WEIL’S CONJECTURE FOR FUNCTION FIELDS

DENNIS GAITSGORY AND JACOB LURIE

ABSTRACT. Let X be an algebraic curve defined over a finite field Fy and let G be a smooth
affine group scheme over X with connected fibers whose generic fiber is semisimple and
simply connected. In this paper, we affirm a conjecture of Weil by establishing that the
Tamagawa number of G is equal to 1.
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1. OVERVIEW

Let K be a number field, let A denote the ring of adeles of K, and let G be a connected
semisimple algebraic group over K. A conjecture of Weil (now a theorem, thanks to the work
of Kottwitz, Lai, and Langlands) asserts that if G is simply connected, then the Tamagawa
measure fram(G(K)\G(A)) is equal to 1. Our goal in this paper is to prove an analogous
result in the case where K is the function field of an algebraic curve defined over a finite field.
In this section, we will recall the statement of Weil’s conjecture, translate the function-field
analogue into a problem in algebraic geometry, and outline our approach to that problem.

We begin in §1.1 by reviewing the Smith-Minkowski-Siegel mass formula for integral qua-
dratic forms (Theorem 1.1.15). We then reformulate the mass formula as a statement about
the volumes of adelic groups (following ideas of Tamagawa and Weil) and state the general
form of Weil’s conjecture. In §1.2 we consider the function field analogue of Weil’s conjecture.
Reversing the chain of reasoning given in §1.1, we reformulate this conjecture as a problem of
counting principal G-bundles on an algebraic curve X defined over a finite field F, (here we
take G to be a group scheme over the curve X, whose generic fiber is an algebraic group over
the function field Kx).

Principal G-bundles on X can be identified with points of an algebraic stack Bung(X),
called the moduli stack of G-bundles on X. In §1.3, we will state a version of the Grothendieck-
Lefschetz trace formula for Bung(X) which reduces the problem of counting G-bundles on
X to the problem of computing the trace of the (arithmetic) Frobenius endomorphism of the
cohomology ring H*(Bung(X) xp, F,;Z;). Our goal then is to understand the topology of
the moduli stack Bung(X). In §1.4, we discuss the analogous problem in the case where X
is defined over the field of complex numbers, and describe several “local-to-global” principles
which can be used to compute algebro-topological invariants of Bung(X) in terms of the local
structure of G at the points of X. The bulk of this paper is devoted to developing analogous
ideas over an arbitrary algebraically closed ground field (such as Fq); we provide a brief outline
in §1.5.

Acknowledgements. We would like to thank Alexander Beilinson, Vladimir Drinfeld, Bene-
dict Gross, and Xinwen Xhu for helpful conversations related to the subject of this paper.
We also thank Brian Conrad for suggesting the problem to us and for offering many helpful
suggestions and corrections. The second author would like to thank Stanford University for
its hospitality during which much of this paper was written. This work was supported by the
National Science Foundation under Grant No. 0906194.

1.1. The Mass Formula and Weil’s Conjecture. Let R be a commutative ring and let V
be an R-module. A quadratic formon V is amap q : V — R satisfying the following conditions:

(a) The construction (v, w) — q(v+w)—gq(v)—g(w) determines an R-bilinear map V xV —

R.

(b) For every element A € R and every v € V, we have g(Av) = A\2q(v).
A quadratic space over R is a pair (V,q), where V is a finitely generated projective R-module
and ¢ is a quadratic form on V.

One of the basic problems in the theory of quadratic forms can be formulated as follows:
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Question 1.1.1. Let R be a commutative ring. Can one classify quadratic spaces over R (up
to isomorphism)?

Example 1.1.2. Let V be a vector space over the field R of real numbers. Then any quadratic
form g : V — R can be diagonalized: that is, we can choose a basis ey, ..., e, for V such that

qer + o F Apen) = AT+ X2 =N - = A,

for some pair of nonnegative integers a, b with a+b < n. Moreover, the integers a and b depend
only on the isomorphism class of the pair (V,q) (a theorem of Sylvester). In particular, if we
assume that ¢ is nondegenerate (in other words, that a + b = n), then the isomorphism class
(V,q) is completely determined by the dimension n of the vector space V' and the difference
a — b, which is called the signature of the quadratic form gq.

Example 1.1.3. Let Q denote the field of rational numbers. There is a complete classification
of quadratic spaces over Q, due to Minkowski (later generalized by Hasse to the case of an
arbitrary number field). Minkowski’s result is highly nontrivial, and represents one of the great
triumphs in the arithmetic theory of quadratic forms: we refer the reader to [49] for a detailed
and readable account.

Let us now specialize to the case R = Z. We will refer to quadratic spaces (V, q) over Z as
even lattices (since the associated bilinear form b(z,y) = q(x+y) — ¢(z) — ¢(y) has the property
that b(z,z) = 2¢(x) is always even). The classification of even lattices up to isomorphism is
generally regarded as an intractable problem (see Remark 1.1.17 below). Let us therefore focus
on the following variant of Question 1.1.1:

Question 1.1.4. Let (V,q) and (V’,¢') be even lattices. Is there an effective procedure for
determining whether or not (V, ¢) and (V',¢’) are isomorphic?

Let (V,q) be a quadratic space over a commutative ring R, and suppose we are given a ring
homomorphism ¢ : R — S. We let Vg denote the tensor product S ®g V. An elementary
calculation shows that there is a unique quadratic form ¢g : Vg — S for which the diagram

Vv—1-R

L,k

Vg 258
is commutative. The construction (V, q) — (Vg, gs) carries quadratic spaces over R to quadratic
spaces over S; we refer to (Vs, qs) as the extension of scalars of (V,q). If (V,q) and (V',¢) are
isomorphic quadratic spaces over R, then extension of scalars yields isomorphic quadratic spaces
(Vs,qs) and (V¢,qs) over S. Consequently, if we understand the classification of quadratic
spaces over S and can tell that (Vg,¢s) and (V§, ¢) are not isomorphic, it follows that (V,q)

and (V',¢') are not isomorphic.
Example 1.1.5. Let ¢ : Z — Z be the quadratic form given by ¢(n) = n?. Then the even
lattices (Z, q) and (Z, —q) cannot be isomorphic, because they are not isomorphic after extension

of scalars to R: the quadratic space (R, ¢r) has signature 1, while (R, —ggr) has signature —1.
Example 1.1.6. Let q,q¢’ : Z> — Z be the quadratic forms given by
q(m,n) = m? +n? q'(m,n) =m? + 3n>.

Then (Z2,q) and (Z2,¢') become isomorphic after extension of scalars to R (since both qua-
dratic forms are positive-definite). However, the quadratic spaces (Z2,q) and (Z?,¢') are not
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isomorphic, since they are not isomorphic after extension of scalars to the field F3 = Z/3Z (the
quadratic form ¢, is nondegenerate, but qi;g is degenerate).

Using variants of the arguments provided in Examples 1.1.5 and 1.1.6, one can produce
many examples of even lattices (V,q) and (V',¢’) that cannot be isomorphic: for example,
by arranging that ¢ and ¢’ have different signatures (after extension of scalars to R) or have
nonisomorphic reductions modulo n for some integer n > 0 (which can be tested by a finite
calculation). This motivates the following definition:

Definition 1.1.7. Let (V,q) and (V’,¢') be positive-definite even lattices. We say that (V, q)
and (V',¢") of the same genus if (V,q) and (V’,¢’) are isomorphic after extension of scalars to
Z/nZ, for every positive integer n (in particular, this implies that ¥V and V' are free abelian
groups of the same rank).

Remark 1.1.8. One can also define study genera of lattices which are neither even nor positive
definite, but we will restrict our attention to the situation of Definition 1.1.7 to simply the
exposition.

More informally, we say that two even lattices (V,q) and (V',¢’) are of the same genus if we
cannot distinguish between them using variations on Example 1.1.5 or 1.1.6. It is clear that
isomorphic even lattices are of the same genus, but the converse is generally false. However,
the problem of classifying even lattices within a genus has a great deal of structure. One can
show that there are only finitely many isomorphism classes of even lattices in the same genus as
(V,q). Moreover, the celebrated Smith-Minkowski-Siegel mass formula allows us to say exactly
how many (at least when counted with multiplicity).

Notation 1.1.9. Let (V,¢) be a quadratic space over a commutative ring R. We let O4(R)
denote the automorphism group of (V, ¢): that is, the group of R-module isomorphisms o : V' —
V such that ¢ = ¢ o . We will refer to O,4(R) as the orthogonal group of the quadratic space
(V,q). More generally, if ¢ : R — S is a map of commutative rings, we let O,(S) denote the
automorphism group of the quadratic space (Vg, gs) over S obtained from (V,q) by extension
of scalars to S.

Example 1.1.10. Suppose ¢ is a positive-definite quadratic form on an real vector space V
of dimension n. Then O4(R) can be identified with the usual orthogonal group O(n). In

712—7L

particular, O4(R) is a compact Lie group of dimension

Example 1.1.11. Let (V,q) be a positive-definite even lattice. For every integer d, the group
O4(Z) acts by permutations on the set V<q = {v € V' : ¢(v) < d}. Since ¢ is positive-definite,
each of the sets V<q is finite. Moreover, for d >> 0, the action of O4(Z) on V<4 is faithful (since
an automorphism of V' is determined by its action on a finite generating set for V). It follows
that O4(Z) is a finite group.

Let (V, q) be a positive-definite even lattice. The mass formula gives an explicit formula for
the sum 3° ., 1y |o,71(2)\7 where the sum is taken over all isomorphism classes of even lattices
7 q
(V',q') in the genus of (V,q). The explicit formula is rather complicated in general, depending
on the reduction of (V,¢) modulo p for various primes p. For simplicity, we will restrict our
attention to the simplest possible case.

Definition 1.1.12. Let (V,¢) be an even lattice. We will say that (V,q) is unimodular if the
bilinear form b(v,w) = ¢(v + w) — q(v) — ¢(w) induces an isomorphism of V' with its dual
Hom(V, Z).
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Remark 1.1.13. Let (V,q) be a positive-definite even lattice. The condition that (V,q) be
unimodular depends only on the reduction of ¢ modulo p for all primes p. In particular, if (V, q)
is unimodular and (V’, ¢’) is in the genus of (V, q), then (V’,¢’) is also unimodular. In fact, the
converse also holds: any two unimodular even lattices of the same rank are of the same genus
(though this is not obvious from the definitions).

Remark 1.1.14. The condition that an even lattice (V,¢q) be unimodular is very strong: for
example, if ¢ is positive-definite, it implies that the rank of V' is divisible by 8.

Theorem 1.1.15 (Mass Formula: Unimodular Case). Let n be an integer which is a positive
multiple of 8. Then

3 1 _ TEIPE) - T(3)E2)¢(4) -+~ ¢n — 4)¢(n — 2)¢(5)
|O4(Z)| gn—1n(n+1)/4
(V.a)
_ B B
K 1§j1;[n/2 4‘7

Here ¢ denotes the Riemann zeta function, B; denotes the jth Bernoulli number, and the sum
is taken over all isomorphism classes of positive-definite even unimodular lattices (V,q) of rank
n.

Example 1.1.16. Let n = 8. The right hand side of the mass formula evaluates to m.
The integer 696729600 = 21435527 is the order of the Weyl group of the exceptional Lie group
Eg, which is also the automorphism group of the root lattice of Eg (which is an even unimodular
lattice). Consequently, the fraction WM also appears as one of the summands on the left
hand side of the mass formula. It follows from Theorem 1.1.15 that no other terms appear on
the left hand side: that is, the root lattice of Fg is the unique positive-definite even unimodular
lattice of rank 8, up to isomorphism.

Remark 1.1.17. Theorem 1.1.15 allows us to count the number of positive-definite even uni-

modular lattices of a given rank with multiplicity, where a lattice (V,q) is counted with mul-

tiplicity \071(Z)|' If the rank of V is positive, then O4(Z) has order at least 2 (since O4(Z)
q

contains the group (£1)), so that the left hand side of Theorem 1.1.15 is at most %, where C' is
the number of isomorphism classes of positive-definite even unimodular lattices. In particular,
Theorem 1.1.15 gives an inequality

F@W@%“F%K@X@%~dn*®dn*md%_

¢=> on—2xn(n+1)/4

The right hand side of this inequality grows very quickly with n. For example, when n = 32, we
can deduce the existence of more than eighty million pairwise nonisomorphic (positive-definite)
even unimodular lattices of rank n.

We now describe a reformulation of Theorem 1.1.15, following ideas of Tamagawa and Weil.
Suppose we are given a positive-definite even lattice (V,¢), and that we wish to classify other
even lattices of the same genus. If (V' ¢') is a lattice in the genus of (V,q), then for every
positive integer n we can choose an isomorphism «,, : V/nV ~ V'/nV’ which is compatible
with the quadratic forms ¢ and ¢’. Using a compactness argument (or some variant of Hensel’s
lemma) we can assume without loss of generality that the isomorphisms {a, } >0 are compatible



WEIL’S CONJECTURE FOR FUNCTION FIELDS 7
with one another: that is, that the diagrams

V/nV =" V' /nV’

.

V/mV = V' jmV’

commute whenever m divides n. In this case, the data of the family {an,} is equivalent to the
data of a single isomorphism « : y/ Rz V — zZ ®z V', where 7 ~ hm Z/nZ denotes the
profinite completion of the ring Z.

By virtue of the Chinese remainder theorem, the ring Z can be identified with the product
Hp Z,, where p ranges over all prime numbers and Z, denotes the ring l&nZ/ pFZ of p-adic
integers. It follows that (V,q) and (V’,q’) become isomorphic after extension of scalars to
Z,, and therefore also after extension of scalars to the field Q, = Z, [p~1] of p-adic rational
numbers. Since the lattices (V,q) and (V’,q') are positive-definite and have the same rank,
they also become isomorphic after extending scalars to the field of real numbers. It follows
from Minkowski’s classification that the quadratic spaces (Vq, ¢q) and (V(’27 qb) are isomorphic
(this is known as the Hasse principle: to show that quadratic spaces over Q are isomorphic, it
suffices to show that they are isomorphic over every completion of Q; see §3.3 of [49]). We may
therefore choose an isomorphism 5 : Vg — Vé which is compatible with the quadratic forms ¢
and ¢'.

Let A ¢ denote the ring of finite adeles: that is, the tensor product 2®z Q. The isomorphism

~

Z ~ Hp Z, induces an injective map

Af 22®ZQ%H(Z1)®Z Q) 2HQ1))
p p

whose image is the restricted product H;es Q, C H Q,,: that is, the subset consisting of those
elements {z,} of the product Hp Q,, such that z;, € Z,, for all but finitely many prime numbers
p. The quadratic spaces (V,q) and (V’',¢’) become isomorphic after extension of scalars to A
in two different ways: via the isomorphism « which is defined over 2, and via the isomorphism
B which is defined over Q. Consequently, the composition 3~ !oa can be regarded as an element
of Oq(Ay). This element depends not only the quadratic space (V’,¢’), but also on our chosen
isomorphisms « and 3. However, any other isomorphism between (V3, ¢5) and ( qz) can be
written in the form « o v, where v € Oq(z). Similarly, the isomorphism 3 is well—deﬁned up
to right multiplication by elements of O,(Q). Consequently, the composition 37! o « is really
well-defined as an element of the set of double cosets

04(Q)\ O4(A)/ 04(2).

Let us denote this double coset by [V, ¢].

It is not difficult to show that the construction (V’,q") — [V’,¢'] induces a bijection from
the set of isomorphism classes of even lattices (V’,¢’) in the genus of (V,q) with the set
O4(QN\O4(Af)/ oq(i) (the inverse of this construction is given by the procedure of reglu-
ing; see Construction 1.2.15). Moreover, if v € O4(Ay) is a representative of the double coset
[V, ¢'], then the group Oy (Z) is isomorphic to the intersection

04(Z) N 771 04(Q)7-
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Consequently, the left hand side of the mass formula can be written as a sum

(1) 3 !

— 1 04(Z) Ny=1 04(Q)|’

where 7 ranges over a set of double coset representatives.

At this point, it will be technically convenient to introduce two modifications of the calcu-
lation we are carrying out. For every commutative ring R, let SO,(R) denote the subgroup
of Og4(R) consisting of those automorhisms of (Vg, ¢r) which have determinant 1 (if R is an
integral domain, this is a subgroup of index at most 2). Let us instead attempt to compute the
sum

(2) P

~ 1S04(Z) Ny~ S04(Q)|’
where 7 runs over a set of representatives for the collection of double cosets
X =504(Q)\SOy(Af)/SO04(Z).

If ¢ is unimodular, expression (2) differs from the expression (1) by an overall factor of 2 (in
general, the expressions differ by a power of 2).

Remark 1.1.18. Fix an orientation of the Z-module V' (that is, a generator of the top exterior
power of V). Quantity (2) can be written as a sum |5071/(Z)|’ where the sum is indexed by
q

all isomorphism classes of oriented even unimodular positive-definite lattices (V', ¢’) which are
isomorphic to (V, q) as oriented quadratic spaces after extension of scalars to Z/nZ, for every
integer n > 0.

Let A denote the ring of adeles: that is, the ring Ay x R. Then we can identify X with
the collection of double cosets SO4(Q)\ SOq(A)/SOq(Z x R). The virtue of this maneuver
is that A has the structure of a locally compact commutative ring containing Q as a discrete
subring. Consequently, SO4(A) is a locally compact topological group which contains SO,(Q)
as a discrete subgroup and SOq(z x R) as a compact open subgroup.

Let p be a Haar measure on the group SO4(A). One can show that the group SO4(A)
is unimodular: that is, the measure p is invariant under both right and left translations. In
particular, p determines a measure on the quotient SO,(Q)\ SO,(A), which is invariant under
the right action of SOq(z x R). We will abuse notation by denoting this measure also by pu.
Write SO4(Q)\ SO4(A) as a union of orbits | J, y O, for the action of the group soq(i x R).
If + € X is a double coset represented by an element v € SO,(A), then we can identify the
orbit O, with the quotient of SO,(Z x R) by the finite subgroup SO,4(Z x R) Ny~ S0,(Q)~.
We therefore have

! I o (2 N
¥ 27: S04(Z x R)N7~1S0,(Qn] ;E;( 1(SO,(Z x R))
1(50,(Q)\ 50,(A))

(4) = =
u(SO,(Z x R))

Of course, the Haar measure p on SO4(A) is only well-defined up to scalar multiplication.
Rescaling the measure p has no effect on the right hand side of the preceding equation, since
1 appears in both the numerator and the denominator of the right hand side. However, it is
possible to say more: it turns out that there is a canonical normalization of the Haar measure,
known as Tamagawa measure.
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Construction 1.1.19. Let G be a linear algebraic group of dimension d over the field Q of
rational numbers. Let € denote the collection of all left invariant d-forms on G, so that 2 is a
1-dimensional vector space over Q. Choose a nonzero element w € ).

