` N
n).

This follows from two applications of Lemma 7.1.10. �

Proof of Lemma 7.1.6. If A is an associative algebra object of ModZ` equipped with a right
A-module M and a left A-module N , then the tensor product M ⊗A N can be computed as
the geometric realization of a simplicial object BarA(M,N)• with

BarA(M,N)q 'M ⊗Z` A
⊗q ⊗Z` N

•.

For each integer d, we let BdA(M,N) denote the realization of the d-skeleton of this simplicial
object, so we have a sequence

M ⊗Z` N ' B0
A(M,N)→ B1

A(M,N)→ · · ·

with colimit M ⊗A N . Moreover, if we let A denote the cofiber of the unit map Z` → A, then
we have cofiber sequences

Bd−1
A (M,N)→ BdA(M,N)→M ⊗Z` (ΣA)⊗d ⊗Z` N.

If A•, M•, and N• are as in the statement of the Proposition, then assumption (a) and
Lemma 7.1.11 supply equivalences

BdTot(A•)(Tot(M•),Tot(N•)) ' Tot(BdA•(M
•, N•))

for each integer d ≥ 0. We may therefore identify θ with the canonical map

lim−→
d

Tot(BdA•(M
•, N•))→ Tot(lim−→

d

BdA•(M
•, N•)).

To prove that this map is an equivalence, it will suffice to show that there exists an integer k
such that BdAp(Mp, Np) belongs to (ModZ`)≤k for all p, d ≥ 0. We claim that this is satisfied
for k = 1. Using the cofiber sequence above, we are reduced to proving that

Mp ⊗Z` (ΣA
p
)⊗d ⊗Z` N

p

belongs to (ModZ`)≤1 for all p and all d ≥ 0. It follows immediately from (a) that Mp ⊗Z` N
p

belongs to (ModZ`)≤1. To complete the proof, it suffices to show that A
p

has Tor-amplitude
≤ −1 for all p ≥ 0, which follows from assumptions (a), (b), and (c). �

7.2. Construction of the Sheaves BS. Throughout this section, we fix an algebraically
closed field k, a prime number ` which invertible in k, an algebraic curve X over k, and a
smooth affine group scheme G over X. We will assume that each fiber of G is connected and
that the generic fiber of G is semisimple and simply connected. We also fix an effective divisor
Q ⊆ X (in practice, we will take Q to be the set of points at which the group scheme G fails to
be reductive; see Definition 7.2.9 below).

Let B = [RanG(X)]Ran(X) denote the !-sheaf introduced in §5.4.2. Our goal in this section
is to outline a proof of Theorem 5.4.5 by analyzing the composite map∫

B
ρ→ C∗(BunG(X); Z`)→ C∗(BunG(X,Q); Z`)→ C∗(RanG(X −Q); Z`).

Let us identify C∗(RanG(X − Q); Z`) with the chiral homology of the !-sheaf [RanG(X −
Q)×Spec kRan(X)]Ran(X) (where we regard RanG(X−Q)×Spec kRan(X) as a Ran(X)-prestack
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via projection onto the second factor). Then the map in question arises from a map of Ran(X)-
prestacks

RanG(X −Q)×Spec k Ran(X)→ RanG(X).

Unwinding the definitions, we can identify R-valued points of the left hand side with quadruples
(µ : S → (X − Q)(R), ν : T → X(R),P, γ) where S and T are nonempty finite sets, P is a
G-bundle on XR, and γ is a trivialization of P over the open set XR − |µ(S)|. With respect to
this identification, the map f is given by

(µ : S → (X −Q)(R), ν : T → X(R),P, γ) 7→ (ν : T → X(R),P ||ν(T )|)

in other words, it takes generically trivialized G-bundles which are defined on the entire curve
X and replaces them by their restrictions to the divisor |ν(T )| (ignoring their generic trivi-
alizations). The basic observation that we would like to exploit is the following: to form the
restriction P ||ν(T )| on the divisor |ν(T )|, it is not necessary that P be defined on the entire curve
X: it is sufficient that P be defined on any open set which contains ν(T ). In particular, if K is
a subset of S such that |µ(K)| ∩ |ν(T )| = ∅, then any G-bundle on the open set XR − |µ(K)|
can be restricted to the divisor |ν(T )|.

Definition 7.2.1. Let S be a nonempty finite set. We define a category Ran†G(X − Q)S as
follows:

• The objects of Ran†G(X −Q)S are septuples

(R,K−,K+, µ : S → (X −Q)(R), ν : T → X(R),P, γ)

where R is a finitely generated k-algebra, K− and K+ are subsets of S with K− ⊆ K+,
T is a nonempty finite set, µ : S → (X − Q)(R) and ν : T → X(R) are maps of sets
such that |µ(K+)| ∩ |ν(T )| = ∅, P is a G-bundle on XR, and γ is a trivialization of P
over the open set XR − |µ(S)| ⊆ XR.

• Given a pair of objects C = (R,K−,K+, µ : S → (X −Q)(R), ν : T → X(R),P, γ) and

C ′ = (R′,K ′−,K
′
+, µ

′ : S → (X − Q)(R′), ν′ : T ′ → X(R′),P′, γ′) in Ran†G(X − Q)S ,
there are no morphisms from C to C ′ unless K ′− ⊆ K− and K+ ⊆ K ′+. If both of these
inclusions hold, then a morphism from C to C ′ consists of a k-algebra homomorphism
φ : R → R′ which carries µ to µ′, a surjection of finite sets λ : T → T ′ fitting into a
commutative diagram

T

ν

��

λ // T ′

ν′

��
X(R)

X(φ) // X(R′),

and a G-bundle isomorphism between XR′ ×XR P and P′ over the inverse image of
XR − |µ(K−)| which carries γ to γ′.

Remark 7.2.2. The isomorphism class of an object (R,K−,K+, µ : S → X(R), ν : T →
X(R),P, γ) ∈ Ran†G(X −Q)S does not depend on the entire G-bundle P, only on its restriction

P0 = P |XR−|µ(K−)|. Consequently, it may be useful to think of the objects of Ran†G(X − Q)S
as septuples (R,K−,K+, µ, ν,P0, γ) where P0 is a G-bundle on XR − |µ(K−)|. However, it is
important that we consider only those G-bundles on XR − |µ(K−)| which can be extended to
G-bundles on all of XR (this condition is automatic when R = k, but not in general).

Remark 7.2.3. In the situation of Definition 7.2.1, the conditions K− ⊆ K+ and |µ(K+)| ∩
|ν(T )| = ∅ guarantee that the divisor |ν(T )| is contained in the open set XR − |µ(K−)|, which
is the locus of definition of the G-bundle P0 of Remark 7.2.2.
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Remark 7.2.4. Let S be a nonempty finite set. We can describe the prestack Ran†G(X −Q)S
informally as follows: it parametrizes pairs of maps

µ : S → X −Q ν : T → X

together with G-bundles that are defined on the open set (X − µ(S))∪ ν(T ) and trivialized on
X − µ(S).

Notation 7.2.5. Let S be a nonempty finite set. Then the construction

(R,K−,K+, µ : S → X(R), ν : T → X(R),P, γ) 7→ (R, ν : T → X(R))

determines a coCartesian fibration Ran†G(X − Q)S → Ran(X). We may therefore regard

Ran†G(X−Q)S as a Ran(X)-prestack in the sense of Definition 5.2.15. Let BS ∈ Shvlax
` (Ran(X))

denote the lax !-sheaf given by [Ran†G(X −Q)S ]Ran(X) (see Definition 5.2.19).

Remark 7.2.6. Let S be a nonempty finite set, and let RanG(X − Q)S denote the fiber
RanG(X −Q)×Fins {S}. There is an evident fully faithful embedding

ι : RanG(X −Q)S ×Spec k Ran(X)→ Ran†G(X −Q)S

given by the formula

((R,µ : S → X(R),P, γ), (R, ν : T → X(R))) 7→ (R, ∅, ∅, µ : S → X(R), ν : T → X(R),P, γ).

The essential image of this embedding consists of those objects

(R,K−,K+, µ : S → X(R), ν : T → X(R),P, γ) ∈ Ran†G(X −Q)S

for which K− = K+ = ∅. Note that ι is a map of Ran(X)-prestacks, and therefore determines
a map of relative cohomology sheaves

BS = [Ran†G(X −Q)S ]Ran(X)

→ [RanG(X −Q)S ×Spec k Ran(X)]Ran(X)

' C∗(RanG(X −Q)S ; Z`)⊗ ωRan(X).

Remark 7.2.7. Let S be a nonempty finite set. By virtue of Remark 7.2.3, we have a forgetful

functor Ran†G(X −Q)S → RanG(X) given on objects by

(R,K−,K+, µ : S → X(R), ν : T → X(R),P, γ) 7→ (R, ν : T → X(R),P ||ν(T )|).

Passing to relative cohomology sheaves, we obtain a morphism of lax !-sheaves

B = [RanG(X)]Ran(X) → [Ran†G(X −Q)S ]Ran(X) = BS .

Remark 7.2.8. Let S be a nonempty finite set and let Q ⊆ X be an effective divisor. The con-
structions described in Remarks 7.2.6 and 7.2.7 determine a commutative diagram of Ran(X)-
prestacks

RanG(X −Q)S ×Spec k Ran(X) //

��

BunG(X)×Spec k Ran(X)

��
Ran†G(X −Q)S // RanG(X).

Passing to relative cohomology sheaves, we obtain a commutative diagram of lax !-sheaves

C∗(RanG(X −Q)S ; Z`)⊗ ωRan(X) C∗(BunG(X); Z`)⊗ ωRan(X)
oo

BS

OO

B .

OO

oo
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It follows from Remark 7.2.8 that the composite map∫
B

ρ→ C∗(BunG(X); Z`)→ lim←−
S∈Fins

C∗(RanG(X −Q)S ; Z`) ' C∗(RanG(X −Q); Z`)

admits another factorization∫
B

α→
∫

lim←−
S∈Fins

BS
β→ lim←−
S∈Fins

∫
BS

γ→ lim←−
S∈Fins

C∗(RanG(X −Q)S ; Z`).

To prove Theorem 5.4.5, it will suffice to show that the maps α and γ ◦ β are equivalences. To
prove this, we wil need to make some additional assumptions on Q.

Definition 7.2.9. Let Q ⊆ X be an effective divisor. We will say that the group scheme G is
Q-adapted if it satisfies the following conditions:

(a) There exists a simply connected semisimple algebraic group G0 over k, a finite group

Γ which acts on G0 preserving a pinning (B0, T0, {uα}), an algebraic curve X̃ with

an action of Γ, an isomorphism of algebraic curves X̃/Γ ' X, and a Γ-equivariant
homomorphism

X̃ ×X G→ X̃ ×Spec k G0

of group schemes over X̃ which is an isomorphism over the open set X̃ ×X (X − Q).

Moreover, the projection map X̃ → X is étale over X −Q.
(b) For each point x ∈ Q, the fiber Gx is a vector group (that is, it is isomorphic to a finite

product of copies of the additive group Ga.

We can now state our main results:

Theorem 7.2.10. Assume that the group scheme G is Q-adapted. Then the canonical map

[RanG(X)]Ran(X) → lim←−
S∈Fins

[Ran†G(X −Q)S ]Ran(X)

is an equivalence of lax !-sheaves on Ran(X). In particular, the induced map

α :

∫
[RanG(X)]Ran(X) →

∫
lim←−

S∈Fins

[Ran†G(X −Q)S ]Ran(X)

is a quasi-isomorphism.

Theorem 7.2.11. For every nonempty finite set S, the inclusion

RanG(X −Q)S ×Spec k Ran(X) ↪→ Ran†G(X −Q)S

of Remark 7.2.6 induces a quasi-isomorphism

γS :

∫
BS →

∫
C∗(RanG(X −Q)S ; Z`)⊗ ωRan(X) ' C∗(RanG(X −Q)S ; Z`).

In particular, these maps induce a quasi-isomorphism

γ : lim←−
S∈Fins

BS → lim←−
S∈Fins

C∗(RanG(X −Q)S ; Z`) ' C∗(RanG(X −Q); Z`).

Most of this section is devoted to the proof of Theorem 7.2.10; we will give an outline in §7.3,
and carry out the details in §7.4, §7.5, and §7.6. Theorem 7.2.11 is a relatively straightforward
application of the acyclicity of the Ran space; we give a proof in §7.7. However, we include a
proof of this statement only to highlight the significance of the sheaves BS introduced above:
the proof of Theorem 5.4.5 that we give in §9 will not make direct use of Theorem 7.2.11.

Since Theorem 7.2.10 requires the group scheme G to be Q-adapted, it will be useful to know
that this can always be arranged:
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Proposition 7.2.12. Let G be a smooth affine group scheme over X whose generic fiber is
semisimple and simply connected. Then there exists an effective divisor Q ⊆ X and a map
G′ → G of group schemes over X which is an isomorphism over the open set X −Q, where G′

is Q-adapted.

Remark 7.2.13. Using Theorems 3.2.9, 7.2.10, 7.2.11, and Proposition 7.2.12, we can almost
complete the proof of Theorem 5.4.5. Let G be an arbitrary smooth affine group scheme over X
with connected fibers whose generic fiber is semisimple and simply connected. We wish to show
that the canonical map ρ :

∫
B→ C∗(BunG(X); Z`) is a quasi-isomorphism. Using Proposition

7.2.12, we can choose an effective divisor Q ⊆ X, a Q-adapted group scheme G′ over X, and
a map of group schemes G′ → G which is an isomorphism over the open set X − Q. Using
Proposition 7.1.1, we can replace G by G′ and thereby reduce to the case where G itself is
Q-adapted. In this case, the projection map BunG(X,Q)→ BunG(X) is an affine space bundle
and therefore induces an isomorphism on `-adic homology. We are therefore reduced to showing
that the composite map∫

B
ρ→ C∗(BunG(X); Z`)→ C∗(BunG(X,Q); Z`)

is a quasi-isomorphism. Using Theorems 7.2.10, 7.2.11, and 3.2.9, we can factor this composite
map as a composition∫

B '
∫

lim←−
S∈Fins

BS

β→ lim←−S∈Fins

∫
BS

' lim←−
S∈Fins

C∗(RanG(X −Q)S ; Z`)

' C∗(RanG(X −Q); Z`)

' C∗(BunG(X,Q); Z`),

and thereby reduce to proving that β is an equivalence. Unfortunately, this is not so easy: we
will therefore use a slightly different strategy in §9.

Proof of Proposition 7.2.12. Let G0 denote the split form of the generic fiber of G (regarded
as an algebraic group over k). Since the generic fiber of G is quasi-split, we can choose a
finite Galois extension L of the fraction field KX with Galois group Γ = Gal(L/KX), an action
of Γ on G0 which preserves a pinning, and a Γ-equivariant isomorphism α : SpecL ×X G '
SpecL ×Spec k G0. Let X̃ denote the algebraic curve over k with fraction field L, so that the

group Γ acts on X̃ with quotient X̃/Γ ' X. Let H denote the Weil restriction of the group

scheme X̃×Spec kG0 along the map X̃ → X, and let HΓ denote the fixed points for the evident
action of Γ on H. Then α induces an isomorphism

β0 : SpecKX ×X G ' SpecKX ×X HΓ.

of algebraic groups over KX . By a direct limit argument, we can choose a finite subset Q ⊆ X
such that β0 extends to an isomorphism

β : (X −Q)×X G→ (X −Q)×X HΓ.

Enlarging Q if necessary, we may assume that the map X̃ → X is étale over the open set X−Q.
Fix N > 0, and let G′ denote the group scheme over X obtained from G by applying an Nth
order dilitation (along the identity section) at each point of Q (see §A.3). It is then clear that
the fiber G′x is a vector group for each x ∈ Q, and that the projection map G′ → G is an
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isomorphism over X − Q. Using Proposition A.3.11, we see that for sufficiently large N , the
map β extends (uniquely) to a map of group schemes G′ → HΓ which we can identify with

a Γ-equivariant map X̃ ×X G′ → X̃ ×Spec k G0. By construction, this map is an isomorphism

when restricted to the open subset X̃ ×X (X −Q). �

7.3. The Limit of the Sheaves BS. Throughout this section, we fix an algebraically closed
field k, a prime number ` which is invertible in k, an algebraic curve X over k, a finite subset
Q ⊆ X, and a smooth affine group scheme G which is Q-adapted (see Definition 7.2.9). Our
goal in this section is to outline our strategy for proving Theorem 7.2.10, which asserts that
the canonical map

α : [RanG(X)]Ran(X) → lim←−
S∈Fins

[Ran†G(X −Q)S ]Ran(X)

is an equivalence of lax !-sheaves on Ran(X).
We begin by noting that the statement that α is an equivalence can be tested locally on the

Ran space Ran(X). This motivates the following:

Notation 7.3.1. Let T be a (possibly empty) finite set. We define a category RanG(X)T as
follows:

• The objects of RanG(X)T are triples (R, ν,P), where R is a finitely generated k-algebra,
ν : T → X(R) is a map of sets, and P is a G-bundle on the divisor |ν(T )|.
• A morphism from (R, ν,P) to (R′, ν′,P′) in RanG(X)T is a k-algebra homomorphism
R→ R′ for which the composite map

T
ν→ X(R)→ X(R′)

coincides with ν′, together with an isomorphism

SpecR′ ×SpecR P ' P′

of G-bundles on the divisor |ν′(T )| ⊆ XR′ .

The forgetful functor (R, ν,P) 7→ R is a coCartesian fibration which exhibits RanG(X)T as

a prestack, and the map (R, ν,P) 7→ (R, ν) determines a map of prestacks RanG(X)T →
XT . Note that if T is nonempty, then we can identify RanG(X)T with the fiber product

RanG(X)×Ran(X) X
T .

Notation 7.3.2. Let S and T be finite sets, where S is nonempty. We define a category

Ran†G(X −Q)TS as follows:

• The objects of Ran†G(X −Q)TS are septuples

(R,K−,K+, µ, ν,P, γ)

where R is a finitely generated k-algebra, K− and K+ are subsets of S with K− ⊆ K+,
µ : S → (X−Q)(R) and ν : T → X(R) are maps of sets such that |µ(K+)|∩|ν(T )| = ∅,
P is a G-bundle on XR, and γ is a trivialization of P over the open set XR−|µ(S)| ⊆ XR.

• Given a pair of objects C = (R,K−,K+, µ, ν,P, γ) and C ′ = (R′,K ′−,K
′
+, µ

′, ν′,P′, γ′)

in Ran†G(X−Q)TS , there are no morphisms from C to C ′ unlessK ′− ⊆ K− andK+ ⊆ K ′+.
If both of these inclusions hold, then a morphism from C to C ′ consists of a k-algebra
homomorphism φ : R→ R′ which carries µ to µ′ and ν to ν′, together with a G-bundle
isomorphism between XR′ ×XR P and P′ over the inverse image of XR−|µ(K−)| which
carries γ to γ′.
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The construction (R,K−,K+, µ, ν,P, γ) 7→ R determines a coCartesian fibration

Ran†G(X −Q)TS → Ringk,

so that we can regard Ran†G(X −Q)TS as a prestack. Moreover, the construction

(R,K−,K+, µ, ν,P, γ) 7→ (R, ν)

determines a map of prestacks Ran†G(X − Q)TS → XT . If T is nonempty, we have a canonical
isomorphism

Ran†G(X −Q)TS ' Ran†G(X −Q)S ×Ran(X) X
T .

If S and T are as in Notation 7.3.2, then the construction

(R,K−,K+, µ, ν,P, γ) 7→ (R, ν,P ||ν(T )|)

determines a map of prestacks

Ran†G(X −Q)TS → RanG(X)T ,

which depends functorially on S. Theorem 7.2.10 is an immediate consequence of the following:

Proposition 7.3.3. Let T be a finite set. Then the canonical map

[RanG(X)T ]XT → lim←−
S∈Fins

[Ran†G(X −Q)TS ]XT

is an equivalence in Shv`(X
T ).

Remark 7.3.4. Theorem 7.2.10 is equivalent to the assertion that Proposition 7.3.3 holds for
every nonempty finite set T . However, our method of proof will require that we also treat
the case where T is empty (this does not really pose any additional difficulties: when T is
empty, Proposition 7.3.3 is a formal consequence of the acyclicity of Ran(X); see the argument
following the statement of Proposition 7.3.12 below).

We will deduce Proposition 7.3.3 from the following stronger assertion:

Proposition 7.3.5. Let T be a finite set and let Y be a quasi-projective k-scheme equipped
with a map Y → XT . Then the canonical map

αY : [RanG(X)T ×XT Y ]Y → lim←−
S∈Fins

[Ran†G(X −Q)TS ×XT Y ]Y

is an equivalence in Shv`(Y ).

The virtue the formulation given in Proposition 7.3.5 is that it will allow us to apply a
devissage to the scheme Y . Suppose that we are given a proper morphism of quasi-projective
k-schemes f : Y ′ → Y . We then have a commutative diagram

[RanG(X)T ×XT Y ′]Y ′

��

αY ′ // lim←−S∈Fins [Ran†G(X −Q)TS ×XT Y ′]Y ′

��
f ![RanG(X)T ×XT Y ]Y

f !αY // lim←−S∈Fins f
![Ran†G(X −Q)TS ×XT Y ]Y

in the∞-category Shv`(Y
′). Since RanG(X)T is a smooth Artin stack with affine diagonal over

XT , it follows from Proposition 5.1.9 that the left vertical map in this diagram is an equivalence.
The right vertical map is also an equivalence:
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Proposition 7.3.6. Let T be a finite set and suppose we are given a commutative diagram of
quasi-projective k-schemes

Y ′
f //

!!

Y

}}
XT ,

where f is proper. For every nonempty finite set S, the canonical map

φ : [Ran†G(X −Q)TS ×XT Y ′]Y ′ → f ![Ran†G(X −Q)TS ×XT Y ]Y

is an equivalence in Shv`(Y
′).

Proof. Let P denote the collection of all pairs (K−,K+), where K− and K+ are subsets of S
satisfying K− ⊆ K+. We will regard P as a partially ordered set with (K−,K+) ≤ (K ′−,K

′
+)

if and only if K ′− ⊆ K− ⊆ K+ ⊆ K ′+. The construction

(R,K−,K+, µ, ν,P, γ) 7→ (K−,K+)

determines a Cartesian fibration π : Ran†G(X −Q)TS → P whose fibers are prestacks. The map
φ can be written as an inverse limit of maps

φK−,K+
: [π−1{(K−,K+)} ×XT Y ′]Y ′ → f ![π−1{(K−,K+)} ×XT Y ]Y .

It will therefore suffice to show that each φK−,K+ is an equivalence in Shv`(Y
′). This follows

from Proposition 5.1.13, because each fiber π−1{K−,K+} admits an open immersion to the
product prestack RanG(X −Q)S ×Spec k X

T . �

Corollary 7.3.7. Let f : Y ′ → Y be a proper morphism between quasi-projective k-schemes.
Suppose we are given a finite set T and a map Y → XT , and let αY and αY ′ be defined
as in Proposition 7.3.5. Then αY ′ can be identified with the image of αY under the functor
f ! : Shv`(Y )→ Shv`(Y

′).

Corollary 7.3.8. Let T be a finite set and let Y be a quasi-projective k-scheme equipped with a
map Y → XT . Let i : Y ′ → Y be a closed immersion and let j : U ↪→ Y be the complementary
open immersion. If αU and αY ′ are equivalences, then αY is also an equivalence.

Proof. It follows from Corollary 7.3.7 that we have a fiber sequence i∗(αY ′) → αY → j∗(αU )
in the ∞-category of morphisms in Shv`(Y ). �

To prove Proposition 7.3.5, we proceed by Noetherian induction on Y : that is, we may
assume without loss of generality that θY ′ is an equivalence for every closed subscheme Y ′ ( Y .
If Y is non-reduced, we can complete the proof by taking Y ′ = Yred. Let us assume that Y is
nonempty (otherwise, there is nothing to prove). By virtue of Corollary 7.3.8, it will suffice to
prove Proposition 7.3.5 after replacing Y by an arbitrary nonempty open subset of Y .

Definition 7.3.9. Let T be a finite set and let f : Y → XT be a map of quasi-projective
k-schemes, which we identify with a finite set of maps {ft : Y → X}t∈T . We will say that f is
Q-adapted if, for every element t ∈ T , one of the following conditions holds:

(a) The map ft factors as a composition Y → Spec k
q→ X, where q ∈ Q ⊆ X(k).

(b) The map ft : Y → X factors through X −Q.

Remark 7.3.10. Let f : Y → XT be as in Definition 7.3.9. If Y is nonempty and reduced,
then there exists a nonempty open subscheme U ⊆ Y such that f |U is Q-adapted.
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Using Remark 7.3.10, we see that it will suffice to prove Proposition 7.3.5 in the special case
where the map f : Y → XT is Q-adapted. In this case, we can write T = T0 q T1, where
f = {ft}t∈T has the property that ft is the constant map corresponding to some qt ∈ Q for
t ∈ T0, and ft factors through X −Q for t ∈ T1.

Lemma 7.3.11. Let f : Y → XT ' XT0 × XT1 be as above. Set Y ′ = Y , but regard Y ′ as
equipped with the map f ′ : Y ′ → XT1 given by composing f with the projection XT → XT1 .
Then αY is an equivalence if and only if αY ′ is an equivalence.

Proof. It follows immediately from the definitions that we have equivalences of prestacks

Ran†G(X)TS ×XT Y ' Ran†G(X)T1

S ×XT1 Y
′.

Under these equivalences, we can identify the natural map

Ran†G(X)T1

S ×XT1 Y
′ → RanG(X)T1 ×XT1 Y

′

with the composite map

Ran†G(X)TS ×XT Y → RanG(X)T ×XT Y
θ→ RanG(X)T1 ×XT1 Y

′,

where the map θ assigns to each G-bundle on a divisor |ν(T )| its restriction to the smaller
divisor |ν(T1)|. It follows that αY ′ factors as a composition

[RanG(X)T1 ×XT1 Y
′]Y ′

θ∗→ [RanG(X)T ×XT Y ]Y
αY→ lim←−

S

[Ran†G(X)TS ×XT Y ]Y ,

where θ∗ is the map given by pullback along θ. It will therefore suffice to show that the map
θ∗ is an equivalence in Shv`(Y ) = Shv`(Y

′).
Note that if ν : T → X(R) determines a map SpecR → XT which factors through f , then

the divisor |ν(T )| ⊆ XR can be written as a disjoint union of divisors |ν(T0)| and |ν(T1)|. It
follows that every G-bundle on |ν(T1)| extends canonically to a G-bundle on |ν(T )| (by taking
that extension to be trivial on |ν(T0)|). This construction determines a map

θ′ : RanG(X)T1 ×XT1 Y
′ → RanG(X)T ×XT Y

which is left inverse to θ. It will therefore suffice to show that θ′ induces an equivalence

θ′∗ : [RanG(X)T ×XT Y ]Y → [RanG(X)T1 ×XT1 Y
′]Y ′ .

For t ∈ T0, the map ft : Y → X takes some constant value qt ∈ Q. Let D ⊆ X be the
effective divisor given by the sum

∑
t∈T0

qt, and let H denote the affine group scheme over
k given by the Weil restriction of G ×X D along the projection map D → Spec k. Since the
fiber G ×X {q} is a vector group for q ∈ Q, the group scheme H admits a finite filtration by

vector groups and is therefore isomorphic (as a scheme) to an affine space Ad for some d ≥ 0.

We now complete the proof by observing that the map θ′ exhibits RanG(X)T1 ×XT1 Y
′ as an

H-torsor over RanG(X)T ×XT Y , and is therefore a fiber bundle (locally trivial with respsect

to the étale topology) with fiber Ad. �

By virtue of Lemma 7.3.11, it will suffice to prove Proposition 7.3.5 in the special case where
the map Y → XT factors through (X −Q)T . Passing to a dense open subset of Y if necessary,
we may assume that Y is smooth and affine. Note that the domain and codomain of αY are
`-complete (Remark 5.1.6). Consequently, to prove that αY is an equivalence it will suffice to
show that for every étale morphism u : U → Y , the induced map

C∗(U ;u∗[RanG(X)T ×XT Y ]Y )→ lim←−
S∈Fins

C∗(U ;u∗[Ran†G(X −Q)TS ×XT Y ]Y )
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is an equivalence (Proposition 4.3.37). Replacing Y by U (and using the fact that the dualizing
sheaf ωY is equivalent to Σ2dZ`(d) for d = dim(Y ), we are reduced to proving that the natural
map

C∗(RanG(X)T ×XT Y ; Z`)→ lim←−
S∈Fins

C∗(Ran†G(X −Q)TS ×XT Y ; Z`)

is an equivalence. In fact, we will prove a slightly stronger statement at the level of homology:

Proposition 7.3.12. Let T be a finite set and let Y be a smooth affine k-scheme equipped with
a a map Y → (X −Q)T . Then the canonical map

lim−→
S∈Fins

C∗(Ran†G(X −Q)TS ×XT Y ; Z`)→ C∗(RanG(X)T ×XT Y ; Z`)

is an equivalence in ModZ` .

Proof of Proposition 7.3.12 when T = ∅. Using the Künneth formula (Proposition 2.3.40), we
may assume without loss of generality that Y = Spec k: that is, we wish to show that the
canonical map

lim−→
S∈Fins

C∗(Ran†G(X −Q)∅S ; Z`)→ C∗(Spec k; Z`)

is an equivalence in ModZ` . Note that this map factors as a composition

lim−→
S∈Fins

C∗(Ran†G(X −Q)∅S ; Z`)→ lim−→
S∈Fins

C∗(Ran(X −Q)S ; Z`)→ C∗(Spec k; Z`),

where the second map is an equivalence by virtue of the acyclicty of Ran(X − Q) (Corollary
2.4.13). We will complete the proof by showing that for each S ∈ Fins, the canonica; map

θS : Ran†G(X −Q)∅S → Ran(X −Q)S

induces an isomorphism on Z`-homology.
For the remainder of the proof, we fix a nonempty finite set S and let P be the partially

ordered set introduced in the proof of Proposition 7.3.6. The construction

(R,K−,K+, µ, ν,P, γ) 7→ (K−,K+)

determines a Cartesian fibration Ran†G(X − Q)∅S → P ; let us denote the fiber over an object

(K−,K+) by Ran†G(X −Q)∅K−,K+
. Unwinding the definitions, we see that the forgetful functor

Ran†G(X −Q)∅S,S → Ran(X −Q)S is an equivalence of prestacks. Consequently, the composite
map

C∗(Ran†G(X −Q)∅S,S ; Z`)
ρ→

lim−→
(K−,K+)∈P

C∗(Ran†G(X −Q)∅K−,K+
; Z`)

' C∗(Ran†G(X −Q)∅S ; Z`)

→ C∗(Ran(X −Q)S ; Z`).

is an equivalence. To prove that θS induces an isomorphism on Z`-homology, we are reduced
to proving that the map ρ is an equivalence.

For each (K−,K+) ∈ P , let F (K−,K+) denote the chain complex C∗(Ran†G(X−Q)K−,K+
)∅,

so that F determines a functor P op → ModZ` . We wish to show that the canonical map
ρ : F (S, S)→ lim−→(K−,K+)∈P F (K−,K+) is an equivalence. Let P0 ⊆ P be the subset consisting

of those pairs (K−,K+) where K+ = S. Then P0 contains (S, S) as a least element, so we can
identify the domain of ρ with lim−→(K−,K+)∈P0

F (K−,K+). Consequently, to show that ρ is an
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equivalence, it will suffice to show that the functor F is a left Kan extension of its restriction
to P op

0 . This is equivalent to the assertion that for each (K−,K+) ∈ P , the canonical map
F (K−, S) → F (K−,K+) is an equivalence. This is clear: since T = ∅, the inclusion K+ ↪→ S

induces an equivalence of prestacks Ran†G(X −Q)∅K−,S → Ran†G(X −Q)∅K−,K+
. �

To prove Proposition 7.3.12 when T is nonempty, we will need some auxiliary constructions.

Notation 7.3.13. Let R be a finitely generated k-algebra, let P and P′ be G-bundles on XR. If
U ⊆ XR is an open subscheme, we let IsoU (P,P′) denote the set of G-bundle isomorphisms be-
tween P |U and P′ |U . If D ⊆ XR is a closed subscheme, we let Isogerm

D (P,P′) = lim−→U
IsoU (P,P′),

where the direct limit is taken over all open subschemes U ⊆ XR which contain D. We will
refer to Isogerm

D (P,P′) as the set of germs of isomorphisms of P with P′ around D.

Definition 7.3.14. Let T be a nonempty finite set. We define a category RanGgerm(X)T as
follows:

(a) The objects of RanGgerm(X)T are triples (R, ν,P) where R is a finitely generated k-
algebra, ν : T → X(R) is a map, and P is a G-bundle on XA.

(b) A morphism from (R, ν,P) to (R′, ν′,P′) is a k-algebra homomorphism R → R′ such

that ν′ coincides with the composite map T
ν→ X(R) → X(R′), together with a germ

of isomorphisms between XR′ ×XR P around the divisor |ν′(T )| ⊆ XR′ .

Remark 7.3.15. It may be helpful to think of the objects of RanGgerm(X)T as triples (R, ν,P)
where P is a germ of G-bundles defined on an open subset of XR containing the divisor |ν(T )|.
However, we consider only germs which can be extended to the entire curve XR.

Restriction of G-bundles determines morphisms of prestacks

Ran†G(X −Q)TS
φS→ RanGgerm(X)T → RanG(X)T ,

where φS depends functorially on the nonempty finite set S. Proposition 7.3.12 is an immediate
consequence of the following two assertions:

Proposition 7.3.16. Let T be a nonempty finite set and let Y be an affine k-scheme equipped
with a map Y → XT . Then the morphisms φS above induce an equivalence

lim−→
S∈Fins

C∗(Ran†G(X −Q)TS ×XT Y ; Z`)→ C∗(RanGgerm(X)T ×XT Y ; Z`).

Proposition 7.3.17. Let T be a nonempty finite set and let Y be an affine k-scheme equipped
with a map f : Y → (X −Q)T . Then the induced map

RanGgerm(X)T ×XT Y → RanGform(X)T ×XT Y

is a universal homology equivalence.

Proposition 7.3.16 is a formal consequence of nonabelian Poincare duality (more specifically,
of Theorem 3.3.1); the deduction is essentially an elaborate combinatorial exercise which we will
carry out in §7.4. The geometric core of our proof is in the verification of Proposition 7.3.17,
which we prove in §7.6 (using a calculation which we carry out in §7.5): essentially, this result
expresses the idea that there is not much difference between G-bundles defined on a divisor
D ⊆ X −Q and G-bundles defined on an open neighborhood of D.
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7.4. Germs of G-Bundles. Throughout this section, we fix an algebraically closed field k, a
prime number ` which is invertible in k, an algebraic curve X over k, a finite subset Q ⊆ X,
and a smooth affine group scheme G over X which is Q-adapted (Definition 7.2.9). Let T
be a nonempty finite set and let Y = SpecR be an affine k-scheme of finite type equipped
with a map of k-schemes Y → XT , which we will identify with a map ν : T → X(R). Let
D = |ν(T )| ⊆ XR denote the associated divisor in XR. For every finitely generated R-algebra
A, we let DA denote the inverse image of D in XA.

Our goal is to prove Proposition 7.3.16, which asserts that the canonical map

lim−→
S∈Fins

C∗(Ran†G(X −Q)TS ×XT Y ; Z`)→ C∗(RanGgerm(X)T ×XT Y ; Z`)

is a quasi-isomorphism. As a first step, we will identify the left hand side with the chain complex
of a single prestack.

Construction 7.4.1. We define a prestack C as follows:

• The objects of C are septuples (S,K−,K+, A, µ,P, γ) where S is a nonempty finite set,
K− ⊆ K+ ⊆ S, A is a finitely generated R-algebra, µ : S → (X − Q)(A) is a map
of sets for which |µ(K+)| does not intersect DA, P is a G-bundle on XA, and γ is a
trivialization of P on XA − |µ(S)|.
• A morphism from (S,K−,K+, A, µ,P, γ) to (S′,K ′−,K

′
+, A

′, µ′,P′, γ′) in the category
C consists of a surjection of finite sets α : S → S′ satisfying α−1(K ′−) ⊆ K− ⊆ K+ ⊆
α−1(K ′+), an R-algebra homomorphism A→ A′ for which the diagram

S
µ //

α

��

(X −Q)(A)

��
S′

µ′ // (X −Q)(A′)

commutes, and an isomorphism between the pullbacks of P and P′ to XA ×XA (XA −
|µ(K−)|) which carries γ to γ′.

Note that the construction (S,K−,K+, A, µ,P, γ) 7→ S determines a Cartesian fibration of
categories C → Fins, whose fiber over an object S ∈ Fins can be identified with the prestack

Y ×XT Ran†G(X −Q)TS . It follows that we have a canonical equivalence

C∗(C; Z`) ' lim−→
S∈Fins

C∗(Y ×XT Ran†G(X)TS ; Z`).

We can therefore reformulate Proposition 7.3.16 as follows:

Theorem 7.4.2. The forgetful functor

θ : C→ Y ×XT RanGgerm(X)T

(S,K−,K+, A, µ,P, γ) 7→ (A,P)

induces an isomorphism H∗(C; Z`)→ H∗(Y ×XT RanGgerm(X)T ; Z`).

Proof. We will show that the functor θ factors as a composition

C
θ0→ C0

θ1→ C1
θ2→ C2

θ3→ C3
θ4→ C4

θ5→ C5
θ6→ Y ×XT RanGgerm(X)T ,

where each Ci is a prestack via some forgetful functor πi : Ci → Ringk and each θi is a
morphism of prestacks which induces an isomorphism on `-adic homology. Most of the steps in
our argument will be completely formal: geometric input will be needed only in our proof that
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θ3 is an equivalence (which depends on the acyclicity of the Ran space) and the proof that θ4

is an equivalence (which depends on Theorem 3.3.1).

• The category C0 is defined as follows:
– The objects of C0 are septuples (S,K−,K+, A, µ,P, γ) where S is a nonempty finite

set, K− ⊆ K+ ⊆ S, A is a finitely generated R-algebra, µ : S → (X −Q)(A) is a
map of sets for which |µ(K+)| does not intersect DA, P is a G-bundle on XA, and
γ is a trivialization of P on XA − |µ(S)|.

– A morphism from (S,K−,K+, A, µ,P, γ) to (S′,K ′−,K
′
+, A

′, µ′,P′, γ′) in the cate-
gory C0 consists of a surjection of finite sets α : S → S′ satisfying K ′− ⊆ α(K−) ⊆
α(K+) ⊆ K ′+, an R-algebra homomorphism A→ A′ for which the diagram

S
µ //

α

��

(X −Q)(A)

��
S′

µ′ // (X −Q)(A′)

commutes, and an isomorphism between the pullbacks of P and P′ to XA′ ×XA
(XA − |µ(K−)|) which carries γ to γ′.

We will regard C0 as a prestack via the forgetful functor

π0 : C0 → Ringk

π0(S,K−,K+, A, µ,P, γ) = A.

By construction, we can identify C with a (non-full) subcategory of C0. Let θ0 : C ↪→ C0

be the inclusion map. We claim that θ0 induces an isomorphism on Z`-homology. To
prove this, it will suffice to show that the inclusion C ↪→ C0 is right cofinal when regarded
as a functor between ∞-categories.

Let J denote the category whose objects are given by triples (S,K−,K+) where S
is a nonempty finite set and K− ⊆ K+ ⊆ S, where a morphism from (S,K−,K+) to
(S′,K ′−,K

′
+) is a surjection α : S → S′ such that K ′− ⊆ α(K−) ⊆ α(K+) ⊆ K ′+.

Let J′ ⊆ J be the subcategory containing all objects, whose morphisms are required
to satisfy the stronger condition that α−1K ′− ⊆ K−. We have a pullback diagram of
categories

C //

��

C0

��
J′ // J,

where the vertical maps are Cartesian fibrations. Consequently, it will suffice to show
that the inclusion J′ ↪→ J is right cofinal (Remark HTT.4.1.2.10 and Proposition
HTT.4.1.2.15). Fix an object (S,K−,K+) ∈ J, and let E denote the fiber product
J′×J J/(S,K−,K+); we wish to prove that the simplicial set N(E) is weakly contractible.
Note that the projection map E → Fins

/S is a Cartesian fibration of categories. It
will therefore suffice to show that for each surjection α : S′ → S, the fiber product
ES′ = E×Fins

/S
{S′} has weakly contractible nerve. Unwinding the definition, we see

that ES′ can be identified with the partially ordered set of ordered pairs (K ′−,K
′
+) of

subsets of S′ satisfying K− ⊆ α(K ′−), K ′− ⊆ K ′+, and K ′+ ⊆ α−1K+. Let E0
S′ denote

the full subcategory of ES′ spanned by those objects where K ′+ = α−1K+. Then the

inclusion E0
S′ ↪→ ES′ admits a left adjoint given by (K ′−,K

′
+) 7→ (K ′−, α

−1K+). We
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are therefore reduced to proving that N(E0
S′) is weakly contractible. This is clear, since

N(E0
S′) has an initial object (given by the pair (α−1K+, α

−1K+)).
• Let C1 denote the full subcategory of C0 spanned by those objects (S,K−,K+, A, µ,P, γ)

where K+ is the largest subset of S for which |µ(K+)| does not intersect DA. Note
that the inclusion functor C1 ↪→ C0 admits a left adjoint θ1 : C0 → C1, given on objects
by the formula

θ1(S,K−,K+, A, µ,P, γ) = (S,K−,K
′
+, A, µ,P, γ),

where K ′+ is the largest subset of S such that |µ(K ′+)| does not intersect the inverse
image of D. The projection map π0 : C0 → Ringk restricts to a coCartesian fibration
π1 : C1 → Ringk which exhibits C1 as a prestack and θ1 as a morphism of prestacks.
Using Remark 2.3.32, we deduce that θ1 induces an isomorphism on `-adic homology
(with inverse induced by the weak morphism of prestacks C1 ↪→ C0).

• We define a category C2 as follows:
– The objects of C2 are tuples (S,A, µ, I,P, γ), where S is a nonempty finite set, A is

a finitely generated R-algebra, µ : S → (X −Q)(A) is a map of sets, I is a subset
of µ(S) ⊆ X(A) such that |I| does not intersection DA, P is a G-bundle on XA,
and γ is a trivialization of P on XA − |µ(S)|.

– A morphism from (S,A, µ, I,P, γ) to (S′, A′, µ′, I ′,P′, γ′) in C2 consists of a sur-
jection of finite sets S → S′, a map of R-algebras A→ A′ such that I ′ is contained
in the image of I under the induced map X(A)→ X(A′) and the diagram

S
µ //

��

(X −Q)(A)

��
S′

µ′ // (X −Q)(A′)

commutes, together with an isomorphism between the pullbacks of P and P′ to
XA′ ×XA (XA − |I|) which carries γ to γ′.

We regard C2 as a prestack via the map π2 : C2 → Ringk given on objects by
(S,A, µ, I,P, γ) 7→ A. There is an evident forgetful functor θ2 : C1 → C2, given by

(S,K−,K+, µ,A,P, γ) 7→ (S, µ,A, µ(K−),P, γ).

This functor admits a left adjoint, given by

(S, µ,A, I,P, γ) 7→ (S,K−,K+, µ,A,P, γ),

where K− = µ−1(I) and K+ is the largest subset of S such that |µ(K+)| does not
intersect DA. Invoking Remark 2.3.32, we see that θ2 induces an isomorphism on
`-adic homology.
• We define a category C3 as follows:

– The objects of C3 are tuples (A, I, J,P, γ) where A is a finitely generated R-algebra,
J is a (possibly empty) finite subset of (X − Q)(A), I is a subset of J such that
|I| does not intersect the inverse image of DA, P is a G-bundle on XA, and γ is a
trivialization of P on XA − |J |.

– A morphism from (A, I, J,P, γ) to (A′, I ′, J ′,P′, γ′) in C3 consists of an R-algebra
homomorphism A → A′ for which the induced map (X − Q)(A) → (X − Q)(A′)
carries J into J ′, I to a subset of X(A′) which contains I ′, together with an
isomorphism between the pullbacks of P and P′ to XA′ ×XA (XA − |I|) which
carries γ to γ′.
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We regard C3 as a prestack via the forgetful functor π3 : C3 → Ringk given by
(A, I, J,P, γ) 7→ A. We have an evident map of prestacks θ3 : C2 → C3, given on
objects by θ3(S,A, µ, I,P, γ) = (A, I, µ(S),P, γ). We observe that θ3 fits into a pullback
diagram of prestacks

C2
θ3 //

��

C3

��
Ran(X −Q) // Ran+(X −Q).

where the vertical maps are coCartesian fibrations. It follows from Theorem 2.5.19 that
the map Ran(X −Q)→ Ran+(X −Q) is a universal homology equivalence. Applying
Proposition 2.5.11, we deduce that θ3 is also a universal homology equivalence.
• We define a category C4 as follows:

– The objects of C4 are triples (A, I,P) where A is a finitely generated R-algebra, I
is a finite subset of (X − Q)(A) such that |I| ∩DA = ∅, and P is a G-bundle on
XA.

– A morphism from (A, I,P) to (A′, I ′,P′) in C4 consists of an R-algebra homo-
morphism A → A′ for which I ′ is contained in the image of the composite map
I ↪→ X(A) → X(A′), together with an isomorphism between the pullbacks of P

and P′ to XA′ ×XA (XA − |I|).
We regard C4 as a prestack via the forgetful functor π4 : C4 → Ringk given by

(A, I,P) 7→ A. Let θ4 : C3 → C4 denote the map of prestacks given by (A, I, J,P, γ) 7→
(A, I,P). We claim that θ4 is a universal homology equivalence. To prove this, consider
an object C = (A, I,P) ∈ C4, and let D = C3×C4

(C4)C/. We wish to show that the
canonical map C∗(D; Z`)→ C∗(SpecA; Z`) is an equivalence in ModZ` .

Unwinding the definitions, we can identify objects of D with tuples (B, IB , J,PB , γB),
where B is a finitely generated A-algebra, IB is a subset of X(B) which is contained
in the image of I, J is a finite subset of X(B) containing IB , PB is a G-bundle on
XB − |IB | compatible with P |XA−|I|, and γB is a trivialization of PB over XB − |J |.
Let D′ denote the full subcategory of D spanned by those tuples where J contains the
image of I in X(B). The inclusion D′ → D admits a left adjoint in the 2-category of
prestacks, and therefore induces an isomorphism on `-adic homology by Remark 2.3.32.
Let D′′ ⊆ D′ be the full subcategory spanned by those tuples (B, IB , J,PB , γ) where IB
coincides with the image of I in X(B). The inclusion D′′ ↪→ D′ admits a right adjoint
in the 2-category of prestacks, and therefore also induces an isomorphism on homology.

Let Z denote the A-scheme given by the product∏
x∈Q

P×X{x}.

The construction

(B, IB , J,PB , γB) 7→ γB |QB
determines a morphism of prestacks ρ : D′′ → Z. Since we have assumed that Gx
is a vector group for x ∈ Q and SpecR is affine, Z is isomorphic to an affine space
Ad×SpecR over SpecR. It will therefore suffice to show that ρ induces an isomorphism
in `-adic homology. In fact, we will show that ρ is a universal homology equivalence.
Fix a map SpecB → Z, so that B is a finitely generated A-algebra and we are given a
trivialization γ0 of P over the divisor QB . Let SectQB (PB) be the prestack introduced
in §3.3 whose objects are given by triples (B′, S, γ) where B′ is a finitely generated
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B-algebra, S is a nonempty finite subset of (X −Q)(B′), and γ is a trivialization of P
over XB − |S| which is compatible with γ0. Unwinding the definitions, we can identify
D′′×Z SpecB with the full subcategory of SectQB (P) spanned by those triples (B′, S, γ)
where S contains the image of I. Note that the inclusion D′′×Z SpecB ↪→ SectQB (P)
admits a left adjoint (in the 2-category of prestacks), and therefore induces an isomor-
phism on Z`-homology (Remark 2.3.32). We are therefore reduced to proving that the
projection map SectQB (P)→ SpecB induces an isomorphism in `-adic homology, which
is a special case of Theorem 3.3.1.
• We define a category C5 as follows:

– The objects of C5 are pairs (A,P), where P is a finitely generated R-algebra and
P is a G-bundle on XA.

– A morphism from (A,P) to (A′,P′) is an R-algebra homomorphism A → A′,
together with an element α ∈ lim−→U⊆XA′

IsoU (SpecA′×SpecAP,P′); here the direct

limit is taken over all open subsets U ⊆ XA′ of the form XA′ − |J |, where J is a
finite subset of X(A′) for which |J | does not intersect the inverse image of D.

We regard C5 as a prestack via the forgetful functor π5 : C5 → Ringk given by (A,P) 7→
A. The construction (A, I,P) 7→ (A,P) determines a map of prestacks θ5 : C4 → C5.
We claim that the functor π5 is right cofinal and therefore induces an equivalence
C∗(C5; Z`) → C∗(C4; Z`). To prove this, it will suffice to show that for every object
C = (A,P) in C5, the category E = C4×C5

(C5)/C has weakly contractible nerve. Note
that every object of E determines in particular a finitely generated R-algebra B together
with a map of R-algebras ψ : B → A.

Let E0 denote the subcategory of E spanned by those objects where B = A and
ψ = idA. The inclusion E0 ↪→ E admits a left adjoint, and therefore induces a weak
homotopy equivalence N(E0) → N(E). It will therefore suffice to prove that N(E0)
is weakly contractible. Unwinding the definitions, we can identify objects of E0 with
triples (I,Q, α), where I is a finite subset of (X − Q)(A) such that |I| ∩ DA = ∅, Q

is a G-bundle on XA − |I| which can be extended to a G-bundle on XA, and α ∈
lim−→U

IsoU (P,Q); a morphism from (I,Q, α) to (I ′,Q′, α′) is an inclusion I ′ ⊆ I together

with an isomorphism of Q with Q′ |XA−|I| which carries α to α′. The weak contractibility
of N(E0) follows from the observation that the opposite category E

op
0 is filtered.

• Unwinding the definitions, we can identify the fiber product Y ×XT RanGgerm(X)T with
the prestack whose objects are pairs (A,P), where A is a finitely generated R-algebra
and P is a G-bundle on XA, where a morphism from (A,P) to (A′,P′) is an R-algebra
homomorphism from A to A′ together with an element α ∈ Isogerm

DA′
(XA′ ×XA P,P′).

We can therefore identify C5 with a (non-full) subcategory of Y ×XT RanGgerm(X)T ; let

θ6 : C5 → Y ×XT RanGgerm(X)T denote the inclusion map.
We claim that θ6 is a universal homology equivalence. To prove this, fix an object

of C = (A,P) ∈ Y ×XT RanGgerm(X)T and let E denote the fiber product

C5×Y×XT RanGgerm(X)T (Y ×XT RanGgerm(X)T )C/.

We wish to show that the canonical map ψ : E → SpecA induces an isomorphism on
`-adic homology. Unwinding the definitions, we can identify objects of E with triples
(B,Q, α), where B is a finitely generated A-algebra, Q is a G-bundle on XB , and α is
a germ of isomorphisms of SpecB ×SpecA P with Q near the divisor DB ; a morphism
from (B,Q, α) to (B′,Q′, α′) in E is given by an A-algebra homomorphism from B to
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B′ with the property that the germ

Q′
α′−1

→ SpecB′ ×SpecA P
α→ SpecB′ ×SpecB Q,

which is a priori defined on some open subset of XB′ containing DB′ , can be extended
over an open set of the form XB′ −|I| for some finite set I ⊆ X(B′) with |I| ∩DB′ = ∅.
The construction B 7→ (B, SpecB×SpecAP, id) determines a map s : SpecA→ E which
is a section of ψ. To prove that ψ induces an isomorphism on `-adic homology, it will
suffice to show that s is a universal homology equivalence. To prove this, fix an object
C ′ = (B,P′, α) ∈ E and set E′ = SpecB×E SpecA. Note that E′ can be identified with
the full subcategory of RingB spanned by those finitely generated B-algebras B′ which
satisfy the following condition:
(∗) There exists a finite subset J ⊆ X(B′) such that DB′ ⊆ XB′ − |J | and the germ

α extends over the open set U .
Using Corollary A.2.10, we see that Y is a covering sieve of RingB′ with respect to the
fppf topology; the desired result now follows from Proposition 2.5.15.

�

7.5. Digression: Germs of Equivariant Maps. Our goal in this section is to prove a some-
what technical result (Theorem 7.5.2) which will be needed in §7.6. Fix an algebraically closed

field k, a prime number ` which is invertible in k, an algebraic curve X̃ over k, and a finite

group Γ acting faithfully on X̃. Let X denote the quotient X̃/Γ and let Q be a finite set of

closed points of X such that the quotient map X̃ → X is étale over the open set X −Q ⊆ X.
Let R be a finitely generated k-algebra and let D ⊆ XR be an effective divisor that is contained
in the open curve (X −Q)R.

Notation 7.5.1. If Y and Z are k-schemes equipped with actions of Γ, we let MapΓ(Z, Y )
denote the set of Γ-equivariant maps from Z into Y . For every finitely generated R-algebra A,

we let Mapgerm
Γ (X̃A, Y ) denote the direct limit lim−→U

MapΓ(U, Y ), where the limit is taken over

all Γ-invariant open subsets of X̃ which contain the divisor D̃A = D ×XR X̃A. Let Eqgerm(Y )
denote the prestack whose objects are pairs (A, φ), where A is a finitely generated R-algebra

and φ ∈ Mapgerm
Γ (X̃A, Y ), and we let Eq(Y ) denote the prestack whose objects are pairs (A, φ0)

where A is a finitely generated R-algebra and φ0 ∈ MapΓ(D̃A, Y ). Note that the construction
(A, φ) 7→ (A, φ|D̃A) determines a map of prestacks Eqgerm(Y )→ Eq(Y ).

The main result of this section can be stated as follows:

Theorem 7.5.2. Let G be a semisimple simply connected algebraic group over k, and suppose
that we are given an action of Γ on G which preserves a pinning. Then the restriction map
Eqgerm(G)→ Eq(G) is a universal homology equivalence.

For the proof of Theorem 7.5.2, it will be convenient to introduce a bit of terminology.

Definition 7.5.3. Let Y be a k-scheme equipped with an action of the finite group Γ. We
will say that Y has the equivariant approximation property if the restriction map Eqgerm(Y )→
Eq(Y ) is a universal homology equivalence.

We will deduce Theorem 7.5.2 from the following:

Theorem 7.5.4. Let G be a semisimple simply connected algebraic group over k, let Γ be a
finite group with an action on G which preserves a pinning (B, T, {uα}), let B− be the unique
Borel subgroup of G satisfying B− ∩B = T , let V = B−B be the corresponding “big cell” of the
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Bruhat decomposition of G, and let W =
⋃
gV where g ranges over all k-valued points of the

identity component of GΓ. Then W has the equivariant approximation property.

Remark 7.5.5. Suppose that G is simple. Using Propositions A.4.2 and A.4.4, we see that
W = G unless the field k has characteristic 2, the group G is isomorphic to SL2n+1 for some
integer n, and the group Γ acts nontrivially on G.

We first explain how to deduce Theorem 7.5.2 from Theorem 7.5.4:

Lemma 7.5.6. Let E ⊆ X be an effective divisor, let Ẽ ⊆ X̃ be the inverse image of E, and

let φ : Ẽ → G be any Γ-equivariant map. Then there exists a Γ-invariant open subset U ⊆ X̃

containing Ẽ and a Γ-equivariant map h : U → G with the following property: for every k-
valued point x of E, the product h(x)φ(x) belongs to the subset W (k) ⊆ G(k) appearing in the
statement of Theorem 7.5.4.

Remark 7.5.7. In the proof of Theorem 7.5.2, we need only the special case of Lemma 7.5.6
where E is disjoint from Q. This can be used to slightly simplify the proof given below.

Proof of Lemma 7.5.6. Write G as a product of simple factors
∏
i∈I Gi. Factoring G as a

product if necessary, we may reduce to the case where I forms a single orbit under the action
of Γ. Choose an index i ∈ I and let Γi ⊆ Γ denote its stabilizer. Replacing G by Gi (and X

by the quotient X̃/Γi), we may reduce to the case where G is simple. Let Γ0 be the kernel of

the action of Γ on G. Replacing X̃ by X̃/Γ0 (and Γ by Γ/Γ0), we may assume without loss of
generality that Γ acts faithfully on G. If W = G, then we can choose h to be a constant map.
We may therefore assume without loss of generality that the field k has characteristic 2, the
group G is isomorphic to SL2n+1 for some n ≥ 1, and that Γ ' Z/2Z acts nontrivially on G
via an involution σ : G→ G (Remark 7.5.5).

Fix a pinning (B, T, {uα}) of G which is invariant under the action of Γ. Since G = SL2n+1,
we can enumerate the simple roots of G as ∆ = {α1, α2, . . . , α2n}, where αi is adjacent to αj
in the Dynkin diagram of G if and only if |i− j| = 1. We first claim that there exists a rational
map λ : P1 → B with the following properties:

• The map λ is regular on the open set P1 − {0, 1}.
• The map λ carries ∞ ∈ P1 to the identity element of G and carries each point of

P1 − {0, 1,∞} to a regular unipotent element of G.
• The map λ satisfies λ(a+ 1) = σ(λ(a)).

To prove this, consider the map ι : SL3 → SL2n+1 corresponding to the pair of adjacent roots
{αn, αn+1}, and let λ0 : P1 → SL3 be the map given by

λ0(a) =

 1 1
a

1
a

0 1 1
a+1

0 0 1

 .

A simple calculation now shows that the map

λ(a) = ι(λ0(a))
∏

1≤i<n

(uαi(
1

a
)uα2n+1−i(

1

a+ 1
))

has the desired properties (for any choice of ordering of the product).
For each integer m ≥ 0, let Km ⊆ G denote the scheme-theoretic image of the map

θm : (P1 − {0, 1})m → G

(a1, . . . , am) 7→ λ(a1) . . . λ(am)
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Each Km is an irreducible reduced closed subscheme of G, so the ascending chain

K1 ⊆ K2 ⊆ K3 ⊆ · · ·

must eventually stabilize to a closed subgroupK ⊆ G. Note thatK is contained in the unipotent
radical of B; in particular, it is a connected solvable subgroup of B. Moreover, we can choose
an integer m0 for which K is the scheme-theoretic image of θm0

.

Let τ be the involution of X̃ given by the nontrivial element of Γ. Let KX and KX̃ denote the

function fields of the curves X and X̃, respectively. Then KX̃ is a quadratic Galois extension
of KX . Since KX has characteristic 2, it follows that KX̃ is an Artin-Schreier extension of

KX . We may therefore choose a nonzero rational function f : X̃ → P1 satisfying the identity

f(τx) = f(x) + 1. Note that the poles of f are precisely the fixed points for τ . Write Ẽ as a

disjoint union Ẽ− q Ẽ+, where the points of Ẽ− are fixed by τ and the group Γ acts freely on

Ẽ+. For each point x ∈ Ẽ+, consider the regular map

µx : (P1 − {f(x), f(x) + 1})m0 → G

(a1, . . . , am0
) 7→ λ(a1 + f(x)) . . . λ(am0

+ f(x)).

Note that the Zariski closure Zx of the set {µx(a1, . . . , am0
)φ(x)B} in G/B is a closed subset

with an action of the connected solvable group K. It follows that there exists a fixed point
for the action of K on Zx. Since K contains a regular unipotent element of B, the only point
of G/B fixed by the action of K is the identity coset. It follows that {µx(~a)φ(x)B} intersects
every open neighborhood of the base point of G/B. In particular, we can choose a point
~a ∈ (P1 − {f(x), f(x) + 1})m0 for which µx(~a)φ(x) belongs to the big cell of G.

For each point x of Ẽ+, let Vx denote the open subset of (P1−{f(x), f(x)+1})m0 consisting
of those points ~a such that µx(~a)φ(x) belongs to the big cell of G. Then each Vx is a nonempty
open subset of (P1)m0 . Since (P1)m0 is irreducible, we can choose a sequence ~a = (a1, . . . , am0

)
which belongs to each Vx. We now define

U = {x ∈ X̃ : λ(x), λ(x) + 1 /∈ {λ(a1), λ(a2), . . . , λ(am0
)}

h(x) = λ(a1 + f(x)) . . . λ(am0
+ f(x)).

It follows immediately from the construction that for x ∈ Ẽ+, the product h(x)φ(x) belongs to

the big cell of G (and in particular to the open set W ⊆ G). If x ∈ Ẽ−, then x is fixed by τ so
that f(x) =∞ and therefore h(x) is the identity element of G(k). Consequently, to prove that
h(x)φ(x) ∈W (k) we must show that φ(x) ∈W (k), which follows from Proposition A.4.4 (note
that τ(x) = x⇒ φ(x) = σ(φ(x))). �

Proof of Theorem 7.5.2. It will suffice to show that for every finitely generated R-algebra A
and every map of R-schemes f : SpecA→ Eq(G), the induced map

θA : H∗(Eqgerm(G)×Eq(G) SpecA; Z`)→ H∗(SpecA; Z`)

is an isomorphism.

Let φ : D̃A → G denote the Γ-equivariant map determined by f . For every k-valued point

η of SpecA, let Dη denote the fiber product Spec k ×SpecR D, let D̃η denote its inverse image

in X̃, and let φη : D̃η → G be the restriction of φ. Let W be the open subset appearing in
the statement of Theorem 7.5.4. Using Lemma 7.5.6, we can choose a Γ-invariant open subset

U ⊆ X̃ containing D̃x and a Γ-invariant map hη : U → G such that hη(x)φη(x) ∈ W for

every k-valued point x of D̃η. Since the map D̃A → SpecA is proper, there exists an open

subset Vη ⊆ SpecA containing the point η such that D̃ ×SpecR Vη is contained in the open set
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U×Spec k Vη ⊆ X̃R×SpecRVη. Shrinking Vη if necessary, we may further assume hη(x)φ(x) ∈W
for every k-valued point x of D̃ ×SpecR Vη.

Since SpecA is quasi-compact, we can choose finitely many k-valued points η1, . . . , ηn for
which the open sets Vηi form an open covering of SpecA. For each subset I ⊆ {1, . . . , n}, let
VI =

⋂
Vηi . We then have a commutative diagram

lim−→I 6=∅ C∗(Eqgerm(G)×Eq(G) VI ; Z`) //

��

C∗(Eqgerm(G)×Eq(G) SpecA; Z`)

θA

��
lim−→I 6=∅ C∗(VI ; Z`)

// C∗(SpecA,Z`)

where the horizontal morphisms are equivalences (by virtue of Zariski descent). Consequently,
to show that θA is an isomorphism, it will suffice to show that each of the maps

Eqgerm(G)×Eq(G) VI → Eqform(G)×Eq(G) VI

induces an isomorphism on `-adic homology. This follows from Theorem 7.5.4, since multipli-
cation by h−1

ηi (for any i ∈ I) determines a commutative diagram

Eqgerm(W )×Eq(W ) VI //

��

Eqform(W )×Eq(W ) VI

��
VI

id // VI .

where the vertical maps are equivalences by virtue of Theorem 7.5.4. �

We now turn to the proof of Theorem 7.5.4.

Lemma 7.5.8. Let Y be a k-scheme with an action of Γ, and let U ⊆ Y be a Γ-invariant open
subset. If Y has the equivariant approximation property, then so does U .

Proof. This follows from Corollary 2.5.12, since the diagram

Eqgerm(U) //

��

Eqgerm(Y )

��
Eq(U) // Eq(Y )

is a pullback square of prestacks in groupoids. �

Lemma 7.5.9. Let Y be a k-scheme equipped with an action of Γ. Suppose that there exists
a collection of Γ-invariant open subsets {Uα ⊆ Y } with the following property: for every finite
set S ⊆ Y (k), there exists an index α such that S ⊆ Uα(k). If each Uα has the approximation
property, then so does Y .

Proof. Fix an integer N , a finitely generated k-algebra A, and a map f : SpecA→ Eq(Y ). We
wish to show that the induced map

C∗(SpecA×Eq(Y ) Eqgerm(Y ); Z`)→ C∗(SpecA; Z`)

is a quasi-isomorphism. This assertion can be tested locally with respect to the Zariski topology

on SpecA. For each closed point x ∈ SpecA, f determines a map {x} ×SpecA D̃A → Y . Since
the domain is a finite k-scheme, the image of this map is contained in some subset Uα ⊆ Y .
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Shrinking SpecA if necessary, we may suppose that f factors through Eq(Uα). In this case, we
have a commutative diagram

SpecA×Eq(Uα) Eqgerm(Uα) //

��

SpecA

��
SpecA×Eq(Y ) Eqgerm(Y ) // SpecA

where the vertical maps are equivalences. Since Uα has the equivariant approximation property,
the upper horizontal map induces an isomorphism on Z`-homology. It follows that the lower
horizontal map also induces an isomorphism on Z`-homology. �

Lemma 7.5.10. Let Y be a k-scheme with an action of the group Γ, let V be a finite-
dimensional linear representation of Γ, and let E be a Γ-equivariant V -torsor over Y . If Y
has the equivariant approximation property, then so does E.

Proof of Lemma 7.5.10. The map Eqgerm(E)→ Eq(E) factors as a composition

Eqgerm(E)
θ→ Eq(E)×Eq(Y ) Eqgerm(Y )

θ′→ Eq(E),

where θ′ is a pullback of the map Eqgerm(Y ) → Eq(Y ) and is therefore a universal homology
equivalence by virtue of our assumption that Y has the equivariant approximation property (and
Corollary 2.5.12). It will therefore suffice to show that θ is a universal homology equivalence.
Fix a map u : SpecA → Eq(E) ×Eq(Y ) Eqgerm(Y ); we wish to show that the projection map
π : C→ SpecA induces an isomorphism in Z`-homology, where C denotes the fiber product

Eqgerm(E)×Eq(E)×Eq(Y )Eqgerm(Y ) SpecA.

Replacing R by A, we may assume that A = R. In this case, we can identify u with a pair

(F0, f), where F0 : D̃ → E is an equivariant map and f : Ũ → Y is a Γ-equivariant extension of
the composite map

f0 : D̃
F0→ E→ Y

to a Γ-equivariant open set Ũ ⊆ X̃R which contains the divisor D̃. Shrinking the domain of f

if necessary, we may assume that Ũ is contained in X̃ −QR. Working étale locally on SpecR,

we may assume that the complement of Ũ is contained in a relative divisor D′ ⊆ X̃R of positive
degree which does not intersect D (Proposition A.2.6). Replacing D′ by the sum

∑
γ∈Γ γ(D′) if

necessary, we may assume that D′ is Γ-equivariant. We may then replace Ũ by the compleent

X̃R −D′ and thereby reduce to the case where Ũ is affine.

Since Ũ is Γ-equivariant, it is the inverse image of an open subset U ⊆ XR. Writing U = Ũ/Γ,

we see that U is affine. The product Ũ ×Spec k V is a Γ-equivariant vector bundle over Ũ . Since

Ũ is contained in X̃ −QR, the action of Γ on Ũ is free so that we can write Ũ ×Spec k V as the

pullback of a vector bundle F on U ⊆ XR. The Γ-equivariant map f : Ũ → Y determines a

Γ-equivariant V -torsor E×Y Ũ , which we can descend to a F-torsor E′ on U . Note that the map
F0 determines a trivialization η0 of E′ over the divisor D ⊆ U . Since U is affine, the cohomology
group H1(U ;F(−D)) vanishes. It follows that η0 can be lifted to a trivialization η of E′ over
the entire affine open set U ⊆ XR. Using η, we can identify the prestack C with the category
whose objects are pairs (B, x), where B is a finitely generated R-algebra and x is an element
of the direct limit

lim−→
W⊆UB

H0(W ;F(−D)|W ),
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where the direct limit is taken over all open subsets

W ⊆ UB = U ×XR XB

which contain the divisor DB .
The projection map π : C → SpecR has a left inverse e : SpecR → C, given on objects by

the construction

(B ∈ RingR) 7→ (B, 0).

To show that π induces an isomorphism on homology, it will suffice to show that the composite
map e ◦ π : C→ C induces a map C∗(C; Z`)→ C∗(C; Z`) which is homotopic to the identity. In
fact, we claim that e◦π is A1-homotopic to the identity: that is, there exists a map of prestacks

h : C×Spec k A1 → C

such that h|C×{0} ' e ◦ π and h|C×{1} ' idC. This is clear: at the level of objects, we can take
h to be given by

((B, x) ∈ C, t ∈ B) 7→ (B, tx).

�

Proof of Theorem 7.5.4. Let (B, T, {uα}) be a pinning of G, let B′ denote the unique Borel
subgroup of G satisfying B′ ∩ B = T , and let U ′ and U denote the unipotent radicals of B−
and B, respectively. Let V = U ′TU be the big cell of the Bruhat decomposition of G, let G0

denote the identity component of GΓ, and let W =
⋃
g∈G0(k) gV . For each point h ∈ W (k),

the set {g ∈ G0(k) : h ∈ gV (k)} is nonempty and Zariski-open. Because G0 is irreducible, it
follows that for every finite set of points h1, . . . , hn ∈W (k), the set

{g ∈ G0(k) : h1, . . . , hn ∈ gV (k)}

is nonempty. By virtue of Lemma 7.5.9, it will suffice to show that each gV has the equivariant
approximation property. Since each gV is Γ-equivariantly isomorphic to V , we are reduced to
proving that V has the equivariant approximation property.

Choose a Γ-invariant filtration of U by normal subgroups

{1} = Um ⊆ Um−1 ⊆ · · · ⊆ U0 = U,

here each quotient Ui−1/Ui is isomorphic to a vector group with a linear action of Γ, and choose

{1} = U ′m ⊆ U ′m−1 ⊆ · · · ⊆ U ′0 = U ′

similarly. For 0 ≤ i ≤ m, let Vi denote the double quotient U ′i\V/Ui. We will prove by induction
on i that each Vi has the equivariant approximation property. This will complete the proof,
since Vm ' V .

We first treat the case where i = 0, so that Vi ' T . Since G is simply connected, we can
identify T with the product

∏
s∈S Gm, where the product is indexed by the finite set S of

fundamental weights of G. In particular, there is a Γ-equivariant open immersion V0 ↪→ Ar,
where r is the rank of G, and the group Γ acts on Ar by permuting the coordinates. By virtue
of Lemma 7.5.8, it will suffice to show that Ar has the equivariant approximation property,
which follows immediately from Lemma 7.5.10.

We now carry out the inductive step. Assume that i > 0 and that Vi−1 has the equivariant
approximation property. We note that the projection map Vi → Vi−1 is a torsor for the
vector group (Ui−1/Ui) × (U ′i−1/U

′
i). Applying Lemma 7.5.10, we deduce that Vi also has the

equivariant approximation property. �
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7.6. From Divisors to Open Neighborhoods. Throughout this section, we fix an alge-
braically closed field k, a prime number ` which is invertible in k, an algebraic curve X over
k, a finite subset Q ⊆ X, and a smooth affine group scheme G over X which is Q-adapted
(Definition 7.2.9). Let T be a nonempty finite set and let R be a finitely generated k-algebra
equipped with a map f : SpecR→ (X −Q)T (see Definition 7.3.9), which we can identify with
a map ν : T → X(R). Let D = |ν(T )| denote the associated divisor in XR (note that D is
actually contained in the open subscheme (X − Q)R). Our goal is to prove Theorem 7.3.17,
which asserts that the forgetful functor

RanGgerm(X)T ×XT SpecR→ RanG(X)T ×XT SpecR

is a universal homology equivalence.
For every finitely generated R-algebra A, we letDA denote the fiber productD×SpecRSpecA,

which we regard as an effective divisor in the relative curve XA. The main ingredient we will
need is the following:

Lemma 7.6.1. Let A be a finitely generated R-algebra and let P be a G-bundle on XA. Then
there exists a faithfully flat étale morphism A→ A′ such that the G-bundle P′ = P×XAXA′ is
trivial on an open subset of XA′ which contains the divisor DA′ .

Remark 7.6.2. When R = k, Lemma 7.6.1 follows from Theorem 3.3.6. In general, neither
result implies the other: in Lemma 7.6.1 we allow “variable” divisors D ⊆ XR (not necessarily
arising from a fixed divisor in the curve X itself), but we do not allow the fibers of D to intersect
the locus Q ⊆ X where G fails to be reductive (which is permitted in Theorem 3.3.6).

Proof of Lemma 7.6.1. The assertion is local with respect to the étale topology on SpecR. We
may therefore assume without loss of generality that there exists an affine open subset V ⊆ X
such that the divisor D is contained in VR (for example, if Q 6= ∅, then we can take U = X−Q).

Since G is Q-adapted, we can choose a semisimple simply connected algebraic group G0 over
k, a finite group Γ which acts on G0 by automorphisms which preserve a pinning (B0, T0, {φα :

Ga → B0}) of G0, an algebraic curve X̃ with an action of Γ, an isomorphism X̃/Γ ' X for

which the induced map X̃ → X is étale over X −Q, and a Γ-equivariant homomorphism

β : X̃ ×X G→ X̃ ×Spec k G0

of group schemes over X̃ which is an isomorphism over the inverse image of X −Q.
Note that B0 determines a Borel subgroup BX−Q of G over the open set X − Q. Let B

denote the scheme-theoretic closure of BX−Q in G, as in §3.7. Applying Theorem 3.7.1 (to the
case of an empty divisor), we may assume (after passing to an étale cover of SpecA) that P

admits a reduction to a B-bundle Q. Note that β restricts to a map of group schemes

βB : X̃ ×X B → X̃ ×Spec k B0,

so that Q determines a Γ-equivariant B0-bundle Q0 on the curve X̃A.
Since G0 is simply connected, we can identify the split torus T0 with GI

m, where I denotes
the finite set of fundamental weights of G0. Under this identification, the action of Γ on T0

comes from a permutation action of Γ on I. The algebraic group B0 fits into a Γ-equivariant
exact sequence

0→ U0 → B0
ψ→ GI

m → 0,

where U0 denotes the unipotent radical of B0. Let Q′0 denote the Γ-equivariant GI
m-torsor on

X̃A obtained from Q0 using the homomorphism ψ. Then we can identify Q′0 with a Γ-equivariant

line bundle on the product X̃A × I, which we can in turn identify with a line bundle L on XA

where X denotes the quotient (X̃ × I)/Γ.
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Let DA and V A denote the inverse images of DA and VA in the relative curve XA. The map
DA → SpecA is finite. Passing to a Zariski covering of SpecA if necessary, we may assume that
the line bundle L is trivial over the divisor DA. Since V A is affine, any trivialization of L over
DA can be extended to a section of L over V A, which is a trivialization of L over an affine open

subset W ⊆ V A. Let W̃ denote the inverse image of W in X̃A × I, which we can identify with

a collection of affine open subsets {W̃i ⊆ X̃}i∈I . The intersection
⋂
i∈I W̃i is a Γ-equivariant

open subset of X̃A ×X V and is therefore the inverse image of an affine open subset W ⊆ VA.
By construction, the affine open set W contains the divisor DA and the BX−Q-bundle Q |W
arises from a UX−Q-bundle on W , where UX−Q denotes the unipotent radical of BX−Q. Since
U0 admits a Γ-equivariant filtration by vector groups equipped with linear actions of Γ, the
group scheme UX−Q admits a finite filtration by group schemes associated to vector bundles
over X−Q. It follows that any UX−Q-bundle on an affine scheme is trivial. In particular, Q |W
is trivial and therefore P |W is also trivial. �

Proof of Theorem 7.3.17. We wish to prove that the canonical map

RanGgerm(X)T ×XT SpecR→ RanG(X)T ×XT SpecR

is a universal homology equivalence. Since both sides are prestacks in groupoids, it will suffice
to show that for every map u : SpecA→ RanG(X)T ×XT SpecR, the projection map

θ : RanGgerm(X)T ×RanG(X)T SpecA→ SpecA

induces an equivalence on Z`-homology. Replacing R by A, we may assume without loss of
generality that A = R. In this case, the map u classifies a G-bundle P0 on the divisor D. The
assertion that θ induces an isomorphism on homology can be tested locally with respect to the
étale topology (Proposition 2.3.34); we may therefore assume without loss of generality that
the G-bundle P0 is trivial.

Let RanGgerm(X)T0 ⊆ RanGgerm(X)T denote the full subcategory spanned by those triples
(R, ν,P) where the G-bundle P is trivial. It follows from Lemma 7.6.1 that the inclusion of

prestacks RanGgerm(X)T0 ↪→ RanGgerm(X)T induces an equivalence after stackification with respect
to the étale topology. In particular, the induced map

RanGgerm(X)T0 ×RanG(X)T SpecR ↪→ RanGgerm(X)T ×RanG(X)T SpecR

induces an isomorphism on Z`-homology. We are therefore reduced to proving that the com-
posite map

RanGgerm(X)T0 ×RanG(X)T SpecR→ SpecR

induces an isomorphism on Z`-homology.
Let H denote the group-valued functor RingR → Set given by

H(A) = lim−→
V⊆XA

G(V ),

where the direct limit is taken over all open subsets V ⊆ XA which contain the divisor DA.
Let H0 : RingR → Set be the group-valued functor given by H0(A) = G(DA) (in other words,
H0 is obtained from G ×X D by Weil restriction along the finite flat map D → SpecR; in
particular, H0 is representable by an affine group scheme over SpecR). We will regard H and
H0 as prestacks (equipped with maps to SpecR). For each n ≥ 0, let Hn denote the nth fiber
power of H over SpecR, and define Hn

0 similarly (by convention, we set H−1 = H−1
0 = SpecR).

There is an evident restriction map r : H → H0, which determines an action of H on H0. Un-
winding the definitions, we can identify the fiber product RanGgerm(X)T0 ×RanG(X)T SpecR with
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the category-theoretic quotient of H0 by the action of H (in other words, for every finitely gen-

erated R-algebra A, we can identify the groupoid of A-valued points of RanGgerm(X)T0 ×RanG(X)T

SpecR with the groupoid whose objects are the elements of H0(A), where a morphism from
x ∈ H0(A) to y ∈ H0(A) is an element g ∈ H(A) such that x = r(g)y). Similarly, we can
identify SpecR itself with the category-theoretic quotient of H0 by the translation action of
itself. It follows that the map

C∗(RanGgerm(X)T0 ×RanG(X)T SpecR; Z`)→ C∗(SpecR; Z`)

can be obtained via geometric realization from a map of simplicial objects of ModZ` , whose nth
term is given by

C∗(H0 ×SpecR H
n−1; Z`)→ C∗(H0 ×SpecR H

n−1
0 ; Z`)

We claim that each of these maps is a quasi-isomorphism. To prove this, it will suffice to
establish that the restriction map H → H0 is a universal homology equivalence.

Since G is Q-adapted, we can choose a semisimple simply connected algebraic group G0 over
k, a finite group Γ which acts on G0 by automorphisms which preserve a pinning (B0, T0, {φα :

Ga → B0}) of G0, an algebraic curve X̃ with an action of Γ, an isomorphism X̃/Γ ' X for

which the induced map X̃ → X is étale over X −Q, and a Γ-equivariant homomorphism

β : X̃ ×X G→ X̃ ×Spec k G0

of group schemes over X̃ which is an isomorphism over the inverse image of X −Q. Unwinding
the definitions, we can identify the restriction map H → H0 with the map Eqgerm(G0) →
Eq(G0) studied in §7.5. The desired result now follows from Theorem 7.5.2. �

7.7. The Chiral Homology of the Sheaves BS. Throughout this section, we fix an alge-
braically closed field k, a prime numbe ` which is invertible in k, an algebraic curve X over
k, a finite subset Q ⊆ X, a smooth affine group scheme G over X, and a nonempty finite

set S. Let Ran†G(X − Q)S be the Ran(X)-prestack introduced in Definition 7.2.1, and let us

regard RanG(X − Q)S ×Spec k Ran(X) as a full subcategory of Ran†G(X − Q)S as in Remark
7.2.6. Our goal in this section is to prove Theorem 7.2.11, which asserts that the inclusionof

RanG(X −Q)S ×Spec k Ran(X) into Ran†G(X −Q)S induces a quasi-isomorphism∫
BS =

∫
[Ran†G(X −Q)S ]Ran(X)

→
∫

[RanG(X −Q)S ×Spec k Ran(X)]Ran(X)

'
∫
C∗(RanG(X −Q)S ; Z`)⊗ ωRan(X)

' C∗(RanG(X −Q)S ; Z`).

Remark 7.7.1. The results of this section will not be used in the proof of Theorem 5.4.5 that
we give in §9, and are therefore logically unrelated to the remainder of this paper. We include
this section only to clarify the role played by the sheaves BS in our analysis of C∗(BunG(X); Z`);
it may be safely skipped by a reader who is interested in taking the most efficient road to the
proof of Weil’s conjecture.

Notation 7.7.2. Let P denote the partially ordered set introduced in the proof of Proposition
7.3.6. The construction

(R,K−,K+, µ, ν,P, α) 7→ (K−,K+)
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induces a Cartesian fibration

θ : Ran†G(X −Q)S → P.

For every pair (K−,K+) ∈ P , we let Ran†G(X − Q)K−,K+
denote the fiber θ−1{(K−,K+)}.

Then Ran†G(X − Q)K−,K+
is a Ran(X)-prestack; we let BK−,K+

denote the lax !-sheaf on
Ran(X) given by the formula

BK−,K+ = [Ran†G(X −Q)K−,K+ ]Ran(X) ∈ Shvlax
` (Ran(X)).

Unwinding the definitions, we have

Ran†G(X −Q)∅,∅ ' RanG(X −Q)×Spec k Ran(X)

B∅,∅ ' C∗(RanG(X −Q); Z`)⊗ ωRan(X)

BS ' lim←−
(K−,K+)∈P

BK−,K+ .

Remark 7.7.3. For K− ⊆ K+ ⊆ S, we can describe the prestack Ran†G(X − Q)K−,K+
in-

formally as follows: its k-valued points are given by quadruples (µ, ν,P, γ) where µ : S →
(X −Q)(k) and ν : T → X(k) are maps satisfying µ(K+) ∩ ν(T ) = ∅, P is a G-bundle on the
open curve X − µ(K−) (which does not meet the divisor ν(T )), and γ is a trivialization of P
over the smaller open curve X − µ(S).

Theorem 7.2.11 is an immediate consequence of the following assertion:

Proposition 7.7.4. Let K− and K+ be subsets of S satisfying K− ⊆ K+. If K+ is nonempty,
then the chiral homology

∫
BK−,K+

vanishes.

Proof of Theorem 7.2.11 from Proposition 7.7.4. The construction (K−,K+)→
∫
BK−,K+

de-
termines a functor F : P → ModZ` . Since chiral homology commutes with finite limits, Theorem
7.2.11 is equivalent to the assertion that the evaluation map

lim←−
(K−,K+)∈P

F (K−,K+)→ F (∅, ∅)

is an equivalence in ModZ` (see Notation 7.7.2).
Let P0 ⊆ P be the subset consisting of those pairs (K−,K+) where K− = ∅. Then P0

contains (∅, ∅) as an initial object, so that the evaluation map

lim←−
(K−,K+)∈P0

F (K−,K+)→ F (∅, ∅)

is an equivalence. Consequently, to complete the proof, it will suffice to show that the functor
F is a right Kan extension of the restriction F |P0

. In other words, it will suffice to show that
for each (K−,K+) ∈ P , the canonical map

φ : F (K−,K+)→ lim←−
K+⊆K′+

F (∅,K ′+) ' F (∅,K+)

is an equivalence in ModZ` . If K+ = ∅, then K− = ∅ and the desired result is a tautology.
If K+ 6= ∅, then φ is an equivalence because the domain and codomain of φ both vanish (by
virtue of Proposition 7.7.4). �

The remainder of this section is devoted to the proof of Proposition 7.7.4. Let us therefore
fix subsets K− ⊆ K+ ⊆ S where K+ is nonempty.
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Notation 7.7.5. Let V ⊆ (X−Q)S×Spec kRan(X) denote the substack whose R-valued points
are pairs of maps (µ : S → (X −Q)(R), ν : T → X(R)) which satisfy |µ(K+)| ∩ |ν(T )| = ∅. For
every nonempty finite set T , we let VT denote the fiber product V ×Ran(X)X

T , which we regard

as an open subscheme of the product (X −Q)S ×XT (namely, the open subscheme whose k-
valued points are pairs of maps µ : S → (X−Q)(k), ν : T → X(k) satisfying µ(K+)∩ν(T ) = ∅.
We let

φT : VT → XT ψT : VT → (X −Q)S

denote the projection maps.

For any `-adic sheaf F ∈ Shv`((X −Q)S), the construction

T 7→ φT∗(F�ωXT )|VT

determines a lax !-sheaf F+ on Ran(X). We will deduce Proposition 7.7.4 from the following
assertion:

Lemma 7.7.6. For each F ∈ Shv`((X −Q)S), the chiral homology∫
F+ ' lim−→

T∈Fins

C∗(VT ; (F�ωXT )|VT )

vanishes.

Proof of Proposition 7.7.4 from Lemma 7.7.6. We define a prestack C as follows:

• The objects of C are quadruples (R,µ,P, γ) where R is a finitely generated K-algebra,
µ : S → (X −Q)(R) is a map of sets, P is a G-bundle on XR, and γ is a trivialization
of P over the open set XR − |µ(S)| ⊆ XR.

• A morphism from an object C = (R,µ,P, γ) and C ′ = (R′, µ′,P′, γ′) in the category C

consists of a k-algebra homomorphism R → R′ which carries µ to µ′ and a G-bundle
isomorphism between XR′×XR P and P′ over the open set XR′−|µ′(K−)| which carries
γ to γ′.

The construction

(R,µ,P, γ) 7→ (R,µ)

determines a morphism of prestacks C → (X − Q)S . Unwinding the definitions, we have an
equivalence of Ran(X)-prestacks

Ran†G(X −Q)K−,K+
' C×(X−Q)SV,

where V ⊆ (X − Q)S ×Spec k Ran(X) is defined as in Notation 7.7.5. Applying Proposition
5.1.9, we obtain

B
(T )
K−,K+

' [C×(X−Q)SVT ]XT

' φT∗[C×(X−Q)SVT ]φ∗TωXT

' φT∗([C×Spec kX
T ]Z`�ωXT )|VT

' φT∗([C]Z` � ωXT )|VT

where Z` denotes the constant sheaf on (X −Q)S . This identification depends functorially on
T and yields an equivalence of lax !-sheaves BK−,K+

' F+, where F = [C]Z` ∈ Shv`((X−Q)S).

The vanishing of the chiral homology
∫
BK−,K+

is now a special case of Lemma 7.7.6. �
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We will deduce Lemma 7.7.6 from a more general statement. Suppose that Y is a quasi-
projective k-scheme equipped with a map f : Y → (X −Q)S . For each T ∈ Fins, we let VT,Y
denote the fiber product Y ×(X−Q)S VT ⊆ Y ×XT , and we let

φT,Y : VT,Y → XT ψT,Y : VT,Y → Y

denote the projection maps. For each F ∈ Shv`(Y ), we let F+ ∈ Shvlax
` (Ran(X)) denote the

lax !-sheaf given by
T 7→ φT,Y ∗(F�ωY )|VT,Y .

We will prove:

Lemma 7.7.7. For every map of quasi-projective k-schemes f : Y → (X − Q)S and every
F ∈ Shv`(Y ), the chiral homology∫

F+ ' lim−→
T∈Fins

C∗(VT,Y ; (F�ωXT )|VT,Y )

vanishes.

Note that Lemma 7.7.6 is just the special case of Lemma 7.7.7 in which the map f : Y →
(X −Q)S is an isomorphism. The virtue of the more general formulation is that it permits us
to apply devissage to the k-scheme Y . More precisely, suppose we are given a closed subscheme
Y ′ ⊆ Y with open complement U . Let i : Y ′ ↪→ Y and j : U ↪→ Y be the corresponding closed
and open immersions. For each F ∈ Shv`(Y ), we have a canonical fiber sequence

i∗i
! F → F → j∗j

∗ F,

in Shv`(Y ), which in turn yields a fiber sequence

(i! F)+ → F+ → (j∗ F)+

of lax !-sheaves on Ran(X). Consequently, to verify the conclusion of Lemma 7.7.7 for Y , it
will suffice to verify Lemma 7.7.7 for the subschemes Y ′ and U . Proceeding by Noetherian
induction, we may assume that Lemma 7.7.7 is valid for every proper closed subscheme Y ′ ⊆ Y .
In particular, we may assume that Y is reduced (otherwise, we can apply the above argument
Y ′ = Yred). To complete the proof, it will suffice to show that there exists a nonempty open set
U ⊆ Y such that f |U satisfies the conclusions of Lemma 7.7.7. Replacing Y by an open set, we
may assume that Y is irreducible.

Let us regard the map f as given by a collection of maps

{fs : Y → X −Q}s∈S .
Let S′ denote the quotient of S by the equivalence relation

(s ∼ s′) if fs = fs′ .

Replacing S by S′ (and the subsets K−,K+ ⊆ S by their images in S′), we can reduce to the
case where S′ = S, so that fs 6= fs′ for s 6= s′. Since Y is reduced and irreducible, it follows
that there exists a dense open subset W ⊆ Y such that fs(y) 6= fs′(y) for y ∈W (k). Replacing
Y by W , we may assume that the maps {fs}s∈S have disjoint graphs. Let U ⊆ Y × (X − Q)
denote the open set obtained by removing the graphs of the morphisms {fs}s∈K+

. Unwinding
the definitions, we can identify each VT,Y with the T -fold fiber power of U over Y .

Lemma 7.7.8. Let f : Y → (X−Q)S be as above (so that the morphisms {fs}s∈S have disjoint
graphs). Then, for every nonempty finite set T and each F ∈ Shv`(Y ), the canonical map

θ : F⊗ψT,Y ∗φ∗T,Y ωXT → ψT,Y ∗(F�ωXT )|VT,Y
is an equivalence in Shv`(Y ).
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Proof. Proceeding by induction on the number of elements of T , we can reduce to the case
where T has a single element. In this case, we have VT,Y = U , where U ⊆ Y × (X −Q) is the

open subset defined above. Let ψ : Y ×X → Y be the projection onto the first factor and let
ψ be the restriction of ψ to the open set U . Note that the complement of U in Y ×X is the
disjoint union of finitely many closed subschemes {Zi}i∈I which are the images of sections of
ψ. Let ψi denote the restriction of ψ to Zi. It follows that the map θ fits into a commutative
diagram of fiber sequences⊕

i∈I(F⊗ψi∗Z`Zi) //

��

F⊗ψ∗(Z`Y � ωX) //

��

F⊗ψT,Y ∗φ∗T,Y ωXT

θ

��⊕
i∈I(ψi∗ψ

∗
i F) // ψ∗(F�ωX) // ψT,Y ∗(F�ωXT )|VT,Y .

It follows from the projection formula (Corollary 4.5.10) that the vertical maps on the left and
middle are equivalences, so that θ is an equivalence as well. �

Let us now return to the proof of Lemma 7.7.7. We wish to prove that the direct limit

lim−→
T∈Fins

C∗(VT,Y ; (F�ωXT )|VT,Y )

vanishes. Using the projection ψT,Y : VT,Y → Y and invoking Lemma 7.7.8, we can rewrite this
direct limit as

lim−→
T∈Fins

C∗(Y, ψT,Y ∗(F�ωXT )|VT,Y ) ' lim−→
T∈Fins

C∗(Y,F⊗ψT,Y ∗φ∗T,Y ωXT )

' C∗(Y, lim−→
T∈Fins

(F⊗ψT,Y ∗φ∗T,Y ωXT ))

' C∗(Y,F⊗ lim−→
T∈Fins

ψT,Y ∗φ
∗
T,Y ωXT ).

It will therefore suffice to prove the following assertion at the level of sheaves:

Lemma 7.7.9. Let f : Y → (X −Q)S be as in Lemma 7.7.8. Then the direct limit

lim−→
T∈Fins

ψT,Y ∗φ
∗
T,Y ωXT

vanishes in Shv`(Y ).

Proof. Let GY = lim−→T∈Fins ψT,Y ∗φ
∗
T,Y ωXT ∈ Shv`(Y ); we wish to show that GY vanishes. For

each integer n ≥ −1, let G
≤n
Y = lim−→T∈Fins

≤n
ψT,Y ∗φ

∗
T,Y ωXT ∈ Shv`(Y ), so that we have a

sequence

0 = G
≤−1
Y → G

≤0
Y → G

≤1
Y → · · ·

whose colimit is GY . For each n ≥ 0, form a fiber sequence

G
≤n−1
Y → G

≤n
Y → G=n

Y .

Let U ⊆ Y × (X − Q) be the open subset defined prior to the statement of Lemma 7.7.8 and

let UnY denote the n-fold fiber power of U over Y . We let
◦
UnY denote the open subset of UnY

whose k-valued points are sequences (y, x1, . . . , xn) where each (y, xi) is a k-valued point of
U ⊆ Y ×X and the points {xi}1≤i≤n are pairwise distinct. The symmetric group Σn acts freely

on
◦
UnY , and we let

◦
U

(n)
Y denote the quotient

◦
UnY /Σn. Note that the projection map

ρ :
◦
U

(n)
Y → Y



242 DENNIS GAITSGORY AND JACOB LURIE

is a smooth morphism of relative dimension n; we denote its relative dualizing sheaf by ω ◦
U

(n)
Y /Y

.

Arguing as in the proof of Lemma 5.3.14, we obtain an equivalence

G=n
Y ' ρ∗ω ◦

U
(n)
Y /Y

∈ Shv`(Y ).

In particular, the sheaf G=n
Y ∈ Shv`(Y ) is constructible. It follows by induction that each of the

sheaves G
≤n
Y is likewise constructible.

We next prove the following:

(∗) For each integer n ≥ 0, the sheaf G=n
Y ∈ Shv`(Y ) belongs to Shv`(Y )≥n.

Since G=n
Y is constructible, it will suffice to show that for each map i : Spec k → Y , the stalk

i∗ G=n
Y belongs to Shv`(Spec k)≥n ' (ModZ`)≥n (Corollary 4.4.11). It follows from Lemma

7.7.7 that the construction formation of the direct image ψT,Y ∗φ
∗
T,Y ωXT is compatible with

base change along i for each T ∈ Fins. It follows that we have canonical equivalences

i∗ G≤nY ' G
≤n
Spec k i∗ G=n

Y ' G
≤n
Spec k .

Consequently, to prove (∗), we may assume without loss of generality that Y = Spec k, so that
we can regard U as an open subset of X. Note that U 6= X (since K+ 6= ∅), so that U is affine

and therefore
◦
U

(n)
Y is likewise affine. We then have

H∗(G=n
Spec k) ' H∗(

◦
U

(n)
Y ;ω ◦

U
(n)
Y

) ' H∗+2n(
◦
U

(n)
Y ; Z`(n)),

which is trivial for ∗ ≥ −n by virtue of Artin’s vanishing theorem.
It follows from assertion (∗) that the canonical map

τ≤n G
≤m
Y → τ≤n G

≤m+1
Y

is an equivalence for m > n. In particular, the map τ≤n G
≤n+1
Y → τ≤n GY is an equivalence. To

prove that GY ' 0, it will suffice to show that each truncation τ≤n GY vanishes (Proposition

4.4.19), which is equivalent to the vanishing of τ≤n G
≤n+1
Y . Since τ≤n G

≤n+1
Y is constructible,

this vanishing can be checked stalkwise: that is, it will suffice to show that τ≤n G
≤n+1
Y vanishes

in the special case Y = Spec k. By virtue of the fact that the map τ≤n G
n+1
Y → τ≤n GY is an

equivalence also for Y = Spec k, we are reduced to proving that GY ' 0 in the special case
Y = Spec k.

For the remainder of the proof, we will identify U with an open curve contained in X.
Let Q′ denote the set of points of X which do not belong to U , so that Q′ is the union of
the subset Q ⊆ X with the image of K+ under the map S → (X − Q)(k) determined by
f : Spec k = Y → (X −Q)S . For each T ∈ Fins, let Z(T ) denote the complement of UT in XT ,
which we regard as a reduced closed subscheme of XT . Let Ran(X)′ ⊆ Ran(X) denote the full
subcategory of Ran(X) spanned by those pairs (R, ν : T → X(R)) for which ν corresponds to
a map SpecR → XT which factors through Z(T ). (more informally, Ran(X)′ is the prestack
which classifies finite subsets of X which have nonempty intersection with Q′).

For each T ∈ Fins, there is a canonical fiber sequence

C∗(Z(T );ωZ(T ))→ C∗(XT ;ωXT )→ C∗(UT ;ωXT |UT ).

Since Z(T ) and XT are proper over Spec k, we can identify the first two terms in this fiber
sequence with C∗(Z(T ); Z`) and C∗(X

T ; Z`), respectively. Passing to the colimit as T varies,
we obtain a fiber sequence

lim−→
T∈Fins

C∗(Z(T ); Z`)→ lim−→
T∈Fins

C∗(X
T ; Z`)→ GSpec k,
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where we identify GSpec k with its image under the equivalence of ∞-categories Shv`(Spec k) '
ModZ` . Consequently, the assertion that GSpec k vanishes is equivalent to the assertion that the
inclusion Ran′(X) ↪→ Ran(X) induces a quasi-isomorphism

C∗(Ran′(X); Z`)→ C∗(Ran(X); Z`).

This follows from Example 2.5.21. �

8. The Reduced Cohomology of BunG(X)

Let k be an algebraically closed field, let X be an algebraic curve over k, let G be a reductive
group scheme over X, and let ` be a prime number which is invertible in k. In §3.2 and
§5.4, we outlined two different approaches to describing the cochain complex C∗(BunG(X); Z`).
Roughly speaking, one can construct an `-adic sheaf A on Ran(X) (given as the direct image
of the constant sheaf on RanG(X)) and an `-adic !-sheaf B on Ran(X) (see Notation 5.4.2),
together with natural maps

C∗c (Ran(X);B)
ρ→ C∗(BunG(X); Z`)

θ→ C∗(Ran(X);A).

If the generic fiber of G is semisimple and simply connected, we proved that the map θ is an
equivalence (Theorem 3.2.9). In §7, we outlined a strategy to deduce from this that ρ is also
an equivalence. In order to implement this strategy, it is useful to consider “reduced” versions
of the sheaves A and B on Ran(X).

Fix a closed point x ∈ X which we will identify with a k-valued point of the Ran space
Ran(X). Then we have canonical equivalences

x∗A→ C∗(GrxG; Z`) x! B ' C∗(BGx; Z`).

In this section, we will consider reduced versions Ared and Bred of A and B respectively, whose
stalks and costalks are given by the formulae

x∗Ared = C∗red(GrxG; Z`) x! Bred ' C∗red(BGx; Z`).

Our main goal is to show that these modifications do not substantially change the cohomologies
of the sheaves A and B. More precisely, we will show that θ and ρ admit reduced versions

ρred : C∗c (Ran(X);Bred)→ C∗red(BunG(X); Z`)

θred : C∗red(BunG(X); Z`)→ C∗(Ran(X);Ared)

which are equivalences if and only if ρ and θ are equivalences.
Let us now outline the contents of this section. We begin in §8.1 by formulating a reduced

version of nonabelian Poincare duality. In our presentation, we have opted to avoid the lan-
guage of `-adic sheaves on Ran(X) and instead adopt the slightly more pedestrian approach
of §3, phrasing our result in terms of `-adic cohomology of prestacks with constant coefficients
(Theorem 8.1.11).

In §8.2, we introduce the notion of an augmentation on a !-sheaf on the Ran space Ran(X).
The collection of all augmented (lax) !-sheaves can be organized into an ∞-category which we
will denote by Shvaug

` (Ran(X)) (Construction 8.2.2). This ∞-category is equipped with a pair
of forgetful functors

Shvaug
` (Ran(X))→ Shvlax

` (Ran(X))

F 7→ Fund F 7→ Fred

which correspond to “passing to the underlying !-sheaf” and “passing to the augmentation
ideal,” respectively. Using an “augmented” version of Construction 5.4.1, we produce an aug-
mented version of the !-sheaf B, whose augmentation ideal we denote by Bred. We will construct
a canonical map Z` ⊕

∫
Bred →

∫
B and assert that it is an equivalence (Theorem 8.2.18).
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One virtue of our reduced versions of Theorems 3.2.9 and 5.4.5 is that they give a much
more efficient description of the cohomology H∗(BunG(X); Z`). In §8.3, we will illustrate the
usefulness of these results by using them to show that the first two cohomology groups of
BunG(X) are given by

H0(BunG(X); Z`) ' Z` H1(BunG(X); Z`) ' 0,

which was stated without proof in §6.5.
The proofs of Theorems 8.1.11 and 8.2.18 are formally very similar. Both involve some

elementary geometric considerations combined with some elaborate formal manipulations. In
§8.4, we will formulate a general principle (Theorem 8.4.9) which formalizes the combinatorial
essence of all three arguments (and which will be needed in §9). In §8.5, we will apply Theorem
8.4.9 (together with the proper base change theorem and the Ind-projectivity of the Beilinson-
Drinfeld Grassmannian) to give a proof of Theorem 8.1.11; in §8.6, we will apply Theorem 8.4.9
(together with the smooth base change theorem) to give a proof of Theorem 8.2.18.

8.1. Reduced Nonabelian Poincare Duality. Throughout this section, we fix an alge-
braically closed field k, an algebraic curve X over k, an effective divisor D ⊆ X, a prime
number ` which is invertible in k, and a smooth affine group scheme G over X. We will assume
that the generic fiber of G is semisimple and simply connected. Theorem 3.2.9 then supplies
an equivalence

C∗(BunG(X,D); Z`) ' C∗(RanG(X −D); Z`) ' lim←−
S∈Fins

C∗(RanG(X −D)S ; Z`).(17)

Here RanG(X − D)S denotes the Beilinson-Drinfeld Grassmannian RanG(X − D) ×Fins {S}
which parametrizes maps µ : S → X − D together with G-bundles on X equipped with a
trivialization outside of the divisor |µ(S)|.

Fix a nonempty finite set S, and consider the projection map

π : RanG(X −D)S → Ran(X −D)S = (X −D)S .

The `-adic cochain complex C∗(RanG(X −D)S ; Z`) can be computed as C∗((X −D)S ;A(S)),

where A(S) ∈ Shv`((X −D)S) is obtained by pushforward of the constant sheaf along the map
π, defined by the formula

A(S) = [RanG(X −D)S ]Z`XS ' ω
−1
XS
⊗ [RanG(X −D)S ]XS ;

see §5.1 and §A.5. If the group scheme G is reductive over the open set X −D, then the map
π is Ind-proper (see Lemma 8.5.8). One can then use the proper base change theorem to show

that the stalk of A(S) at a k-valued point µ ∈ (X −D)S is given by

µ∗A(S) ' C∗(RanG(X −D)×Ran(X−D) {µ}; Z`)
' ⊗x∈µ(S)C

∗(GrxG; Z`),

where GrxG denotes the affine Grassmannian of G at x (that is, the prestack parametrizing
G-bundles on X equipped with a trivialization on the open subset X − {x}).

In §8.5, we will show that (assuming that the restriction of G to X −D is reductive) there
is an analogous formula for the reduced cohomology C∗red(BunG(X,D); Z`), using “reduced”

versions A
(S)
red of the `-adic sheaves A(S) whose stalks are given by

µ∗A
(S)
red ' ⊗x∈µ(S)C

∗
red(GrxG; Z`),

Our first goal is to formulate this result more precisely.
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Construction 8.1.1. Let S be a (possibly empty) finite set and let S0 be a subset of S. We
define a category RanG(X −D)S0⊆S as follows:

• The objects of RanG(X − D)S0⊆S are quadruples (R,µ,P, α) where R is a finitely
generated k-algebra, µ : S → (X −D)(R) is a map of sets, P is a G-bundle on XR, and
α is a trivialization of P over the open set XR − |µ|.
• A morphism from (R,µ,P, α) to (R′, µ′,P′, α′) consists of a k-algebra homomorphism φ :

R→ R′ such that µ′ is given by the composition S
µ→ (X−D)(R)

X(φ)−→ (X−D)(R′)) and
an isomorphism of P′ with the pullback SpecR′×SpecRP over the open set XR−|µ(S0)|
which carries α to α′.

It is easy to see that the forgetful functor (R,µ,P, α) 7→ R determines a coCartesian fibration
RanG(X)S0⊆S → Ringk, so that we can regard RanG(X)S0⊆S as a prestack.

Remark 8.1.2. We can describe RanG(X −D)S0⊆S as the prestack which parametrizes maps
µ : S → X−D together with a G-bundle P which is defined on X−|µ(S0)| and trivialized over
X − |µ(S)|. This description is slightly misleading: we always require our G-bundles to admit
an extension to the complete curve X, but we identify bundles which are isomorphic away from
the image of S0.

Example 8.1.3. In the situation of Construction 8.1.1, if the set S0 is empty and S is not,
then the prestack RanG(X −D)S0⊆S can be identified with RanG(X −D)S . If S0 = S, then
the forgetful functor RanG(X −D)S0⊆S → (X −D)S is an equivalence of categories.

Remark 8.1.4. In the situation of Construction 8.1.1, there is an evident projection map
π : RanG(X −D)S0⊆S → (X −D)S . Suppose we are given a map of sets µ : S → (X −D)(k)
which we can identify with a k-valued point of (X −D)S . Then µ(S)− µ(S0) can be identified
with a finite set of closed points {x1, . . . , xd} of the curve X. In this case, the fiber

RanG(X −D)S0⊆S ×(X−D)S {µ}

can be identified with the product
∏

1≤i≤d GrxiG . In §8.5, we will see that π behaves in many

respects as if it were a proper map, so that the cochain complex C∗(RanG(X − D)S0⊆S ; Z`)

can be computed as the global sections of a sheaf A(S0⊆S) on (X −D)S whose stalks are given
by

A(S0⊆S)
µ '

⊗
1≤i≤d

C∗(GrxiG ,Z`)

(beware that the number of factors d depends on the point µ and is not constant on (X−D)S).

Remark 8.1.5. In the situation of Construction 8.1.1, if S0 ⊆ S′0 ⊆ S, then we can regard
RanG(X − D)S0⊆S as a subcategory of RanG(X − D)S′0⊆S , having the same set of objects.
Geometrically, it is better to think of RanG(X −D)S′0⊆S as the quotient of RanG(X −D)S0⊆S
obtained by identifying those bundles which have the same behavior away from the image of
the set S′0.

Let S be a nonempty finite set. Roughly speaking, we would like to consider the `-adic sheaf

A
(S)
red on (X −D)S given by the cofiber of the canonical map

lim−→
∅6=S0⊆S

A(S0⊆S) → A(∅⊆S) = A(S) .

The formula

µ∗A
(S)
red ' ⊗x∈µ(S)C

∗
red(GrxG; Z`),
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would then follow from the heuristic description of the stalks of A(S0⊆S) supplied by Remark

8.1.4. Note that the cochain complex C∗((X − D)S ;A
(S)
red) admits a direct description as the

cofiber

cofib( lim−→
∅6=S0⊆S

C∗(RanG(X −D)S0⊆S ; Z`)→ C∗(RanG(X −D)∅⊆S ; Z`)),

which does not require us to study (or even consider) the `-adic sheaves A(S0⊆S) ∈ Shv`((X −
D)S).

We now introduce a bit of notation which will be helpful for organizing Construction 8.1.1
and its relatives.

Notation 8.1.6. We define a category Θ� as follows:

• The objects of Θ� are pairs (S0 ⊆ S), where S is a nonempty finite set and S0 is a
(possibly empty) subset of S.
• A morphism from (S0 ⊆ S) to (S′0 ⊆ S′) in Θ� is a surjection of finite sets α : S → S′

such that S′0 ⊆ α(S0).

Let Θ� denote the full subcategory of Θ� spanned by those objects (S0 ⊆ S) where S0 is
nonempty.

The construction (S0 ⊆ S) 7→ RanG(X)S0⊆S determines a functor from Θop
� to the 2-category

of prestacks. Consequently, we may regard the construction

(S0 ⊆ S) 7→ C∗(RanG(X −D)S0⊆S ; Z`)

as a functor from Θ� to the ∞-category ModZ` . We now introduce some formal constructions
which will be useful when studying such functors.

Construction 8.1.7. The construction (S0 ⊆ S) 7→ S determines forgetful functors

ν� : Θ� → Fins ν� : Θ� → Fins .

Let C be a stable ∞-category and let V : Θ� → C be a functor. We let

V�, V� : Fins → C

be the functors obtained by left Kan extension of V along the projection maps ν� and ν�,
respectively. Since ν� and ν� are coCartesian fibrations, these functors can be described more
concretely by the formulae

V�(S) = lim−→
S0⊆S

V (S0 ⊆ S) = V (∅ ⊆ S) V�(S) = lim−→
∅6=S0⊆S

V (S0 ⊆ S).

The inclusion Θ� ↪→ Θ� induces a natural transformation V� → V�. We will denote the cofiber
of this map by Vprim : Fins → C.

If the stable ∞-category C admits limits, we let lim←−prim
V (S0 ⊆ S) denote the inverse limit

lim←−
S∈Fins

Vprim(S).

We will refer to lim←−prim
(V ) as the primitive limit of V .

Example 8.1.8. Let V : Θ� → ModZ` be the functor given by

V (S0 ⊆ S) = C∗(RanG(X −D)S0⊆S ; Z`).

Then the functor Vprim : Fins → ModZ` is given (heuristically) by the formula Vprim(S) =

C∗((X −D)S ;A
(S)
red).
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Variant 8.1.9. There is a (nearly constant) contravariant functor F from the category Θ� to
the 2-category of prestacks, given on objects by the formula

F (S0 ⊆ S) =

{
BunG(X,D) if S0 = ∅
Spec k if S0 6= ∅.

We may therefore define a functor W : Θ� → ModZ` by the formula

W (S0 ⊆ S) = C∗(F (S0 ⊆ S); Z`) =

{
C∗(BunG(X,D); Z`) if S0 = ∅
C∗(Spec k; Z`) if S0 6= ∅.

Then Wprim : Fins → ModZ` can be identified with the constant functor

S 7→ C∗red(BunG(X,D); Z`).

Remark 8.1.10. For every nonempty finite set S, there is an evident morphism of prestacks

RanG(X −D)S → BunG(X,D).

These morphisms assemble to give a family of maps

RanG(X −D)S0⊆S → F (S0 ⊆ S)

where F is the functor described in Variant 8.1.9, depending functorially on S0 ⊆ S. Passing
to cohomology, we obtain a natural transformation W → V of functors from Θ� to ModZ` .

We can now formulate our main result:

Theorem 8.1.11 (Nonabelian Poincare Duality, Reduced Version). Suppose that G is reductive
over the open set X − D ⊆ X. Then the natural transformation W → V of Remark 8.1.10
induces an equivalence

θred : C∗red(BunG(X,D); Z`) ' lim←−
prim

W (S0 ⊆ S)→ lim←−
prim

C∗(RanG(X)S0⊆S ; Z`).

Let us now outline our proof of Theorem 8.1.11. Note that the natural transformation
W → V induces a map of fiber sequences

Z` //

��

C∗(BunG(X,D); Z`) //

��

C∗red(BunG(X,D); Z`)

��
V�(S) // V�(S) // Vprim(S),

depending functorially on S. It follows from Theorem 3.2.9 that the vertical maps assemble to
an equivalence

C∗(BunG(X,D); Z`)→ lim←−
S∈Fins

C∗(RanG(X −D)S ; Z`) = lim←−
S∈Fins

V�(S).

Consequently, Theorem 8.1.11 is equivalent to the assertion that the left vertical maps induce
an equivalence

α : Z` ' lim←−
S∈Fins

W�(S)→ lim←−
S∈Fins

V�(S).

We can study this map by means of the commutative diagram

lim←−S∈Fins W (S ⊆ S)
β //

α′

��

lim←−S∈Fins W�(S)

α

��
lim←−S∈Fins V (S ⊆ S)

β′ // lim←−S∈Fins V�(S).
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It will therefore suffice to show that the maps α′, β, and β′ are equivalences. In the first two
cases, this is relatively easy:

• The morphism β can be written as an inverse limit of morphisms

βS : W (S ⊆ S)→ lim−→
∅6=S0⊆S

W (S0 ⊆ S).

Each of these maps is an equivalence because the partially ordered set of nonempty
subsets of S has weakly contractible nerve (by construction, the functor S0 7→W (S0 ⊆
S) is constant for S0 6= ∅).
• Using Example 8.1.3, we can identify α′ with the canonical map

C∗(Spec k; Z`)→ lim←−
S∈Fins

C∗((X −D)S ; Z`) ' C∗(Ran(X −D); Z`).

Since X −D is connected, this map is an equivalence by virtue of Corollary 2.4.13.

We may therefore reformulate Theorem 8.1.11 as follows:

Theorem 8.1.12. Let V : Θ� → ModZ` denote the functor given by

V (S0 ⊆ S) = C∗(RanG(X)S0⊆S ; Z`).

Then the canonical map

lim←−
S∈Fins

V (S ⊆ S)→ lim←−
S∈Fins

lim−→
∅6=S0⊆S

V (S0 ⊆ S)

is an equivalence in ModZ` .

The proof of Theorem 8.1.12 will be given in §8.5 as an application of some general machinery
which we will develop in §8.4.

8.2. The Reduced Product Formula. Throughout this section, we fix an algebraically closed
field k and a prime number ` which is invertible in k. Let X be an algebraic curve over k
and let G be a smooth affine group scheme over X. In §5.2, we introduced the ∞-category
Shv!

`(Ran(X)) of !-sheaves on the Ran space Ran(X), and in §5.4 we constructed an object

B ∈ Shv!
`(Ran(X)) whose costalk at a k-valued point x ∈ X ⊆ Ran(X) can be identified with

the `-adic cochain complex C∗(BGx; Z`), where BGx denotes the classifying stack of the smooth
affine group Gx = {x} ×X G. The classifying stack BGx has a canonical base point (given by
the trivial G-bundle on {x} = Spec k), which determines an augmentation map

C∗(BGx; Z`)→ C∗(Spec k; Z`) ' Z`.

These augmentation maps can be regarded as an additional structure on the !-sheaf B. Our
goal in this section is to describe this additional structure more precisely. To accomplish this,
we will introduce the notion of an augmented !-sheaf on the Ran space Ran(X). The collection
of augmented !-sheaves on Ran(X) can be organized into an ∞-category which we will denote
by Shvaug

` (Ran(X)). This ∞-category is equipped with a forgetful functor

Shvaug
` (Ran(X))→ Shvlax

` (Ran(X)).

We will show that the !-sheaf B has a preimage under this forgetful functor, which we will
denote by Baug. We will also introduce a second functor

red : Shvaug
` (Ran(X))→ Shvlax

` (Ran(X)),

which we call the reduction functor. This functor carries Baug to a !-sheaf Bred ∈ Shv!
`(Ran(X))

whose stalk at a point x ∈ X ⊆ Ran(X) can be identified with the reduced cochain complex
C∗red(BGx; Z`). The !-sheaf Bred is equipped with a canonical map Bred → B. The main result
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of this section (which we will prove in §8.6) asserts that this map is almost an isomorphism on
chiral homology (Theorem 8.2.14).

Notation 8.2.1. Let Θ� be the category introduced in Notation 8.1.6. In this section, we will
denote objects of Θ� by pairs (T0 ⊆ T ), where T is a nonempty finite set and T0 is a subset of
T .

Construction 8.2.2. Let Schpr
k denote the category whose objects are quasi-projective k-

schemes and whose morphisms are proper maps. We let Shv!
` denote the∞-category introduced

in Construction A.5.11: the objects of Shv!
` are pairs (X,F) where X is a quasi-projective k-

scheme and F ∈ Shv`(X) is an `-adic sheaf, and a morphism from (X,F) to (X ′,F′) is a proper
morphism of quasi-projective k-schemes f : X → X ′ together with a map f∗ F → F′.

For each quasi-projective k-scheme X, the construction (T0 ⊆ T )→ XT determines a functor

Θop
� → Schpr

k . We let Shvaug
` (Ran(X)) denote the∞-category FunSchpr

k
(Θop
� ,Shv!

`) whose objects

are functors F : Θop
� → Shv!

` which fit into a commutative diagram

Shv!
`

��
Θop
�

F

<<

// Schop
k .

We will refer to Shvaug
` (Ran(X)) as the ∞-category of augmented !-sheaves on Ran(X).

Remark 8.2.3. More informally, an object F of Shvaug
` (Ran(X)) consists of a family of `-adic

sheaves F(T0⊆T ) ∈ Shv`(X
T ) equipped with transition maps F(T ′0⊆T

′) → δ!
T/T ′ F

(T0⊆T ) for every

surjection α : T → T ′ having the property that T ′0 ⊆ α(T0). Here δT/T ′ : XT ′ → XT denote
the diagonal map determined by α.

Remark 8.2.4. The construction T 7→ (∅ ⊆ T ) determines a fully faithful embedding ι :
Fins ↪→ Θ�. For every quasi-projective k-scheme X, composition with ι determines a forgetful
functor Shvaug

` (Ran(X))→ Shvlax
` (Ran(X)). For each object F ∈ Shvaug

` (Ran(X)), we let Fund

denote the image of F under this forgetful functor; we will refer to Fund as the underlying lax

!-sheaf of F. Concretely, it is given by the formula F
(T )
und = F(∅⊆T ).

Remark 8.2.5. Let X be a quasi-projective k-scheme. The functor F 7→ Fund of Remark
8.2.4 admits a right adjoint Q, given by relative right Kan extension along the fully faithful
embedding ι : Fins ↪→ Θ�. Unwinding the definitions, we see that Q is given concretely by the
formula

Q(F)(T0⊆T ) =

{
F(T ) if T0 = ∅
0 otherwise.

Construction 8.2.6. Let X be a quasi-projective k-scheme. Then the functor

Q : Shvlax
` (Ran(X))→ Shvaug

` (Ran(X))

preserves colimits and therefore admits a right adjoint (Corollary HTT.5.5.2.9). For each object
F ∈ Shvaug

` (Ran(X)), we will denote the image of F under this right adjoint by Fred. We will
refer to Fred as the reduced part of F. Concretely, Fred can be described by the formula

F
(T )
red = fib(F(∅⊆T ) → lim←−

∅6=T0⊆T
F(T0⊆T )) ∈ Shv`(X

T ).
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Remark 8.2.7. The construction T 7→ (T ⊆ T ) determines a fully faithful embedding ι′ :
Fins → Θ�. For any quasi-projecitve k-scheme X, composition with ι′ determines a forgetful
functor

Shvaug
` (Ran(X))→ Shvlax

` (Ran(X))

which we will denote by F 7→ Ftriv. We will refer to Ftriv as the trivial part of the augmented
!-sheaf F. The identity maps idT : T → T determine morphisms

(T ⊆ T )→ (∅ ⊆ T )

in the category Θ�, which induce a map of lax !-sheaves Fund → Ftriv (which depends functo-
rially on F).

Example 8.2.8. Let X be any quasi-projective k-scheme and let Q : Shvlax
` (Ran(X)) →

Shvaug
` (Ran(X)) be the functor described in Remark 8.2.5. Then we have Q(F)triv ' 0 for each

F ∈ Shvlax
` (Ran(X)).

Construction 8.2.9. Let X be a quasi-projective k-scheme and let F ∈ Shvaug
` (Ran(X)) be

an augmented !-sheaf on Ran(X). Applying Remark 8.2.7 to the counit map Q(Fred)→ F, we
obtain a commutative diagram of lax !-sheaves σ :

(Q(Fred))und
//

��

Fund

��
(Q(Fred))triv

// Ftriv .

For every lax !-sheaf G on Ran(X), the counit map Q(G)und → G is an equivalence. Combining
this observation with Example 8.2.8, we can identify σ with a diagram

Fred
//

��

Fund

��
0 // Ftriv .

In other words, we have a (not necessarily exact) triangle of lax !-sheaves

Fred → Fund → Ftriv

on Ran(X).

Definition 8.2.10. Let X be a quasi-projective k-scheme. We let Ranaug(X) denote the
prestack given by the fiber product Ran(X) ×Fins Θ�. We will refer to Ranaug(X) as the
augmented Ran space of X. We can identify objects of Ranaug(X) with quadruples (R, T0 ⊆
T, ν) where R is a finitely generated k-algebra, T is a nonempty finite set, ν : T → X(R) is a map
of sets, and T0 is a (possibly empty) subset of T . We will generally abuse notation by identifying
Ran(X) with the full subcategory of Ranaug(X) spanned by those objects (R, T0 ⊆ T, ν) where
T0 = ∅.

An augmented Ran(X)-prestack is a category C equipped with a coCartesian fibration C →
Ranaug(X) (see Definition 5.2.15). If C is a Ran(X)-prestack, then for each object (T0 ⊆ T ) of
Θ� we let C(T0⊆T ) denote the prestack given by the fiber product

C×Θ�
{(T0 ⊆ T )} ' C×Ranaug(X)X

T .

Note that if we are given surjection of finite sets α : T → T ′ and T ′0 is a subset of α(T0) ⊆ T ′,

then α induces a morphism of prestacks C(T0⊆T )×XTXT ′ → C(T ′0⊆T ′). It follows that the
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construction
(T0 ⊆ T ) 7→ [C(T0⊆T )]XT

determines an augmented !-sheaf on Ran(X), which we will denote by [C]Ranaug(X) (more pre-
cisely, we let [C]Ranaug(X) denote the augmented !-sheaf obtained by composing the functor

(T0 ⊆ T ) 7→ CT0⊆T with the functor Φ : RelStack! → Shv!
` of Construction A.5.26).

Remark 8.2.11. Let C be an augmented Ran prestack on a quasi-projective k-scheme X,
and let Cund = C×Ranaug(X) Ran(X) denote the underlying Ran(X)-prestack. Then we have a
canonical equivalence of lax !-sheaves

([C]Ranaug(X))und ' [Cund]Ran(X).

Construction 8.2.12. Let X be an algebraic curve over k and let G be a smooth affine group
scheme over X. We define a category RanGaug(X) as follows:

• The objects of RanGaug(X) are tuples (R, T0 ⊆ T, ν,P, γ) where R is a finitely generated
k-algebra, T is a nonempty finite set, T0 is a subset of T , ν : T → X(R) is a map of
sets, P is a G-bundle on the divisor |ν(T )| ⊆ XR, and γ is a trivialization of P over the
closed subscheme |ν(T0)| ⊆ |ν(T )|.

• A morphism from (R, T0 ⊆ T, ν,P, γ) to (R′, T ′0 ⊆ T ′, ν′,P′, γ′) consists a morphism
from (R, T0 ⊆ T, ν) to (R′, T ′0 ⊆ T ′, ν′) in Ranaug(X) together with a G-bundle isomor-
phism of P′ with P×|ν(T )||ν′(T ′)| which is compatible with the trivializations γ and γ′

over the relative divisor |ν′(T ′0)|.
It is not difficult to see that the construction (R, T0 ⊆ T, ν,P, γ) 7→ (R, T0 ⊆ T, ν) determines

a coCartesian fibration of categories

RanGaug(X)→ Ranaug(X),

so that we can regard RanGaug(X) as an augmented Ran(X)-prestack. We let Baug denote the
augmented lax !-sheaf on Ran(X) given

Baug = [RanGaug(X)]Ranaug(X).

Using Remark 8.2.11, we see that the underlying lax !-sheaf of Baug can be identified with the
!-sheaf B of Notation 5.4.2. We let Bred denote the image of Baug under the reduction functor

red : Shvaug
` (Ran(X))→ Shv!

`(Ran(X)).

Remark 8.2.13. Let X and G be as in Construction 8.2.12. If T0 = T , then the projection
map

RanGaug(X)(T0⊆T ) → XT

is an equivalence. It follows that that the unit map

ωRan(X) → (Baug)triv

is an equivalence of lax !-sheaves on Ran(X).

The following result describes the relationship between B and Bred:

Theorem 8.2.14. Let X be an algebraic curve over k, let G be a smooth affine group scheme
over X, and let Baug be the augmented !-sheaf on Ran(X) given by Construction 8.2.12. Then
the commutative diagram

Bred
//

��

B

��
0 // ωRan(X)
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of Construction 8.2.9 determines a pullback square∫
Bred

//

��

∫
B

��∫
0 //

∫
ωRan(X).

in ModZ` . Identifying
∫
ωRan(X) with Z`, we obtain an exact triangle∫

Bred →
∫

B→ Z`.

Remark 8.2.15. We will give a proof of Theorem 8.2.14 in §8.6 by applying the machin-
ery of §8.4. However, let us briefly indicate an alternate proof which uses the machinery
developed in §5. Using a variant of Construction 5.7.3, one can define a multiplication map
Bred ?Bred → Bred which exhibits Bred as a commutative factorization algebra over X. More-
over, the commutative diagram

Bred
//

��

B

��
0 // ωRan(X)

appearing in Theorem 8.2.14 is a diagram of commutative factorization algebras, corresponding
to a commutative diagram

B
(1)
red

//

��

B(1)

��
0 // ωX

of nonunital commutative algebra objects of Shv`(X) (see Theorem 5.6.4). It follows that B(1)

is the commutative algebra obtained from B
(1)
red by formally adjoining a unit object to B

(1)
red. Let

πnu
? : CAlgnu(Shv`(X))→ CAlgnu(ModZ`)

π? : CAlg(Shv`(X))→ CAlg(ModZ`)

be as in Examples 5.6.9 and 5.6.12. Then Remark 5.6.13 implies that πnu
? (Bred) '

∫
Bred can

be identified with the augmentation ideal in π?(B) '
∫
B.

Let us conclude this section by describing an application of Theorem 8.2.14. For this, we
need a variant of Construction 8.2.12:

Construction 8.2.16. Let X be an algebraic curve over k and let G be a smooth affine group

scheme over X. We define a category Ran
G

aug(X) as follows:

• The objects of Ran
G

aug(X) are tuples (R, T0 ⊆ T, ν,P, γ) where R is a finitely generated
k-algebra, T is a nonempty finite set, T0 is a subset of T , ν : T → X(R) is a map of
sets, P is a G-bundle on the divisor XR, and γ is a trivialization of P over the open set

U =

{
∅ if T0 = ∅
XR otherwise.

⊆ XR.
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• A morphism from (R, T0 ⊆ T, ν,P, γ) to (R′, T ′0 ⊆ T ′, ν′,P′, γ′) consists a morphism
from (R, T0 ⊆ T, ν) to (R′, T ′0 ⊆ T ′, ν′) in Ranaug(X) together with a G-bundle iso-
morphism of P′ with P×XRXR′ which is compatible with the trivializations γ and
γ′.

The construction (R, T0 ⊆ T, ν,P, γ) 7→ (R, T0 ⊆ T, ν) determines a coCartesian fibration

Ran
G

aug(X)→ Ranaug(X), so that we can regard Ran
G

aug(X) as an augmented Ran(X)-prestack.

Remark 8.2.17. In the situation of Construction 8.2.16, we have canonical equivalences

Ran
G

aug(X)(T0⊆T ) '

{
BunG(X)×Spec k X

T if T0 = ∅
XT if T0 6= ∅.

Setting B = [Ran
G

aug(X)]Ranaug(X), we obtain equivalences

Bred ' C∗red(BunG(X); Z`)⊗ ωRan(X) Bund ' C∗(BunG(X); Z`)⊗ ωRan(X) Btriv ' ωRan(X).

From this description, it is easy to see that the augmented !-sheaf Baug satisfies the analogue
of Theorem 8.2.14: that is, the triangle∫

Bred →
∫

Bund →
∫

Btriv

is exact (it can be identified with the exact triangle C∗red(BunG(X); Z`)→ C∗(BunG(X); Z`)→
Z` determined by the base point of BunG(X)).

In the situation of Construction 8.2.16, there is an evident forgetful functor

θ : Ran
G

aug(X)→ RanGaug(X),

given on objects by the formula

(R, T0 ⊆ T, ν,P, γ) 7→ (R, T0 ⊆ T, ν,P ||ν(T )|, γ||ν(T0)|).

This forgetful functor determines a morphism of augmented !-sheaves Baug → B. Note that θ
determines an equivalence of prestacks

Ran
G

aug(X)(T0⊆T ) → RanGaug(X)(T0⊆T )

whenever T0 = T and therefore induces an equivalence of trivial parts (Baug)triv → Btriv. We
have a commutative diagram of triangles∫

Bred
//

��

∫
B //

��

∫
ωX

��∫
Bred

//
∫
Bund

//
∫
Btriv.

It follows from Theorem 8.2.14 and Remark 8.2.17 that these triangles are exact, and the right
vertical map is an equivalence. It follows that the left square is a pullback. Combining this
observation with the identifications∫

Bred ' C∗red(BunG(X); Z`)

∫
Bund ' C∗(BunG(X); Z`),

we obtain the following result:
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Theorem 8.2.18. Let X be an algebraic curve over k and let G be a smooth affine group
scheme over X. Then the preceding construction supplies a pullback square∫

Bred
//

ρred

��

∫
B

ρ

��
C∗red(BunG(X); Z`) // C∗(BunG(X); Z`)

in ModZ` , where ρ is the morphism appearing in the statement of Theorem 5.4.5. In particular,
ρ is an equivalence if and only if ρred is an equivalence.

8.3. Application: The Cohomology BunG(X) in Low Degrees. Throughout this section,
we fix an algebraically closed field k, a prime number ` which is invertible in k, an algebraic
curve X over k, and a smooth affine group scheme G over X. Our goal in this section is to prove
the following stronger form of Proposition 6.5.6 (which was asserted without proof in §6.5):

Theorem 8.3.1. Suppose that the fibers of G are connected and that the generic fiber of G
is semisimple and simply connected. Then the cohomology groups Hi(BunG(X); Z`) vanish for
i ≤ 1. In particular, the moduli stack BunG(X) is connected.

Warning 8.3.2. Theorem 8.3.1 does not assert that BunG(X) is simply connected: for exam-
ple, it does not rule out the existence of nontrivial Z/pZ-torsors over BunG(X) when the field
k has characteristic p.

Remark 8.3.3. The proof of Theorem 8.3.1 that we give in this section depends on Theorem
5.4.5. The proof Theorem 5.4.5 in turn depends on Proposition 8.3.5. However, no circularity
results: the proof of Proposition 8.3.5 given in this section is completely independent of the
results of §7.

Let Bred ∈ Shvlax
` (Ran(X)) be defined as in Construction 8.2.12. Theorem 8.3.1 is an easy

consequence of the following pair of results:

Proposition 8.3.4. The lax !-sheaf Bred is a !-sheaf on Ran(X).

Proposition 8.3.5. Let n ≥ 1 and let U ⊆ Xn be the open subset consisting of n-tuples of
distinct points of X. If the fibers of G are connected, then C∗(U ; (Bred)(n)|U ) ∈ (ModZ`)≤0. If,

in addition, the generic fiber of G is semisimple and simply connected, then C∗(U ; (Bred)(n)|U ) ∈
(ModZ`)≤−2n.

Corollary 8.3.6. If the fibers of G are connected, then the chiral homology
∫
Bred belongs to

(ModZ`)≤0. If, in addition, the generic fiber of G is semisimple and simply connected, then∫
Bred ∈ (ModZ`)≤−2.

Proof. We will prove the second assertion (since it is what we need for Theorem 8.3.1); the
proof of the first assertion is similar. Since (ModZ`)≤−2 is closed under filtered colimits, it will

suffice to show that each
∫ (n)

Bred belongs to (ModZ`)≤−2. We proceed by induction on n, the
case n = 0 being trivial. Since Bred is a !-sheaf (Proposition 8.3.4), Lemma 5.3.14 supplies a
fiber sequence ∫ (n−1)

Bred →
∫ (n)

Bred → C∗(U ;B
(n)
red |U )Σn ,

where U is as in the statement of Proposition 8.3.5. It will therefore suffice to show that the

chain complexes C∗(U ;B
(n)
red |U )Σn belongs to (ModZ`)≤−2. Using Lemma 5.3.15, we see that

the norm map

C∗(U ;B
(n)
red |U )Σn → C∗(U ;B

(n)
red |U )Σn
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is an equivalence. It will therefore suffice to show that C∗(U ;B
(n)
red |U )Σn is contained in the ∞-

category (ModZ`)≤−2. This follows from Proposition 8.3.5, since (ModZ`)≤−2 is closed under
limits. �

Proof of Theorem 8.3.1. Using Theorems 5.4.5 and 8.2.18, we can identify C∗red(BunG(X); Z`)
with the chiral homology

∫
Bred; the desired result now follows from Corollary 8.3.6. �

Remark 8.3.7. The methods described above can be used to obtain more precise information
about the cohomology of BunG(X). Assume that the fibers of G are connected and that the
generic fiber is semisimple and simply connected. Let BG denote the classifying stack of G, so
that we have a direct sum decomposition

[BG]X = B(1) ' B
(1)
red⊕ωX .

Passing to global sections, we obtain a direct sum decomposition

C∗(BG; Σ2Z`(1)) ' C∗(X; [BG]X)

' C∗(X;ωX)⊕
∫ (1)

Bred

' C−∗(X; Z`)⊕
∫ (1)

Bred .

In particular, for n > 0, we have a canonical isomorphism

Hn(

∫ (1)

Bred) ' Hn+2(BG; Z`(1)).

The proof of Theorem 8.3.1 shows that the cofiber of the canonical map∫ (1)

Bred →
∫

Bred ' C∗red(BunG(X); Z`)

belongs to (ModZ`)≤−4. Passing to cohomology, we obtain maps

Hn+2(BG; Z`(1))→ Hn(BunG(X); Z`)

which are bijective for 0 < n < 4 and injective when n = 4.

We now turn to the proofs of Propositions 8.3.4 and 8.3.5. We will deduce Proposition 8.3.4
from the following general criterion:

Lemma 8.3.8. Let F ∈ Shvaug
` (Ran(X)) be an augmented !-sheaf on Ran(X). Suppose that F

satisfies the following condition:

(∗) For every surjection of nonempty finite sets α : T → T ′ and every subset T0 ⊆ T , the
canonical map

F(α(T0)⊆T ′) → δ!
T/T ′ F

(T0⊆T )

is an equivalence in Shv`(X
T ′); here δT/T ′ : XT ′ → XT denotes the diagonal embedding

determined by α.

Then Fred is a !-sheaf on Ran(X).

Proof. Let α : T → T ′ be a surjection of nonempty finite sets; we wish to prove that the

canonical map θ : F
(T ′)
red → δ!

T/T ′ F
(T ′)
red is an equivalence in Shv`(X

T ′). Let P (T ) denote the

collection of all nonempty subsets of T and let P (T ′) denote the collection of all nonempty
subsets of T ′.
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We have a commutative diagram of fiber sequences

F
(T ′)
red

θ

��

// F(∅⊆T ′)

θ′

��

// lim←−T ′0∈P (T ′)
F(T ′0⊆T

′)

θ′′

��
δ!
T/T ′ F

(T )
red

// δ!
T/T ′ F

(∅⊆T ) // δ!
T/T ′ lim←−T0∈P (T )

F(T0⊆T )

(see Construction 8.2.6). It follows immediately from (∗) that θ′ is an equivalence. We are
therefore reduced to proving that θ′′ is an equivalence. The morphism θ′′ factors as a compo-
sition

lim←−
T ′0∈P (T ′)

F(T ′0⊆T
′) → lim←−

T0∈P (T )

F(α(T0)⊆T ′) → δ!
T/T ′ lim←−

T0∈P (T )

F(T0⊆T ),

where the second map is an equivalence by virtue of (∗). To show that the first map is an
equivalence, it suffices to show that the construction T0 7→ α(T0) determines a right cofinal
functor P (T ) → P (T ′). This is clear, since the functor has a right adjoint (given by T ′0 7→
α−1(T ′0)). �

Lemma 8.3.9. Let T be a nonempty finite set, let E be an equivalence relation on T , and let Y
be a scheme equipped with a map u : Y → XT/E. Then for every subset T0 ⊆ T , the canonical
map

[RanG(X)(T0/E⊆T/E) ×XT/E Y ]Y → [RanG(X)(T0⊆T ) ×XT Y ]Y

is an equivalence in Shv`(Y ).

Proof of Proposition 8.3.4. Combine Lemma 8.3.8 with Lemma 8.3.9. �

Proof of Lemma 8.3.9. The assertion is local on Y . We may therefore assume without loss of
generality that Y = SpecR is affine. Then u determines a map β′ : T/E → X(R). Let β denote
the composition of β′ with the quotient map T → T/E, so that β and β′

D0 = |β(T0)| D = |β(T )|

D′0 = |β′(T0/E)| D′ = |β′(T/E)|
in the relative curve XR. Let H0 denote the Weil restriction of the group scheme D0 ×X G
along the finite flat map D0 → SpecR, and define H ′0, H, and H ′ similarly. The restriction
maps

H → H0 H ′ → H ′0

are smooth surjections of group schemes over R. It follows from Remark 8.6.5 that we can
identify Y ×XT RanG(X)(T0⊆T ) and Y ×XT/E RanG(X)(T0/E⊆T/E) with the (stack theoretic)
quotients of H0 by H1 and H ′0 by H ′1, respectively. For each integer d ≥ 0, we have a commu-
tative diagram

H0 ×Y Hd gd //

fd

$$

H ′0 ×Y H ′d
f ′d

zz
Y.

Then we can identify µ with the totalization of a cosimplicial object µ• of Fun(∆1,Shv`(Y )),
where each µd is given by the canonical map

f ′d∗ f
′d∗ωY ′ → fd∗ f

d∗ωY ′ .
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We are therefore reduced to proving that the unit map id→ gd∗g
d∗ is an equivalence of functors

from Shv`(H
′
0 ×Y H ′d) to itself. This follows from the observation that the natural maps

H0 → H ′0 and H → H ′ admit factorizations

H0 = E0(m)→ E0(m− 1)→ · · · → E0(0) = H ′0

H = E1(n)→ E1(n− 1)→ · · · → E1(0) = H ′,

where each Ei(j) is the total space of a vector bundle over Ei(j − 1). �

The proof of Proposition 8.3.5 depends on some elementary facts about the étale cohomology
of algebraic groups.

Lemma 8.3.10. Let H be a simply connected semisimple algebraic group over k. Then the
cohomology groups Hi(H; Z/`Z) vanish for i = 1 and i = 2.

Proof. Choose a Borel subgroup B ⊆ H and a maximal torus T ⊆ B. Let π : H → H/B denote
the projection map. Let F = π∗Z/`Z

H
∈ Shv(H/B; Z/`Z). Note that the action of B on H

determines a pullback diagram

B ×H //

��

H

π

��
H

π // H/B.

Using the smooth base change theorem, we deduce that π∗ F is the constant sheaf with value
C∗(B; Z/`Z). SinceB is connected, it follows that each πi F ∈ Shv(H/B; Z/`Z)♥ is the constant
sheaf associated to the cohomology group H−i(B; Z/`Z). We therefore obtain a Leray-Serre
spectral sequence

Hp(H/B; Hq(T ; Z/`Z))⇒ Hp+q(H; Z/`Z).

The flag variety H/B admits a Bruhat decomposition into cells isomorphic to affine spaces so
that its cohomologies are concentrated in even degrees. We therefore obtain an exact sequence
of low degree terms

0→ H1(H; Z/`Z)→ H1(B; Z/`Z)
d→ H2(H/B; Z/`Z)→ H2(H; Z/`Z)

We first claim that d is an isomorphism. To prove this, it suffices to show that the dual map
d∨ : H2(H/B; Z/`Z) → H1(B; Z/`Z) is an isomorphism. Let µ`(k) denote the group of `th
roots of unity (which we regard as a 1-dimensional vector space over Z/`Z), let Λ denote
the coweight lattice of T , and let Λ0 ⊆ Λ denote the sublattice generated by coroots. The
Bruhat decomposition of H/B supplies a canonical isomorphism of H2(H/B; Z/`Z) with a
direct sum of copies of µ` indexed by the simple coroots of H, which we will identify with
Λ0 ⊗Z µ`(k). Note that B is isomorphic to the product of T with an affine space, so that
the Künneth formula supplies a canonical isomorphism H1(B; Z/`Z) ' H1(T ; Z/`Z) ' Λ ⊗Z

H1(Gm; Z/`Z) ' Λ ⊗Z µ`(k). A simple calculation shows that under these isomorphisms, the
map d∨ is obtained by tensoring the identity map from µ`(k) to itself with the inclusion of
lattices Λ0 ↪→ Λ. Our assumption that H is simply connected guarantees that Λ0 = Λ, so
that d∨ and d are isomorphisms. It follows that H1(H; Z/`Z) ' 0 and that the pullback map
H2(H/B; Z/`Z)→ H2(H; Z/`Z) vanishes. Since H1(H/B; H1(T ; Z/`Z)) ' 0 as well, the Leray-
Serre spectral sequence supplies an identification of H2(H; Z/`Z) with a subgroup of the kernel
of the first differential

d′ : H2(B; Z/`Z)→ H2(H/B; H1(B; Z/`Z)) ' H2(H/B; Z/`Z)⊗Z/`Z H1(B; Z/`Z).
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Note that if x1, . . . , xr is a basis for H1(B; Z/`Z), then the cup products {xi ∪ xj}i<j form a

basis for H2(B; Z/`Z). Using the Leibniz rule for the differential d′, we compute

d′(xi ∧ xj) = dxi ⊗ xj − dxj ⊗ xi.
Since d is an isomorphism, the elements dxi ⊗ xj − dxj ⊗ xi are linearly independent in the

tensor product H2(H/B; Z/`Z)⊗Z/`Z H1(B; Z/`Z). It follows that d′ is a monomorphism and

therefore H2(H; Z/`Z) ' 0. �

Lemma 8.3.11. Let H be a connected algebraic group over k and let BH denote its classifying
stack. Then the reduced homology groups Hred

i (BH; Z`) vanish for i < 2. If H is semisimple

and simply connected, then the reduced cohomology groups Hred
i (BH; Z`) vanish for i < 4.