The vector w determines a left-invariant differential form of top degree on the smooth man-
ifold G(R), which in turn determines a Haar measure ugr,, on G(R). For every prime number
p, an analogous construction yields a measure uq ., on the p-adic analytic manifold G(Q,)-
Assuming that G is connected and and has no nontrivial characters, one can show that the
product of these measures determines a measure pr., on the restricted product

res

GR) x [[G(Q,) ~ G(A).

Let A be a nonzero rational number. Then an elementary calculation gives

R w = Mprw Qa0 = [Aplq, w;

here ||, denotes the p-adic absolute value of A. Combining this with the product formula
Hp [Alp = ﬁ, we deduce that pr., is independent of the choice of nonzero element w € Q. We
will refer to pram as the Tamagawa measure of the algebraic group G.

If (A, q) is a positive-definite even lattice, then the restriction of the functor R — SO4(R)
to Q-algebras can be regarded as a semisimple algebraic group over Q. We may therefore
apply Construction 1.1.19 to obtain a canonical measure pram on the group SO, (A). We may
therefore specialize equation (4) to obtain an equality

# . MTam(SOq(Q)\ SOKI(A))
(5) ; 1S0¢(Z)]  pram(SO4(Z x R))

where it makes sense to evaluate the numerator and the denominator of the right hand side
independently.

Remark 1.1.20. The construction R — O4(R) also determines a semisimple algebraic group
over Q. However, this group is not connected, and the infinite product Hp PQ, w does not
converge to a measure on the restricted product [ 04(Q,) = O4(Ay). This is one reason for
preferring to work with the group SO, in place of Oy.

Remark 1.1.21. The numerator on the right hand side of (5) is called the Tamagawa number
of the algebraic group SO,. More generally, if G is a connected semisimple algebraic group
over Q, we define the Tamagawa number of G to be the Tamagawa measure of the quotient

GQ\G(A).

The denominator on the right hand side of (5) is computable: if we choose a differential form
w as in Construction 1.1.19, it is given by the product

pr.w(S04(R) [ [ Ha,w(S04(Zy)).

The first term is the volume of a compact Lie group, and the second term is a product of local
factors which are related to counting problems over finite rings. Carrying out these calculations
leads to a very pretty reformulation of Theorem 1.1.15:

Theorem 1.1.22 (Mass Formula, Adelic Formulation). Let (V, q) be a nondegenerate quadratic
space over Q. Then piram(SO4(Q)\SO4(A)) = 2.
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The appearance of the number 2 in the statement of Theorem 1.1.22 results from the fact
that the algebraic group SO, is not simply connected. Let Spin, denote the (2-fold) universal
cover of SOg, so that Spin, is a simply connected semisimple algebraic group over Q. We then
have the following more basic statement:

Theorem 1.1.23. Let (V,q) be a positive-definite quadratic space over Q. Then
frram (Sping (Q)\ Spin, (A)) = 1.
Remark 1.1.24. For a deduction of Theorem 1.1.22 from Theorem 1.1.23, see [43].
Theorem 1.1.23 motivates the following:

Conjecture 1.1.25 (Weil’s Conjecture on Tamagawa Numbers). Let G be a simply connected
semisimple algebraic group over Q. Then pr.m(G(Q)\G(A)) = 1.

Conjecture 1.1.25 was proved by Weil in a number of special cases. The general case was
proven by Langlands in the case of a split group ([31]), by Lai in the case of a quasi-split group
([29]), and by Kottwitz for arbitrary simply connected algebraic groups satisfying the Hasse
principle ([28]; this is now known to be all simply connected semisimple algebraic groups over
Q, by work of Chernousov).

The goal of this paper is to address the function field analogue of Conjecture 1.1.25, which
we will discuss in the next section.

1.2. Weil’s Conjecture for Function Fields. In this section, we will review the definition
of Tamagawa measure for algebraic groups G which are defined over function fields. We will
then state the function field analogue of Weil’s conjecture, and explain how to reformulate it
as a counting problem (using the logic of §1.1 in reverse).

Notation 1.2.1. Let F, denote a finite field with g elements, and let X be an algebraic curve
over F, (which we assume to be smooth, proper, and geometrically connected). We let Kx
denote the function field of the curve X (that is, the residue field of the generic point of X).

We will write z € X to mean that z is a closed point of the curve X. For each point x € X,
we let k() denote the residue field of X at the point x. Then x(x) is a finite extension of
the finite field F,. We will denote the degree of this extension by deg(x) and refer to it as the
degree of x. We let O, denote the completion of the local ring of X at the point z: this is a
complete discrete valuation ring with residue field k(z), noncanonically isomorphic to a power
series ring x(x)[[t]]. We let K, denote the fraction field of O,.

For every finite set S of closed point of X, let A® denote the product ], g Ky x [L¢s Oa
We let A denote the direct limit <

lim A”.

We will refer to A as the ring of adeles of Kx. It is a locally compact commutative ring,
equipped with a ring homomorphism Kx — A which is an isomorphism of Kx onto a discrete
subset of A. We let Ag = [],cx O, denote the ring of integral adeles, so that Ay is a compact
open subring of A.

Let G be a linear algebraic group of dimension d defined over the field Kx. It will often be
convenient to assume that we are given an integral model of Gy: that is, that Gy is given as the
generic fiber of a smooth affine group scheme G over the curve X.

Remark 1.2.2. If Gg is a simply connected semisimple algebraic group over Kx, then it is
always possible to find a smooth affine group scheme with generic fiber Gy. See, for example,
[12] or §7.1 of [11].
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Remark 1.2.3. In what follows, it will sometimes be convenient to assume that the group
scheme G — X has connected fibers. This can always be arranged by passing to an open
subgroup G° C G (which does not injure our assumption that G is an affine group scheme over
X, since the open immersion G° — G is complementary to a Cartier divisor and is therefore
an affine morphism).

For every commutative ring R equipped with a map Spec R — X, we let G(R) denote the
group of R-points of G. Then:

e For each closed point z € X, G(K,) is a locally compact group, which contains G(0,,)
as a compact open subgroup.

o We can identify G(A) with the restricted product [],y G(K,): that is, with the
subgroup of the product ],y G(K,) consisting of those elements {g, },cx such that
gz € G(O,) for all but finitely many values of X.

e The group G(A) is locally compact, containing G(Kx) as a discrete subgroup and
G(Ao) ~ [],cx G(O:) as a compact open subgroup.

1.2.1. Let us now review the construction of Tamagawa measure on the locally compact group
G(A). Let Qg/x denote the relative cotangent bundle of the smooth morphism 7 : G — X.

Then Q¢ x is a vector bundle on G of rank d = dim(Gp). We let QdG/X denote the top exterior

power of Qg x, so that QdG/X is a line bundle on G. Let £ denote the pullback of QdG/X
along the identity section e : X — G. Equivalently, we can identify £ with the subbundle of
F*Qé /X consisting of left-invariant sections. Let £y denote the generic fiber of £, so that L is
a 1-dimensional vector space over the function field Kx. Fix a nonzero element w € Lo, which
we can identify with a left-invariant differential form of top degree on the algebraic group Gy.

For every point € X, w determines a Haar measure yi, ., on the locally compact topological
group G(K,). Concretely, this measure can be defined as follows. Let ¢ denote a uniformizing
parameter for O, (so that O, ~ x(z)[[t]]), and let G, denote the fiber product Spec O, x xG.
Choose a local coordinates yi, ..., yq for the group G, near the identity: that is, coordinates
which induce a map u: Go, — A%m which is étale at the origin of Go,. Let v, (w) denote the
order of vanishing of w at the point . Then, in a neighborhood of the origin in G, , we can write
w = t’= (@) \dy; A- - - Adyg, where X is an invertible regular function. Let m, denote the maximal
ideal of O, and let G(m,) denote the kernel of the reduction map G(0,) — G(k(x)). Since
Y1,---,yq are local coordinates near the origin, the map u induces a bijection G(m,) — md.
The measure defined by the differential form dy; A- - - Adyg on G(m,) is obtained by pulling back
the “standard” measure on K¢ along the map u, where this standard measure is normalized so
that o;l has measure 1. It follows that the measure of G(m,) (with respect to the differential

form dyi A -+ Adyg) is given by W We then define

:um,w(G(m$)) =q" deg(z)va (w

The smoothness of G implies that the map G(0,) — G(x(x)) is surjective, so that we have

— 7deg(m)vz(w)w
Nz,w(G(ox)) q |I€($)|d .

Remark 1.2.4. Since G(0,) is a compact open subgroup of G(K,), there is a unique left-
invariant measure p on G(O,) satisfying

_ —deg(w)um(wﬂG(“(x )|
n(G(0.)) = g sl
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The reader can therefore take this expression as the definition of the measure p, . However,
the analytic perspective is useful for showing that this measure is independent of the choice of
integral model chosen. We refer the reader to [57] for more details.

The key fact is the following:

Proposition 1.2.5. Suppose that Gy is connected and semisimple, and let w be a monzero
element of Lo. Then the measures fig ., on the groups G(K,) determine a well-defined product

measure on G(A) =[],y G(K,). Moreover, this product measure is independent of w.

Proof. To check that the product measure is well-defined, it suffices to show that it is well-
defined when evaluated on a compact open subgroup of G(A), such as G(Ay). This is equivalent
to the absolute convergence of the infinite product

I1 rew(@©O) = ] q—degm)vmww,

rex rex ()

which we will discuss in §6.5.
The fact that the product measure is independent of the choice of w follows from the fact

that the infinite sum
Z deg(x = deg(L)

rzeX
is independent of w. O

Definition 1.2.6. Let G be a connected semisimple algebraic group over Kx. Let d denote
the dimension of Gy, and let g denote the genus of the curve X. The Tamagawa measure on
G(A) is the Haar measure given informally by the product

MTam = qd(lig) H Mz ,w
zeX

Remark 1.2.7. Equivalently, we can define Tamagawa measure piTay, to be the unique Haar
measure on G(A) which is normalized by the requirement

MTam(G(A0>) d(l g)—deg(L) H ‘ (.Z‘d)l
rxeX .’L‘)|

Remark 1.2.8. To ensure that the Tamagawa measure piT,y, is well-defined, it is important

that the quotients W converge swiftly to 1, so that the infinite product [], . x ‘G/{((a:()|?i)‘ is

absolutely convergent. This can fail dramatically if Gy is not connected. However, it is satisfied
for some algebraic groups which are not semisimple: for example, the additive group G,.

Remark 1.2.9. If the group Gy is semisimple, then any left-invariant differential form w of top
degree on Gy is also right-invariant. It follows that the group G(A) is unimodular. In particular,
the measure piTam on G(A) descends to a measure on the quotient G(Kx)\G(A), which is
invariant under the action of G(A) by right translation. We will denote this measure also by
Tam, and refer to it as Tamagawa measure. It is characterized by the following requirement:
for every positive measurable function f on G(A), we have

(6) / f(x)dMTam :/ Z f d,LLTamu
+€G(A) yeG(Kx)/G<A ey
where 7 : G(A) — G(Kx)\G(A) denotes the projection map.
An important special case occurs when f is the characteristic function of a coset vH for
some compact open subgroup H C G(A). In this case, each element of w(vH) has exactly o(y)



WEIL’S CONJECTURE FOR FUNCTION FIELDS 13

preimages in U, where o(7) denotes the order of the finite group G(Kx)N~yH~~! (this group
is finite, since it is the intersection of a discrete subgroup of G(A) with a compact subgroup of

G(A)). Applying formula (6), we deduce that pram(w(vH)) = %

Example 1.2.10. Let G = G, be the additive group. Then the dimension d of G is equal
to 1, and the line bundle £ of left-invariant top forms is isomorphic to the structure sheaf O x
of X. Moreover, we have an equality |G(k(z))| = |k(z)| for each 2 € X. Consequently, the
Tamagawa measure fiT,m is characterized by the formula pram(G(Ag)) = ¢*79. Note that we
have an exact sequence of locally compact groups

0 — H(X;0x) = G(Ag) = G(Kx)\G(A) — H'(X;0x) = 0,
so that the Tamagawa measure of the quotient G(Kx)\G(A) is given by
| H'(X;0x)|

¢ 4
am (G(A 9=1.
(o)) ) =g

Remark 1.2.11. One might ask the motivation for the auxiliary factor q41-9) appearing in the
definition of the Tamagawa measure. Remark 1.2.10 provides one answer: the auxiliary factor
is exactly what we need in order to guarantee that Weil’s conjecture holds for the additive
group G,.

Another answer is that the auxiliary factor is necessary to obtain invariance under Weil
restriction. Suppose that f : X — Y is a separable map of algebraic curves over F,. Let Ky
be the fraction field of Y (so that Kx is a finite separable extension of Ky ), let Ay denote
the ring of adeles of Ky, and let Hy denote the algebraic group over Ky obtained from Gy by
WEeil restriction along the field extension Ky < Kx. Then we have a canonical isomorphism of
locally compact groups Go(A) ~ Hy(Ay). This isomorphism is compatible with the Tamagawa
measures on each side, but only if we include the auxiliary factor ¢?(*=9) indicated in Definition
1.2.6. See [42] for more details.

1.2.2. Our goal in this paper is to address the following version of Weil’s conjecture:
Conjecture 1.2.12 (Weil). Suppose that Gy is semisimple and simply connected. Then
MTam(G(KX)\G(A)) =1

Let us now reformulate Conjecture 1.2.12 in more elementary terms. Note that the quotient
G(Kx)\G(A) carries a right action of the compact group G(Ap). We may therefore write
G(Kx)\G(A) as a union of orbits, indexed by the collection of double cosets

G(Kx)\G(A)/G(Ao).
Applying Remark 1.2.9, we calculate

iran(GHNGA) = 2 17 IR & e

_ g Gn()| :
= "] );\c:(Ao)nrlG(Kx)vl'

zeX

We may therefore reformulate Weil’s conjecture as follows:

Conjecture 1.2.13 (Weil). Suppose that Gy is semisimple and simply connected. Then we
have an equality

K@) g —deg(o) 1
Zg( Glr(z))] ; |G(Ag) Ny LG (Kx )|
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where the sum on the right hand side is taken over a set of representatives for the double
quotient G(Kx)\G(A)/G(Ay).

Remark 1.2.14. In the statement of Conjecture 1.2.13, the product on the left hand side and
the sum on the right hand side are generally both infinite. The convergence of the left hand
side is equivalent to the well-definedness of Tamagawa measure fiTay,, and the convergence of
the right hand side is equivalent to the statement that piram(G(Kx)\G(A)) is finite.

1.2.3. We now give an algebro-geometric interpretation of the sum appearing on the right hand
side of Conjecture 1.2.13. In what follows, we will assume that the reader is familiar with the
theory of principal G-bundles; we will give a brief review in §A.1.

Construction 1.2.15 (Regluing). Let v be an element of the group G(A). We can think of ~
as given by a collection of elements v, € G(K ), having the property that there exists a finite
set S such that v, € G(OQ,) whenever = ¢ S.
We define a G-bundle P, on X as follows:
(a) The bundle P, is equipped with a trivialization ¢ on the open set U = X — S.
(b) The bundle P, is equipped with a trivialization 1, over the scheme Spec O, of each
point z € S.
(¢) For each = € S, the trivializations of P, |gpec x, determined by ¢ and 1, differ by
multiplication by the the element v, € G(K,).

Note that the G-bundle P, is canonically independent of the choice of S, so long as S contains
all points z such that v, ¢ G(O,).

Remark 1.2.16. Let 7,4’ € G(A). The G-bundles P, and P, come equipped with trivializa-
tions at the generic point of X. Consequently, giving an isomorphism between the restrictions
Py spec kx and P |spec k¢ IS equivalent to giving an element § € G(Kx). Unwinding the
definitions, we see that this isomorphism admits an (automatically unique) extension to an iso-
morphism of P., with P, if and only if v/~ 3~y belongs to G(Ay). This has two consequences:
(a) The G-bundles P, and P, are isomorphic if and only if v and " determine the same
element of G(Kx)\G(A)/G(Ay).
(b) The automorphism group of the G-torsor P., is the intersection G(Ag) Ny 'G(Kx)y.

Remark 1.2.17. Let P be a G-bundle on X. Then P can be obtained from Construction
1.2.15 if and only if the following two conditions are satisfied:

(7) There exists an open set U C X such that P |y is trivial.

(#7) For each point z € X — U, the restriction of P to Spec O, is trivial.
By a direct limit argument, condition (¢) is equivalent to the requirement that P |spec xx be
trivial: that is, that P is classified by a trivial element of Hl(Spec Kx;Go). If Gy is semisimple
and simply connected, then H'(Spec K x; Go) vanishes (see [24]).

If the map G — X is smooth and has connected fibers, then condition (ii) is automatic (the
restriction P [gpec x(z) can be trivialized by Lang’s theorem (see [30]), and any trivialization of
P |spec r(z) can be extended to a trivialization of P [spec 0, by virtue of the assumption that G
is smooth.

Suppose now that G has connected fibers. Combining Remarks 1.2.16 and 1.2.17, we obtain
the formula

ram(G(K X \G(A)) ~ g0 —des@)( T Ifé?(wi) > | Aui(?” .
P

zeX J))|

Here the sum is taken over all isomorphism classes of generically trivial G-bundles on X. We
may therefore reformulate Conjecture 1.2.12 as follows:
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Conjecture 1.2.18 (Weil). Let G — X be a smooth affine group scheme with connected fibers
whose generic fiber is semisimple and simply connected. Then

11 |k ()| _ gili=0)—dex() 3 L
sox [G(s(@))] = | Aut(P)|

The assertion of Conjecture 1.2.18 can be regarded as a function field version of Theorem
1.1.15. More precisely, we have the following table of analogies:

Classical Mass Formula Conjecture 1.2.18
Number field Q Function field K x

Quadratic space (Vq, qq) over Q Algebraic Group Gg
Even lattice (V, q) Integral model G

Even lattice (V’,¢’) of the same genus  Principal G-bundle P

1 1
2y 10, @) 29 TRw@)] -

1.2.4. There are a number of tools that are available for attacking Conjecture 1.2.18 that have
no analogue in the case of a number field. More specifically, we would like to take advantage of
the fact that the collection of all G-bundles on X admits an algebro-geometric parametrization.

Notation 1.2.19. For every F,-algebra R, let Bung(X)(R) denote the category of principal
G-bundles on the relative curve Xp = Spec R XSpecFy X (where morphisms are given by
isomorphisms of G-bundles). The construction R — Bung(X)(R) determines an algebraic
stack, which we will denote by Bung(X) and refer to as the moduli stack of G-bundles on X.

By definition, we can identify F,-valued points of Bung(X) with principal G-bundles on X.
We will denote the sum ", m by | Bung (X )(F,)|: we can think of it as a (weighted) count
of the objects of Bung(X)(F,), which properly takes into account the fact that Bung(X)(F,)
is a groupoid rather than a set.

Remark 1.2.20. One can show that Bung(X) is a smooth algebraic stack over F;. Moreover,
for every G-bundle P on X, the dimension of Bung(X) at the point determined by P is given
by the Euler characteristic

—x(gp) = H'(X;99) — H'(X; g9),
where gp denotes the vector bundle on X obtained by twisting the Lie algebra g of G using the

torsor P. Since the generic fiber G is semisimple, the group G acts trivially on the top exterior
power /\dg, so that

d d
/\ gp /\ g~ LY.
It follows that the vector bundle gy has degree —deg(L), so that so that the Riemann-Roch
theorem gives x(gp) = d(1 — g) — deg(L) is independent of P. Applying the same analysis to
any R-valued point of Bung(X), we conclude that Bung(X) is equidimensional of dimension
d(g — 1) 4+ deg(L). We may therefore rewrite the right hand side of Conjecture 1.2.18 as a
fraction

| Bung (X)(Fy)|
qdim(BunG (X)) °
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Heuristically, this is a normalized count of the number G-bundles on X, where the normaliza-
tion factor ¢@m®Bunc(X)) can be regarded as a naive estimate determined by the dimension of
Bung(X).

1.2.5. For every closed point « € X, let G, denote the fiber product Spec x(z) xx G, so that
G, is a connected algebraic group over x(x). Let BG, denote the classifying stack of G: this
is a smooth algebraic stack of dimension —d over Spec x(z). Then BG,(F,) is the category of
G,-bundles on Spec k(z). If G, is connected, then Lang’s theorem implies that every G,-bundle
on Spec k() is trivial. Moreover, the automorphism group of the trivial G -bundle is given by
G, (k(z)) = G(k(x)). Consequently, we have an identity

|5(@)|” | BGqy(r(2))|
G(r(2))]  |k(@)|dmBG)

We may therefore rewrite Weil’s conjecture in the suggestive form

| BunG | BG |
(7) W H dlmoac )
q CEEX |

Roughly speaking, formula (7) reflects the idea that Bung(X) can be viewed as a “continuous
product” of the classifying stacks BG,, where x ranges over the closed points of X. Most of
this paper will be devoted to making this heuristic idea more precise.

1.3. Cohomological Formulation. Throughout this section, we let X denote an algebraic
curve defined over a finite field F, and G a smooth affine group scheme over X. The analysis
given in §1.2 shows that Weil’s conjecture can be reduced to the problem of computing the
sum » |AT1(1P)|’ where P ranges over all isomorphism classes of G-bundles on X. Roughly

speaking, we can think of this quantity as counting the number of F ;-points of the moduli stack
Bung(X).

1.3.1. Let us begin by discussing the analogous counting problem where we replace Bung(X)
by an algebraic variety Y defined over F,. Let F, be an algebraic closure of F,, and let

= SpecF XspecF, Y denote the associated algebralc variety over F We let Frob: Y — Y
denote the product of the identity map from Spec Fq to itself with the absolute Frobenius map
from Y to itself. We refer to Frob as the geometric Frobenius map on Y. If Y is a quasi-
projective variety equipped with an embedding j : Y < P™, then the map Frob is given in
homogeneous coordinates by the construction

[%Oxn]»—)[xgx;ﬂ

(this map carries Y to itself, since Y can be described using homogeneous polynomials with
coefficients in F).

Let Y (F,) denote the finite set of F,-points of Y. Then Y (F,) can be identified with the
fixed point locus of the map Frob : Y — Y. Weil had the beautiful insight that one should be
able to compute the integers |Y (F,)| using the Lefschetz fixed-point formula, provided that one
had a sufficiently robust cohomology theory for algebraic varieties. Motivated by this heuristic,
he made a series of famous conjectures about the behavior of the integers |Y (F,)|.

Weil’s conjectures were eventually proven by the Grothendieck school using the theory of
{-adic cohomology. We will give a brief summary here, and a more detailed discussion in §2. Fix
a prime number ¢ which is invertible in F,. To every algebraic variety V over F, the theory of
l-adic cohomology assigns ¢-adic cohomology groups {H"(V; Q) }n>0 and compactly supported
¢-adic cohomology groups {H (V;Q,)}n>0, which are finite dimensional vector spaces over Q.
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If Y is an algebraic variety over F, then the geometric Frobenius map Frob : Y — Y is proper
and therefore determines a pullback map from H’(Y;Q,) to itself. We will abuse notation by
denoting this map also by Frob. We then have the following:

Theorem 1.3.1 (Grothendieck-Lefschetz Trace Formula). Let Y be an algebraic variety over
F,. Then the number of Fq-points of Y is given by the formula

Y (F,)| = 37 (~1) Tr(Frob | HL(V: Q).
i>0
1.3.2. For our purposes, it will be convenient to write the Grothendieck-Lefschetz trace formula
in a slightly different form. Suppose now that Y is a smooth variety of dimension n over F,.
Then, from the perspective of ¢-adic cohomology, Y behaves as if it were a smooth manifold of
dimension 2n. In particular, it satisfies Poincare duality: that is, there is a perfect pairing

[ Hi(?§ Q) ®Qq, Hznii(?; Q) — Q.

This pairing is not quite Frob-equivariant: instead, it fits into a commutative diagram

HL(Y;Q,) ®q, H"'(YV;Q,) —— Q,

\LFrob ® Frob lq"
HZC(?v QK) ®Qz HQ"*’L(?’ QZ) $ Qfa

reflecting the idea that the geometric Frobenius map Frob : Y — Y has degree ¢". In particular,
pullback along the geometric Frobenius map Frob induces an isomorphism from H*(Y; Q) to
itself, and we have the identity

g™ Tr(Frob | H(Y; Q) = Tr(Frob™ ' |H*"7*(Y; Qy)).
We may therefore rewrite Theorem 1.3.1 as follows:

Theorem 1.3.2 (Grothendieck-Lefschetz Trace Formula, Dual Version). Let Y be an algebraic
variety over Fy which is smooth of dimension n. Then the number of Fy-points of Y is given
by the formula
Y (F . o
X E) (nq>| = (=1)' Tr(Frob™" |[H(Y; Qp)).
q i>0
1.3.3. We would like to apply an analogue of Theorem 1.3.2 to the problem of counting G-
bundles on an algebraic curve X.

Notation 1.3.3. Let C denote the field of complex numbers, and fix an embedding ¢ : Z, — C.
Let M be a Z;-module for which C ®z, M is a finite-dimensional vector space over C. If ¢ is
any endomorphism of M as a Z,-module, we let Tr(1)| M) € C denote the trace of C-linear map
C®z, M - C®z, M determined by 1. More generally, if ¢ is an endomorphism of a graded
Zg-module M*, we let Tr(y)|M*) denote the alternating sum Y, ,(—1)" Tr(¢|M?) (provided
that this sum is convergent). N

Let Bung(X) denote the moduli stack of G-bundles on X. We let Bung(X) denote the
fiber product Spec Fq XSpecF, Bung(X), which we regard as a smooth algebraic stack over Fq.
For every F,-algebra R, we can identify the category of R-valued points of Bung(X) with the
category of principal G-bundles on the relative curve Xp = Spec R XgpecF, X-

Note that if R is an F,-algebra, then the construction a + a“ determines an F,-algebra
homomorphism from R to itself, and therefore induces a map Frobr : Xgp — Xg (which is
the identity on X). If P is a principal G-bundle on Xpg, then Frobj P is another principal
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G-bundle on Xg. The construction P + Frobj, P determines a morphism of algebraic stacks
Frob : Bung(X) — Bung(X), which we will refer to as the geometric Frobenius morphism on
Bung(X).

We let H*(Bung(X); Z¢) denote the f-adic cohomology ring of the algebraic stack Bung(X)
(for a definition, see §2.3). The geometric Frobenius map Frob : Bung(X) — Bung(X) de-
termines an endomorphism of H*(Bung(X); Z¢), which we will denote also by Frob. One can
show that this map is an automorphism of H* (Bung(X); Z,) (it is inverse to the map given by
pullback along the Frobenius automorphism of SpecF,).

WEeil’s conjecture is an immediate consequence of the following pair of results:

Theorem 1.3.4. [Grothendieck-Lefschetz Trace Formula for Bung(X)] Assume that the fibers
of G are connected and that the generic fiber of G is semisimple. Then we have an equality
| Bung (X)(F,)|

qdim(Bung (X)) = Tr(Frob™ ' |H"(Bung(X); Z¢)).

Theorem 1.3.5 (Weil’s Conjecture, Cohomological Form). Suppose that G has connected fibers
and that the generic fiber of G is semisimple and simply connected. Then there is an equality

1 |BG z))|
Tr(Frob ! | H* (Bung (X H ‘dlm Tl [dim(BGg)
zEX

In particular, the sum on the left hand side and the product on the right hand side are both
absolutely convergent.

Warning 1.3.6. Neither the left or right hand side of the identity asserted by Theorem 1.3.4
is a priori well-defined. We should therefore state it more carefully as follows:

(a) For each integer i, the tensor product C ®z, Hi(Bupg(X); Z,y) is a finite-dimensional
vector space over C, so that the trace Tr(Frob ! | HY(Bung(X); Z¢)) is well-defined.
(b) The sum

Tr(Frob ™" |H*(Bung(X); Z¢)) = Y _(—1)' Tr(Frob™" | H'(Bung (X ); Zy))
i>0
is absolutely convergent (note that, in contrast with the situation of Theorem 1.3.2,
this sum is generally infinite).
(¢) The sum |Bung(X)(Fy)| => 5 m is convergent.
(d) We have an equality

| Bung (X)(F,)|

qdim(BunG) = TI‘(FI‘Ob_l | H*(BHHG (X)’ Zf))

Remark 1.3.7. Assertion (b) of Warning 1.3.6 relies crucially on the fact that we are sum-
ming eigenvalues of the arithmetic Frobenius map Frob™' (which are small), rather than the
eigenvalues of the geometric Frobenius Frob (which are large).

Remark 1.3.8. For each closed point x € X, the stack BG, satisfies the Grothendieck-
Lefschetz trace formula. In particular, if we set

BG, = Spech X8pec w(z) BGa

and let Frob, denote the geometric Frobenius morphism of BG,,, then we have equalities

BG, (k(x _ s
M = Tr(Frob, ' | H*(BG.; Z/))
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(see Remark 1.2.20). Theorem 1.3.5 can therefore be reformulated as an identity

(8) Tr(Frob ™" | H* (Bun(X); Zy)) = [ Tr(Frob; ! | H*(BG.: Z0).

We can regard Theorem 1.3.4 as an analogue of Theorem 1.3.1, where the smooth F;-scheme
Y is replaced by the algebraic stack Bung(X). The principal difficulty in verifying Theorem
1.3.4 comes not from the fact that Bung(X) is a stack, but from the fact that it fails to be
quasi-compact. For every quasi-compact open substack U C Bung(X), one can write U as the
stack-theoretic quotient of an algebraic space U by the action of an algebraic group H over F,
(for example, we can take U to be a fiber product U X gung (x) Bung (X, D), where Bung (X, D)
denotes the moduli stack of G-bundles on X which are equipped with a trivialization on some
sufficiently large effective divisor D C X'). One can then show that U satisfies the Grothendieck-
Lefschetz trace formula by applying Theorem 1.3.2 to U and H (see §10.1). One might hope
to prove Theorem 1.3.4 by writing Bung(X) as the union of a sequence of well-chosen quasi-
compact open substacks

Uy —Uy —Us—---,
and making some sort of convergence argument. Using this method, Behrend has proven
Theorem 1.3.4 in a number of special cases (see [5]). In §10, we will use the same technique to
prove the general case of Theorem 1.3.4.

The bulk of this paper is devoted to the proof of Theorem 1.3.5. Roughly speaking, the
idea of the proof is to show that H*(Bung(X);Z¢) is the cohomology of a chain complex
C*(Bung(X); Zy), which can be identified (in a Galois-equivaraint way) with a continuous
tensor product of chain complexes C*(BG,; Z¢), where x ranges over the points of X. In §1.4,
we will formulate this “local-to-global” principle in more detail, using ideas which are inspired
by homotopy theory and the theory of chiral algebras.

1.4. Analyzing the Homotopy Type of Bung(X). Let X be an algebraic curve over an
algebraically closed field k, let G be a smooth affine group scheme over X, and let Bung(X)
denote the moduli stack of G-bundles on X. Our objective in this paper is to describe the
cohomology of Bung(X). In the special case where X and G are actually defined over a finite
field F, C k, understanding the structure of the ¢-adic cohomology ring H* (Bung(X);Z,)
(along with the action of Frobenius) is the key to proving Theorem 1.3.5. In this section, we
summarize (without proofs) the “classical” situation where k is the field C of complex numbers,
where we can identify X with a compact Riemann surface (in particular, it is a real manifold
of dimension 2). For a more detailed discussion, we refer the reader to [4].

1.4.1. To simplify the discussion, let us assume that all fibers of the group scheme G are
semisimple and simply connected. Fix a G-bundle Py, in the category of smooth manifolds.
The tangent bundle of Py, is a G-equivariant vector bundle on Py, and can therefore be
written the pullback of a smooth vector bundle € on X. This vector bundle fits into an exact
sequence

(9) 058 —&—Tx =0,

where €y denotes the vector bundle associated by Py, to the adjoint representation of G. In
particular, we can regard € as a complex vector bundle on X. A J-connection on Py, is a
choice of complex structure on the vector bundle & for which (9) is an exact sequence of complex
vector bundles on X. Let Q denote the collection of all J-connections on X. Then € can be
regarded as a torsor for the infinite-dimensional vector space of C-antilinear bundle maps from
Tx into €g: in particular, it is an infinite-dimensional affine space, and therefore contractible.
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Proposition 1.4.1. Let § = Aut(Pyn) denote the group of all automorphisms of the smooth
G-bundle Pyy,. Then the moduli stack Bung(X) can be identified, as a differentiable stack, with
the quotient of the contractible space Q2 by the action of the G. In particular, Bung(X) has the
homotopy type of the classifying space BG.

Sketch. Every G-bundle p : P — X is a fiber bundle with simply connected fibers, and is
therefore trivial in the category of smooth G-bundles (since X is real manifold of dimension
2). In particular, for every complex-analytic G-bundle P on X, we can choose an isomorphism
of smooth G-bundles a : Py, — P. We can identify isomorphism classes of pairs (P, ) with
complex-analytic structures on the bundle Py, ; since X has dimension < 1, these are in bijection
with points of . Then G acts on the space €2, and the homotopy quotient of €2 by G classifies
complex-analytic G-bundles on X. Since X is a projective algebraic variety, the category of
complex-analytic G-bundles on X is equivalent to the category of algebraic vector bundles on
X. O

Remark 1.4.2. The argument we sketched above really proves that the groupoid Bung(X)(C)
of C-valued points of Bung(X) can be identified with the groupoid quotient of Q (regarded as
a set) by G (regarded as a discrete group). To formulate a stronger claim, we would need to be
more precise about the procedure which associates a homotopy type to an algebraic stack over
C. A reader who is concerned with this technical point should feel free to take Principle 1.4.1
as a definition of the homotopy type of Bung(X).

Warning 1.4.3. The validity of Principle 1.4.1 relies crucially on the fact that X is an algebraic
curve. If X is a smooth projective variety of higher dimension, then smooth G-bundles on X
need not be trivial, and d-connections on a smooth G-bundle Py, need not be integrable.
Consequently, the homotopy type of Bung(X) is not so easy to describe.

Note that since the G-bundle Py, is trivial, we can identify the gauge group § with the space
of all smooth sections of the projection map G — X. We would like to use this information to
describe the homotopy type of the classifying space of BG in terms of the individual classifying
spaces {BG;}.rcx. We next outline three approaches to this problem: the first allows us to
express H*(BG; Q) as the cohomology of a certain differential graded Lie algebra (Theorem
1.4.4), while the remaining two express H*(BG; Q) and H,(BS; Q) as the homology of certain
factorization algebras on X (Theorems 1.4.9 and 1.4.13).

1.4.2. First Approach: Rational Homotopy Theory. Let H be a path-connected topological
group. Then the homology H,(H; Q) has the structure of a cocommutative Hopf algebra: the
multiplication on H, (H; Q) is given by pushforward along the product map H x H — H, and the
comultiplication on H,(H; Q) is given by pushforward along the diagonal map § : H — H x H.
With more effort, one can construct an analogue of this Hopf algebra structure at the level
of chains, rather than homology. More precisely, Quillen’s work on rational homotopy theory
gives a functorial procedure for associating to each topological group H a differential graded
Lie algebra g(H) (defined over the field of rational numbers) with the following properties:

(a) Let Hy.(g(H)) denote the homology groups of the underlying chain complex of g(H).
Then we have a canonical isomorphism

Qom.H ~ H.(g(H)).

Under this isomorphism, the Whitehead product on 7,1 BH ~ 7w, H corresponds to
the Lie bracket on H,(g(H)).
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(b) The singular chain complex C,(H; Q) is canonically quasi-isomorphic to the universal
enveloping algebra U(g(H)). This quasi-isomorphism induces a Hopf algebra isomor-
phism

H.(U(g(H))) ~ H.(H; Q).

(¢) The differential graded Lie algebra g(H) is a complete invariant of the rational homo-
topy type of the classifying space BH. More precisely, from g(H) one can functorially
construct a pointed topological space Z for which there exists a pointed map BH — Z
which induces an isomorphism on rational cohomology. In particular, the cohomology
ring H*(BH; Q) can be functorially recovered as the Lie algebra cohomology of g(H).

Let us now apply the above reasoning to our situation. For every open subset U C X, let
Gy denote the (topological) group of all smooth sections of the projection map G xx U — U,
and let g(Gy) be the associated differential graded Lie algebras. The construction U — g(SGy)
is contravariantly functorial in U. For each integer n, let &F,, denote the presheaf of rational
vector spaces on X given by F,(U) = g(Sy)n, and let F,, be the associated sheaf. Ignoring
the Lie algebra structures on the differential graded Lie algebras g(Gy) and remember only the
underlying chain complexes, we obtain a chain complex of presheaves

= Fe =2 F =Ty TF 1o TF o — e,
hence a chain complex of sheaves

e T T T 2T T g
In this language, we can formulate a local-to-global principle as follows:

Theorem 1.4.4. The canonical map
a(9) =T(X;F,) - TI'(X;T,) = RI['(X;T.)

s a quasi-isomorphism of differential graded Lie algebras. In other words, the cohomology
groups of the differential graded Lie algebra 9(SG) can be identified with the hypercohomology
groups of the chain complexr F, of sheaves on X.