Proof. Note that BH can be represented by the simplicial scheme [n] 7→ Hn. It follows that the
`-adic chain complex C∗(BH; Z`) is given by the geometric realization of the simplicial object
of ModZ` given by [n] 7→ C∗(H

n; Z`) ' C∗(H; Z`)
⊗n. The skeletal filtration of this geometric

realization has successive quotients of the form ΣnCred
∗ (H; Z`)

⊗n. To show that each of these
objects belongs to (ModZ`)≥d for n ≥ 1, it will suffice to show that Cred

∗ (H; Z`) belongs to
(ModZ`)≥d−1. Since H is a quasi-projective variety, Cred

∗ (H; Z`) is perfect; it will therefore
suffice to show that the chain complex Cred

∗ (H; Z/`Z) belongs to (ModZ/`Z)≥d−1. When d = 2,
this follows from our assumption that H is connected; when d = 4 it follows from Lemma 8.3.10
(under the additional assumption that H is semisimple and simply connected). �

Proof of Proposition 8.3.5. Let G0 be the generic fiber of G, which we regard as an algebraic
group over the fraction field KX . Choose a finite (possibly inseparable) extension field L of KX

such that G0 splits over L: that is, the group scheme SpecL×X G fits into an exact sequence

0→ U → SpecL×X G→ SpecL×Spec k H → 0

where H is a reductive algebraic group over k and U is a successive extension of finitely many

copies of Ga. Then L is the fraction field of an algebraic curve X̃ which is finite over X. Then

the projection map X̃ → X factors as a composition

X̃
α→ X

β→ X

where β is finite étale and α is purely inseparable. Choose an open subset V ⊆ X such that

β is étale over V , and let V and Ṽ denote the inverse images of V in X and X̃, respectively.

Shrinking V if necessary, we may assume that Ṽ ×X G fits into an exact sequence

0→ U ′ → Ṽ ×X G→ Ṽ ×Spec k H → 0

where U ′ is a successive extension of finitely many copies of the additive group over Ṽ .
Let {x1, . . . , xd} be the set of k-valued points of X which do not belong to V . Set T =

{1, . . . , n}. For each function φ : T → {0, 1, . . . , d}, let Yφ denote the reduced closed subscheme
of XT whose k-valued points are monomorphisms ν : T → X(k) such that ν(t) ∈ V (k) if

φ(t) = 0 and ν(t) = xφ(i) otherwise. Let Y φ =
∏
t∈T

{
X if φ(t) = 0

{xφ(t)} otherwise.
denote the closure

of Yφ in XT and let iφ : Y φ ↪→ XT denote the corresponding closed embedding. The locally

closed subschemes Yφ comprise a stratification of U ⊆ XT , so that C∗(U ;B
(n)
red |U ) admits a finite

filtration whose successive quotients have the form C∗(Yφ; iφB
(n)
red |Yφ). It will therefore suffice

to show that each of the chain complexes C∗(Yφ; (i!φB
(n)
red)|Yφ) belongs to (ModZ`)≤d, where

d = −2n if the generic fiber of G is semisimple and simply connected and d = 0 otherwise. In

fact, we will prove a slightly stronger assertion: each of the `-adic sheaves (i!φB
(n)
red)|Yφ belongs
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to Shv`(Yφ)≤d (the desired assertion then follows from the fact that the global sections functor
F 7→ C∗(Yφ;F) is left t-exact).

Fix a map φ : T → {0, . . . , d} and set

Ỹφ = Yφ ×∏
φ(t)=0 V

∏
φ(t)=0

Ṽ

Y φ = Yφ ×∏
φ(t)=0 V

∏
φ(t)=0

V

Since the evident projection map Y φ → Yφ is an étale surjection, it will suffice to show that the

`-adic sheaf (i!φB
(n)
red)|Y φ belongs to Shv`(Y φ)≤d. The map Ỹφ → Y φ is surjective, finite, and

radicial, and therefore induces a t-exact equivalence of∞-categories Shv`(Y φ)→ Shv`(Ỹφ). We

are therefore reduced to showing that the restriction (i!φB
(n)
red)|Ỹφ belongs to Shv`(Ỹφ)≤d

For each subset T0 ⊆ T , let let F(T0) denote the `-adic sheaf

[({(T0 ⊆ T )} ×Θ�
RanGaug(X))×XT Ỹφ]Ỹφ Shv`(Ỹφ).

Since each {(T0 ⊆ T )}×Θ�
RanGaug(X)) is an Artin stack which is smooth over XT , Proposition

5.1.9 supplies an identification

(i!φB
(n)
red)|Ỹφ ' fib(F(∅)→ lim←−

∅6=T0⊆T
F(T0)).

For each T0 ⊆ T , let Z(T0) denote the prestack given by the product∏
t∈T−T0

{
BGxφ(t)

if φ(t) > 0

BH if φ(t) = 0.

By construction, each fiber product

RanG(X)T0⊆T⊆T ×XT Ỹφ

is equivalent to a product Ỹφ ×Spec k Z(T0). Invoking Proposition 5.1.9 again, we can identify

each F(T0) with the tensor product C∗(Z(T0); Z`) ⊗ ωỸφ , so that (i!φB
(n)
red)|Ỹφ is the tensor

product of ωỸφ with the fiber

K = fib(C∗(Z(∅); Z`)→ lim←−
∅6=T0⊆T

C∗(Z(T0); Z`)).

Let e = |φ−1{0}|, so that Ỹφ is a smooth k-scheme of dimension e and therefore ωỸφ ' Σ2eZ`(e).

To prove that (i!φB
(n)
red)|Ỹφ ' K ⊗ ωỸφ belongs to Shv`(Ỹφ)≤d, it will suffice to show that K

belongs to (ModZ`)≤d−2e.
Note that K can be identified with the Z`-linear dual of the cofiber

K ′ = cofib( lim−→
∅6=T0⊆T

C∗(Z(T0); Z`)→ C∗(Z(∅); Z`)).

It will therefore suffice to show that K ′ belongs to (ModZ`)≥2e−d. Using the Künneth formula,
we obtain an equivalence

K ′ '
⊗
t∈T

{
Cred
∗ (BGxφ(t)

; Z`) if φ(t) > 0

Cred
∗ (BH; Z`) if φ(t) = 0.
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Note that each tensor factor belongs to (ModZ`)≥2 (Lemma 8.3.11), so that we automatically
have K ′ ∈ (ModZ`)≥2n ⊆ (ModZ`)≥2e. If the generic fiber of G is semisimple and simply
connected, then Lemma 8.3.11 implies that Cred

∗ (BH; Z`) belongs to (ModZ`)≥4, so that

K ′ ∈ (ModZ`)≥4e+2(n−e) = (ModZ`)2e+2n,

as desired. �

8.4. Normalization. Let k be a field, and let A be an associative algebra over k equipped
with an augmentation ε : A→ k and augmentation ideal m = ker(ε). Using ε, we can regard k

as either a right or a left module over A. The Tor-groups TorA∗ (k, k) can be computed by the
bar complex

· · · → A⊗k A⊗k A
d→ A⊗k A

d→ A
d→ k,

where the differential d carries a tensor product a1 ⊗ · · · ⊗ an to the sum

ε(a1)a2 ⊗ · · · ⊗ an + (
∑

0<i<n

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an) + (−1)nε(an)a1 ⊗ · · · ⊗ an−1.

However, it is often more convenient to work with the reduced bar complex: that is, the sub-
complex

· · · → m⊗m⊗m
d→ m⊗m

d→ m
d→ k,

whose differential can be written more simply as

d(a1 ⊗ · · · ⊗ an) =
∑

0<i<n

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an.

One can show that this subcomplex is quasi-isomorphic to the entire complex, and can therefore
also be used to compute the groups TorA∗ (k, k).

The chain complexes

C∗(RanG(X); Z`) ' lim←−
S∈Fins

C∗(RanG(X)S ; Z`)∫
B ' lim−→

T∈Fins

C∗(XT ;B(T ))

studied in §3 and §5 can be viewed as loosely analogous to the bar complex of an associative
algebra. Our goal in this section is to describe a systematic procedure for selecting “reduced”
versions of these constructions which give (essentially) the same result. Theorem 8.1.12 provides
a basic prototype for what such a statement might look like. We are therefore led to ask the
following:

Question 8.4.1. Let Θ� be the category described in Notation 8.1.6, let C be a stable ∞-
category which admits limits, and let V : Θ� → C be a functor. Is the canonical map

lim←−
S∈Fins

V (S ⊆ S)→ lim←−
S∈Fins

lim−→
∅6=S0⊆S

V (S0 ⊆ S)

is an equivalence in C?

The answer to Question 8.4.1 is negative in general. However, there are combinatorial condi-
tions on V which guarantee a positive answer which can be verified in many important special
cases, including the case of the functor

(S0 ⊆ S) 7→ C∗(RanG(X −D)S0⊆S ; Z`)

studied in §8.1. To formulate these conditions, we need to introduce a bit of notation.

Notation 8.4.2. We define a category Θ as follows:
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• The objects of Θ are triples (S0 ⊆ S1 ⊆ S), where S is a nonempty finite set, S1 is a
(possibly empty) subset of S, and S0 is a (possibly empty) subset of S1.
• A morphism from (S0 ⊆ S1 ⊆ S) to (S′0 ⊆ S′1 ⊆ S′) in Θ is a map of finite sets
α : S → S′ such that S′0 ⊆ α(S0) and S′1 ⊆ α(S1).

The construction (S0 ⊆ S) 7→ (S0 ⊆ S ⊆ S) determines a faithful functor ι : Θ� → Θ,
where Θ� is the category introduced in Notation 8.1.6. In what follows, we will generally abuse
notation by identifying Θ� with its image in Θ.

Notation 8.4.3. Let C be a stable ∞-category and let V : Θ→ C be a functor. We define

V� = W� V� = W� Vred = Wred,

where W = V |Θ�
is the functor obtained by restricting V to the subcategory Θ� ⊆ Θ (see

Construction 8.1.7).

Notation 8.4.4. Let S be a finite set. We let Equiv(S) denote the set of all equivalence
relations on S, partially ordered by refinement (so that E ≤ E′ if xEy implies xE′y). If E is an
equivalence relation on S, we let S/E denote the quotient of S by E. For each subset S′ ⊆ S,
we let S′/E denote the image of S′ in the quotient S/E. We let Equiv◦(S) denote the subset of
Equiv(S) consisting of non-discrete equivalence relations (that is, equivalence relations E such
that S/E is smaller than S).

Definition 8.4.5. Let C be an ∞-category which admits limits, and let V : Θ → C be a
functor. We will say that V is unital if it satisfies the following pair of conditions:

(U1) Let S be a nonempty finite set and let S1 ⊆ S. Then the canonical map

V (∅ ⊆ S1 ⊆ S)→ lim←−
S′∈Fins

V (∅ ⊆ S1 ⊆ S q S′)

is an equivalence in C.
(U2) Let (S0 ⊆ S1 ⊆ S) be an object of Θ, let s ∈ S be an element which is not contained

in S1, and set S′0 = S0 ∪ {s}, S′1 = S1 ∪ {s}. Then the diagram

V (S′0 ⊆ S′1 ⊆ S) //

��

V (S0 ⊆ S1 ⊆ S)

��
lim←−E∈Equiv◦(S)

V (S′0/E ⊆ S′1/E ⊆ S/E) // lim←−E∈Equiv◦(S)
V (S0/E ⊆ S1/E ⊆ S/E)

is a pullback square in C.

Example 8.4.6. Let X, G, and D be as in Theorem 8.1.11. Then the construction

(S0 ⊆ S1 ⊆ S) 7→ C∗(RanG(X −D)S0⊆S1 ×(X−D)S1 (X −D)S

determines a functor V : Θ → ModZ` . In §8.5, we will show that V satisfies conditions (U1)
and (U2) of Definition 8.4.5 (Propositions 8.5.3 and 8.5.4).

Example 8.4.7. Let X, G, and Baug be as in Theorem 8.2.14. Then the construction

(T0 ⊆ T1 ⊆ T ) 7→ C∗(XT ;π![XT0 ×RanG(X)(T0) RanG(X)(T1)]XT1 )

determines a functor V : Θ→ Modop
Z`

. In §8.6, we will show that this functor satisfies conditions

(U1) and (U2) of Definition 8.4.5 (Propositions 8.6.6 and 8.6.7).

Remark 8.4.8. In Examples 8.4.6 and 8.4.7 (and other examples we will encounter later in this
paper), the verification of conditions (U1) reduces to the acyclicity of the Ran space Ran(X).
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We can now state our main result.

Theorem 8.4.9. Let C be a stable ∞-category which admits limits and let V : Θ� → C be a
functor. Suppose that V can be extended to a unital functor V : Θ → C. Then the canonical
map

lim←−
S∈Fins

V (S ⊆ S)→ lim←−
S∈Fins

lim−→
∅6=S0⊆S

V (S0 ⊆ S)

is an equivalence in C.

The main ingredient in our proof of Theorem 8.4.9 is the following result, whose proof we
defer for the moment:

Theorem 8.4.10. Let C be a stable ∞-category which admits limits and let V : Θ → C be a
unital functor. Then the canonical maps

lim←−
S∈Fins

V (∅ ⊆ ∅ ⊆ S)← lim←−
S∈Fins

V�(S)→ lim←−
S∈Fins

Vred(S)

exhibit lim←−S∈Fins V�(S) as a product of lim←−S∈Fins V (∅ ⊆ ∅ ⊆ S) with lim←−S∈Fins Vred(S) in the

∞-category C (see Notation 8.4.3).

Lemma 8.4.11. Let C be an ∞-category which admits limits and let V : Θ → C be a unital
functor. Then, for every nonempty finite set S, the canonical map

V (S ⊆ S ⊆ S)→ V (∅ ⊆ ∅ ⊆ S)

is an equivalence in C.

Proof. We show more generally that for S0 ⊆ S′0 ⊆ S, the canonical map

V (S′0 ⊆ S′0 ⊆ S)→ V (S0 ⊆ S0 ⊆ S)

is an equivalence. The proof proceeds by induction on the cardinality of S. Without loss of
generality, we may assume that S′0 is obtained from S0 by adjoining a single element. In this
case, condition (U2) of Definition 8.4.5 guarantees that we have a pullback diagram

V (S′0 ⊆ S′0 ⊆ S) //

��

V (S0 ⊆ S0 ⊆ S)

��
lim←−E∈Equiv◦(S)

V (S′0/E ⊆ S′0/E ⊆ S/E) // lim←−E∈Equiv◦(S)
V (S0/E ⊆ S0/E ⊆ S/E).

It follows from the inductive hypothesis that the bottom horizontal map is an equivalence in C,
so that the upper horizontal map is an equivalence as well. �

Proof of Theorem 8.4.9. Let V : Θ� → C be a functor which extends to a unital functor
V : Θ→ C. It follows from Lemma 8.4.11 that the composite map

lim←−
S∈Fins

V (S ⊆ S)
α→ lim←−
S∈Fins

V�(S)
β→ lim←−
S∈Fins

V (∅ ⊆ ∅ ⊆ S)

is an equivalence. Since β is an equivalence by virtue of Theorem 8.4.10, it follows that α is an
equivalence as desired. �

The proof of Theorem 8.4.10 will require a number of preliminaries.
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Notation 8.4.12. We let Θ◦ denote the full subcategory of Θ spanned by those objects (S0 ⊆
S1 ⊆ S) where S0 = ∅. We will think of objects of Θ◦ as pairs (S1 ⊆ S). Let Θs denote the
subcategory of Θ◦ containing all objects, where a morphism from (S1 ⊆ S) to (S′1 ⊆ S′) in
Θs is a surjective map α : S → S′ such that S′1 ⊆ α(S1). We will identify Fins with the full
subcategory of Θs spanned by those objects (S1 ⊆ S) where S1 = S.

Let C be an ∞-category which admits limits. We will say that a functor V : Θ◦ → C is
weakly unital it is satisfies the following condition:

(∗) Let S be a nonempty finite set and let S1 ⊆ S. Then the canonical map

V (S1 ⊆ S)→ lim←−
S′∈Fins

V (S1 ⊆ S q S′)

is an equivalence in C.

Lemma 8.4.13. Let C be an ∞-category which admits limits and let V : Θ◦ → C be a weakly
unital functor. Let ι : Θs ↪→ Θ◦ be the inclusion map. Then V is a right Kan extension of V |Θs
along ι.

We will defer the proof of Lemma 8.4.13 until the end of this section.

Proposition 8.4.14. Let C be an ∞-category which admits limits and let V : Θ◦ → C be a
weakly unital functor. Then the

lim←−(V )→ lim←−(V |Θs)→ lim←−(V |Fins)

are equivalences in C.

Proof. The assertion that the map lim←−(V )→ lim←−(V |Θs) is an equivalence, follows immediately

from Lemma 8.4.13. To show that the restriction map lim←−(V |Θs) → lim←−(V |Fins) is an equiva-

lence, it suffices to show that the inclusion j : Fins ↪→ Θs is right cofinal. This is clear, since j
admits a right adjoint, given on objects by (S1 ⊆ S) 7→ S. �

Notation 8.4.15. For each integer n ≥ 0, let 〈n〉 denote the finite set {1, 2, . . . , n}, and let
Fins≤n denote the full subcategory of Fins spanned by those sets S having cardinality ≤ n.

Proposition 8.4.16. Let C be an ∞-category which admits finite limits, and let V : Fins → C

be a functor. For n > 0, the diagram

lim←−S∈Fins≤n
V (S) //

��

lim←−S∈Fins≤n−1

V (S)

��
V (〈n〉)Σn // (lim←−E∈Equiv◦(〈n〉) V (〈n〉/E))Σn

is a pullback diagram in C.

We will need a slightly fancier version of Proposition 8.4.16, which applies to diagrams
indexed by the category Θ◦.

Notation 8.4.17. Let n ≥ 0 be an integer. We let Θ◦≤n denote the full subcategory of Θ◦

spanned by those objects (S1 ⊆ S) where S1 has cardinality ≤ n.
Let T(n) denote the partially ordered set of pairs (E,S1), where E ∈ Equiv(〈n〉) and S1 is a

subset of 〈n〉/E having cardinality < n (we set (E,S1) ≤ (E′, S′1) if E ≤ E′ and S′1 ⊆ S1/E).
The partially ordered set T(n) carries an action of the symmetric group Σn, and the construction
(E,S1) 7→ (S1 ⊆ 〈n〉/E) determines a Σn-equivariant functor from T(n) to Θ◦≤n−1.
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Proposition 8.4.18. Let C be an ∞-category which admits limits, and let V : Θ◦ → C be a
functor. For each integer n > 0, the diagram

lim←−(V |Θ◦≤n) //

��

lim←−(V |Θ◦≤n−1
)

��
V (〈n〉 ⊆ 〈n〉)Σn // lim←−(V |T(n))

Σn

is a pullback square in C.

We defer the proofs of Propositions 8.4.16 and 8.4.18 until the end of this section.

Remark 8.4.19. Let C be a stable ∞-category, and suppose we are given a diagram

X ′

f

��
Y ′

f ′ // X
g′ //

g

��

Y ′′

X ′′

where the row and the column are fiber sequences. Then g′ ◦ f is an equivalence if and only if
g ◦ f ′ is an equivalence. Indeed, both of these conditions are equivalent to the requirement that
f and f ′ induce an equivalence X ′ ⊕ Y ′ → X.

Lemma 8.4.20. Let C be a stable ∞-category, let n ≥ 0 be an integer, and let P denote the
partially ordered set of pairs (S0, S1), where S0 and S1 are subsets of 〈n〉 satisfying S0 ⊆ S1.
Suppose we are given a functor U : P op → C satisfying the following condition:

(∗) Let (S0, S1) ∈ P , and suppose that s ∈ 〈n〉 − S1. Then the canonical map U(S0 ∪
{s}, S1 ∪ {s})→ U(S0, S1) is an equivalence.

Then the composite map

lim−→
∅6=S0⊆〈n〉

U(S0, 〈n〉)→ U(∅, 〈n〉)→ lim←−
S1(〈n〉

U(∅, S1).

is an equivalence.

Proof of Theorem 8.4.10. For each n ≥ 0, let W (n) denote the inverse limit

lim←−
(S1⊆S)∈Θ◦≤n

V (∅ ⊆ S1 ⊆ S),

so that we have a tower of objects

· · · →W (2)→W (1)→W (0)

of the ∞-category C. Let W (∞) = lim←−nW (n), so that we have a commutative diagram

W (∞) //

��

W (0)

��
lim←−S∈Fins V�(S) // lim←−S∈Fins V (∅ ⊆ ∅ ⊆ S)

Proposition 8.4.14 implies that the left vertical map is an equivalence. Lemma 8.4.13 shows
that the restriction of V to Θ◦≤0 is a right Kan extension of its restriction Θ◦≤0 ∩Θ

s, so that
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the right vertical map is also an equivalence. It will therefore suffice to show that the canonical
map

θ : W (∞)→W (0)× lim←−
S∈Fins

Vred(S)

is an equivalence in C.
Unwinding the definitions, we see that θ is the limit of a tower of maps

θn : W (n)→W (0)× lim←−
S∈Fins≤n

Vred(S).

It will therefore suffice to show that each of the maps θn is an equivalence. We proceed by
induction on n. If n = 0, then Fins≤0 is empty and the result is obvious. To handle the
inductive step, it will suffice to show that for n > 0, the upper square in the diagram

W (n) //

��

W (n− 1)

��
lim←−S∈Fins≤n

Vred(S) //

��

lim←−S∈Fins≤n−1

Vred(S)

��
Vred(〈n〉)Σn // (lim←−E∈Equiv◦(〈n〉) Vred(〈n〉/E))Σn

is a pullback square. The lower square is a pullback by virtue of Proposition 8.4.16. It will
therefore suffice to prove that the outer rectangle is a pullback square.

Let T(n) be defined as in Notation 8.4.17 so that we have a commutative diagram

W (n) //

��

W (n− 1)

��
V�(〈n〉)Σn //

��

(lim←−V |T(n))
Σn

��
Vred(〈n〉)Σn // (lim←−E∈Equiv◦(〈n〉) Vred(〈n〉/E))Σn .

The upper square is a pullback diagram by Proposition 8.4.18. We are therefore reduced to
proving that the lower square is a pullback diagram. Since the collection of pullback diagrams
in C is closed under limits, it will suffice to show that the diagram

V�(〈n〉)
φ //

��

(lim←−V |T(n))

��
Vred(〈n〉)

ψ // lim←−E∈Equiv◦(〈n〉) Vred(〈n〉/E)

is a pullback square in C. Equivalently, we wish to show that the canonical map fib(φ)→ fib(ψ)
is an equivalence.

Let T′(n) denote the full subcategory of T(n) spanned by those pairs (E,S1) where E ∈
Equiv◦(〈n〉), and let φ′ : lim←−(V |T(n)) → lim←−(V |T′(n)) denote the canonical map. Note that

there is a right cofinal map Equiv◦(〈n〉)→ T′(n), given by E 7→ (E, 〈n〉/E). We may therefore
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identify φ′ ◦ φ with the canonical map V�(〈n〉) → lim←−E∈Equiv◦(〈n〉) V�(〈n〉/E). We have a

commutative diagram σ :

fib(φ)

��
fib(µ) // fib(φ′ ◦ φ) //

��

fib(ψ)

fib(φ′),

where µ denotes the canonical map V�(〈n〉)→ lim←−E∈Equiv◦(〈n〉) V�(〈n〉/E), where the row and

column of σ are fiber sequences. Using Remark 8.4.19, we are reduced to proving that the
composite map

ξ : fib(µ)→ fib(φ′ ◦ φ)→ fib(φ′)

is an equivalence.
To identify the fiber of φ′, let V ′′ : T(n)→ C denote a right Kan extension of V |T′(n) along

the inclusion T′(n) ↪→ T(n), and let V ′ : T′(n) → C denote the fiber of the canonical map
V |T(n) → V ′′. Then fib(φ′) can be identified with the limit of the diagram V ′. Note that V ′

vanishes on T′(n), so that V ′ is a right Kan extension of its restriction to the subset of T(n)
spanned by those objects (E0, S1) where E0 denotes the discrete equivalence relation on 〈n〉
(this subset is equivalent to the opposite of the partially ordered set of subsets S1 ⊆ 〈n〉).
Moreover, for such an object (E0, S1), the category D = T′(n) ×T(n) T(n)(E0,S1)/ contains a
full subcategory D0 consisting of those maps (E0, S1) → (E′, S′1) where S′1 is the image of S1,
and the inclusion of this full subcategory is right cofinal. It follows that V ′′ is given by the
formula V ′′(E0, S1) = lim←−E∈Equiv◦(〈n〉) V (∅ ⊆ S1/E ⊆ 〈n〉/E), so that V ′(E0, S1) is the fiber

of the canonical map V (∅S1 ⊆ 〈n〉) → lim←−E∈Equiv◦(〈n〉) V (∅ ⊆ S1/E ⊆ 〈n〉/E). Passing to the

limit, we can identify fib(φ′) with the fiber of the canonical map

lim←−
S1(〈n〉

V (∅ ⊆ S1 ⊆ 〈n〉)→ lim←−
S1(〈n〉

lim←−
E∈Equiv◦(〈n〉)

V (∅ ⊆ S1/E ⊆ 〈n〉/E).

Let P be as in Lemma 8.4.20. For each (S0, S1) ∈ P , we let U(S0, S1) denote the fiber of
the canonical map

V (S0 ⊆ S1 ⊆ 〈n〉)→ lim←−
E∈Equiv◦(〈n〉)

V (S0/E ⊆ S1/E ⊆ 〈n〉/E).

Unwinding the definitions, we see that ξ is given by the composition

lim−→
∅6=S0⊆〈n〉

U(S0, 〈n〉)→ U(∅, 〈n〉)→ lim←−
S1(〈n〉

U(∅, S1).

By virtue of Lemma 8.4.20, it will suffice to show that for S0 ⊆ S1 ⊆ 〈n〉 and s ∈ 〈n〉 − S1, the
canonical map U(S0 ∪ {s}, S1 ∪ {s})→ U(S0, S1) is an equivalence, which follows immediately
from Condition (U2) of Definition 8.4.5. �

We now turn the proofs of Lemma 8.4.13, Lemma 8.4.20, Proposition 8.4.16, and Proposition
8.4.18.

Lemma 8.4.21. Let C be an ∞-category which admits limits and let S be a nonempty finite
set. Let J be the category whose objects are pairs (S, β), where S is a finite set and β : S → S

is an injection; a morphism from (S, β) to (S
′
, β′) in J is a surjection of finite sets α : S → S

′
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such that β′ = α◦β. If V : Θ◦ → C is weakly unital, then for every subset S1 ⊆ S the canonical
map

θ : V (S1 ⊆ S)→ lim←−
(S,β)∈J

V (β(S1) ⊆ S)

is an equivalence in C.

Proof. We have a commutative diagram

V (S1 ⊆ S)
θ //

id

��

lim←−(S,β)∈J V (β(S1) ⊆ S)

��
V (S1 ⊆ S)

θ′ //

id

��

lim←−S′∈Fins V (S1 ⊆ S q S′)

��
V (S1 ⊆ S) //

id

��

lim←−(S,β)∈J V (S1 ⊆ S q S)

��
V (S1 ⊆ S)

θ // lim←−(S,β)∈J V (β(S1) ⊆ S)

where the composite of the left vertical maps is an equivalence. It follows that θ is a retract of
θ′, which is an equivalence by virtue of our assumption that V is weakly unital. �

Proof of Lemma 8.4.13. We must show that for every object (S1 ⊆ S) ∈ Θ◦, the canonical map

V (S1 ⊆ S)→ lim←−
(S′1⊆S′)∈D

V (S′1 ⊆ S′)

is an equivalence, where D denotes the fiber product Θs×Θ◦(Θ
◦)(S1⊆S)/. Let D0 denote the

full subcategory of D spanned by those maps (S1 ⊆ S)→ (S′1 ⊆ S′) for which the map S → S′

is injective, and S′1 is the image of S1. Then D0 is equivalent to the category J appearing in
Lemma 8.4.21. Since V is weakly unital Lemma 8.4.21 implies that the canonical map

V (S1 ⊆ S)→ lim←−
(S′1⊆S′)∈D0

V (S′1 ⊆ S′)

is an equivalence. It will therefore suffice to show that the inclusion D0 ↪→ D is right cofinal.
To this end, choose an object D ∈ D, given by a morphism α : (S1 ⊆ S) → (S′′1 ⊆ S′′) in
Θ◦. We wish to prove that the fiber product E = D/D ×D D0 has weakly contractible nerve.
Unwinding the definitions, we can identify E with the category whose objects are factorizations

S
α′→ S′

α′′→ S′′

of α, where α′ is injective and α′′ is surjective; the morphisms in E are given by commutative
diagrams

S′0
α′′0

  
ρ

��

S

α′0
??

α′1

��

S′′

S′1

α′′1

>>
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where ρ is surjective.
For each x ∈ S′′, let Sx denote the inverse image α−1{s}. Then E is equivalent to the product∏
x∈S′′ Ex, where Ex is the category whose objects are nonempty finite sets T equipped with

an injective map α′x : Sx → T , and whose morphisms are surjective maps. We are therefore
reduced to proving that each of the categories Ex has weakly contractible nerve. We consider
two cases:

(a) The set Sx is empty. In this case, Ex has a final object (given by taking T to consist of
a single element).

(b) The set Sx is nonempty. In this case, we argue as in the proof of Theorem 2.4.5. Note
first that the simplicial set N(Ex) is connected (since every object T ∈ Ex admits a
map T → Sx). We can equip the category Ex with a monoidal structure ?, given by
T ? T ′ = T qSx T ′. The unit object of Ex determines a base point q ∈ N(Ex).

This monoidal structure induces a map m : N(Ex) × N(Ex) → N(Ex). For each
T ∈ Ex, we have an natural map T ? T → T , which determines a homotopy from the
composite map

N(Ex)
δ→ N(Ex)×N(Ex)

m→ N(Ex)

to the identity. It follows that g2 = g for each g ∈ πi(N(Ex), q), so that the group
πi(N(Ex), q) is trivial.

�

Proof of Lemma 8.4.20. We proceed by induction on n, the case n = 0 being trivial. Define a
functor U ′ : P op → C by the formula U ′(S0, S1) = U(S0 ∪ {n}, S1 ∪ {n}), and let U ′′ : P op → C

be the cofiber of the canonical map U ′ → U . We have a fiber sequence of functors

U ′ → U → U ′′.

It will therefore suffice to prove the analogous statements for the functors U ′ and U ′′:

• Let P ′ denote the subset of P consisting of those pairs (S0, S1) where S1 = 〈n〉 and
S0 6= ∅, and let P ′′ ⊆ P denote the subset consisting of those pairs where (S0, S1)
where S1 = 〈n〉 and n ∈ S0. Note that the functor U ′ factors through the construction
(S0, S1) 7→ (S0∪{n}, S1∪{n}) so that U ′|P ′ op is a left Kan extension of U ′|P ′′ op . Since
P ′′ contains {n} as a smallest element, it follows that the canonical maps

U ′({n}, 〈n〉)→ lim−→
(S0,S1)∈P ′′

U ′(S0, S1)→ lim−→
∅6=S0⊆〈n〉

U ′(S0, 〈n〉)

is an equivalence. The same argument shows that the canonical map

lim←−
S1(〈n〉

U ′(∅, S1)→ U ′(∅, 〈n〉 − {n})

is an equivalence. We are therefore reduced to proving that the composite map

U ′({n}, 〈n〉)→ U ′(∅, 〈n〉)→ U ′(∅, 〈n〉 − {n})

is an equivalence, which follows immediately from the definition of U ′.
• By construction, the functor U ′′ vanishes on pairs (S0, S1) where n ∈ S0. Using (∗), we

see that U ′′ also vanishes on pairs (S0, S1) where n /∈ S1. It follows that the restriction
of U ′′ to P ′ op is a left Kan extension of its restriction to (P ′ − P ′′)op, so that the
canonical map

lim−→
∅6=S0⊆〈n−1〉

U ′′(S0, 〈n〉)→ lim−→
∅6=S0⊆〈n〉

U ′′(S0, 〈n〉)
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is an equivalence. Similar reasoning shows that the canonical map

lim←−
S1(〈n〉

U ′′(∅, S1)→ lim←−
n∈S1(〈n〉

U ′′(∅, S1)

is an equivalence. We are therefore reduced to showing that the composite map

lim−→
∅6=S0⊆〈n−1〉

U ′′(S0, 〈n〉)→ U ′′(∅, 〈n〉)→ lim←−
n∈S1⊆〈n〉

U ′′(∅, S1)

is an equivalence, which follows from the inductive hypothesis.

�

Proof of Proposition 8.4.16. We argue as in the proof of Lemma 5.3.14. Let Fins=n denote the
full subcategory of Fins spanned by those finite sets having cardinality exactly n. Let

i : Fins=n ↪→ Fins≤n j : Fins≤n−1 ↪→ Fins≤n

be the inclusion functors. We let

i∗ : Fun(Fins≤n,C)→ Fun(Fins=n,C) j∗ : Fun(Fins≤n,C)→ Fun(Fins≤n−1,C)

denote the functors given by composition with i and j, respectively. Let

i∗ : Fun(Fins=n,C)→ Fun(Fins≤n,C) j∗ : Fun(Fins≤n−1,C)→ Fun(Fins≤n,C)

denote their right adjoints (given by right Kan extension along i and j). Let U = V |Fins≤n
. We

first claim that the diagram τ :

U //

��

j∗j
∗U

��
i∗i
∗U // i∗i∗j∗j∗U

is a pullback square in Fun(Fins≤n,C). To prove this, it will suffice to show that τ yields a
pullback square in C when evaluated at any nonempty set S of cardinality ≤ n. If |S| < n,
this follows from the fact that the horizontal maps in the diagram τ are equivalences (the lower
horizontal map in τ is an equivalence, since it is a morphism between final objects of C). If
|S| = n, then the vertical maps in the diagram τ are equivalences.

Extracting inverse limits, we obtain a pullback diagram in C:

lim←−(V |Fins≤n
) //

��

lim←−(V |Fins≤n−1
)

��
lim←−(V |Fins=n

) // lim←−(i∗j∗j
∗U).

Note that Fins=n is equivalent to the full subcategory of Fins spanned by the object 〈n〉, whose
endomorphism monoid coincides with the symmetric group Σn. We therefore have canonical
equivalences

lim←−(V |Fins=n
) ' V (〈n〉)Σn lim←−(i∗j∗j

∗U) ' (j∗j
∗U)(〈n〉)Σn .

To complete the proof, we observe that (j∗j
∗U)(〈n〉) can be identified with the inverse limit

lim←−(V |D), where D denotes the full subcategory of Fins〈n〉/ spanned by those surjective maps

〈n〉 → S where S has cardinality < n. This category is evidently equivalent to the partially
ordered set Equiv◦(〈n〉). �
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Proof of Proposition 8.4.18. We follow the basic outline of the proof of Proposition 8.4.16. Let
Θ◦n ⊆ Θ◦ denote the full subcategory spanned by those objects (S, S1) where S1 has cardinality
exactly n. Let

i : Θ◦n ↪→ Θ◦≤n j : Θ◦≤n−1 ↪→ Θ◦≤n
denote the inclusion functors. We let

i∗ : Fun(Θ◦≤n,C)→ Fun(Θ◦n,C) j∗ : Fun(Θ◦≤n,C)→ Fun(Θ◦≤n−1,C)

denote the functors given by composition with i and j, respectively, and let

i∗ : Fun(Θ◦n,C)→ Fun(Θ◦≤n,C) j∗ : Fun(Θ◦≤n−1,C)→ Fun(Θ◦≤n,C)

denote their right adjoints (given by right Kan extension along i and j). Let U = V |Θ◦≤n . We

first claim that the diagram τ

U //

��

j∗j
∗U

��
i∗i
∗U // i∗i∗j∗j∗U

is a pullback square in Fun(Θ◦≤n,C). To prove this, it will suffice to show that τ yields a pullback
square in C when evaluated at any object (S1 ⊆ S) ∈ Θ◦≤n. If |S1| < n, this follows from the
fact that the horizontal maps in the diagram τ are equivalences (the lower horizontal map in τ
is an equivalence when evaluated at (S1 ⊆ S) because it is a morphism between final objects
of C). If |S1| = n, then the vertical maps in the diagram τ are equivalences.

Extracting projective limits, we obtain a pullback diagram in C:

lim←−(V |Θ◦≤n) //

��

lim←−(V |Θ◦≤n−1
)

��
lim←−(V |Θ◦n) // lim←−((i∗j∗j

∗U)).

Let E denote the full subcategory of Θ◦n spanned by the single object (〈n〉 ⊆ 〈n〉). The set
of morphisms from this object to itself can be identified with the symmetric group Σn. The
inclusion E ↪→ Θ◦n admits a right adjoint and is therefore right cofinal. It follows that the
canonical maps

lim←−(V |Θ◦n)→ V (〈n〉 ⊆ 〈n〉)Σn lim←−((i∗j∗j
∗U))→ (j∗j

∗U)(〈n〉, 〈n〉)Σn

are equivalences. To complete the proof, we observe that (j∗j
∗U)(〈n〉, 〈n〉) can be identified

with the inverse limit lim←−(V |D), where D denotes the full subcategory of (Θ◦)(〈n〉⊆〈n〉)/ spanned

by those maps (〈n〉, 〈n〉)→ (S, S1) where |S1| < n. Unwinding the definitions, we see that T(n)
can be identified with the full subcategory of D spanned by those maps (〈n〉 ⊆ 〈n〉)→ (S1 ⊆ S)
for which the underlying map 〈n〉 → S is surjective. The resulting inclusion T(n) ↪→ D admits a
right adjoint and is therefore right cofinal, so that we obtain an equivalence (j∗j

∗U)(〈n〉, 〈n〉) '
lim←−(V |T(n)). �

8.5. Proof of Theorem 8.1.12. Throughout this section, we fix an algebraically closed field
k, a prime number ` which is invertible in k, an algebraic curve X over k, and a smooth affine
group scheme G over X whose generic fiber is semisimple and simply connected. Let D ⊆ X
be an effective divisor for which G is reductive over the open set X −D ⊆ X. Our goal is to
prove Theorem 8.1.12, which asserts that the canonical map

lim←−
S∈Fins

C∗((X −D)S ; Z`)→ lim←−
S∈Fins

lim−→
∅6=S0⊆S

C∗(RanG(X −D)S0⊆S ; Z`)
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is an equivalence. By virtue of Theorem 8.4.9, it will suffice to show that the construction

(S0 ⊆ S) 7→ C∗(RanG(X −D)S0⊆S ; Z`)

can be extended to a unital functor V : Θ→ ModZ` . We will exhibit such an extension by an
explicit geometric construction.

Notation 8.5.1. Let S be a nonempty finite set and let S0 ⊆ S1 be (possibly empty) subsets
of S. We define an object V (S0 ⊆ S1 ⊆ S) ∈ ModZ` by the formula

V (S0 ⊆ S1 ⊆ S) = C∗(RanG(X −D)S0⊆S1 ×(X−D)S1 (X −D)S ; Z`).

Note that the construction

(S0 ⊆ S1 ⊆ S) 7→ RanG(X −D)S0⊆S1
×(X−D)S1 (X −D)S

determines a contravariant functor from the category Θ to the 2-category of prestacks, so that
we can regard V as a functor from Θ into ModZ` .

Remark 8.5.2. Let S be a nonempty finite set. For every subset S0 ⊆ S, the projection map

RanG(X −D)S0⊆S0 ×(X−D)S0 (X −D)S → (X −D)S

is an equivalence of prestacks, which induces an equivalence

V (S0 ⊆ S0 ⊆ S)→ V (∅ ⊆ ∅ ⊆ S).

In particular, the canonical map

lim←−
S

V (S ⊆ S ⊆ S)→ lim←−
S

V (∅ ⊆ ∅ ⊆ S)

is an equivalence in ModZ` .

To complete the proof of Theorem 8.1.12, it will suffice to show that the functor V of
Notation 8.5.1 conditions (U1) and (U2) of Definition 8.4.5. This is the content of the following
two assertions:

Proposition 8.5.3. Let S be a nonempty finite set and let S1 ⊆ S. Then the canonical map

V (∅ ⊆ S1 ⊆ S)→ lim←−
S′∈Fins

V (∅ ⊆ S1 ⊆ S q S′)

is an equivalence in ModZ` .

Proposition 8.5.4. Let (S0 ⊆ S1 ⊆ S) be an object of Θ, let s ∈ S be an element which is not
contained in S1, and set S′0 = S0 ∪ {s}, S′1 = S1 ∪ {s}. Then the diagram

V (S′0 ⊆ S′1 ⊆ S) //

��

V (S0 ⊆ S1 ⊆ S)

��
lim←−E∈Equiv◦(S)

V (S′0/E ⊆ S′1/E ⊆ S) // lim←−E∈Equiv◦(S)
V (S0/E ⊆ S1/E ⊆ S/E)

is a pullback square in ModZ` .

Proof of Proposition 8.5.3. Set C = RanG(X − D)S1
×(X−D)S1 (X − D)S . Unwinding the

definitions, we wish to prove that the canonical map

C∗(C; Z`)→ lim←−
S′∈Fins

C∗(C×Spec kX
S′ ; Z`)



272 DENNIS GAITSGORY AND JACOB LURIE

is an equivalence. In fact, we will prove the stronger assertion that the predual

lim−→
S′∈Fins

C∗(C×Spec k(X −D)S
′
; Z`)→ C∗(C; Z`)

is an equivalence. Using the Künneth formula (Corollary 2.3.43), we are reduced to proving
that the natural map

lim−→
S′∈Fins

C∗((X −D)S
′
; Z`)→ C∗(Spec k; Z`) ' Z`

is an equivalence, which follows from the acyclicity of Ran(X −D) (Corollary 2.4.13). �

Let us now sketch our proof of Proposition 8.5.4. The main idea is to reduce to a local
statement about ModZ/`Z-valued sheaves on (X −D)S , which can be checked after passing to

stalks at any k-valued point µ of (X − D)S (which we can identify with a map from S into
(X −D)(k)). To compute the relevant stalks, we will need to establish a version of the proper
base change theorem for the projection maps RanG(X −D)S0⊆S → (X −D)S (Lemma 8.5.6).
We will use combinatorial arguments to reduce to the case where the map µ : S → (X −D)(k)
is injective, in which case the desired result is a consequence of the following simple observation:

Lemma 8.5.5. Let (S0 ⊆ S1 ⊆ S) be an object of Θ, let s ∈ S be an element which is not
contained in S1, and let U ⊆ (X −D)S be the open subset whose k-valued points are injective
maps µ : S → (X −D)(k). Then the canonical map

φ : RanG(X −D)S0⊆S1
×(X−D)S1 U → RanG(X −D)S0∪{s}⊆S1∪{s} ×(X−D)S1∪{s} U

is an equivalence of categories.

Proof. Let (R,P, µ, γ) be an object of

RanG(X −D)S0∪{s}⊆S1∪{s} ×(X−D)S1∪{s} U,

so that |µ(s)| and |µ(S1)| are disjoint closed subsets of XR. Let P′ be the G-bundle on XR

obtained by gluing P |XR−|µ(s)| to the trivial bundle on P |XR−|µ(S1)|, where the gluing data is
provided by the trivialization γ. Then γ extends to a trivialization γ′ of P on the open set
XR − |µ(S1)|. The construction

(R,P, µ, γ) 7→ (R,P′, µ, γ′)

determines a homotopy inverse to the functor φ. �

Lemma 8.5.6. Let S be a (possibly empty) finite set, let S0 ⊆ S be a subset, and let q :
RanG(X −D)S0⊆S → (X −D)S be the projection map. Let F ∈ Shv((X −D)S ; Z/`Z) be the
sheaf given by the formula

F(U) = C∗(U ×(X−D)S RanG(X −D)S0⊆S ; Z/`Z).

Fix a point η : Spec k → (X −D)S. Then the natural map

η∗ F → C∗(Spec k ×(X−D)S RanG(X −D)S0⊆S ; Z/`Z)

is an equivalence in ModZ/`Z.

We defer the proof of Lemma 8.5.6 until the end of this section.
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Proof of Proposition 8.5.4. Let (S0 ⊆ S1 ⊆ S) be an object of Θ, let s ∈ S be an element which
is not contained in S1, and set S′0 = S0∪{s}, S′1 = S1∪{s}. We wish to prove that the diagram
σ :

V (S′0 ⊆ S′1 ⊆ S) //

��

V (S0 ⊆ S1 ⊆ S)

��
lim←−E∈Equiv◦(S)

V (S′0/E ⊆ S′1/E ⊆ S) // lim←−E∈Equiv◦(S)
V (S0/E ⊆ S1/E ⊆ S/E)

is a pullback square in ModZ` . Since each entry in the diagram is `-complete, it will suffice to
prove that σ is a pullback diagram after tensoring with Z/`Z. For each equivalence relation
E ∈ Equiv(S), let FE ,F

′
E ∈ Shv((X −D)S ; Z/`Z) denote the sheaves given by the formulae

FE(U) = C∗(U ×(X−D)S1 RanG(X −D)S0/E⊆S1/E ; Z/`Z)

F′E(U) = C∗(U ×(X−D)S1 RanG(X −D)S′0/E⊆S′1/E ; Z/`Z).

Let E0 denote the discrete equivalence relation on S (so that S/E0 ' S). Unwinding the
definitions, we must show that the diagram

C∗((X −D)S ;F′E0
) //

��

C∗((X −D)S ;FE0)

��
lim←−E∈Equiv◦(S)

C∗((X −D)S ;F′E) // lim←−E∈Equiv◦(S)
C∗((X −D)S ;FE)

is a pullback square in ModZ/`Z. We will prove this by showing that the diagram

F′E0
//

��

FE0

��
lim←−E∈Equiv◦(S)

F′E
// lim←−E∈Equiv◦(S)

FE

is a pullback square in Shv((X −D)S ; Z/`Z).
Fix a point η : Spec k → (X −D)S , which we will identify with a map µ : S → X(k). Using

Proposition 4.1.11, we are reduced to proving that the diagram σ′ :

η∗ F′E0
//

��

η∗ FE0

��
lim←−E∈Equiv◦(S)

η∗ F′E // lim←−E∈Equiv◦(S)
η∗ FE

is a pullback square in ModZ/`Z. Let E1 ∈ Equiv◦(S) be the equivalence relation determined by
µ (so that sE1s

′ if and only if µ(s) = µ(s′)). Note that that if E ∈ Equiv(S) is an equivalence
relation such that E � E1, then the sheaves FE and F′E are supported on a closed subset of
(X −D)S which does not contain η, so that η∗ FE ' 0 ' η∗ F′E . We may therefore identify σ′
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with the diagram σ′′:

η∗ F′E0
//

��

η∗ FE0

��
lim←−E0<E≤E1

η∗ F′E // lim←−E0<E≤E1
η∗ FE

We now distinguish two cases:

(a) Suppose that E0 6= E1. Then the partially ordered set {E ∈ Equiv(S) : E0 < E ≤ E1}
contains a largest element, and therefore has weakly contractible nerve. Using Lemma
8.5.6, we deduce that for E ≤ E1, the restriction maps

η∗ FE0 → η∗ FE η∗ F′E0
→ η∗ F′E

are equivalences. It follows that the vertical maps in the diagram σ′′ are equivalences,
so that σ′′ is a pullback square.

(b) Suppose that E0 = E1: that is, the map η : S → X(k) is injective. Then the bottom
horizontal map in the diagram σ′′ is an equivalence (since it is a map between zero
objects of ModZ/`Z). It will therefore suffice to show that the top horizontal map is an
equivalence, which follows immediately from Lemma 8.5.5.

�

We now turn to the proof of Lemma 8.5.6. We wish to prove a base change theorem for the
map of prestacks

π : RanG(X −D)S0⊆S → (X −D)S .

Note that the desired result is trivial if S is empty (in this case, π is an equivalence); we will
therefore assume henceforth that S 6= ∅. Roughly speaking, the idea of the proof is to show
that that π behaves like a proper morphism.

Definition 8.5.7. Let Z be a quasi-projective k-scheme and let π : C → Z be a morphism of
prestacks. We will say that C is Ind-projective over Z it is equivalent to a colimit

K0
f0→ K1

f1→ K2
f2→ · · ·

where each Ki is a projective Z-scheme and each of the morphisms fi is a closed immersion.

Lemma 8.5.8. Let S be a nonempty finite set and let S0 ⊆ S. For each integer n, let Yn denote
the prestack given by the (n+1)st fiber power of RanG(X−D)S over RanG(X−D)S0⊆S. Then
there exists an étale surjection V → (X −D)S such that V ×(X−D)S Yn is Ind-projective over

(X −D)S.

Remark 8.5.9. Lemma 8.5.8 can be strengthened: the prestack Yn is already Ind-projective
over (X −D)S . However, we will not need this.

Remark 8.5.10. Lemma 8.5.8 depends in an essential way on our assumption that G is re-
ductive on the open curve X −D ⊆ X (the proof can be generalized to the case of parahoric
reduction, at least in good cases, but we will not need this).

We will also need a technical regularity result, which guarantees that π becomes a locally
trivial fibration after passing to a suitable stratification of the base:

Lemma 8.5.11. Let S be a nonempty finite set, let S0 ⊆ S, and let f : Z → XS be a morphism
of quasi-projective k-schemes. Let n ≥ 0 and let Yn be defined as in Lemma 8.5.8. Then there
exists a stratification of Z by locally closed subschemes Zα with the following property:
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• For each index α, there exists a finite group Γα and a pullback diagram of prestacks

Yn ×(XD)S Zα //

��

Cα

��
Zα // B Γα.

Here B Γα denotes the classifying stack of the finite group Γα.

Proof of Lemma 8.5.6. Let Y• be the simplicial prestack whose nth term is given by the (n+1)st
fiber power of RanG(X − D)S over RanG(X − D)S0⊆S . Define a cosimplicial object F• of
Shv((X −D)S ; Z/`Z) by the formula

F•(U) = C∗(U ×(X−D)S Y•; Z/`Z).

Since the forgetful functor RanG(X − D)S → RanG(X − D)S0⊆S is essentially surjective, we
obtain equivalences

F ' lim←−F•

C∗(Spec k ×(X−D)S RanG(X −D)S0⊆S ; Z/`Z) ' lim←−C
∗(Spec k ×(X−D)S Y

•; Z/`Z).

It will therefore suffice to verify the following pair of assertions:

(a) The canonical map
η∗ lim←−F• → lim←− η

∗ F•

is an equivalence in ModZ/`Z.
(b) For each m ≥ 0, the canonical map

θm : η∗ Fm → C∗(Spec k ×XS Ym; Z/`Z)

is an equivalence in ModZ/`Z.

Assertion (a) follows formally from the right completeness of ModZ/`Z, since the functor η∗

is t-exact and the sheaves Fn belong to Shv((X −D)S ; Z/`Z)≤0 (see Lemma HA.1.3.3.11). To
prove (b), choose an étale surjection V → (X −D)S such that V ×(X−D)S Y

m is Ind-projective
over V and a point η ∈ V (k) lying over η. We can then write V ×(X−D)S Y

m as the filtered
colimit of a sequence

K0 ↪→ K1 ↪→ K2 ↪→ · · · ,
of projective V -schemes. For each i ≥ 0, let F(i) denote the direct image of the constant sheaf
Z/`Z

Ki
along the projection map Ki → V . We may then identify θm with the compose map

η∗ lim←−F(i)
θ′→ lim←− η

∗ F(i)
θ′′→ lim←−C

∗(Spec k ×V Ki; Z/`Z)

Using the proper base change theorem (Theorem 4.5.4), we deduce that θ′′ is an equivalence.
We will complete the proof by showing that θ′ is an equivalence.

Choose a stratification of V by locally closed subschemes Vα satisfying the conclusions of
Lemma 8.5.11. Refining the stratification if necessary, we may suppose that each Vα is smooth.
For each index α, let Fα(i) denote the sheaf on V obtained from the restriction F(i)|Zα by
extending by zero.

The collection of those towers

· · · → G(2)→ G(1)→ G(0)

of objects of Shv(V ; Z/`Z) for which the canonical map η∗ lim←−G(i) → lim←− η
∗ G(i) is an equiva-

lence is closed under extensions. Consequently, to prove that θ′ is an equivalence, it will suffice
to show that each of the maps

θ′α : η∗ lim←−Fα(i)→ lim←− η
∗ Fα(i)
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is an equivalence.
We may assume without loss of generality that Vα is nonempty (otherwise there is nothing

to prove). Choose a point v ∈ Vα(k). By assumption, there exists a finite group Γ, a prestack
C acted on by Γ, and a pullback diagram

Yn ×(X−D)S Vα //

��

C /Γ

��
Vα

ρ // B Γ.

In particular, we can identify C with the fiber product Yn×(X−D)S {v}, so that it can be realized
as the colimit of a sequence

W0 ↪→W1 ↪→ · · ·
where each Wj is a projective k-scheme and each of the maps Wj →Wj+1 is a closed immersion.
Enlarging the Wj if necessary, we may suppose that each Wj is invariant under the action of
Γ, so that we can write Yn ×(X−D)S Vα as a filtered colimit lim−→Wj/Γ×B Γ Vα. Let G(j) denote

the direct image of the constant sheaf Z/`Z along the projection map

Wj/Γ×B Γ Vα → Vα.

The direct systems {Wj/Γ ×B Γ Vα}j≥0 and {Ki ×V Vα} are mutually cofinal, so that the
towers {F(i)|Yα}i≥0 and {G(j)}j≥0 are equivalent as pro-objects of Shv(Vα; Z/`Z). Let ι! :
Shv(Vα; Z/`Z) → Shv(V ; Z/`Z) denote the functor of extension by zero (see Remark 4.2.8).
Then θ′α is an equivalence if and only if the canonical map

ξ : η∗ lim←− ι! G(j)→ lim←− η
∗ι! G(j)

is an equivalence.
For each j ≥ 0, let H(j) ∈ Shv(B Γ; Z/`Z) denote the direct image of the constant sheaf Z/`Z

along the map Wj/Γ → B Γ. Using the smooth base change theorem, we obtain equivalences
G(j) ' ρ∗H(j). Let F : Shv(B Γ; Z/`Z)→ Shv(V ; Z/`Z) denote the functor ι! ◦ ρ∗, so that we
have a commutative diagram

η∗F (lim←−H(j))

vv ((
η∗ lim←−F (H(j))

ξ // lim←− η
∗F (H(j)).

To show that ξ is an equivalence, it will suffice to show that the functors F and η∗ ◦F preserve
limits. In the second case, this is clear: the functor η∗ ◦ F either vanishes (if η does not factor

through Vα) or is given by pullback along an étale map Spec k
η→ Vα → B Γ (if η does factor

through Vα).
We now complete the proof by showing that the functor F preserves limits. Let us abuse

notation by identifying the ∞-category Shv(B Γ; Z/`Z) with the ∞-category RModA of chain
complexes of right A-modules, where A = (Z/`Z)[Γ] denotes the group algebra of Γ with
coefficients in Z/`Z. For every étale morphism W → V , evaluation at W determines a functor
Shv(V ; Z/`Z) → ModZ/`Z which preserves colimits (Proposition 4.1.16). Since the functor F
preserves colimits, it follows that the construction M 7→ F (M)(W ) preserves colimits, and is
therefore given by M 7→ M ⊗A NW where NW = C∗(W ;F (A)). Proposition 4.2.15 implies
that NW is perfect as a Z/`Z-module. Since the functor M 7→ F (M)(W ) is left t-exact, the
object NW has Tor-amplitude ≤ 0 (as an A-module) and is therefore perfect as an A-module
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(Proposition HA.7.2.5.23). It follows that the construction M 7→ F (M)(W ) commutes with
limits. Since W was chosen arbitrarily, we conclude that F commutes with limits. �

It remains to prove Lemmas 8.5.8 and 8.5.11. The former depends on the following prelimi-
nary result:

Lemma 8.5.12. Let Y be a quasi-projective k-scheme, let S be a nonempty finite set, and
let µ : S → HomSchk(Y,X − D) be a map of sets. For each subset S0 ⊆ S, let |S0| denote
the effective divisor in X × Y (which we regard as a relative curve over Y ) determined by the
collection of maps {µ(s) : Y → X × Y }s∈S0 . Let S0 ⊆ S be a subset, let ρ : Z → X × Y be an
affine morphism of finite type, and suppose that ρ admits a section over the open set X ′ − |S|.
Then there exists a sequence of closed subschemes K0 ⊆ K1 ⊆ · · · ⊆ Y with the following
property: a map φ : SpecR→ Y factors through some Kn if and only if the lifting problem

XR′ − |S|R //

��

Z

ρ

��
XR′ − |S0|R //

s

88

X × Y

admits a solution.

Proof. Write Z as the spectrum of a quasi-coherent sheaf of algebras A on X×Y . Let O denote
the quasi-coherent sheaf on X ′ given by the direct image of the structure sheaf of (X×Y )−|S|,
and let O0 be the direct image of the structure sheaf of (X × Y ) − |S0|. Then the quotient
O /O0 can be written as a direct limit of coherent sheaves Fn = OX′(nS)/OX′(nS0), each of
which is flat (with finite support) over Y . Since ρ is of finite type, we can choose a coherent
subsheaf A0 ⊆ A which generates A as a sheaf of algebras. Then the existence of s is equivalent
to the vanishing of the composite map

A0 ⊆ A→ O→ O /O0 .

Since A0 is coherent, this composite map factors as a composition A0 → Fm → lim−→n
Fn for

m � 0. It now suffices to define Kn to be the vanishing locus of the map π∗A0 → π∗ Fm →
π∗ Fm+n, where π : X × Y → Y denotes the projection map. �

Proof of Lemma 8.5.8. Since G is reductive over the open subset X − D, there exists an
étale surjection π : U → X − D for which the group scheme GU = U ×X G is split reduc-
tive. Let V ⊆ US be the open subset whose k-valued points are given by maps µ : S → U(k)
for which π is injective on µ(S). Using Remark 3.2.7, we obtain a pullback diagram of prestacks

RanGU (U)S ×US V //

ρ

��

RanG(X −D)S

��
V // (X −D)S .

Note that the composite map V ⊆ US → (X −D)S is an étale surjection. We will show that
V satisfies the requirements of Lemma 8.5.8.

Let S be a nonempty finite set and let S0 ⊆ S. For each integer n ≥ 0, let Yn denote the
nth fiber power of RanG(X − D)S over RanG(X − D)S0⊆S and let Zn denote the nth fiber
power of RanG(X −D)S over (X −D)S . Then Y• and Z• are simplicial prestacks. Moreover,
we have an evident map ιn : Yn → Zn. The objects of Yn can be identified with tuples
(R,P1, . . . ,Pn, µ, γ1, . . . , γn), where R is a finitely generated k-algebra, each Pi is a G-bundle
on XR, α : S → X(R) is a map of finite sets, and each γi is a trivialization of Pi over the
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open set XR − |µ(S)|. Unwinding the definitions, we see that ιn is a fully faithful embedding
whose essential image consists of those objects (R,P1, . . . ,Pn, µ, γ1, . . . , γn) for which each of
the composite maps γi ◦ γ−1

j extends to an isomorphism of Pj with Pi over XR − |µ(S0)|.
Since the group scheme GU is constant, the prestack RanGU (U)S is Ind-projective over US

(see Appendix A.5 of [20]), so that

RanG(X −D)S ×(X−D)S V ' RanGU (U)S ×US V

is Ind-projective over V . Since Zn is the nth fiber power of RanG(X −D)S over (X −D)S , it
follows that Zn ×(X−D)S V can be written as the direct limit of a sequence

K0
n ↪→ K1

n ↪→ K2
n ↪→ · · ·

of closed immersions between projective V -schemes. It follows from Lemma 8.5.12 that each
fiber product Yn ×Zn Ki

n can be written as a direct limit lim−→Li,jn of closed subschemes of Ki
n.

Reindexing these colimits if necessary, we may assume that the maps Ki
n → Ki+1

n carry Li,jn
into Li+1,j

n . It follows that Yn×(X−D)S is equivalent to the direct limit of the sequence

L0,0
n ↪→ L1,1

n ↪→ · · ·

of closed immersions between projective k-schemes, and is therefore Ind-projective over V . �

Proof of Lemma 8.5.11. We can identify f with a collection of maps {fs : Z → X − D}s∈S .
Passing to a stratification of Z, we may assume that for s, s′ ∈ S, either fs = fs′ , or the graphs
of fs and fs′ do not intersect (when regarded as closed subschemes of the product Z ×X). Let
E be the equivalence relation on S given by sEs′ if fs = fs′ . Then

RanG(X −D)S0⊆S ×(X−D)S Z ' RanG(X −D)S0/E⊆S/E ×(X−D)S/E Z.

We may therefore replace S by S/E and thereby reduce to the case where the morphisms
{fs}s∈S have disjoint graphs. In this case, the fiber product Yn ×(X−D)S Z can be identified
with a fiber product of (n+ 1)-copies of each of the prestacks

{RanG(X −D){s} ×X−D Z}s∈S−S0

over Z. We may therefore assume without loss of generality that n = 0, S0 = ∅, and S has a
single element s, so that f can be identified with a function from Z to X −D.

The group scheme G is quasi-split over the generic point of X. It follows that G is quasi-split
over a dense open subset U ⊆ X − D. Shrinking U if necessary, we may suppose that there
exists an étale morphism φ : U → A1

k. Passing to a stratification of Z, we may assume either
that f(Z) ⊆ U or that f(Z) is disjoint from U . In the latter case, we can write Zred as a
disjoint union of subschemes on which f is constant, in which case the result is obvious. In the
former case, we can assume without loss of generality that Z = U .

Let G0 denote the split form of G over the ground field k, and let G′ = G0 ×Spec k A1 be

the associated group scheme over the affine line A1. Let GrG′ denote the affine Grassmannian
of G′ (see Remark 3.2.7). Then GrG′ is equipped with an action of the additive group Ga by
translations, and the projection map GrG′ → A1 is Ga-equivariant. It follows that GrG′ splits
as a product A1×Spec k Gr0, where Gr0 denotes the fiber GrG′ ×A1{0}.

Since G is quasi-split over U , there exists a finite group Γ of automorphisms of the Dynkin

diagram of G0, an étale covering Ũ → U with Galois group Γ, and an isomorphism G×X U '
(G0 × Ũ)/Γ. Let G̃ denote the fiber product G ×X Ũ . Using Remark 3.2.7, we see that the
diagram of étale morphisms

X ← Ũ
φ→ A1
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determines Γ-equivariant equivalences

Ũ ×X GrG ' GrG̃ ' Ũ ×A1 GrG′ ' Ũ ×Spec k Gr0 .

Dividing by the action of Γ (in the 2-category of étale stacks), we obtain an equivalence

U ×X GrG ' U ×B Γ (Gr0 /Γ),

where Gr0 /Γ denotes the stack-theoretic quotient of Gr0 by the action of Γ. �

8.6. Proof of Theorem 8.2.14. Throughout this section, we fix an algebraically closed field
k, a prime number ` which is invertible over k, an algebraic curve X over k, and a smooth
group scheme G over X. Our goal is to prove that the diagram∫

Bred
//

��

∫
B

��∫
0 //

∫
ωRan(X).

of Theorem 8.2.14 is a pullback square in ModZ` .

Notation 8.6.1. Let T be an arbitrary finite set. We define a category RanG(X)(T ) as follows:

• The objects of RanG(X)(T ) are triples (R, ν : T → X(R),P) where R is a finitely
generated k-algebra, ν is a map of sets, and P is a G-bundle on the divisor |ν| ⊆ XR.

• A morphism from (R, ν,P) to (R′, ν′,P′) in RanG(X)(T ) is a pair (φ, γ), where φ : R→
R′ is a map of k-algebras for which ν′ is given by the composition T

ν→ X(R)
X(φ)→

X(R′), and γ is a G-bundle isomorphism of P′ with SpecR′ ×SpecR P.

The construction (R, ν : T → X(R),P) 7→ R determines a coCartesian fibration RanG(X)(T ) →
Ringk, so that we can regard RanG(X)(T ) as a prestack. Moreover, it is equipped with an

evident projection map RanG(X)(T ) → XT .

Remark 8.6.2. If T is a nonempty finite set, then RanG(X)(T ) can be identified with the fiber

product RanG(X)×Ran(X) X
T ' RanG(X)×Fins {T}. If T is empty, then the projection map

RanG(X)(T ) → Spec k is an equivalence.

Remark 8.6.3. To every finite set T , we can associate an “incidence correspondence” D ⊆
XT ×Spec k X, given by the union of the sections of the projection map XT ×Spec k X → XT .
Then D is an effective divisor in the relative curve XT × X over XT (whose degree is the
cardinality of T ). Let HT denote the Weil restriction of the group scheme D ×X G along
the finite flat map D → XT . Then HT is a smooth affine group scheme over XT . For any
map Y → XT , we can identify HT -bundles on Y with G-bundles on the product Y ×XT D.
It follows that RanG(X)(T ) can be identified with the classifying stack of HT (regarded as a

group scheme over XT ). In particular, RanG(X)(T ) is a smooth algebraic stack over XT which
is quasi-compact and has affine diagonal.

Construction 8.6.4. Let T be a nonempty finite set, and suppose we are given subsets T0 ⊆
T1 ⊆ T . We let Given a pair of subsets T0 ⊆ T1 ⊆ T , we let RanG(X)(T0⊆T1⊆T ) denote the
fiber product

XT0 ×RanG(X)(T0) RanG(X)(T1) ×XT1 X
T ,

where the map XT0 → RanG(X)T0 is given by the formation of trivial G-bundles. In other

words, the objects of RanG(X)(T0⊆T1⊆T ) are given by quadruples (R, ν,P, ξ) where R is a finitely
generated k-algebra, ν : T → X(R) is a map of sets, P is a G-bundle on |ν(T1)|, and ξ is a
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trivialization of P on |ν(T0)|. Using Remark 8.6.3, we see that RanG(X)(T0⊆T1⊆T ) is a smooth

Artin stack over XT . We define an `-adic sheaf B(T0⊆T1⊆T ) ∈ Shv`(X
T ) by the formula

B(T0⊆T1⊆T ) = [RanG(X)T0⊆T1⊆T ]XT .

Let Θ be the category introduced in Notation 8.4.2. In this section, we will denote objects of
Θ by triples (T0 ⊆ T1 ⊆ T ) where T is a nonempty finite set and T0 ⊆ T1 are (possibly empty)
subsets of T . The construction

(T0 ⊆ T1 ⊆ T ) 7→ (RanG(X)T0⊆T1⊆T → XT )

determines a functor from Θop to the 2-category AlgStack! of Notation A.5.25. Applying the
functor Φ of Construction A.5.26, we see that the construction

(T0 ⊆ T1 ⊆ T ) 7→ (XT ,B(T0⊆T1⊆T ))

can be regarded as a functor from Θop to the ∞-category Shv!
` of Construction A.5.11. We let

V : Θop → ModZ` denote the functor given by

V (T0 ⊆ T1 ⊆ T ) = C∗(XT ;B(T0⊆T1⊆T )).

Remark 8.6.5. Let T0 ⊆ T1 ⊆ T be as in Construction 8.6.4. Then RanG(X)(T0) and

RanG(X)(T1) can be identified with the classifying stacks of smooth affine group schemes HT0

and HT1 over XT0 and XT1 , respectively (see Remark 8.6.3). It follows that RanG(X)(T0⊆T1⊆T )

can be identified with the stack-theoretic quotient ofHT0×XT0X
T by the action ofHT1×XT1X

T .
In particular, RanG(X)(T0⊆T1⊆T ) is a smooth algebraic stack over XT which is quasi-compact
and has affine diagonal.

Let Vred, V�, V� : (Fins)op → ModZ` be the functors defined in Notation 8.4.3 (where we
identify V with a functor from Θ to the stable ∞-category Modop

Z`
). Unwinding the definitions,

we have

Vred(T ) = C∗(XT ;B
(T )
red ) V�(T ) = C∗(XT ;B(T )) V�(T ) = lim←−

∅6=T0⊆T
C∗(XT ;B(T0⊆T⊆T )).

There is an evident fiber sequence of functors

Vred → V� → V�

which induces a fiber sequence ∫
Bred →

∫
B→ lim−→

T∈Fins

V�(T ).

We may therefore reformulate Theorem 8.2.14 as the assertion that the canonical map

lim−→
T∈Fins

V�(T )→ lim−→
T∈Fins

V (T ⊆ T ⊆ T ) =

∫
ωRan(X)

is an equivalence. By virtue of Theorem 8.4.9 (applied to the “opposite” functor V op : Θ →
Modop

Z`
), it will suffice to prove the following pair of assertions:

Proposition 8.6.6. Let T be a nonempty finite set. Then, for every subset T1 ⊆ T , the
canonical map

lim−→
T ′∈Fins

V (∅ ⊆ T1 ⊆ T q T ′)→ V (∅ ⊆ T1 ⊆ T )

is an equivalence in ModZ` .
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Proposition 8.6.7. Let T0 ⊆ T1 ⊆ T be an object of Θ, let t ∈ T be an element which is not
contained in T1, and set T ′0 = T0 ∪ {t}, T ′1 = T1 ∪ {t}. Then the diagram

lim−→E∈Equiv◦(T )
V (T0/E ⊆ T1/E ⊆ T/E) //

��

lim−→E∈Equiv◦(T )
V (T ′0/E ⊆ T ′1/E ⊆ T/E)

��
V (T0 ⊆ T1 ⊆ T ) // V (T ′0 ⊆ T ′1 ⊆ T )

is a pushout square in ModZ` .

Proof of Proposition 8.6.6. Set C = RanG(X)(T1)×XT1 X
T , and let π : C→ XT denote the pro-

jection onto the second factor. For every finite set T ′, we can identify RanG(X)∅⊆T1⊆TqT ′ with

the product C×Spec kX
T ′ . Using Remark 8.6.5 and Proposition 5.1.9, we obtain equivalences

B(∅⊆T1⊆TqT ′) ' [C]XT � ωT ′ .