Proof. This follows from the compatibility of the construction H +— g(H) with (suitable) ho-
motopy inverse limits. O

Remark 1.4.5. Fix a point z € X. If U C X is an open disk containing z, then evaluation at
x induces a homotopy equivalence of topological groups Gy — G,. Passing to the direct limit,
we obtain a quasi-isomorphism of chain complexes F, , ~ ?’“*J — ¢g(G,). In particular, the nth
homology of the complex F, is a locally constant sheaf on X. Theorem 1.4.4 then supplies a
convergent spectral sequence

HS(X; Q ®7Tt(G.)) = Q®m_s G,
where Q ®m;(G,) denotes the local system of rational vector spaces on X given by z
Q®7rt(Gm)~

Example 1.4.6 (Atiyah-Bott). Suppose that G is constant: that is, it is the product of X
with a simply connected semisimple algebraic group Go over C. In this case, the chain complex
F. is quasi-isomorphic to the chain complex of constant sheaves with value g(Go). In this case,
Theorem 1.4.4 supplies a quasi-isomorphism

9(9) = C*(X; Q) ®q 9(Go)
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The rational cohomology of the classifying space BGq is isomorphic to a polynomial ring
Qlt1,. .., t.], where r is the rank of the semisimple algebraic group Gy and each ¢; is a homo-
geneous element of H*(BGy; Q) of some even degree d;. From this, one can deduce that the
differential graded Lie algebra g(Gy) is formal: that is, it is quasi-isomorphic to a graded vector
space V on generators tY of (homological) degree d; — 1, where the differential and the Lie
bracket vanish. It follows that g(9) is quasi-isomorphic to the tensor product H*(X; Q) ®q V,
where the differential and Lie bracket vanish. From this, one can deduce that H*(Bung(X); Q)
is isomorphic to a (graded) symmetric algebra on the graded vector space H, (X; Q)®q V'V [—1].
In other words, H*(M; Q) is a tensor product of a polynomial ring on 2r generators in even
degrees with an exterior algebra on 2gr generators in odd degrees.

1.4.3. Second Approach: Factorization Homology. Theorem 1.4.4 asserts that that the differ-
ential graded Lie algebra g(§) can be recovered as the hypercohomology of a “local system” of
differential graded Lie algebras given by = — g(G.). Roughly speaking, this reflects the idea
that the gauge group G can be identified with a “continuous product” of the groups G, and
that the construction H — g(H) is compatible with “continuous products” (at least in good
cases).

Our ultimate goal is to formulate a local-to-global principle which will allow us to compute
the rational cohomology ring H* (Bung(X); Q) ~ H*(BG; Q). It is possible to formulate such a
principle directly, without making a detour through the theory of differential graded Lie alge-
bras. However, the basic mechanism of the local-to-global principle takes a more complicated
form.

Definition 1.4.7. For each open set U C X, let B(U) denote the rational cochain complex
C*(BYy; Q). Then the construction U +— B(U) determines a covariant functor from the
partially ordered set of open subsets of X to the category of chain complexes of rational vector
spaces.

Let U denote the collection of all open subsets of X which can be written as a disjoint union
of disks. We let [B denote a homotopy colimit of the diagram {B(U)}yey (in the category of
chain complexes of rational vector spaces). We refer to the homology of the chain complex [ B
as the factorization homology of B.

Example 1.4.8. Suppose that U C X is an open set which can be written as a disjoint
union Uy U --- U U, where each U; is an open disk. Choose a point z; € U; for 1 < i < n.
Then Gy is homeomorphic to a product [ [, .,~,, Gu,, and evaluation at the points x; determine
homotopy equivalences Gy, — G,. Consequently, there is a canonical quasi-isomorphism of
chain complexes

@ C*(BG.;Q) = Q) C*(B5y,;Q)
1<i<n 1<i<n
= C*"(BSr;Q)
= B().
In other words, each term in the diagram {B(U)}yecu can be identified with a tensor product
X5 C*(BG,; Q), where S is some finite subset of X. We can therefore think of the factor-

ization homology [ B as a kind of continuous tensor product @,y C*(BG,; Q). We refer the
reader to [35] for more details.

We can now formulate a second local-to-global principle for describing the cohomology of
Bung(X):
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Theorem 1.4.9. If the fibers of G are semisimple and simply connected, then the canonical
map

/B = hocolimyey B(U) = B(X) = C*(BY; Q) = C*(Bung(X); Q)

is a quasi-isomorphism. In other words, we can identify the cohomology of the moduli stack
Bung (X) with the factorization homology of B.

1.4.4. Third Approach: Nonabelian Poincare Duality. The local-to-global principle expressed
by Theorem 1.4.9 is based on the idea of approximating the moduli stack Bung(X) ~ BS “from
the right”. For any finite set S C X, evaluation at the points of S defines a map of classifying
spaces
BS - [ BG.,
€S
hence a map of cochain complexes

ps : () C*(BG,; Q) — C*(BS; Q).
zeSs
Roughly speaking, Theorem 1.4.9 asserts that if we allow S to vary continuously over all finite
subsets of X, then we can use these maps to recover the chain complex C*(Bung(X); Q) up
to quasi-isomorphism. We now explore an parallel approach, which is based on the idea of
realizing BG as direct limit, rather than an inverse limit.

Notation 1.4.10. For each open set U C X, let G, denote the subgroup of § consisting of
those automorphisms of Py, which are the identity outside of a compact subset of U, and let
A(U) denote the chain complex C.(BS; Q). Note that G, C G7, whenever U C V, so that we
can regard the construction U — A(U) is a covariant functor from the partially ordered set of
open subsets of X to the category of chain complexes.

Let U denote the collection of all open subsets of X which can be written as a disjoint union
of disks. We let [ A denote a homotopy colimit of the diagram {A(U)}yeu (in the category of
chain complexes of rational vector spaces). We refer to the homology of the chain complex [ A
as the factorization homology of A.

Example 1.4.11. Let U C X be an open disk containing a point x € X. Then U xx G is
diffeomorphic to a product U x G, so that Gf; can be identified with the space of compactly
supported maps from U into G,. A choice of homeomorphism U ~ R? then determines a
homotopy equivalence of Gf; with the two-fold loop space Q?(G), so that BG{; can be identified
with Q?(BG,) ~ Q(G,).
More generally, if U can be written as a disjoint union of disks U; U- - -UU,, containing points
x; € Uy, then Gp; is homeomorphic to a product [T, ., ., 9,, so we obtain a quasi-isomorphism
of chain complexes o
Q) C.(®*BG.;:Q) ~ (X) C.(BS;,;Q)
1<i<n 1<i<n
~ C.(BS;;Q)
A(U).

In other words, each term in the diagram {A(U)}yeuy can be identified with a tensor product
R C.(2(BG,): Q),
€S

where S is some finite subset of X. We can therefore think of the factorization homology [ A
as a kind of continuous tensor product @,y C+(Q2*(BG,); Q).
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Remark 1.4.12. The double loop space Q22(BG,) is homotopy equivalent to the quotient
space G(K,)/G(0O;), where O, denotes the completed local ring of X at x, and K, denotes its
fraction field. We will denote this quotient by Grg , and refer to it as the affine Grassmannian
of the group G at the point z. This paper depends crucially on the fact that Grg , admits an
algebro-geometric incarnation (as the direct limit of a sequence of algebraic varieties) and can
be defined over ground fields different from C.

We have the following analogue of Theorem 1.4.9:

Theorem 1.4.13 (Nonabelian Poincare Duality). The canonical map
/A = hocolimyey A(U) = A(X) = C.(BS; Q) = Ci(Bung(X); Q)

is a quasi-isomorphism. In other words, we can identify the homology of the moduli stack
Bung (X) with the factorization homology of A.

Remark 1.4.14. Theorem 1.4.13 can be regarded as version of Poincare duality for the mani-
fold X with coefficients in the nonabelian group G. We will explain this idea in more detail in
3.

1.4.5. Let us now outline the relationship between Theorems 1.4.4, 1.4.9, and 1.4.13.

e Theorem 1.4.4 is the weakest of the three results. It only gives information about the
rational homotopy type of the moduli stack Bung (X)), while Theorems 1.4.9 and 1.4.13
remain valid with integral coefficients. In fact, Theorem 1.4.13 is even true at the
“unstable” level: that is, it gives a procedure for reconstructing the space BS itself,
rather than just the singular chain complex of BS). However, Theorem 1.4.4 gives
information in a form which is most amenable to further calculation, since it articulates
a local-to-global principle using the familiar language of sheaf cohomology, rather than
the comparatively exotic language of factorization homology.

e Theorem 1.4.13 can also be regarded as the strongest of the three results because it
requires the weakest hypotheses: if it is formulated correctly, we only need to assume
that the fibers of the map G — X are connected, rather than simply connected.

e Theorems 1.4.13 and 1.4.9 can be regarded as duals of one another. More precisely, the
construction z — C*(BG,; Q) determines a factorization algebra on X which is Koszul
dual to the factorization algebra x +— C,(Q2BG,;Q). Using this duality, one can
construct a duality pairing between the chain complexes [ A and [ B, which identifies
each with the Q-linear dual of the other (under the assumption that the fibers of G are
simply connected).

e Theorems 1.4.4 and 1.4.9 can also be regarded as duals of one another, but in a different
sense. Namely, each of the differential graded Lie algebras g(G,) can be regarded as
the Koszul dual of C*(BG,;Q), which we regard as an E.-algebra over Q. One can
exploit this to deduce Theorem 1.4.4 from Theorem 1.4.9 and vice versa.

1.5. Summary of this Paper. Fix an algebraically closed field k, an algebraic curve X over
k, and a smooth affine group scheme G over X. Let Bung(X) denote the moduli stack of
G-bundles on X and let ¢ denote the a prime number which is invertible in k. Our main goal
in this paper is to formulate and prove various “local-to-global” principles which can be used
to compute the ¢-adic cohomology ring H*(Bung(X); Z,), which are analogous to Theorems
1.4.4,1.4.9, and 1.4.13 in the case k = C.

We begin in §3 by proving an analogue of nonabelian Poincare duality (Theorem 1.4.13)
in the algebro-geometric setting. Let Rang(X) denote the Beilinson-Drinfeld Grassmannian



WEIL’S CONJECTURE FOR FUNCTION FIELDS 25

of G, which classifies pairs (P,~), where P is a G-bundle on X and « is a trivialization of
P outside of a finite subset of X (see Definition 3.2.3). Our main result (Theorem 3.2.9)
asserts that if the generic fiber of G is semisimple and simply connected, then the evident
map Rang(X) — Bung(X) induces an isomorphism on ¢-adic cohomology (and homology).
Roughly speaking, the idea of the proof is to show that for each G-bundle P, the fiber product
Rang(X) XBung(x) {P} (which parametrizes “rational sections” of P) is contractible.

Let BG denote the classifying stack of G (which we regard as an algebraic stack over X),
let 7 : BG — X denote the projection map, and let wx denote the f-adic dualizing complex
of X. Then the f-adic complex m,m*wx can be regarded as a factorizable f-adic complex on
X. In particular, it extends naturally to a sheaf B on the space Ran(X) of all nonempty finite
subsets of X. In §4, we introduce an analogue of factorization homology in the setting of ¢-adic
sheaves, and construct a map of chain complexes

P /B — C*(Bung(X); Zy).

The second main result of this paper asserts that the map p induces an isomorphism from the
factorization homology of B to the ¢-adic cohomology of Bung(X) (Theorem 5.4.5). The proof
of this result will be given in §9. Roughly speaking, the idea is to reduce Theorem 5.4.5 to
Theorem 3.2.9 using Verdier duality on the space Ran(X). Since Ran(X) is infinite-dimensional,
the theory of Verdier duality is somewhat subtle: to guarantee that it is well-behaved, we will
need to work with sheaves on Ran(X) which have (degreewise) finite-dimensional support. The
sheaf B does not satisfy this condition. To address this point (and others of the same nature), it
will be convenient to introduce “reduced” version of B, which we will denote by B,cq. In §8, we
show that the process of replacing B by B,eq has a very mild effect on factorization homology:
in particular, Theorem 5.4.5 implies that the factorization homology of B..q can be identified
with the reduced ¢-adic cohomology of Bung(X) (Theorem 8.2.18).

Specializing to the case where k = F, is the algebraic closure of a finite field (and where X
and G are defined over F,), the above suggests that we should be able to use the Grothendieck-
Lefschetz trace formula to compute the trace of Frobenius on H: 4(Bung(X);Z,) as a sum of
“local” contributions coming from F,-valued points of Ran(X). Ignoring issues of convergence,
this leads to a heuristic proof of Theorem 1.3.5. In §6, we address the convergence problem
by using Theorem 5.4.5 to deduce an f-adic analogue of Theorem 1.4.4. More precisely, we
show that the cochain complex C*(Bung(X);Z¢)[¢~!] admits an exhaustive filtration whose
successive quotients can be identified with the symmetric powers of a particular chain complex
of Q,-modules M, which can be computed as the hypercohomology of an ¢-adic complex M(G)
on X (here M can be described as the “cotangent fiber” of C*(Bung(X);Z,)[¢(!] as an E-
algebra over Q,, and M(G) bears a similar relationship to the sheaf B). By applying the
(usual) Grothendieck-Lefschetz trace formula to the sheaf M(G), we will compute the trace of
(arithmetic) Frobenius on the symmetric powers of M and therefore also on the cohomology
H*(Bung(X);Zs). Combining this calculation with the Grothendieck-Lefschetz trace formula
for Bung(X) (which we prove in §10), we will complete the proof of Weil’s conjecture.

Throughout this paper, we will make extensive use of the theory of ¢-adic cohomology, both
of algebraic varieties and of more exotic algebro-geometric objects (such as Ran(X)). In §2 and
84, we supply a quick introduction to the formalism of ¢-adic sheaves, using the language of
oo-categories developed in [34] and [35]. For convenience, we will adopt the following reference
conventions:

(HTT) We will indicate references to [34] using the letters HTT.
(HA) We will indicate references to [35] using the letters HA.
(SAG) We will indicate references to [36] using the letters SAG.
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For example, Theorem HTT.6.1.0.6 refers to Theorem 6.1.0.6 of [34].

2. GENERALITIES ON /-ADIC HOMOLOGY AND COHOMOLOGY

The ultimate goal of this paper is to describe the ¢-adic cohomology ring H* (Bung(X); Zy),
where X is an algebraic curve defined over an algebraically closed field k, and G is a (sufficiently
nice) group scheme over X. However, we will first need to address a more basic question: how
is the ring H*(Bung(X); Z,) defined? Theories of of ¢-adic sheaves on Artin stacks have been
developed by a number of authors (see, for example, [7] and [32]). However, we will also need
to work with more exotic algebro-geometric objects (like the “space” Ran(X) of nonempty fi-
nite subsets of X), which are infinite-dimensional in nature and cannot be realized as algebraic
stacks. Moreover, at several points we will need to make “homotopy coherent” constructions
which are not easily described using the traditional formalism of derived categories. Conse-
quently, we devote this section to giving an exposition of {-adic cohomology from a perspective
which is adequate for our needs.

We begin in §2.1 by giving a brief overview of the theory of co-categories (also known as
quasi-categories and weak Kan complezes in the literature). In particular, we introduce the
oo-category Mod, whose objects are chain complexes of A-modules, where A is an arbitrary
commutative ring. This is a mathematical object which can be regarded as intermediate between
the ordinary category Chain(A) of chain complexes of A-modules and the derived category D(A)
obtained from Chain(A) by inverting quasi-isomorphisms, and furnishes a convenient language
for various constructions in homological algebra.

Let k£ be an algebraically closed field, and let ¢ be a prime number which is invertible in k.
In §2.2, we define the £-adic cohomology groups

H'(Y;2/t'2)  H'(Y:iZo)  H'(Y;Q)
as well as the (formally dual) ¢-adic homology groups
H.(Y;Z/0'2)  H(Y;Zo)  H(Y;Q)

associated to a quasi-projective k-scheme Y, and review some of their basic properties (referring
to the literature for proofs).

In §2.3, we introduce the notion of a prestack over the field k. Roughly speaking, a prestack
is a rule which associates to every finitely generated k-algebra R a category Cgr, which depends
functorially on R. The collection of prestacks can be organized into a 2-category which contains
the category of finite-type k-schemes as a full subcategory. It also contains several other objects
which will be relevant to us in this paper, such as the moduli stack Bung(X) of G-bundles on
X. After reviewing the basic definitions, we will explain how to generalize the theory of ¢-adic
homology and cohomology to the setting of prestacks, and establish some of their basic formal
properties.

In §2.4, we introduce a prestack Ran(X), called the Ran space of X, which parametrizes
nonempty finite subsets of X. We then prove show that if X is connected, then Ran(X) is
acyclic with respect to Z,-homology (an ¢-adic version of a basic foundational result of Beilinson
and Drinfeld).

The formation of ¢-adic cohomology is functorial: every map of prestacks f : Y — Z induces
a pushforward map f*: H*(Z;Z,) — H*(Y; Z,) on ¢-adic cohomology groups. In the course of
this paper, we will encounter many situations in which we want to prove that the map f* is an
isomorphism. In §2.5, we will show that this condition holds whenever f is a universal homology
equivalence: roughly speaking, this means that the “fibers” of f are acyclic with respect to Z,-
homology (the caveat is that one must consider the “fiber” of f over any R-valued point of
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Z, where R is a finitely generated k-algebra). We then use the theory of universal homology
equivalences to compare several different version of the prestack Ran(X) (Theorem 2.4.5).

Throughout this section, we will confine our attention to the case of f-adic cohomology with
constant coefficients. This is all that we will need in §3 to formulate and prove the first main
result of this paper (Theorem 3.2.9), an ¢-adic version of nonabelian Poincare duality). In the
later portions of this paper, we will need the more robust formalism of /¢-adic sheaves, which
we will review in §4.1.

2.1. Higher Category Theory.

2.1.1. Homological Algebra. Let A be a commutative ring. Throughout this section, we let
Chain(A) denote the abelian category whose objects are chain complexes

= Vo Vi Vo= Vo, =2 Vg — -

of A-modules. We will always employ homological conventions when discussing chain complexes
(so that differential on a chain complex lowers degree). If V is a chain complex, then its
homology H,(V,) is given by

H,(V.)={z€V,:dx=0}/{z €V, : (Jy € Vouu1)[z = dyl}.

Any map of chain complexes « : V, — W, induces a map H,(V.) — H.(W,). We say that « is
a quasi-isomorphism if it induces an isomorphism on homology.