Applying Corollary 4.6.5, we compute

V (∅ ⊆ T1 ⊆ T q T ′) ' C∗(XT ×XT ′ ; [C]XT � ωXT ′ )

' C∗(XT ; [C]XT )⊗Z` C
∗(XT ′ ;ωXT ′ )

' V (∅ ⊆ T1 ⊆ T )⊗Z` C∗(X
T ′ ; Z`).

Consequently, the canonical map

θ : lim−→
T ′∈Fins

V (∅ ⊆ T1 ⊆ T q T ′)→ V (∅ ⊆ T1 ⊆ T )

can be identified with the tensor product of the identity map on V (∅ ⊆ T1 ⊆ T ) with the
equivalence

lim−→
T ′∈Fins

C∗(X
T ′ ; Z`)→ Z`

(see Theorem 2.4.5). �

Proof of Proposition 8.6.7. Let Y be a quasi-projective k-scheme equipped with a map Y →
XT . For each equivalence relation E ∈ Equiv(T ), we let Y (E) denote the fiber product Y ×XT
XT/E . Define prestacks Z(E) and Z ′(E) by the formulae

Z(E) = RanG(X)(T0/E⊆T1/E⊆T/E) ×XT Y Z ′(E) = RanG(X)T ′0/E⊆T ′1/E⊆T/E ×XT Y,

so that we have projection maps qE : Z(E) → Y (E) and q′E : Z ′(E) → Y (E), and let iE :

Y (E)→ Y denote the inclusion map. We define objects FYE ,F
′Y
E ∈ Shv`(Y ) by the formulae

FYE(U) = iE∗[Z(E)]Y (E) F′YE (U) = iE∗[Z
′(E)]Y (E).

Let E0 be the trivial equivalence relation on T (so that T/E0 ' T ). We will prove that the
diagram σY :

lim−→E∈Equiv◦(T )
FYE

//

��

lim−→E∈Equiv◦(T )
F′YE

��
FYE0

// F′YE0

is a pushout square in Shv`(Y ). Taking Y = XT and passing to global sections, we will obtain
a proof of Proposition 8.6.7.
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It follows from Remark 8.6.5 that Z(E) and Z ′(E) are quasi-compact algebraic stacks which
are smooth with affine diagonal over Y (E), for each E ∈ Equiv(T ). Using Proposition 5.1.9,
we deduce that if i : Y ′ → Y is a closed immersion, then we have canonical equivalences

FY
′

E ' i! F
Y
E F′Y

′

E ' i! FYE ,

so that σY ′ can be identified with the image of σY under the functor i!. Proceeding by Noe-
therian induction, we may assume that i!σY is a pullback square for every closed subscheme
Y ′ ( Y . If Y is nonreduced, then we can take Y ′ = Yred to complete the proof. Let us therefore
assume that Y is reduced.

Let Y ′ ( Y be a closed subscheme, and let U be the complement of Y ′ in Y . Then we have
a fiber sequence of diagrams

i∗i
!σY → σY → j∗j

∗σY .

It will therefore suffice to prove that j∗σY ' σU is a pullback square in Shv`(U). We are
therefore free to replace Y by any nonempty open subscheme U ⊆ Y . In particular, we may
assume that Y is smooth, affine, and that there is a fixed equivalence relation E1 ∈ Equiv(T )
such that the map Y → XT factors through XT/E1 , but the fiber product Y ×XT XT/E = ∅
for E > E1.

The proof now breaks into two cases. Suppose first that E0 = E1. Then FYE ' F′YE ' 0

for E 6= E0. We are therefore reduced to proving that the canonical map FYE0
→ F′YE0

is an

equivalence in Shv`(Y ). This is clear, since the restriction map Y ×XT RanG(X)T ′0⊆T ′1⊆T →
Y ×XT RanG(X)(T0⊆T1⊆T ) is an equivalence of prestacks.

We now consider the case where E0 6= E1. In this case, we will complete the proof by showing
that the maps

θ : lim−→
E∈Equiv◦(T )

FYE → FYE0

θ′ : lim−→
E∈Equiv◦(T )

F′YE → F′YE0

are equivalences in Shv`(Y ). We will give the proof for θ; the proof for θ′ is the same. Using
Lemma 8.3.9, we deduce the following:

(∗) Let E ∈ Equiv(T ), and let E′ be the equivalence relation on T generated by E and E1.

Then the canonical map µ : FYE′ → FYE is an equivalence in Shv`(Y ).

It follows immediately from (∗) that the diagram {FYE}E∈Equiv◦(T ) is a left Kan extension of

the diagram {FYE}E≥E1
, so that we have equivalences

lim−→
E∈Equiv◦(T )

FYE ' lim−→
E≥E1

FYE ' FYE1

and the assertion that θ is an equivalence follows immediately from (∗). �

9. Proof of the Product Formula

Let k be an algebraically closed field, let ` be a prime number which is invertible in k, let
X be an algebraic curve over k, and let G be a smooth affine group scheme over X. Assume
that the fibers of G are connected and that the generic fiber of G is semisimple and simply
connected, and let B ∈ Shv!

`(Ran(X)) denote the !-sheaf introduced in §5.4.2. We wish to prove
Theorem 5.4.5, which asserts that the canonical map

ρ :

∫
B→ C∗(BunG(X); Z`)
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is an equivalence. Let us assume that G is Q-adapted for some effective divisor Q ⊆ X
(Definition 7.2.9). In §7.2, we showed that the map ρ fits into a commutative diagram

∫
B

ρ //

��

C∗(BunG(X); Z`)

��∫
lim←−S∈Fins BS

β // lim←−S∈Fins C
∗(RanG(X −Q)S ; Z`)

where the vertical maps are equivalences (for the left vertical map this follows from Theorem
7.2.10, and for the right vertical map it follows from Theorem 3.2.9 together with the fact that
the forgetful functor BunG(X,Q) → BunG(X) is an affine space bundle and therefore induces
an isomorphism on `-adic cohomology). We are therefore reduced to proving that the map β is
an equivalence. Unfortunately, it is quite difficult to prove this directly: the primary obstacle
is that we cannot interchange the formation of chiral homology with the limit lim←−S∈Fins BS .

To circumvent this difficulty, we will need to consider “reduced” versions of each of the objects
which appears in the above diagram. Most of the relevant constructions have already been
supplied in §8, where we established a reduced version of nonabelian Poincare duality (Theorem
8.1.12) and the equivalence of Theorem 5.4.5 with its reduced analogue (Theorem 8.2.14). In
this section, we will complete the proof of Theorem 5.4.5 in three steps:

(a) In §9.1, we will introduce “reduced” analogues of the !-sheaves BS , which we will denote
by BS,red.

(b) In §9.3, we will prove a “reduced” version of Theorem 7.2.10, which asserts that a
certain natural map Bred → lim←−S∈Fins BS,red which induces an equivalence on chiral

homology (Proposition 9.1.4). The proof relies on a relative version of the acyclicity of
the Ran space, which we establish in §9.2.

(c) The map β has a “reduced” analogue

βred :

∫
lim←−

S∈Fins

BS,red → lim←−
prim

C∗(RanG(X −Q)S0⊆S ; Z`),

which we will prove to be an equivalence (Proposition 9.1.5). The proof of this fact
will be carried out in §9.5, 9.6, and 9.7. It is based on a notion of Verdier duality for
Ran(X), which we describe in §9.4.

We will give a more detailed outline of our approach in §9.1.

9.1. Reduction to a Nonunital Statement. Throughout this section, we fix an algebraically
closed field k, a prime number ` which is invertible in k, an algebraic curve X over k, and a
smooth affine group scheme G over X. We further assume that the fibers of G are connected
and that the generic fiber of G is semisimple and simply connected. We wish to prove Theorem
5.4.5 which asserts that the canonical map

ρ :

∫
B→ C∗(BunG(X); Z`)

is a quasi-isomorphism.
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Let us first assume that G is Q-adapted for some effective divisor Q ⊆ X (Definition 7.2.9).
The map ρ fits into a commutative diagram σ :

∫
Bred

ρred //

��

C∗red(BunG(X); Z`)

��∫
B

ρ //

��

C∗(BunG(X); Z`)

��
lim←−S∈Fins C

∗(RanG(X −Q)S ; Z`)

��

C∗(BunG(X,Q); Z`)
θoo

��
lim←−prim

C∗(RanG(X −Q)S0⊆S ; Z`) C∗red(BunG(X,Q); Z`).
θredoo

The upper square is a pullback by virtue of Theorem 8.2.18, so that ρ is an equivalence if and
only if ρred is an equivalence. Since G is Q-adapted, the fiber Gx is a vector group for x ∈ Q,
so that the projection map BunG(X,Q) → BunG(X) is an affine space bundle and therefore
induces an isomorphism on `-adic cohomology. It follows that the right vertical composition in
σ is an equivalence. The map θred is an equivalence by virtue of Theorem 8.1.11. This proves
the following:

Lemma 9.1.1. In the situation described above, the map ρ is an equivalence if and only if the
composite map∫

Bred →
∫

B→ lim←−
S∈Fins

C∗(RanG(X −Q)S ; Z`)→ lim←−
prim

C∗(RanG(X −Q)S0⊆S ; Z`)

is an equivalence.

In §7.2 we introduced a Ran(X) prestack Ran†G(X−Q)S : roughly speaking, if ν : T → X(k)

is a k-valued point of the Ran space Ran(X), then the fiber Ran†G(X − Q)S ×Ran(X) {ν}
parametrizes maps µ : S → X−Q together with G-bundles that are defined on (X−µ(S))∪ν(T )
and trivialized on X − µ(S) (see Definition 7.2.1). We will need an augmented version of this
prestack, which additionally tracks information about a subset T0 ⊆ T for which ν(T0) is
contained in the locus X − µ(S) where our G-bundles are trivial.

Construction 9.1.2. Fix an effective divisor Q ⊆ X and a finite set S. We define a category

Ran†G(X −Q)S,aug as follows:

• The objects of Ran†G(X −Q)S,aug are tuples (R,K−,K+, T, T0, µ, ν,P, γ) where R is a
finitely generated k-algebra, K+ is a subset of S, K− is a subset of K+, T is a nonempty
finite set, T0 is a subset of T , µ : S → (X −Q)(R) and ν : T → X(R) are maps of sets,
P is a G-bundle on XR, γ is a trivialization of P over the open set XR− |µ(S)|, and we
have |µ(K+)| ∩ |ν(T )| = ∅ = |µ(S)| ∩ |ν(T0)|.

• There are no morphisms from an object C = (R,K−,K+, T, T0, µ, ν,P, α) to another
object C ′ = (R′,K ′−,K

′
+, T

′, T ′0, µ
′, ν′,P′, α′) unless K ′− ⊆ K− and K+ ⊆ K ′+. If

these conditions are satisfied, then a morphism from C to C ′ consists of a k-algebra
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homomorphism φ : R→ R′, a surjection of finite sets λ : T → T ′ for which the diagrams

T

ν

��

λ // T ′

ν′

��

S
id //

µ

��

S

µ′

��
X(R)

X(φ) // X(R′) X(R)
X(φ) // X(R′)

commute and T ′0 ⊆ λ(T0), together with a G-bundle isomorphism between P′ and
SpecR′ ×SpecR P over the open set XR′ − |µ′(K ′−)|, which carries γ to γ′.

The construction (R,K−,K+, T, T0, µ, ν,P, γ) 7→ (R, T, T0, ν) determines a forgetful functor

Ran†G(X −Q)S,aug → Ranaug(X).

This map is a coCartesian fibration and therefore exhibits Ran†G(X −Q)S,aug as an augmented
Ran(X)-prestack (see Definition 8.2.10). We let BS,aug denote the augmented !-sheaf on Ran(X)
given by

BS,aug = [Ran†G(X −Q)S,aug]Ranaug(X).

We let BS,red denote the lax !-sheaf given by (BS,aug)red.

Remark 9.1.3. We can identify the prestack Ran†G(X −Q)S of Definition 7.2.1 with the full

subcategor of Ran†G(X −Q)S,aug spanned by those objects (R,K−,K+, T, T0, µ, ν,P, γ) where
T0 = ∅. Consequently, the underlying lax !-sheaf of BS,aug can be identified with the lax !-sheaf
BS of Notation 7.2.5.

Note that for every nonempty finite set S, restriction of G-bundles determines a map of
augmented Ran(X)-prestacks

Ran†G(X −Q)S,aug → RanGaug(X)

which induces maps

Baug → BS,aug Bred → BS,red .

Passing to the limit over S, we obtain a commutative diagram∫
Bred

//

��

∫
lim←−S∈Fins BS,red

��∫
B //

��

∫
lim←−S∈Fins BS

tt
lim←−S∈Fins C

∗(RanG(X −Q)S ; Z`)

��
lim←−prim

C∗(RanG(X −Q)S0⊆S ; Z`).

We will deduce Theorem 5.4.5 from the following assertions:
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Proposition 9.1.4. Let Q be an effective divisor for which G is Q-adapted. Then the diagram∫
Bred

//

��

∫
lim←−S∈Fins BS,red

��∫
B //

∫
lim←−S∈Fins BS

is a pullback square.

Proposition 9.1.5. Let Q be an effective divisor for which G is Q-adapted. Then the composite
map ∫

lim←−
S∈Fins

BS,red →
∫

lim←−
S∈Fins

BS

→ lim←−
S∈Fins

C∗(RanG(X −Q)S ; Z`)

→ lim←−
prim

C∗(RanG(X −Q)S0⊆S ; Z`)

is a quasi-isomorphism.

Remark 9.1.6. Note that since the map B → lim←−S∈Fins BS is an equivalence of !-sheaves on

Ran(X) (Theorem 7.2.10), Proposition 9.1.4 is equivalent to the assertion that the map∫
Bred →

∫
lim←−
S

BS,red

is an equivalence. One strategy for proving this would be to generalize Theorem 7.2.10 by
showing that the natural map Baug → lim←−S∈Fins BS,aug is an equivalence of augmented !-sheaves

on Ran(X). However, to adapt our proof of Theorem 7.2.10 we would need a relative version
of Theorem 3.3.1 which applies to a family of divisors, rather than a fixed divisor D ⊆ X. We
will therefore use a different argument: Theorem 8.2.14 shows that the left vertical map in the
diagram ∫

Bred
//

��

∫
lim←−S∈Fins BS,red

��∫
B //

∫
lim←−S∈Fins BS

is almost an equivalence: it has cofiber equivalent to Z`. We will prove Proposition 9.1.4 in
§9.3 by showing that the right vertical map has the same property.

Assuming Propositions 9.1.4 and 9.1.5 for the moment, we can complete the proof of Theorem
5.4.5:

Proof of Theorem 5.4.5. Let G be an arbitrary smooth affine group scheme over X with con-
nected fibers whose generic fiber is semisimple and simply connected. We wish to show that the
canonical map ρG :

∫
B→ C∗(BunG(X); Z`) is a quasi-isomorphism. Using Proposition 7.2.12,

we can choose an effective divisor Q ⊆ X, a Q-adapted group scheme G′ over X, and a map of
group schemes G′ → G which is an isomorphism over the open set X −Q. Using Proposition
7.1.1, we can replace G by G′ and thereby reduce to the case where G itself is Q-adapted. By
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virtue of Lemma 9.1.1, it will suffice to show that the left vertical composition in the diagram∫
Bred

//

��

∫
lim←−S∈Fins BS,red

��∫
B //

��

∫
lim←−S∈Fins BS

tt
lim←−S∈Fins C

∗(RanG(X −Q)S ; Z`)

��
lim←−prim

C∗(RanG(X −Q)S0⊆S ; Z`).

is an equivalence. It follows from Theorem 7.2.10 and Proposition 9.1.4 that the horizontal
maps are equivalences. We are therefore reduced to proving that the composite map∫

lim←−
S∈Fins

BS,red →
∫

lim←−
S∈Fins

BS

→ lim←−
S∈Fins

C∗(RanG(X −Q)S ; Z`)

→ lim←−
prim

C∗(RanG(X −Q)S0⊆S ; Z`)

is an equivalence, which follows from Proposition 9.1.5. �

Remark 9.1.7. The architecture of the preceding proof of Theorem 5.4.5 is somewhat mis-
leading. Our proof of Proposition 9.1.4 will actually show that the cofiber of the map∫

lim←−
S∈Fins

BS,red →
∫

lim←−
S∈Fins

BS

is equivalent to Z`. Combining this with Theorems 7.2.10 and 8.1.11, we can directly deduce
that Theorem 5.4.5 is equivalent to Proposition 9.1.5: that is, Theorem 8.2.18 is logically
unnecessary.

9.2. Digression: Acyclicity of the Ran Space in Families. Let k be an algebraically
closed field, let ` be a prime number which is invertible in k, and let X be an algebraic curve
over k. In §2.4, we proved that the prestack Ran(X) is acyclic. More generally, for any divisor
D ⊆ X, the Ran space Ran(X −D) is acyclic, so that the cochain complex

C∗(Ran(X −D); Z`) ' lim←−
S∈Fins

C∗((X −D)S ; Z`)

is quasi-isomorphic to Z`. Our goal in this section is to prove the following refinement which
will be needed in §9.3:

Proposition 9.2.1. Let R be a finitely generated k-algebra. Suppose we are given a finite set of
R-valued points y1, . . . , yn ∈ X(R) having the property that the induced maps SpecR→ XR have
disjoint images, and let U ⊆ XR denote the complement of those images. For every nonempty
finite set S, let US denote the S-fold fiber power of U over SpecR, and let πS : US → SpecR
denote the projection map. Then the canonical map

Z`SpecR
→ lim←−

S∈Fins

πS∗Z`US
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is an equivalence in Shv`(SpecR).

The proof of Proposition 9.2.1 will require some preliminaries. We begin by establishing a
more quantitative version of Corollary 2.4.13.

Lemma 9.2.2. Let n ≥ 0 be an integer, and let Fins≤n denote the full subcategory of Fins

spanned by those nonempty finite sets which have cardinality ≤ n. For every smooth (not
necessarily complete) algebraic curve Y over k, the canonical map

lim−→
S∈Fins≤n

C∗(Y
S ; Z/`Z)→ C∗(Spec k; Z/`Z)

induces an isomorphism on homology in degrees ≤ n− 2.

Proof. Using Corollary 2.4.13, we see that the direct limit

lim−→
n

lim−→
S∈Fins≤n

C∗(Y
S ; Z/`Z)

is equivalent to C∗(Spec k; Z/`Z). It will therefore suffice to show that each of the maps

lim−→
S∈Fins≤n−1

C∗(Y
S ; Z/`Z)→ lim−→

S∈Fins≤n

C∗(Y
S ; Z/`Z)

has (n − 2)-connective fiber (and therefore induces an isomorphism on homology in degrees
≤ n − 3). Set S′ = {1, . . . , n}. Applying Proposition 8.4.16, we deduce the existence of a
pushout square

(lim−→E∈Equiv(S′)
C∗(Y

S′/E ; Z/`Z))Σn
//

��

C∗(Y
S′ ; Z/`Z)Σn

��
lim−→S∈Fins≤n−1

C∗(Y
S ; Z/`Z) // lim−→S∈Fins≤n

C∗(Y
S ; Z/`Z).

We are therefore reduced to proving that the map

lim−→
E∈Equiv(S′)

C∗(Y
S′/E ; Z/`Z)→ C∗(Y

S′ ; Z/`Z)

has (n−2)-connective fiber. Note that we can identify the domain of this map with C∗(∆; Z/`Z),

where ∆ denotes the closed subscheme of Y S
′

whose k-valued points are maps S′ → Y (k)
which are not injective. We are therefore reduced to proving that the map C∗(∆; Z/`Z) →
C∗(Y

n; Z/`Z) has (n− 2)-connective fiber, which follows immediately from Proposition A.6.1.
�

Lemma 9.2.3. Let f : Y → Z be a morphism of quasi-projective k-schemes and let F be
an object of Shv(Z; Z/`Z)≤n which is equipped with an action of a finite group G. Then the

canonical map α : f∗(FG)→ (f∗ F)G is an equivalence in Shv(X; Z/`Z).

Proof. We will prove that fib(α) belongs to Shv(X; Z/`Z)≤m for every integer m. Since the
t-structure on Shv(X; Z/`Z) is right complete, it will follow that fib(α) ' 0 so that α is an
equivalence. The proof proceeds by descending induction on m. The case m = n is trivial,
since f∗(FG) and (f∗ G)G both belong to Shv(X; Z/`Z)≤n. To carry out the inductive step, let
G =

∏
g∈G F, equipped with an action of G given by permuting the factors. Then we have a

fiber sequence

F → G→ H
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of G-equivariant objects of Shv(X; Z/`Z), hence a commutative diagram of fiber sequences

f∗(FG) //

α

��

f∗(GG)

β

��

// f∗(HG)

γ

��
(f∗ F)G // (f∗ G)G // (f∗H)G.

Note that β is an equivalence (the domain and codomain of β can both be identified with f∗ F),
so we obtain an equivalence fib(α) ' Σ−1 fib(γ). Invoking the inductive hypothesis, we deduce
that fib(γ) ∈ Shv(X; Z/`Z)≤m+1, so that fib(α) ∈ Shv(X; Z/`Z)≤m. �

Lemma 9.2.4. Let Ỹ be a quasi-projective k-scheme equipped with an action of a finite group

G, and suppose we are given a finite G-equivariant map f : Ỹ → Y (where G acts trivially

on Y ). Suppose further that there is an open subscheme U ⊆ Y such that Ũ = U ×Y Ỹ is a

G-torsor over U (that is, G acts freely on Ũ with quotient U as quotient). Let K ⊆ X be the

complement of U (regarded as a reduced closed subscheme of X) and set K̃ = Ỹ ×Y K, so that
we have a commutative diagram

K̃
ĩ //

f ′

��

Ỹ

f

��
K

i // Y.

Then the induced diagram

Z/`Z
Y

//

��

(f∗Z/`Z
Ỹ

)G

��
i∗Z/`Z

K
// i∗(f ′∗Z/`ZK̃)G

is a pullback square in Shv(Y ; Z/`Z).

Proof. Let j : U → Y and j̃ : Ũ → Ỹ be the inclusion maps. Unwinding the definitions, we
wish to prove that the natural map θ0 : j!Z/`Z

U
→ (f∗Z/`Z

Ũ
)G is an equivalence. This can

be checked after passing to stalks at each k-valued point η : Spec k → X. Note that since
f∗j̃!Z/`Z

Ũ
belongs to Shv(X; Z/`Z)≤0, the canonical map

η∗((f∗j̃!Z/`Z
Ũ

)G)→ (η∗f∗j̃!Z/`Z
Ũ

)G

is an equivalence (Lemma 9.2.3). We are therefore reduced to proving that the map

η∗j!Z/`Z
U
→ (η∗f∗j̃!Z/`Z

Ũ
)G

is an equivalence. If η does not factor through U , then both sides vanish; otherwise, the desired

result follows from our assumption that Ũ is a G-torsor over U . �

Lemma 9.2.5. Let R be a finitely generated k-algebra. Suppose we are given a finite set of
R-valued points y1, . . . , ym ∈ X(R). Let U ⊆ XR denote the open subset complementary to
the images of the maps SpecR → XR determined by the points yi. For every nonempty finite
set S, let US denote the S-fold fiber power of U over SpecR, and let πS : US → SpecR
denote the projection map. Then, for each integer n ≥ 0, the object lim←−S∈Fins≤n

πS∗Z/`Z
US

is

a constructible object of Shv(SpecR; Z/`Z).
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Proof. We proceed by induction on n, the case n = 0 being trivial. To carry out the inductive
step, it will suffice to show that the fiber of the canonical map

θ : lim←−
S∈Fins≤n

πS∗Z/`Z
US
→ lim←−

S∈Fins≤n−1

πS∗Z/`Z
US

is a constructible object of Shv(SpecR; Z/`Z). Let S′ = {1, 2, . . . , n}. Using Proposition 8.4.16,
we can identify the fiber of θ with the fiber of the natural map

θ′ : (π(S′)∗Z/`Z
US′

)Σn → ( lim←−
E∈Equiv0(S′)

π(S′/E)∗Z/`Z
US′/E

)Σn .

Let ∆ ⊆ US′ denote the union of the closed subschemes given by US
′/E where E ∈ Equiv◦(S),

and let π : ∆→ SpecR denote the projection map. Unwinding the definitions, we can identify
the codomain of θ′ with (π∗Z/`Z

∆
)Σn . Let Y denote the quotient of US

′
by the action of the

symmetric group Σn in the category of schemes and let Y0 ⊆ Y be the closed subscheme of Y
given by the quotient of ∆ by the action of Σn. Let φ : Y → SpecR and φ0 : Y0 → SpecR
denote the projection maps. Since the action of Σn on US

′
is free away from ∆, Lemma 9.2.4

implies that the fiber of θ′ is equivalent to the fiber of the restriction map

θ′′ : φ∗Z/`ZY → φ0∗Z/`ZY0
.

Since the domain and codomain of θ′′ are constructible, it follows that fib(θ′′) ' fib(θ′) ' fib(θ)
is constructible. �

Lemma 9.2.6. Suppose we are given a pullback diagram of quasi-projective k-schemes

Y ′
f ′ //

g′

��

Y

g

��
Z ′

f // Z

where g is smooth. Let K ⊆ Y be a closed subset which is flat over Z whose inverse image
in each fiber Yz of the map g is a divisor with normal crossings, let K ′ = Y ′ ×Y K, and let
j : Y − K ↪→ Y and j′ : Y ′ − K ′ ↪→ Y ′ be the corresponding open inclusions. Then the base
change morphism f ′∗j∗Z/`Z

Y−K
→ j∗Z/`Z

Y ′−K′
is an equivalence in Shv`(Y

′).

Proof. The assertion can be tested locally with respect to the étale topology on Y and Z. We
may therefore assume without loss of generality that Y is isomorphic to a product Z ×Ad and

that Y −K is given by the subset Z ×Gd′

m ×Ad′′ where d′ + d′′ = d. In this case, the desired
result follows immediately from Proposition 4.6.2. �

Lemma 9.2.7. Let φ : SpecR′ → SpecR be a morphism between affine schemes of finite type
over k. Suppose we are given a finite set of R-valued points y1, . . . , yn ∈ X(R) having the
property that the induced maps SpecR → XR have disjoint images, let U ⊆ XR denote the
complement of those images, and let U ′ = U ×XR XR′ be the resulting open subset of XR′ . For
every nonempty finite set S, let US denote the S-fold fiber power of U over SpecR and define
U ′S similarly. Let πS : US → SpecR and π′S : U ′S → SpecR′ denote the projection maps.
Then, for every integer n, the canonical map

φ∗ lim←−
S∈Fins≤n

πS∗Z/`Z
US
→ lim←−

S∈Fins≤n

π′S∗Z/`ZU ′S

is an equivalence in Shv(SpecR′; Z/`Z).
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Proof. We proceed by induction on n, the case n = 0 being trivial. To carry out the inductive
step, it will suffice to show that the diagram

φ∗ lim←−S∈Fins≤n
πS∗Z/`Z

US
//

��

lim←−S∈Fins≤n
π′S∗Z/`ZU ′S

��
φ∗ lim←−S∈Fins≤n−1

πS∗Z/`Z
US

// lim←−S∈Fins≤n−1

π′S∗Z/`ZU ′S

is a pullback square in Shv(SpecR′; Z/`Z). Let S′ = {1, . . . , n}. Applying Proposition 8.4.16,
we are reduced to showing that the diagram σ :

φ∗((πS′∗Z/`Z
US′

)Σn)
θ //

��

(π′S′∗Z/`ZU ′S′
)Σn

��
φ∗((lim−→E∈Equiv◦(S′)

πS′/E∗Z/`ZUS′/E )Σn)
θ′ // (lim−→E∈Equiv◦(S′)

π′S′/E∗Z/`ZU ′S′/E )Σn

is a pullback square in Shv(SpecR′; Z/`Z). To complete the proof, it will suffice to show that
the maps θ and θ′ are equivalences. We will prove that θ is an equivalence; the proof for
θ′ is analogous. Applying Lemma 9.2.3, we are reduced to showing that the canonical map
u : φ∗πS′∗Z/`Z

US′
→ π′S′∗Z/`ZU ′S′ is an equivalence. The map πS′ and π′S′ can be factored as

compositions

US
′ j
↪→ XS′ × SpecR

πS′→ SpecR

U ′S
′ j′

↪→ XS′ × SpecR′
πS′→ SpecR′.

Let ψ : XS′ × SpecR′ → XS′ × SpecR denote the pullback of φ. Using the proper base
change theorem, we can identify u with π′S′∗v where v denotes the base change morphism
ψ∗j∗Z/`Z

US′
→ j′∗Z/`ZU ′S′

. It follows from Lemma 9.2.6 that the map v is an equivalence. �

Proof of Proposition 9.2.1. Note that the domain and codomain of the natural map

u : Z`SpecR
→ lim←−

S∈Fins

πS∗Z`US

are `-complete (this follows from Remark 4.3.36, since the collection of `-complete objects of
Shv`(SpecR) is closed under limits). It will therefore suffice to show that the image of u in
Shv(SpecR; Z/`Z) is an equivalence.

For every integer n ≥ 0, let Fn denote the inverse limit

lim←−
S∈Fins≤n

πS∗Z/`Z
US
∈ Shv(SpecR; Z/`Z),

and let Fred
n denote the cofiber of the unit map Z/`Z

SpecR
→ Fn. We wish to prove that

the limit lim←−n F
red
n is a zero object of Shv(SpecR; Z/`Z). In fact, we will prove something

stronger: the tower {Fred
n } is trivial as a Pro-object of Shv(SpecR; Z/`Z). To prove this,

it will suffice to show that the natural map Fred
n → Fred

m vanishes for n � m. In fact,

we claim that the group Ext0
Shv(SpecR;Z/`Z)(F

red
n ,Fred

m ) vanishes for n � m. To prove this,

we first note that Fred
m is constructible. In particular, there exists an integer t such that

Fred
m ∈ Shv(SpecR; Z/`Z)≥t. Using Proposition 4.2.13, we deduce that there exists an in-

teger s such that the group Ext0
Shv(SpecR;Z/`Z)(F

red
m ,Fred

n ) vanishes whenever Fred
n belongs to
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Shv(SpecR; Z/`Z)≤s. It will therefore suffice to show that Fred
n belongs to Shv(SpecR; Z/`Z)≤s

for m � 0. By virtue of Lemma 9.2.7, it will suffice to prove this when R = Spec k, in which
case it follows from Lemma 9.2.2. �

9.3. The Proof of Proposition 9.1.4. Throughout this section, we fix an algebraically closed
field k, a prime number ` which is invertible in k, an algebraic curve X over k, a smooth affine
group scheme G over X, and an effective divisor Q ⊆ X. Let B and Bred denote the !-sheaves
on Ran(X) given by Notation 5.4.2 and Construction 8.2.12, and for each nonempty finite set
S we let BS and BS,red be defined as in Notation 7.2.5 and Construction 9.1.2. Our goal is to
prove Proposition 9.1.4 by showing that the diagram∫

Bred
//

��

∫
B

��∫
lim←−S∈Fins BS,red

//
∫

lim←−S∈Fins BS

is a pullback square in ModZ` . We will prove this by establishing a version of Theorem 8.2.14
for the lower horizontal map. First, we need to introduce a bit of notation.

Construction 9.3.1. Let Θ be the category introduced in Notation 8.4.2. In this section, we

will denote the objects of Θ by triples ~T = (T0 ⊆ T1 ⊆ T ). Given an object ~T = (T0 ⊆ T1 ⊆ T )

and a nonempty finite set S, we define a category CS(~T ) as follows:

• The objects of CS(~T ) are tuples (R,K−,K+, µ, ν,P, γ) where R is a finitely generated
k-algebra, S− ⊆ S+ ⊆ S, µ : S → (X − Q)(R) and ν : T → X(R) are maps of sets
satisfying |µ(K+)| ∩ |ν(T1)| = ∅ = |µ(S)| ∩ |ν(T0)|, P is a G-bundle on XR, and γ is a
trivialization of P over the open set XR − |µ(S)|.
• There are no morphisms from (R,K−,K+, µ, ν,P, γ) to (R′,K ′−,K

′
+, µ

′, ν′,P′, γ′) un-
less K ′− ⊆ K− ⊆ K+ ⊆ K ′+. If this condition is satisfied, then a morphism from

(R,K−,K+, µ, ν,P, γ) to (R′,K ′−,K
′
+, µ

′, ν′,P′, γ′) consists of a k-algebra homomor-
phism φ : R→ R′ which makes the diagrams

S

µ

��

id // S

µ′

��

T
id //

ν

��

T

ν′

��
(X −Q)(R)

X(φ) // (X −Q)(R′) X(R)
X(φ) // X(R′)

commute, together with an isomorphism between SpecR′ ×SpecR P and P′ over the
open set XR′ ×XR (XR − |µ(K−)|) which carries γ to γ′.

The construction (R,S−, S+, µ, ν,P, α) 7→ (R, ν) determines a map CS(~T ) → XT , which

exhibits CS(~T ) as a prestack. Moreover, every morphism ~T → ~T ′ in the category Θ induces a

map of prestacks XT ′ ×XT CS(~T )→ CS(~T ′). We may therefore view the construction

~T 7→ (CS(~T )→ XT )

as a contravariant functor from the category Θ to the ∞-category RelStack! (see Construction
A.5.14). We therefore obtain a functor

WS : Θop → ModZ` ,

given by WS(~T ) = C∗(XT ; [CS(~T )]XT ).
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Let W = lim←−SWS ∈ Fun(Θop,ModZ`), so that the functor W is given by

W (T0 ⊆ T1 ⊆ T ) ' lim←−
S

C∗(XT ; [CS(~T )]XT ) ' C∗(XT ; lim←−
S

[CS(~T )]XT ).

Notation 9.3.2. Let V : Θop → ModZ` denote the functor given in Construction 8.6.4, given
by the formula

V (T0 ⊆ T1 ⊆ T ) = C∗(XT ; [RanG(X)T0⊆T1⊆T ]XT ).

Note that for each object ~T = (T0 ⊆ T1 ⊆ T ) ∈ Θ and each nonempty finite set S, we have a
canonical map of prestacks

CS(~T )→ RanG(X)T0⊆T1⊆T

(R,K−,K+, µ, ν,P, γ) 7→ (R, ν,P ||ν(T1)|, γ||ν(T0)|).

These maps depend functorially on S and ~T , and therefore induce a natural transformation of
functors

V →W = lim←−
S∈Fins

WS .

We will deduce Proposition 9.1.4 from the following three assertions:

Lemma 9.3.3. For every finite set T , the canonical map

V (∅ ⊆ ∅ ⊆ T )→W (∅ ⊆ ∅ ⊆ T )

is an equivalence.

Lemma 9.3.4. Let T be a nonempty finite set, and let J be the category defined in Lemma
8.4.21. Then, for every nonempty finite set T and every subset T1 ⊆ T , the canonical map

lim−→
T ′∈Fins

W (∅ ⊆ T1 ⊆ T q T ′)→W (∅ ⊆ T1 ⊆ T )

is an equivalence in ModZ` .

Lemma 9.3.5. Let T0 ⊆ T1 ⊆ T be an object of Θ, let t ∈ T be an element which is not
contained in T1, and set T ′0 = T0 ∪ {t}, T ′1 = T1 ∪ {t}. Then the diagram

lim−→E∈Equiv◦(T )
lim←−SWS(T0/E ⊆ T1/E ⊆ T/E) //

��

lim←−SWS(T0 ⊆ T1 ⊆ T )

��
lim−→E∈Equiv◦(T )

lim←−SWS(T ′0/E ⊆ T ′1/E ⊆ T/E) // lim←−SWS(T ′0 ⊆ T ′1 ⊆ T )

is a pushout square in ModZ` .

Proof of Proposition 9.1.4. We have a commutative diagram σ :

lim−→T∈Fins V (∅ ⊆ ∅ ⊆ T ) //

��

lim−→T∈Fins V (∅ ⊆ T ⊆ T )

��

lim−→T∈Fins Vred(T )oo

��
lim−→T∈Fins W (∅ ⊆ ∅ ⊆ T ) // lim−→T∈Fins W (∅ ⊆ T ⊆ T ) lim−→T∈Fins Wred(T ).oo

To prove Proposition 9.1.4, it will suffice to show that the right square in this diagram is a
pushout. The functor V is unital (in the sense of Definition 8.4.5) by virtue of Propositions
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8.6.6 and 8.6.7, and the functor W is unital by virtue of Lemmas 9.3.4 and 9.3.5. It follows
from Theorem 8.4.10 that the horizontal maps in this diagram determine equivalences

lim−→
T∈Fins

V (∅ ⊆ T ⊆ T ) ' lim−→
T∈Fins

V (∅ ⊆ ∅ ⊆ T )⊕ lim−→
T∈Fins

Vred(T )

lim−→
T∈Fins

W (∅ ⊆ T ⊆ T ) ' lim−→
T∈Fins

W (∅ ⊆ ∅ ⊆ T )⊕ lim−→
T∈Fins

Wred(T ).

It will therefore suffice to show that the left vertical map in the diagram σ is an equivalence,
which follows from Lemma 9.3.3. �

Proof of Lemma 9.3.3. For each nonempty finite set S, let DS denote the prestack whose
objects are tuples (R,K−,K+, µ,P, γ), where R is a finitely generated k-algebra, µ : S →
(X−Q)(R) is a map of sets, K− ⊆ K+ ⊆ S, P is a G-bundle on XR, and γ is a trivialization of
P on XR− |µ(S)|, with morphisms defined as in Construction 9.3.1. For every nonempty finite
set T , we have a canonical equivalence

CS(∅ ⊆ ∅ ⊆ T ) ' XT ×Spec k DS ,

which determines equivalences

[CS(∅ ⊆ ∅ ⊆ T ]T ' C∗(DS ; Z`)⊗ ωXT

WS(∅ ⊆ ∅ ⊆ T ) ' C∗(DS ; Z`)⊗Z` C∗(X
T ; Z`)

W (∅ ⊆ ∅ ⊆ T ) ' ( lim←−
S∈Fins

C∗(DS ; Z`))⊗Z` C∗(X
T ; Z`)

lim−→
T∈Fins

W (∅ ⊆ ∅ ⊆ T ) ' ( lim←−
S∈Fins

C∗(DS ; Z`))⊗Z` C∗(Ran(X); Z`) ' ( lim←−
S∈Fins

C∗(DS ; Z`)).

It will therefore suffice to show that the composite map

Z` → lim←−
S∈Fins

C∗((X −Q)S ; Z`)→ lim←−
S∈Fins

C∗(DS ; Z`)

is an equivalence in ModZ` . Corollary 2.4.13 implies that the first map is an equivalence.
We are therefore reduced to proving that, for every nonempty finite set S, the canonical map
C∗((X − Q)S ; Z`) → C∗(DS ; Z`) is an equivalence. To prove this, we let D′S denote the full
subcategory of DS spanned by those objects (R,K−,K+, µ,P, γ) where K+ = S, and D′′S the
full subcategory spanned by those objects where K− = K+ = S. The inclusion map D′S ↪→ DS

admits a left adjoint (in the 2-category of prestacks) and the inclusion D′′S ↪→ D′S admits a right
adjoint (again in the 2-category of prestacks). Using Remark 2.3.32, we are reduced to showing
that the composite map

C∗((X −Q)S ; Λ)→ C∗(DS ; Λ)→ C∗(D′S ; Λ)→ C∗(D′′S ; Λ)

is an equivalence. This is clear, since D′′S is equivalent to (the prestack represented by) (X −
Q)S . �

Proof of Lemma 9.3.4. For every finite set T ′ and every finite set S, we have a canonical equiv-
alence of prestacks

CS(∅ ⊆ T1 ⊆ T q T ′) ' XT ′ ×Spec k CS(∅ ⊆ T1 ⊆ T ),

which induces an equivalence

[CS(∅ ⊆ T1 ⊆ T q T ′)]XTqT ′ ' [CS(∅) ⊆ T1 ⊆ T ]XT � ωXT ′ ,

in the ∞-category Shv`(X
TqT ′), hence an equivalence

WS(∅ ⊆ T1 ⊆ T q T ′) 'WS(∅ ⊆ T1 ⊆ T )⊗ C∗(XT ′ ;ωXT ′ ).
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Since C∗(XT ′ ;ωXT ′ ) ' C∗(X
T ′ ; Z`) is a perfect Z`-module, we can take the inverse limit over

S to obtain an equivalence

W (∅ ⊆ T1 ⊆ T q T ′) 'W (∅ ⊆ T1 ⊆ T )⊗Z` C∗(X
T ′ ; Z`).

Setting M = V (∅ ⊆ T1 ⊆ T ), we are reduced to proving that the canonical map

lim−→
T ′
M ⊗Z` C∗(X

T ′ ; Z`)→M

is an equivalence, which follows from the acyclicity of Ran(X) (Corollary 2.4.13). �

Proof of Lemma 9.3.5. Let Y be a quasi-projective k-scheme equipped with a map Y → XT .
For each equivalence relation E ∈ Equiv(T ), we let Y (E) denote the fiber product Y ×XT XT/E ,
and define prestacks ZS(E) and Z ′S(E) by the formulae

ZS(E) = CS(T0/E ⊆ T1/E ⊆ T/E)×XT/E Y (E)

Z ′S(E) = CS(T ′0/E ⊆ T ′1/E ⊆ T/E)×XT/E Y (E).

Let i(E) : Y (E) → Y denote the inclusion maps, and define sheaves FYE,S ,F
′Y
E,S ∈ Shv`(Y ) by

the formulae

FYE,S = i(E)∗[ZS(E)]Y E F′YE,S = i(E)∗[Z
′
S(E)]Y E .

Let E0 be the trivial equivalence relation on T (so that T/E0 ' T ). We will prove that the
diagram σY :

lim−→E∈Equiv◦(T )
lim←−S F

Y
E,S

//

��

lim−→E∈Equiv◦(T )
lim←−S F

′Y
E

��
lim←−S F

Y
E0,S

// lim←−S F
′Y
E0,S

is a pushout square in Shv`(Y ). Taking Y = XT and passing to global sections, this will give
a proof of Lemma 9.3.5.

We first prove the following:

(∗) If i : Y ′ → Y is a closed immersion, then the canonical maps

FY
′

E,S → i! FYE,S F′Y
′

E,S → i! F′YE,S ,

are equivalences for every nonempty finite set S and every equivalence relation E ∈
Equiv(T ).

To prove (∗), let us regard E and S as fixed. Let P denote the set of pairs (K−,K+), where
K− ⊆ K+ ⊆ S. We regard P as a partially ordered set, with (K−,K+) ≤ (K ′−,K

′
+) if and only

if K ′− ⊆ K− ⊆ K+ ⊆ K ′+. The construction (R,K−,K+, µ, ν,P, α) 7→ (K−,K+) determines
fibrations of categories

ρ : CS(T0 ⊆ T1 ⊆ T )→ P ρ′ : CS(T ′0 ⊆ T ′1 ⊆ T )→ P.

For each pair (K−,K+) ∈ P , we let EK−,K+
and E′K−,K+

denote the fibers of ρ and ρ′ over

(K−,K+). Then we can identify the canonical map

FY
′

E,S → i! FYE,S

with an inverse limit of maps

i′(E)∗[Y
′(E)×XT EK−,K+

]Y ′(E) → i!i(E)∗[Y (E)×XT EK−,K+
]Y (E)
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as (K−,K+) varies (here i(E) : Y (E)→ Y and i′(E) : Y ′(E)→ Y ′ denote the inclusion maps).

Each of these maps is an equivalence by virtue of Proposition 5.1.13, so that FY
′

E,S ' i! F
Y
E,S . A

similar argument shows that the natural map F′Y
′

E,S → i! F′YE,S , which proves (∗).
It follows from (∗) that for any closed immersion i : Y ′ → Y , we can identify σY ′ with i!σY .

Proceeding by Noetherian induction, we may assume that i!σY is a pullback square for every
closed subscheme Y ′ ( Y . If Y is nonreduced, then we can take Y ′ = Yred to complete the
proof. Let us therefore assume that Y is reduced. Let Y ′ ( Y be a closed subscheme, and let
U be the complement of Y ′ in Y . Then we have a fiber sequence of diagrams

i∗i
!σY → σY → j∗j

∗σY .

It will therefore suffice to prove that j∗σY ' σU is a pullback square in Shv`(U). We are
therefore free to replace Y by any nonempty open subscheme U ⊆ Y . In particular, we may
assume that Y is smooth, that the map Y → XT is Q-adapted (Definition 7.3.9), and that
there is a fixed equivalence relation E1 ∈ Equiv(T ) such that the map Y → XT factors through
XT/E1 , but the fiber product Y ×XT XT/E = ∅ for E ≥ E1.

The proof now breaks into two cases. Suppose first that E0 6= E1. Suppose first that
E0 6= E1. In this case, we will complete the proof by showing that the maps

θ : lim−→
E∈Equiv◦(T )

lim←−
S

FYE,S → lim←−
S∈Fins

FYE0,S

θ′ : lim−→
E∈Equiv◦(T )

lim←−
S

F′YE,S → lim←−
S∈Fins

F′YE0,S

are equivalences in Shv`(Y ). We will give the proof for θ; the proof for θ′ is the same. The
main point is to prove the following assertion:

(∗′) Let E ∈ Equiv(T ), and let E′ be the equivalence relation on T generated by E and

E1. Then, for every nonempty finite set S, the canonical map FYE′,S → FYE,S is an
equivalence in Shv`(Y ).

Assertion (∗′) follows immediately from the observation that we have an equivalence of prestacks

ZS(E) ' ZS(E′). It follows from (∗′) that the diagram {lim←−S∈Fins F
Y
E,S}E∈Equiv◦(T ) is a left

Kan extension of the diagram {lim←−S∈Fins F
Y
E,S}E≥E1 , so that we have equivalences

lim−→
E∈Equiv◦(T )

lim←−
S∈Fins

FYE,S ' lim−→
E≥E1

lim←−
S∈Fins

FYE,S ' lim←−
S∈Fins

FYE1,S ,

so that θ can be identified with an inverse limit of maps of the form FYE1,S → FYE0,S and is
therefore an equivalence by virtue of (∗′).

We now treat the case where E0 = E1. In this case, for all E 6= E0 we have Y (E) = ∅ and

therefore FYE,S ' F′YE,S ' 0. We are therefore reduced to proving that the canonical map

lim←−
S

FYE0,S → lim←−
S

F′YE0,S

is an equivalence in Shv`(Y ). To prove this, we let ES,S denote the full subcategory of CS(T0 ⊆
T1 ⊆ T ) spanned by those objects (R,K−,K+, µ, ν,P, γ) where K− = K+ = S, and define
E′S,S ⊆ CS(T ′0 ⊆ T ′1 ⊆ T ) similarly. Set

GS = [ES,S ×XT Y ]Y G′S = [E′S,S ×XT Y ]Y .
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We have a commutative diagram of prestacks

Y ×XT E′S
//

��

Y ×XT ES

��
Z ′S(E0) // ZS(E0),

which induces a commutative diagram τS :

G′S GSoo

F′YE0,S

OO

FYE0,S

OO

oo

in the∞-category Shv`(Y ), depending functorially on S ∈ Fins. We will complete the proof by
verifying the following:

(a) Each of the diagrams τS is a pullback square in Shv`(Y ).
(b) The canonical map lim←−S GS → lim←−S G

′
S is an equivalence in Shv`(Y ).

To prove (b), we observe that there is a commutative diagram

ωY

##{{
lim←−S GS

// lim←−S G
′
S ,

where the vertical maps are equivalences by virtue of Proposition 9.2.1.
We now prove (a). For the remainder of the proof, we regard the set S as fixed. Let P be

defined as above, and for each pair (K−,K+) ∈ P we define

HK−,K+
= [EK−,K+

×XT Y ]Y H′K−,K+
= [E′K−,K+

×XT Y ]Y

Unwinding the definitions, we can identify GS and G′S with HS,S and H′S,S , respectively. We
may therefore identify τS with the diagram

lim←−(K−,K+)∈P HK−,K+
//

��

lim←−(K−,K+)∈P HK−,K+

��
HS,S

// H′S,S .

For each (K−,K+) ∈ P , form a fiber sequence

H′′K−,K+
→ HK−,K+ → H′K−,K+

.

We will regard the construction (K−,K+) 7→ H′′K−,K+
as a functor P → Shv`(Y ). To prove

(a), we must show that the evaluation amp

lim←−
(K−,K+)∈P

H′′K−,K+
→ H′′S,S

is an equivalence in Shv`(Y ). In fact, we will prove something slightly more general. Let n
denote the cardinality of the set S. For each m ≤ n, we let Pm denote the subset of P consisting
of those pairs (K−,K+) where |S−| ≥ m. Then P0 = P , and Pn = {(S, S)}. Assertion (a) is a
special case of the following:



298 DENNIS GAITSGORY AND JACOB LURIE

(a′) For each integer m ≤ n, the restriction map

lim←−
(K−,K+)∈P

H′′K−,K+
→ lim←−

(K−,K+)∈Pm

H′′K−,K+

is an equivalence in Shv`(Y ).

The proof of (a′) proceeds by induction on m, the case m = 0 being obvious. To carry out
the inductive step, we let Q denote the subset of Pm consisting of those pairs (K−,K+) with
|K−| ≥ m and |K+| > m. We claim that the restriction maps

lim←−
(K−,K+)∈Pm

H′′K−,K+
→ lim←−

(K−,K+)∈Q
H′′K−,K+

→ lim←−
(K−,K+)∈Pm+1

H′′K−,K+

are equivalences. To prove this, it suffices to verify the following pair of assertions:

(i) The inclusion of partially ordered sets Pm+1 ↪→ Q induces a right cofinal map of sim-
plicial sets N(Pm+1) ↪→ N(Q).

(ii) If m < n, then the functor H′′ |Pm is a right Kan extension of its restriction to Q.

To prove (i), we must show that for every element (K−,K+) ∈ Q, the partially set Z =
{(K ′−,K ′+) ∈ P : (K ′−,K

′
+) ≤ (K−,K+), |K ′−| > m} has weakly contractible nerve. Let Z0

denote the subset of Z consisting of those pairs (K ′−,K
′
+) with K ′+ = K+. The inclusion

Z0 ↪→ Z admits a left adjoint, given by (K ′−,K
′
+) 7→ (K ′−,K+). We are therefore reduced to

proving that the nerve of Z0 is weakly contractible. This is clear, since Z0 contains (K+,K+)
as a least element.

We now prove (ii). Fix an element (K−,K+) ∈ Pm; we wish to show that H′′ is a right Kan
extension of H′′ |Q at (K−,K+). This is obvious if (K−,K+) belongs to Q. We may therefore
assume without loss of generality that K− = K+ and that |K−| = m. Set K = K− = K+.
Unwinding the definitions, we note that an element (K ′−,K

′
+) ∈ Pm satisfies (K,K) ≤ (K ′−,K

′
+)

if and only if K ′− = K ⊆ K ′+. We are therefore reduced to proving that the map

H′′K,K → lim←−
K(K′

H′′K,K′

is an equivalence in Shv`(Y ). Equivalently, we wish to prove that the diagram

HK,K
//

��

H′K,K

��
lim←−K(K′ HK,K′

// lim←−K(K′ H
′
K,K′

is a pullback square in Shv`(Y ). Note that for K ⊆ K ′, we can regard EK,K′ and E′K,K′ as
open substacks of EK,K . Moreover, we have

EK,K′ =
⋂

s∈K′−K
EK,K∪{s} E′K,K′ = E′K,K ∩

⋂
s∈K′−K

EK,K∪{s} .

Using Zariski descent, we are reduced to proving that the open substacks

Y ×XT E′K,K , Y ×XT EK,K∪{s} ⊆ Y ×XT EK,K

comprise an open covering of EK,K , which follows from our assumption that E0 = E1. This
completes the proof of (a). �
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9.4. Digression: Verdier Duality on Ran(X). Let G be a smooth affine group scheme over
an algebraic curve X which is Q-adapted for some effective divisor Q ⊆ X. Proposition 9.1.5
asserts that the canonical map∫

lim←−
S∈Fins

BS,red → lim←−
prim

C∗(RanG(X −Q)S0⊆S ; Z`)

is a quasi-isomorphism. This assertion has a natural interpretation in terms of Verdier duality
on the Ran space Ran(X). Our goal in this section is to explain this interpretation, since
it is the foundation on which our proof is constructed. For purposes of this paper, we will
regard “Verdier duality on Ran(X)” as a heuristic device; the discussion in this section will be
somewhat informal and we will generally omit proofs. However, we will use this discussion to
motivate the introduction of some auxiliary sheaves which will be precisely defined in Notation
9.4.14 and will use to break the proof of Proposition 9.1.5 into two parts (Proposition 9.4.17
and Proposition 9.4.18), which will be treated in the sections which follow. A reader who is
interested in the most direct route to the proof of Theorem 5.4.5 (or who has a low tolerance for
informal heuristics) can safely skip most of this section, proceeding directly to Notation 9.4.14
and the discussion which follows.

Remark 9.4.1. For a rigorous treatment of Verdier duality for !-sheaves on Ran(X) (and an
alternative derivation of Theorem 5.4.5), we refer the reader to [19].

9.4.1. Verdier Duality on Locally Compact Spaces. Fix an ∞-category C which admits limits
and colimits. Let X be a topological space and let U(X) denote the partially ordered set of
all open subsets of X. A C-valued sheaf on X is a functor F : U(X)op → C with the following
property: for each open cover {Uα} of an open set U ⊆ X, the canonical map

F(U)→ lim←−
V

F(V )

is an equivalence in C, where V ranges over all open subsets of U which are contained in some
Uα. The collection of all C-valued sheaves on X can be organized into an ∞-category, which
we will denote by ShvC(X).

There is an evident dual notion of C-valued cosheaf on X: a functor F : U(X)→ C with the
property that for every open cover {Uα} of an open set U ⊆ X, the canonical map lim−→V

F(V )→
F(U) is an equivalence in C (again the colimit is taken over all open subsets of U which are
contained in some Uα). The collection of all C-valued cosheaves on X can be organized into
an ∞-category which we will denote by cShvC(X). Equivalently, we can define the ∞-category
cShvC(X) by the formula

cShvC(X) = ShvCop(X)op.

Construction 9.4.2. Let X be a Hausdorff topological space and let F be a C-valued sheaf
on X. For every closed subset K ⊆ X, we let FK denote the fiber of the natural map F(X)→
F(X −K). Note that FK is a covariant functor of K.

Given an open set U ⊆ X, we let Fc(U) denote the colimit lim−→K⊆U FK , taken over all

compact subsets K ⊆ U . We will refer to the object Fc(U) ∈ C as the compactly supported
sections of F over U .

Remark 9.4.3. In the situation of Construction 9.4.2, the assignment U 7→ Fc(U) determines
a covariant functor from the partially ordered set of open subsets of X to the ∞-category C.

Remark 9.4.4. Let F ∈ ShvC(X) and let U and V be open subsets of X. For every compact
set K ⊆ U , we have a canonical map

FK = fib(F(X)→ F(X −K))→ F(X)→ F(V ).
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Passing to the colimit over K, we obtain a natural map Fc(U)→ F(V ). By construction, this
map vanishes whenever U and V are disjoint.

Theorem 9.4.5 (Covariant Verdier Duality). Let C be a stable ∞-category which admits limits
and colimits and let X be a Hausdorff space. Then the construction F 7→ Fc carries C-valued
sheaves on X to C-valued cosheaves on X. If X is locally compact, then the construction F 7→ Fc
determines an equivalence of ∞-categories

ShvC(X) ' cShvC(X).

In other words, if X is a locally compact Hausdorff space, then the ∞-categories ShvC(X)
and ShvCop(X) are canonically opposite to one another. This equivalence is nontrivial, and
involves the topology of X in an essential way.

Remark 9.4.6 (Functoriality). Let f : X → Y be a continuous map of topological spaces.
For any ∞-category C, f determines a pushforward functor f∗ : ShvC(X) → ShvC(Y ) by
the formula (f∗ F)(U) = F(f−1U). Similarly, we have a pushforward operation on cosheaves
f+ : cShvC(X)→ cShvC(Y ), given by (f+ F)(U) = F(f−1U).

If C is a stable ∞-category which admits limits and colimits, one can show that the functor
f∗ admits a left adjoint f∗, and the functor f+ admits a right adjoint f+. If X and Y are
locally compact, then Theorem 9.4.5 supplies equivalences of ∞-categories

ShvC(X) ' cShvC(X) ShvC(Y ) ' cShvC(Y ).

Under these equivalences, we can identify f+ and f+ with a pair of adjoint functors

f! : ShvC(Y )→ ShvC(Z) f ! : ShvC(Z)→ ShvC(Y ).

Unwinding the definitions, we see that the functor f! is characterized by the formula (f! F)c(U) =
Fc(f

−1U). We will refer to f! as the functor of direct image with compact supports.

Example 9.4.7. Let R be a commutative ring, and let ModR denote the stable ∞-category of
chain complexes over R (Example 2.1.23). Then R-linear duality defines a contravariant functor
from ModR to itself, which carries colimits to limits. Consequently, every ModR-valued cosheaf
G on a topological space X determines a ModR-valued sheaf G∨, given by G∨(U) = (G(U))∨.

Let F be a ModR-valued sheaf on a Hausdorff space X, and let Fc be the associated cosheaf.
We let D(F) denote the ModR-valued sheaf F∨c . We refer to D(F) as the Verdier dual of F.
We let ωX denote the Verdier dual of the constant sheaf RX on X, which we refer to as the
dualizing sheaf on X.

Assuming that X is locally compact, for any pair of sheaves F and G we have equivalences

MapShvModR
(X)(F,D(G)) ' MapShvModR

(X)(G,D(F)),

since both sides can be identified with the space of maps from (F⊗G)c(X) to R in ModR. In
particular, we obtain an equivalence

F(X) ' MapShvModR
(X)(R,D(F))

' MapShvModR
(X)(F,D(R))

' MapShvModR
(X)(F, ωX)

of chain complexes over R. Performing a similar calculation over each open subset of R, we see
that D(F) can be identified with the sheaf which classifies maps from F into ωX .
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9.4.2. Verdier Duality on Infinite-Dimensional Spaces. Let us now consider what Verdier du-
ality can tell us about a topological space X which is not locally compact, such as the Ran
space Ran(M) of a manifold M . For each integer n ≥ 0, let Ran≤n(M) denote the subset of
Ran(M) consisting of finite subsets S ⊆ M which have cardinality ≤ n. Each Ran≤n(M) is
a locally compact topological space (which can be identified with a quotient of Mn). Let us
regard Ran(M) as equipped with the direct limit topology, so that a subset U ⊆ Ran(M) is
open if and only if its intersection with each Ran≤n(M) is open (beware that this is not quite
the same as the topology on Ran(M) discussed in §2.4).

Proposition 9.4.8. Let X be a paracompact topological space which is written as a direct limit
of closed subsets

X0 ↪→ X1 ↪→ X2 ↪→ · · ·
and let C be a stable ∞-category which admits limits and colimits. Then ShvC(X) can be
identified with the inverse limit lim←− ShvC(Xn).

Remark 9.4.9. For a proof of Proposition 9.4.8 in the special case where C is the ∞-category
of spaces, we refer the reader to Proposition HTT.7.1.5.8.

Let X be as in Proposition 9.4.8, so that giving a C-valued sheaf F on the space X is
equivalent to giving a sequence of C-valued sheaves Fn ∈ ShvC(Xn), together with equivalences
Fn ' i(n)∗ Fn+1, where i(n) : Xn → Xn+1 denotes the inclusion map. Applying the same
reasoning to the ∞-category Cop, we see that cShvC(X) can be identified with the inverse limit
of the tower

· · · → cShvC(X3)
i(2)+

→ cShvC(X2)
i(1)+

→ cShvC(X1)
i(0)+

→ cShvC(X0).

Suppose now that each of the spaces Xi is locally compact. Applying Theorem 9.4.5 to each
term in this sequence, we obtain an equivalent tower

· · · → ShvC(X3)
i(2)!

→ ShvC(X2)
i(1)!

→ ShvC(X1)
i(0)!

→ ShvC(X0).

We will denote the inverse limit of this tower by Shv!
C(X), and refer to it as the ∞-category

of C-valued !-sheaves on X. More informally, the objects of Shv!
C(X) are sequences of sheaves

Fn ∈ ShvC(Xn), together with equivalences Fn ' i(n)! Fn+1. We can summarize our discussion
as follows:

Proposition 9.4.10. Let X be a paracompact topological space which is given as a direct limit
of locally compact closed subsets

X0 ↪→ X1 ↪→ X2 ↪→ · · ·
Then the construction above supplies an equivalence of ∞-categories

cShvC(X) ' Shv!
C(X).

Remark 9.4.11. In the situation of Proposition 9.4.10, the construction F 7→ Fc can be
regarded as a functor

Ψ : ShvC(X)→ Shv!
C(X).

We will refer to the functor Ψ as covariant Verdier duality. It is generally not an equivalence
of ∞-categories if the space X is not locally compact: roughly speaking, the !-sheaf Ψ(F)
associated to a sheaf F ∈ ShvC(X) only “remembers” information about sections of F which
are supported on compact subsets of X.

If F is a C-valued sheaf on X given by system of sheaves {Fn ∈ ShvC(Xn)}n≥0 with compat-
ibilities Fn ' i∗n Fn+1, then Ψ(F) is a system of sheaves {Gn ∈ ShvC(Xn)}n≥0 with compatibil-
ities Gn ' i!n Gn+1, which can be described concretely by the formula Gn = lim←−m i

!
nim∗ Fm.
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9.4.3. Covariant Verdier Duality on Ran(X). We now consider an algebro-geometric analogue
of the covariant Verdier duality functor described in Remark 9.4.11. Fix an algebraically closed
field k, a prime number ` which is invertible in k, and a projective k-scheme X.

Construction 9.4.12. Let F be an `-adic ∗-sheaf on Ran(X): that is, a collection of sheaves

{F(S) ∈ Shv`(X
S)}S∈Fins which are equipped with equivalences F(S) ' δ∗S′/S F

(S′) for every

surjection of nonempty finite sets S′ → S, compatible with composition up to coherent homo-
topy. For every pair of nonempty finite sets S and T , let ∆(S, T ) denote the closed subset of
XS ×Spec kX

T whose k-valued points are pairs of maps µ : S → X(k), ν : T → X(k) satisfying
µ(S) = ν(T ) (here ∆(S, T ) plays the role of the fiber product of XS and XT over the Ran
space Ran(X), though it is not literally given by the fiber product). We have projection maps

XS pS,T← ∆(S, T )
qS,T→ XT .

For every nonempty finite set T , we can define an `-adic sheaf Ψ(F)(T ) on XT by the formula

Ψ(F)(T ) = lim←−
S∈Fins

qS,T∗p
!
S,T F(S) .

The collection of sheaves {Ψ(F)(T )}T∈Fins can be organized into a !-sheaf on Ran(X), which we
will denote by Ψ(F) and refer to as the covariant Verdier dual of F.

Remark 9.4.13. Let F be as in Definition 9.4.12. For every pair of nonempty finite sets S
and T , we have canonical maps

C∗(XT ; Ψ(F)(T ))→ C∗(XT ; qS,T∗p
!
S,T F(S)) ' C∗(∆(S, T ); p!

S,T F(S))→ C∗(XS ;F(S)).

These maps depend functorially on S and T and therefore induce a map∫
Ψ(F) = lim−→

T∈Fins

C∗(XT ; Ψ(F)(T ))→ lim←−
S∈Fins

C∗(XS ;F).

This map is generally not an equivalence: the right hand side can be thought of as the chain
complex of global sections of F, while the left hand side can be thought of as the chain complex
of compactly supported global sections of F.

9.4.4. The Covariant Verdier Dual of Ared. Let us now describe the geometric context in which
we would like to apply Construction 9.4.12. Let X be an algebraic curve over k and let G be
a smooth affine group scheme over X. To simplify the discussion, we will assume that G
is reductive (but we will relax this assumption for Notation 9.4.14 and the formulations of
Proposition 9.4.17 and Proposition 9.4.18). Let Ared be the ∗-sheaf on Ran(X) discussed in the
introduction to §8: if µ : S → X(k) is a k-valued point of Ran(X) with µ(S) = {x1, . . . , xn},
then the stalk of Ared at the point µ can be identified with the tensor product⊗

1≤i≤n

C∗red(GrxiG ; Z`).

We would like to study the covariant Verdier dual of Ared. To describe this !-sheaf geometrically,
it will be convenient to introduce a bit of notation.

Notation 9.4.14. Let S be a nonempty finite set, let S0 ⊆ S be a subset, and let Q ⊆ X be
an effective divisor. We let RanG(X −Q)◦S0⊆S denote the product

RanG(X −Q)S0⊆S ×Spec k Ran(X),

which we regard as a Ran(X)-prestack via projection onto the second factor.
Concretely, the objects of RanG(X−Q)◦S0⊆S are given by tuples (R,µ : S → (X−Q)(R), ν :

T → X(R),P, γ) where P is a G-bundle on XR (but we only care about its restriction to
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XR − |µ(S0)|) and γ is a trivialization of P over XR − |µ(S)|. We let RanG(X − Q)◦ off
S0⊆S

denote the subcategory consisting of those objects for which the associated map SpecR →
(X −Q)S ×Spec k X

T factors through the complement of the closed set ∆(S, T ).

We define lax !-sheaves B◦S0⊆S ,B
◦ off
S0⊆S by the formulae

B◦S0⊆S = [RanG(X −Q)◦S0⊆S ]Ran(X) B◦ off
S0⊆S = [RanG(X −Q)◦ off

S0⊆S ]Ran(X).

Remark 9.4.15. Since RanG(X − Q)◦S0⊆S factors as a product of Ran(X) with Ran(X −
Q)S0⊆S , we have a canonical equivalence

B◦S0⊆S ' C
∗(Ran(X −Q)S0⊆S ; Z`)⊗ ωRan(X).

In particular, its chiral homology is given by
∫
B◦S0⊆S ' C

∗(Ran(X −Q)S0⊆S ; Z`).

Remark 9.4.16. To understand the relevance of the sheaves B◦S0⊆S and B◦ off
S0⊆S , let us assume

that Q = ∅. Let S and T be nonempty finite sets, and consider the diagram

XS pS,T← ∆(S, T )
qS,T→ XT .

Let π : XS ×Spec k X
T → XT be the projection onto the second factor, let U ⊆ XS ×Spec k X

T

be the complement of ∆(S, T ), and let πU = π|U . Set

A(S0⊆S) = [RanG(X)S0⊆S ]Z`(X)S
∈ Shv`(X

S).

Unwinding the definitions, we see that qS,T∗p
!
S,T A(S0⊆S) ∈ Shv`(X

T ) can be computed as the
fiber of the map

π∗(A
(S0⊆S) �ωXT )→ πU∗((A

(S0⊆S) �ωXT )|U ).

The left hand side can be identified with B
◦(T )
S0⊆S , and the right hand side with B

◦ off(T )
S0⊆S . It

follows that the covariant Verdier dual of Ared can be identified with the fiber of the canonical
map

lim←−
prim

B◦S0⊆S → lim←−
prim

B◦ off
S0⊆S .

We will deduce Proposition 9.1.5 from the following pair of assertions:

Proposition 9.4.17. If the group scheme G is Q-adapted, then the morphism∫
lim←−

S∈Fins

BS,red → lim←−
prim

C∗(RanG(X −Q)S0⊆S ; Z`)

appearing in Proposition 9.1.5 is induced by a morphism of lax !-sheaves lim←−S∈Fins BS,red →
lim←−prim

B◦S0⊆S. Moreover, this map fits into a fiber sequence

lim←−
S∈Fins

BS,red → lim←−
prim

B◦S0⊆S → lim←−
prim

B◦ off
S0⊆S .

Proposition 9.4.18. If the group scheme G is Q-adapted, then the chiral homology∫
lim←−
prim

B◦ off
S0⊆S

vanishes.

We will give the proof of Proposition 9.4.18 in §9.5. The proof of Proposition 9.4.17 is more
involved: we will give an outilne in §9.6 and carry out most of the details in §9.7.
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Remark 9.4.19. In the case Q = ∅, Proposition 9.4.17 can be viewed as saying that the inverse
limit lim←−S∈Fins BS,red is covariant Verdier dual to Ared, and Proposition 9.4.18 can be viewed

as saying that the canonical map∫
Ψ(Ared)→ lim←−

S∈Fins

C∗(XS ,A
(S)
red)

is an equivalence: in other words, all sections of Ared are compactly supported.

Remark 9.4.20. Combining Proposition 9.4.17 with Proposition 9.1.4, we see that the !-sheaf
Bred can be identified with the covariant Verdier dual of the ∗-sheaf Ared (at least in the case
Q = ∅). Note that the costalk of Bred at a point x ∈ X ⊆ Ran(X) can be identified with
C∗red(BGx; Z`), while the stalk of Ared at the point x can be identified with C∗red(GrxG; Z`).
When k = C, the Verdier duality between the factorizable sheaves Ared and Bred corresponds
to the Koszul duality between C∗(BGx; Z`) and C∗(GrxG; Z`) (where the former is regarded as
an E2-algebra in ModZ` and the latter as an E2-coalgebra in ModZ`). Topologically, this arises
from the fact that BGx is simply connected and can therefore be recovered by performing a
double bar construction on the two-fold loop space Ω2 BGx ' GrxG.

9.5. A Convergence Argument. Throughout this section, we fix an algebraically closed field
k, an algebraic curve X over k, a smooth affine group scheme G over X, and a finite subset
Q ⊆ X for which G is Q-adapted. For every finite set S and every subset S0 ⊆ S, we let

B
◦,off
S0⊆S denote the lax !-sheaves introduced in Notation 9.4.14. Our goal is to prove Proposition

9.1.5, which asserts that the chiral homology
∫

lim←−prim
B
◦,off
S0⊆S vanishes. This is an immediate

consequence of the following pair of assertions:

Proposition 9.5.1. Let S be a nonempty finite set and let S0 ⊆ S. Then the chiral homology∫
B
◦,off
S0⊆S vanishes.

Proposition 9.5.2. The canonical map∫
lim←−
prim

B
◦,off
S0⊆S → lim←−

prim

∫
B
◦,off
S0⊆S

is an equivalence in ModZ` .

In fact, we will prove a far more general version of Proposition 9.5.1. To state it, we need a
bit of notation.

Construction 9.5.3. Let S be a finite set, let C be a prestack equipped with a map C →
(X−Q)S , and let D = C×Spec k Ran(X) (which we regard as a Ran(X)-prestack via projection
onto the second factor). Note that every R-valued point of D determines a map SpecR →
(X − Q)S ×Spec k X

T for some nonempty finite set T . Let U(S, T ) denote the open subset
of (X − Q)S ×Spec k X

T whose k-valued points are pairs µ : S → (X − Q)(k), ν : T → X(k)

satisfying µ(S) 6= ν(T ), and let Doff denote the full subcategory of D consisting of those objects
for which the corresponding map SpecR→ (X −Q)S ×Spec k X

T factors through U(S, T ).

Proposition 9.5.4. Let C be a prestack equipped with a map π : C → (X − Q)S, let D =

C×Spec k Ran(X), and define F = [Doff ]Ran(X) ∈ Shvlax
` (Ran(X)). Then the chiral homology∫

F vanishes.

The main step in the proof of Proposition 9.5.4 is the following:
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Lemma 9.5.5. Let f : Y → (X − Q)S be a map of quasi-projective k-schemes and let
F ∈ Shv`(Y ). For every nonempty finite set T , let U(S, T ) ⊆ (X − Q)S × XT denote
the open subscheme introduced in Construction 9.5.3, let U(S, T )Y denote the fiber product
Y ×XS U(S, T ), and let pT : U(S, T )Y → Y and qT : U(S, T )Y → XT be the projection maps.
Then the direct limit

F+ = lim−→
T∈Fins

pT∗(q
∗
TωXT ⊗ p∗T F)

is a zero object of Shv`(Y ).

Proof of Proposition 9.5.4. For each nonempty finite set T , let pT : U(S, T ) → (X −Q)S , qT :
U(S, T )→ XT denote the projection maps, so that we have a commutative diagram of prestacks

C

ρ

��

Doff ×Ran(X)X
Too

�� &&
(X −Q)S U(S, T )

pToo qT // XT ,

where the square on the left is a pullback. We have canonical equivalences

C∗(XT ;F) = C∗(XT ; [Doff ×Ran(X)X
T ]ωXT

' C∗(XT ; qT∗[D
off ×Ran(X)X

T ]q∗TωXT

' C∗(U(S, T ); [Doff ×Ran(X)X
T ]q∗TωXT )

' C∗(U(S, T ); q∗TωXT ⊗ [Doff ×Ran(X)X
T ]Z`U(S,T )

)

' C∗(U(S, T ); q∗TωXT ⊗ p∗T [C]Z`(X−Q)S
),

where the last equivalence follows from the smoothness of the projection map pT : U(S, T ) →
(X−Q)S . Set G = [C]Z`(X−Q)S

∈ Shv`((X−Q)S). Passing to the colimit as T varies, we obtain

an equivalence ∫
F = lim−→

T∈Fins

C∗(XT ;F(T ))

' lim−→
T∈Fins

C∗(U(S, T ); q∗TωXT ⊗ p∗T G)

' lim−→
T∈Fins

C∗((X −Q)S ; pT∗(q
∗
TωXT ⊗ p∗T G))

' C∗((X −Q)S ; lim−→
T∈Fins

pT∗(q
∗
TωXT ⊗ p∗T G));

(here the last identification follows from the observation that the global sections functor C∗((X−
Q)S ; •) commutes with colimits). The desired vanishing now follows from Lemma 9.5.5. �

Proof of Lemma 9.5.5. For each closed immersion i : Y ′ ↪→ Y , we can consider the sheaf
i! F ∈ Shv`(Y

′) and the associated direct limit

(i! F)+ = lim−→
T

p′T∗((ωXT � i! F)|U(S,T )Y ′
),

where p′T : U(S, T )Y ′ → Y ′ denotes the projection map. Using Theorem 4.5.4 and Proposition

4.5.12, we obtain a canonical equivalence (i! F)+ ' i!(F+). We will prove that for every closed
immersion i : Y ′ ↪→ Y , the sheaf (i! F)+ ' i!(F+) ∈ Shv`(Y

′) vanishes. Replacing Y by Y ′ and
proceeding by Noetherian induction, we may assume that i! F+ ' 0 for every closed immersion



306 DENNIS GAITSGORY AND JACOB LURIE

i : Y ′ → Y whose image is a proper closed subscheme of Y . In particular, we may assume that
Y is reduced (otherwise, take Y ′ = Yred).

We will assume that Y is nonempty (otherwise there is nothing to prove). The map f : Y →
(X − Q)S can be identified with a collection of maps {fs : Y → X}s∈S . Choose a nonempty
open subset V ⊆ Y with the following property:

(∗) For every pair of elements s, s′ ∈ S, the maps fs|V and fs′ |V either coincide or have
disjoint graphs in the product (X −Q)× V .

Let Y ′ be the complement of V (regarded as a reduced closed subscheme of Y ) and let

i : Y ′ ↪→ Y j : V ↪→ Y

be the inclusion maps. Then we have a fiber sequence

i∗i
! F+ → F+ → j∗j

∗ F+

The first term vanishes by our inductive hypothesis. Consequently, to show that F+ vanishes,
it will suffice to show that F+ |V vanishes. Replacing Y by V , we may assume that for each
pair s, s′ ∈ S, the morphisms fs and fs′ either coincide or have disjoint graphs. Replacing S by
a quotient if necessary, we may assume that fs and fs′ have disjoint graphs whenever s 6= s′.

For every nonempty finite set T , let ∆(S, T ) ⊆ (X − Q)S × XT be the reduced closed
subscheme complementary to U(S, T ), and let ∆(S, T )Y denote the fiber product Y ×(X−Q)S

∆(S, T ). Let pT : Y ×XT → Y be the projection map, and let p′T denote the restriction of pT
to ∆(S, T )Y . We then have a fiber sequence

p′T∗p
!
T F → pT∗p

!
T F → pT∗(p

∗
T F⊗q∗TωXT ),

which depends functorially on T . Passing to the colimit over T , we obtain a fiber sequence

lim−→
T∈Fins

p′T∗p
!
T F

θ→ lim−→
T∈Fins

pT∗p
!
T F → F+

It will therefore suffice to show that θ is an equivalence.
Note that θ fits into a commutative diagram

lim−→T∈Fins p
′
T∗p

!
T F

α

&&

θ // lim−→T∈Fins pT∗p
!
T F

β
xx

F .

Unwinding the definitions, we see that β can be identified with the tensor product of F with
the natural map

lim−→
T

C∗(X
T ; Z`)→ Z`

in the ∞-category ModZ` , which is an equivalence by virtue of Corollary 2.4.13. We will
complete the proof by showing that α is an equivalence.

Using our assumptions that Y is reduced and that the maps {fs}s∈S have disjoint graphs,
we see that ∆(S, T ) is isomorphic to a disjoint union of finitely many copies of Y , where the
disjoint union is indexed by the set Hom(T, S) of all surjections from T to S. It follows that
the domain of α can be identified with the direct limit

lim−→
T∈Fins

⊕
γ∈Hom(T,S)

F ' lim−→
T∈Fins

/S

F .
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Consequently, to prove that α is an equivalence, it will suffice to show that the index category
Fins

/S has weakly contractible nerve. This is clear, since Fins
/S has a final object (given by

the identity map id : S → S). �

The proof of Proposition 9.5.2 will require some preliminaries.

Notation 9.5.6. For every nonempty finite set S and every subset S0 ⊆ S, we let V (S0 ⊆
S) ∈ Shvlax

` (Ran(X)) denote the fiber of the restriction map

B◦S0⊆S → B
◦,off
S0⊆S .

Note that we can regard V as a functor from Θ� to Shvlax
` (Ran(X)), where Θ� is the category

introduced in Notation 8.1.6. We let Vprim : Fins → Shvlax
` (Ran(X)) denote the primitive part

of V (Construction 8.1.7), given concretely by the formula

Vprim(S) = cofib( lim−→
∅6=S0⊆S

V (S, S0)→ V (S, ∅)).

Remark 9.5.7. Fix a nonempty finite set S and a subset S0 ⊆ S, and let T be another
nonempty finite set. Then the fiber product Ran◦G(X − Q)S0⊆S,aug ×Ranaug(X) X

T can be

identified with an open substack of the product RanG(X − Q)S0⊆S ×Spec k X
T . Moreover, if

we are given a surjection of nonempty finite sets T ′ → T , then we have a pullback diagram of
schemes

U(S, T ) //

��

XT

��
U(S, T ′) // XT

and therefore a pullback diagram of prestacks

Ran◦,off
G (X −Q)S0⊆S,aug ×Ranaug(X) X

T //

��

XT

��
Ran◦,off

G (X −Q)S0⊆S,aug ×Ranaug(X) X
T ′ // XT ′ .

Applying Proposition 5.1.13, we deduce that B
◦,off
S0⊆S is a !-sheaf on Ran(X). Using similar

(but easier) reasoning, we see that B◦S0⊆S belongs to Shv!
`(Ran(X)) (the latter is equivalent to

C∗(RanG(X −Q)S0⊆S ; Z`)⊗ ωXT ). It follows that the functors

V : Θ� → Shvlax
` (Ran(X)) Vprim : Fins → Shvlax

` (Ran(X))

of Notation 9.5.6 take values in Shv!
`(Ran(X)) ⊆ Shvlax

` (Ran(X)).

Note that we have a map of fiber sequences∫
lim←−S∈Fins Vprim(S) //

φ′

��

∫
lim←−B◦S0⊆S

//

φ

��

∫
lim←−prim

B
◦,off
S0⊆S

φ′′

��
lim←−S∈Fins

∫
Vprim(S) // lim←−prim

∫
B◦S0⊆S

// lim←−prim

∫
B
◦,off
S0⊆S .

Using the identification

B◦S0⊆S ' C
∗(RanG(X −Q)S0⊆S ; Z`)⊗ ωRan(X)
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(see the discussion following Construction 9.6.4), we see that the map φ is an equivalence (both
the domain and codomain of φ can be identified with lim←−prim

C∗(RanG(X−Q)S0⊆S ; Z`)). Con-

sequently, to prove Proposition 9.5.2, it will suffice to show that the map φ′ is an equivalence. By
virtue of Remark 9.5.7 and Corollary 5.3.16, this is an immediate consequence of the following
connectivity estimate:

Proposition 9.5.8. For every positive integer d and every nonempty finite set S, the object

C∗(
◦
Xd;Vprim(S)(d)| ◦

Xd
) belongs to (ModZ`)≤−d; here

◦
Xd ⊆ Xd denotes the complement of the

fat diagonal.

The essential ingredient in the proof of Proposition 9.5.8 is the following connectivity state-
ment:

Lemma 9.5.9. Let x ∈ X be a point for which the fiber Gx is semisimple, and let GrxG =
RanG(X) ×Ran(X) {x} denote the affine Grassmannian of G at the point x. Then GrxG is
connected.

Proof. Let e denote the base point of GrxG (corresponding to the trivial G-bundle on X equipped
with its tautological trivialization on X − {x}). To prove that GrxG is connected, it will suffice
to show that for every k-valued point y of GrxG, there exists a path h : A1 → GrxG satisfying
h(0) = e and h(1) = y. Let us regard y as fixed in what follows.

Let t ∈ OX,x be a local coordinate on the curve X at the point x. For every finitely generated
k-algebra R, we will identify R[[t]] with the ring of functions on the formal completion of XR

along {x} × SpecR. Combining Proposition A.1.6 with the Beauville-Laszlo theorem ([3]), we
can identify the set of R-points of GrxG with the category of G-bundles on SpecR[[t]] which are
equipped with a trivialization on the open subscheme SpecR((t)). In particular, we have an
embedding

G(R((t)))/G(R[[t]]) ↪→ GrxG(R)

whose image consists of those points GrxG(R) which correspond to G-bundles which are globally
trivial on SpecR[[t]]. It follows from Corollary A.1.7 and the smoothness of G that a G-bundle
on SpecR[[t]] is trivial if and only if its restriction to SpecR is trivial, and this condition is
automatically satisfied when R = k. It follows that there exist maps

G(R((t)))→ GrxG(R)

which depend functorially on R and are surjective when R = k. We may therefore lift the
k-valued point y of GrxG to an element y ∈ G(k((t))). To complete the proof, it will suffice to
show that there exists an element h of G(k[s]((t))) which reduces to the identity when we set
s = 0 and to y when we set s = 1.

By assumption, the fiber Gx is semisimple. Since k is algebraically closed, the semisimple
group scheme Gx is automatically split. It follows that the group scheme G is split reductive
when restricted to the formal disk Spec k[[t]]. Let G0 denote the fiber product G×X Spec k((t)).
Then G0 is a split reductive group over k((t)). Choose a split maximal torus T0 ⊆ G0, let ∆
denote the collection of roots of G0 with respect to T0, and for each α ∈ ∆ let uα : Ga → G0

be a paramerization of the corresponding root subgroup. Note that G0 is obtained from the
generic fiber of G by extension of scalars from the function field KX to its completion k((t)),
and is therefore simply connected. It follows that the group G0(k((t))) = G(k((t))) is generated
by the images of the maps uα. In particular, we can write

y = uα1
(λ1)uα2

(λ2) · · ·uαn(λn)
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for some roots α1, α2, . . . , αn ∈ ∆ and some elements λ1, λ2, . . . , λn ∈ k((t)). We now complete
the proof by setting

y = uα1
(sλ1)uα2

(sλ2) · · ·uαn(sλn).

�

Proof of Proposition 9.5.8. Let C denote the cardinality of the subset Q ⊆ X(k); we will show
that C has the desired property. Let S be a nonempty finite set and let T = {1, . . . , d} for some
positive integer d. Let

(X −Q)S
qS← (X −Q)S ×XT qT→ XT

denote the projection maps and let qoff
T denote the restriction of qT to the open subset U(S, T ) ⊆

(X −Q)S ×XT .
For each subset S0 ⊆ S, let F(S0) ∈ Shv`((X −Q)S) denote the `-adic sheaf given by

[RanG(X)S0⊆S ]Z`(X−Q)S
.

Using Proposition 5.1.13, we obtain identifications

B
◦(T )
S0⊆S ' qT∗q

!
S F(S0)

B
◦ off(T )
S0⊆S ' qoff

T∗(q
!
S F(S0))|U(S,T ).

Let ∆(S, T ) be as in the proof of Lemma 9.5.5 and let ι : ∆(S, T ) ↪→ (X − Q)S ×XT be the
inclusion map, so that we have

V (S0 ⊆ S) ' qT∗ι∗ι!q!
S F(S0).

Note that ∆(S, T ) ×XT
◦
Xd can be identified with a disjoint union of finitely many copies of

◦
(X −Q)d, indexed by the set Λ of all surjective maps λ : S → T . For each λ ∈ Λ, let
δλ : (X − Q)T → (X − Q)S denote the corresponding diagonal map, so that we obtain an
equivalence

V (S0 ⊆ S)| ◦
Xd
'

⊕
λ∈Λ

j∗(δ
!
λ F(S0))| ◦

(X−Q)d
.

where j :
◦

(X −Q)d ↪→
◦
Xd is the inclusion map. Set

Fprim = cofib( lim−→
∅6=S0⊆S

F(S0)→ F(∅)),

so that we have equivalences

C∗(
◦
Xd;Vprim(S)| ◦

(X−Q)d
) '

⊕
λ∈Λ

C∗(
◦

(X −Q)d; δ!
λ Fprim).

It will therefore suffice to show that for each λ ∈ Λ, the object C∗(
◦

(X −Q)d; (δ!
λ Fprim)| ◦

(X−Q)d
)

belongs to (ModZ`)≤−d.
Note that each of the `-adic sheaves F(S0) is `-complete. It follows that the `-adic sheaf Fred

and the chain complex C∗(
◦

(X −Q)d; (δ!
λ Fred)| ◦

(X−Q)d
) are also `-complete. For each integer

m ≥ 0, let Fred /`
m denote the image of Fred under the reduction functor Shv`((X − Q)S) →

Shv((X −Q)S ; Z/`mZ). Then C∗(
◦

(X −Q)d; (δ!
λ Fred)| ◦

(X−Q)d
) can be identified with the limit

lim←−
m≥0

C∗(
◦
Xd; (δ!

λ Fred /`
m)| ◦

Xd
).
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It will therefore suffice to show that each C∗(
◦
Xd; (δ!

λ Fred /`
m)| ◦

Xd
) belongs to the ∞-category

(ModZ/`mZ)≤−d. Proceeding by induction on m, we can reduce to the case m = 1 (though this
reduction is not really necessary).

Let U ′ ⊆ (X − Q)S denote the open subset whose k-valued points are maps µ : S → X(k)
such that µ(s) 6= µ(s′) whenever λ(s) 6= λ(s′). We have a commutative diagram

◦
(X −Q)d

δ //

��

U ′

��
(X −Q)d

δλ // (X −Q)S ,

where the horizontal maps are closed immersions. We may therefore identify the `-adic sheaf
(δ!
λ(Fred /`))| ◦

(X−Q)d
with δ!((Fred /`)|U ′). Since the functor δ! is left t-exact, we are reduced

to proving that (Fred /`)|U ′ belongs to Shv((X − Q)S ; Z/`Z)≤−d. To prove this, fix a point
η : Spec k → U ′, corresponding to a map of sets µ : S → X(k); we will prove that the stalk
η∗(Fred /`) belongs to (ModZ/`Z)≤−d.

For each subset S0 ⊆ S, let CS0 denote the fiber product Spec k×(X−Q)S RanG(X−Q)S0⊆S .
Using Lemma 8.5.6, we obtain identifications

η∗(F(S0)/`) ' C∗(CS0
; Z/`Z) ' C∗(CS0

; Z/`Z)∨.

For each closed point x ∈ X(k), let GrxG denote the affine Grassmannian RanG(X)×Ran(X) {x}
of G at the point x. Unwinding the definitions, we see that the prestack CS0 is equivalent to a
product ∏

x∈µ(S)

{
GrxG if x /∈ µ(S0)

Spec k if x ∈ µ(S0).

Using the Künneth formula, we compute

η∗(Fred /`) ' cofib( lim−→
∅6=S0⊆S

C∗(CS0 ; Z/`Z)∨ → C∗(C∅; Z/`Z)∨)

' fib(C∗(C∅; Z/`Z)→ lim←−
∅6=S0⊆S

C∗(CS0
; Z/`Z))∨

' (
⊗

x∈µ(S)

Cred
∗ (GrxG; Z/`Z))∨.

We are therefore reduced to proving that the tensor product
⊗

x∈µ(S) C
red
∗ (GrxG; Z/`Z) belongs

to (ModZ/`Z)≥d. Since the point η belongs to the open set U ′, the set µ(S) ⊆ X(k) has cardi-

nality exactly d. We are therefore reduced to proving that each tensor factor Cred
∗ (GrxG; Z/`Z)

belongs to (ModZ/`Z)≥1. This follows from the connectivity of the affine Grassmannian GrxG
(Lemma 9.5.9) �

Remark 9.5.10. The proof of Proposition 9.5.8 (and, by extension, Propositions 9.5.2 and 9.1.5
depend in an essential way on the assumption that the generic fiber of G is simply connected:

for non-simply connected groups, the formation of the primitive limit lim←−prim
B
◦,off
S0⊆S does not

commute with chiral homology.

Remark 9.5.11. The estimate obtained in Proposition 9.5.8 is not optimal. Using the vanish-
ing of the homology groups H1(GrG,x; Z/`Z) vanish for each closed point x ∈ X −Q, the proof
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of Proposition 9.5.8 gives a more precise estimate

C∗(
◦
Xd;Vprim(S)(d)| ◦

Xd
) ∈ (ModZ`)≤−2d.

9.6. Proposition 9.4.17: Proof Outline. Throughout this section, we fix an algebraically
closed field k, an algebraic curve X over k, a smooth affine group scheme G over X, and a finite
subset Q ⊆ X such that G is Q-adapted (Definition 7.2.9). Assume that the fibers of G are
connected and let ` be a prime number which is invertible in k. Our goal is to outline a proof
of Proposition 9.4.17, which asserts the existence of a fiber sequence

lim←−
S∈Fins

BS,red → lim←−
prim

B◦S0⊆S → lim←−
prim

B◦ off
S0⊆S .

Our proof will require some auxiliary constructions. We begin by introducing a more elaborate
version of Construction 9.1.2:

Construction 9.6.1. Fix a finite set S and a subset S0 ⊆ S. We define a category Ran†G(X −
Q)S0⊆S,aug as follows:

• The objects of Ran†G(X − Q)S0⊆S,aug are tuples (R,K−,K+, T, T0, µ, ν,P, γ) where R
is a finitely generated k-algebra, K+ is a subset of S, K− is a subset of K+ ∪ S0, T
is a nonempty finite set, T0 is a subset of T , µ : S → (X − Q)(R) and ν : T → X(R)
are maps of sets, P is a G-bundle on XR, γ is a trivialization of P over the open set
XR − |µ(S)|, and we have |µ(K+)| ∩ |ν(T )| = ∅ = |µ(S)| ∩ |ν(T0)|.
• There are no morphisms from an object C = (R,K−,K+, T, T0, µ, ν,P, α) to another

object C ′ = (R′,K ′−,K
′
+, T

′, T ′0, µ
′, ν′,P′, α′) unless K ′− ⊆ K− and K+ ⊆ K ′+. If

these conditions are satisfied, then a morphism from C to C ′ consists of a k-algebra
homomorphism φ : R→ R′, a surjection of finite sets λ : T → T ′ for which the diagrams

T

ν

��

λ // T ′

ν′

��

S
id //

µ

��

S

µ′

��
X(R)

X(φ) // X(R′) X(R)
X(φ) // X(R′)

commute and T ′0 ⊆ λ(T0), together with a G-bundle isomorphism between P′ and
SpecR′ ×SpecR P over the open set XR′ − |µ′(K ′−)|, which carries γ to γ′.

The construction (R,K−,K+, T, T0, µ, ν,P, γ) 7→ (R, T, T0, ν) determines a forgetful functor

Ran†G(X −Q)S0⊆S,aug → Ranaug(X).

This map is a coCartesian fibration and therefore exhibits Ran†G(X − Q)S0⊆S,aug as an aug-
mented Ran(X)-prestack (see Definition 8.2.10). We let BS0⊆S,aug denote the augmented !-sheaf
on Ran(X) given by

BS0⊆S,aug = [Ran†G(X −Q)S0⊆S,aug]Ranaug(X).

We let BS0⊆S,red denote the lax !-sheaf given by (BS0⊆S,aug)red.

Remark 9.6.2. Note that when the finite set S0 is empty, Construction 9.6.1 reduces to
Construction 9.1.2. In particular we have equivalences

Ran†G(X −Q)∅⊆S,aug ' Ran†G(X −Q)S,aug B∅⊆S,aug ' BS,aug B∅⊆S,red = BS,red .
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Remark 9.6.3. Let ν be a k-valued point of the augmented Ran space Ranaug(X), corre-
sponding to a map ν : T → X(k) and a subset T0 ⊆ T . Roughly speaking, we can think of the
fiber

Ran†G(X −Q)S0⊆S,aug ×Ranaug(X) {ν}

as parametrizing maps µ : S → X−Q together with G-bundles on (X−µ(S))∪ (ν(T )−µ(S0))
which are trivialized on the open set X − µ(S).

Construction 9.6.4. For each nonempty finite set S and each subset S0 ⊆ S, we let

RanG(X −Q)◦S0⊆S,aug ⊆ Ran†G(X −Q)S0⊆S,aug

denote the full subcategory spanned by those objects (R,K−,K+, T, T0, µ, ν,P, γ) where K− =
K+ = ∅ (see Construction 9.6.1), which we regard as an augmented Ran(X)-prestack. Let
B◦S0⊆S,aug denote the augmented !-sheaf given by the formula

B◦S0⊆S,aug = [RanG(X −Q)◦S0⊆S,aug]Ranaug(X)

(see Definition 8.2.10). We let B◦S0⊆S,red denote the lax !-sheaf given by

B◦S0⊆S,red = (B◦S0⊆S,aug)red.

Remark 9.6.5. Note that when T0 = ∅, Construction 9.6.4 reduces to Notation 9.4.14. That
is, we have

RanG(X −Q)◦S0⊆S,aug ×Ranaug(X) Ran(X) ' RanG(X −Q)◦S0⊆S

= RanG(X −Q)S0⊆S ×Spec k Ran(X).

We may therefore identify

B◦S0⊆S ' C
∗(RanG(X −Q)S0⊆S ; Z`)⊗ ωRan(X)

with the underlying lax !-sheaf of B◦S0⊆S,aug.

Using the acyclicity of the Ran space, we obtain an equivalence

∫
lim←−
prim

B◦S0⊆S '
∫

lim←−
prim

(C∗(RanG(X −Q)S0⊆S ; Z`)⊗ ωRan(X))

'
∫

( lim←−
prim

C∗(RanG(X −Q)S0⊆S))⊗ ωRan(X)

' lim←−
prim

C∗(RanG(X −Q)S0⊆S).
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Under this equivalence, the map appearing in Proposition 9.1.5 is given by the chiral homology
of the morphism from the upper left to the lower right corner in the diagram

lim←−S∈Fins BS,red
//

��

((

lim←−S∈Fins B
◦
S,red

��

((
lim←−S∈Fins BS

//

��

lim←−S∈Fins B
◦
S

��

lim←−prim
BS0⊆S,red

//

((

lim←−prim
B◦S0⊆S,red

((
lim←−prim

BS0⊆S
// lim←−prim

B◦S0⊆S ,

where the horizontal maps are induced by the inclusion

RanG(X −Q)◦S0⊆S,aug ⊆ Ran†G(X −Q)S0⊆S,aug.

In particular, it can be described as a composition∫
lim←−

S∈Fins

BS,red
ξ0→

∫
lim←−
prim

BS0⊆S,red
ξ1→

∫
lim←−
prim

B◦S0⊆S,red
ξ2→

∫
lim←−
prim

B◦S0⊆S .

We will deduce Proposition 9.4.17 from the following pair of assertions:

Proposition 9.6.6. The canonical map

lim←−
S∈Fins

B∅⊆S,red → lim←−
prim

BS0⊆S,red

is an equivalence in Shvlax
` (Ran(X)).

Proposition 9.6.7. There exists a collection of pullback squares

BS0⊆S,red
//

��

B◦S0⊆S

��
Bskw
S0⊆S,red

// B◦,off
S0⊆S ,

depending functorially on (S0 ⊆ S). Moreover, the primitive limit of the upper horizontal map

agrees with ξ2 ◦ ξ1, while the primitive limit lim←−prim
Bskw
S0⊆S,red vanishes in Shvlax

` (Ran(X)).

The proof of Proposition 9.6.7 will require some auxiliary constructions and will be given in
§9.7. We conclude this section by giving a proof of Proposition 9.6.6, using the ideas developed
in §8.4.

Notation 9.6.8. Let S be a nonempty finite set. For each pair of subsets S0 ⊆ S1 ⊆ S, we let
V (S0 ⊆ S1 ⊆ S) denote the augmented !-sheaf on Ran(X) given by

[Ran†G(X −Q)S0⊆S1
×(X−Q)S1 (X −Q)S ]Ranaug(X).

Note that the construction (S0 ⊆ S1 ⊆ S) determines a functor Θ→ Shvaug
` (Ran(X)) and that

V (S0 ⊆ S ⊆ S) = BS0⊆S,aug.

We will deduce Proposition 9.6.6 from the following:
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Lemma 9.6.9. The functor V : Θ → Shvaug
` (Ran(X)) is unital, in the sense of Definition

8.4.5.

Proof of Proposition 9.6.6. Combining Lemma 9.6.9 with Theorem 8.4.10, we deduce that the
canonical map

lim←−
S∈Fins

V (∅ ⊆ S ⊆ S)→ lim←−
prim

Vred(S0 ⊆ S ⊆ S)× lim←−
S∈Fins

V (∅ ⊆ ∅ ⊆ S)

is an equivalence in Shvaug
` (Ran(X)). Using the equality BS0⊆S,red = V (S0 ⊆ S ⊆ S)red, we

obtain a product decomposition

lim←−
S∈Fins

B∅⊆S,red ' lim←−
prim

BS0⊆S,red× lim←−
S∈Fins

V (∅ ⊆ ∅ ⊆ S)red.

It will therefore suffice to show that for each nonempty finite set S, the lax !-sheaf V (∅ ⊆ ∅ ⊆
S)red vanishes. Fix a nonempty finite set T ; we wish to show that the canonical map

lim−→
∅6=T0⊆T

V (∅ ⊆ ∅ ⊆ S)(T0⊆T ) → V (∅ ⊆ ∅ ⊆ S)(∅⊆T )

is an equivalence in Shv`(X
T ). This is clear, since the inclusions

Ran†G(X −Q)T0⊆T
S0⊆S1,aug ↪→ Ran†G(X −Q)∅⊆TS0⊆S1,aug

are equivalences when S1 = ∅. �

We now turn to the proof of Lemma 9.6.9. For the remainder of this section, we fix a
nonempty finite set T and a (possibly empty) subset T0 ⊆ T . Let W : Θ → Shv`(X

T ) denote
the functor given by the formula

W (S0 ⊆ S1 ⊆ S) = V (S0 ⊆ S1 ⊆ S)(T0⊆T ) = [Ran†G(X −Q)T0⊆T
S0⊆S1,aug ×(X−Q)S1 (X −Q)S ]XT .

We must prove the following:

Lemma 9.6.10. Let S be a nonempty finite set and let S1 ⊆ S be a subset. Then the canonical
map

W (∅ ⊆ S1 ⊆ S)→ lim←−
S′∈Fins

W (∅ ⊆ S1 ⊆ S q S′)

is an equivalence in Shv`(X
T ).

Lemma 9.6.11. Let (S0 ⊆ S1 ⊆ S) be an object of Θ, let s ∈ S be an element which is not
contained in S1, and set S′0 = S0 ∪ {s}, S′1 = S1 ∪ {s}. Then the diagram

W (S′0 ⊆ S′1 ⊆ S) //

��

W (S0 ⊆ S1 ⊆ S)

��
lim←−E∈Equiv◦(S)

W (S′0/E ⊆ S′1/E ⊆ S/E) // lim←−E∈Equiv◦(S)
W (S0/E ⊆ S1/E ⊆ S/E)

is a pullback square in Shv`(X
T ).

Proof of Lemma 9.6.10. Fix an nonempty finite set S and a subset S1 ⊆ S; we wish to show
that the canonical map

θ : W (∅ ⊆ S1 ⊆ S)→ lim←−
S′∈Fins

W (∅ ⊆ S1 ⊆ S q S′)

is an equivalence in Shv`(X
T ). Set C = Ran†G(X − Q)T0⊆T

∅⊆S1,aug × (X − Q)(S−S0), so we have

W (∅ ⊆ S ⊆ S q S′) = [C×(X −Q)S
′
]XT . Since the domain and codomain of θ are `-complete
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(Remark 5.1.6), it will suffice to show that the image of θ is an equivalence in the ∞-category
Shv(XT ; Z/`Z). Tensoring with ω−1

XT
, we are reduced to proving that for every étale morphism

U → XT , the canonical map

C∗(U ×XT C; Z/`Z)→ lim←−
S′∈Fins

C∗(U ×XT C×(X −Q)S
′
; Z/`Z)

is an equivalence. In fact, we claim that the predual

u : lim−→
S′∈Fins

C∗(U ×XT C×(X −Q)S
′
; Z/`Z)→ C∗(U ×XT C; Z/`Z)

is already an equivalence. Using Proposition 2.3.40, we are reduced to proving that the map

lim−→
S′∈Fins

C∗((X −Q)S
′
; Z/`Z)→ C∗(Spec k; Z/`Z)

is an equivalence, which follows from the acyclicity of Ran(X −Q) (Corollary 2.4.13). �

Proof of Lemma 9.6.11. Fix an object (S, S0, S1) ∈ Θ, let s be an element of S − S1, and set
S′0 = S0 ∪ {s}, S′1 = S1 ∪ {s}. We wish to show that the diagram σ :

W (S′0 ⊆ S′1 ⊆ S) //

��

W (S0 ⊆ S1 ⊆ S)

��
lim←−E∈Equiv◦(S)

W (S′0/E ⊆ S′1/E ⊆ S/E) // lim←−E∈Equiv◦(S)
W (S0/E ⊆ S1/E ⊆ S/E)

is a pullback square in Shv`(X
T ).

For every finite set J1 equipped with a subset J0 ⊆ J1, let P (J1) denote the partially
ordered set of all subset K ⊆ J1 and let I(J0 ⊆ J1) denote the subset of P (J1)op × P (J1)
given by those pairs (K−,K+) with K− ⊆ K+ ∪ J0. Note that for every equivalence relation
E on S, the quotient map β : S → S/E induces a map of partially ordered sets φE : I(S0 ⊆
S1) → I(S0/E ⊆ S1/E), given by the formula φE(K−,K+) = (K−/E,K+/E). We will need
the following:

(∗) For each equivalence relation E on S, the map φE is right cofinal.

To prove (∗), we must show that for every pair of subsets I−, I+ ⊆ S1/E with I− ⊆ I+∪S0/E,
the simplicial set N(B) is weakly contractible, where B denotes the partially ordered subset of
I(S0 ⊆ S1) consisting of those pairs (K−,K+) with I− ⊆ K−/E and K+/E ⊆ I+. To prove
this, let B0 denote the subset of B consisting of those pairs (K−,K+) where K+ = β−1I+∩S1.
The inclusion B0 ↪→ B admits a left adjoint (given by (K−,K+) 7→ (K−, β

−1I+ ∩ S1)) and
therefore induces a weak homotopy equivalence N(B0) ↪→ N(B). We are therefore reduced to
proving that the simplicial set N(B0) is weakly contractible. This follows from the observation
that B0 has a smallest element, given by the pair ((β−1I+ ∪ S0) ∩ S1, β

−1I+ ∩ S1).
The proof of (∗) shows also that each of the maps I(S′0 ⊆ S′1) → I(S′0/E, S

′
1/E) is right

cofinal. We will also need the following:

(∗′) The construction (K−,K+) 7→ (K− ∪ {s},K+) determines a right cofinal map from
I(S0 ⊆ S1) to I(S′0 ⊆ S′1).

To prove (∗′), fix an object (K ′−,K
′
+) ∈ I(S′0 ⊆ S′1). We wish to show that N(B′) is

weakly contractible, where B′ denotes the partially ordered subset of I(S0 ⊆ S1) spanned by
those pairs (K−,K+) such that K ′− ⊆ K− ∪ {s} and K+ ⊆ K ′+. Let B′0 denote the partially
ordered subset of B′ spanned by those pairs (K−,K+) where K+ = K ′+. Then the inclusion
B′0 ↪→ B′ admits a left adjoint (given by (K−,K+) 7→ (K−,K

′
+)) and therefore induces a weak
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homotopy equivalence N(B′0) ↪→ N(B′). We are therefore reduced to showing that N(B′0) is
weakly contractible. This is clear, since B′0 has a least element, given by (S0 ∪K ′+,K ′+).

For every object ~J = (J0 ⊆ J1 ⊆ J) in Θ, let C( ~J) denote the fiber product

Ran†G(X −Q)T0⊆T
J0⊆J1,aug ×(X−Q)J1 (X −Q)J ,

whose objects can be identified with tuples (R,K−,K+, µ, ν,P, γ) (see Construction 9.6.1). The
construction

(R,K−,K+, µ, ν,P, γ) 7→ (K−,K+)

determines a Cartesian fibration C( ~J)→ I(J0 ⊆ J1). We will denote the fiber of this fibration

over an object (K−,K+) ∈ I(J0 ⊆ J1) by C( ~J)K−,K+
, so that we have a canonical equivalence

W (J0 ⊆ J1 ⊆ J) ' lim←−
(K−,K+)∈I(J0⊆J1)

[C( ~J)K−,K+ ]XJ .

Set J = I(S0 ⊆ S1), so that (∗) and (∗′) supply equivalences

W (S0/E ⊆ S1/E ⊆ S/E) ' lim←−
(K−,K+)∈J

[C(S0/E ⊆ S1/E ⊆ S/E)K−/E,K+/E ]XT

W (S′0/E ⊆ S′1/E ⊆ S/E) ' lim←−
(K−,K+)∈J

[C(S′0/E ⊆ S′1/E ⊆ S/E)(K−∪{s})/E,K+/E ]XT .

Fix an object (K−,K+) ∈ J. For each equivalence relation E ∈ Equiv(S), set

Z(E) = [C(S0/E ⊆ S1/E ⊆ S/E)K−/E,K+/E ]XT

Z ′(E) = [C(S′0/E ⊆ S′1/E ⊆ S/E)(K−∪{s})/E,K+/E ]XT .

Then we can identify σ with a finite limit of diagrams σK−,K+
:

Z ′(E0) //

��

Z(E0)

��
lim←−E∈Equiv◦(S)

Z ′(E) // lim←−E∈Equiv◦(S)
Z(E),

where E0 denotes the trivial equivalence relation on S. We will complete the proof by showing
that each σK−,K+

is a pullback square in Shv`(X
T ). Let τK−,K+

denote the commutative dia-

gram in Shv(XT ; Z/`Z) obtained from σK−,K+
by tensoring each entry with ω−1

XT
and reducing

modulo `. Since each entry in σK−,K+ is `-complete, it will suffice to show that τK−,K+ is a

pullback square in Shv(XT ; Z/`Z).
Let U denote the open subset of (X − Q)S ×Spec k X

T whose k-valued points are given by
pairs of maps µ : S → (X −Q)(k), ν : T → X(k) satisfying µ(K+) ∩ ν(T ) = ∅ = µ(S1) ∩ ν(T0)
and consider the projection maps

(X −Q)S
q← U

q′→ XT .

For each equivalence relation E ∈ Equiv(S), define FE ,F
′
E ∈ Shv((X − Q)S ; Z/`Z) as in the

proof of Proposition 8.5.4. Using Theorem 4.5.4, we can identify τK−,K+
with the image of the

diagram τ :

F′E0
//

��

FE0

��
lim←−E∈Equiv◦(S)

F′E
// lim←−E∈Equiv◦(S)

FE
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under the exact functor q′∗q
∗ : Shv((X −Q)S ; Z/`Z)→ Shv(XT ; Z/`Z). It will therefore suffice

to show that τ is a pullback diagram, which was established in the proof of Proposition 8.5.4. �

9.7. Construction of a Pullback Square. Throughout this section, we fix an algebraically
closed field k, an algebraic curve X over k, a smooth affine group scheme G over X, and a finite
subset Q ⊆ X for which G is Q-adapted. Our goal in this section is to verify Proposition 9.6.7
by constructing a family of pullback diagrams

BS0⊆S,red
//

��

B◦S0⊆S

��
Bskw
S0⊆S,red

// B◦,off
S0⊆S ,

This will require several auxiliary constructions.

Notation 9.7.1. Let S and T be finite sets. We let U(S, T ) denote the open subscheme of
(X − Q)S ×XT whose k-valued points are pairs of maps µ : S → (X − Q)(k), ν : T → X(k)
such that µ(S) 6= ν(T ) (as subsets of X(k)). We let U ′(S, T ) denote the open subscheme of
U(S, T ) whose k-valued points are pairs (µ, ν) where µ(S) * ν(T ).

Suppose that π : C → Ranaug(X) is an augmented Ran(X)-prestack equipped with a map
φ : C → (X − Q)S . For each object C ∈ C, the image π(C) can be identified with a triple
(R, T0 ⊆ T, ν) where R is a finitely generated k-algebra, T is a nonempty finite set, T0 is a
subset of T , and ν is a map from SpecR into XT . Then φ(C) can be identified with a map

µ : SpecR→ (X −Q)S . We let Coff denote the full subcategory of C spanned by those objects
C for which the product map

(µ, ν) : SpecR→ (X −Q)S ×XT

factors through the open subscheme U(S, T ) ⊆ (X − Q)S × XT , and we let Cskw denote the
full subcategory spanned by those objects for which the product map (µ, ν) factors through

U ′(S, T ). Note that Cskw and Coff are augmented Ran(X)-prestacks, and that the inclusions

Cskw ⊆ Coff ⊆ C determine maps

[C]Ranaug(X) → [Coff ]Ranaug(X) → [Cskw]Ranaug(X)

of augmented !-sheaves on Ran(X).

Notation 9.7.2. Let S be a finite set and let S0 ⊆ S be a subset. We define augmented

Ran(X)-presheaves Boff
S0⊆S,aug, B◦,off

S0⊆S,aug, Bskw
S0⊆S,aug, and B

◦,skw
S0⊆S,aug by the formulae

Boff
S0⊆S,aug = [Ran†G(X −Q)off

S0⊆S,aug]Ranaug(X)

B
◦,off
S0⊆S,aug = [Ran†G(X −Q)off

S0⊆S,aug]Ranaug(X).

Bskw
S0⊆S,aug = [Ran†G(X −Q)skw

S0⊆S,aug]Ranaug(X)

B
◦,skw
S0⊆S,aug = [Ran†G(X −Q)skw

S0⊆S,aug]Ranaug(X).

We will denote the underlying lax !-sheaf of Boff
S0⊆S,aug by Boff

S0⊆S and its reduced part by

Boff
S0⊆S,red, and employ analogous notation in the other cases.
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We have a commutative diagram

lim←−prim
BS0⊆S,red

ξ1 //

��

lim←−prim
B◦S0⊆S,red

ξ2 //

��

lim←−prim
B◦S0⊆S

��
lim←−prim

B
◦,off
S0⊆S,red

ρ

��

// lim←−prim
B
◦,off
S0⊆S

lim←−prim
Bskw
S0⊆S,red

// lim←−prim
B
◦,skw
S0⊆S,red .

We can now formulate the main results of this section:

Proposition 9.7.3. Let S be a nonempty finite set and let S0 ⊆ S be a subset. Then the
restriction map ρ : Boff

S0⊆S,red → Bskw
S0⊆S,red is an equivalence in Shvlax

` (Ran(X)).

Proposition 9.7.4. Let S be a nonempty finite set and let S0 ⊆ S be a subset. Then the
diagram

BS0⊆S,aug
//

��

B◦S0⊆S,aug

��
Bskw
S0⊆S,aug

// B◦,skw
S0⊆S,aug

is a pullback square of augmented lax !-sheaves on Ran(X). In particular, the diagram

BS0⊆S,red
//

��

B◦S0⊆S,red

��
Bskw
S0⊆S,red

// B◦,skw
S0⊆S,red

is a pullback square in Shvlax
` (Ran(X)).

Proposition 9.7.5. Let S be a nonempty finite set and let S0 ⊆ S. Then the diagram

B◦S0⊆S,red
//

��

B◦S0⊆S

��
B
◦,off
S0⊆S,red

// B◦,off
S0⊆S

is a pullback square in Shvlax
` (Ran(X)).

Combining Propositions 9.7.3, 9.7.4, and 9.7.5, we obtain a pullback square

BS0⊆S,red
//

��

B◦S0⊆S

��
Bskw
S0⊆S,red

// B◦,off
S0⊆S

in Shvlax
` (Ran(X)), which depends functorially on the pair (S0 ⊆ S). To complete the proof of

Proposition 9.6.7, it will suffice to also prove the following:
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Proposition 9.7.6. The primitive limit

lim←−
prim

Bskw
S0⊆S,aug

vanishes (in the∞-category Shvaug
` (Ran(X)) of augmented !-sheaves on Ran(X)). In particular,

we have
lim←−
prim

Bskw
S0⊆S,red ' 0 ∈ Shvlax

` (Ran(X)).

We now turn to the proofs.

Proof of Proposition 9.7.3. Let T be a nonempty finite set; we wish to show that the restriction
map

φ : B
off(T )
S0⊂S,red → B

skw(T )
S0⊆S,red

is an equivalence in Shv`(X
T ). For every element t ∈ T , let Vt ⊆ (X −Q)S ×Spec k X

T denote
the open subset whose k-valued points are pairs (µ, ν) for which ν(t) /∈ µ(S). Then we have
U(S, T ) = U ′(S, T ) ∪

⋃
t∈T Vt. For each nonempty subset T0 ⊆ T , we set VT0 =

⋂
t∈T0

Vt and

V ′T0
= U ′(S, T ) ∩

⋂
t∈T0

Vt. Using Zariski descent, we obtain a pullback diagram

[RanG(X −Q)S ×XS U(S, T )]XT //

��

[RanG(X −Q)S ×XS U ′(S, T )]XT

��
lim←−∅6=T0

[RanG(X)S ×XS VT0 ]XT // lim←−∅6=T0
[RanG(X)S ×XS V ′T0

]XT

is a pulback square in Shv`(X
T ). The desired result now follows from passing to fibers in the

vertical direction. �

Proof of Proposition 9.7.4. Fix a nonempty finite set T and a subset T0 ⊆ T ; we will show that
the diagram σ :

B
(T0⊆T )
S0⊆S,aug

//

��

B
◦(T0⊆T )
S0⊆S,aug

��
B

skw(T0⊆T )
S0⊆S,aug

// B◦,skw(T0⊆T )
S0⊆S,aug

is a pullback square in Shv`(X
T ).

For each subset S− ⊆ S, let us identify objects of the prestack RanG(X−Q)S−⊆S×Spec kX
T

with quadruples (R,µ, ν,P, α) where R is a finitely generated k-algebra, µ : S → (X − Q)(R)
and ν : T → X(R) are maps of sets, P is a G-bundle on XR, and α is a trivialization of P

over the open set XR − |µ(S)|. Given another subset S+ ⊆ S, we let CS−,S+
denote the full

subcategory of RanG(X)S−⊆S×Spec kX
T spanned by those tuples (R,µ, ν,P, α) where |µ(S+)|∩

|ν(T )| = ∅ = |µ(S)| ∩ |ν(T0)|, and let C0
S−,S+

denote the fiber product CS−,S+ ×XSqTU ′(S, T ).

Let P (S) denote the collection of all subsets of S, partially ordered by inclusion, and let
J ⊆ P (S)op × P (S) denote the set of pairs (S−, S+) such that S− ⊆ S+ ∪ S0. Unwinding the
definitions, we see that σ can be identified with the diagram

lim←−(S−,S+)∈J [CS−,S+
]XT //

��

[CS0,∅]XT

��
lim←−(S−,S+)∈J [C0

S−,S+
]XT // [C0

S0,∅]XT .
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For each pair (S−, S+) ∈ J , let F (S−, S+) denote the fiber of the canonical map

[CS−,S+
]XT → [C0

S−,S+
]XT .

To show that σ is a pullback diagram, it will suffice to show that the canonical map

lim←−
(S−,S+)∈J

F (S−, S+)→ F (S0, ∅)

is an equivalence. Note that if S+ 6= ∅, then the inclusion C0
S−,S+

↪→ CS−,S+ is an equality, so

that F (S−, S+) = 0. It follows that the functor F is a right Kan extension of its restriction
to J ′ = {(S−, S+) ∈ J : S+ = ∅}. It will therefore suffice to show that the restriction map
lim←−(S−,S+)∈J′ F (S−, S+) → F (S0, ∅) is an equivalence. This is clear, since (S0, ∅) is a least

element of J ′. �

Proof of Proposition 9.7.5. Fix a nonempty finite set T ; we wish to show that the diagram

(B◦S0⊆S,red)(T ) //

��

(B◦S0⊆S)(T )

��
(B◦,off

S0⊆S,red)(T ) // (B◦,off
S0⊆S)(T )

is a pullback square of `-adic sheaves on XT . Equivalently, we wish to show that the map

lim←−
∅6=T0⊆T

B
◦(T0⊆T )
S0⊆S,aug → lim←−

∅6=T0⊆T
B
◦,off(T0⊆T )
S0⊆S,aug .

In fact, something stronger is true: for every nonempty subset T0 ⊆ T , the restriction map

B
◦(T0⊆T )
S0⊆S,aug → B

◦,off(T0⊆T )
S0⊆S,aug .

This follows immediately from the observation that we have an equality of prestacks

(Ran◦G(X −Q)S0⊆S,aug)T0⊆T = (Ran◦G(X −Q)S0⊆S,aug)off,T0⊆T ,

since a pair of maps µ : S → (X − Q)(k) and ν : T → X(k) cannot simultaneously satisfy
µ(S) = ν(T ) and µ(S) ∩ ν(T0) = ∅. �

Proof of Proposition 9.7.6. Fix a nonempty set T and a subset T0 ⊆ T ; we wish to prove that
the sheaf

lim←−
prim

B
skw(T0⊆T )
S0⊆S,aug

vanishes in Shv`(X
T ). We can write this sheaf as the cofiber of a map

ρ : lim←−
S∈Fins

lim−→
∅6=S0⊆S

B
skw(T0⊆T )
S0⊆S,aug → lim←−

S∈Fins

B
skw(T0⊆T )
∅⊆S,aug ,

which is itself given as a limit of maps

ρS : lim−→
∅6=S0⊆S

B
skw(T0⊆T )
S0⊆S,aug → B

skw(T0⊆T )
∅⊆S,aug .

We will complete the proof by showing that each ρS is an equivalence in Shv`(X
T ).

Let P (S) denote the partially ordered set of subsets of S. The construction S0 7→ B
skw(T0⊆T )
S0⊆S,aug

determines a functor f : P (S)op → Shv`(X
T ), and we wish to show that f is a colimit diagram.

Since the ∞-category Shv`(X
T ) is stable and the domain of f is a cube, it will suffice to show
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that f is a limit diagram (Proposition HA.1.2.4.13). We are therefore reduced to the problem
of showing that the map

f(S)→ lim←−
S0(S

f(S0)

is an equivalence.
For each subset S− ⊆ S, let us identify objects of the prestack RanG(X)S−⊆S ×Spec k X

T

with quadruples (R,µ, ν,P, α) where R is a finitely generated k-algebra, µ : S → (X − Q)(R)
and ν : T → X(R) are maps of sets, P is a G-bundle on XR, and α is a trivialization of
P over the open set XR − |µ|. Given another subset S+ ⊆ S, we let CS−,S+

denote the
full subcategory of RanG(X)S−⊆S ×XS U ′(S, T ) spanned by those tuples (R,µ, ν,P, α) where
|µ(S+)| ∩ |ν(T )| = ∅ = |µ(S)| ∩ |ν(T0)|. Unwinding the definitions, we see that the functor f is
given by

f(S0) = lim←−
(S−,S+)

[CS−,S+ ]XT ,

where the limit is taken over all pairs (S−, S+) ∈ P (S)op × P (S) satisfying S− ⊆ S+ ∪ S0. We
may therefore identify lim←−S0(S

f(S0) with the limit

lim←−
(S−,S+)6=(S,∅)

[CS−,S+ ]XT .

We are therefore reduced to proving that the canonical map

lim←−
(S−,S+)

[CS−,S+
]XT → lim←−

(S−,S+)6=(S,∅)
[CS−,S+

]XT

is an equivalence. To prove this, it will suffice to show that the functor (S−, S+) 7→ [CS−,S+
]XT

is a right Kan extension of its restriction to P (S)op × (P (S)−{∅}). That is, we will show that
for each subset S− ⊆ S, the canonical map

ψ : [CS−,∅]XT → lim←−
∅6=S+⊆S

[CS−,S+
]XT

is an equivalence in Shv`(X
T ). For each s ∈ S, let Vs denote the open subset of (X−Q)S×Spec k

XT whose k-valued points are pairs of maps µ : S → (X − Q)(k), ν : T → X(k) satisfying
µ(s) /∈ ν(T ). Unwinding the definitions, we see that CS−,S+ can be identified with the fiber
product CS−,∅×U ′(S,T )

⋂
s∈S+

Vs. The assertion that ψ is an equivalence now follows by Zariski

descent, since the open sets {Vs}s∈S form a covering of U ′(S, T ). �

10. The Grothendieck-Lefschetz Trace Formula for BunG(X)

Let Fq denote a finite field q elements, let Fq denote an algebraic closure of Fq, let ` be a
prime number which is relatively prime to q, and fix an embedding ι : Q` ↪→ C.

Notation 10.0.1. Suppose that X is a smooth Artin stack over Fq. Let X(Fq) denote the
groupoid of Fq-valued points of X. For each object η ∈ X(Fq), we let Aut(η) denote the
automorphism group of η (as an object of the groupoid X(Fq)), and |Aut(η)| the cardinality
of the group Aut(η). Let us assume that each of the groups Aut(η) is finite (this is automatic,
for example, if the stack X has affine diagonal). We let |X(Fq)| denote the sum∑

η

1

|Aut(η)|
,

where η ranges over a set of representatives for the isomorphism classes of objects of X(Fq).
We will refer to |X(Fq)| as the mass of X(Fq).
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Warning 10.0.2. In the situation of Notation 10.0.1, the groupoid X(Fq) might contain in-
finitely many isomorphism classes of objects. In this case, the sum

∑
η

1
|Aut(η)| has infinitely

many terms. However, since each term is positive, the sum
∑
η

1
|Aut(η)| converges to a unique

element of the set R≥0 ∪{∞}.

Definition 10.0.3. Let X be a smooth Artin stack over Fq of dimension d, let

H∗geom(X) = H∗(X×Spec Fq Spec Fq; Z`)[`
−1]

denote the geometric cohomology of X (Notation 6.4.1), and let Frob denote the geometric
Frobenius automorphism of H∗geom(X). We will say that X satisfies the Grothendieck-Lefschetz

trace formula if the pair (H∗geom(X),Frob−1) is summable (Definition 6.3.1) and we have

Tr(Frob−1 |H∗geom(X)) =
|X(Fq)|
qd

.

Remark 10.0.4. If X is a smooth Artin stack over Fq which satisfies the Grothendieck-
Lefschetz trace formula, then the mass |X(Fq)| is finite.

Remark 10.0.5. One can introduce a theory of compactly supported cohomology for Artin
stacks over F q. If X is a smooth Artin stack of dimension d over Fq for which the cohomology

H∗c(X×Spec Fq Spec Fq; Z`)

is a finitely generated Z`-module in each degree, then it follows from Poincare duality that
(H∗geom(X); Frob−1) is summable if and only if

(H∗c(X×Spec Fq Spec Fq; Z`)[`
−1],Frob)

is summable, and in this event we have

Tr(Frob−1 |H∗geom(X)) =
Tr(Frob |H∗c(X×Spec Fq Spec Fq; Z`)[`

−1])

qd
.

In this case, X satisfies the Grothendieck-Lefschetz trace formula if and only if

Tr(Frob |H∗c(X×Spec Fq Spec Fq; Z`)[`
−1]) = |X(Fq)|.

Note that this condition makes sense even when X is not smooth. However, we will confine our
attention to the case where X is smooth (which will be sufficient for our applications in this
paper).

Our goal in this section is to prove Theorem 1.3.5, which we formulate as follows:

Theorem 10.0.6. Let X be a smooth complete geometrically connected algebraic curve over Fq
and let G be a smooth affine group scheme over X. Suppose that the fibers of G are connected
and that the generic fiber of G is semisimple. Then the moduli stack BunG(X) satisfies the
Grothendieck-Lefschetz trace formula.

In the special case where G is a semisimple group scheme over X, Theorem 10.0.6 was proven
by Behrend in [5]. Let us now give an outline of our proof, which will closely follow the methods
used in [5].

For algebraic stacks of finite type over Fq, the Grothendieck-Lefschetz trace formula was
verified by Behrend in [5]. In §10.1, we prove a weaker version of this result: any (smooth)
global quotient stack Y/H (where H is affine) satisfies the Grothendieck-Lefschetz trace formula
(Corollary 10.1.4). This is quite relevant to the proof of Theorem 10.0.6, since any quasi-
compact open substack BunG(X) can be presented as a global quotient stack (see Corollary
10.4.2).
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Unfortunately, we cannot deduce Theorem 10.0.6 directly from the Grothendieck-Lefschetz
trace formula for global quotient stacks, because the moduli stack BunG(X) is generally not
quasi-compact. Our strategy instead will be to decompose BunG(X) into locally closed sub-
stacks BunG(X)[P,ν] which are more directly amenable to analysis. In §10.2, we lay the foun-
dations by reviewing the notion of a stratification of an algebraic stack X. Our main result
is that if X is a smooth Artin stack over Fq which admits a stratification by locally closed
substacks {Xα}α∈A which satisfy the Grothendieck-Lefschetz trace formula, then X also satis-
fies the Grothendieck-Lefschetz trace formula provided that a certain convergence condition is
satisfied (Proposition 10.2.13; see also Proposition 10.2.11).

To apply the results of §10.2 to our situation, we need to choose a useful stratification of
BunG(X). In §10.3, we specialize to the case where G is a split group and review the theory of
the Harder-Narasimhan stratification, which supplies a decomposition of BunG(X) into locally
closed substacks BunG(X)P,ν where P ranges over standard parabolic subgroups of G and
ν ranges over ν ranges over dominant regular cocharacters of the center of the Levi factor
P/ radu P . At the present level of generality, this theory was developed by Behrend and was
the main tool used in his proof of Theorem 10.0.6 in the case where G is everywhere semisimple.

In order for a stratification of BunG(X) to be useful to us, we will need to know that the
individual strata are more tractable than the entire moduli stack BunG(X) itself: for example,
we would like to know that they are quasi-compact. In §10.4, we recall the proof that the
Harder-Narasimhan strata BunG(X)P,ν are quasi-compact (Proposition 10.4.6) in the case of a
split group G, and provide a number of tools for establishing related results (by studying the
compactness properties of morphisms between moduli stacks of the form BunG(X) as G and
X vary).

In §10.5, we discuss the Harder-Narasimhan stratification of BunG(X) in the case where G is
semisimple and generically split (or, more generally, when the generic fiber is an inner form of
a split semisimple group). This is essentially a formal exercise: the stratification of BunG(X)
is pulled back from a stratification of BunGad

(X), where Gad denotes the adjoint quotient of
G, and the moduli stack BunGad

(X) can be identified with the moduli stack of bundles for the
split form of Gad.

In order to prove that the moduli stack BunG(X) satisfies the Grothendieck-Lefschetz trace
formula, it is not enough to know that BunG(X) can be decomposed into locally closed substacks
BunG(X)α which satisfy the Grothendieck-Lefschetz trace formula: for example, we need to
know that sum

|BunG(X)(Fq)| =
∑
α

|BunG(X)α(Fq)|

converges. In the case of the Harder-Narasimhan stratification, the key observation is that the
infinite collection of Harder-Narasimhan strata {BunG(X)P,ν} can be decomposed into finitely
many families whose members “look alike” (for example, members of the same family have the
same `-adic cohomology). In §10.6, we discuss a mechanism which guarantees this behavior:
given a G-bundle P equipped with a reduction to a parabolic subgroup P ⊆ G, there is a
“twisting” procedure (depending on a few auxiliary choices) for producing a new G-bundle
Twλ,D(P). Roughly speaking, this twisting procedure supplies maps

BunG(X)P,ν → BunG(X)P,ν+λ

which exhibit the left hand side as a fiber bundle over the right hand side, whose fibers are
affine spaces (strictly speaking, this is only true if we assume that Fq is a field of sufficiently
large characteristic; in general, the twisting construction is only defined “up to” a finite radicial
map); see Proposition 10.6.33.
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The Harder-Narasimhan stratification of §10.5 is defined in the special case where the group
scheme G is everywhere semisimple and the generic fiber of G is split. To treat the general case,
we note the generic fiber of G is a semisimple algebraic group over KX , and therefore splits
after passing to some finite Galois extension L of KX . The field L is then the function field of

an algebraic curve X̃ which is generically étale over X (though not necessarily geometrically

connected as an Fq-scheme), and the generic fiber of G ×X X̃ is split. In particular, there

exists a semisimple group scheme G̃ over X̃ and an isomorphism β between G̃ and G ×X X̃

over a dense open subset U ⊆ X̃. In §10.7, we will show that the group scheme G̃ can be

chosen to have an action of Gal(L/KX) (compatible with the action of Gal(L/KX) on X̃) and
that the isomorphism β can be chosen to be Γ-equivariant (Proposition 10.7.1). There is then

a close relationship between G-bundles on X and Γ-equivariant G̃-bundles on X̃, which we

will use to “descend” the Harder-Narasimhan stratification of BunG̃(X̃) to a stratification of
BunG(X) (at least after replacing G by a suitable dilitation). In §10.8, we will show that the
latter stratification satisfies the axiomatics developed in §10.2, and thereby obtain a proof of
Theorem 10.0.6.

10.1. The Trace Formula for a Quotient Stack. Thoughout this section, we fix a finite
field Fq with q elements, an algebraic closure Fq of Fq, a prime number ` which is relatively
prime to q, and an embedding ι : Q` ↪→ C. Our goal is to prove the following result:

Proposition 10.1.1. Let X be a smooth Artin stack over Fq, let G be a connected linear
algebraic group over Fq, and suppose that G acts on X. If X satisfies the Grothendieck-Lefschetz
trace formula, then so does the stack-theoretic quotient X /G.

Remark 10.1.2. In the statement of Proposition 10.1.1, the assumption that G is affine is not
really needed. However, the affine case will be sufficient for our applications.

Example 10.1.3. In the special case where X = Spec Fq, we deduce that the classifying stack
BG satisfies the Grothendieck-Lefschetz trace formula, which recovers the first assertion of
Proposition 6.4.12. However, the proof of Proposition 10.1.1 we give below will use Proposition
6.4.12.

Corollary 10.1.4. Let Y be a smooth Fq-scheme of finite type and let G be a linear algebraic
group over Fq which acts on Fq. Then the stack-theoretic quotient Y/G satisfies the Lefschetz
trace formula.

Proof. Since G is affine, there exists an embedding of algebraic groups G ↪→ GLn. Replacing Y
by (Y ×GLn)/G and G by GLn, we can reduce to the case where G = GLn and in particular
where G is connected. In this case, the desired result follows immediately from Proposition
10.1.1 (together with the classical Grothendieck-Lefschetz trace formula). �

Corollary 10.1.5. Let X be a smooth complete geometrically connected curve over Fq, let G
be a smooth affine group scheme over X with connected fibers. Let G′ be the smooth affine
group scheme over X obtained from G by dilitation along its identity section at an effective
divisor D ⊆ X (see Variant A.3.9). If the algebraic stack BunG′(X) satisfies the Grothendieck-
Lefschetz trace formula, then so does BunG(X).

Proof. Let H be the connected algebraic group obtained from G×XD by Weil restriction along
the finite flat map D → Spec Fq. Note that BunG′(X) can be identified with the moduli stack
whose R-valued points are pairs (P, γ), where P is a G-bundle on XR and γ is a trivialization of
P on the divisor DR = D×Spec Fq SpecR. The algebraic group H acts on BunG′(X) by changing
trivializations and we can identify BunG(X) with the stack-theoretic quotient BunG′(X)/H.
The desired result now follows from Proposition 10.1.1. �
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We now turn to the proof of Proposition 10.1.1. The main ingredient is the following technical
convergence result, which will also be useful in §10.2:

Lemma 10.1.6. Let V be an object of ModQ`
which is given as the inverse limit of a tower

· · · → V (n+ 1)→ V (n)→ V (n− 1)→ · · · → V (0)→ V (−1) ' 0

Let F be an automorphism of the tower {V (n)}n≥0, and denote also by F the induced automor-
phism of V . For each n ≥ 0, let W (n) denote the fiber of the map V (n)→ V (n− 1). Suppose
that the following conditions are satisfied:

(a) Each of the pairs (H∗W (n), F ) is summable, in the sense of Definition 6.3.1.
(b) The sum

∑
n≥0 |H

∗(W (n))|F converges absolutely.

(c) For each d, there exists an integer n0 such that W (n) ∈ (ModQ`
)≤−d for n ≥ n0.

Then the pair (H∗(V ), F ) is summable. Moreover, we have

|H∗(V )|F ≤
∑
n≥0

|H∗(W (n))|F

Tr(F |H∗(V )) =
∑
n≥0

Tr(F |H∗(W (n))).

Proof. Since each pair (H∗(W (n)), F ) is summable, the graded vector spaces H∗(W (n)) are
finite-dimensional in each degree. It follows by induction on n that the graded vector spaces
H∗(V (n)) are also finite-dimensional in each degree. Assumption (c) implies that for any fixed

d, we have Hd(V ) ' Hd(V (n)) for n � 0, so that the graded vector space H∗(V ) is also
finite-dimensional in each degree.

For each integer d, let |Hd(V )|F denote the sum of the absolute values of the eigenval-

ues of F (counted with multiplicity) on the complex vector space Hd(V ) ⊗Q`
C. Let C =∑

n≥0 |H
∗(W (n))|F ; we wish to show that the sum

∑
d∈Z |H

d(V )|F is bounded by C. To

prove this, it suffices to show that for each integer d0, the partial sum
∑
d≤d0

|Hd(V )|F is

bounded above by C. Using assumption (c), we deduce that there exists an integer n such that

Hd(V ) ' Hd(V (n)) for d ≤ d0. It will therefore suffice to show that
∑
d≤d0

|Hd(V (n))|F ≤ C.
This is clear: we have ∑

d≤d0

|Hd(V (n))|F ≤
∑
d∈Z

|Hd(V (n))|F

= |H∗(V (n))|F
≤

∑
0≤m≤n

|H∗(W (m))|F

≤
∑
0≤m

|H∗(W (m))|F

= C,

where the second inequality follows from iterated application of Remark 6.3.3.
We now complete the proof by verifying the identity

Tr(F |H∗(V )) =
∑
n≥0

Tr(F |H∗(W (n))).

Fix a real number ε > 0; we will show that the difference

|Tr(F |H∗(V ))−
∑
n≥0

Tr(F |H∗(W (n)))|
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is bounded by ε. Using assumption (b), we deduce that there exists an integer n0 ≥ 0 for which
the sum

∑
n>n0

|H∗(W (n))|F is bounded above by ε
2 . Form a fiber sequence

U → V → V (n0).

Applying the first part of the proof to U , we deduce that (H∗(U), F ) is summable with

|H∗(U)|F ≤
∑
n>n0

|H∗(W (n))|F ≤
ε

2
.

Using Remark 6.3.3, we obtain

Tr(F |H∗(V )) = Tr(F |H∗(U)) + Tr(F |H∗(V (n0))

= Tr(F |H∗(U)) +
∑

0≤n≤n0

Tr(F |H∗(W (n)).

Subtracting
∑
n≥0 Tr(F |H∗(W (n))) from both sides and taking absolute values, we obtain

|Tr(F |H∗(V ))−
∑
n≥0

Tr(F |H∗W (n))| = |Tr(F |H∗(U))−
∑
n>n0

Tr(F |H∗W (n))|

≤ |Tr(F |H∗(U))|+
∑
n>n0

|Tr(F |H∗W (n))

≤ |H∗(U)|F +
∑
n>n0

|H∗(W (n))|F

≤ ε

2
+
ε

2
= ε,

as desired. �

Proof of Proposition 10.1.1. Let BG denote the classifying stack of G, so that we have a pull-
back diagram

X //

��

X /G

��
Spec Fq // BG .

Applying Lemma 7.1.7, we deduce that the induced diagram

C∗geom(X) C∗geom(X /G)oo

C∗geom(Spec Fq)

OO

C∗geom(BG)

OO

oo

is a pushout square in CAlg(ModQ`
. In other words, we have a canonical equivalence

C∗geom(X) ' C∗geom(X /G)⊗C∗geom(BG) Q` .

Let us regard C∗geom(BG) as an augmented commutative algebra object of ModQ`
. Let m denote

its augmentation ideal, and consider the filtration

· · · → m(3) → m(2) → m(1) → C∗geom(BG)

introduced in §6.1. We claim that this tower can be regarded as a diagram of C∗geom(BG)-
modules, and that the induced action of C∗geom(BG) on each cofiber

m(n)/m(n+1) = cofib(m(n+1) → m(n))
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factors through the augmentation C∗geom(BG)→ Q`. This is a general feature of the construc-
tions described in §6.1, but can easily be deduced in this special case from the observation that
H∗geom(BG) is a polynomial ring on generators of even degrees so that C∗geom(BG) is equivalent
to a symmetric algebra Sym∗(V ) for some chain complex V concentrated in even degrees (see

the proof of Proposition 6.1.12), together with the identifications m(n) ' Sym≥n V supplied by
Example 6.1.8.

It follows from Proposition 6.1.18 that each m(n) is belongs to (ModQ`
)≤−n (in fact, the

preceding argument even shows that m(n) ∈ (ModQ`
)≤−n). Let BG = BG×Spec Fq Spec Fq.

Then C∗geom(BG) = C∗(BG; Z`)[`
−1]. We therefore have equivalences

m(n) ⊗C∗geom(BG) C
∗
geom(X /G) ' m(n) ⊗C∗(BG;Z`)

C∗geom(X /G).

Applying Lemma 7.1.6, we conclude that each tensor product m(n) ⊗C∗geom(BG) C
∗
geom(X /G)

belongs to (ModQ`
)≤−n, so that the inverse limit

lim←−
n

m(n) ⊗C∗geom(BG) C
∗
geom(X /G)

vanishes. It follows that we can write C∗geom(X /G) as the limit of the tower

{(C∗geom(BG)/m(n))⊗C∗(BG) C
∗(X /G)}n≥0

whose successive quotients are given by

W (n) = (m(n)/mn+1)⊗C∗geom(BG) C
∗
geom(X /G)

' (m(n)/m(n+1))⊗Q`
(Q`⊗C∗geom(BG)C

∗
geom(X /G)

' (m(n)/m(n+1))⊗Q`
C∗geom(X).

Since X satisfies the Grothendieck-Lefschetz trace formula, the pair (H∗geom(X),Frob−1) is sum-

mable. It follows that each of the pairs (H∗(W (n)),Frob−1) is summable with

|H∗(W (n))|Frob−1 = |m(n)/m(n+1)|Frob−1 |H∗geom(X)|Frob−1 .

Since H∗geom(BG) can be identified with the direct sum of the cohomologies of the quotients

m(n)/m(n+1), we get∑
n≥0

|H∗(W (n))|Frob−1 = |H∗geom(BG)|Frob−1 |H∗geom(X)|Frob−1 <∞.

Using Lemma 10.1.6, we conclude that the pair (H∗geom(X /G),Frob−1) is summable and we
obtain the identity

Tr(Frob−1 |H∗geom(X /G)) =
∑
n≥0

Tr(Frob−1 |W (n))

=
∑
n≥0

Tr(Frob−1 |H∗(m(n)/m(n+1))) Tr(Frob−1 |H∗geom(X))

= Tr(Frob−1 |H∗geom(BG)) Tr(Frob−1 |H∗geom(X)).