For many purposes, it is convenient to treat quasi-isomorphisms as if they are isomorphisms
(emphasizing the idea that a chain complex is just a vessel for carrying information about its
homology). One can make this idea explicit using Verdier’s theory of derived categories. The
derived category D(A) can be described as the category obtained from Chain(A) by formally
inverting all quasi-isomorphisms.

The theory of derived categories is a very useful tool in homological algebra, but has a
number of limitations. Many of these stem from the fact that D(A) is not very well-behaved
from a categorical point of view. The category D(A) does not generally have limits or colimits,
even of very simple types. For example, a morphism f : X — Y in D(A) generally does not
have a cokernel in D(A). However, there is a substitute: every morphism f in D(A) fits into a
“distinguished triangle”

x4y - cn(f) » BX.

Here we refer to Cn(f) is called the cone of f, and it behaves in some respects like a cokernel:
every map ¢ : Y — Z such that g o f = 0 factors through Cn(f), though the factorization is
generally not unique. The object Cn(f) € D(A) (and, in fact, the entire diagram above) is
well-defined up to isomorphism, but not up to canonical isomorphism: there is no functorial
procedure for constructing the cone Cn(f) from the data of a morphism f in the category D.
And this is only a very simple example: for other types of limits and colimits (such as taking
invariants or coinvariants with respect to the action of a group), the situation is even worse.

Let f,g : Vi — W, be maps of chain complexes. Recall that a chain homotopy from f, to
g« is a collection of maps h,, : V,, — W41 such that f, — g, =doh, + h,—_1 od. In this case,
we say that f and g are chain-homotopic. Chain-homotopic maps induce the same map from
H. (Vi) to H,(W,), and have the same image in the derived category D(A). In fact, there is an
alternative description of the derived category D(A), which places an emphasis on the notion
of chain-homotopy rather than quasi-isomorphism. More precisely, one can define a category
D’(A) equivalent to D(A) as follows:

Definition 2.1.1. e The objects of D'(A) are the K-injective chain complexes of A-
modules, in the sense of [51]. A chain complex V, is K-injective if, for every chain
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complex W, € Chain(A) and every subcomplex W/ C W, which is quasi-isomorphic to
W.,., every chain map f : W/ — V, can be extended to a chain map f: W, — V,.

e A morphism from V, to W, in D’(A) is a chain-homotopy equivalence class of chain
maps from V, to W.,.

Remark 2.1.2. If V, € Chain(A) is K-injective, then each V,, is an injective A-module. The
converse holds if V,, >~ 0 for n > 0 or if the commutative ring A has finite injective dimension
(for example, if A = Z), but not in general. For example, the chain complex of Z/4Z-modules

o ZJAZ D ZJAT D TJAT D L)AL — -
is not K-injective.

From the perspective of Definition 2.1.1, categorical issues with the derived category stem
from the fact that we are identifying chain-homotopic morphisms in D’(A) without remembering
how they are chain-homotopic. For example, suppose that we wish to construct the cone of a
morphism [f] : Vi, — W, in D'(A). By definition, [f] is an equivalence class of chain maps from
V. to W,.. If we choose a representative f for the equivalence class [f], then we can construct the
mapping cone Cn(f) by equipping the direct sum W, & V,_; with a differential which depends
on f. If h is a chain-homotopy from f to g, we can use h to construct an isomorphism of chain
complexes aj, : Cn(f) ~ Cn(g). However, the isomorphism «j depends on h: different choices
of chain homotopy can lead to different isomorphisms, even up to chain-homotopy.

2.1.2. The Differential Graded Nerve. It is possible to correct many of the deficiencies of the
derived category by keeping track of more information. To do so, it is useful to work with
mathematical structures which are a bit more elaborate than categories, where the primitive
notions include not only “object” and “morphism” but also a notion of “homotopy between
morphisms.” Before giving a general definition, let us spell out the structure that is visible in
the example of chain complexes over A.

Construction 2.1.3. We define a sequence of sets Sy, S1, 52, ... as follows:

e Let Sy denote the set of objects under consideration: in our case, these are chain
complexes X of K-injective chain complexes of A-modules (strictly speaking this is not
a set but a proper class, because we are trying to describe a “large” category).

e Let S; denote the set of morphisms under consideration. That is, .S; is the collection
of all chain maps f: X — Y, where X and Y are chain complexes of injective abelian
groups.

e Let Sy denote the set of all pairs consisting of a non-necessarily commutative diagram

Y
N
X foz2 7
together with a chain homotopy fy12 from fgo to fi20 fo1. Here X, Y, and Z are chain
complexes of injective abelian groups.
e More generally, we let S;,, denote the collection of all n-tuples {X(0), X (1),...,X(n)}
of chain complexes of injective abelian groups, together with chain maps f; ; : X (i) —
X (7) which are compatible with composition up to coherent homotopy. More precisely,

this means that for every subset I = {i_ < i1 < ... < iy < i3} C {0,...,n}, we
supply a collection of maps fr : X (i) = X (i4)g+m satisfying the identities

d(fi(z)) = (=1)" fr(dx) + Z (=1 (fr—gi,3 (@) = (Fpiyooiny © Flic iy (@)

1<j<m
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Suppose we are given an element ({X(¢)}o<i<n,{fr}) of Sp. Then for 0 < i < n, we can
regard X (i) as an element of Sp. If we are given a pair of integers 0 < i < j < n, then f{; j;
is a chain map from X (i) to X (j), which we can regard as an element of S;. More generally,
given any nondecreasing map « : {0,...,m} — {0,...,n}, we can define a map a* : S,, — Sy,
by the formula

o ({X () }o<i<n: {f1}) = {X (7)) bo<i<m: {9s}),

where
Ja(n) (z) if ]y is injective
gi(z) =< if J = {j,5'} and a(j) = a(j')
0 otherwise.

This motivates the following;:

Definition 2.1.4. A simplicial set X, consists of the following data:

e For every integer n > 0, a set X, (called the set of n-simplices of X,).
e For every nondecreasing map of finite sets « : {0,1,...,m} — {0,1,...,n}, a map of
sets a* : X, =& X,,.
This data is required to be be compatible with composition: that is, we have
id*(@) =z (aop)'(z) =p"(a"(2))

whenever « and [ are composable nondecreasing maps.
If X, is a simplicial set, we will refer to X, as the set of n-simplices of X,.

Example 2.1.5 (The Nerve of a Category). Let C be a category. We can associate to C a
simplicial set N(C),, whose n-simplices are given by chains of composable morphisms

Co—=Ci—---—=C),
in C. We refer to N(C), as the nerve of the category C.

Example 2.1.6. Let A be a commutative ring and let Chain’(A) denotes the full subcategory of
Chain(A) spanned by the K-injective chain complexes of A-modules. Construction 2.1.3 yields a
simplicial set {Sy, }»>0 which we will denote by Moda. The simplicial set Moda can be regarded
as an enlargement of the nerve N(Chain’(A))s (more precisely, we can identify N(Chain’(A))e
with the simplicial subset of Mod, whose n-simplices are pairs ({X (i) }o<i<n, {fr}) for which
fr = 0 whenever I has cardinality > 2.

The construction Chain’(A) — Mod, can be regarded as a variant of Example 2.1.5 which
takes into account the structure of Chain’(A) as a differential graded category. We refer to
¢HA.1.3.1 for more details.

From the nerve of a category C, we can recover € up to isomorphism. For example, the
objects of € are just the O-simplices of N(C), and the morphisms of € are just the 1-simplices of
N(C)o. Moreover, given a pair of morphisms f: X — Y and g : Y — Z in C, the composition
h = go f is the unique 1-morphism in € for which there exists a 2-simplex o € N(C) satisfying

apglo) =g  ajlo)=h  a3(0) =,
where «; : {0,1} — {0, 1,2} denotes the unique injective map whose image does not contain 4.

If € and D are categories, then there is a bijective correspondence between functors F' : ¢ — D
and maps of simplicial sets N(C)g — N(D),. We can summarize the situation as follows: the
construction € — N(C€), furnishes a fully faithful embedding from the category of (small)
categories to the category of simplicial sets. It is therefore natural to ask about the essential
image of this construction: which simplicial sets arise as the nerves of categories? To answer
this question, we need a bit of terminology:
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Notation 2.1.7. Let X, be a simplicial set. For 0 < < n, we define a set A?"(X,) as follows:

e To give an element of AT(X,), one must give an element o; € X, for every subset
J={jo<- - <jm} CH{O0,...,n} which does not contain {0,1,...,i —1,i+1,...,n}.
These elements are subject to the compatibility condition o; = a*o; whenever I =
{io <+ <ig} € {jo <+ < Jjm} and « satisfies ix = jo(x)-
More informally, A?"(X,) is the set of “partially defined” n-simplices of X,, which are missing
their interior and a single face. There is an evident restriction map X, — A?(X,).

Proposition 2.1.8. Let X, be a simplicial set. Then X, is isomorphic to the nerve of a
category if and only if, for each 0 < i < n, the restriction map X, — A (X,) is bijective.

For example, the bijectivity of the map X, — A?(X,) encodes the existence and uniqueness
of composition: it says that every pair of composable morphisms f: C —- D and g: D — FE
can be completed uniquely to a commutative diagram

D
N
cl__r__p

Example 2.1.9. Let Z be a topological space. We can associate to Z a simplicial set Sing(Z).,
whose n-simplices are continuous maps A™ — Z (here A™ denotes the standard n-simplex: that
is, the convex hull of the standard basis for R"™'). The simplicial set Sing(Z), is called the
singular simplicial set of Z.

From the perspective of homotopy theory, the singular simplicial set Sing(Z), is a complete
invariant of X. More precisely, from Sing(Z), one can functorially construct a topological
space which is (weakly) homotopy equivalent to Z. Consequently, the simplicial set Sing(Z),
can often serve as a surrogate for Z. For example, there is a combinatorial recipe for extracting
the homotopy groups of Z directly from Sing(Z)e. However, this recipe works only for a special
class of simplicial sets:

Definition 2.1.10. Let X, be a simplicial set. We say that X is a Kan complexif, for 0 < i < n,
the map X,, — A?"(X,) is surjective.

Example 2.1.11. For any topological space Z, the singular simplicial set Sing(Z), is a Kan
complex. To see this, let H denote the topological space obtained from the standard n-simplex
A™ by removing the interior and the ith face. Then A?(Sing(Z)e) can be identified with the
set of continuous maps from H into Z. Any continuous map from H into Z can be extended
to a map from A" into Z, since H is a retract of A™.

The converse of Example 2.1.11 fails: not every Kan complex is isomorphic to the singular
simplicial set of a topological space. However, every Kan complex X, is homotopy equivalent
to the singular simplicial set of a topological space, which can be constructed explicitly from
X,. In fact, something stronger is true: the construction Z — Sing(Z), induces an equivalence
from the homotopy category of nice spaces (say, CW complexes) to the homotopy category of
Kan complexes (which can be defined in a purely combinatorial way).

Example 2.1.12. A simplicial A-module is a simplicial set X, for which each of the sets X,
is equipped with the structure of a A-module, and each of the maps o* : X,, — X, is a A-
module homomorphism homomorphism. One can show that every simplicial A-module is a Kan
complex, so that one has homotopy groups {m,Xe}n>0. According to the classical Dold-Kan
correspondence, the category of simplicial A-modules is equivalent to the category Chain>g(A) C
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Chain(A) of nonnegatively graded chain complexes of A-modules. Under this equivalence, the
homotopy groups of a simplicial A-module X, can be identified with the homology groups of
the corresponding chain complex.

The hypothesis of Proposition 2.1.8 resembles the definition of a Kan complex, but is different
in two important respects. Definition 2.1.10 requires that every element of A?(X,) can be
extended to an n-simplex of X. Proposition 2.1.8 requires this condition only in the case
0 < ¢ < n, but demands that the extension be unique. Neither condition implies the other, but
they admit a common generalization:

Definition 2.1.13. A simplicial set X, is an co-category if, for each 0 < i < n, the map
X, = A?(X,) is surjective.

Remark 2.1.14. A simplicial set X, satisfying the requirement of Definition 2.1.13 is also
referred to as a quasi-category or a weak Kan complex in the literature.

Example 2.1.15. Any Kan complex is an oo-category. In particular, for any topological space
Z, the singular simplicial set Sing(Z), is an oo-category.

Example 2.1.16. For any category €, the nerve N(C), is an co-category.

By virtue of the discussion following Example 2.1.5, no information is lost by identifying a
category C with the simplicial set N(C),. It is often convenient to abuse notation by identifying
C with its nerve, thereby viewing a category as a special type of co-category. We will generally
use category-theoretic notation and terminology when discussing oco-categories. Here is a brief
sampler; for a more detailed discussion of how the basic notions of category theory can be
generalized to this setting, we refer the reader to the first chapter of [34].

o Let C = €, be an co-category. An object of € is an element of the set Gy of O-simplices
of €. We will indicate that z is an object of C by writing x € C.

o A morphism of C is an element f of the set C; of 1-simplices of €. More precisely,
we will say that f is a morphism from z to y if of(f) = = and af(f) = y, where
a; : {0} — {0,1} denote the map given by «;(0) = i. We will often indicate that f is
a morphism from z to y by writing f: z — y.

e For any object z € @, there is an identity morphism id,, given by p*(z) where 3 :
{0,1} — {0} is the unique map.

e Given a pair of morphisms f,g: x — y in €, we say that f and g are homotopic if there
exists a 2-simplex o € Cy whose faces are as indicated in the diagram

Yy
N
g
r—-4Y.

In this case, we will write f ~ g, and we will say that o is a homotopy from f to g.
One can show that homotopy is an equivalence relation on the collection of morphisms
from x to y.

e Given a pair of morphisms f : z — y and g : y — z, it follows from Definition 2.1.13
that there exists a 2-simplex with boundary as indicated in the diagram

Y
AR
h
r—————>2Z2.
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Definition 2.1.13 does not guarantee that the morphism h is unique. However, one can
show that h is unique up to homotopy. We will generally abuse terminology and refer
to h as the composition of f and ¢, and write h = go f.

e Composition of morphisms in € is associative up to homotopy. Consequently, we can
define an ordinary category hC as follows:

— The objects of hC are the objects of €.

— Given objects z,y € €, the set of morphisms from x to y in hC is the set of
equivalence classes (under the relation of homotopy) of morphisms from z to y in
C.

— Given morphisms [f] :  — y and [g] : ¥ — z in hC represented by morphisms f
and g in €, we define [g] o [f] to be the morphism from z to z in hC given by the
homotopy class of g o f.

We refer to hC as the homotopy category of C.

e We will say that a morphism f in € is an equivalence if its image [f] is an isomorphism
in hC (in other words, f is an equivalence if it admits an inverse up to homotopy). We
say that two objects x,y € C are equivalent if there exists an equivalence f : x — y.

The theory of co-categories allows us to treat topological spaces (via their singular simplicial
sets) and ordinary categories (via the nerves) as examples of the same type of object. This is
often very convenient.

Definition 2.1.17. Let € and D be oo-categories. A functor from € to D is a map of simplicial
sets from € to D.

Remark 2.1.18. Let € be an oco-category. The homotopy category of € admits another char-
acterization: it is universal among ordinary categories for which there exists a functor from €
to (the nerve of) hC.

Example 2.1.19. Let Z be a topological space and let C be a category. Unwinding the
definitions, we see that a functor from Sing(Z)e to N(C)e consists of the following data:
(1) For each point z € Z, an object C, € C.
(2) For every path p : [0,1] = Z, a morphism «,, : C,
morphism if the map p is constant.
(3) For every continuous map A% — Z, which we write informally as

N

r——> 2,

) — Cp1), which is an identity

we have a, = a4 0 o, (an equality of morphisms from C, to C.).
Here condition (3) encodes simultaneously the assumption that the map «, depends only on
the homotopy class of p, and that the construction p — «,, is compatible with concatenation
of paths. Moreover, it follows from condition (3) that each of the maps «, is an isomorphism
(since every path is invertible up to homotopy). Consequently, we see that the data of a functor
from Sing(Z). into N(€)e recovers the classical notion of a local system on Z with values in C.

One of the main advantages of working in the setting of co-categories is that the collection
of functors from one oco-category to another can easily be organized into a third co-category.

Notation 2.1.20. For every integer n > 0, we let A™ denote the simplicial set given by the
nerve of the linearly ordered set {0 <1 < --- < n}. We refer to A™ as the standard n-simplex.
By definition, an m-simplex of A™ is given by a nondecreasing map {0, 1,...,m} — {0,1,...,n}.
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Let X and Y be simplicial sets. We let Fun(X,Y") denote the simplicial of maps from X to
Y. More precisely, Fun(X,Y") is the simplicial set whose n-simplices are maps A" x X — Y
(more generally, giving a map of simplicial sets Z — Fun(X,Y") is equivalent to giving a map
ZxX=Y).

One can show that if the simplicial set Y is an co-category, then Fun(X,Y) is also an oco-
category (for any simplicial set X). Note that the objects of Fun(X,Y") are functors from X to
Y, in the sense of Definition 2.1.17. We will refer to Fun(X,Y") as the oo-category of functors
from X to Y.

Example 2.1.21. Let € and D be ordinary categories. Then the simplicial set
Fun(N(C)e,N(D),)

is isomorphic to the nerve of the category of functors from € to D. In particular, there is a
bijection between the set of functors from € to D (in the sense of classical category theory) to
the set of functors from N(C)s to N(D)e (in the sense of Definition 2.1.17).

Remark 2.1.22. It follows from Example 2.1.21 that no information is lost by passing from
a category C to the associated oo-category N(C). For the remainder of this paper, we will
generally abuse notation by identifying each category € with its nerve.

Example 2.1.23. Let A be a commutative ring and let Moda = {S, }n>0 denote the simplicial
set introduced in Construction 2.1.3. Then Mod, is an co-category, which we will refer to as the
derived oco-category of A-modules. It can be regarded as an enhancement of the usual derived
category D(A) of A-modules, in the sense that the homotopy category of Mody is equivalent
to D(A) (in fact, the homotopy category of Mod, is isomorphic to the category D’'(A) defined
above).

Notation 2.1.24. Let A be a commutative ring. For every integer n, the construction M, —
H,, (M,) determines a functor from the oo-category Mod, to the ordinary abelian category of
A-modules. We will say that an object M, € Mody is discrete if H,, (M,) ~ 0 for n # 0. One
can show that the construction M, — Hy(M,) induces an equivalence from the co-category
of discrete objects of Mod, to the ordinary category of A-modules. We will generally abuse
notation by identifying the abelian category of A-modules with its inverse image under this
equivalence. We will sometimes refer to A-modules as as discrete A-modules or ordinary A-
modules, to distinguish them from more general objects of Modj.