Using Proposition 6.4.12 and the fact that X satisfies the Grothendieck-Lefschetz trace formula,
we obtain

Tr(Frob−1 |H∗geom(X /G)) =
qdim(G)

|G(Fq)|
|X(Fq)|
qdim(X)

= q− dim(X /G) |X(Fq)|
|G(Fq)|

.
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To complete the proof, it will suffice to verify the identity

|(X /G)(Fq)| =
|X(Fq)|
|G(Fq)|

.(18)

For each object η ∈ (X /G)(Fq), let Cη denote the full subcategory of X(Fq) spanned by
those objects C whose image in (X /G)(Fq) is isomorphic to η (where the isomorphism is not
specified), so that we can write X(Fq) as a disjoint union of the groupoids Cη where η ranges
over all isomorphism classes of objects of (X /G)(Fq). To prove (18), it will suffice to show that
for each η ∈ (X /G)(Fq), we have an equality

1

|Aut(η)|
=

1

|G(Fq)|
∑
C∈Cη

1

|Aut(C)|
,

where the sum is taken over all isomorphism classes of objects of Cη.
The object η can be regarded as a map Spec Fq → (X /G), so we can consider the fiber

product Y = X×X /G Spec Fq, which is a torsor for the algebraic group G. The finite group
Aut(η) acts on Y , and therefore acts on the finite set Y (Fq). Unwinding the definitions, we
can identify Cη with the groupoid-theoretic quotient of Y (Fq) by the action of Aut(η). We may
therefore identify the set of isomorphism classes of objects of Cη with the set of orbits of Aut(η)
acting on Y (Fq). For each y ∈ Y (Fq), the automorphism group of the corresponding object
C ∈ Cη can be identified with the stabilizer Aut(η)y = {φ ∈ Aut(η) : φ(y) = y}. We therefore
have ∑

C∈Cη

1

|Aut(C)|
=

∑
y∈Y (Fq)

1

|Aut(η)/Aut(η)y|
1

|Aut(η)y|

=
∑

y∈Y (Fq)

1

|Aut(η)|

=
|Y (Fq)|
|Aut(η)|

.

To complete the proof, it will suffice to show that the finite sets Y (Fq) and G(Fq) have the
same size. This follows from Lang’s theorem, the Fq-scheme Y is a G-torsor and is therefore
G-equivariantly isomorphic to G (by virtue of our assumption that G is connected). �

10.2. Stratifications. Throughout this section, we let Fq denote a finite field with q elements,

Fq an algebraic closure of Fq, ` a prime number which is relatively prime to q, and ι : Q` ↪→ C
an embedding of fields.

Let X be a smooth Artin stack over Fq. Our goal is to give a concrete geometric criterion
which can be used to prove that X satisfies the Grothendieck-Lefschetz trace formula (Definition
10.0.3). According to Corollary 10.1.4, this is true whenever X can be written as a quotient of
a quasi-projective variety by the action of a linear algebraic group. Unfortunately, this is not
good enough for our purposes: moduli stacks of the form X = BunG(X) cannot be written as
global quotients (except in trivial cases) because they generally fail to be quasi-compact. We
will address this issue by breaking X up into pieces, each of which is quasi-compact.

Definition 10.2.1. Let X be an Artin stack. A stratification of X consists of the following
data:

(a) A partially ordered set A.
(b) A collection of open substacks {Uα ⊆ X}α∈A satisfying Uα ⊆ Uβ when α ≤ β.

This data is required to satisfy the following conditions:
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• For each index α ∈ A, the set {β ∈ A : β ≤ α} is finite.
• For every field k and every map η : Spec k → X, the set {α ∈ A : η factors through Uα }

has a smallest element.

Notation 10.2.2. Let X be an Artin stack equipped with a stratification {Uα}α∈A. For each
α ∈ A, we let Xα denote the reduced closed substack of Uα given by the complement of

⋃
β<α Uβ .

Each Xα is a locally closed substack of X; we will refer to these locally closed substacks as the
strata of X.

Remark 10.2.3. Let X be an Artin stack. A stratification {Uα}α∈A is determined by the
partially ordered set A together with the collection of locally closed substacks {Xα}α∈A: each
Uα can be characterized by the fact that it is an open substack of X and that, if k is a field,
then a map η : Spec k → X factors through Uα if and only if it factors through Xβ for some
β ≤ α. Because of this, we will generally identify stratification of X with the collection of locally
closed substacks {Xα ⊆ X}α∈A (where the partial ordering of A is understood to be implicitly
specified).

Remark 10.2.4. Let X be an Artin stack equipped with a stratification {Xα}α∈A. If k is a
field, then for any map η : Spec k → X there is a unique index α ∈ A such that η factors through
Xα. In other words, X is a set-theoretic union of the locally closed substacks Xα.

Remark 10.2.5 (Functoriality). Let f : X → Y be a map of Artin stacks. Suppose that Y is
equipped with a stratification {Uα ⊆ Y}α∈A. Then {Uα×Y X ⊆ X}α∈A is a stratification of X
(indexed by the same partially ordered set A). The corresponding strata of X are given by the
reduced locally closed substacks

Xα = (Yα×Y X)red.

We now make some elementary observations about the behavior of stratifications with respect
to the actions of finite groups, which will be useful in §10.8.

Remark 10.2.6 (Stratification of Fixed Point Stacks). Let X be an Artin stack equipped with
an action of a finite group Γ. Suppose that X is equipped with a stratification {Uα ⊆ X}α∈A
which is Γ-equivariant in the following sense: the group Γ acts on A (by monotone maps) and
for each α ∈ A, γ ∈ Γ the open substack Uγ(α) is the image of Uα under the automorphism of
X determined by γ.

Let XΓ denote the (homotopy) fixed point stack for the action of Γ on X, and let AΓ denote
the set of fixed points for the action of Γ on A. For each α ∈ A, the open substack Uα ⊆ X

inherits an action of Γ, and the fixed point stack UΓ
α can be regarded as an open substack of

XΓ. Moreover, the collection {UΓ
α ⊆ XΓ}α∈AΓ is a stratification of XΓ. For each α ∈ AΓ, the

corresponding locally closed substack of XΓ can be identified with the reduced stack ((Xα)Γ)red.

Remark 10.2.7. Let X be an Artin stack equipped with an action of a finite group Γ, and
suppose we are given a stratification {Uα}α∈A which is Γ-equivariant (as in Remark 10.2.6).
Let A/Γ denote the quotient of A by the action of Γ, and for each α ∈ A let [α] denote its image
in A/Γ. We can endow A/Γ with the structure of a partially ordered set by writing [α] ≤ [α′]
if there exists an element γ ∈ Γ such that α ≤ γ(α′). For each [α] ∈ A/Γ, let U[α] denote the
open substack of X given by the union

⋃
γ∈Γ Uγ(α). Then {U[α]}[α]∈A/Γ is a stratification of

X indexed by the partially ordered set A/Γ. For each [α] ∈ A/Γ, the corresponding stratum
X[α] can be identified with the disjoint union qα′ Xα′ , where α′ ranges over those elements of
A having the form γ(α) for some γ ∈ Γ.

Remark 10.2.8. Let X be an Artin stack equipped with an action of a finite group Γ. Suppose
we are given a stratification {Uα}α∈A, where each Uα is Γ-invariant. Then each quotient Uα /Γ
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can be regarded as an open substack of X /Γ, and the collection of open substacks {Uα /Γ}α∈A
determines a stratification of X /Γ whose strata can be identified with the quotients Xα /Γ.

More generally, suppose that the stratification {Uα}α∈A is merely Γ-equivariant in the sense
of Remark 10.2.6. We can then apply the preceding remark to the induced stratification
{U[α]}α∈A/Γ by Γ-invariant open substacks. This yields a stratification of X /Γ by open sub-
stacks {U[α] /Γ}α∈A/Γ, where each stratum (X /Γ)[α] can be identified with the quotient Xα /Γα,
where Γα denotes the subgroup of Γ which stabilizes α.

Definition 10.2.9. Let X be an Artin stack of finite type over Spec Fq. We will say that
a stratification {Xα}α∈A of X is convergent if there exists a finite collection of Artin stacks
T1, . . . ,Tn over Spec Fq with the following properties:

(1) For each α ∈ A, there exists i ∈ {1, 2, . . . , n} and a diagram of Artin stacks

Ti
f→ X̃α

g→ Xα

where the map f is a fiber bundle (locally trivial with respect to the étale topology)
whose fibers are affine spaces of some fixed dimension dα and the map g is surjective,
finite, and radicial.

(2) The nonnegative integers dα appearing in (2) satisfy
∑
α∈A q

−dα <∞.
(3) For 1 ≤ i ≤ n, the Artin stack Ti can be written as a stack-theoretic quotient Y/G,

where Y is an algebraic space of finite type over Fq and G is a linear algebraic group
over Fq which acts on Y .

Remark 10.2.10. In the situation of Definition 10.2.9, hypothesis (2) guarantees that the set
A is at most countable.

We can now state the main result of this section:

Proposition 10.2.11. Let X be a smooth Artin stack of dimension d over Spec Fq. If X admits
a convergent stratification, then X satisfies the Grothendieck-Lefschetz trace formula.

Remark 10.2.12. In the statement of Proposition 10.2.11, the hypothesis that X be smooth
is not really important (see Remark 10.0.5).

We will deduce Proposition 10.2.11 from the following variant:

Proposition 10.2.13. Let X be a smooth Artin stack of dimension d over Spec Fq. Suppose
that there exists a stratification {Xα}α∈A of X and a finite collection of Artin stacks {Ti}1≤i≤n
over Spec Fq which satisfy conditions (1) and (2) of Definition 10.2.9, together with the following
variant of (3):

(3′) Each Ti is smooth of constant dimension over Spec Fq and satisfies the Grothendieck-
Lefschetz trace formula.

Then X satisfies the Grothendieck-Lefschetz trace formula.

Corollary 10.2.14. Let X be an algebraic space which is smooth (of constant dimension) and
of finite type over Spec Fq. Then X satisfies the Grothendieck-Lefschetz trace formula.

Proof. Every reduced closed Y ⊆ X is a quasi-compact, quasi-separated algebraic space of finite
type over Spec Fq, and therefore contains a nonempty affine open subset U ⊆ Y . Since the field
Fq is perfect, we may assume (shrinking U if necessary) that U is smooth of constant dimension
over Fq. It follows by Noetherian induction that X admits a finite stratification {Xα}α∈A where
each stratum Xα is an affine scheme which is smooth over Spec Fq. The desired result now
follows from Proposition 10.2.13 (taking the algebraic stacks Ti to be the strata Xα). �
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We begin by showing that Proposition 10.2.13 implies Proposition 10.2.11:

Proof of Proposition 10.2.11. Let X be a smooth Artin stack equipped with a convergent strat-
ification {Xα}α∈A. To prove that X satisfies the Grothendieck-Lefschetz trace formula, it will
suffice (by virtue of Proposition 10.2.13) to show that X admits another stratification {Yβ}β∈B
which satisfies the hypotheses of Proposition 10.2.13.

Since the stratification {Xα}α∈A is convergent, there exists a finite collection {Ti}1≤i≤m of
Artin stacks of finite type over Spec Fq which satisfies conditions (1), (2), and (3) of Definition
10.2.9. In particular, condition (3) implies that we can write each Ti as a stack-theoretic
quotient Yi/Gi, where Yi is an algebraic space of finite type over Fq and each Gi is a linear
algebraic group over Fq. Choose an integer n ≥ 0 such that each of the algebraic spaces Yi has
dimension ≤ n. We define a sequence of locally closed substacks

Zi,n, Zi,n−1, Zi,n−2, . . . , Zi,0 ⊆ Yi
by descending induction as follows: for 0 ≤ j ≤ n, let Zi,j denote the largest open subset of
(Yi−

⋃
j′>j Zi,j′) which is smooth of dimension j over Spec Fq (where we regard Yi−

⋃
j′>j Zi,j′

as a reduced closed subscheme of Y ). Note that the action of Gi on Yi preserves each Zi,j , so
that we can regard the quotient Yi,j/Gi as a locally closed substack Ti,j ⊆ Ti which is smooth
of dimension j − dim(Gi) over Spec Fq.

Condition (1) of Definition 10.2.9 implies that for each α ∈ A, there exists an integer i(α) ∈
{1, . . . ,m} and a pair of maps

Ti(α)
fα→ X̃α

gα→ Xα,

where fα is an étale fiber bundle whose fibers are affine spaces of some dimension dα and the
map gα is surjective, finite, and radicial. In particular, the morphism fα is smooth of constant
dimension; it follows that each of the closed substacks Ti(α),j ⊆ Ti(α) can be realized as a fiber
product

Ti(α)×X̃α
X̃α,j ,

where {X̃α,j}0≤j≤n is the collection of locally closed substacks of X̃α defined inductively by

taking X̃α,j to be the largest open substack of (X̃α−
⋃
j′>j X̃α,j′) which is smooth of dimension

j − dα − dim(Gi(α)) over Fq. Since gα is a universal homeomorphism, each of the (reduced)

locally closed substacks X̃α,j is given set-theoretically as the inverse image of a reduced locally

closed substack Xα,j ⊆ Xα, and the projection map X̃α,j → Xα,j is surjective, finite, and
radicial.

Let B = A × {0, . . . , n}. We will regard B as equipped with the lexicographical ordering
(so that (α, j) ≤ (α′, j′) if either α < α′ or α = α′ and j ≤ j′). Then {Xα,j}(α,j)∈B is a
stratification of X. We claim that this stratification satisfies the hypotheses of Proposition
10.2.13. By construction, for each (α, j) ∈ B, we have a diagram

Tα(i),j → X̃α,j → Xα,j

where the first map is an étale fiber bundle whose fibers are affine spaces of dimension dα, and
the second map is surjective, finite, and radicial. Moreover, we have∑

(α,j)∈B

q−dα = (n+ 1)
∑
α∈A

q−dα <∞.

To complete the proof, it will suffice to verify condition (3′): each of the smooth Artin stacks
Ti,j satisfies the Grothendieck-Lefschetz trace formula. Choose an embedding Gi ↪→ GLd, so
that we can describe Ti,j as the stack-theoretic quotient of (Yi,j × GLd)/G by the action of
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GLd. Using Proposition 10.1.1, we are reduced to showing that (Yi,j × GLd)/G satisfies the
Grothendieck-Lefschetz trace formula, which follows from Corollary 10.2.14. �

The proof of Proposition 10.2.13 will require some preliminaries.

Lemma 10.2.15 (Gysin Sequence). Let X and Y be smooth quasi-projective varieties over an
algebraically closed field k, let g : Y → X be a finite radicial morphism, and let U ⊆ X be the
complement of the image of g. Then there is a canonical fiber sequence

C∗−2d(Y ; Z`(−d))→ C∗(X; Z`)→ C∗(U ; Z`),

where d denotes the relative dimension dim(X)− dim(Y ).

Proof. If f : Z ′ → Z is a proper morphism of quasi-projective k-schemes, let ωZ′/Z = f !Z`Z
denote the relative dualizing complex of f . Note that if Z and Z ′ are smooth of constant
dimension, we have

ωZ′/Z = f !Z`Z

' f !(ω−1
Z ⊗ ωZ)

' f∗ω−1
Z ⊗ f

!ωZ

' f∗ω−1
Z ⊗ ωZ′

' Σ−2 dimZZ`Z′(− dimZ)⊗ Σ2 dim(Z′)Z`Z′(dimZ ′)

' Σ2(dimZ′−dimZ)Z`Z′(dimZ ′ − dimZ).

In particular, we have ωY/X ' Σ−2dZ`Y (−d).
Let Y0 ⊆ X denote the image of g, regarded as a reduced closed subscheme of Y . Then g

restricts to finite radicial surjection g0 : Y → Y0, and we have ωY/X ' g!
0ωY0/X . Let j : U ↪→ X

and i : Y0 ↪→ X denote the inclusion maps, so that we have a fiber sequence of sheaves

i∗i
!Z`X → Z`X → j∗j

∗Z`X .

Passing to global sections, we obtain a fiber sequence

C∗(Y0;ωY0/X)→ C∗(X; Z`)→ C∗(U ; Z`).

The map g0 is a finite radicial surjection, and therefore induces an equivalences between the
étale sites of Y and Y0. It follows that the counit map

g0∗g
!
0ωY0/X → ωY0/X

is an equivalence, so we have equivalences

C∗(Y0;ωY0/X) ' C∗(Y0; g0∗g
!
0ωY0/X)

' C∗(Y ; g!
0ωY0/X)

' C∗(Y ;ωY/X)

' C∗−2d(Y ; Z`(−d)).

�

Lemma 10.2.15 immediately implies a corresponding result for algebraic stacks:

Lemma 10.2.16. Let X and Y be smooth Artin stacks of constant dimension over an alge-
braically closed field k, let g : Y → X be a finite radicial morphism, and let U ⊆ X be the open
substack of X complementary to the image of g. Then there is a canonical fiber sequence

C∗−2d(Y; Z`(−d))→ C∗(X; Z`)→ C∗geom(Y; Z`),

where d denotes the relative dimension dim(X)− dim(Y).
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Proof. Let C denote the category whose objects are affine k-schemes X equipped with a smooth
morphism X → X. For each object X ∈ C, let YX = Y×XX and let UX = U×XX. Lemma
10.2.15 then supplies a fiber sequence

C∗−2d(YX ; Z`(−d))→ C∗(X; Z`)→ C∗(UX ; Z`).

The construction of this fiber sequence depends functorially on X. We may therefore pass to
the limit to obtain a fiber sequence

lim←−
X∈C

C∗−2d(YX ; Z`(−d))→ lim←−
X∈C

C∗(X; Z`)→ lim←−
X∈C

C∗(UX ; Z`).

The desired result now follows from the identifications

C∗−2d(Y; Z`(−d)) ' lim←−
X∈C

C∗−2d(YX ; Z`(−d))

C∗(X; Z`) ' lim←−
X∈C

C∗(X; Z`)

C∗(U; Z`) ' lim←−
X∈C

C∗(UX ; Z`).

�

Lemma 10.2.17. Let X be an affine Fq-scheme of finite type which becomes isomorphic to
an affine space Ae after passing to some finite extension of Fq. Then the set X(Fq) has qe

elements.

Proof. By virtue of the Grothendieck-Lefschetz trace formula, it will suffice to show that
Tr(Frob−1 |H∗geom(X)) is equal to 1. Equivalently, we must show that the trace of Frob−1 on

the reduced cohomology H∗red(X ×Spec Fq Spec Fq; Q`) vanishes. But this reduced cohomology

itself vanishes, since X ×Spec Fq Spec Fq is isomorphic to an affine space over Spec Fq. �

Proof of Proposition 10.2.13. Let d = dim(X) and let {Xα}α∈A be the given stratification of
X. The set A is at most countable (Remark 10.2.10). By adding additional elements to A
and assigning to those additional elements the empty substack of X, we may assume that A is
infinite. Using our assumption that {β ∈ A : β ≤ α} is finite for each α ∈ A, it follows that we
can choose an enumeration

A = {α0, α1, α2, . . .}
where each initial segment {α0, . . . , αn} is a downward-closed subset of A. We can then write
X as the union of an increasing sequence of open substacks

U0 ↪→ U1 ↪→ U2 ↪→ · · ·
where Un is characterized by the requirement that if k is a field, then a map η : Spec k → X

factors through Un if and only if it factors through one of the substacks Xα0
,Xα1

, . . . ,Xαn .
By hypothesis, there exists a finite collection {Ti}1≤i≤m of smooth Artin stacks over Spec Fq,

where each Ti has some fixed dimension di and satisfies the Grothendieck-Lefschetz trace for-
mula, and for each n ≥ 0 there exists an index i(n) ∈ {1, . . . ,m} and a diagram

Ti(n)
fn→ X̃αn

gn→ Xαn ,

where fn is an étale fiber bundle whose fibers are affine spaces of some fied dimension e(n) and
gn is a finite radicial surjection. Set

X = X×Spec Fq Spec Fq

Un = Un×Spec Fq Spec Fq
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Ti = Ti×Spec Fq Spec Fq.

The map fn induces an isomorphism on `-adic cohomology. Applying Lemma 10.2.16 to the
finite radicial map

gn : X̃αn ×Spec Fq Spec Fq → Un,

we obtain fiber sequences

C∗−2e′n(T̃i(n); Z`(−e′n))→ C∗(Un; Z`)→ C∗(Un−1; Z`)

where e′n = en + d− di(n) denotes the relative dimension of the map X̃αn → X.
We have a canonical equivalence

θ : C∗(X; Z`) ' lim←−
n

C∗(Un; Z`).

Our convergence assumption ∑
n≥0

q−en <∞

guarantees that the sequence of integers {en}n≥0 tends to infinity and therefore the sequence
{e′n}n≥0 also tends to infinity. It follows that the restriction maps

H∗(Un; Z`)→ H∗(Un−1; Z`)

are isomorphisms for n� ∗, so that θ also induces an equivalence

C∗(X; Z`)[`
−1] ' lim←−

n

C∗(Un; Z`)[`
−1].

Set V (n) = C∗(Un; Z`)[`
−1] = C∗geom(Un) and let W (n) denote the fiber of the restriction

map V (n)→ V (n− 1) (with the convention that W (0) = V (0)). The above calculation gives

W (n) = C
∗−2e′n
geom (Ti(n))(−e′n).

Since each Ti satisfies the Grothendieck-Lefschetz trace formula, the cohomologies of W (n) are
finite-dimensional in each degree and we have

|H∗(W (n))|Frob−1 = q−e
′
n |H∗geom(Ti(n) |Frob−1 |

Tr(Frob−1 |H∗(W (n))) = q−e
′
n Tr(Frob−1 |H∗geom(Ti(n))) = q−en−d|Ti(n)(Fq)|.

In particular, we have∑
n≥0

|H∗(W (n))|Frob−1 =
∑
n≥0

q−e
′
n |H∗geom(Ti(n) |Frob−1

≤
∑
n≥0

q−en
∑

1≤i≤m

qdi−d|H∗geom(Ti)|Frob−1

< ∞.
Invoking Lemma 10.1.6, we conclude that (H∗geom(X),Frob−1) is summable, with

Tr(Frob−1 |H∗geom(X)) =
∑
n≥0

Tr(Frob−1 |H∗(W (n))

=
∑
n≥0

q−en−d|Ti(n)(Fq)|.

On the other hand, the stratification {Xαn}n≥0 of X gives the identity

|X(Fq)|
qd

=
∑
n≥0

q−d|Xαn(Fq)|.
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It will therefore suffice to prove that for each n ≥ 0, we have

|Ti(n)(Fq)| = qen |Xαn(Fq)|.

Since gn is a finite radicial surjection, it induces an equivalence of categories X̃αn(Fq) '
Xαn(Fq). It will therefore suffice to show that each object of the groupoid X̃αn(Fq) can be
lifted in exactly qen ways to an object of the groupoid Ti(n)(Fq) via the map fn, which is an
immediate consequence of Lemma 10.2.17. �

10.3. The Harder-Narasimhan Stratification (Split Case). Throughout this section, we
fix an algebraically closed field k, an algebraic curve X over k, and a reductive algebraic group
G over k. Let BunG(X) denote the moduli stack of G-bundles on X. Our goal in this section
is to review the theory of the Harder-Narasimhan stratification of BunG(X). We will merely
give an expository account here, referring the reader to [5] or [47] for more details.

For the remainder of this section, we fix a Borel subgroup B ⊆ G and a maximal torus
T ⊆ B. We will say that a parabolic subgroup P ⊆ G is standard if it contains B.

Notation 10.3.1. For every linear algebraic group H over k, we let Hom(H,Gm) denote the
character group of H (a finitely generated abelian group). We let Hom(H,Gm)∨ denote the
abelian group of homomorphisms from Hom(H,Gm) to Z. Given elements µ ∈ Hom(H,Gm)
and ν ∈ Hom(H,Gm)∨, we let 〈µ, ν〉 ∈ Z denote the integer given by evaluating ν on µ.

Definition 10.3.2. Let H be a linear algebraic group over k and let P be an H-bundle on
X. For every character µ : H → Gm, the H-bundle P determines a Gm-bundle Pµ on X,
which we will identify with the corresponding line bundle. We let deg(P) denote the element
of Hom(H,Gm)∨ given by µ 7→ deg(Lµ). We will refer to deg(P) as the degree of P.

Let ν be an element of Hom(H,Gm)∨. We let BunνH(X) denote the full subategory of
BunH(X) spanned by those pairs (R,P) where R is a finitely generated k-algebra and P is
an H-bundle on the relative curve XR having the property that for each k-valued point η :
Spec k → SpecR, the fiber Pη = P×SpecR Spec k has degree ν, when regarded as an H-bundle
on X. We will refer to BunνH(X) as the moduli stack of H-bundles of degree ν on X.

Remark 10.3.3. In the situation of Definition 10.3.2, let R be a finitely generated k-algebra
and let P be an H-bundle on XR. The construction

η 7→ deg(Pη)

determines a map from the closed points of SpecR to Hom(H,Gm)∨ which is locally constant for
the Zariski topology. It follows that each BunνH(X) is a closed and open substack of BunH(X);
in particular, it is a smooth Artin stack over k. Moreover, we can identify BunH(X) with the
disjoint union ∐

ν∈Hom(H,Gm)∨

BunνH(X)

(taken in the 2-category of Artin stacks over k).

Notation 10.3.4. Let H be a linear algebraic group over k and let h denotes its Lie algebra.
The adjoint action of H on h determines a character

H → GL(h)
det→ Gm,

which we will denote by 2ρH and regard as an element of Hom(H,Gm).
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Remark 10.3.5. Specializing to the case where H is the standard Borel subgroup B ⊆ G,
we can identify Hom(B,Gm) with the character lattice of G. In this case, the element 2ρB ∈
Hom(G,Gm) is the sum of the positive roots of G. Beware that 2ρB is generally not divisible
by 2 in Hom(B,Gm) (however, it is divisible by 2 when G is semisimple and simply connected:
in this case, ρB can be identified with the sum of the fundamental weights of G).

Definition 10.3.6. Let P be a G-bundle on X. We will say that P is semistable if, for every
standard parabolic subgroup P ⊆ G and every reduction of P to to a P -bundle Q, we have
〈2ρP ,deg(pQ) ≤ 0.

More generally, if R is a finitely generated k-algebra and P is a G-bundle on the relative
curve XR, we say that P is semistable if, for every k-valued point η : Spec k → SpecR, the fiber
Pη = P×SpecR Spec k is semistable (when viewed as a G-bundle on X). We let BunG(X)ss

denote the prestack given by the full subcategory of BunG(X) spanned by those pairs (R,P),
where R is a finitely generated k-algebra and P is a semistable G-bundle on XR. We will refer
to BunG(X) as the moduli stack of semistable G-bundles.

Remark 10.3.7. Let P ⊆ G be a standard parabolic subgroup and let Q be a G-bundle on
X. Let U denote the unipotent radical of P and let u denote its Lie algebra. We then have an
exact sequence

0→ u→ p→ p/u→ 0

of representations of P . Note that the action of P on p/u factors through the adjoint quotient
of P/U , and is therefore given by a map P/U → SL(p/u). It follows that the character
2ρP ∈ Hom(P,Gm) can be identified with the character

P → GL(u)
det→ Gm.

Remark 10.3.8. Let Gad denote the adjoint quotient of G. For every standard parabolic
subgroup P ⊆ G, we let Pad denote the image of P in Gad. If Q is a P -bundle, we let Qad

denote the associated Pad-bundle. Note that the natural map P → Pad induces an isomorphism
from the unipotent radical of P to the unipotent radical of Pad. It follows from Remark 10.3.7
the induced map

Hom(Pad,Gm)→ Hom(P,Gm)

carries 2ρPad
to 2ρP .

Remark 10.3.9. Let P be a G-bundle on X. For every standard parabolic subgroup P ⊆ G,
there is a canonical bijection between the set of P -reductions of P to the set of Pad-reductions
of Pad, given (at the level of bundles) by the construction Q 7→ Qad. It follows from Remark
10.3.8 that we have

〈2ρP ,deg(Q)〉 = 〈2ρPad
,deg(Q)ad〉

P is semistable if and only if Pad is semistable. Consequently, we have a pullback diagram
of prestacks

BunG(X)ss //

��

BunG(X)

��
BunGad

(X)ss // BunGad
(X).

Variant 10.3.10. Let P ⊆ G be a standard parabolic subgroup and let U ⊆ P be its unipotent
radical. Then P/U is a reductive algebraic group over X. We say that a P -bundle Q on X is
semistable if the associated (P/U)-bundle on X is semistable. We let BunP (X)ss denote the
fiber product

BunP (X)×BunP/U (X) BunP/U (X)ss;
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we will refer to BunP (X)ss as the moduli stack of semistable P -bundles. For each element
ν ∈ Hom(P,Gm)∨, we let BunνP (X)ss denote the intersection BunνP (X)∩BunP (X)ss, which we
will refer to as the moduli stack of semistable P -bundles of degree ν.

Remark 10.3.11. Let G → G′ be a central isogeny of reductive algebraic groups over k. We
let B′ and T ′ denote the images of B and T in G′, so that B′ is a Borel subgroup of G′ and
T ′ is a maximal torus in B′. For every standard parabolic subgroup P ⊆ G, let P ′ denote the
image of P in G′, so that P ′ is a standard parabolic subgroup of G′. The natural map P → P ′

induces an injection of finitely generated free abelian groups

Hom(P,Gm)∨ → Hom(P ′,Gm)∨,

ν 7→ ν′.

For each ν ∈ Hom(P,Gm)∨ we have BunνP (X) ' BunP (X)×BunP ′ (X) Bunν
′

P ′(X), and Remark
10.3.9 gives BunP (X)ss ' BunP (X)×BunP ′ (X) BunP ′(X)ss.

Construction 10.3.12. Let P ⊆ G be a standard parabolic subgroup and let U ⊆ P be its
unipotent radical. Then there is a unique subgroup H ⊆ P which contains T for which the
composite map

H ↪→ P → P/U

is an isomorphism. We have a commutative diagram

Hom(P,Gm)

((
Hom(P/U,Gm)

66

// Hom(H,Gm)

where the bottom map and the left diagonal map are isomorphisms, so the right diagonal map
is an isomorphism as well.

Let Z(H) denote the center of H, which we regard as a subgroup of T . Since H is a reductive
group, the canonical map

Hom(H,Gm)→ Hom(Z(H),Gm)

is a rational isomorphism. In particular, we have a canonical map

Hom(T,Gm) → Hom(Z(H),Gm)

→ Hom(Z(H),Gm)⊗Q
∼← Hom(H,Gm)⊗Q
∼← Hom(P,Gm)⊗Q .

In particular, every character α ∈ Hom(T,Gm) determines a map Hom(P,Gm)∨ → Q, which
we will denote by ν 7→ 〈α, ν〉.

Let ∆ ⊆ Hom(T,Gm) denote the set of simple roots of G and let ∆P ⊆ ∆ denote the
subset consisting of those roots α such that −α is not a root of P . We will say that an element
ν ∈ Hom(P,Gm)∨ is dominant if 〈α, ν〉 ≥ 0 for each α ∈ ∆P , and we will say that ν is
dominant regular if 〈α, ν〉 > 0 for each α ∈ ∆P . We let Hom(P,Gm)∨≥0 denote the subset of

Hom(P,Gm)∨ spanned by the dominant elements and Hom(P,Gm)∨>0 the subset consisting of
dominant regular elements.

We can now state the main result that we will need. For a proof, we refer the reader to [5]
or [47].
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Theorem 10.3.13. (a) For each standard parabolic subgroup P ⊆ G, the inclusion

BunP (X)ss ↪→ BunP (X)

is an open immersion. In particular, BunP (X)ss is a smooth Artin stack over Spec k,
which can be written as a disjoint union∐

ν∈Hom(P,Gm)∨

BunνP (X)ss.

(b) For each standard parabolic subgroup P ⊆ G and each ν ∈ Hom(P,Gm)∨+, there exists a
locally closed substack BunG(X)P,ν ⊆ BunG(X) which is characterized by the following
property: the natural map BunP (X)→ BunG(X) restricts to a surjective finite radicial
map

BunνP (X)ss → BunG(X)P,ν .

(c) Let A be the collection of all pairs (P, ν), where P is a standard parabolic subgroup of G
and ν is an element of Hom(P,Gm)∨>0. Then the collection of locally closed substacks
{BunG(X)P,ν}(P,ν)∈A determines a stratification of BunG(X) (for a suitably chosen
partial ordering of A; see Remark 10.2.3).

We will refer to the stratification of BunG(X) whose existence is guaranteed by Theorem
10.3.13 as the Harder-Narasimhan stratification.

Remark 10.3.14. If the field k has characteristic zero, or if G = GLn, or more generally if if
the characteristic of k does not belong to a finite set of “bad primes” which may depend on G,
then assertion (b) can be strengthened: the maps BunνP (X)ss → BunG(X)P,ν are equivalences.
However, this is not true in general; see [25] for a more thorough discussion.

Remark 10.3.15. Let G → G′ be a central isogeny of reductive algebraic groups over k.
It follows from Remark 10.3.11 that the Harder-Narasimhan stratification of BunG(X) is the
pullback of the Harder-Narasimhan stratification of BunG′(X).

We conclude this section with a few remarks about the naturality of the Harder-Narasimhan
stratification of BunG(X).

Remark 10.3.16 (Functoriality in X). Let ψ be an automorphism of X as an abstract scheme,
so that ψ induces an automorphism ψ0 of the field k = H0(X;OX) which we do not assume to
be the identity. Then σ fits into a commutative diagram

X
ψ //

��

X

��
Spec k

ψ0 // Spec k.

We can regard the reductive algebraic group G, the Borel subgroup B ⊆ G, and the maximal
torus T ⊆ B as defined over any subfield k0 ⊆ k (by taking the split form of G over k0), so that
ψ induces an automorphism φ of the algebraic stack BunG(X) which fits into a commutative
diagram

BunG(X)
φ //

��

BunG(X)

��
Spec k

ψ0 // Spec k.

All of the constructions appearing this section are natural in X: in particular, the automorphism
φ carries each Harder-Narasimhan stratum BunG(X)P,ν into itself.
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Remark 10.3.17. Suppose that k is an algebraic closure of a perfect subfield k0 ⊆ k, and
that X is defined over k0: that is, we can write X = X0 ×Spec k0 Spec k, where X0 is an
algebraic curve over k0. Let BunG(X0) denote the moduli stack of G-bundles on X0, which
we regard as a smooth Artin stack over k0. We have BunG(X) ' BunG(X0) ×Spec k0

Spec k.
It follows that there is a bijective correspondence between open substacks of BunG(X0) and
Gal(k/k0)-equivariant open substacks of BunG(X). Invoking Remark 10.3.16, we see that the
Harder-Narasimhan stratification of BunG(X) is defined over k0: that is, there is a stratification
of BunG(X0) by locally closed substacks {BunG(X0)P,ν} satisfying

BunG(X)P,ν = BunG(X0)P,ν ×Spec k0 Spec k.

Remark 10.3.18 (Functoriality in G). Choose a pinning (B, T, {φα : Ga → B}) of the alge-
braic group G, so that the outer automorphism group Out(G) acts on G by pinned automor-
phisms. This determines an action of the outer automorphism group Out(G) on the moduli
stack BunG(X). This action preserves the Harder-Narasimhan stratification of BunG(X), but
permutes the strata. More precisely, let A = {(P, ν)} be as in the statement of Theorem 10.3.13.
The automorphism group Out(G) acts on A by the construction

(σ ∈ Out(G), (P, ν) ∈ A) 7→ (σ(P ), νσ)

where 〈µ, νσ〉 = 〈µ ◦ σ, ν〉 for µ ∈ Hom(σ(P ),Gm). For each σ ∈ Out(G), the associated
automorphism ψσ : BunG(X) ' BunG(X) restricts to equivalences

BunG(X)P,ν ' BunG(X)σ(P ),νσ .

10.4. Quasi-Compactness of Moduli Spaces of Bundles. Let X be an algebraic curve
over a finite field Fq and let G be a smooth affine group scheme over X with connected fibers
and semisimple generic fiber. In §10.8, we will prove that the moduli stack BunG(X) satisfies
the Grothendieck-Lefschetz trace formula (Theorem 10.0.6). The main obstacle to overcome is
that the moduli stack BunG(X) is not quasi-compact. Our strategy for addressing this problem
is to use the Harder-Narasimhan stratification of §10.3 to decompose BunG(X) into pieces which
are easier to analyze. Our goal in this section is to supply some tools which can be used to
verify that these individual pieces are amenable to analysis. We begin with the following:

Proposition 10.4.1. Let X be an algebraic curve over a field k and let G be a smooth affine
group over X. Let U be a quasi-compact open substack of BunG(X). Then there exists an
effective divisor D ⊆ X such that the fiber product BunG(X,D)×BunG(X)U is an algebraic space
(here BunG(X,D) denotes the moduli stack of G-bundles on X equipped with a trivialization
on D; see Definition 3.2.1).

Proof. Since U is quasi-compact, we can choose a smooth surjection SpecR→ U, corresponding
to a G-bundle P on the relative curve XR. Since the diagonal of BunG(X) is affine, automor-
phisms of the G-bundle P are parametrized by an affine R-scheme of finite type Y . The identity
automorphism of P determines a closed immersion R-schemes s : SpecR → Y ; let us denote
the image of this map by Y ′ ⊆ Y .

Fix a closed point x ∈ X. For each n ≥ 0, let Dn ⊆ X denote the divisor given by the nth
multiple of X, and let Yn denote the closed subscheme of Y classifying automorphisms of P

which restrict to the identity over the divisor Dn.
Let Ox denote the complete local ring of x at X, which we can identify with a formal power

series ring k′[[t]] for some finite extension k′ of k. For any Noetherian R-algebra A, we can
identify the formal completion of XA along the closed subscheme {x} ×Spec k SpecA with the
formal spectrum of the power series ring A′[[t]], where A′ = A⊗kk′. The map SpecA′[[t]]→ XA

is schematically dense, so any automorphism of P×XRXA which restricts to the identity on the
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SpecA′[[t]] must coincide with the identity. In other words, we have
⋂
n≥0 Yn = Y ′ (as closed

subschemes of Y ). Since Y is a Noetherian scheme, we must have Y ′ = Yn for n � 0. It then
follows that BunG(X,Dn)×BunG(X) U is an algebraic space. �

Corollary 10.4.2. Let X be an algebraic curve over a field k and let G be a smooth affine group
scheme over X. Suppose we are given a quasi-compact Artin stack Y over k equipped with a map
f : Y→ BunG(X). Assume that f is representable by quasi-compact, quasi-separated algebraic
spaces (in other words, for every map SpecR→ BunG(X), the fiber product Y×BunG(X) SpecR
is a quasi-compact, quasi-separated algebraic space). Then Y can be written as a quotient Y/H,
where Y is a quasi-compact, quasi-separated algebraic space over k and H is a linear algebraic
group over k.

Proof. Since Y is quasi-compact, the map f factors through a quasi-compact open substack
U ⊆ BunG(X). Using Proposition 10.4.1, we can choose an effective divisor D ⊆ X such that
the fiber product

Z = U×BunG(X) BunG(X,D)

is an algebraic space. Since Z is affine over U, it is quasi-compact and quasi-separated. Set

Y = Y×BunG(X) BunG(X,D) ' Y×BunG(X)Z

Since f is representable by quasi-compact quasi-separated algebraic spaces, it follows that Y is
a quasi-compact quasi-separated algebraic space. Let H denote the Weil restriction of G×X D
along the finite flat map D → Spec k. Then H is a linear algebraic group acting on BunG(X,D),
and we can identify BunG(X) with the (stack-theoretic) quotient BunG(X,D)/H. It follows
that H acts on Y = Y×BunG(X) BunG(X,D) (via its action on the second factor) with quotient

Y/H ' Y×BunG(X) BunG(X,D)/H ' Y .

�

Our next few results concern quasi-compactness properties of BunG(X) as G and X vary.

Proposition 10.4.3. Let X be an algebraic curve over a field k and let f : G → G′ be a
morphism of smooth affine group schemes over X. Suppose that f is an isomorphism at the
generic point of X. Then the induced map BunG(X)→ BunG′(X) is quasi-compact.

Proof. Without loss of generality, we may assume that k is algebraically closed. Let U ⊆ X be
an open set over which f is an isomorphism, so that the inverse of f defines a map

g : G′ ×X U → G.

Using Proposition A.3.11, we deduce that there is an effective divisor D′ ⊆ X (disjoint from

U) such that, if G
′

is the group scheme over X obtained from G′ by dilitation at D′ along its

identity section (see Variant A.3.9), then g extends to a map g : G
′ → G of group schemes over

X. Applying the same argument to the map f0 : G×X U → G
′

determined by f , we conclude
that there is an effective divisor D ⊆ X (again disjoint from U) such that, if G denotes the
group scheme obtained from G by dilitation at the divisor D along its identity section, then f0

extends to a map f : G→ G
′
. We have canonical equivalences

BunG(X) ' BunG(X,D) BunG′(X) ' BunG′(X,D
′),

so that the maps f , g, and f give a diagram of algebraic stacks

BunG(X,D)→ BunG′(X,D
′)→ BunG(X)→ BunG′(X).

Note that the composite map BunG(X,D) → BunG(X) is surjective (since any G-bundle on
the a relative divisor D ×Spec k SpecR can be trivialized étale locally on SpecR), so the map
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BunG′(X,D
′)→ BunG(X) is also surjective. Consequently, to prove that the map BunG(X)→

BunG′(X) is quasi-compact, it will suffice to show that the composite map φ : BunG′(X,D
′)→

BunG′(X) is quasi-compact. This is clear, because φ is an affine morphism (it is a torsor for
the affine group scheme over k given by the Weil restriction of G′ ×X D′ along the finite flat
map D′ → Spec k). �

Proposition 10.4.4. Let k be a field, let f : X̃ → X be a non-constant morphism of algebraic
curves over k, and let G be a smooth affine group scheme over X. Then the canonical map of

algebraic stacks BunG(X)→ BunG(X̃) (given by pullback along f) is an affine morphism.

Proof. Fix a map SpecR → BunG(X̃), corresponding to a G-bundle P on the relative curve

X̃R. We wish to show the fiber product BunG(X)×BunG(X̃) SpecR is representable by an affine

R-scheme. Let Y denote the fiber product X̃R ×XR X̃R and let

π1, π2 : Y → X̃R

denote the two projection maps. Let Iso(π∗1 P, π
∗
2 P) denote the affine Y -scheme whose A-valued

points are G-bundle isomorphisms of (π∗1 P)×Y SpecA with (π∗2 P)×Y SpecA. Let Z denote the
affine R-scheme obtained by Weil restriction of Iso(π∗1 P, π

∗
2 P) along the proper flat morphism

Y → SpecR. It now suffices to observe that BunG(X)×BunG(X̃) SpecR can be identified with

a closed subscheme of Z: the A-valued point of Z correspond to G-bundle isomorphisms

γ : (π∗1 P×SpecR SpecA) ' (π∗2 P×SpecR SpecA),

while the A-valued points of BunG(X) ×BunG(X̃) SpecR correspond to such G-bundle isomor-

phisms which satisfy a cocycle condition (since the finite flat morphism X̃A → XA is of effective
descent for G-bundles). �

Proposition 10.4.5. Let X be an algebraic curve over a field k, let G be a semisimple group
scheme over X, and let Gad denote the adjoint quotient of G. Assume that the generic fiber of
G is split. Then the natural map

BunG(X)→ BunGad
(X)

is quasi-compact.

Proof. Without loss of generality, we may assume that k is algebraically closed. Let G0 denote
the generic fiber of G. Since G0 is split, we can choose a Borel subgroup B0 ⊆ G0 and a split
maximal torus T0 ⊆ B0. Since G is semisimple, the X-scheme parametrizing Borel subgroups
of G is proper over X; it follows from the valuative criterion of properness that B0 extends
uniquely to a Borel subgroup B ⊆ G (given by the scheme-theoretic closure of B0 in G). Let
U denote the unipotent radical of B, and let T = B/U . Then T is an algebraic torus over X
whose generic fiber is split (since it is isomorphic to T0); it follows that T itself is a split torus.
Let Bad denote the image of B in the adjoint quotient Gad, and let Tad denote the quotient of
Bad by its unipotent radical.

Let R be a finitely generated k-algebra and suppose we are given a map f : SpecR →
BunGad

(X); we wish to prove that the fiber product SpecR ×BunGad
(X) BunG(X) is quasi-

compact. This assertion can be tested locally with respect to the étale topology on SpecR; we
may therefore assume without loss of generality that f factors through BunBad

(X) (Theorem
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3.7.1). Since the diagram of algebraic stacks

BunG(X)

��

BunB(X)oo //

��

BunT (X)

��
BunGad

(X) BunPad
(X)oo // BunTad

(X)

consists of pullback squares, it will suffice to show that the fiber product SpecR ×BunTad
(X)

BunT (X) is quasi-compact. We are therefore reduced to proving that the map BunT (X) →
BunTad

(X) is quasi-compact.
Let Pic(X) = BunGm

(X) denote the Picard stack of X; a choice of k-rational point x ∈ X
determines a splitting

Pic(X) = Z× J(X)× B Gm

where J(X) is the Jacobian variety of X. Let Λ = Hom(Gm, T ) denote the cocharacter lattice
of T and let Λad = Hom(Gm, Tad) denote the cocharacter lattice of Tad. We wish to show that
the natural map

BunT (X) ' Λ⊗Z Pic(X)→ Λad ⊗Z Pic(X) ' BunTad
(X)

is quasi-compact. This is clear: the preimage of each connected component of BunTad
(X) is

either empty or isomorphic to a product of finitely many copies of J(X)× B Gm. �

Proposition 10.4.6. Let X be an algebraic curve over a field k and let G be a split reductive
group over k. Fix a Borel subgroup B ⊆ G containing a split maximal torus T ⊆ B. For every
standard parabolic subgroup P ⊆ G and every element ν ∈ Hom(P,Gm)∨, the algebraic stack
BunνP (X)ss is quasi-compact.

Proof of Proposition 10.4.6. Without loss of generality, we may assume that k is algebraically
closed. We proceed in several steps.

(a) Suppose first that G is a torus, and let Λ = Hom(Gm, G) denote the cocharacter lattice
of G. In this case, the only parabolic subgroup P ⊆ G is the group G itself, and we
have Hom(P,Gm)∨ ' Λ. For each ν ∈ Λ, the moduli stack BunνP (X)ss = BunνP (X)
can be identified (after choosing a k-rational point x ∈ X) with a product of finitely
many copies of Pic0(X) ' J(X)×B Gm (as in the proof of Proposition 10.4.5), and is
therefore quasi-compact.

(b) We claim that if Proposition 10.4.6 is valid for the quotient G′ = P/ radu(P ) (regarded
as a parabolic subgroup of itself), then it is valid for the parabolic subgroup P . To
prove this, it suffices to show that the map BunP (X) → BunG′(X) is quasi-compact.
Note that the unipotent radical radu(P ) is equipped with a finite filtration by normal
subgroups

0 = U0 ⊆ U1 ⊆ · · · ⊆ Um = radu(P )

where each quotient Ui/Ui−1 is isomorphic to a vector group equipped with a linear
action of P (which necessarily factors through the quotient P/Ui) We claim that each
of the maps

BunP/Ui−1
(X)→ BunP/Ui(X)

is quasi-compact. To prove this, fix a map SpecR → BunP/Ui(X), given by a P/Ui-
torsor P on the relative curve XR. Via the linear action of P/Ui on Ui/Ui−1, we obtain
a vector bundle Ei on XR. The obstruction to lifting P to a P/Ui−1-bundle is measured
by a cohomology class η ∈ H2(XR;Ei), which automatically vanishes since XR is a
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curve over an affine scheme. Choose a lifting of P to a (P/Ui−1)-torsor on XR. Then
the fiber product

Y = SpecR×BunP/Ui (X) BunP/Ui−1
(X)

can be identified with the stack whose A-valued points (where A is an R-algebra)
correspond to Ei-torsors on the relative curve XA. We wish to prove that Y is quasi-
compact. If D ⊆ X is an effective divisor, let YD denote the algebraic stack whose
A-valued points are Ei-torsors on XA which are equipped with a trivialization along the
relative divisor D×Spec k SpecA. The evident forgetful functor YD → Y is surjective, so
it will suffice to prove that we can choose D such that YD is quasi-compact. Note that
if deg(D) � 0, then H0(XR;Ei(−D)) ' 0 and H1(XR;Ei(−D)) will be a projective
R-module M of finite rank; in this case, we can identify YD with the affine scheme
Spec Sym∗R(M∨).

(c) We now prove Proposition 10.4.6 in general. By virtue of (b), it will suffice to treat the
case where P = G. Set Λ0 = Hom(G,Gm)∨ and Λ = Hom(B,Gm)∨ ' Hom(Gm, T ).
The inclusion B ↪→ G induces a surjective map of lattices χ : Λ→ Λ0. It follows from
steps (a) and (b) that for each λ ∈ Λ, the moduli stack BunλB(X)ss = BunλB(X) is
quasi-compact. To complete the proof, it will suffice to show that for each ν ∈ Λ0, we
can find a finite subset S ⊆ χ−1{ν} for which the map

qλ∈S BunλB(X)→ BunνG(X)ss

is surjective.
Let g denote the genus of the algebraic curve X, let {α1, . . . , αr} be the set of simple

roots of G (which we identify with elements of Λ∨), and let 2ρ denote the sum of the
positive roots of G. We will show that the set

S = {λ ∈ Λ : χ(λ) = ν, 〈2ρ, λ〉 ≤ 0, 〈αi, λ〉 ≥ min{1− g, 0}}
has the desired property. Note that S can be identified with the set of lattice points
belonging to the locus

SR = {λ ∈ Λ⊗R : χ(λ) = ν, 〈2ρ, λ〉 ≤ 0, 〈αi, λ〉 ≥ min{1− g, 0}}
which is a simplex in the real vector space Λ⊗R; this proves that S is finite. We will
complete the proof by showing that if P is a semistable G-bundle of degree ν, then
there exists λ ∈ S such that P can be reduced to a B-bundle of degree λ. Note that in
this case the conditions χ(λ) = ν and 〈2ρ, λ〉 ≤ 0 are automatic (if the second condition
were violated, then P would not be semistable). It will therefore suffice to prove the
following:
(∗) Let P be a G-bundle on X. Then P can be reduced to a B-bundle Q satisfying

〈deg(Q), αi〉 ≥ min{1− g, 0}
for 1 ≤ i ≤ r.

Let C = {λ ∈ Λ : 〈αi, λ〉 ≥ 0 for 1 ≤ i ≤ r} be the dominant Weyl chamber in Λ,
and let W denote the Weyl group of G. Then W acts on Λ, and every W -orbit in Λ
contains an element of C. Let P be as in (∗). Then P admits a B-reduction Q (to see
this, it suffices to show that the associated bundle over the adjoint quotient Gad admits
a Bad-reduction, where Bad denotes the image of B in Gad; this is a special case of
Theorem 3.7.1). Write deg(Q) = wλ, where λ ∈ C and w ∈ W . Let us assume that Q

and w have been chosen so that the w has minimal length. We will prove (∗) by showing
that 〈αi,deg(Q)〉 ≥ min{1− g, 0} for 1 ≤ i ≤ r. Suppose otherwise: then there exists a
simple root α such that 〈deg(Q), αi〉 < 0 and 〈αi,deg(Q)〉 < 1− g. Let wi ∈W denote
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the simple reflection corresponding to the root αi. The condition 〈deg(Q), αi〉 < 0
implies that wiw has smaller length than w. We will obtain a contradiction by showing
that P admits a reduction to a B-bundle having degree wi deg(Q) = (wiw)λ. For this,
it suffices to establish the following:
(∗′) Let Q be a B-bundle on X and let αi be a simple root of G satisfying 〈αi,deg(Q)〉 <

1−g. Then there exists another B-bundle Q′ on X such that deg(Q′) = wi deg(Q),
and Q and Q′ determine isomorphic G-bundles on X.

To prove (∗), let P ⊆ G denote the parabolic subgroup generated by B together with
the root subgroup corresponding to −αi, and let QP denote the P -bundle determined by
Q. We will show that QP admits a B-reduction Q′ satisfying deg(Q′) = wi deg(Q). Note
that there is a bijective correspondence between B-reductions of QP and (B/ radu(P ))-
reductions of the induced (P/ radu P )-bundle QP/ radu P . Replacing G by P/ radu P , we
are reduced to the problem of proving (∗′) in the special case where G has semisimple
rank 1 (that is, where αi is the only root of G). In this case, we will prove that Q

can be reduced to a T -bundle Q0. The element wi ∈ W determines an automorphism
of T which becomes inner in G, and therefore induces an automorphism of the set of
isomorphism classes of T -bundles with itself which does not change the isomorphism
class of the associated G-bundle. This automorphism carries Q0 to the isomorphism
class of another T -bundle Qwi0 , and we can complete the proof of (∗′) by taking Q′ to
be the B-bundle determined by Qwi0 . We conclude by observing that the obstruction
to choosing the reduction Q0 is given by an element of H1(X;L), where L is the line
bundle on X obtained from Q via the (linear) action of B on radu(B) ' Ga. An
elementary calculation shows that the degree of L is given by −〈αi,deg(Q)〉 > g− 1, so
that H1(X;L) vanishes by the Riemann-Roch theorem.

�

10.5. The Harder-Narasimhan Stratification (Generically Split Case). Throughout
this section, we fix a perfect field k and an algebraic curve X over k. If G is a split reductive
group scheme over X, then the moduli stack BunG(X) can be equipped with the Harder-
Narasimhan stratification introduced in §10.3 (see Remark 10.3.17). In this section, we discuss
a version which can be defined using assuming only that the generic fiber of G is split (or, more
generally, that the generic fiber of G is an inner form).

We begin by introducing some terminology. For the remainder of this section, we fix a split
reductive algebraic group G0 over k, a Borel subgroup B0 ⊆ G0, and a split maximal torus
T0 ⊆ B0. We will say that a parabolic subgroup P0 ⊆ G0 is standard if it contains B0. We let
G0 ad denote the adjoint quotient of G0; for any subgroup H0 ⊆ G0, we let H0 ad denote the
image of H0 in Gad.

If Y is a k-scheme and G is a group scheme over Y , we will say that G is a form of G0 over

Y if there exists an étale surjection Ỹ → Y such that G×Y Ỹ is isomorphic to G0 ×Spec k Ỹ as
a group scheme over Y . Note that this condition implies that G is a reductive group scheme
over Y , and that the adjoint quotient Gad of G is a form of G0 ad over Y .

Notation 10.5.1. Let Y be a k-scheme and let G be a form of G0 over Y . We let Iso(G,G0)
denote the Y -scheme parametrizing isomorphisms of G with G0 (so that the R-valued points
of Iso(G,G0) are isomorphisms of G ×Y SpecR with G0 ×Spec k SpecR as group schemes over
R). Then Iso(G,G0) is an Aut(G0)-torsor over Y , where Aut(G0) denotes the automorphism
group of G0. The automorphism group Aut(G0) fits into an exact sequence

0→ G0 ad → Aut(G0)→ Out(G0)→ 0,
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where Out(G0) denotes the (constant) group of outer automorphisms of G0 (if G0 is semisim-
ple, then Out(G0) is finite). Let Out(G,G0) denote the quotient G0\Out(G,G0), which we
regard as an Out(G0)-torsor over Y . In particular, Out(G,G0) is a scheme equipped with an
étale surjection Out(G,G0)→ Y (which is finite étale in the case where G0 is semisimple).

Definition 10.5.2. Let Y be a k-scheme and let G be a form of G0 over Y . An inner structure
on G is a section of the projection map Out(G,G0) → Y . An inner form of G0 over Y is a
pair (G, σ), where G is a form of G0 over Y and σ is an inner structure on G.

Example 10.5.3. Let G be a form of G0 over a k-scheme Y . Any isomorphism β : G '
G0 ×Spec k Y determines an inner structure on G (in particular, the split form of G0 over Y
admits an inner structure), and every inner structure on G arises in this way étale locally on
Y . Moreover, if β′ is another such isomorphism, then β′ determines the same inner structure
on G if and only if the isomorphism

β′−1 ◦ β : G→ G

is given by conjugation by a Y -valued point of Gad.

Example 10.5.4. Let Y be a connected normal k-scheme with fraction field KY and let G be
a form of G0 over Y . Then every inner structure on the algebraic group G×Y SpecKY extends
uniquely to an inner structure on G. inner structures on G to inner structures on G ×Y U is
bijective. In particular, the group scheme G admits an inner structure whenever the generic
fiber of G is split.

In the special case where k is algebraically closed and Y is an algebraic curve over k, the
converse holds: since the fraction field KY has dimension ≤ 1, the generic fiber G is automat-
ically quasi-split, so that G admits an inner structure if and only if the generic fiber of G is
split.

Remark 10.5.5. Let G be a form of G0 over a k-scheme Y . Then the group Out(G0) acts
on the collection of inner structures on G. If G admits an inner structure and Y is connected,
then this action is simply transitive.

Construction 10.5.6. Let (G, σ) be an inner form ofG0 over a k-scheme Y . We let Isoσ(G,G0)
denote the fiber product Y ×Out(G,G0) Iso(G,G0). Then Iso(G,G0) is a bitorsor for the groups
Gad and G0 ad: that is, it is equipped with commuting actions of the Y -schemes Gad (on
the right) and G0 ad ×Spec k Y (on the left), each of which is simply transitive locally for the
étale topology. It follows that the construction

P 7→ Iso(G,G0)⊗Gad
P = (Iso(G,G0)×Y P)/Gad

induces an equivalence from the category TorsGad
(Y ) of Gad-torsors on Y to the category

TorsG0 ad
(Y ) of G0 ad-torsors on Y .

Suppose that (G, σ) is an inner form of G0 over the algebraic curve X. Applying the above
reasoning to k-schemes of the form XR where R is a k-algebra, we obtain an equivalence of
algebraic stacks

εσ : BunGad
(X) ' BunG0 ad

(X).

Warning 10.5.7. In the situation of Construction 10.5.6, the equivalence

εσ : BunGad
(X) ' BunG0 ad

(X)

depends on the choice of inner structure σ. Note that the group Out(G0) acts simply transitively
on the set of inner structures on G; in particular, any other inner structure on G can be written
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as g(σ) where g ∈ Out(G0). In this case, we have a commutative diagram

BunGad
(X)

εσ

ww

εg(σ)

''
BunG0 ad

(X) // BunG0 ad
(X)

where the lower horizontal map is the automorphism induced by g (which we can identify with
a pinned automorphism of the algebraic G0 ad).

Construction 10.5.8 (The Harder-Narasimhan Stratification). Let (G, σ) be an inner form
of G0 over X, so that σ determines a map

BunG(X)→ BunGad
(X)

εσ→ BunG0 ad
(X).

Let A denote the set of all pairs (P0, ν), where P0 ⊆ G0 is a standard parabolic subgroup and
ν ∈ Hom(P0 ad,Gm)∨>0. For each element (P0, ν) ∈ A, let BunG0 ad

(X)P0 ad,ν denote the corre-
sponding stratum of the Harder-Narasimhan stratification of BunG0

(X) (see Remark 10.3.17).
We let BunG(X)σP0,ν

denote the reduced locally closed substack of BunG(X) given by

(BunG(X)×BunG0 ad
(X) BunG0

(X)P0 ad,ν)red.

Then {BunG(X)σP0,ν
}(P0,ν)∈A is a stratification of BunG(X), which we will refer to as the

Harder-Narasimhan stratification.

Warning 10.5.9. In the special case where the reductive group scheme G is split, the Harder-
Narasimhan stratification of Construction 10.5.8 is not quite the same as the Harder-Narasimhan
stratification of Theorem 10.3.13. The former stratification is indexed by the set

A = {(P0, ν) : P0 ⊆ G0 is a standard parabolic subgroup and ν ∈ Hom(P0 ad,Gm)∨>0 },
while the second stratification is indexed by the set

B = {P0, ν : P0 ⊆ G0 is a standard parabolic subgroup and ν ∈ Hom(P0,Gm)∨>0}
For every standard parabolic subgroup P0 ⊆ G0, there is a canonical lattices

ρP0
: Hom(P0,Gm)∨ → Hom(P0 ad,Gm)∨,

and for each ν ∈ Hom(P0 ad,Gm)∨ we have

BunG(X)σP0,ν = qρP0
(ν)=ν BunG(X)P0,ν ,

where the left hand side refers to the stratification of Construction 10.5.8 (where σ denotes the
inner structure determined by a splitting of G) and the right hand side refers to the stratification
of Theorem 10.3.13.

If the group G0 is semisimple, then the map ρP0
is injective for every standard parabolic

P0 ⊆ G0. In this case, we can regard B as a subset of A, and we have

BunG(X)σP0,ν =

{
BunG(X)P0,ν if (P0, ν) ∈ B
∅ otherwise.

In other words, the only difference between the stratifications of Construction 10.5.8 and The-
orem 10.3.13 is that the former includes some “superfluous” empty strata (indexed by elements
of A that do not belong to B).

If the group G0 is not semisimple, then the maps ρP0 fail to be injective. In this case, the
stratification of Theorem 10.3.13 is much finer than the stratification of Construction 10.5.8.
For example, if G0 = Gm, then we can identify BunG(X) = BunG0

(X) with the Picard
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stack Pic(X) of line bundles on X. The stratification of Construction 10.5.8 is trivial (there
is only one stratum, consisting of the entire moduli stack Pic(X)), but the stratification of
Theorem 10.3.13 reproduces the decomposition of Pic(X) as a disjoint union qn∈Z Picn(X),
where Picn(X) denotes the moduli stack of line bundles of degree n on X.

Warning 10.5.10. Let (G, σ) be an inner form of G0 over X. If the group scheme G is split,
then the strata BunG(X)σP0,ν

are empty when ν does not belong to image of the restriction map

ρP0 : Hom(P0,Gm)∨ → Hom(P0 ad,Gm)∨.

However, this is generally not true if G is not split.

Warning 10.5.11. Let G be a form of G0 over X. Suppose that Gad admits an inner structure
σ, and let {BunG(X)σP0,ν

}(P0,ν)∈A be the stratification of Construction 10.5.8. The collection

of locally closed substacks {BunG(X)σP0,ν
⊆ BunG(X)} does not depend on the choice of σ.

However, the indexing of this collection of locally closed substacks by the set A does depend on
σ. More precisely, for each element g ∈ Out(G0), we have

BunG(X)
g(σ)
g(P0),νg

= BunG(X)σP0,ν

(as locally closed substacks of BunG(X)), where the left hand side as defined as in Remark
10.3.18. This equality follows immediately from Remark 10.3.18 together with Warning 10.5.7.

Remark 10.5.12 (Functoriality in X and G). Let ψ be an automorphism of X as an abstract
scheme, so that ψ induces an automorphism ψ0 of the field k = H0(X;OX) which we do not
assume to be the identity. Let G be form of G0 over X and let ψ be an automorphism of G
which covers the automorphism ψ of X. Then the pair (ψ,ψ) determines an automorphism φ
of the algebraic stack BunG(X), which fits into a commutative diagram

BunG(X)
φ //

��

BunG(X)

��
Spec k

ψ0 // Spec k.

Suppose that G admits an inner structure σ. The image of σ under ψ determines another
inner structure σ′ on G. Using Remarks 10.3.16 and 10.3.18, we see that φ restricts to give
equivalences of Harder-Narasimhan strata

BunG(X)σP0,ν ' BunG(X)σ
′

P0,ν .

In other words, the automorphism φ of BunG(X) preserves the decomposition of BunG(X)
into locally closed substacks {BunG(X)σP0,ν

}(P0,ν)∈A, and permutes the strata by means of the

action of the group Out(G0) on A.

10.6. Comparing Harder-Narasimhan Strata. Throughout this section, we fix a field k,
an algebraic curve X over k, and a split reductive algebraic group G0 over k. Fix a Borel
subgroup B0 ⊆ G0, a split maximal torus T0 ⊆ B0, and a parabolic subgroup P0 ⊆ G0 which
contains B0. If (G, σ) is an inner form of G0 over X, then we can regard the moduli stack
BunG(X) as equipped with the Harder-Narasimhan stratification of Construction 10.5.8. Our
goal in this section is to study the relationships between the strata BunσG(X)P0,ν as ν varies.

We begin by introducing some terminology.
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Definition 10.6.1. Let (G, σ) be an inner form of G0 over a k-scheme Y . We will say that a

parabolic subgroup P ⊆ G is of type P0 if there exists an étale surjection Ỹ and an isomorphism

β : G×Y Ỹ → G0 ×Spec k Ỹ

which is compatible with σ and which restricts to an isomorphism of P ×Y Ỹ with P0×Spec k Ỹ .
If P is a G-torsor on Y , we let GP denote group scheme over Y whose R-valued points

are G-bundle automorphisms of P×Y SpecR. The inner structure σ on G determines an inner
structure σP on GP. We will say that a subgroup P ⊆ GP is a P0-structure on P if it a parabolic
subgroup of type P0.

Example 10.6.2. Let (G, σ) be an inner form of G0 over a k-scheme Y , and let P ⊆ G be a
parabolic subgroup of type P0. Let Q be a P -torsor on Y and let P be the associated G-torsor.
Since any automorphism of Q (as a P -torsor) determines an automorphism of P (as a G-torsor),
there is a canonical map of group schemes

PQ → GP

which exhibits PQ as a parabolic subgroup of GP of type P0. This construction determines an
equivalence of categories

{ P -bundles on Y } → { G-bundles P on Y equipped with a P0-structure}.

In particular, if G = G0×Spec kY is the split form of G0 over Y , then we obtain an equivalence

{ P0-bundles on Y } → { G-bundles on Y equipped with a P0-structure}.

Remark 10.6.3. Suppose that G0 is an adjoint semisimple group. If (G, σ) is an inner form of
G0 over a k-scheme Y , then Construction 10.5.6 determines a canonical equivalence from the
category of G-bundles on Y to the category of G0-torsors on Y , which we will denote by P 7→ P0.
By functoriality, we can identify the automorphism group scheme GP of P (as a G-torsor) with
the automorphism group scheme (G0 ×Spec k Y )P0

of P0 (as a G0-torsor). In particular, there
is a canonical bijection between the set of P0-structures on P and the set of P0-structures on
P0. Combining this observation with Example 10.6.2, we obtain an equivalence of categories

{ G-torsors on Y with a P0-structure } ' { P0-torsors on Y }.

Remark 10.6.4. Let (G, σ) be an inner form of G0 over a k-scheme Y , and let Gad denote the
adjoint quotient of G. Then Gad is a form of the adjoint group G0 ad over Y , and σ determines
an inner structure σad on Gad. For any parabolic subgroup P ⊆ G, let Pad denote the image of
P in Gad. The construction P 7→ Pad determines a bijective correspondence between parabolic
subgroups of G and parabolic subgroups of Gad; moreover, a parabolic subgroup P ⊆ G has
type P0 if and only if Pad ⊆ Gad has type P0 ad ⊆ G0 ad. It follows that if P is a G-torsor on Y
and Pad denotes the associated Gad-torsor, then there is a canonical bijection from the set of
P0-structures on P to the set of P0 ad structures on Pad.

Definition 10.6.5. Let (G, σ) be an inner form of G0 over X. For every standard parabolic
subgroup P0 ⊆ G0, we let BunG,P0

(X) denote the stack whose R-valued points are pairs (P, P ),
where P is a G-bundle on XR and P ⊆ GP is a parabolic subgroup of type P0. We will refer to
BunG,P0(X) as the moduli stack of G-bundles with a P0-structure.

Warning 10.6.6. Though it is not apparent from our notation, the moduli stack BunG,P0(X)
depends on the choice of inner structure σ on G. Modifying σ by an element g ∈ Out(G0) has
the effect of replacing BunG,P0

(X) with BunG,g(P0)(X).
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Example 10.6.7. Let (G, σ) be an inner form of G0 over X. If there exists a parabolic
subgroup P ⊆ G of type P0, then Example 10.6.2 furnishes a canonical equivalence BunP (X) '
BunG,P0(X).

Example 10.6.8. Suppose that G0 is an adjoint semisimple algebraic group over k, and
let (G, σ) be an inner form of G0 over X. It follows from Remark 10.6.3 that the bitorsor
Isoσ(G,G0) determines an equivalence

BunG,P0
(X) ' BunG′,P0

(X),

where G′ denotes the split form of G0 over X. Combining this with Example 10.6.7, we obtain
a canonical equivalence BunG,P0(X) ' BunP0(X).

Example 10.6.9. Let (G, σ) be an inner form of G0 over X. Then Remark 10.6.4 furnishes a
pullback diagram

BunG,P0
(X) //

��

BunG(X)

��
BunGad,P0 ad

(X) // BunGad
(X).

Combining this with Example 10.6.8, we obtain an equivalence

BunG,P0
(X) ' BunG(X)×BunGad

(X) BunP0 ad
(X).

It follows from this that BunG,P0
(X) is an Artin stack which is locally of finite type over k, and

that the diagonal of BunG,P0
(X) is affine.

Remark 10.6.10. If (G, σ) is an inner form of G0 over X, then the moduli stack BunG,P0(X)
is smooth over Spec k. We will not need this fact and therefore omit the proof.

Notation 10.6.11. Let (G, σ) be an inner form of G0 over X. We let BunG,P0
(X)ss denote

the fiber product

BunG,P0
(X)×BunP0 ad

(X) BunP0 ad
(X)ss.

Then BunG,P0
(X)ss is an open substack of BunG,P0

(X) which we will refer to as the semistable
locus of BunG,P0

(X).
For each element Hom(P0 ad,Gm)∨, we let BunνG,P0

(X) denote the fiber product

BunG,P0(X)×BunP0 ad
(X) BunνP0 ad

(X).

Then each BunνG,P0
(X) is an open substack of BunG,P0(X), and we can identify BunG,P0(X)

with the disjoint union

qν∈Hom(P0 ad,Gm)∨ BunνG,P0
(X).

We let BunνG,P0
(X)ss denote the intersection BunνG,P0

(X) ∩ BunG,P0(X)ss. It follows from
Theorem 10.3.13 and Example 10.6.9 that if ν ∈ Hom(P0 ad,Gm)∨>0, then the canonical map

BunνG,P0
(X)ss → BunG(X)

restricts to a finite radicial surjection

BunνG,P0
(X)ss → BunG(X)P0,ν .

We now consider the relationship between the moduli stacks BunνG,P0
(X) as ν varies.
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Definition 10.6.12. Let G be a reductive group scheme over a k-scheme Y , and let P ⊆ G
be a parabolic subgroup. Let radu(P ) denote the unipotent radical of P , so that we have an
exact sequence

0→ radu(P )→ P
π→ P/ radu(P )→ 0

A Levi decomposition of P is a section of the map π (which then determines a semidirect product
decomposition P ' radu(P )o (P/ radu(P ))).