Remark 2.1.25. The oco-category Mod, is, in many respects, easier to work with than the
usual derived category D(A). For example, we have already mentioned that there is no functorial
way to construct the cone of a morphism in D(A). However, Mod, does not suffer from the
same problem: the formation of cones is given by a functor Fun(A', Mod,) — Mod,.

The theory of oco-categories is a robust generalization of ordinary category theory. In par-
ticular, many important notions of ordinary category theory (adjoint functors, Kan extensions,
Pro-objects and Ind-objects, ...) can be generalized to the setting of co-categories in a natural
way. We will make use of these notions throughout this paper. For a detailed introduction
(including complete definitions and proofs of the basic categorical facts we will need), we refer
the reader to [34].

Notation 2.1.26. Let C and D be oco-categories. Throughout this paper, we will often need to
consider a limit or colimit of a functor F' : € — D. Roughly speaking, a limit of F' is an object
D € D which is universal among those objects which are equipped with a family of morphisms
{D — F(C)}cee (together with appropriate higher coherence data), and a colimit of F' is an
object D’ € D which is universal among those objects equipped with a compatible family of
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morphisms {F(C) — D}cee (together with higher coherence data). We refer the reader to
¢HTT.1.2.13 for a more detailed discussion.

The limit and colimit of a functor F' : € — D are determined uniquely up to equivalence if
they exist. We will generally abuse terminology by referring to the limit or colimit of a functor
F, which we will denote by lim _, F(C) and lim o F(C), respectively.

If F is given instead as a functor from the opposite co-category €°P to D, we will generally
denote a limit and colimit of F' also by the notation

lw F(C)  liny F(O).
cee cee
There is little danger of conflict between these notations, provided that it is clear from context
whether the domain of the functor F' is the co-category € or its opposite C°P.

2.2. f-adic Cohomology of Algebraic Varieties. Let k denote an algebraically closed field
and ¢ a prime number which is invertible in k. In this section, we will review the theory of
{-adic cohomology in the setting of quasi-projective k-schemes.

Remark 2.2.1. The restriction to quasi-projective k-schemes is not essential in what follows;
we could just as well work in the category of k-schemes of finite type, or even some larger
category. However, such generalizations will be subsumed by the setting of prestacks which we
discuss in §2.3.

Definition 2.2.2. Let Schy denote the category of quasi-projective k-schemes, and let C be an
oo-category which admits limits. A C-valued presheaf on Schy, is a functor Schy® — C.

Let & : Schy” — € be a C-valued presheaf on Schy,. We will say that & is a C-valued sheaf on
Schy, if the following condition is satisfied:

(¥) Let X be a quasi-projective k-scheme and suppose we are given a jointly surjective
collection of étale morphisms u, : U, — X. Let U denote the category of quasi-
projective k-schemes Y equipped with a map Y — X which factors through some u,
(the factorization need not be specified). Then F induces an equivalence

F(X) = lim F(Y)

p
Yeu

in the oco-category C.
Example 2.2.3. Let C be an ordinary category which admits limits and let N(C)q be its nerve.

Then the data of a N(€)e-valued sheaf on Schy (in the sense of Definition 2.2.2) is equivalent
to the data of a C-valued sheaf on Schy, (in the sense of classical category theory).

Example 2.2.4. Let C be an arbitrary oo-category. For each object M € C, the constant
functor Schy® — € taking the value of M is a C-valued presheaf on Schy, which we will denote
by car-

Definition 2.2.5. Let Modz denote the derived oco-category of abelian groups (see Example
2.1.23). We let Sh(Schy; Z) denote the full subcategory of Fun(Schy”, Modz) spanned by those
functors F which are Modgz-valued sheaves.

One can show that the inclusion
Sh(Schy?; Z) — Fun(Sch;”, Modz)

admits a left adjoint, which assigns to each presheaf F : Sch® — Modz its sheafification gt
with respect to the étale topology.
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Definition 2.2.6. Let M be a finite abelian group, which we regard as an object of Modz, and
let ¢pr = Schy® — Modz denote the constant presheaf taking the value M. We will denote the
sheafification of ¢y by X — C*(X; M). For each quasi-projective k-scheme X, we will refer to
C*(X; M) as the complex of M-valued cochains on X.

Remark 2.2.7. Let Ab denote the ordinary category of abelian groups. Then each finite
abelian group M, we can regard cj; as an Ab-valued presheaf on Schy. This presheaf admits a
sheafification (in the ordinary category of Ab-valued presheaves on Schy) which we will denote
by M. Concretely, the functor M assigns to each quasi-projective k-scheme X the group of all
continuous M-valued functions on X. Note that we can regard M as a Modz-valued presheaf
on Schy, (via the inclusion Ab < Modz), but that it is not a Modgz-valued sheaf (since the
inclusion Ab < Modz does not preserve inverse limits).

Let A denote the abelian category of Ab-valued sheaves on Schy. The abelian category A
has enough injectives, so that we can choose an injective resolution

0-M—-1°=T1" - ...

in the category A. The construction X — I*(X) determines a functor from Sch}” to the cate-
gory Chain(Z) of chain complexes of abelian groups, hence also a functor Schy” — Modz. One
can show that the evident maps M — I*(X) exhibit the functor X — I*(X) as a sheafification
of ¢y (see Proposition SAG.2.1.1.8).
In other words, the object C*(X; M) € Modz can be explicitly described described as the
chain complex
= 0= (X)) 5 THX) = -

In particular, the cohomology groups of the chain complex C*(X; M) can be identified with
the usual étale cohomology groups of X with values in M, which we will denote simply by
H*(X; M).

Definition 2.2.6 makes sense also in the case where the abelian group M is not finite. However,
it is generally badly behaved if M = Z or M = Q. Consequently, we will use the notation
C*(X; M) for a slightly different chain complex in general.

Definition 2.2.8. Let Z, denote the ring of /-adic integers. For every quasi-projective k-scheme
X, we let C*(X;Zy) denote the limit @C*(X; Z/¢?Z), formed in the oo-category Modz. We
will refer to C*(X;Zy) as the complex of Zy-valued cochains on X.

Warning 2.2.9. The construction X — C*(X;Z,) is a sheaf for the étale topology, in the
sense of Definition 2.2.2. However, it is not the sheafification of the constant functor cz,. It
can be described instead as the ¢-adic completion of the sheafification cTZ[.
Definition 2.2.10. The inclusion Z — Z[¢~!] determines a base change functor Modz —
Modz,-1), which we will denote by M +— M [(~1]. For every quasi-projective k-scheme X, we
define

C* (X5 Q) = C*(X: Z) [0
We will denote the cohomology groups of the chain complexes C*(X;Z,) and C*(X; Q) by
H*(X;Z,) and H*(X; Q,), respectively. We refer to either of these as the £-adic cohomology of
X.

2.2.1. The Cup Product. If X is a quasi-projective k-scheme, then one can define a cup-product
map
HP(X;Zy) x HY(X; Zy) — HPT(X; Zy)
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which endows H*(X;Z,) with the structure of a graded commutative ring. In fact, one can
be more precise: the cup product arises from a multiplication on the ¢-adic cochain complex
C*(X; Zy) itself. In this section, we will describe how this structure arises from an co-categorical
point of view.

We begin by observing that the oo-category Modz admits a symmetric monoidal structure:
that is, it is equipped with a tensor product functor

®z : Modz x Modz — Modzg

which is commutative and associative up to coherent homotopy (see Definition HA.2.0.0.7).
Concretely, this can be described as the left derived functor of the usual tensor product (to
compute with it, it is convenient to work with an alternative definition of Modgz using chain
complexes of free modules rather than chain complexes of injective modules).

Since Modz is a symmetric monoidal oco-category, it makes sense to consider associative
or commutative algebra objects of Modz (see §HA.2.1.3). These can be thought of as chain
complexes of abelian groups which are equipped with an algebra structure which is required to
be associative (respectively commutative and associative) up to coherent homotopy. In the case
of associative algebras, it is always possible to rectify the multiplication by choosing a quasi-
isomorphic chain complex which is equipped with a multiplication which is strictly associative:
that is, a differential graded algebra (see Proposition HA.7.1.4.6). In the commutative case
this is not always possible: in concrete terms, a commutative algebra structure on an object of
Modgz is equivalent to the data of an E..-algebra over Z.

The symmetric monoidal structure on Modz induces a symmetric monoidal structure on
the functor oo-category Fun(Schy”,Modz), given by pointwise tensor product (see Remark
HA.2.1.3.4):

(TRINX)=TF(X)2z F(X).
One can show that this symmetric monoidal structure determines a symmetric monoidal struc-
ture on the subcategory Sh(Schy;Z) C Fun(Sch;”,Modz) whose underlying tensor product
® : Sh(Schy; Z) x Sh(Schy; Z) — Sh(Schy; Z) fits into a diagram

Fun(SchS?, Modz) x Fun(Sch?, Modz) — 2> Fun(SchS?, Modz)

| |

Sh(Schy; Z) x Sh(Schy; Z) ® Sh(Schy; Z)

which commutes up to equivalence, where the vertical maps are given by the sheafification func-
tors. It follows that the sheafification functor carries commutative algebra objects of the oo-
category Fun(Sch;”, Modz) to commutative algebra objects of Fun(Sch}”, Modz). In particular,
since each of the constant functors cz sz is a commutative algebra object of Fun(Schy”, Modz),
we can regard the construction X +— C*(X;Z/lZ) as a functor which takes values in com-
mutative algebra objects of Modz. This structure passes to the limit in d (see §HA.3.2.2),
and determines commutative algebra structures on C*(X;Zy) and C*(X;Q,). At the level of
cohomology, this endows the groups

H*(X;Z/0'Z)  H'(X;Zs)  H'(X;Q)

with the structure of a graded-commutative ring (which agrees with the usual cup product of
cohomology classes).

Remark 2.2.11. Any commutative ring object A can be identified with a commutative algebra
object of the oo-category Modz. Moreover, one can identify the oco-category of A-modules in
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Modz with the oo-category Mod, of Example 2.1.23 (Proposition HA.7.1.1.15). In particular,
Modp inherits the structure of a symmetric monoidal co-category (see §HA.4.5.2).
For A € {Z/{Z,Z,,Q,}, our assumption that k is algebraically closed implies that we have
a canonical equivalence
C*(Speck; A) ~ A.
For every quasi-projective k-scheme X, we have morphism
A~ C*(Speck; A) — C*(X;A)

of commutative algebra objects of Modz. This implies that C*(X;A) can be promoted to a
(commutative algebra) object of the oo-category Modj.

Warning 2.2.12. The tensor product functor ®, on Modp does not agree with the usual
tensor product on discrete A-modules. If M and N are discrete A-modules, then the tensor
product M @ N (formed in Mody) is obtained by tensoring M with some projective resolution
of N, or vice versa. In particular, we have canonical isomorphisms

H;(M @, N) = Tor} (M, N).

In particular M ®, N is discrete if and only if the groups Toré\ (M,N) ~ 0 for i > 0 (this is
automatic, for example, if M or N is flat over A).

Unless otherwise specified, we will always use the notation ®, to indicate the tensor product
in the oco-category Mody, rather than the ordinary category of discrete A-modules.

Let A be a commutative ring. An object M € Mod, is said to be perfect if it is a compact
object of Mody: that is, if the functor N+ Mapy;,q, (M, N) preserves filtered colimits. Equiv-
alently, M is perfect if it is quasi-isomorphic to a finite complex of finitely generated projective
A-modules.

Let us now study the behavior of the chain complexes C*(X;A) as the ring A varies.

Proposition 2.2.13. Let X be a quasi-projective k-scheme. For every d > 0, the canonical
map

0:(Z/1Z) @z C*(X;Zy) — C*(X;Z/19Z)
is an equivalence in the oo-category Modg gaz.

Proof. For every object M € Modg,, let c}LV[ : Sch? — Modygz, denote the sheafification of the
constant functor ¢ : Schzp — Modz, taking the value M. Then 6 factors as a composition

(Z/072) @z, Tn{cy pzbezo 3 IM{Z/0Z @7, ¢} ey(X)}e0

®

lim{cl,,  (X)}exo
(X),

&

;
€z /07

where My, denotes the (left-derived) tensor product (Z/¢1Z) ®z, (Z/(°Z). The maps 6y and
6, are equivalences by virtue of the fact that Z/¢?Z is perfect as a Z,-module, and the map 6
is determined by the identification of Z/¢9Z with the group TorZ*(Z/(Z,Z/(°Z) for e > d. Tt
follows that the fiber of f5 can be identified (up to suspension) with the limit

P
g CTorlzz (Z/04Z,Z /0 Z) (X).

This limit vanishes, because the tower {Tor?(Z/(4Z,Z/(°Z)} >4 is trivial as a pro-object in
the abelian category of Z,-modules. O
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Corollary 2.2.14. Let 0 < d < e be integers and let X be a quasi-projective k-scheme. Then
the canonical map

L/ Z ®Rg)007 CF (X, Z/0°L) — C*(X;Z/1Z)
is an equivalence in Modg gaz.

Proposition 2.2.15. Let X be a quasi-projective k-scheme and let A € {Z/(?Z,Zy,Q,}. Then
C*(X; A) is a perfect object of Mod, .
Proof. Using either Proposition 2.2.13 or the definition, we obtain an equivalence

C*"(X;A) 2 A®z, C*(X;Zy).
It therefore suffice to treat the case where A = Z,. Since C*(X; Z,) is ¢-complete (see Definition
4.3.1), it is a perfect object of Modg, if and only if Z/{Z @z, C*(X;Z) ~ C*(X;Z/{Z) is a
perfect object of Modz,sz: that is, if and only if the total cohomology H"(X;Z/(Z) is a

finite-dimensional vector space over Z/¢Z. This is proven in [13] (Theorem 1.1 of the seventh
part). O

Definition 2.2.16. Let C be a symmetric monoidal category with unit object 1. Recall that
an object M € C is said to be dualizable if there exists another object MY € € together with
maps

e: MY oM —1 c:1l=>MeMY
for which the composite maps

cxid id xe

MZS MM @M< M
MY MY e Mo MY S Y
are equal to idy; and idysv, respectively.

If € is a symmetric monoidal co-category, we say that an object M € C is dualizable if it is
dualizable as an object of the homotopy category of C.

Example 2.2.17. Let A be a commutative ring and let M € Mod,. Then M is dualizable if
and only if it is perfect (see Proposition HA.7.2.5.4). In this case, the dual MV is canonically
determined. More precisely, the construction M — MY determines a contravariant functor
from the full subcategory Modi’\f C Mody of perfect A-modules to itself. We will refer to M
as the dual of M, or as the A-linear dual of M if we wish to emphasize its dependence on the
ring A.

Definition 2.2.18. If X is a quasi-projective k-scheme, then Proposition 2.2.15 asserts that the
cochain complex C*(X;A) is perfect for A € {Z/(?Z,Z,,Q,}. We will denote their respective
duals by

Cu(X;Z/09Z) € Modg ez Cu(X;Z¢) € Modz,  C.(X;Q,) € Modq, -

We will refer to C..(X;A) as the complex of A-valued chains on X. For each integer n, we will
denote the nth homology groups of these chain complexes by

Ho(X:Z/12)  Ho(X:Ze)  Ha(X5Qy).
We refer to these groups as the ¢-adic homology groups of X.
Remark 2.2.19. Let X be a quasi-projective k-scheme. Then we have canonical isomorphisms
H'(X;Q) ~ H'(X;Z) [0 Ho(X5Q) ~ Hu(X;Zo)[071],
and (noncanonically split) “universal coefficient” exact sequences
0 — Extz, (H"™(X;Z),A) = H,(X;A) — Homg, (H"(X;Z); A) — 0
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for A € {Z/¢9Z,Q,}. The homology groups H,,(X;Z/¢Z) and H,,(X; Q,) can be described more
concretely as the duals of the (finite-dimensional) vector spaces H, (X;Z/¢Z) and H, (X; Q).

Let X and Y be quasi-projective k-schemes and let X XY = X Xgpecr Y denote their
product. Then the multiplication on C*(X x Y; A) induces a map

C'(X; M)A C*(YV;A) = C(X XY;A) @0 C (X xY;A)
— C*"(X xY;A).
Passing to A-linear duals, we also have a map
Ci(X xY;A) = Cu(X;A) @p Cu(Y5A).

Theorem 2.2.20 (Kiinneth Formula). For every pair of quasi-projective k-schemes X and Y,
if N € {Z/0Z,Z,Q,}, then the canonical maps

C*"(X;A) @A C*(Y;A) - C*(X x Y3 A)
Cu(X X Y35 A) = Cu(X;A) @4 Cu(Y;A)
are equivalences in Mody .

See Remark 4.6.6 for a proof (assuming some of the fundamental base change properties for
étale sheaves).

Remark 2.2.21. When A € {Z/{Z,Q,} is a field, Theorem 2.2.20 asserts that we have canon-
ical isomorphisms

H*(X x V;A) ~ H*(X;A) @5 H (Y3 A)

H.(X xY;A) ~ Ho (X;A) @4 Ho (Y5 A).

2.2.2. Cohomological Descent. The category Schy admits many Grothendieck topologies dif-
ferent from the étale topology. In particular, we have the following variation on Definition
2.2.2:

Variant 2.2.22. Let JF : Sch}” — Modz be a Modz-valued presheaf on Schy”. We will say
that F is an fppf sheaf if the following condition is satisfied

(x) Let X be a quasi-projective k-scheme and suppose we are given a jointly surjective col-
lection of flat morphisms u,, : U, — X. Let U denote the category of quasi-projective
k-schemes Y equipped with a map Y — X which factors through some u, (the factor-
ization need not be specified). Then F induces an equivalence

F(X) — lim FY
(X) i (Y)
in the oco-category Modz.

Let Sheppt(Schy; Z) denote the full subcategory of Fun(Schy”, Modz) spanned by those func-
tors which are fppf sheaves. Then the inclusion Shg,p¢(Schy; Z) < Fun(Sch,”, Modz) admits
a left adjoint. Applying this left adjoint to the constant functor cps : Schy” — Modz, when
M is a finite abelian group, we obtain a new functor Schy” — Modz which we will denote by
X = Cf (X5 M).

Every sheaf for the fppf topology on Schy, is also a sheaf for the étale topology on Schy. In
particular, the construction X — Cf (X; M) is an étale sheaf. We therefore obtain a map
ax : C*(X; M) — Cf +(X; M) which depends functorially on X. At the level of cohomology,
this induces the usual map from the étale cohomology of X to the fppf cohomology of X (with
coefficients in the finite abelian group M), which is an isomorphism (Theorem 11.7 of [22]). It
follows that each of the maps «x is an equivalence, so that the construction X — C*(X; M) is
a sheaf for the fppf topology.
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Remark 2.2.23. The collection of those functors Sch}” — Modz which are sheaves with
respect to the fppf topology is closed under inverse limits. It follows that the construction
X — C*(X;Zy) is also a sheaf for the fppf topology.

Notation 2.2.24. Let A denote the category whose objects are the linearly ordered sets
[n) ={0<1<---<n} forn >0, and whose morphisms are nondecreasing maps of linearly
ordered sets. If € is an oco-category, we will refer to functors A°® — € as simplicial objects of
C. If C, is a simplicial object of C, then we define its geometric realization to be the colimit

lii>n[n]€ Aop C, provided that the colimit exists in €. We will denote the geometric realization

of C, by |C,|.

Proposition 2.2.25. Let u : Uy — X be a faithfully flat map between quasi-projective k-
schemes and let U, be the simplicial scheme given by the nerve of f (so that U, is the (n+1)-fold
fiber power of Uy over X ). Then:
(1) The canonical map |C(Us; Zy)| — Ci(X;Zy) is an equivalence in Modg, .
(2) For every integer d > 0, the canonical map |Cy(Ue; Z/0Z)| — C.(X;Z/(Z) is an
equivalence in Modg gz
(3) The canonical map |C.(Us; Qq)| — Cu(X;Qy) is an equivalence in Modg, .

Proof. We will prove (1); assertions (2) and (3) are then immediate consequences. Let K denote
the fiber of the map ligC*(U.; Z;) — C.(X;Zy) in the oco-category Modz,, and let K denote
its Zy-linear dual. Then KV is the cofiber of the canonical map C*(X;Z,) — @C*(U,; Zy),
which is an equivalence by virtue of Remark 2.2.23. It follows that KY ~ 0, and we wish to

prove that K ~ 0. Note that the fiber of the map KV £ KV can be identified with the Z/0Z-
linear dual of Ko = (Z/¢Z)®z, K. Since Z/{Z is a field, it follows that Ky ~ 0, so that the map

K% Kis an equivalence and therefore the homology groups of K are vector spaces over Q,.
We will complete the proof by showing that the homology groups of K are finitely generated
as Zg-modules. Since C,(X;Zy) is a perfect object of Modgz,, its homology groups are finitely
generated modules over Zy. It will therefore suffice to show that the homology groups of the
limit @C*(U.; Z,) are finitely generated over Z,. For each integer m > 0, the skeleton

Hg Ci(Us; Zy)
[pleA,p<m
is a finite colimit of perfect objects of Modz, , hence perfect, and therefore has finite-dimensional
homology in each degree. The desired result now follows from the observation that the map
lim O (Us; Z¢) — lim C.(Us; Zy)
[pleA,psm [plea

induces an isomorphism on homology in degree n provided that m > n. O

2.3. f-adic Cohomology of Prestacks. Let k be an algebraically closed field and let ¢ be a
prime number which is invertible in k. In §2.2, we reviewed the theory of /-adic cohomology
for quasi-projective k-schemes. Unfortunately, this is not sufficiently general for our purposes:
in this paper, we will need to study the f-adic cohomology of more general algebro-geometric
objects, such as the moduli stack Bung(X). In this section, we will extend the theory of ¢-adic
cohomology to arbitrary (pre)stacks over k. We begin with a brief review of the language of
prestacks.

Notation 2.3.1. For every commutative ring R, we let Ringp denote the category of finitely
generated commutative R-algebras (we will use this notation only when R is Noetherian, in
which case Ringp can also be described as the category of finitely presented R-algebras).
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If X is a k-scheme and R € Ring,, then an R-valued point of X is a map Spec R — X in
the category of k-schemes. The collection of all R-valued points of X forms a set X(R). The
construction R — X (R) determines a functor from Ring;, to the category of sets. We refer
to this functor as the functor of points of X. If X is of finite type over k (or if we were to
enlarge Ring;, to include k-algebras which are not finitely generated), then X is determined by
its functor of points up to canonical isomorphism. In this case, we will generally abuse notation
by identifying X with its functor of points.

Suppose that G is a smooth affine group scheme over an algebraic curve X. We would like
to introduce an algebro-geometric object Bung(X) which parametrizes G-bundles on X. In
other words, we would like the R-points of Bung(X) to be G-bundles on the relative curve
Xpr = Spec R Xgpec; X. Here some caution is in order. The collection of all G-bundles on Xp
naturally forms a category, rather than a set. Let us denote this category by Bung(X)(R).
If ¢ : R — R’ is a k-algebra homomorphism, then ¢ determines a map of categories ¢* :
Bung(X)(R) — Bung(X)(R'), given on objects by the formula

¢*T:XR/ XXR':P.

However, this construction is not strictly functorial: given another ring homomorphism % :
R’ — R, the iterated pullback

V(9" P) = Xpv xx,, (Xr Xxp P)

is canonically isomorphic to X g~ X x, P, but might not be literally identical.

It is possible to axiomatize the functorial behavior exhibited by the construction R —
Bung(X)(R) using the language of 2-categories (or co-categories). However, it is often more
convenient to encode the same data in a different package, where the functoriality is “implicit”
rather than “explicit”.

Definition 2.3.2. Let X be an algebraic curve over k£ and let G be a smooth group scheme
over X. We define a category Bung(X) as follows:

(1) The objects of Bung(X) are pairs (R, P), where R is a finitely presented k-algebra and
P is a G-bundle on the relative curve Xr = Spec R Xgpeck X.

(2) A morphism from (R,P) to (R’,P’) consists of a k-algebra homomorphism ¢ : R — R’
together with a G-bundle isomorphism a between P’ and Xz x x,, P.

We will refer to Bung(X) as the moduli stack of G-bundles.

By construction, the assignment (R, P) — R determines a forgetful functor = : Bung(X) —
Ring,. For every finitely generated k-algebra R, we can recover the category Bung(X)(R) as
the fiber product Bung(X) XRing, {/1}. Moreover, the map 7 also encodes the functoriality
of the construction R +— Bung(X)(R): given an object (R,P) € Bung(X)(R) and a ring
homomorphism ¢ : R — R, we can choose any lift of ¢ to a morphism (¢, @) : (R, P) — (R, P)
in Bung(X). Such a lift then exhibits P as a fiber product Xz x x, P.

More generally, for any functor 7 : € — D and any object D € D, let Cp denote the fiber
product € xp{D}. We might then ask if Cp depends functorially on D, in some sense. This
requires an assumption on the functor 7.

Definition 2.3.3. Let 7 : € — D be a functor between categories. We say that a morphism
a: C — C'in € is w-coCartesian if, for every object C” € €, composition with « induces a
bijection

HOHI@(C/, C//) — Home (Cv C//) XHomq (rC,wC"") Homop (Wclv ,’TC”)'
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We will say that 7 is a coCartesian fibration if, for every object C' € C and every morphism
ag : mC — D in the category D, there exists an m-coCartesian morphism a : C — D with
ay = 7(a).

Remark 2.3.4. The definition of a coCartesian fibration can be generalized to the setting of
oo-categories. We refer the reader to §HTT.2.4 for more details.

Remark 2.3.5. A functor 7 : € — D between categories is said to be a Cartesian fibration if
the induced map C°? — D°P is a coCartesian fibration.

Remark 2.3.6. A functor 7w : € — D satisfying the requirements of Definition 2.3.3 is more
often referred to as an op-fibration or cofibration of categories. We use the term coCartesian
fibration to remain consistent with [34] and to avoid conflict with other uses of the word “cofi-
bration” in homotopy theory.

Example 2.3.7 (Grothendieck Construction). Let D be a category, and let U be a functor
from D to the category Cat of categories. We can define a new category Dy as follows:

(1) The objects of Dy are pairs (D, u) where D is an object of D and u is an object of the
category U(D).

(2) A morphism from (D,u) to (D’,u’) consists of a pair (¢, a), where ¢ : D — D’ is a
morphism in D and a : U(¢)(u) — «’ is a morphism in U(D’).

The construction (D, u) — D determines a forgetful functor Dy — D which is a coCartesian
fibration. The passage from U to Dy is often called the Grothendieck construction.

For any coCartesian fibration F' : € — D, the category € is equivalent to Dy, for some
functor U : D — Cat. Moreover, the data of F' and the data of the functor U are essentially
equivalent to one another (in a suitable 2-categorical sense).

Definition 2.3.8. A prestack is a category € equipped with a coCartesian fibration 7 : € —
Ring,,.

Warning 2.3.9. Definition 2.3.8 is not standard: many authors use the term prestack to refer
to a coCartesian fibration 7 : € — Ring,;, which satisfies some weak form of descent with respect
to a Grothendieck topology on Ring,, (see Remark 2.3.23).

Remark 2.3.10. We will generally abuse notation by identifying a prestack = : ¢ — Ring,
with its underlying category C and simply say that C is a prestack, or that « exhibits C as a
prestack.

Example 2.3.11. The forgetful functor Bung(X) — Ring,, is a coCartesian fibration, and
therefore exhibits Bung(X) as a prestack.

Remark 2.3.12. Let 7 : ¢ — Ring; be a prestack. For every finitely generated k-algebra
R, we let C(R) denote the fiber product € XRging, {R}. According to Example 2.3.7, the data
of the prestack 7 is essentially equivalent to the data of the construction R — C(R). We will
often describe prestacks informally by specifying the categories C(R), rather than the “total
category” C.

Example 2.3.13. Let X be a k-scheme. We can associate to X a category Cx, which we call
the category of points of X. By definition, an object of Cx is a pair (R, ¢), where R is a finitely
presented k-algebra and ¢ : Spec R — X is a map of k-schemes. A morphism from (R, ¢) to



WEIL’S CONJECTURE FOR FUNCTION FIELDS 43

(R',¢") is a k-algebra homomorphism ¢ : R — R’ for which the diagram

S
Spec R’ o Seeelw) Spec R

K /
X
commutes. The construction (R, ¢) — R defines a coCartesian fibration Cx — Ring,,, so that
we can view Cx as a prestack. For any commutative ring R, we have a canonical equivalence
Cx(R) ~ X(R), where we view the set X (R) as a category with only identity morphisms. In

other words, the prestack Cx — Ring,, encodes (via the Grothendieck construction) the functor
of points of X.

Definition 2.3.14. Let 7 : € — Ring,, be a functor. We say that 7 is a prestack in groupoids if
it is prestack with the property that each of the categories C(R) is a groupoid. We will say that
C is a prestack in sets if each of the categories C(R) is discrete (that it, if it has only identity
morphisms).

Remark 2.3.15. Let 7 : C — Ring,, be a prestack. Then € is a prestack in groupoids if and
only if every morphism in € is m-coCartesian.

Example 2.3.16. For every k-scheme X, the category of points Cx is a prestack in sets. The
moduli stack Bung(X) of Definition 2.3.2 is a prestack in groupoids.

Remark 2.3.17. Though prestacks in groupoids are often technically easier to work with,
many of the prestacks which we study in this paper (such as the Ran space Ran(X)) are more
conveniently described as prestacks which do not satisfy the requirement of Definition 2.3.14.

Definition 2.3.18. Let 7 : € — Ring,, and 7’ : ¢’ — Ring,, be prestacks. A weak morphism of
prestacks from € to €’ is a functor F : @ — € for which the diagram

e F e

N

Ring;,

commutes. A morphism of prestacks from € to €' is a weak morphism of prestacks which carries
m-coCartesian morphisms to 7’-coCartesian morphisms.

The collection of all morphisms of prestacks from € to €’ forms a category Hom(C,C'),
where a morphism from F : € — € to G : € — € is a natural transformation of functors
a : F' — G such that, for each object C' € €, the map 7'(«) is an identity morphism in Ring,.
If 7 : € — Ring, is another prestack, we have evident composition functors

Hom(€, €") x Hom(€’, ") — Hom(€, €").
We can summarize the situation by saying that the collection of all prestacks forms a (strict)
2-category.
Remark 2.3.19. Let C and D be prestacks. If D is a prestack in groupoids, then every weak
morphism of prestacks from € to D is automatically a morphism of prestacks from € to D.
Remark 2.3.20. Let 7 : € — D be a morphism of prestacks, where D is a prestack in
groupoids. Then 7 is a coCartesian fibration if and only if it satisfies the following condition:

() For each object C' € € and each isomorphism « : 7(C) — D in D, there exists an
isomorphism @ : C' — D in € with 7(@) = a.
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We can always arrange that condition (2) is satisfied by replacing € by an equivalent prestack.

Remark 2.3.21. Let X and Y be k-schemes, and let Homy (X, Y") be the set of k-scheme maps
from X to Y. We regard Homy(X,Y) as a category, having no morphisms other than the
identities. We have an evident functor Hom(X,Y) — Hom(Cx, Cy). If X is locally of finite
type over k, then this map is an isomorphism of categories. In particular, the construction
X +— Cx determines a fully faithful embedding from the ordinary category of schemes which
are locally of finite type over k to the 2-category of prestacks. In other words, if X is a
scheme which is locally of finite type over k, then X can be functorially reconstructed from
the associated prestack Cx. Because of this, we will generally abuse notation by identifying X
with the prestack Cx.

Example 2.3.22. Let R be a finitely generated k-algebra, and let Spec R be the associated
affine scheme. Then the prestack associated to Spec R is equivalent to the category Ringp
of finitely generated R-algebras (viewed as a prestack via the functor Ringp — Ring, which
“forgets” the R-algebra structure).

Remark 2.3.23. Let 7 : ¢ — Ring, be a prestack. We say that m is a stack for the
étale topology if the following condition is satisfied:

(¥) Let R be a finitely generated k-algebra, let { R, } be a collection of étale R-algebras for
which the map [[Spec R, — Spec R is surjective, and let D be the full subcategory of
Ring, spanned by those finitely generated R-algebras A which admit the structure of
an R, algebra for some a. Then the forgetful functor

C(R) ~ Hom(Ringp, ) — Hom(D, C)

is an equivalence of categories. Here Hom(D, C) denotes the category of prestack mor-
phisms from D to C, in the sense of Definition 2.3.18.

We say that a morphism of prestacks f : @ — € ezhibits C' as an étale stackification of C if €’
is a stack for the étale topology and, for every prestack € which is a stack for the étale topology,
composition with f induces an equivalence of categories Hom(€',€”) — Hom(€, €”). One can
show that an étale stackification of € always exists and is uniquely determined up to equivalence
(in the 2-category of prestacks).

Many of the prestacks we are interested in (such as the moduli stack Bung (X)) are stacks
for the étale topology. However, it will be technically convenient to work with prestacks which
do not satisfy this condition.

Variant 2.3.24. In Remark 2.3.23, we can replace the étale topology on Ring; by any other
Grothendieck topology, such as the Zariski topology on the fppf topology.

Definition 2.3.25. Let A € {Z,,Q,,Z/(?Z}, where { is a prime number which is invertible in
k. For any prestack = : € — Ring,, we define chain complexes C*(C; A) and C,(C; A) by the
formulae
C*"(C;A) = lim C*(Specw(C); A) Cy(CA) = lim C.(Specm(C); A).
cee cee

Here the limit and colimit are computed in the co-category Moda.

We let H*(C; A) denote the cohomology groups of C*(€;A), and H,(C;A) the homology
groups of C,(C; A). We refer the groups H,(C; A) (H.(C; A)) as the £-adic (co)homology groups
of C with coefficients in A.

Remark 2.3.26. The notation of Definition 2.3.25 is slightly abusive: the chain complexes
C*(C;A) and C,(€;A) depend not only on the category C, but also the coCartesian fibration
7 : € — Ringy,.
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Example 2.3.27. Let X € Schy be a quasi-projective k-scheme, and let Cx be the associated
prestack. If X = Spec R is affine, then the category Cx has a final object (given by the pair
(R,id)), so we have canonical equivalences

C*(Cx;A) ~ C*(Spec R; A) Cy(Cx;A) ~ Cy(Spec R; A).

Using the fact that the functor X — C*(X;A) is a sheaf for the étale topology, we deduce the
existence of equivalences

C*"(Cx;A) ~ C*(X;A) Ci(Cx;A) ~ C. (X5 A)
for any quasi-projective k-scheme X.

Warning 2.3.28. Let € be a prestack. Then C*(C; A) can be identified with the A-linear dual
of C.(C;A). In particular, if A € {Q,,Z/¢Z} is a field, then we have canonical isomorphisms

H(C; A) ~ H;(C; A).
However, C,(C; A) need not be the A-linear dual of C*(C; A) (if A is a field, this is true if and
only if each H;(€; A) is a finite-dimensional vector space).

Warning 2.3.29. Let € be a prestack. Then C,(C; Q,) is equivalent to C.(C;Z)[¢~1], since
the process of “inverting ¢” commutes with colimits. However, it generally does not commute
with limits, so that the canonical map

C* (G Zo) 7] = C7(C;Qy)
is not an equivalence in general.

Remark 2.3.30. Suppose that C is an algebraic stack which is of finite type over & Then we
can present C by a simplicial scheme X, where each X,, is an affine scheme of finite type over
k. In this case, the canonical map

0:C™(CZ[™] = C* (€ Q)
is an equivalence: it can be identified with the natural map
Tot(C*(Xe; Zo)) 1] — I.&HTOt(C*(X.; Z)[e ),
and the formation of totalizations commutes with filtered colimits in the co-category (Modz, ) <o.

Warning 2.3.31. For every prestack C, we have a canonical equivalence
C*(C;Ze) ~ lim C*(& Z/1'Z).

However, the canonical map C,(C;Z;) — @C*(G; Z/0%Z) need not be an equivalence in gen-
eral, since the formation of colimits generally does not commute with the formation of limits.

Remark 2.3.32. Let A € {Z/(?Z,Z,,Q,}. The constructions € — C,(C;A) and C — C*(C; A)
depend functorially on €. More precisely, every weak morphism (see Definition 2.3.18) of
prestacks f : @ — € induces pushforward and pullback maps

fot CUCA) = Cu(D;A)  f*: C*(D;A) — C*(C; A),

and every natural transformation a : f — ¢ (which projects to the identity in Ring,,) determines
homotopies f, ~ g, and f* ~ g*. Note that this holds regardless of whether or not « is an
isomorphism: the existence of a noninvertible 2-morphism from f to g is enough to guarantee
that f and ¢ induce the same map at the level of homology and cohomology.
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Remark 2.3.33. Let f: € — D be a morphism of prestacks which exhibits D as the stackifi-
cation of € with respect to the étale topology (or the Zariski topology, or the fppf topology).
Then the induced maps

fx 1 Cu(C;A) — Cu(D; A) fF:C*(D;A) = C*(C;A)
are equivalences (for A € {Zy,Q,,Z/¢Z}). This is a formal consequence of the fact that

the construction X — C*(X;A) introduced in §2.2 is a sheaf for the étale topology (Zariski
topology, fppf topology; see Variant 2.2.22).