Remark 10.6.13. Suppose that G is a reductive group scheme over Y and that P ⊆ G
is a parabolic subgroup. Then we always find a Levi decomposition ψ of P locally for the
étale topology: for example, if T ⊆ P is a maximal torus and Z ⊆ T is the preimage in T of the
center of P/ radu(P ), then the centralizer of Z in P is a subgroup H for which the composite
map

H ↪→ P → P/ radu P

is an isomorphism, so the inverse isomorphism P/ radu P ' H ↪→ P is a Levi decomposition of
P . Moreover, if P admits a Levi decomposition ψ : P/ radu P → P , then ψ is unique up to con-
jugation by a Y -valued point of P/ radu P . More precisely, the collection of Levi decompositions
of P can be regarded as a torsor for radu(P ) which is locally trivial for the étale topology. Since
the unipotent radical radu(P ) admits a finite filtration whose successive quotients are vector
groups, it follows that this torsor is trivial whenever Y is affine (in particular, it is locally trivial
with respect to the Zariski topology).

Notation 10.6.14. Let Z0 denote the center of the reductive algebraic P0/ radu(P0); this is a
split diagonalizable group over k, and let Λ = Hom(Gm,Z0) denote the cocharacter lattice of
Z0. There is a canonical bilinear map of abelian groups

Hom(P0,Gm)× Λ→ Z,

which carries a pair (µ, λ) to the composite map

Gm
λ→ Z ⊆ P0/ radu(P0)

µ→ Gm,

regarded as an element of Hom(Gm,Gm) ' Z. This bilinear map determines an injective map
of lattices Λ ↪→ Hom(P0,Gm)∨. In what follows, we will generally abuse notation by identifying
Λ with its image in Hom(P0,Gm)∨. We let Λ≥0 denote the inverse image of Hom(P,Gm)∨≥0

under this map (in other words, the collection of those elements λ ∈ Λ having the property that
〈α, λ〉 ≥ 0 for every simple root of G0).

Suppose that (G, σ) is an inner form of G0 over a k-scheme Y , and let P ⊆ G be a parabolic
subgroup of type P0. Then σ determines an isomorphism

Z(P/ radu(P )) ' Z0×Spec kY.

If ψ : P/ radu(P )→ P is a Levi decomposition of P , then ψ restricts to a map of group schemes
Z0×Spec kY → P . In particular, every element λ ∈ Λ determines a map Gm → P of group
schemes over Y , which we will denote by ψ(λ).

Definition 10.6.15. Let Y be a scheme. An effective Cartier divisor on Y is a closed subscheme
D ⊆ Y for which the corresponding ideal sheaf ID ⊆ OY is invertible. A local parameter for D
is a global section of ID which generates ID at every point.

Remark 10.6.16. Let Y be a scheme. Then every effective Cartier divisor D ⊆ Y admits a
local parameter locally with respect to the Zariski topology on Y .
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Definition 10.6.17. Let (G, σ) be an inner form of G0 over a k-scheme Y , let P be a G-bundle
on X equipped with a P0-structure P ⊆ GP, let D ⊆ Y be an effective Cartier divisor, and let
λ ∈ Λ≥0. A λ-twist of (P, P ) along D is a pair (P′, γ), where P′ is a G-bundle on Y and γ is a
G-bundle isomorphism

P×Y (Y −D) ' P′×Y (Y −D)

having the following property:

(∗) Let U ⊆ Y be an open subset having the property that P ×Y U admits a Levi decom-
position ψ : (P/ radu P )×Y U → P ×Y U and the Cartier divisor (D ∩ U) ⊆ U admits
a local parameter t. Then the G-bundle isomorphism

P×Y (U − (D ∩ U))
ψ(λ)(t)−1

→ P×Y (U − (D ∩ U))
γ

P
′
×Y (U − (D ∩ U))

extends to a G-bundle isomorphism P×Y U ' P′×Y U .

Remark 10.6.18. In the situation of condition (∗) above, the extension γU is automatically
unique (since the inclusion

P×Y (U − (D ∩ U)) ↪→ P×Y U
is complementary to a Cartier divisor, and therefore schematically dense).

Proposition 10.6.19. Let (G, σ) be an inner form of G0 over a k-scheme Y , let P be a G-
bundle on X equipped with a P0-structure P ⊆ GP, let D ⊆ Y be an effective Cartier divisor,
and let λ ∈ Λ≥0. Then there exists a G-bundle P′ on Y and an isomorphism

γ : P×Y (Y −D) ' P′×Y (Y −D)

for which the pair (P′, γ) is a λ-twist of P along D. Moreover, the pair (P′, γ) is unique up to
unique isomorphism.

Lemma 10.6.20. Let (G, σ) be an inner form of G0 over an affine k-scheme Y = SpecR, let
P ⊆ G be a parabolic subgroup of type P0, and let ψ : P/ radu P → P be a Levi decomposition
of P . For any element λ ∈ Λ≥0 and any regular element t ∈ R, the automorphism of P ×SpecR

SpecR[t−1] given by conjugation by ψ(λ)(t) extends to a group scheme homomorphism P → P .

Proof. The assertion is local with respect to the étale topology on SpecR. We may therefore
assume without loss of generality that G = G0 ×Spec k SpecR and P = P0 ×Spec k SpecR, and
that the image of ψ is H0×Spec kSpecR, where H0 ⊆ P0 is the unique Levi factor which contains
the chosen maximal torus T0.

Let {α1, . . . , αm} be an enumeration of the roots of P0 which are not roots of H0. For
1 ≤ i ≤ m, let fi : Ga → P0 be a parametrization of the corresponding root space. It follows
from the structure theory of reductive groups (and their parabolic subgroups) that the map

H0 ×Gm
a → P0

(h, y1, . . . , ym) 7→ hf1(a1)f2(a2) . . . fn(an)

is an isomorphism. In particular, for every R-algebra A, the preceding construction gives a
bijection H0(A) × Am → P (A). When A is an R[t−1]-algebra, then conjugation by ψ(λ)(t)
determines an automorphism of P (A) which corresponds (under the preceding bijection) to the
bijection of H0(A)×Am with itself given by

(h, a1, . . . , am) 7→ (h, α1(ψ(λ)(t))a1, . . . , αm(ψ(λ)(t))am).

Our assumption that λ ∈ Λ≥0 guarantees that each αi(ψ(λ)(t)) belongs to the subset R ⊆
R[t−1], so that this construction extends to a morphism of R-schemes P → P . This map is
automatically a group homomorphism (this follows from the schematic density of SpecR[t−1]
in SpecR). �
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Proof of Proposition 10.6.19. The assertion is local on Y with respect to the Zariski topology.
We may therefore assume that Y = SpecR is affine and that D ⊆ Y is the Cartier divisor is the
vanishing locus of a regular element t ∈ R. Since Y is affine, it admits a Levi decomposition
ψ : P/ radu P → P . In this case, we can take P′ = P and γ to be the automorphism of
P×Y (Y −D) determined by the element ψ(λ)(t). It follows tautologically that the pair (P, γ)
is characterized uniquely up to unique isomorphism by the requirement that the composite map

P×Y (Y −D)
ψ(λ)(t)−1

−→ P×Y (Y −D)
γ−→ P′×Y (Y −D)

extends to an isomorphism of P with P′. To complete the proof, it will suffice to show that
the pair (P′, γ) is a λ-twist of P along D: that is, after replacing Y by any open subset
U ⊆ Y and choosing a different local parameter t′ for D and a different Levi decomposition
ψ′ : P/ radu P → P , the composite map

P×Y (Y −D)
ψ′(λ)(t′)−1

−→ P×Y (Y −D)
γ−→ P′×Y (Y −D)

also extends to G-bundle isomorphism of P with P′. In other words, we wish to show that the
difference ψ′(λ)(t′)−1ψ(λ)(t) (which we regard as an element of the group GP(R[t−1])) belongs
to the subgroup GP(R) ⊆ GP(R[t−1]). Note that we can write t′ = ut, where u ∈ R is a unit,
so that

ψ′(λ)(t′)−1ψ(λ)(t) = ψ′(λ)(u)−1ψ′(λ)(t)−1ψ(λ)(t)

where the first factor belongs to GP(R). It will therefore suffice to treat the case where t′ = t.
Since Levi decompositions of P are unique up to the action of radu(P ), we can choose an

element g ∈ radu(P )(R) ⊆ P (R) such that ψ′(λ)(t) = gψ(λ)(t)g−1. We are therefore reduced
to proving that ψ(λ)(t)−1g−1ψ(λ)(t) belongs to P (R), which follows from Lemma 10.6.20. �

Notation 10.6.21. Let (G, σ) be an inner form of G0 over a k-scheme Y , let D ⊆ Y be an
effective Cartier divisor, and let λ ∈ Λ≥0. Suppose we are given a G-torsor P on Y and a P0-
structure P ⊆ GP. Proposition 10.6.19 implies that there exists an (essentially unique) λ-twist
of P along D; we will denote the underlying G-bundle of this twist by Twλ,D(P, P ).

Example 10.6.22. Let G0 = P0 = Gm and let λ ∈ Λ = Hom(Gm,Gm) be the identity map.
Then G0 has a unique inner form G over any k-scheme Y (given by the multiplicative group
over Y ), and we can identify G-torsors with line bundles on Y . Any such torsor admits a unique
P0-structure. If D ⊆ Y is an effective Cartier divisor and L is a line bundle on Y , then we have

Twλ,D(L) = L(D) = L⊗OY I−1
D .

In the situation of Notation 10.6.21, the twist Twλ,D(P, P ) comes equipped with a tautolog-
ical isomorphism

γ : Twλ,D(P, P )×Y (Y −D) ' P×Y (Y −D).

In particular, we obtain an isomorphism of group schemes

GTwλ,D(P,P ) ×Y (Y −D) ' GP ×Y (Y −D).

Under this isomorphism, the parabolic subgroup P ⊆ GP determines a parabolic subgroup
P ◦γ ⊆ GTwλ,D(P,P ) ×Y (Y −D).

Proposition 10.6.23. Let (G, σ) be an inner form of G0 over a k-scheme Y , let P be a G-
bundle on X equipped with a P0-structure P ⊆ GP, let D ⊆ Y be an effective Cartier divisor,
and let λ ∈ Λ≥0. Then the subgroup P ◦γ ⊆ GTwλ,D(P,P ) ×Y (Y −D) can be extended uniquely
to a parabolic subgroup Pγ ⊆ GTwλ,D(P,P ) of type P0.
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Remark 10.6.24. The uniqueness assertion of Proposition 10.6.23 is immediate: if P ◦γ can
be extended to a parabolic subgroup Pγ ⊆ GTwλ,D(P,P ), then Pγ can be characterized as the
scheme-theoretic closure of P ◦γ in GTwλ,D(P,P ).

Proof of Proposition 10.6.23. By virtue of the uniqueness supplied by Remark 10.6.24, the as-
sertion of Proposition 10.6.23 is local with respect to the étale topology on Y . We may therefore
assume without loss of generality that the torsor P is trivial (so that GP ' G), that P ⊆ G
admits a Levi decomposition ψ, that Y = SpecR is affine, and that D is the vanishing locus of a
regular element t ∈ R. In this case, the proof of Proposition 10.6.19 shows that we can take the
twist Twλ,D(P, P ) to be the trivial G-torsor and γ to be the map given by right multiplication
by ψ(λ)(t). It follows that the isomorphism

GTwλ,D(P,P ) ×Y (Y −D) ' GP ×Y (Y −D).

corresponds to the automorphism of G given by conjugation by ψ(λ)(t). Since ψ(λ)(t) belongs
to P (R[t−1]), conjugation by ψ(λ)(t) carries P ×Y (Y −D) into itself; we can therefore identify
P ◦γ with the subgroup P ×Y (Y −D) ⊆ G×Y (Y −D), which extends to the parabolic subgroup
P ⊆ G. �

Construction 10.6.25. Let (G, σ) be an inner form of G0 over the curve X, let D ⊆ X be
an effective divisor, and let λ be an element of Λ≥0. If R is a finitely generated k-algebra, P is
a G-bundle on XR, and P ⊆ GP is a P0-structure on P, then we can regard Twλ,DR(P, P ) as
another G-bundle on XR, equipped with the P0-structure P ′ supplied by Proposition 10.6.23.
The construction

(P, P ) 7→ (Twλ,DR P, P ′)

depends functorially on R and therefore determines a map of algebraic stacks

Twλ,D : BunG,P0(X)→ BunG,P0(X),

which we will refer to as twisting by λ along D.

Example 10.6.26. In the situation of Construction 10.6.25, suppose that P0 = G0, so that
BunG,P0

(X) ' BunG(X). In this case, the element λ ∈ Λ≥0 = Λ can be regarded as a
cocharacter of the center Z(G), which determines an action

mλ : BunGm(X)×Spec k BunG(X)→ BunG(X).

Unwinding the definitions, we see that if D ⊆ X is an effective divisor, then the map Twλ,D :
BunG(X) → BunG(X) is given by P 7→ mλ(OX(D),P). In particular, Twλ,D is an automor-
phism of BunG(X) which preserves the semistable locus BunG(X)ss and restricts to equivalences

Twλ,D : BunνG(X) ' Bun
ν+deg(D)λ
G (X);

here we identify Λ with a sublattice of Hom(G0,Gm)∨ as in Notation 10.6.14.

Example 10.6.27. In the special case where G = G0×Spec kX is the split form of G0, we can
regard Construction 10.6.25 as giving a map

Twλ,D : BunP0
(X)→ BunP0

(X);

see Example 10.6.7.
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Remark 10.6.28. In the situation of Example 10.6.27, let us abuse notation by identifying λ
with an element of Hom(P0/ radu P0,Gm)∨. Then the diagram

BunP0(X)
Twλ,D //

��

BunP0(X)

��
BunP0/ radu(P0)(X)

Twλ,D // BunP0/ radu(P0)(X)

commutes up to canonical isomorphism. Combining this observation with Example 10.6.26, we
deduce that Twλ,D restricts to give maps

Twλ,D : BunP0
(X)ss → BunP0

(X)ss

Twλ,D : BunνP0
(X)→ Bun

ν+deg(D)λ
P0

(X)

which fit into pullback squares

BunP0
(X)ss

Twλ,D //

��

BunP0
(X)ss

��
BunP0(X)

Twλ,D // BunP0(X)

BunνP0
(X)

Twλ,D //

��

BunνP0
(X)

��
BunP0

(X)
Twλ,D// BunP0

(X).

Remark 10.6.29. In the situation of Construction 10.6.25, suppose that the algebraic group
G0 is semisimple and adjoint. Then the diagram

BunG,P0
(X)

Twλ,D //

��

BunG,P0
(X)

��
BunP0(X)

Twλad,D // BunP0(X)

commutes up to canonical isomorphism, where the vertical maps are the equivalences of Exam-
ple 10.6.8.

Remark 10.6.30. Let (G, σ) be an inner form of G0 over X, let D ⊆ X be an effective divisor,
and let λ ∈ Λ≥0. Let λad denote the image of λ in the lattice

Λad = Hom(Gm,Z(P0 ad/ radu P0 ad)).

Then the diagram

BunG,P0(X)
Twλ,D //

��

BunG,P0(X)

��
BunGad,P0 ad

(X)
Twλad,D// BunGad,P0 ad

(X)

commutes up to canonical isomorphism. Combining this observation with Remarks 10.6.28 and
10.6.29, we conclude that the Twλ,D restricts to give maps

Twλ,D : BunG,P0
(X)ss → BunG,P0

(X)ss
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Twλ,D : BunνG,P0
(X)→ Bun

ν+deg(D)λ
G,P0

(X)

which fit into pullback squares

BunG,P0
(X)ss

Twλ,D //

��

BunG,P0(X)ss

��
BunG,P0

(X)
Twλ,D // BunG,P0

(X)

BunνG,P0
(X)

Twλ,D //

��

BunνG,P0
(X)

��
BunG,P0

(X)
Twλ,D// BunG,P0

(X).

Remark 10.6.31 (Functoriality). Let ψ be an automorphism of X as an abstract scheme, so
that ψ determines an automorphism ψ0 of the field k = H0(X;OX) fitting into a commutative
diagram

X
ψ //

��

X

��
Spec k

ψ0 // Spec k.

Let G be a form of G0 over X equipped with an automorphism ψ compatible with the auto-
morphism ψ of X. Then ψ determines an automorphism of the set of inner structures on G. In
particular, if σ is an inner structure on G, then we can form a new inner structure ψ(σ) which
can be written as gσ for some unique element g ∈ Out(G0). The pair (ψ,ψ) determines an auto-
morphism φ of BunG(X) which we can lift to an equivalence φ : BunG,P0(X) ' BunG,g(P0)(X)
(see Warning 10.6.6). Each element λ ∈ Λ = Hom(Gm,Z(P0/ radu(P0)) determines an element
g(λ) ∈ Hom(Gm,Z(g(P0)/ radu g(P0))), and each effective divisor D ⊆ X determines a divisor
φ(D) ⊆ X. It follows immediately from our constructions that the diagram of algebraic stacks

BunG,P0
(X)

Twλ,D //

φ

��

BunG,P0
(X)

φ

��
BunG,g(P0)(X)

Twg(λ),φ(D)// BunG,g(P0)(X)

commutes up to canonical isomorphism.

Remark 10.6.32 (Group Actions). Let Γ be a finite group which acts on X as an abstract
scheme, let G be a form of G0 over X equipped with a compatible action of Γ, so that the group
Γ acts on the moduli stack BunG(X).

Fix an inner structure σ on X. The collection of all inner structures on G forms a torsor
Σ for the group Out(G0), and the group Γ acts on Σ by Out(G0)-torsor automorphisms. The
choice of element σ ∈ Σ determines an isomorphism Out(G0) ' Σ of Out(G0)-torsors, so that
the action of Γ on Σ is via a group homomorphism Γ → Out(G0). Let P0 be a standard
parabolic subgroup of G0 which is invariant under the action of Γ (by pinned automorphisms
of G0). Then the action of Γ on BunG(X) lifts canonically to an action of Γ on BunG,P0(X).

The group Γ acts on the lattice Λ = Hom(Gm,Z(P0/ radu(P0)). Suppose that λ is a Γ-
invariant element of λ≥0, and let D ⊆ X be an effective divisor which is Γ-invariant. Using the
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canonical isomorphisms of Remark 10.6.31, we can promote the map

Twλ,D : BunG,P0
(X)→ BunG,P0

(X)

of Construction 10.6.25 to a Γ-equivariant morphism of algebraic stacks.

The main property of Construction 10.6.25 that we will need is the following:

Proposition 10.6.33. Let Γ be a finite group acting on X via k-scheme automorphisms, let
G be a Γ-equivariant group scheme over X, and let σ be an inner structure on G (so that the
choice of σ determines a group homomorphism Γ → Out(G0)). Let P0 ⊆ G0 be a standard
parabolic which is Γ-invariant, let λ ∈ Λ≥0 be Γ-invariant, and let D ⊆ X be a Γ-invariant
effective divisor, so that Twλ,D induces a map of (homotopy) fixed point stacks

φ : BunG,P0
(X)Γ → BunG,P0

(X)Γ.

If D is étale over Spec k and the action of Γ on D is free, then φ is a fiber bundle (locally trivial

in the étale topology) whose fibers are affine spaces of dimension deg(D)
|Γ| 〈2ρP , λ〉.

To prove Proposition 10.6.33, we may assume without loss of generality that the field k is
separably closed. It will be convenient to introduce a local variant of Construction 10.6.25. For
each point x ∈ D, choose a local coordinate tx for X at the point x, so that the complete local
ring Ox can be identified with the power series ring k[[tx]].

If R is a finitely generated k-algebra, we let X∧R,x denote the formal completion of XR along

the closed subscheme {x}×XSpecR, which we can identify with the formal spectrum Spf R[[tx]].
Let BunG,P0

(X∧x ) denote the (non-algebraic) moduli stack of G-bundles on X∧x equipped with
a P0-structure. More precisely, BunG,P0(X∧x ) denotes the stack whose R-valued points are pairs
(P, P ) where P is a G-bundle P on SpecR[[tx]] (or equivalently on the formal scheme Spf R[[tx]])
equipped with a parabolic subgroup P ⊆ GP of type P0. If we let DxR ⊆ SpecR[[tx]] denote
the Cartier divisor given by the vanishing locus of tx, then a variant of Construction 10.6.25
determines a morphism of stacks

Twλ,{x} : BunG,P0
(X∧{x})→ BunG,P0

(X∧{x}).

We have a commutative diagram of stacks

BunG,P0
(X)

Twλ,D //

��

BunG,P0
(X)

��∏
x∈D BunG,P0

(X∧x )
Twλ,{x}// ∏

x∈D BunG,P0
(X∧x ).

which is easily seen to be a pullback square (since the operation of twisting a G-bundle P by
λ along D does not change P over the open set X − D). Passing to Γ-invariants, we obtain
another pullback square

BunG,P0
(X)Γ

Twλ,D //

��

BunG,P0
(X)Γ

��
(
∏
x∈D BunG,P0(X∧x ))Γ

Twλ,{x}// (
∏
x∈D BunG,P0(X∧x ))Γ.
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Let D0 ⊆ D denote a subset consisting of one element from each Γ orbit. Since the action of Γ
on D is free, we obtain a pullback square

BunG,P0
(X)Γ

Twλ,D //

��

BunG,P0
(X)Γ

��∏
x∈D0

BunG,P0
(X∧x )

Twλ,{x}// ∏
x∈D0

BunG,P0
(X∧x ).

Consequently, Proposition 10.6.33 reduces to the following local assertion (which makes no
reference to the group Γ):

Proposition 10.6.34. In the situation above, each of the maps

Twλ,{x} : BunG,P0
(X∧x )→ BunG,P0

(X∧x )

is a fiber bundle (locally trivial for the étale topology) whose fibers are affine spaces of dimension
〈2ρP , λ〉.

Proof. Let t be a generator of the maximal ideal in the complete local ring Ox. Since the
power series ring Ox ' k[[tx]] is strictly Henselian, the group scheme G splits over Ox. Using
Example 10.6.7, we obtain an identification BunG,P0

(X∧x ) ' BunP0
(X∧x ), where BunP0

(X∧x )
denotes the stack whose R-valued points are P0-bundles on X∧R,x ' Spf R[[t]]. Let H0 ⊆ P0 be
the unique subgroup which contains the maximal torus T0 and which maps isomorphically onto
the reductive quotient P0/ radu(P0). We will identify λ with a cocharacter of the center of H0,
so that we can identify λ(t) with an element of the group H0(Kx).

Since P0 is smooth over k, a P0-bundle on X∧R,x is trivial if and only if its restriction to the

subscheme {x} ×Spec k SpecR ⊆ XR is trivial. In particular, any P0-bundle on X∧R,x can be
trivialized locally with respect to the étale topology on SpecR. Moreover, the automorphism
group of the trivial P0-bundle on X∧R,x ' Spf R[[t]] can be identified with the group P0(R[[t]]).

It follows that BunP (X∧x ) can be identified with the classifying stack (taken with respect to the
étale topology) of the group-valued functor R 7→ P0(R[[t]]).

For every k-algebra R, let us view P0(R[[t]]) as a subgroup of the larger group P0(R[[t]][t−1]).
It follows from Lemma 10.6.20 that conjugation by λ(t) determines a group homomorphism from
P0(R[[t]]) to itself; let us denote the image of this homomorphism by P ′0(R[[t]]).

Fix a map η : SpecR→ BunP0
(X∧x ); we wish to show that the fiber product

Y = BunP0
(X∧x )×BunP0

(X∧x ) SpecR

is representable by an affine R-scheme which is locally (with respect to the étale topology on

SpecR) isomorphic to A〈2ρP0
,λ〉. The map η classifies some P -bundle on X∧Rx, which we may

assume to be trivial (after passing to an étale cover of SpecR). Unwinding the definitions, we
see that Y can be identified with the sheafification (with respect to the étale topology) of the
functor

F : RingR → Set

F (A) = P0(A[[t]])/P ′0(A[[t]]).

We will compete the proof by showing that that the functor F is representable by an affine
space of dimension 〈2ρP0

, λ〉 over SpecR (and is therefore already a sheaf with respect to the
étale topology).

Let U denote the unipotent radical of P0, so that P0(A[[t]]) factors as a semidirect product
U(A[[t]])oH0(A[[t]]). This decomposition is invariant under conjugation by λ(t) and therefore
determines an analogous decomposition P ′0(A[[t]]) ' U ′(A[[t]])oH ′0(A[[t]]). Since λ(t) is central
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in H0(A[[t]][t−1
x ]), we have H ′0(A[[t]]) = H0(A[[t]]). It follows that the functor F : RingR → Set

above can be described by the formula F (A) = U(A[[t]])/U ′(A[[t]]).
Let {α1, . . . , αm} ⊆ Hom(T0,Gm) be the collection of roots of P0 which are not roots of H0.

For 1 ≤ i ≤ m, let fi : Ga → U be a parametrization of the root subgroup corresponding to αi.
For A ∈ RingR, every element of the group U(A[[t]]) has a unique representation as a product

f1(a1(t))f2(a2(t)) · · · fm(am(t))

where ai(t) ∈ A[[t]]. As in the proof of Lemma 10.6.20, we can identify U ′(A[[t]]) with the
subgroup of U(A[[t]]) spanned by those products where each ai(t) is divisible by t〈αi,λ〉.

Reordering the roots {α1, . . . , αm} if necessary, we may assume that for 0 ≤ i ≤ m, the
image of the map ∏

1≤i′≤i

fi : Ai → U0

is a normal subgroup Ui ⊆ U . Then every A[[t]]-valued point of the quotient U/Ui has a unique
representation as a product

fi+1(ai+1(t))fi+2(ai+2(t)) · · · fm(am(t))

where aj(t) ∈ A[[t]]. Let Vi(A) denote the subgroup of (U/Ui)(A[[t]]) consisting of those

products where each aj(t) is divisible by t〈αj ,λ〉, and let Fi : RingR → Set be the functor given
by Fi(A) = (U/Ui)(A[[t]])/Vi(A). We will prove the following:

(∗) For 0 ≤ i ≤ n, the functor Fi is representable by an affine space of dimension∑
i<j≤m

〈αj , λ〉

over SpecR.

Note that F0 = F and that ∑
1≤j≤m

〈αj , λ〉 = 〈2ρP , λ〉,

so that when i = 0 assertion (∗) asserts that F is representable by an affine space of dimension
〈2ρP , λ〉 over SpecR. We will prove (∗) by descending induction on i, the case i = m being
trivial. To carry out the inductive step, we note that for 1 ≤ i ≤ m we have natural exact
sequences

0 // t〈αi,λ〉A[[t]]

��

// Vi−1(A) //

��

Vi(A) //

��

0

0 // A[[u]] // (U/Ui−1)(A[[u]]) // (U/Ui)(A[[u]]) // 0

where the vertical maps are injective and each of the exact sequences is a central extension.
It follows from a diagram chase that we can identify Fi(A) with the quotient of Fi−1(A) by a
free action of the quotient A[[t]]/t〈αi,λ〉A[[t]], and that this identification depends functorially

on A. In other words, the functor Fi−1 can be identified with a G
〈αi,λ〉
a -torsor over Fi. By the

inductive hypothesis, the functor Fi is representable by an affine scheme, so that any Ga-torsor
over Fi is trivial. We therefore obtain

Fi−1 ' G〈αi,λ〉a × Fi
' A〈αi,λ×(A

∑
i<j≤m〈αj ,λ×SpecR)

' A
∑
i≤j≤m〈αj ,λ〉×SpecR,
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as desired. �

10.7. Reductive Models. Throughout this section, we fix a field k and an algebraic curve
X over k. Let KX be the fraction field of X and let G0 be a reductive algebraic group over
KX . If the field k is algebraically closed, then the function field KX has dimension ≤ 1, so
the algebraic group G0 is quasi-split. It follows that there is a finite Galois extension L of KX ,
a split reductive group G over k on which Gal(L/KX) acts by pinned automorphisms, and a
Gal(L/KX)-equivariant isomorphism

G0 ×SpecKX SpecL ' G×Spec k SpecL.

In particular, there is Gal(L/KX)-equivariant isomorphism of G0 ×SpecKX SpecL with the

generic fiber of the split reductive group scheme G ×Spec k X̃, where X̃ denotes the algebraic
curve with function field L. Our goal in this section is to establish an analogous (but weaker)
result which does not require the assumption that k is algebraically closed:

Proposition 10.7.1. Let G0 be a reductive algebraic group over the fraction field KX . Then

there exists a finite Galois extension L of KX , a reductive group scheme G over the curve X̃
with function field L, an action of Gal(L/KX) on G (compatible with the tautological action of

Gal(L/KX) on X̃), and a Gal(L/KX)-equivariant isomorphism

G0 ×SpecKX SpecL ' G×X̃ SpecL.

Remark 10.7.2. In the situation of Proposition 10.7.1, if L is a Galois extension of KX for
which there exists a Gal(L/KX)-equivariant group scheme on the associated algebraic curve

X̃ whose generic fiber is Gal(L/KX)-equivariantly isomorphic to G0×SpecKX SpecL, then any
larger Galois extension L′ has the same property (the inclusion L ↪→ L′ induces a map of

algebraic curves X̃ ′ → X̃, and the pullback G ×X̃ X̃ ′ is a reductive group scheme over X̃ ′

having the desired properties). We are therefore free to assume that the Galois extension L
appearing in Proposition 10.7.1 is as large as we like: in particular, we may assume that the
algebraic group G0 splits over L.

Warning 10.7.3. In the situation of Proposition 10.7.1, the algebraic curve X̃ is connected, but
need not be geometrically connected (when regarded as a k-scheme). If we want to guarantee
that the generic fiber of G is split reductive (as in Remark 10.7.2), this is unavoidable: if k′ is
a Galois extension of k and the group scheme G0 is obtained by Weil restriction along the field
extension KX ↪→ KX ⊗k k′, then any Galois extension L of KX which splits G0 must contain
k′.

Remark 10.7.4. There are two main differences between Proposition 10.7.1 (which applies
over any ground field k) and the discussion which precedes it (which applies when the ground
field k is algebraically closed):

• Proposition 10.7.1 guarantees the existence of a reductive group scheme G over X̃, but
does not guarantee that this reductive group scheme is constant (though we can arrange

that it is split at the generic point of X̃, by virtue of Remark 10.7.2).
• Proposition 10.7.1 gives no information about the action of Gal(L/KX) on the group

scheme G: in particular, this action need not preserve a pinning of G, even at the

generic point of X̃.

We will deduce Proposition 10.7.1 from the following local assertion:

Lemma 10.7.5. Let K be the fraction field of a complete discrete valuation ring OK and let
G0 be a reductive algebraic group over K. Then there exists a finite Galois extension L of K, a
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reductive group scheme G over the ring of integers OL ⊆ L equipped with an action of Gal(L/K)
(compatible with the tautological action of Gal(L/K) over OL), and a Gal(L/K)-equivariant
isomorphism

G0 ×SpecK SpecL ' G×SpecOL SpecL.

Proof. Choose a maximal torus T ⊆ G0 which is defined over K. Let L0 be a finite Galois
extension of K for which the torus T splits over L0. We will show that if L is a Galois extension
of K which contains L0 and whose ramification degree over L0 is divisible by deg(L0/K), then
L has the desired property.

For every Galois extension L of K which contains L0, let M(L) denote the set of isomorphism
classes of pairs (G,α), where G is a reductive group scheme over OL and α is an isomorphism
(not assumed to be Gal(L/K)-equivariant)

G0 ×SpecK SpecL ' G×SpecOL SpecL

of reductive algebraic groups over L which has the following additional property: the scheme-
theoretic image of composite map

T ×SpecK SpecL ↪→ G0 ×SpecK SpecL
α→ G

is a torus T (automatically split) over SpecOL. The group Gal(L/K) acts on the set M(L); to
prove Lemma 10.7.5, it will suffice to show that there is an element of M(L) which is fixed by
Gal(L/K) (provided that L is sufficiently large).

Let Gad denote the quotient of G0 by its center, and let Tad denote the image of T in
Gad. For every element g ∈ Tad(L), conjugation by g determines an automorphism cg of
G0 ×SpecK SpecL which acts trivially on T . The construction (G,α) 7→ (G,α ◦ cg) determines
an action of Tad(L) on the set M(L). We claim that this action is transitive: in other words,
given any pair of elements (G,α), (G′, α′) ∈ M(L), there exists an isomorphism β : G ' G′

such that the composite map

G0 ×SpecK SpecL
α→ G×SpecOL SpecL

β→ G′
α′−1

→ G0 ×SpecK SpecL

is given by conjugation by some g ∈ Tad(L). To prove this, let T ⊆ G and T
′ ⊆ G′ denote

the scheme-theoretic images of T ×SpecK SpecL under α and α′, respectively. Then T and

T
′

are split tori over OL, so that the identification between their generic fibers (supplied by

α and α′) extends uniquely to an isomorphism β0 : T ' T
′
. Let B be a Borel subgroup of

G0 ×SpecK SpecL containing T ×SpecK SpecL. Since T is a maximal split torus in G, there

is a unique Borel subgroup B ⊆ G containing T with α−1B = B. Similarly, there is a unique

Borel subgroup B
′ ⊆ G′ which contains T

′
satisfying α′−1B

′
= B. Since the ring of integers

OL is a discrete valuation ring, the pairs (T ,B) and (T
′
, B
′
) can be extended to pinnings of

the group schemes G and G′, respectively. It follows that there is a unique pinned isomorphism
β : G→ G′ which restricts to the identity on the Dynkin diagram of their common generic fiber
G0 ×SpecK SpecL. By construction, the composition

G0 ×SpecK SpecL
α→ G×SpecOL SpecL

β→ G′
α′−1

→ G0 ×SpecK SpecL

is an automorphism of G0×SpecK SpecL which restricts to the identity on T×SpecK SpecL, and
is therefore given by conjugation by some element g ∈ Gad(L). Since g centralizes T ×SpecK

SpecL, it belongs to the subgroup Tad(L) ⊆ Gad(L).
Let Λ = Hom(Gm, Tad ×SpecK SpecL) denote the cocharacter lattice of the split torus

Tad ×SpecK SpecL, so that we can identify Tad(L) with the tensor product Λ ⊗ L×. Note
that if (G,α) is any element of M(L), then (G,α) is isomorphic to (G,α ◦ cg) if and only if
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conjugation by the element g ∈ Tad(L) extends to an automorphism of the group scheme G:
this is equivalent to the assertion that for each root α of the split group G0×SpecK SpecL, the
induced map

Λ⊗ L× α→ L×

belongs to O×L , which is equivalent to the assertion that g belongs to the subgroup

Λ⊗ O×L ⊆ Λ⊗ L× ' Tad(L).

It follows that we can regard M(L) as a torsor for the quotient group

(Λ⊗ L×)/(Λ⊗ O×L ) ' Λ⊗ ZL,

where ZL = L×/O×L denotes the value group of L. Note that the group ZL is canonically
isomorphic to Z (so Λ⊗ ZL is canonically isomorphic to Λ); however, in the arguments which
follow, it will be convenient not to make use of this.

Let us fix an element x0 ∈M(L0), which determines an element xL ∈M(L) for every finite
extension L of L0. The action of Λ⊗ ZL on M(L) determines a bijective map

γL : Λ⊗ ZL →M(L)

γL(0) = xL.

The set M(L) admits a unique abelian group structure for which γL is an isomorphism of
abelian groups. Note that if L is an extension of L0 having ramification degree d, then we can
identify ZL with 1

dZL0 . It follows that for any element y ∈ M(L0), the image of y in M(L) is
divisible by d.

The action of the Galois group Gal(L/K) on M(L) does not preserve the group structure
on M(L) (because the element xL is not necessarily Gal(L/K)-invariant). However, the action
of Gal(L/K) is affine-linear: that is, for each g ∈ Gal(L/K) we have the identity g(y + z) =
g(y) + g(z) − g(0) in M(L). Suppose that L is a Galois extension of K having ramification
degree divisible by deg(L0/K). Then for each g ∈ Gal(L0/K), the image of g(x0) in M(L) is
divisible by deg(L0/K). It follows that the average∑

g∈Gal(L0/K)

g(x0)

deg(L0/K)
|

is a well-defined element ofM(L), and this element is clearly fixed under the action of Gal(L/K).
�

Proof of Proposition 10.7.1. Let G0 be a reductive algebraic group over KX . Then we can
choose a dense open subset U ⊆ X such that G0 extends to a reductive group scheme GU over
U . Let S denote the finite set of closed points of X which do not belong to U . For each x ∈ S,
let Ox denote the complete local ring of X at the point x, let Kx denote its fraction field, and
let G0x = G0 ×SpecKX SpecKx be the associated reductive algebraic group over Kx. It follows
from Lemma 10.7.5 that for each point x ∈ X, there exists a finite Galois extension Lx of Kx,
a reductive algebraic group Gx over the ring of integers OLx , an action of Gal(Lx/Kx) on Gx
(compatible with its action on OLx), and a Gal(Lx/Kx)-equivariant isomorphism

G0x ×SpecKx SpecLx ' Gx ×SpecOLx
SpecLx.

Let L be a Galois extension of KX which is large enough that for each x ∈ S, the tensor
product L⊗KX Kx contains an isomorphic copy of Lx. Enlarging the fields Lx if necessary (see
Remark 10.7.2), we may assume that each Lx appears as a direct factor in the tensor product

L ⊗KX Kx. Then L is the fraction field of an algebraic curve X̃ (which is not necessarily

geometrically connected over k). Let Ũ denote the inverse image of U in K̃, so that the
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pullback of GU determines a Gal(L/KX)-equivariant reductive group scheme GŨ over Ũ . To
complete the proof, it will suffice to show that GŨ admits a Gal(L/KX)-equivariant extension

to a reductive group scheme over X̃. To construct such an extension, it suffices to show that
we can solve the analogous problem after replacing X by SpecOx for x ∈ S, which is precisely
the content of Lemma 10.7.5. �

10.8. Proof of the Trace Formula. Throughout this section, we fix a finite field Fq with

q elements, an algebraic closure Fq of q, a prime number ` which is relatively prime to q, an
embedding ι : Q` ↪→ C, an algebraic curve X over Fq, and a smooth affine group scheme G
over X. Assume that G has connected fibers and that the generic fiber of G is semisimple.
Our goal is to prove Theorem 10.0.6, which asserts that the moduli stack BunG(X) satisfies
the Grothendieck-Lefschetz trace formula. Our strategy will be to show that after suitably
modifying G, the moduli stack BunG(X) admits a convergent stratification (Definition 10.2.9).

Let KX denote the fraction field of X. According to Proposition 10.7.1, there is a finite

Galois extension L of KX , where L is the function field of an algebraic curve X̃, a semisimple

group scheme G̃ over X̃ equipped with a compatible action of Gal(L/KX), and a Gal(L/KX)-
equivariant isomorphism

G×X SpecL ' G̃×X̃ SpecL.

Moreover, we may further assume that the generic fiber of G̃ is split (Remark 10.7.2). The

algebraic curve X̃ is not necessarily geometrically connected when regarded as an Fq-scheme.
The algebraic closure of Fq in L is a finite field Fqd with qd elements for some d ≥ 0; let us fix

an embedding of this field into Fq.

Let X ′ = X ×Spec Fq Spec Fq and let G′ = G ×X X; similarly we define X̃ ′ = X̃ ×Spec F
qd

Spec Fq and G̃′ = G̃ ×X̃ X̃ ′. For each effective divisor Q ⊆ X, let DQ(G′) denote the group

scheme over X obtained by dilitation of G′ along its identity section (Variant A.3.9). Using
Proposition A.3.11, we see that if Q is large enough, then the equivalence G ×X SpecL '
G̃×X̃ SpecL extends to a homomorphism

β : DQ(G′)×X′ X̃ ′ → G̃′.

Enlarging Q if necessary, we may assume that Q is invariant under the action of the Galois
group Gal(Fq/Fq), so that the group scheme DQ(G′) and the map β are defined over Fq: that
is, we have a dilitation DQ(G)→ G and a map of group schemes

DQ(G)×X X̃ → G̃

which is an isomorphism at the generic point of X̃. According to Corollary 10.1.5, to prove
that BunG(X) satisfies the Grothendieck-Lefschetz trace formula, it will suffice to show that
BunDQ(G)(X) satisfies the Grothendieck-Lefschetz trace formula. We may therefore replace G

by DQ(G) and thereby reduce to the case where there exists a homomorphism of group schemes

β : G×X X̃ → G̃

which is an isomorphism at the generic point of X̃. Note that β is automatically Gal(L/KX)-
equivariant (since this can be tested at the generic point of X).

Let G0 denote the split form of G̃, which we regard as a semisimple algebraic group over Fq.
Fix a Borel subgroup B0 ⊆ G0 and a split maximal torus T0 ⊆ B0. Let Σ denote the set of inner

structures on the group scheme G̃ (Definition 10.5.2). Since the generic fiber of G̃ is split, the
set Σ is nonempty (Example 10.5.4), and is therefore a torsor for the outer automorphism group
Out(G0) (Remark 10.5.5). Fix an element σ ∈ Σ, which supplies an isomorphism Out(G0) ' Σ
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of Out(G0)-torsors. The group Gal(L/KX) acts on the pair (X̃, G̃) and therefore acts on the set
Σ by Out(G0)-torsor automorphisms; let us identify this action with a group homomorphism
ρ : Gal(L/KX)→ Out(G0).

Let BunG̃(X̃) denote the moduli stack of G̃-bundles on X̃, where we regard X̃ as a geomet-

rically connected algebraic curve over Spec Fqd (so that BunG̃(X̃) is a smooth Artin stack over
Fqd). Let A denote the set of all pairs (P0, ν), where P0 is a parabolic subgroup of G0 which

contains B0 and ν ∈ Hom(P0 ad,Gm)∨>0. We let {BunG̃(X̃)P0,ν}(P0,ν)∈A denote the Harder-

Narasimhan stratification of BunG̃(X̃) determined by the choice of inner structure σ ∈ Σ

(Construction 10.5.8). The Galois group Gal(L/KX) acts on the moduli stack BunG̃(X̃). Ac-
cording to Remark 10.5.12, this action permutes the Harder-Narasimhan strata (via the action
of Gal(L/KX) on A determined by the homomorphism ρ).

The Galois group Gal(Fqd/Fq) is canonically isomorphic to the cyclic group Z/dZ generated
by the Frobenius map t 7→ tq, and the Galois group Gal(L/KX) fits into a short exact sequence

0→ Γ→ Gal(L/KX)→ Z/dZ→ 0

where Γ denotes the Galois group of L over KX ⊗Fq Fqd . Let AΓ denote the set of fixed
points for the action of Γ on A. According to Remark 10.2.6, the homotopy fixed point stack

BunG̃(X̃)Γ inherits a stratification by locally closed substacks

{BunG̃(X̃)Γ
P0,ν}(P0,ν)∈AΓ ,

where each stratum BunG̃(X̃)Γ
P0,ν

is given by

((BunG̃(X̃)P0,ν)Γ)red.

We will regard BunG̃(X̃)Γ as an algebraic stack (not necessarily smooth) over Spec Fqd . This
algebraic stack inherits a residual action of the group Z/dZ (compatible with the action of
Z/dZ ' Gal(Fqd/Fq) on Spec Fqd), so we can consider the stack-theoretic quotient

X = BunG̃(X̃)Γ/(Z/dZ)

as an algebraic stack over Fq. Moreover, we have

BunG̃(X̃)Γ ' X×Spec Fq Spec Fqd .

Remark 10.8.1. Let X denote the stack-theoretic quotient of X̃ by the action of Gal(L/KX).
Then X is a “stacky curve” over Spec Fq, and there is a natural map π : X → X which exhibits

X as the coarse moduli space of X ′. The action of Gal(L/KX) on G̃ allows us to descend G̃ to

an affine group scheme G = G̃/Gal(L/KX) over X, and we can think of X as the moduli stack
(defined over Fq) of G-bundles on X.

Let AΓ/(Z/dZ) be the quotient of AΓ by the action of Z/dZ; for each object (P0, ν) ∈ AΓ,
we let [P0, ν] denote the image of (P0, ν) in the quotient AΓ/(Z/dZ). It follows from Remark
10.2.8 that X inherits a stratification by locally closed substacks {X[P0,ν]}[P0,ν]∈AΓ/(Z/dZ), where
each X[P0,ν] can be identified with the quotient

BunG̃(X̃)Γ
P0,ν/H

where H denotes the subgroup of Z/dZ which stabilizes the element (P0, ν) ∈ AΓ.
Let BunG(X)F

qd
denote the fiber product BunG(X) ×Spec Fq Spec Fqd . The Gal(L/KX)-

equivariant map β : G×X X̃ → G̃ induces a morphism of algebraic stacks

BunG(X)F
qd
→ BunG̃(X̃)Γ
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over Fqd which descends to a morphism BunG(X) → X of algebraic stacks over Fq. Applying
Remark 10.2.5, we obtain a stratification of BunG(X) by locally closed substacks

{BunG(X)[P0,ν]}[P0,ν]∈AΓ/(Z/dZ),

where
BunG(X)[P0,ν] = (BunG(X)×X X[P0,ν])red.

By virtue of Proposition 10.2.11, in order to prove that BunG(X) satisfies the Grothendieck-
Lefschetz trace formula, it will suffice to verify the following:

Proposition 10.8.2. The stratification {BunG(X)[P0,ν]}[P0,ν]∈AΓ/(Z/dZ) is convergent, in the
sense of Definition 10.2.9.

The remainder of this section is devoted to the proof of Proposition 10.8.2. We begin by

analyzing the Harder-Narasimhan stratification of BunG̃(X̃). Recall that for each (P0, ν) ∈ A,

the Harder-Narasimhan stratum BunG̃(X̃)P0,ν is equipped with a finite surjective radicial map

Bunν
G̃,P0

(X̃)ss → BunG̃(X̃)P0,ν

(see Notation 10.6.11). If (P0, ν) ∈ AΓ, then the group Γ acts on both Bunν
G̃,P0

(X̃)ss and

BunG̃(X̃)P0,ν (via its action on X̃ as an algebraic curve over Spec Fqd together with its action
on the group G0 via the homomorphism ρ), and therefore determines a map of fixed point
stacks

Bunν
G̃,P0

(X̃)ss Γ → (BunG̃(X̃)P0,ν)Γ.

Lemma 10.8.3. For each (P0, ν) ∈ AΓ, the map

Bunν
G̃,P0

(X̃)ss Γ → (BunG̃(X̃)P0,ν)Γ.

is a finite radicial surjection.

Proof. Choose a map SpecR → (BunG̃(X̃)P0,ν)Γ set Y = SpecR ×BunG̃(X̃)P0,ν
BunνG,P0

(X̃)ss.

Theorem 10.3.13 implies that Y is a scheme and the map Y → SpecR is surjective, finite, and
radicial (see Notation 10.6.11). The group Γ acts on Y , and we have

SpecR×(BunG̃(X̃)P0,ν
)Γ BunνG,P0

(X̃)ss Γ ' Y Γ.

To prove Lemma 10.8.3, we must show that the map Y Γ → SpecR is also surjective, finite, and
radicial. Since Y Γ can be identified with a closed subscheme of Y , the only nontrivial point is
to prove surjectivity. Fix an algebraically closed field κ and a map η : Specκ→ SpecR. Since
the map Y → SpecR is a radicial surjection, the map η lifts uniquely to a map η : Specκ→ Y .
It follows from the uniqueness that η is invariant under the action of Γ, and therefore factors
through the closed subscheme Y Γ ⊆ Y . �

Construction 10.8.4. The stratification of BunG(X) that we have defined above is obtained

by pulling back the Harder-Narasimhan stratification of BunG0
(X̃) along a certain (Z/dZ)-

equivariant map

BunG(X)×Spec Fq Spec Fqd → BunG0(X̃)Γ,

and then taking quotients by the action of Z/dZ.
Let (P0, ν) be an element of AΓ. We let Y[P0,ν] denote the reduced algebraic stack

(BunG(X)F
qd
×BunG̃(X̃)Γ Bunν

G̃,P0
(X̃)ss Γ)red,

which carries an action of the subgroup d′Z/dZ ⊆ Z/dZ which stabilizes (P0, ν) ∈ AΓ.
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Proposition 10.8.5. Let (P0, ν) ∈ AΓ and let C ⊆ Z/dZ be a subgroup which stabilizes (P0, ν).
Then, as an algebraic stack over Fq, the quotient Y[P0,ν] /C can be written as a stack-theoretic
quotient Y/H, where Y is a quasi-compact quasi-separated algebraic space over Fq and H is a
linear algebraic group over Fq.

Proof. Let C ′ ⊆ Z/dZ be the stabilizer of (P0, ν) in AΓ. It follows from Lemma 10.8.3 that
Y[P0,ν] /C

′ admits a surjective finite radicial map Y[P0,ν] → BunG(X)P0,ν . The projection map
Y[P0,ν] /C → Y[P0,ν] /C

′ is finite étale and the inclusion BunG(X)P0,ν ↪→ BunG(X) is a locally
closed immersion. It follows that the composite map

Y[P0,ν] /C → Y[P0,ν] /C
′ → BunG(X)P0,ν ↪→ BunG(X)

is quasi-finite. By virtue of Corollary 10.4.2, Proposition 10.8.5 is equivalent to the statement
that the algebraic stack Y[P0,ν] /C is quasi-compact. Since the quotient map Y[P0,ν] → Y[P0,ν] /C
is surjective, it will suffice to show that Y[P0,ν] is quasi-compact.

Using Propositions 10.4.4 and 10.4.3, we deduce that the composite map

BunG(X)F
qd

g→ BunG̃(X̃)Γ → BunG̃(X̃)

is quasi-compact. Since the algebraic stack BunG̃(X̃) has affine diagonal, the map BunG̃(X̃)Γ →
BunG̃(X̃) is affine and, in particular, quasi-separated. It follows that g is quasi-compact.
Consequently, to prove that

Y[P0,ν] = (BunG(X)F
qd
×BunG̃(X̃)Γ Bunν

G̃,P0
(X̃)ss Γ)red,

is quasi-compact, it will suffice to show that Bunν
G̃,P0

(X̃)ss Γ is quasi-compact. Using the affine

morphism Bunν
G̃,P0

(X̃)ss Γ → Bunν
G̃,P0

(X̃)ss, we are reduced to proving that Bunν
G̃,P0

(X̃)ss is

quasi-compact. It now suffices to observe that we have a pullback diagram

Bunν
G̃,P0

(X̃)ss //

��

BunνP0 ad
(X̃)ss

��
BunG̃(X) // BunG̃ad

(X),

where the lower horizontal map is quasi-compact (Proposition 10.4.5) and the upper right hand
corner is quasi-compact (Proposition 10.4.6). �

Note that every stratum of BunG(X) admits a surjective finite radicial morphism from a
quotient stack Y[P0,ν] /C, where C ⊆ Z/dZ (and no two strata correspond to the same quotient).
Here there are only finitely many choices for the parabolic subgroup P0 and for the subgroup
C. Consequently, Proposition 10.8.2 is a consequence of Proposition 10.8.5 together with the
following:

Proposition 10.8.6. Let d′ be a divisor of d, let P0 ⊆ G0 be a standard parabolic subgroup
which is fixed under the action of the subgroup

Γ′ = Gal(L/KX)×Z/dZ (d′Z/dZ) ⊆ Gal(L/KX),

and let B ⊆ Hom(P0 ad,Gm)∨>0 be the subset consisting of those elements ν which are fixed by
Γ′. Then there exists a finite subset B0 ⊆ B with the following properties:

(1) For each ν ∈ B, there exists ν0 ∈ B0 and a (d′Z/dZ)-equivariant map of algebraic
stacks

Y[P0,ν0] → Y[P0,ν]
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which exhibits Y[P0,ν0] as a fiber bundle (locally trivial with respect to the étale topology)
of some rank eν over Y[P0,ν].

(2) For every real number r > 1, the infinite sum
∑
ν∈B r

−eν converges.

To prove Proposition 10.8.6, we are free to replace the ground field Fq by Fqd′ and thereby

reduce to the case where d′ = 1. For the remainder of this section, we will fix a standard
parabolic subgroup P0 ⊆ G0 which is invariant under the action of the Galois group Gal(L/KX);
we will prove that Proposition 10.8.6 is valid for P0 (in the case d′ = 1). To simplify our notation,
for ν ∈ B we will denote the algebraic stack Y[P0,ν] simply by Yν .

Let Λ ⊆ Hom(P0 ad,Gm)∨ be as in Notation 10.6.14. Let ∆P0 = {α1, . . . , αm} be the
collection of simple roots α of G0 such that −α is not a root of P0. The construction

λ 7→ {〈αi, λ〉}1≤i≤m
determines an injective map Λ ↪→ Zm between finitely generated abelian groups of the same
rank. It follows that we can choose an integer N > 0 such that the image of Λ contains NZm:
in other words, we can find elements λ1, . . . , λm ∈ Λ satisfying

〈αj , λi〉 =

{
N if i = j

0 otherwise.

Every element ν Hom(P0 ad,Gm)∨ can be written uniquely in the form
∑
ciλi, where the el-

ements ci are rational numbers. We observe that ν belongs to Hom(P0,Gm)∨>0 if and only if
each of the rational numbers ci is positive, and that ν is fixed by the action of Gal(L/K0) if and
only if we have ci = cj whenever the roots αi and αj are conjugate by the action of Gal(L/KX)
(which acts on the set ∆P0

via the group homomorphism ρ : Gal(L/KX)→ Out(G0)).

Since L is a Galois extension of KX , the map π : X̃ → X is generically étale. Choose

a closed point x ∈ X such that π is étale over the point x and the map β : G ×X X̃ → G̃

is an isomorphism when restricted to the inverse image of x. Let D ⊆ X̃ be the effective
divisor given by the inverse image of x, and let deg(D) denote the degree of D over Fqd . Let
us say that an element ν =

∑
ciλi ∈ Hom(P0,Gm)∨ is minimal if each of the coefficients ci

satisfy 0 < ci ≤ deg(D). Note that every element ν ∈ Hom(P0,Gm)∨ can be written uniquely
in the form ν0 +

∑
ci deg(D)λi, where ν0 is minimal and each ci is an integer. Moreover, ν

belongs to Hom(P0,Gm)∨>0 if and only if each of the integers ci is nonnegative, and ν is fixed
by Gal(L/KX) if and only if ν0 and

∑
ciλi are both fixed by Gal(L/KX). We will deduce

Proposition 10.8.6 from the following more precise result:

Proposition 10.8.7. Let ν ∈ Hom(P0,Gm)∨ be an element which is minimal and fixed by the
action of Gal(L/KX). For every element λ ∈ Λ≥0 which is fixed by the action of Gal(L/KX),
there exists a (Z/dZ)-equivariant map Yν → Yν+deg(D)λ which exhibits Yν as a fiber bundle
(locally trivial with respect to the étale topology) whose fibers are affine spaces of dimension
deg(D)
|Γ| 〈2ρP0 , λ〉.

Proof. For each ν ∈ Hom(P0 ad,Gm)∨>0, let Zν denote the fiber product

BunG(X)F
qd
×BunG̃(X̃)Γ Bunν

G̃,P0
(X̃)ss Γ.

Let U = X − {x}, which we regard as an open subset of X, and let Ũ denote the inverse

image of U in X̃. Let BunG(U) denote the moduli stack of G-bundles on U : that is, the
(non-algebraic) stack over Fq whose R-valued points are given by G-torsors on the open curve

UR = U ×Spec Fq SpecR, and define BunG̃(Ũ) similarly. Since the map X̃ → X is étale over
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the point x and the map G×X X̃ → G̃ is an isomorphism over {x}, the diagram

BunG(X)F
qd

//

��

BunG̃(X̃)Γ

��
BunG(U)F

qd
// BunG̃(Ũ)Γ

is a pullback square. It follows that we can identify Zν with the fiber product

BunG(U)F
qd
×BunG̃(Ũ)Γ Bunν

G̃,P0
(X̃)ss Γ.

For each λ ∈ Λ≥0, the twisting map

Twλ,D : BunG̃,P0
(X̃)→ BunG̃,P0

(X̃)

is Gal(L/KX)-equivariant (Remark 10.6.32) and therefore induces a (Z/dZ)-equivariant map

u : BunG̃,P0
(X̃)Γ → BunG̃,P0

(X̃)Γ.

It follows from Remark 10.6.30 that u restricts to a (Z/dZ)-equivariant map

u0 : Bunν
G̃,P0

(X̃)ss Γ → Bun
ν+deg(D)λ

G̃,P0
(X̃)ss Γ.

The map u0 is a pullback of u, and therefore (by virtue of Proposition 10.6.33) is an étale fiber

bundle whose fibers are affine spaces of dimension deg(D)
|Γ| 〈2ρP0 , λ〉. Note that the twisting

construction does not modify bundles over the open set Ũ : in other words, the diagram

Bunν
G̃,P0

(X̃)ss Γ //

u0

��

BunG̃(X)Γ

id

��
Bun

ν+deg(D)λ

G̃,P0
(X̃)ss Γ // BunG̃(X)Γ

commutes up to canonical isomorphism. This isomorphism allows us to lift u0 to a (Z/dZ)-
equivariant map

u0 : Zν → Zν+deg(D)λ

which is a pullback of u0 and therefore also an étale fiber bundle whose fibers are affine spaces

of dimension deg(D)
|Γ| 〈2ρP0

, λ〉.
By definition, we have Yν = (Zν)red and Yν+deg(D)λ = (Zν+deg(D))red. Consequently, u0

induces a (Z/dZ)-equivariant map v : Yν → Yν+deg(D)λ which factors as a composition

Yν
v′→ Yν+deg(D)λ×Zν+deg(D)λ

Zν
v′′→ Yν+deg(D)λ .

The map v′′ is a pullback of u0 and is therefore an étale fiber bundle whose fibers are affine

spaces of dimension deg(D)
|Γ| 〈2ρP0

, λ〉. To complete the proof, it will suffice to show that v′ is

an equivalence. It is clear that v′ induces an equivalence of the underlying reduced substacks.
Since Yν is reduced, we only need to show that the fiber product Yν+deg(D)λ×Zν+deg(D)λ

Zν is

also reduced. This follows from the fact that Yν+deg(D)λ is reduced, since the morphism v′′ is
smooth. �



368 DENNIS GAITSGORY AND JACOB LURIE

Proof of Proposition 10.8.6. We will show that the subset

B0 = {ν ∈ B : ν is minimal} ⊆ B

satisfies the requirements of Proposition 10.8.6. The only nontrivial point is to prove the
convergence of the infinite sum

∑
ν∈B r

−eν for r > 1. By virtue of Proposition 10.8.7, we can
write this sum as

|B0|
∑
λ∈Z

r−
deg(D)
|Γ| 〈2ρP0

,λ〉,

where the sum is taken over the set of all Gal(L/KX)-invariant elements λ ∈ Λ which can be
written in the form

∑
1≤i≤m ciλi where each ci is a nonnegative integer. Up to a constant factor

of |B0|, this sum is dominated by the larger infinite sum∑
c1,...,cm≥0

r−
N
|Γ| 〈2ρP0

,
∑
ciλi〉 =

∑
c1,...,cm∈Z≥0

(r−
deg(D)
|Γ| )

∑
ci〈2ρP0

,λi〉

=
∏

1≤i≤m

(
rai

rai − 1
)

< ∞,

where ai = deg(D)
|Γ| 〈2ρP0

, λi〉. �

Appendix A

In this appendix, we review some general facts about group schemes, principal bundles, and
algebraic curves which will be needed throughout this paper. We recommend that the reader
refer to it only as needed.

A.1. G-Bundles.

Definition A.1.1. Let X be a scheme, and let G be a group scheme over X. For every X-
scheme Y , let GY = G ×X Y denote the associated group scheme over Y . By a G-bundle on
Y , we will mean a Y -scheme P equipped with an action

GY ×Y P ' G×X P→ P

of GY (in the category of Y -schemes) which is locally trivial in the following sense: there exists
a faithfully flat map U → Y and a GY -equivariant isomorphism U×Y P ' U×Y GY ' U×XG.

Remark A.1.2. Let G be an group scheme over X. Then G represents a functor hG from
the category of X-schemes to the category of groups, and the functor hG is a sheaf for the
fpqc topology. Every G-bundle P on X represents a functor hP which can be regarded as an
hG-torsor, locally trivial for the fpqc topology. If G is affine, then every hG-torsor arises in this
way (since affine morphisms satisfy effective descent for the fpqc topology). For this reason,
we will generally use the terminology G-bundle and G-torsor interchangeably when G is affine
(which will be satisfied for all of our applications).

Notation A.1.3. Let X be a scheme and let G be an affine group scheme over X. For every
X-scheme Y , we let TorsG(Y ) denote the category whose objects are G-bundles on Y , and
whose morphisms are isomorphisms of G-bundles.

Remark A.1.4. In the special case where G is a smooth over X, any G-bundle P on an X-
scheme Y is smooth as a Y -scheme. It follows that P can be trivialized over an étale covering
U → Y .
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Notation A.1.5. Let R be a commutative ring and let G be an affine group scheme over
SpecR. Then we can write G = SpecOG, where OG is a commutative Hopf algebra over R. We
let Rep(G) denote the category of left OG-comodules which are projective R-modules of finite
rank.

Let V ∈ Rep(G), let X be an R-scheme, and let π : P → X be a G-bundle on X. The left
OG-coaction on V determines descent data on the locally free sheaf V ⊗R OP, so that we can
write

V ⊗R OP = π∗VP

for some locally free OX -module VP. We will refer to VP as the vector bundle associated to P

by the representation V .

Proposition A.1.6. Let R be a Dedekind ring and let G be a flat affine group scheme over R,
let S be an arbitrary scheme, and let Vect(X) be the category of locally free OS-modules. Let
C denote the category whose objects are pairs (f,P), where f : S → SpecR is a morphism of
schemes and P is a G-bundle on S (morphisms in the category C are given by isomorphisms
of G-bundles). For every such pair (f,P), let f∗P : Rep(G) → Vect(X) be the functor given by
f∗P(V ) = VP. Then the construction

(f,P) 7→ (f∗P : Rep(G)→ Vect(S))

induces an equivalence from C to the category of symmetric monoidal functors from Rep(G) to
Vect(S) which preserve zero objects and exact sequences (with morphisms given by symmetric
monoidal natural transformations).

Proof. See Corollary SAG.2.3.6.15. �

Corollary A.1.7. Let R be a Dedekind ring and let G be a flat affine group scheme over R. If
A is a Noetherian R-algebra which is complete with respect to an ideal I ⊆ A, then the groupoid
TorsG(A) is equivalent to the homotopy inverse limit of the groupoids TorsG(A/In).

In other words, giving a G-bundle on the affine scheme SpecA is equivalent to giving a
G-bundle on the affine formal scheme Spf A.

Proof. This follows from Proposition A.1.6, since Vect(SpecA) is equivalent to the homotopy
inverse limit of the groupoids Vect(SpecA/In). �

Proposition A.1.8. Let R be a discrete valuation ring with fraction field K and let G be a flat
affine group scheme over R with generic fiber GK . Then any map GK → Gm of group schemes
over K extends to a map G→ Gm of group schemes over R.

Proof. Let t denote a uniformizer of R and let OG be the ring of functions on G, so that
OG[t−1] is the ring of functions on the group scheme GK . Let ∆ : OG → OG⊗R OG be
the comultiplication associated to the group structure on G. Then a group homomorphism
GK → Gm is classified by an invertible element x ∈ OG[t−1] satisfying ∆(x) = x⊗ x. We will
show that x automatically belongs to OG. Applying the same argument to x−1, we deduce that
x is an invertible element of OG and therefore defines a group homomorphism G→ Gm.

Assume that x /∈ OG. Then there exists some least integer n such that tnx ∈ OG. Let M
be the quotient of OG by the R-submodule generated by tnx. We claim that M is torsion-free
as an R-module: that is, that the map t : M → M is injective. To prove this, we note that if
y ∈ OG and its image y ∈M satisfies ty = 0, then ty = atnx for some a ∈ R, so that (using the
flatness of OG over R) we have y = atn−1x. Since tn−1x /∈ OG, the element a ∈ R cannot be
invertible; it follows that y is a multiple of tnx and therefore y = 0.
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Since R is a discrete valuation ring, M is a flat R-module. Let φ denote the unit map
OG[t−1]/OG → OG⊗R(OG[t−1]/OG), so that we have an exact sequence

0→ R⊗R OG[t−1]/OG
φ→ OG⊗R OG[t−1]/OG →M ⊗R OG[t−1]/OG → 0

Since ∆(x) = x ⊗ x, we have ∆(tnx) = tnx ⊗ x ∈ OG⊗OG. If x denotes the image of x in
OG[t−1]/OG, we conclude that φ(1⊗ x) = 0, so that the injectivity of φ guarantees that x = 0.
This proves that x ∈ OG, as desired. �

A.2. Curves and Divisors. In this section, we review some elementary facts about divisors
on algebraic curves which will be needed in the body of the paper.

Definition A.2.1. Let S be a scheme. A relative curve over S is a smooth, proper, geometri-
cally connected morphism π : X → S of relative dimension 1.

Let π : X → S be a relative curve. An effective divisor in X is a closed subscheme D ⊆ X

such that the composite map D ↪→ X
f→ S is finite and flat. If D is finite and flat of degree d

over S, then we will say that D is an effective divisor of degree d.

Example A.2.2. Let π : X → S be a relative curve, and let α : L → L′ be a morphism
between line bundles on X. Suppose that, for each point s ∈ S, the induced map Ls → L′s of
line bundles on Xs = X ×S {s} is nonzero. Then the vanishing locus of α is an effective divisor
in X.

Notation A.2.3. Let π : X → S be a relative curve, and suppose we are given effective
divisors D,D′ ⊆ X, defined by invertible ideal sheaves OX(−D),OX(−D′) ⊆ OX . We let
D + D′ denote the closed subscheme of X defined by product OX(−D)OX(−D′) ⊆ OX . For
each integer n ≥ 0, we let nD denote the sum of n copies of D.

Let J be a finite set, let S′ be an S-scheme, and suppose we are given a map β : J →
HomS(S′, X). Let XS′ denote the fiber product S′ ×S X (viewed as a relative curve over S′),
and for each j ∈ J we let Γj ⊆ XS′ denote the graph of the morphism β(j) ∈ HomS(S′, X):
this is a closed subscheme of XS′ which we regard as an effective divisor of degree 1. We let
|β| denote the sum

∑
j∈J Γj ⊆ XS′ , so that |β| is an effective divisor of degree equal to the

cardinality of the set J .

Remark A.2.4. In the situation of Notation A.2.3, we will often abuse notation by denoting
the effective divisor |β| by |J | (if the map β is clear from context).

If J is given as a subset of HomS(S′, X), we let |J | denote the effective divisor |ι|, where
ι : J ↪→ HomS(S′, X) denotes the inclusion map. Note that for an arbitrary map β : J →
HomS(S′, X), the divisors |β| and |β(J)| have the same underlying topological space, but gen-
erally have different scheme structures (unless β is injective).

Remark A.2.5. Let π : X → S be a relative curve, and let D,D′ ⊆ X be effective divisors
with D′ ⊆ D. Then we can write D = D′ + D′′ for a unique effective divisor D′′ ⊆ X. To
prove this, let OX(−D) and OX(−D′) be the ideal sheaves of D and D′, respectively. Then
OX(−D′) is an invertible sheaf with inverse OX(D′). We can then take D′′ to be the effective
divisor defined by the invertible ideal sheaf given by the image of the natural map

OX(−D)⊗ OX(D′) ↪→ OX(−D′)⊗ OX(D′) ' OX .

Proposition A.2.6. Let S be a scheme, let f : X → S be a relative curve and suppose we are
given closed subschemes Y, Z ⊆ X such that Y ∩Z = ∅, and neither Y nor Z contains a fiber of
f . Then there exists a surjective étale morphism S′ → S and an effective divisor D ⊆ X ×S S′
of constant degree d ≥ 0 which contains Y ×S S′ and is disjoint from Z ×S S′.
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Lemma A.2.7. Let R be a commutative ring, let f : X → SpecR be a relative curve, and
suppose we are given closed subschemes Y,Z ⊆ X such that Y ∩ Z = ∅. Suppose further that
there exist effective divisors D,D′ ⊆ X (of degrees d, d′ > 0) such that D ∩ Z = D′ ∩ Y = ∅.
Then there exists an effective divisor D′′ ⊆ X (of constant degree d′′ > 0) which contains Y
and is disjoint from Z.

Proof. Replacing Z by Z∪D′ if necessary, we may assume that the projection map Z → SpecR
is surjective. Enlarging Y and Z if necessary, we may suppose that Y and Z are of finite
presentation over X. Then X, D, D′, Y , and Z are defined over some finitely generated
subring R0 ⊆ R; replacing R by R0, we may suppose that R is Noetherian.

The inclusion D ↪→ X is a closed immersion, defined by an invertible ideal sheaf OX(−D) ⊆
OX . For every coherent sheaf F on X, we let F(nD) denote the tensor product of F with
O(−D)⊗−n. Let IY denote the ideal sheaf defining the closed subscheme Y ⊆ X, and let
i : Z → X denote the inclusion map. Since Y and Z do not intersect, the composite map

IY ↪→ OX → i∗ OZ

is an epimorphism. Let F denote the kernel of this epimorphism. For every integer n, we have
an exact sequence of sheaves

0→ F(nD)→ IY (nD)→ (i∗ OZ)(nD)→ 0.

The line bundle OX(D) is ample, so that H1(X;F(nD)) ' 0 for n � 0. In particular, we can
choose n > 0 such that the map

H0(X; IY (nD))→ H0(X; (i∗ OZ)(nD)) ' H0(Z;OZ)

is surjective. It follows that there exists a section f of IY (nD) ⊆ OX(nD) which takes the value
1 on Z. Since Z → SpecR is surjective, the section f does not vanish on any fiber of the map
f . The vanishing locus of f is an effective divisor of degree nd (Example A.2.2) which contains
Y and is disjoint from Z. �

Proof of Proposition A.2.6. The assertion is local on S with respect to the étale topology. We
may therefore assume without loss of generality that S = SpecR is affine. Since Y and Z do
not contain any fibers of f , the maps

X − Y → SpecR← X − Z

are smooth surjections. Passing to an étale cover of SpecR, we may assume that each of these
maps admits a section. In this case, the desired result follows from Lemma A.2.7. �

The following statement is closely related to Proposition A.2.6:

Proposition A.2.8. Let S be a Noetherian scheme, let π : X → S be a relative curve and let
K ⊆ X be a closed subset. Suppose that s ∈ S is a point such that K does not contain the
fiber π−1{s}. Then there exists an étale map U → S whose image contains s and an effective
divisor D ⊆ X ×S U of constant degree whose underlying topological space contains K ×S U .

Proof. The assertion is local on S; we may therefore assume without loss of generality that
S = SpecR is affine. Replacing R by an étale R-algebra, we may assume that the map π
admits a section. It follows that X admits an ample line bundle L of degree one. Let us regard
K as a closed subscheme of X (by giving it the reduced structure), and let I ⊆ OX be its ideal
sheaf.
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For n � 0, the coherent sheaf I⊗L⊗n is generated by global sections. Since π−1{s} is not
contained in K, there exists a global section of I⊗L⊗n which does not vanish at the generic
point of π−1{s}. We can identify this section with a map of coherent sheaves

α : L−n → I ⊆ OX .

Then the vanishing locus of α is a closed subscheme D ⊆ X containing K. Since X is flat
over S, the map X −D → S has open image. Replacing S by an open subset if necessary, we
may assume that the map X − D → S is surjective: that is, g does not vanish on any fiber
of π. It follows that D is an effective divisor of constant degree n which contains K (Example
A.2.2). �

Proposition A.2.9. Let π : X → S be a relative curve, and let D ⊆ X be an effective divisor
of degree n. Then there exists a finite flat surjective map S′ → S and a map β : {1, . . . , n} →
HomS(S′, X) such that D ×S S′ coincides with |β| (as effective divisors in XS′).

Proof. We proceed by induction on n. If n = 0, then D = ∅ and there is nothing to prove.
Otherwise, the map D → S finite, flat, and surjective. Replacing S by D, we may reduce to
the case where π|D admits a section s. Let D′ ⊆ X denote the scheme-theoretic image of s.
Then D′ ⊆ D, so we can write D = D′ + D′′ where D′′ is an effective divisor of degree n − 1
(Remark A.2.5).

The inductive hypothesis implies that there exists a finite, flat, surjective map S′ → S such
that S′ ×S D′′ = |β0|, for some map β0 : {1, . . . , n − 1} → HomS(S′, X). It now suffices to
take β : {1, . . . , n} → HomS(S′, X) to be the unique map extending β0 for which β(n) is the

composition S′ → S
s→ X. �

Corollary A.2.10. Let S be a scheme, let π : X → S be a relative curve and suppose we are
given closed subschemes Y,Z ⊆ X such that Y ∩ Z = ∅, and that neither Y nor Z contains a
fiber of π. Then there exists a quasi-finite flat surjection S′ → S and a map β : {1, . . . , n} →
HomS(S′, X) such that |β| ⊆ XS′ contains S′ ×S Y and is disjoint from S′ ×S Z.

Proof. Combine Propositions A.2.6 and A.2.9. �

A.3. Dilitations. Throughout this section, we fix a smooth algebraic curve X over an alge-
braically closed field k (not necessarily complete). We give a brief review of the theory of
dilitations (or affine blow-ups) for schemes over X, which will be useful at several points in the
body of this paper.

Construction A.3.1. Let φ : Y → X be a map of separated k-schemes, and let y ∈ Y (k) be
a k-valued point of Y . Since Y is separated, y is a closed immersion (when regarded as a map
of schemes from Spec k into Y ). We let Iy ⊆ OY denote the associated quasi-coherent ideal

sheaf, and OX(−φ(y)) ⊆ OX the ideal sheaf associated to the composite map Spec k
y→ Y

φ→ X.
Since X is a smooth curve, OX(−φ(y)) is an invertible sheaf on X. If F is a quasi-coherent
sheaf on Y and n is an integer, we let F(n) denote the tensor product F⊗φ∗ OX(−φ(y))⊗−n.

We have a canonical map φ∗ OX(−φ(y))→ Iy, which induces maps Imy (m)→ Im+1
y (m+ 1) for

m ≥ 0. Let Ay = lim−→ Imy (m), so that Ay is a quasi-coherent sheaf of commutative algebras

on Y . We let Dy(Y ) denote the relative spectrum SpecAy, so that we have an affine map of
schemes Dy(Y )→ Y . We will refer to Dy(Y ) as the dilitation of Y at the point y.

Remark A.3.2. In the situation of Construction A.3.1, suppose that the map φ : Y → X is

smooth. Then the composite map Dy(Y )
ψ→ Y → X is smooth. In particular, Dy(Y ) is smooth

over k. We can describe Ay as a subsheaf of the sheaf of rational functions on Y , generated
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over OY by local sections of the form f
φ∗g , where f is a section of OY which vanishes at the

point y, and g is a section of OX which has a simple pole at φ(y). Note that the map of
tangent bundles TDy(Y )/X → ψ∗TY/X (obtained by differentiating ψ) induces an isomorphism
TDy(Y )/X ' ψ∗(TY/X(−φ(y))).

Let U be the complement of φ(y) in X. Then the map Dy(Y )→ Y induces an isomorphism
Dy(Y )×X U → Y ×X U . Moreover, the fiber Dy(Y )×X Spec k (taken over the point φ(y)) is
canonically isomorphic to the tangent space to the fiber Y ×X {φ(y)} at the point y.

Remark A.3.3. In the situation of Construction A.3.1, we can identify Dy(Y ) with an open
subscheme of the scheme obtained from Y by blowing up the point y. More precisely, it is the
open subscheme complementary to the proper transform of the fiber Yφ(y) = Y ×X Spec k.

Example A.3.4. In the situation of Construction A.3.1, suppose that the map φ : Y → X is
an isomorphism. Then the projection map Dy(Y )→ Y is also an isomorphism.

Remark A.3.5. Construction A.3.1 is functorial in the pair (Y, y). That is, suppose that we
are given a commutative diagram of separated schemes

Y
ψ //

φ

  

Y ′

φ′

}}
X.

Let y be a k-point of Y and let y′ be its image in Y ′. Then ψ induces a map of schemes
Dy(Y )→ Dy′(Y

′). In particular, every section s : X → Y of the map φ : Y → X determines a
section s̃ : X → Dy(Y ) of the induced map Dy(Y )→ X.

Definition A.3.6. Let φ : Y → X be a map of k-schemes. Suppose we are given a pair of
sections s, s′ : X → Y of the map φ, and let x ∈ X(k) be a k-point of X. We will say that s
and s′ agree to order n at x if they coincide on the closed subscheme of X defined by the ideal
sheaf OX(−(n+ 1)x).

Proposition A.3.7. Let φ : Y → X be a map of separated k-schemes and let s, s′ : X → Y
be sections of φ. Suppose that s and s′ agree to order n ≥ 1 at some k-point x ∈ X(k), and
let y = s(x) = s′(x) ∈ Y (k). Let s̃, s̃′ : X → Dy(Y ) be the sections determined by s and s′,
respectively (see Remark A.3.5). Then s̃ and s̃′ agree to order (n− 1).

Proof. Let OX,x denote the local ring of X at the point x, let mx denote its maximal ideal,
and choose a uniformizer t of mx. We let OY,y denote the local ring of Y at y and my its
maximal ideal. Then s and s′ induce ring homomorphisms ρ, ρ′ : OY,y → OX,x. We can write
Dy(Y ) ×Y SpecOY,y as SpecA, where A is given by the direct limit lim−→mmy , with transition

maps given by multiplication by t. The sections s̃, s̃′ are classified by ring homomorphisms
ρ̃, ρ̃′ : A→ OX,x, whose restrictions to mmy are given by the compositions

mmy
ρ→ mmx

t−m→ OX,x mmy
ρ′→ mmx

t−m→ OX,x .

We wish to show that these maps agree modulo the ideal mnx . Since A is generated as a OX,x-
algebra by my, we are reduced to proving this in the case m = 1. In this case, the desired result
follows immediately from our assumption that ρ and ρ′ agree modulo mn+1

x . �

Construction A.3.8. Let φ : Y → X be a map of separated k-schemes, and let s : X → Y be
a section of Y . Let x ∈ X(k) be a k-valued point. We define a tower of k-schemes

· · · → D2
s,x(Y )→ D1

s,x(Y )→ D0
s,x(Y )→ X,
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equipped with a compatible family sections sn : X → Dn
s,x(Y ) by induction as follows. Set

D0
s,x(Y ) = Y , and s0 = s. Assuming that Dn

s,x(Y ) and the map sn : X → Dn
s,x(Y ) have been

constructed, we set yn = sn(x), define Dn+1
s,x (Y ) to be the dilitation of Dn

s,x(Y ) at the point yn,

and define sn+1 = s̃n to be the section of the map Dn+1
s,x (Y ) → X determined by the map sn,

as in Remark A.3.5. We will refer to Dn
s,x(Y ) as the nth order dilitation of Y along s at the

point x.

Variant A.3.9. Let φ : Y → X be a morphism of separated k-schemes equipped with a section
s, and let Q ⊆ X be an effective divisor which we can write as

∑
nixi. We let DQ

s (Y ) denote
the scheme obtained from Y by applying an (ni)th order dilitation of Y along s at the point
xi for each i (it is easy to see that this is independent of the ordering in which we perform
the dilitations, since the dilitation of Y at a point x ∈ X does not change Y on the open set
Y ×X (X − {x}).

Suppose that k is a separable algebraic extension of some subfield k0 ⊆ k and that the k-
schemes X and Y , the map φ, the section s, and the divisor D are all defined over k0. Then
the dilitation DQ

s (Y ) is also defined over k0 (this is an easy exercise in Galois descent).

Remark A.3.10. In the situation of Construction A.3.8, the nth order dilitation of Y along
s is characterized by the following universal mapping property: for any flat X-scheme Z,
composition with the map Dn

s,x(Y )→ Y induces an injection

HomX(Z,Dn
s,x(Y ))→ HomX(Z, Y )

(here HomX(Z, Y ) denotes the set of X-scheme morphisms from Z to Y and HomX(Z,Dn
s,x(Y ))

is defined similarly), whose image is the collection of those morphisms Z → Y for which the
composition

Z ×X E → Z → Y

is equal to the composition

Z ×X E → E ↪→ X
s→ Y,

where E ⊆ X is the effective divisor given by nx (this follows by induction on n; in the case
n = 1, it is immediate from the definition of the dilitation).

Proposition A.3.11. Let x ∈ X(k) be a k-valued point, and let φ : Y → X be a separated map
of integral k-schemes equipped with a section s : X → Y . Let U be the open subscheme of X
obtained by removing the point x, and suppose we are given a map of k-schemes ψ : Y×XU → Z,
where Z is a separated scheme of finite type over k. Suppose further that the composition

U
s→ Y ×X U

ψ→ Z

extends to a map h : X → Z. Then there exists an integer n ≥ 0 and a map ψ : Dn
s,x(Y )→ Z

such that the following diagram commutes:

Dn
s,x(Y )×X U //

∼
��

Dn
s,x(Y )

ψ

��
Y ×X U

ψ // Z.

Proof. The assertion is local on X. We may therefore assume without loss of generality that
X = SpecR is affine, and that the maximal ideal mx ⊆ R defining the point x is generated by
an element t ∈ R. Choose an affine open subscheme Y0 ⊆ Y containing the point y = s(x).
Replacing X by s−1Y0, we may assume that h factors through Y0. Note that for each n ≥ 0,
Dn
s,x(Y ) is covered by the open sets Dn

s,x(Y0) and Dn
s,x(Y ) ×X U ' Y ×X U , which intersect
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in Dn
s,x(Y0) ×X U ' Y0 ×X U . Consequently, to prove the existence of ψ, we may replace Y

by Y0 and thereby reduce to the case where Y = SpecA is affine. We will abuse notation
by identifying t ∈ R with its image in A. Moreover, the section s determines an R-algebra
homomorphism ρ : A→ R.

Choose an affine open subscheme Z0 ⊆ Z containing the point z = h(x). Replacing X by
h−1Z0, we may assume that h factors through Z0. The fiber product

Z0 ×Z (Y0 ×X U)

is a quasi-compact open subscheme of Y0×X U , and is therefore defined by a finitely generated
ideal I ⊆ A[t−1]. Choose a finite sequence of elements f1, . . . , fm ∈ A whose images in A[t−1]
generate the ideal I. Since h(X) ⊆ Z0, s(U) is contained in Z0×Z (Y0×X U), so that ρ(fi) 6= 0
for 1 ≤ i ≤ m. Since mx ⊆ R is a principal ideal, we can write ρ(f1) = tdg, where d ≥ 0 is an
integer and g ∈ R − mx. If d > 0, then f1 belongs to the maximal ideal my ⊆ A defining the
point y = s(x). Write Dy(Y ) = SpecA′. By construction, every element of the image of my in
A′ is divisible by t. Replacing Y by Dy(Y ), we may assume that f1 = tf ′1 for some f ′1 ∈ A. Note
that ρ(f ′1) = td−1g. Repeating this argument, we may reduce to the case where ρ(f1) /∈ mx.
Similarly we may assume that ρ(fi) /∈ mx for 1 ≤ i ≤ m. Consequently, none of the functions
f1, . . . , fm vanishes at the point y. We may therefore choose an affine open subscheme Y1 ⊆ Y ,
containing y, on which each of the functions fi is invertible. Replacing X by s−1Y1, we may
assume that s factors through Y1. Replacing Y by Y1, we can assume that Y is affine and that
the map ψ factors through Z0. We may therefore replace Z by Z0 and thereby reduce to the
case where Z ' SpecB is affine.

For each n ≥ 0, write Dn
s,x(Y ) = SpecA(n) for some A-algebra A(n). Since Y is integral, each

A(n) can be identified with a subalgebra of A[t−1]. The map ψ induces a ring homomorphism
ν : B → A[t−1]. We wish to prove that ν factors through A(n) for n � 0. Since Z is of finite
type over k, B is finitely generated as a k-algebra. It will therefore suffice to show that for
every element b ∈ B, we have ν(b) ∈ A(n) for some n ≥ 0. Write ν(b) = t−na for some a ∈ A;
we will show that ν(b) ∈ A(n). The proof proceeds by induction on n, the case n = 0 being
trivial. If n > 0, then ν(tnb) = a, so that ρ(a) ∈ R belongs to the image of tnB in R (under
the ring homomorphism classifying the map h) and therefore a ∈ my. It follows that we can

write a = ta′ where a′ ∈ A(1). Then ν(b) = t1−na′, and the desired result follows by applying
the inductive hypothesis (after replacing Y by Dy(Y )). �

A.4. Automorphisms of Semisimple Algebraic Groups. Throughout this appendix, we
fix an algebraically closed field k and a simply connected semisimple algebraic group G over k.
Our goal is to establish some elementary facts about automorphisms of G which will be needed
in the body of the paper.

Recall that a pinning of G is a triple (B, T, {φα : Ga → B}) where B is a Borel subgroup
of G, T is a maximal torus contained in B, and {φα : Ga → B} is a collection of maps which
restrict to isomorphisms from Ga to the root subgroups of B corresponding to the simple roots
(with respect to the maximal torus T ). If σ is an automorphism of G, we say that σ respects
the pinning (B, T, {φα}) if it carries B, T , and {φα} into themselves. Let Aut(B,T,{φα})(G)
denote the group of all automorphisms of G which respect a pinning (B, T, {φα}). Then the
group Aut(B,T,{φα})(G) is isomorphic to the group of automorphisms of the Dynkin diagram of
G. Consequently, if Γ is any group acting on the Dynkin diagram of G, then we can regard Γ
as a group which acts on G preserving a pinning (B, T, {φα}). In this case, we will say that Γ
acts on G via automorphisms of its Dynkin diagram.

Proposition A.4.1. Let Γ be a finite group acting on G which preserves a pinning (B, T, {φα}).
Let N(T ) denote the normalizer of T , and let G0 denote the identity component of the fixed
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point locus GΓ ⊆ G. Then there exists a k-valued point g of the intersection N(T ) ∩G0 which
represents the longest element of the Weyl group W = N(T )/T .

Proof. Let Φ denote the set of roots of G (which we regard as a subset of the character lattice
Hom(T,Gm)), so that we can write Φ = Φ+ q Φ− where Φ+ is the set of roots of B, and
Φ− = {−α : α ∈ Φ+}. Let W0 denote the image of N(T ) ∩ G0 in W , and choose an element
w ∈ W0 for which the set Φ+ ∩ w(Φ+) is as small as possible. We will complete the proof by
showing that Φ+∩w(Φ+) = ∅ (so that w is the longest element of W ). Suppose otherwise; then
there exists a positive root α ∈ Φ+ such that w(α) also belongs to Φ+. Let ∆ = {α1, . . . , αn}
denote the set of simple roots, so that we can write α =

∑
ciαi where the coefficients ci are

nonnegative. Since w(α) is a positive root, at least one of the roots w(αi) must also be positive.
Replacing α by αi, we may suppose that α is a simple root. Let ∆0 denote the orbit of α under
the action of the group Γ.

For every simple root β ∈ ∆, let β∨ denote the corresponding coroot and let sβ ∈W be the
corresponding simple reflection. Let us identify ∆ with a set of vertices of the Dynkin diagram
of G, and let Y denote the set of connected components of ∆0 (regarded as a subgraph of the
Dynkin diagram of G). For each y ∈ Y , let Gy ⊆ G denote the Levi subgroup determined
by the corresponding subset of the Dynkin diagram of G, let Φ+,y denote the subset of Φ+

consisting of positive roots of Gy, and let sy denote the image in W of the longest element of
the Weyl group of Gy.

Let Φ+,Y =
⋃
y∈Y Φ+,y. Since w belongs to W0, the set {β ∈ Φ+ : w(β) ∈ Φ+} is Γ-

invariant, and therefore contains Φ+,Y . Note that the elements {sy}y∈Y commute; let s denote
their product in W . Then the action of s carries Φ+,Y to −Φ+,Y , and carries the set Φ+ \Φ+,Y

to itself. Consequently, we have

Φ+ ∩ ws(Φ+) = (Φ+ ∩ w(Φ+)) \ w(Φ+,Y ) ( Φ+ ∩ w(Φ+).

We will complete the proof by showing that s ∈ W0 (so that ws ∈ W0, contradicting our
choice of w). To prove this, we are free to replace G by the subgroup determined by the Dynkin
diagram ∆0. Replacing G by its simply connected cover, we may suppose that G is simply
connected, so that G factors as a product

∏
y∈Y Gy. This determines a factorization of the

Weyl group W as a product
∏
y∈Y Wy, under which the element s corresponds to the tuple

{sy}y∈Y . Fix an element y ∈ Y , and let Γy denote the stabilizer of y in Γ. Then we have a

canonical isomorphism GΓ ' GΓy
y . We may therefore replace G by Gy and Γ by Γy, and thereby

reduce to the case where G is a simple group and Γ acts transitively on the set of vertices of
the Dynkin diagram of G. Invoking the classification of semisimple algebraic groups, we see
that there are only two possibilities for the structure of G:

(a) We have G = SL2, equipped with the trivial action of Γ. In this case, there is nothing
to prove.

(b) We have G = SL3, where Γ contains an element γ which nontrivially permutes the
two vertices of the Dynkin diagram of G. Let us identify the Borel subgroup B and
its opposite with the subset of G consisting of upper and lower triangular matrices,
respectively. A simple calculation shows that the action of γ is given by the formulae

σ

 1 x z
0 1 y
0 0 1

 =

 1 y xy − z
0 1 x
0 0 1

 σ

 1 0 0
x 1 0
z y 1

 =

 1 0 0
y 1 0

xy − z x 1

 .
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Choose an element c of k satisfying c2 = 2. Then we obtain algebraic group homomor-
phisms u, v : Ga → G0 given by the formulae

u(t) =

 1 ct t2

0 1 ct
0 0 1

 v(t) =

 1 0 0
ct 1 0
t2 ct 1

 .

A simple calculation gives

u(1)v(−1)u(1) =

 0 0 1
0 −1 0
1 0 0

 ,

which is an element of N(T ) representing the longest element of the Weyl group W .

�

Fix a Borel subgroup B ⊆ G. Recall that a pair of Borel subgroups B′, B′′ ⊆ G are said to
be in general position if the intersection B′ ∩ B′′ is a maximal torus of G. We will need the
following fact:

Proposition A.4.2. Let Γ be a finite group acting faithfully on G which respects a pinning
(B, T, {uα}). Suppose that G does not have a simple factor of type A2m which is acted on
nontrivially by its stabilizer in Γ. Then there exists a finite collection of closed points g1, . . . , gn
belonging to the identity component of GΓ with the following property: every Borel subgroup of
G is in general position with respect to some conjugate giBg

−1
i .

Remark A.4.3. The hypothesis that G does not have a simple factor of type A2m with a
nontrivial action of its stabilizer is equivalent to the requirement that the Dynkin diagram of
G does not contain any edge connecting two vertices belonging to the same orbit of Γ.

Proof of Proposition A.4.2. For each point g ∈ G(k), let Wg ⊆ G/B be the open set whose
points are given by cosets hB such that hBh−1 is in general position with respect to gBg−1.
Let W be the union of the open sets Wg as g ranges over all k-valued points belonging to the
identity component of GΓ. Since G/B is quasi-compact, it will suffice to show that W = G/B.
Suppose otherwise. Then Y = G/B −W is a closed subset of G/B which is invariant under
the action of the identity component of GΓ.

Let ∆ be the set of simple roots of G and let π : ∆→ ∆/Γ denote the projection map. For
each element α ∈ ∆/Γ, we define a map fα : A1 → G by the formula

fα(t) =
∏

π(α)=α

uα(t).

Note that our hypothesis on G guarantees that the elements {uα(t)}π(α)=α commute with one

another, so that this product is independent of the ordering of the set π−1{α} ⊆ ∆. Let
f : A1 → G denote the product of the maps {fα}α∈∆/Γ (with respect to any ordering of the
set ∆/Γ). Let U ⊆ G denote the closed subgroup generated by the image of f . Because U
is contained in GΓ, it acts on the set Y . The algebraic group U is connected (since A1 is
connected) and solvable (since it is contained in B), so that the action of U on Y has a fixed
point hB. Then U is contained in the Borel subgroup hBh−1. Note that f(1) is a regular
unipotent element of G (Lemma 3.2 of [52]), and is therefore contained in a unique Borel
subgroup of G. We therefore have B = hBh−1. Since hB ∈ Y , we conclude that B cannot be
in general position with respect to gBg−1 for any point g belonging to the identity component
of GΓ, contradicting Proposition A.4.1. �
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Proposition A.4.2 fails for groups of type A2n if the field k has characteristic 2. However, we
have the following:

Proposition A.4.4. Let G be a simple algebraic group of type A2n and let Γ = Z/2Z be group
of automorphisms of G which preserve a pinning (B, T, {uα}). Let W ⊆ G/B be the open set
defined in the proof of Proposition A.4.2. Then one of the following assertions holds:

(1) The field k has characteristic 6= 2 and W = G/B.
(2) The field k has characteristic 2 and the closed subset Y = G/B −W can be written as

a disjoint union K− q K+, where the components K− and K+ are exchanged by the
action of Γ.

The proof of Proposition A.4.4 depends on the following elementary linear-algebraic fact:

Lemma A.4.5. Let V be a finite-dimensional vector space equipped with a nondegenerate sym-
metric bilinear form b : V ×V → V , and suppose that b satisfies b(v, v) = 0 if k is of character-
istic 2. Let V ′ ⊆ V be a subspace such that dim(V ) ≤ 2 dim(V ′). Then there exists a subspace
V ′′ ⊆ V such that V ′ ∩ V ′′ = {0}, V ′ + V ′′ = V , and b vanishes on V ′′ × V ′′.

Proof. Let V ′′ ⊆ V be maximal among those isotropic subspaces of V for which V ′ ∩ V ′′ =
{0} = V ′⊥ ∩ V ′′. Then the intersections V ′ ∩ V ′′⊥ and V ′⊥ ∩ V ′′⊥ have codimension dim(V ′′)
in V ′ and V ′⊥, respectively. The quotient W = V ′′⊥/V ′′ inherits a nondegenerate symmetric
bilinear form, and we have injective maps

V ′ ∩ V ′′⊥ →W V ′⊥ ∩ V ′′⊥ →W

whose images are orthogonal subspaces S and S⊥ of dimension dim(V ′)−dim(V ′′) and dim(V )−
dim(V ′) − dim(V ′′), respectively. The maximality of V ′ implies that every nonzero isotropic
vector of W is contained in either S or S⊥, and is therefore contained in S ∩ S⊥. Since V is
generated by isotropic vectors, it follows that

dim(V )− 2 dim(V ′′) = dim(W ) ≤ dim(S) = dim(V ′)− dim(V ′′),

so that dim(V ) ≤ dim(V ′) + dim(V ′′) and therefore V ′ + V ′′ = V . �

Proof of Proposition A.4.4. Without loss of generality we may assume that G is simply con-
nected so that there is an isomorphism G ' SL(V ), where V is a vector space of dimension
2n+ 1 over k. Then we can identify k-valued points of the quotient G/B with complete flags

(0) = F0 ⊂ F1 ⊂ · · · ⊂ F2n ⊂ F2n+1 = V

in the vector space V , where two flags F• and F ′• are in general position if Fi ∩ F ′j = {0} for
i+j ≤ 2n+1. Let σ denote the nontrivial element Γ. Then there is a nondegenerate symmetric
bilinear form b : V × V → k (unique up to scalar multiplication) for which σ is characterized
by the formula

b(gσv, v′) = b(v, g−1v′).

The Borel subgroup B can be identified with the stabilizer of a particular flag

(0) = V0 ⊂ V1 ⊂ · · · ⊂ V2n ⊂ V2n+1 = V

for which each Vi is the orthogonal complement (with respect to the bilinear form b) of V2n+1−i.
Let G0 denote the identity component of GΓ. For each complete flag F• in V , let G0,F•

denote the closed subset of G0 whose k-valued points g ∈ G0(k) such that F• is not in general
position with respect to gV•. Note that G0,F• can be written as a union of closed subsets

G1
0,F• ∪ · · · ∪G

2n
0,F• ,
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where Gd0,F• consists of those points g for which gVd∩F2n+1−d 6= {0}. Since G0 is irreducible, it

follows that G0 = G0,F• if and only if G0 = Gd0,F• for some 1 ≤ d ≤ 2n. We may therefore write

Y as a union
⋃

1≤d≤2n Yd, where Yd consists of those flags F• such that gVd∩F2n+1−d 6= {0} for

all g ∈ G0(k). Note that the involution σ carries Yd to Y2n+1−d. We will prove the following:

(∗) Let 1 ≤ d ≤ n. Then the set Yd ⊆ G/B contains no fixed points for σ, and is empty
unless the characteristic of k is equal to 2.

Proposition A.4.4 follows immediately from (∗) (if the characteristic of k is equal to 2, we can
take K− = Y1 ∪ · · · ∪ Yn and K+ = Yn+1 ∪ · · · ∪ Y2n).

Note that the field k has characteristic different from 2, then we can identify the fixed point
subgroup GΓ with the orthogonal group O(V ), so that the identity component of GΓ is given
by SO(V ). When k has characteristic 2, the bilinear form b restricts to a symplectic form
on the subspace V ′ = {v ∈ V : b(v, v) = 0}, and the fixed point locus GΓ (with its reduced
scheme structure) is isomorphic to the symplectic group Sp(V ′). In either case, the identity
component of GΓ acts transitively on the collection of all d-dimensional isotropic subspaces of
V for 1 ≤ d ≤ n. Consequently, a flag F• belongs to Yd if and only if F2n+1−d ∩ F ′ 6= {0}
for every isotopic subspace F ′ of dimension d. We conclude that (∗) follows immediately from
Lemma A.4.5 when the characteristic of k is different from 2.

We will henceforth assume that the characteristic of k is equal to 2. In this case, we will
deduce (∗) from the following:

(∗′) Let 1 ≤ d ≤ n. Then a complete flag F• belongs to Yd if and only if every vector
belonging to F2n+1−d is isotropic.

Assume (∗′) for the moment. The subset V ′ = {v ∈ V : b(v, v) = 0} is a linear subspace of
codimension 1 in V , so we can choose a vector v0 ∈ V such that V ′ = {v ∈ V : b(v, v0) = 0}.
Assertion (∗′) implies that a flag F• is contained in Yd if and only if v0 ∈ F⊥2n+1−d. If, in addition,

F• is fixed by the involution σ, then we deduce that F⊥2n+1−d = Fd, so that v0 ∈ Fd ⊆ F2n+1−d.
It follows that b(v0, v0) = 0, so that v0 ∈ V ′. Then b descends to a nondegenerate symplectic
form on the vector space V ′/kv0. Since a vector space of odd dimension cannot support a
nondegenerate symplectic form, we conclude that σ has no fixed points on Yd.

We now prove (∗′). Suppose first that every vector in F2n+1−d is isotropic. Then the
characteristic of k is equal to 2 (by the argument given above) and we have F2n+1−d ⊆ V ′. For
any k-valued point g of GΓ, the subspace g(Vd) is isotopic and therefore contained in V ′, so has
nontrivial intersection with F2n+1−d in V ′.

For the converse, suppose that F2n+1−d contains a non-isotropic vector. Then F2n+1−d ∩ V ′
has codimension d ≤ n in V ′. Applying Lemma A.4.5, we deduce that there is an isotropic
subspace F ′ ⊆ V ′ of dimension d such that F ′ ∩ F2n+1−d = {0}, so that F• /∈ Yd. �

Corollary A.4.6. Let Γ be a finite group acting on G which respects a pinning (B, T, {uα}).
Then the canonical map θ : GΓ → (G/B)Γ is surjective.

Proof. Since G is simply connected, it factors as a product of simple factors
∏
i∈I Gi. Let

I0 ⊆ I be a set of representatives for the orbits of Γ on I, and for each i ∈ I0 let Γi denote the
stabilizer of i ∈ Γ. Then θ can be identified with the product∏

i∈I0

GΓi
i →

∏
i∈I0

(Gi/Bi)
Γi ,

where Bi denotes the intersection of B with Gi. We may therefore assume without loss of
generality that G is simple.

We first treat the special case where G = SL(V ) for a vector space V of odd dimension
2n + 1, the field k has characteristic 2, and the action of Γ is nontrivial. Let b : V × V → k
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be as in the proof of Proposition A.4.4 and identify the k-valued points of G/B with complete
flags

(0) = F0 ⊂ F1 ⊂ · · · ⊂ F2n ⊂ F2n+1 = V

so that a flag F• is Γ-invariant if and only if F⊥d = F2n+1−d for 1 ≤ d ≤ 2n. Let F• and F ′• be
two such flags; we wish to show that there exists an automorphism of V which preserves the
bilinear form b and carries F• to F ′•. For 1 ≤ i ≤ n, let vi be an element of Fi \ Fi−1, so that
Fi is the linear span of the set of vectors {v1, . . . , vi}, and define v′1, . . . , v

′
n similarly. Note that

{v1, . . . , vn} and {v′1, . . . , v′n} are bases for Lagrangian subspaces of the symplectic vector space
V ′ = {v ∈ V : b(v, v) = 0}, so there exists a symplectic automorphism of V ′ which carries each
vi to v′i, and this symplectic automorphism extends uniquely to an automorphism of V which
preserves the symmetric bilinear form b.

We now treat the non-exceptional cases (that is, the cases where G 6= SL2n+1, Γ is trivial, or
k does not have characteristic 2). Let B− be the unique Borel subgroup of G which contains T
and is in general position with respect to B and let U− denote the unipotent radical of B−, so
that evaluation on the identity coset determines an open immersion U− ↪→ G/B whose image is
the open subset V ⊆ G/B consisting of those cosets gB for which gBg−1 is in general position
with respect to B−. Propositions A.4.2 and A.4.4 imply that G/B can be written as a union⋃

1≤i≤n giV for some finite collection of elements g1, . . . , gn ∈ G(k)Γ. It will therefore suffice to
show that every Γ-invariant element of giV can be lifted to a Γ-invariant element of G. Since gi
is Γ-invariant, we are reduced to proving that the map (G×G/B V )Γ → V Γ is surjective. This
is clear, since the composite map

UΓ
− → (G×G/B V )Γ → V Γ

is an isomorphism. �

Corollary A.4.7. Let Γ be a finite group acting on G which respects a pinning (B, T, {uα}),
and let G0 be the identity component of GΓ. Then B ∩ G0 is a Borel subgroup of G0 (when
endowed with the reduced scheme structure).

Proof. Let us regard GΓ, BΓ, and (G/B)Γ as closed subschemes of G, B, and (G/B), respec-
tively (endowed with the reduced scheme structure). Then GΓ and BΓ are reduced group
schemes over k, and therefore smooth. Since k is algebraically closed, the smooth locus of
(G/B)Γ is dense in (G/B)Γ. It follows from Corollary A.4.6 that the group GΓ acts transitively
on (G/B)Γ, from which we deduce that (G/B)Γ is smooth. We have an evident map of smooth
varieties φ : GΓ/BΓ → (G/B)Γ, and Corollary A.4.6 guarantees that this map is bijective on
k-points.

We now claim that φ is finite. To prove this, it will suffice to show that for every closed
point x of (G/B)Γ, there exists an étale neighborhood U of x such that the induced map
φU : (GΓ/BΓ) ×(G/B)Γ U → U is finite. Let x̃ denote a k-valued point of U lying over x.
Choosing U sufficiently fine, we can arrange that the domain of φU decomposes as a disjoint
union V qW , where φU |V is finite and the image of φU |W does not contain the point x̃. Since
φU is bijective on k-valued points, it follows that x̃ belongs to the image of φU |V . Since φU
is a quasi-finite map between smooth varieties, it is flat, so that the image of φU |V is an open
subset U0 ⊆ U containing x̃. Replacing U by U0, we may assume that φU |V is surjective. The
bijectivity of φU then implies that W = ∅, so that φU is finite as desired.

Because φ is finite, the quotient GΓ/BΓ is proper over Spec k. Since G0/(B ∩ G0) can be
identified with a connected component of GΓ/BΓ, we deduce that G0/(B ∩G0) is also proper
over Spec k: that is, B ∩G0 is a parabolic subgroup of G0. Since B ∩G0 is a subgroup of B, it
is solvable, and therefore a Borel subgroup of G0. �
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Remark A.4.8. In the situation of Corollary A.4.7, let B− denote the unique Borel subgroup
containing T which is in general position with respect to B. Then Corollary A.4.7 implies that
B− ∩ G0 is a Borel subgroup of G0, and the intersection (B− ∩ G0) ∩ (B ∩ G0) = T ∩ G0 is
diagonalizable. It follows that B− ∩G0 and B ∩G0 are in general position with respect to one
another, and that the intersection T ∩G0 is a maximal torus of G0. In particular, the algebraic
group G0 is reductive.

Definition A.4.9. Let G be a semisimple group equipped with a pinning (B, T, {uα}), and
let µ ∈ Hom(Gm, T ) be a cocharacter of T . We say that µ is dominant if, for every character
α ∈ Hom(T,Gm) which is a root of B (that is, a positive root of G), we have 〈µ, α〉 ≥ 0. We say
that µ is strictly dominant if 〈µ, α〉 > 0 for every root α of B. Here 〈, 〉 denotes the canonical
pairing

Hom(Gm, T )×Hom(T,Gm)→ Hom(Gm,Gm) ' Z.

Proposition A.4.10. Let Γ be a finite group acting on G which respects a pinning (B, T, {uα}),
let G0 be the identity component of GΓ, and let T0 = T ∩ G0. Then the inclusion i : T0 ↪→ T
carries strictly dominant cocharacters of T0 to strictly dominant cocharacters of T .

Proof. The inclusion i determines group homomorphisms

i∗ : Hom(Gm, T0)→ Hom(Gm, T ) i∗ : Hom(T,Gm)→ Hom(T0,Gm).

Let µ be a strictly dominant cocharacter of T0; we wish to prove that i∗µ is a strictly dominant
cocharacter of T . Equivalently, we wish to prove that the integer

〈i∗µ, α〉 = 〈µ, i∗α〉

is positive for every positive root α of G. Without loss of generality, we may suppose that α is
a simple root, which determines a vertex v of the Dynkin diagram of G. Arguing as in the proof
of Proposition A.4.1, we can replace G by a subgroup whose Dynkin diagram coincides with
the Γ-orbit of v, and thereby reduce to the case where Γ acts transitively on the simple roots of
G. Replacing G by its simply connected cover, we may assume that G factors as a product of
simple factors

∏
Gi, which are permuted transitively by Γ. Replacing G by one of the factors

Gi and Γ by the stabilizer of Gi, we may assume either that G = SL2 (with a trivial action
of Γ) or that G = SL3 (with the nontrivial action of Γ described in the proof of Proposition
A.4.1). In the first case, the result is obvious. In the second, we note that the homomorphism
u : Ga → G0 appearing in the proof of Proposition A.4.1 is is T0-equivariant, where T0 acts on
Ga by the character i∗α. Let d denote the degree of u, regarded as an isogeny from Ga to the
unipotent radical of G0∩B (so that d = 1 unless the ground field k has characteristic 2, in which
case we have d = 2). Then di∗(α) is a positive root of G0, so that 〈µ, i∗α〉 = 1

d 〈µ, di
∗α〉 > 0 by

virtue of our assumption that µ is strictly dominant. �

A.5. A Relative Künneth Formula. Throughout this section, we fix an algebraically closed
field k and a prime number ` which is invertible in k. In §2.3, we showed that if C and C′ are
prestacks, then there is a canonical equivalence

C∗(C; Z`)⊗ C∗(C′; Z`) ' C∗(C×Spec k C
′; Z`)

(see Proposition 2.3.40). In this section, we will discuss analogous results where the fiber
product is taken not over Spec k, but over an arbitrary quasi-projective k-scheme X. For
example, we will show that given a suitable pair of maps C → X ← C′, there is a canonical
equivalence

[C]X ⊗! [C′]X ' [C×X C′]X
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in the ∞-category of `-adic sheaves on X, where ⊗! denotes the !-tensor product introduced in
§4.6 and [C]X denotes the cohomology sheaf of the projection map C→ X (see §5.1). However,
this statement is valid in somewhat less generality than Proposition 2.3.40:

• Since we are working in cohomology rather than homology, we generally only expect a
Künneth formula under the assumption that C and C′ satisfy some reasonable finiteness
conditions. We will therefore restrict our attention to the case where C and C′ are
quasi-compact Artin stacks with affine diagonal (the condition that the diagonal be
affine can be relaxed, but is satisfied for all the Artin stacks of interest to us in this
paper).
• The formation of fiber products over X is generally a rather severe operation from a

topological point of view. We will therefore restrict our attention to the case where
the projection maps C → X ← C′ are smooth (in which case the formation of the
cohomology sheaves [C]X and [C′]X is compatible with base change; see Proposition
5.1.9).

Let us now outline the contents of this section. Our main objective will be to give careful
constructions of the ∞-category Shv!

` and the 2-category AlgStack! of Definition 5.1.18 and

5.1.19, and of the functor Φ : AlgStack! → Shv!
` described in Proposition 5.1.20. The essential

properties of our constructions can be summarized as follows:

(a) The ∞-category Shv!
` is comprised of pairs (X,F), where X is a quasi-projective k-

scheme and F ∈ Shv`(X). This ∞-category is equipped with a forgetful functor ρ :

Shv!
` → Schpr

k , where Schpr
k denotes the category whose objects are quasi-projective

k-schemes and whose morphisms are proper maps. This forgetful functor is both a
Cartesian fibration and a coCartesian fibration; to every proper morphism f : X → Y
between quasi-projective k-schemes, it determines a pair of adjoint functors

Shv`(X)
f∗ //Shv`(Y ).
f !

oo

(b) The ∞-category Shv!
` is equipped with a symmetric monoidal structure, whose under-

lying tensor product is given by

(X,F)⊗ (X ′,F′) = (X ×X ′,F�F′).

The forgetful functor ρ : Shv!
` → Schpr

k is a symmetric monoidal functor, and the
collection of ρ-Cartesian and ρ-coCartesian morphisms are stable under the formation
of tensor products (this is essentially a restatement of Propositions 4.6.2 and 4.6.7).

(c) The 2-category AlgStack! is comprised of pairs (X,C), where X is a quasi-projective
k-scheme and C is a quasi-compact Artin stack with affine diagonal equipped with a
smooth map C → X. The construction (X,C) 7→ X determines a forgetful functor

ρ′ : AlgStack! → Schpr
k ; let us denote the fiber of ρ′ over a quasi-projective k-scheme

X by AlgStack!
X (by construction, this will be the opposite of the 2-category of quasi-

compact Artin stacks with affine diagonal which are smooth over X). The functor ρ′

is a Cartesian fibration: it associates to each proper morphism f : X → Y a pullback
functor AlgStack!

Y → AlgStack!
X , given at the level of objects by C 7→ C×YX.

(d) The 2-category AlgStack! admits a symmetric monoidal structure whose underlying
tensor product is given by

(X,C)⊗ (X ′,C′) = (X ×X ′,C×Spec k C
′).

The forgetful functor ρ′ is symmetric monoidal, and the collection of ρ′-Cartesian mor-
phisms is closed under tensor products.
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(e) The functor Φ : AlgStack! → Shv!
` is given on objects by the formula Φ(X,C) =

(X, [C]X). It is a symmetric monoidal functor: that is, for every pair of objects (X,C)

and (X ′,C′) of AlgStack!, we have a canonical equivalence of `-adic sheaves

[C×Spec k C
′]X×X′ ' [C]X � [C′]X′ .

(f) We have a commutative diagram of symmetric monoidal functors

AlgStack!

ρ′

%%

Φ // Shv!
`

ρ
{{

Schpr
k .

Moreover, the functor Φ carries ρ′-Cartesian morphisms to ρ-Cartesian morphisms.
More concretely, for every object (X,C) of AlgStack! and every proper morphism f :
Y → X, we have a canonical equivalence [C×XY ]Y ' f ![C]X (see Proposition 5.1.9).

Example A.5.1. The relative Künneth formula

[C]X ⊗! [C′]X ' [C×X C′]X

for C,C′ ∈ AlgStack!
X is an immediate consequence of (e) and (f) above.

Remark A.5.2. Example A.5.1 is somewhat misleading: the Künneth formula

[C]X ⊗! [C′]X ' [C×X C′]X

can be deduced easily from the results of §5.1 together with Proposition A.5.19 below: it does
not rely on the careful treatment of homotopy coherence which is the main objective of this
section. Issues of homotopy coherence arise when we want to discuss commutative algebra
objects of Shv!

`, which play an essential role in §5.5, §5.6, and §5.7.

Warning A.5.3. Our definitions (and the verification of properties (a) through (f)) will re-
quire a somewhat elaborate series of categorical constructions. These constructions are entirely
formal: most of the essential geometric input comes from the results of §4.6 and §5.1. Conse-
quently, this section can be safely skipped by a reader who is willing to accept the existence of
the functor Φ : AlgStack! → Shv!

` satisfying (a) through (f).

For the remainder of this section, we will assume that the reader is familiar with the language
of Cartesian and coCartesian fibrations of ∞-categories (see [34]) and with the language of
symmetric monoidal ∞-categories (see [35]).

Notation A.5.4. Let Cat∞ denote the∞-category of∞-categories (in the ensuing discussion,
we will ignore issues of size), and Fun(∆1,Cat∞) the ∞-category whose objects are functors

f : C→ D. Let FunCart(∆1,Cat∞) denote the subcategory of Fun(∆1,Cat∞) whose objects are
Cartesian fibrations f : C→ D and whose morphisms are diagrams

C

f

��

g // C′

f ′

��
D // D′

where g carries f -Cartesian morphisms of C to f ′-Cartesian morphisms of C′. Similarly, we let
FuncoCart(∆1,Cat∞) denote the subcategory of Fun(∆1,Cat∞) whose objects are coCartesian
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fibrations f : C→ D and whose morphisms are diagrams

C

f

��

g // C′

f ′

��
D // D′

where g carries f -coCartesian morphisms of C to f ′-coCartesian morphisms of C′

The construction C 7→ Cop determines an equivalence σ of Cat∞ with itself. Suppose that
q : C→ D is a Cartesian fibration of ∞-categories. Then q is classified by a functor χ : Dop →
Cat∞, given informally by the formula χ(D) = C×D{D}. The composition σ ◦χ : Dop → Cat∞
classifies another Cartesian fibration q′ : C′ → D, whose fibers are equivalent to the opposites
of the fibers of q. We will refer to q′ as the Cartesian dual of the Cartesian fibration q. The
formation of Cartesian duals determines an equivalence from the∞-category FunCart(∆1,Cat∞)
to itself (for an explicit construction of this equivalence, we refer the reader to §SAG.4.3.4).

If q : C → D is a coCartesian fibration of ∞-categories, then q is classified by a functor χ :
D→ Cat∞. The composition σ ◦ χ classifies another coCartesian fibration q′′ : C′′ → D, which
we will refer to as the coCartesian dual of q. The formation of coCartesian duals determines an
equivalence of FunCart(∆1,Cat∞) with itself.

Warning A.5.5. Let q : C→ D be a functor between ∞-categories which is both a Cartesian
fibration and a coCartesian fibration. Then we can consider either the coCartesian dual q′ :
C′ → D or the Cartesian dual q′′ : C′′ → D of q. For each object D ∈ D, we have a canonical
equivalence

C′×D{D} ' (C×D{D})op ' C′′×D{D}.
However, the ∞-categories C′ and C′′ are usually not equivalent to one another.

Remark A.5.6. We regard Cat∞ as a symmetric monoidal ∞-category via the Cartesian
product, so that the ∞-category CAlg(Cat∞) of commutative algebra objects of C can be
identified with the ∞-category of symmetric monoidal ∞-categories. Using the canonical
isomorphism Fun(∆1,CAlg(Cat∞)) ' CAlg(Fun(∆1,Cat∞)), we can identify the objects of
CAlg(Fun(∆1,Cat∞)) with symmetric monoidal functors f : C → D. We have fully faithful
embeddings

CAlg(FuncoCart(∆1,Cat∞))
θ
↪→ CAlg(Fun(∆1,Cat∞))

θ′←↩ CAlg(FunCart(∆1,Cat∞)).

The essential image of θ can be identified with the collection of symmetric monoidal functors
f : C → D which are equivalent to coCartesian fibrations, which have the additional property
that the collection of f -coCartesian morphisms in C is closed under tensor products by objects
of C. Similarly, we can identify the essential image of the functor θ′ with those symmetric
monoidal functors f : C→ D which are equivalent to Cartesian fibrations having the property
that the collection of f -Cartesian morphisms in C is closed under tensor products by objects
of C. We will refer to these types of symmetric monoidal functors as symmetric monoidal
coCartesian fibrations and symmetric monoidal Cartesian fibrations, respectively.

Remark A.5.7. Let D be a symmetric monoidal ∞-category. Using Proposition HA.2.4.3.16,
we see that the following types of data are equivalent:

• Symmetric monoidal coCartesian fibrations q : C→ D.
• Lax symmetric monoidal functors χ : D→ Cat∞ (that is, functors equipped with mul-

tiplication maps χ(D)×χ(D′)→ χ(D⊗D′) which are coherently unital, commutative,
and associative, but need not be equivalences).
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Concretely, this equivalence is implemented by the construction which assigns to each coCarte-
sian fibration q : C→ D the functor χ given by χ(D) = C×D{D}.

Example A.5.8. In the situation of Remark A.5.7, suppose that D admits finite coproducts
and that the symmetric monoidal structure on D is given by the formation of coproducts.
Using Theorem HA.2.4.3.18, we see that the data of a lax symmetric monoidal functor from D

to Cat∞ is equivalent to the data of an arbitrary functor from D to the∞-category CAlg(Cat∞)
of symmetric monoidal ∞-categories. Concretely, if χ : D → Cat∞ is a lax monoidal functor,
then for each object D ∈ D the “fold map” e : D qD → D induces a multiplication map

χ(D)× χ(D)→ χ(D qD)
χ(e)→ χ(D)

which endows χ(D) with the structure of a symmetric monoidal∞-category. Conversely, for any
functor χ : D→ CAlg(Cat∞), the tensor product ⊗ on the ∞-categories χ(DqD′) determines
maps

χ(D)× χ(D′)→ χ(D qD′)× χ(D qD′) ⊗→ χ(D qD′)
which exhibit χ as a lax symmetric monoidal functor.

Construction A.5.9. For each quasi-projective k-scheme X, we regard Shv`(X) as a sym-
metric monoidal ∞-category with respect to the usual tensor product of sheaves (see Remark
4.3.40). The construction X 7→ Shv`(X) determines a functor

Schop
k → CAlg(Cat∞).

Applying the construction of Example A.5.8, we see that this functor classifies a symmetric
monoidal coCartesian fibration Shv?` → Schop

k (here the symmetric monoidal structure on Schk
is given by the formation of Cartesian products). We can describe the symmetric monoidal
∞-category Shv?` more informally as follows:

(a) The objects of the ∞-category Shv?` are pairs (X,F), where X is a quasi-projective
k-scheme and F ∈ Shv`(X).

(b) Given a pair of objects (X,F), (X ′,F′) ∈ Shv?` , a morphism from (X,F) to (X ′,F′) is
given by a pair (f, α), where f : X ′ → X is a morphism of k-schemes, and α : f∗ F → F′

is a morphism in Shv`(X
′).

(c) The tensor product on Shv?` is given by the formula

(X,F)⊗ (X ′,F′) = (X ×X ′,F�F′).

Proposition A.5.10. The forgetful functor q : Shv?` → Schop
k is a symmetric monoidal Carte-

sian fibration.

Proof. The assertion that q is a Cartesian fibration follows from the fact that for every map
f : X → X ′ in Schk, the pullback functor f∗ : Shv`(X

′) → Shv`(X) admits a right adjoint.
The fact that the collection of q-Cartesian morphisms in Shv?` is closed under tensor products
by objects of Shv?` is a reformation of Proposition 4.6.2. �

Construction A.5.11. Let us regard the symmetric monoidal Cartesian fibration q of Propo-
sition A.5.10 as a commutative algebra object of the ∞-category FunCart(∆1,Cat∞). Applying

the Cartesian duality functor FunCart(∆1,Cat∞) ' FunCart(∆1,Cat∞) to Shv?, we obtain a
new symmetric monoidal Cartesian fibration which we will denote by Shv�,op

` → Schop
k . We can

describe the symmetric monoidal ∞-category Shv�` more informally as follows:

(a) The objects of Shv�` are pairs (X,F), where X ∈ Schk and F ∈ Shv`(X).
(b) A morphism from (X,F) to (Y,G) in Shv�` consists of a map of k-schemes f : X → Y

together with a morphism f∗ F → G in the ∞-category Shv`(Y ).
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(c) The tensor product on Shv�` is given by (X,F)⊗ (Y,G) = (X × Y,F�G).

We let Shv!
` denote the fiber product Shv�` ×Schk Schpr

k .

Proposition A.5.12. The projection map

r : Shv!
` → Schpr

k

is a symmetric monoidal Cartesian fibration.

Proof. The assertion that r is a Cartesian fibration follows from the fact that for every proper
morphism f : X → X ′ in Schk, the functor f∗ : Shv`(X) → Shv`(X

′) admits a right adjoint

f !. The fact that the collection of r-coCartesian morphisms in Shv! op
` is closed under tensor

product by objects of Shv! op
` is a reformation of Corollary 4.6.8. �

Notation A.5.13. We define a 2-category RelStack as follows:

• An object of RelStack consists of a quasi-projective k-scheme X together with a mor-
phism of prestacks π : C → X (here we abuse notation by identifying X with the
corresponding prestack).
• A morphism from π : C→ X to π′ : C′ → X ′ in the category RelStack is a commutative

diagram of prestacks

C
φ //

π

��

C′

π′

��
X

f // X ′

where f is proper. We regard the collection of morphisms from π to π′ as a category,
where

Hom((φ, f), (φ′, f ′))

is empty unless f = f ′, in which case it is the set of all isomorphisms of φ with φ′ which
are compatible with π.

We will abuse notation by identifying RelStack with the its associated ∞-category. We let
AlgStack denote the full subcategory of RelStack spanned by those maps π : C → X where
where C is a quasi-compact Artin stack with affine diagonal and the map C → X is smooth.
We regard RelStack and AlgStack as symmetric monoidal ∞-categories, where the symmetric
monoidal structure is given by the Cartesian product.

Construction A.5.14. The construction (π : C → X) 7→ X determines symmetric monoidal
Cartesian fibrations

RelStack→ Schpr
k AlgStack→ Schpr

k .

We will denote the Cartesian duals of these fibrations by RelStack! and AlgStack!, respectively.

Remark A.5.15. More informally, we can identify RelStack! with an∞-category whose objects
are pairs (X,C), where X is a quasi-projective k-scheme and C is a prestack equipped with a

map C → X; a morphism from (X,C) to (X ′,C′) in RelStack! consists of a proper morphism
of k-schemes f : X → X ′ together with a map of prestacks X ×X′ C′ → C. We can identify
AlgStack! with the full subcategory of RelStack! spanned by those pairs (X,C) where C is a
quasi-compact Artin stack with affine diagonal and the projection C→ X is smooth.

The definition of the functor Φ : AlgStack! → Shv!
` will require a few auxiliary constructions.
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Notation A.5.16. Let RelStack? denote the fiber product RelStack×Schk(Shv?` )
op, where Shv?`

is defined as in Construction A.5.9. More informally, RelStack? is the∞-category whose objects
are triples (X,C,F) where X is a quasi-projective k-scheme, C is a prestack equipped with a
map π : C→ X, and F ∈ Shv`(X). We regard RelStack? as a symmetric monoidal ∞-category,
with tensor product given on objects by the formula

(X,C,F)⊗ (X ′,C′,F′) = (X ×Spec k X
′,C×Spec k C

′,F�F′).

Construction A.5.17. The construction (π : C → X) 7→ Cop determines a functor from
the 2-category RelStack to the 2-category of categories. This functor classifies a coCartesian
fibration of ∞-categories RelStack → RelStack. We will identify objects of RelStack with
triples (X,C, η), where X is a quasi-projective k-scheme, C is a prestack equipped with a map
π : C → X, and η is an object of C which we identify with a map η : SpecRη → C. The

construction (X,C, η) 7→ SpecRη determines a forgetful functor ρ : RelStack → Schk. We
define an ∞-category RelStack?aux equipped with a forgetful functor RelStack?aux → RelStack
so that the following universal property is satisfied: for every simplicial set K equipped with a
map K → RelStack, we have an isomorphism

FunRelStack(K,RelStack?aux) ' FunSchk(K ×RelStack RelStack, (Shv?` )
op).

It follows from Corollary HTT.3.2.2.12 that the projection map RelStack?aux → RelStack is a
coCartesian fibration. Unwinding the definitions, we can identify the objects of RelStack?aux

with triples (X,C, {Fη}η∈C), where X is a quasi-projective k-scheme, C is a prestack equipped
with a map π : C→ X, and {Fη}η∈C is a diagram which assigns to each point η : SpecRη → C

an `-adic sheaf Fη ∈ Shv`(SpecRη; Z`) and to each morphism f : η → η′ in C a map f∗ Fη → Fη′

in Shv`(SpecRη′ ; Z`). There is an evident pullback functor G : RelStack? → RelStack?aux, given
on objects by the formula F (X,C,F) = (X,C, {(π ◦η)∗ F}). The functor G admits a left adjoint
F : RelStack?aux → RelStack?, given on objects by the formula

F (X,C, {Fη}) = (X, lim←−
η∈C

(π ◦ η)∗ Fη).

The composition F ◦G determines a functor from RelStack? to itself, which we will denote by
(X,C,F) 7→ (X,C, [C]F). Here [C]F ∈ Shv`(X) denotes the sheaf given by the limit

lim←−(π ◦ η)∗(π ◦ η)∗ F,

where η ranges over all maps SpecRη → C.
We regard RelStack?aux as a symmetric monoidal ∞-category, where the tensor product is

given on objects by the formula

(X ′,C′, {F′η′})⊗ (X ′′,C′′, {F′′η′′}) = (X ′ ×Spec k X
′′,C′×Spec k C

′′, {Fη}),

where {Fη} is the diagram which assigns to each point η = (η′, η′′) ∈ C′×Spec k C
′′ the tensor

product Fη = F′η′ ⊗F′′η′′ ∈ Shv`(SpecRη). Note that G is a symmetric monoidal functor, so
that F is a colax symmetric monoidal functor and therefore the composite functor

(X,C,F) 7→ (X,C, [C]F)

is also colax symmetric monoidal. Taking opposite categories and composing with the projection
map (RelStack?)op → Shv?` , we obtain a lax symmetric monoidal functor

Ψ : RelStackop×Schop
k

Shv?` → Shv?` ,

given on objects by the formula

(X,C,F) 7→ (X, [C]F).
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In particular, for every pair of objects (X,C,F), (X ′,C′,F′) ∈ RelStack?, we have a canonical
map

[C]F ⊗ [C′]F′ → [C×Spec k C
′]F�F′

in the ∞-category Shv`(X ×X ′).

The functor Ψ of Construction A.5.17 is not symmetric monoidal. However, we will prove
that it restricts to a symmetric monoidal functor on a reasonably large subcategory of

RelStackop×Schop
k

Shv?` .

Notation A.5.18. For every quasi-projective k-scheme X, let Shv`(X)<∞ =
⋃
n Shv`(X)≤n

denote the full subcategory of Shv`(X) spanned by the truncated `-adic sheaves (see §4.4). Let
Shv?<∞ denote the full subcategory of Shv?` spanned by those pairs (X,F) where F belongs to
Shv`(X)<∞.

Proposition A.5.19. The functor Ψ of Construction A.5.17 restricts to a symmetric monoidal
functor

AlgStackop×Schop
k

Shv?<∞ → Shv?` .

Proof. It follows immediately from the definitions that Ψ preserves unit objects. Let X and X ′

be quasi-projective k-schemes, let C and C′ be quasi-compact Artin stacks with affine diagonals
equipped with smooth morphisms π : C → X and π′ : C′ → X ′. Suppose we are given `-adic
sheaves F ∈ Shv`(X)<∞ and F′ ∈ Shv`(X

′)<∞. We wish to prove that the canonical map

θ : [C]F � [C′]F′ → [C×Spec k C
′]F�F′

is an equivalence in Shv`(X ×Spec k X
′). Shifting F and F′ if necessary, we may assume that

F ∈ Shv`(X)≤0 and F′ ∈ Shv`(X
′)≤0.

Choose affine schemes U0 and U ′0 equipped with smooth surjections ρ : U0 → C and ρ′ :
U ′0 → C′. Let U• denote the simplicial affine scheme given by the iterated fiber product of U0

with itself over C, and define U ′• similarly, and consider the natural maps φ• : U• → X and
φ′• : U ′• → X ′. Using Notation A.5.18, we can identify θ with the canonical map

(Tot[U•]F) � (Tot[U ′•]F′)→ (Tot[U• ×Spec k U
′
•]F�F′).

Using Example 5.1.3 and Proposition 4.6.2, we can identify the codomain of θ with the total-
ization Tot([U•]F � [U ′•]F′). Example 5.1.3 also show that [U•]F and [U ′•]F′ can be identified
with cosimplicial objects of Shv`(X)≤0 and Shv`(X

′)≤0, respectively. The desired result now
follows from Proposition 4.6.17. �

Remark A.5.20. The smoothness of the morphisms π : C→ X and π′ : C′ → X ′ is not needed
in the proof of Proposition A.5.19. However, it is important for the applications of Proposition
A.5.19 which follow.

Definition A.5.21. Let q : A→ C be a Cartesian fibration of ∞-categories, and let r : B→ C

and s : D → C be coCartesian fibrations. Let λ : A×C B → D be a functor for which the
diagram

A×C B
λ //

##

D

s
��

C

commutes. We will say that λ is balanced if, for every morphism (α, β) in the fiber product
A×C B, if α is a q-Cartesian morphism in A and β is an r-coCartesian morphism in B, then
λ(α, β) is an s-coCartesian morphism in D.
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The collection of all commutative diagrams

A×C B //

{{ ##

D

s

��

A

q

##

B

r
{{

C
id // C

where q is a Cartesian fibration, r is a coCartesian fibration, s is a coCartesian fibration, and
λ is a balanced functor can be organized into an ∞-category which we will denote by CatBal

∞ .

Remark A.5.22. Let q : A → C, r : B → C, and s : D → C be as in Definition A.5.21, and
suppose that q, r, and s are classified by functors χq : Cop → Cat∞, χr, χs : C→ Cat∞. Using
Corollary HTT.3.2.2.12, one can show that the data of a balanced functor λ : A×C B → D is
equivalent to the data of a natural transformation χr → U , where U : Cop → Cat∞ is given by
the formula U(C) = Fun(χq(C), χs(C)).

Let σ : Cat∞ → Cat∞ denote the functor which assigns to each ∞-category its opposite.
Any natural transformation from χr to U determines a natural transformation from σ ◦ χr to
the functor σ ◦ U given by

(σ ◦ U)(C) = Fun(χq(C), χs(C))op = Fun(χq(C)op, χs(C)op).

It follows that the data of a balanced functor λ : A×C B → D is equivalent to the data of
a balanced functor A′×C B◦ → D′, where A′ → C denotes the Cartesian dual of q, B◦ → C

denotes the coCartesian dual of B, and D′ → C denotes the coCartesian dual of D. We will
refer to λ′ as the balanced dual of λ. With more effort, one can show that the construction
λ 7→ λ′ determines an equivalence of the ∞-category CatBal

∞ with itself.

Proposition A.5.23. Let Shv?,pr
` denote the fiber product Shv?` ×Schop

k
(Schpr

k )op. Then the
functor Ψ of Construction A.5.17 induces a balanced map

Ψpr : RelStack×Schpr
k

(Shv?,pr
` )op → (Shv?,pr

` )op.

Proof. Let f : X ′ → X be a map of quasi-projective k-schemes, let C be a prestack equipped
with a map π : C → X, let C′ be the fiber product C×XX ′, and let F ∈ Shv`(X

′). We wish
to show that if f is proper, then the canonical map θ : [C]f∗ F → f∗[C

′]F is an equivalence in
Shv`(X). Note that since the functor f∗ commutes with limits, the codomain of θ is given by

lim←−
(η,u)

f∗u∗u
∗ F ' lim←−

(η,u)

(π ◦ η)∗u
∗ F,

where the limit is taken over all pairs consisting of a point η : SpecRη → C together with a
map of X-schemes u : SpecRη → X ′. For each point η, form a pullback diagram

Yη
gη //

vη

��

SpecRη

π◦η
��

X ′
f // X.

We can therefore identify θ with the canonical map

lim←−
η

(π ◦ η)∗(π ◦ η)∗f∗ F → lim←−
η

f∗(π ◦ η)∗(π ◦ η)∗ F .
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Since f is proper, the desired result follows from the proper base change theorem (Theorem
4.5.4). �

Remark A.5.24. Using Proposition A.5.23, we see that the map Ψ of Construction A.5.17
determines a balanced functor

Ψ! : RelStack!×Schpr
k

Shv!
` → Shv!

`,

which is again given on objects by the formula

(X,C,F) 7→ (X, [C]F).

Notation A.5.25. Let Shv?,pr
<∞ denote the full subcategory of Shv?,pr

` spanned by those objects
(X,F) where F ∈ Shv`(X)<∞. Then the forgetful functor Shv?,pr

<∞ → (Schpr
k )op is a Cartesian

fibration; let us denote its Cartesian dual by Shv!
<∞ → Schpr

k . It follows from Propositions
A.5.19 and A.5.23 that the restriction of Ψ determines a balanced functor

AlgStack×Schpr
k

(Shv?,pr
<∞)op → (Shv?,pr

` )op

which can be regarded as a commutative algebra object of the∞-category CatBal
∞ . Consequently,

its balanced dual

Ψ!
<∞ : AlgStack!×Schpr

k
Shv!

<∞ → Shv!
`

is also a symmetric monoidal functor.

Construction A.5.26. The construction X 7→ (X,ωX) determines a symmetric monoidal

section s of the coCartesian fibration Shv!
` → Schpr

k . We let Φ : AlgStack! → Shv!
` denote the

functor obtained by composing s with the functor Ψ!
<∞ of Notation A.5.25.

Proposition A.5.27. The functor Φ : AlgStack! → Shv!
` fits into a commutative diagram of

symmetric monoidal functors

AlgStack!

ρ′

%%

Φ // Shv!
`

ρ
{{

Schpr
k .

Moreover, Φ carries ρ′-Cartesian morphisms to ρ-Cartesian morphisms.

Proof. The first assertion is follows immediately from our construction, and the second is a
consequence of Proposition 5.1.9. �

A.6. Connectivity of the Fat Diagonal. Our goal in this section is to prove the following
result which will be needed in §9.2:

Proposition A.6.1. Let X be a smooth (not necessarily complete) algebraic curve defined
over an algebraically closed field k, let ` be a prime number which is invertible in k, let n
be a positive integer, and let ∆ ⊆ Xn denote the (reduced) closed subscheme whose k-valued
points are n-tuples (x1, . . . , xn) where xi = xj for some i 6= j. Then the restriction map
θ : Hm(Xn; Z/`Z) → Hm(∆; Z/`Z) is an injection when m = n − 2 and an isomorphism for
m < n− 2.

We begin by proving the analogous result in the setting of ordinary topological spaces.
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Proposition A.6.2. Let K be a connected CW complex, let n ≥ 0 be an integer, and let
∆ ⊆ Kn be the subset consisting of those n-tuples of points (x1, . . . , xn) such that xi = xj for
some i 6= j. For every field Λ, the map

Hm(Kn; Λ)→ Hm(∆; Λ)

is an injection when m = n− 2 and an isomorphism for m < n− 2.

Lemma A.6.3. Let K be a connected manifold of dimension d, let S be a finite set, and let
U ⊆ KS be the open subset consisting of injective maps S → K. For every local system of
abelian groups A on U , the homology groups Hm(U ;A) vanish for m > (d− 1)|S|+ 1.

Proof. We proceed by induction on the cardinality of S. If |S| = 1, then U is homeomorphic to
K, and the desired result follows from the fact that K has dimension d. Suppose that |S| > 1,

and write S = S′ ∪ {s} where S′ nonempty. Let V ⊆ KS′ be the open subset consisting of
injective maps S′ → K. The projection map π : U → V is a fiber bundle, whose fiber over
a point v ∈ V can be identified with the manifold K − v(S′). For each integer i ≥ 0, let Bi
denote the local system on V given by v 7→ Hi(π

−1{v};A |π−1{v}). We then have a Leray-Serre
spectral sequence

Hs(V ;Bt)⇒ Hs+t(U ;A).

The left hand side vanishes for s > (d− 1)|S′|+ 1 by the inductive hypothesis. It will therefore
suffice to show that Bt ' 0 for t ≥ d. This is clear, since each fiber π−1{v} is a manifold of
dimension d which has no compact connected components. �

Proof of Proposition A.6.2. Since both sides are compatible with filtered colimits, we may as-
sume without loss of generality that K is a finite CW complex. In this case, K is homotopy
equivalent to a compact oriented manifold with boundary M . Replacing K by M , we may as-
sume that K is a compact oriented manifold with boundary. Replacing K by K × [0, 1]× [0, 1],
we may assume that the boundary ∂K is connected.

Let d be the dimension of K. Since Kn is a compact space, we have a long exact sequence

· · · → Hm
c (Kn −∆; Λ)→ Hm(Kn; Λ)→ Hm(∆; Λ)→ Hm+1

c (Kn −∆; Λ)→ · · ·
It will therefore suffice to show that the compactly supported cohomology group Hm

c (Kn−∆; Λ)
vanishes for m ≤ n− 2.

For every subset S ⊆ {1, . . . , n}, let NS denote the subset of Kn − ∆ consisting of those
points (x1, . . . , xn) satisfying

xi ∈

{
∂K if i ∈ S
K − ∂K if i /∈ S.

The space Kn − ∆ admits a stratification whose open strata are the sets NS . It will there-
fore suffice to show that Hm

c (NS ; Λ) ' 0 for m ≤ n − 2. Note that NS is a an oriented
manifold of dimension nd − |S|, so that Poincare duality supplies isomorphisms Hm

c (NS ; Λ) '
Hnd−m−|S|(NS ; Λ). It will therefore suffice to show that the homology groups Hi(NS ; Λ) vanish
for i > n(d− 1) + 2− |S|.

Let S′ = {1, . . . , n} − S. Then NS is homeomorphic to the product U × V , where U is
the subset of (∂K)S consisting of injective maps from S into ∂K, and V is the subset of

(K − ∂K)S
′

consisting of injective maps from S′ into (K − ∂K). It follows from Lemma A.6.3
that the homology groups Hi(U ; Λ) vanish for i > |S|(d− 2) + 1 and that the homology groups
Hj(V ; Λ) vanish for j > |S′|(d− 1) + 1. The desired result now follows from the existence of a
Künneth isomorphism

H∗(NS ; Λ) ' H∗(U ; Λ)⊗Λ H∗(V ; Λ).

�
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Proof of Proposition A.6.1. Suppose first that k has characteristic zero. Choose an algebraically
closed subfield k0 ⊆ k of finite transcendence degree over Q such that X is defined over k0.
Replacing k by k0, we may assume that k has finite transcendence degree over Q so that there
exists an embedding k ↪→ C. Replacing X by Spec C ×Spec k X, we can reduce to the case
where k = C. We may therefore assume that k = C. In this case, we can identify θ with the
restriction map Hm(Xn(C); Z/`Z)→ Hm(∆(C); Z/`Z) induced by the inclusion of topological
spaces ∆(C) ↪→ Xn(C) and the desired result follows from Proposition A.6.2.

Now suppose that k has characteristic p > 0. Let Y denote a smooth compactification of
X, let g be the genus of Y , and let Mg,0 denote the moduli stack of smooth curves of genus
g. Then Y is classified by a map η0 : Spec k → Mg,0. Since Mg,0 is smooth over Spec Z, we
can extend η0 to a map η : SpecW (k) → Mg,0, where W (k) denotes the ring of Witt vectors

of k. The map η classifies a smooth projective curve π : Y → SpecW (k). The complement of
X in Y is the union of a finite collection of points y1, . . . , ym ∈ Y (k). Since Y is smooth over
SpecW (k), we can extend each yi to a section yi : SpecW (k)→ Y of the map π. Let X denote

the complement of the images of the maps yi in Y , let X
n

denote the nth power of X in the
category of W (k)-schemes, and define ∆ similarly. Let

φ : X
n → SpecW (k) φ0 : ∆→ SpecW (k)

denote the projection maps. Since Y is smooth and proper over W (k), and the complement of
X in Y is smooth and proper over W (k), it follows that the direct image φ∗ΛXn is lisse and
compatible with base change in SpecW (k). A similar argument shows that the cohomologies
of φ0∗Λ∆ are lisse and compatible with base change. Let F denote the fiber of the restriction
map

φ∗ΛXn → φ0∗Λ∆;

we wish to show that the stalk of F at the closed point of SpecW (k) is concentrated in coho-
mological degrees > n− 2. Since F is lisse, it suffices to prove that the stalk of F at the generic
point of SpecW (k) is concentrated in cohomological degrees > n − 2, which follows from the
first part of the proof. �
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des Schémas. North Holland, Amsterdam, 1968, p. 88-188.
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