Proposition 2.3.34. Let R be a finitely generated k-algebra and suppose we are given a map of
prestacks v : € — Spec R. Suppose we are given a faithfully flat morphism of finitely generated
k-algebras ¢ : R — R°, and let R® be the associated cosimplicial ring (so that R™ is given by
the (n + 1)st tensor power of R® over R). Then the canonical map

0 : |Ci(Spec R® Xgpec r C; A)| — Cu(C; A)
is an equivalence for A € {Z/0Z,7,Q,}.

Before giving the proof of Proposition 2.3.34, it will be convenient to review of a bit of
category theory.

Notation 2.3.35. Let C be any category, and let C' € C be an object. We let Cc, denote the
category whose objects are morphisms f : C — D in €, and whose morphisms are given by

commutative diagrams
c
"
D D'

The construction (f : C — D) — D determines a forgetful functor €, — €. We will generally
abuse notation by not distinguishing between an object of €c, and its image in € (in other
words, we will simply refer to D as an object of C¢, if the map f is understood).

There is an evident dual construction, which produces a category €, whose objects are
morphisms f : D — C in the original category C.

Example 2.3.36. Let 7 : ¢ — Ring,;, be a prestack in groupoids. Then for any object C' € €
with 7(C') = R € Ring, the functor m induces an equivalence of categories

Ccy — (Ringy) gy ~ Ringp .

In other words, a choice of object C' € C(R) determines a morphism of prestacks Spec R — C
which restricts to an equivalence Spec R — C¢.

Remark 2.3.37. We say that a category € is weakly contractible if its nerve N(C), is a weakly
contractible simplicial set (in other words, if € is nonempty and every map from N(C), to a
Kan complex X is homotopic to a constant map).

Let F': € — D be a functor between categories. We will say that F' is left cofinal if, for
every object D € D, the fiber product € xp Dp, is weakly contractible. We say that F'is right
cofinal if, for every object D € D, the fiber product € xp D, p is weakly contractible. For every
oo-category € and every functor G : D — &, we have canonical maps

:lim (G o F)(C) — lim G(D : lim G(D) — lim (G o F)(C
(b(ﬁ( )()D?D()wﬁ()@( )(C)
(provided that the relevant limits and colimits exist in €). The map ¢ is an equivalence whenever
F' is left cofinal, and the map v is an equivalence whenever F' is right cofinal. We refer the
reader to §SHTT.4.1 for more details.
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Note that F is left cofinal if and only if the opposite functor F°P : C°° — D°P is right cofinal,
and vice-versa. Consequently, for any functor G : D°°® — &, the canonical map hgq ce e(G )
)(C) — lim ) ) G(D) is an equivalence when F' is right cofinal, and the canonical map

@De)@ G(D) — yLnCGG(G o F')(C) is an equivalence when F' is left cofinal (see Notation
2.1.26).

Remark 2.3.38. Let F' : € — D be a functor between categories. Then F admits a right
adjoint G if and only if, for each object D € D, the category € xp D,p has a final object. In
particular, if F' admits a right adjoint, then F is right cofinal. Similarly, if F' admits a left
adjoint, then it is left cofinal.

Remark 2.3.39. Let R be a finitely generated k-algebra and let v : € — Spec R be a coCarte-
sian fibration between prestacks. For every finitely generated R-algebra R’, the projection
map
Spec i XSpec R C—¢C
admits a left adjoint F', which carries an object C' € € to the codomain of a r-coCartesian
morphism C' — F(C) covering the ring homomorphism v(C) — v(C) @ R’. Since the functor
F admits a right adjoint, it is right cofinal (Remark 2.3.38). We therefore have a canonical
equivalence
C.(Spec R’ Xgpec g C;A) ~ lim C'(Spec(v(C) ®r R');A)
cee
for A € {Z/lZ,Z,,Q,}.

Proof of Proposition 2.3.34. Replacing € by an equivalent prestack if necessary, we may assume
that v is a coCartesian fibration (see Remark 2.3.20). Using Remark 2.3.39, we can identify 0
with a colimit of maps of the form

|C(Spec(R® ®spec g A); A)| — C(Spec A; A),
each of which is a quasi-isomorphism by Proposition 2.2.25. O
Let A € {Zy,Q,,Z/¢Z} be a commutative ring. Then A-linear duality determines a con-
travariant equivalence of the symmetric monoidal co-category of perfect objects of Mody with
itself. If X is a quasi-projective k-scheme, then we can view C*(X; A) as a commutative algebra
object of Mody, so that C.(X;A) inherits the structure of a commutative coalgebra object of

Mody (see Remark 2.2.11), depending functorially on X. It follows that if 7 : € — Ring,, is a
prestack, then the chain complexes

C*(C;A) ~ Jim C*(Specm(C); A) Cy(C;A) = lim Cy(Specm(C); A)
cee cee

inherit the structure of commutative algebra and coalgebra objects of Mody, respectively. In
particular, for every pair of k-prestacks € and €', we have a canonical map

C*(GXSpeck e/;A) — C*(GXSpeck e/;A) XA C*(GXSpecke/;A)
S C(CA) @a CL(€A).

Proposition 2.3.40 (Kiinneth Formula for Prestacks). Let A € {Z,Q,,Z/(?Z}. Then, for
every pair of prestacks 7 : € — Ring, and ' : €' — Ringy, the canonical map

Ci(C Xspeck €5 A) = Cu(C; A) @4 C.(C5A)

18 an equivalence in Mody .
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Proof. We have an evident functor g : € Xging, € — € x €'. This functor admits a G admits a
left adjoint f : € x €' = € XRing, €, given by (C,C”) — (Ca, "), where A = n(C) @, 7'(C"),
Ca denotes the image of C' under the functor C(w(C)) — C(A), and C', is defined similarly.
Since the functor f admits a right adjoint, it is right cofinal. Combining this observation with
Proposition 2.2.20, we obtain equivalences

C.(C XRing, C;A) =~ lim  C.(Spec(m(C) @x 7'(C"); A)

(c,cneex e

~ lim  C.(Specm(C); A) @4 C(Spec 7' (C"); A)
(C,cnee x e’

~ (lim C.(Specm(C); A)) @4 ( lim Ci(Spec’(C'); A))
cee crece’

~ Cu(C;A) ®p Cu(D;A).
O

Remark 2.3.41. One can use Proposition 2.3.40 to show that the construction € +— C,(C; A)
determines a symmetric monoidal functor from the 2-category of prestacks (with symmetric
monoidal structure given by the Cartesian product) to the co-category Mod (with symmetric
monoidal structure given by tensor product over Zj). This observation has several useful
consequences:

(1) Suppose that G is a group-valued prestack: that is, a prestack in sets equipped with
a multiplication map G Xgpeck G — G which determines a group structure on each
of the sets G(R). Then the f-adic chain complex C,(G;A) inherits the structure of
an associative algebra object of Mod,: that is, it can be viewed as an [E;-algebra
over A (and is therefore quasi-isomorphic to a differential graded algebra over A; see
Proposition HA.7.1.4.6).

(2) Let G be a group-valued prestack and let X be a prestack in sets equipped with a (left)
action of G. Then the f-adic chain complex C.(X;A) inherits the structure of a (left)
modue over the algebra C,(G;A).

(3) Let G be a group-valued prestacks and suppose we are given prestacks in sets Y and
X equipped with right and left actions of G, respectively. Let Z denote the prestack in
sets obtained from Y Xgpecr X by dividing out by the diagonal action of G. Then we
have a canonical map

C(Y5A) @0, (6;0) Cu(X;A) = Cu(Z: A).
(4) Taking Y = Speck in (3), we obtain a canonical map
A®c,@Gn) Cu(X5A) = Co(G\X; A).
If G acts freely on X, then this map is an equivalence.
For later use, we record the following consequence of Remark 2.3.41:

Corollary 2.3.42. Let A € {Zy,Q,,Z/°Z}, let v : Gy — G be a monomorphism between
group-valued prestacks, and suppose that that the canonical map G/Gy — Speck induces an
isomorphism

H.(G/Go; A) — H.(Speck; A) ~ A.
Then:

(a) If v induces an isomorphism Ho(Go; A) — Ho(G; A), then it induces an isomorphism
H.(Go; A) = H.(G; A).
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(b) If the induced map Ho(Go; A) — Ho(G; A) factors through the augmentation
Ho(Go; A) — Ho(Speck; A) ~ A,
then Ho(G;A) ~ A (that is, G is connected).
Proof. We first prove (a). Remark 2.3.41 supplies an equivalence
A ®c, (Goin) Cx (G5 A) ~ A

Consequently, if K denotes the cofiber of the canonical map Ci(Go; A) — C.(G;A), then we
have K ®¢, (Go;a) C+(G;A) ~ 0. If K # 0, then there exists some smallest integer m such that
H,,(K) # 0. In this case we obtain an isomorphism

Torg YN (H,,, (K), Hy(G; A)) = Hp (K @¢, (coin) Cu(G5 A)) = 0

(see Corollary HA.7.2.1.23). If Ho(Go; A) ~ Hy(G; A), we conclude that H,,(K) ~ 0, contrary
to our assumption on m.
We now prove (b). Note that Corollary HA.7.2.1.23 also supplies an isomorphism

Torf® “O™M (A, Ho(G; A)) ~ Ho(G/Go; A) ~ A.
In other words, the augmentation ideal of Ho(G; A) is generated by the image of the augmen-

tation ideal of Ho(Gp;A). In particular, if the map Ho(Go;A) — Ho(G; A) annihilates the
augmentation ideal of Hyo(Gp; A), then the augmentation Ho(G; A) — A is an isomorphism. O

For every pair of objects M, N € Mody, we have an evident map MY @ NV — (M @4 N)V.
This map is an equivalence whenever either M or N is perfect, but not in general. Combining
this observation with Proposition 2.3.40, we obtain:

Corollary 2.3.43. Let A € {Zy,Q,,Z/(Z}. Let C be a prestack for which C,(C;A) € Modp
is perfect. Then, for every prestack C', the canonical map

C*(€;A) @5 C*(C;A) = C*(C Xspeck €5 A)
is an equivalence.

Warning 2.3.44. The analogous Kiinneth formula does not necessarily hold for cochain com-
plexes C*(C; A), because in general the formation of tensor products does not distribute over
inverse limits. This is one reason that it will be convenient for us to work with the homology
of prestacks.

2.4. Acyclicity of the Ran Space.

2.4.1. The Ran Space in Topology. Let M be a topological space, and let Ran(M) denote
the collection of all nonempty finite subsets of M. For every collection of disjoint open
sets Uy,...,Upy € M, let Ran(Us,...,U,,) denote the subset of Ran(M) consisting of those
nonempty finite sets S C M satisfying

SCUU---UU, SNUL #0 SNU,, #0.
The collection of sets Ran(Uy,...,Uy,) form a basis for a topology on Ran(M). Following [9],
we will refer to Ran(M) as the Ran space of M.

Remark 2.4.1. Suppose that the topology on M is defined by a metric d. Then the topology
on Ran(M) is also defined by a metric, where the distance from a nonempty finite set S C M
to another nonempty finite set 7' C M is given by

max{rsneagc min d(s,t), max min d(s,t)}.
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2.4.2. The Ran Space in Algebraic Geometry. In this section, we will study an analogue of the
construction M — Ran(M) in the setting of algebraic geometry. Fix an algebraically closed
field k£ and a prime number ¢ which is invertible in k. For every quasi-projective k-scheme
X, we will define an algebro-geometric object Ran"(X) which parametrizes nonempty finite
subsets of X. Since the collection of such points is “infinite-dimensional”, it is unreasonable
to expect to realize Ran“(X) as a k-scheme: instead, we will describe it as a prestack over k,
whose R-valued points are nonempty finite subsets of X (R):

Definition 2.4.2. Let X be a quasi-projective k-scheme. We define a category Ran“(X) as
follows:
(1) The objects of Ran"(X) are pairs (R, S) where R is a finitely generated k-algebra and
S is a nonempty finite subset of X (R).
(2) A morphism from (R, S) to (R, S’) in Ran"(X) is a k-algebra homomorphism ¢ : R —
R’ having the property that S’ is the image of the induced map S C X (R) Xg) X(R).
The construction (R,S) — R determines a forgetful functor Ran"(X) — Ring,. It is easy to

see that this functor is a coCartesain fibration, so that we can regard Ran"(X) as a prestack.
We will refer to Ran"(X) as the unlabelled Ran space of X.

Remark 2.4.3. We can regard Ran"(X) as obtained by performing the Grothendieck con-
struction (Example 2.3.7) using the set-valued functor which assigns to each R € Ring, the set
of all nonempty finite subsets of X (R). In particular, it is a prestack in groupoids.

Warning 2.4.4. The prestack Ran" (X)) usually not a stack for the étale topology. For example,
suppose that X = Spec R is an affine k-scheme equipped with a free action of a finite group I'.
Every element « € I' determines an automorphism of X, which we can regard as an R-valued
point of X. Then (R, {y},cr) is an R-valued point of the prestack Ran"(X) which is invariant
under the action of I'. However, this point does not descend to an R'-valued point of Ran"(X)
unless we can choose a section of the quotient map X — X/T.

We can now state the main result of this section:

Theorem 2.4.5 (Beilinson-Drinfeld). Suppose that X € Schy is connected, and let A €

{Z,Qy,Z/(?Z}. Then the canonical map Ran"(X) — Speck induces a quasi-isomorphism
C.(Ran"(X); A) — C.(Speck; ).

In other words, we have canonical isomorphisms

A ifx=0

0  otherwise.

H.(Ran"(X); A) ~ {

Remark 2.4.6. For any prestack €, we have a fiber sequence
Crd(C; Zy) 5 C™4(C; Zy) — C™Y(C; Z/(Z).

If CT*4(C; Z/¢Z) is acyclic, then multiplication by £ induces a quasi-isomorphism from the chain
complex C™4(C; Zy) to itself. In this case, we have C*4(C;Z;) ~ C™4(C; Q,). Consequently,
to prove Theorem 2.4.5, it will suffice to treat the special cases where A € {Q,, Z/{Z} is a field.

Notation 2.4.7. For any prestack C, we let C™%(C; A) denote the fiber of the canonical map
C.(C;A) — C.(Speck;A). We will refer to C™4(@;A) as the reduced chain complex of C
with coefficients in A. Theorem 2.4.5 is equivalent to the assertion that the chain complex
Crd(Ran®(X); A) is acyclic.
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We will prove Theorem 2.4.5 by reducing to the following special case, which we will establish
at the end of this section:

Proposition 2.4.8. Suppose that X € Schy is connected. Then the map Ran*(X) — Speck
induces an isomorphism of abelian groups Ho(Ran"(X); A) — Ho(Speck; A) ~ A.

Proof of Theorem 2.4.5. Using Remark 2.4.6, we may assume that A is a field (though this
reduction is not really essential). By virtue of Proposition 2.4.8, it will suffice to show that
H, (Ran"(X);A) ~ 0 for n > 0. Proceeding by induction on n, we may assume without loss
of generality that H;(Ran“(X);A) ~ 0 for 0 < ¢ < n. Set V = H,(Ran"(X);A). Using
Propositions 2.4.8 and 2.3.40, we obtain an isomorphism

H, (Ran“(X) Xspeck Ran“(X);A) 2V V.

We have an evident “multiplication” map m : Ran®(X) Xgpec s Ran*(X) — Ran"(X), given on
objects by the formula
(R,S),(R,S")) — (R,SUS").
Passing to homology, we obtain a map A : V&V — V| which we can identify with a pair of
maps A1, Az : V — V. By symmetry, we have A\; = \2. Note that the composite map
Ran"(X) KN Ran"(X) Xgpecx Ran*(X) = Ran"(X)

is the identity. From this, we deduce that v = A(v,v) = A1 (v) + Aa(v) = 2X2(v) for v € V.

Choose a k-rational point € X. Then {z} can be identified with a k-rational point of
Ran"(X): that is, with a map of prestacks ¢ : Speck — Ran"(X). Let F denote the composite
map

Ran®(X) = Spec k Xspeck Ran®(X) “Y Ran®(X) xspec Ran®(X) 7 Ran"(X).

Note that the point 2 determines a map Speck — Ran“(X) which induces an isomorphism

A ~ H%(Speck; A) ~ H’(Ran"(X); A). It follows that on homology, F induces the map from V/
to V given by v+ Ag(v). Since F? = F, we have

2/\2(’0) = 2)\2()\2(?])) = /\2(1}),

so that A2(v) = 0 and therefore v = 2X\3(v) = 0. Since this is true for all v € V, we conclude
that V' ~ 0. O

To execute the proof of Proposition 2.4.8 (and many other arguments throughout this paper),
it will be convenient to work with a slight variant of Ran"(X'), whose points are parametrized
finite subsets of X.

Definition 2.4.9. Let X be a quasi-projective k-scheme. We define a category Ran(X) as
follows:
e An object of Ran(X) is a triple (R, S, u) where R is a finitely generated k-algebra, S is
a nonempty finite set, and p: S — X (R) is a map of sets.
e A morphism from (R, S, u) to (R, S’, ') in Ran(X) consists of a k-algebra homomor-
phism ¢ : R — R’ together with a surjection of finite sets S — S’ for which the

diagram
S S
J( X(¢) l

X(R) —% X(R

!
-

commutes.
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It is easy to see that the forgetful functor (R, S,u) — R determines an coCartesain fibration
Ran(X) — Ring,, so that we can regard Ran(X) as a prestack.

Remark 2.4.10. More informally, we can describe Ran(X) as the prestack which assigns to
each finitely generated k-algebra R the category whose objects are pairs (S, ), where S is a
nonempty finite set and p: S — X (R) is a map of sets.

Warning 2.4.11. The prestack 7 : Ran(X) — Ring,, is not a stack in groupoids. A morphism
(R, S, u) — (R',S’, 1) in Ran(X) is w-coCartesian if and only if the map of finite sets S — S’
is bijective.

Let us now describe the relationship between Ran(X) and Ran“(X). We have an evident
functor F' : Ran(X) — Ran"(X), which carries a map of p : § — X (R) to its image u(S) C
X(R). We can regard F as a map of prestacks from Ran(X) to Ran“(X). The functor F
admits a right adjoint G, which carries a subset T C X (R) to the inclusion map ¢ : T — X (R).
The functor G is a weak morphism of prestacks (in the sense of Definition 2.3.18), but does

not preserve coCartesian morphisms (since a map of k-algebras R — R’ need not induce an
injective map X(R) — X (R’)). Nevertheless, Remark 2.3.32 yields the following:

Lemma 2.4.12. Let X € Schy and let A € {Z;,Q,,Z/(?Z}. Then the canonical map
Ran(X) — Ran"(X) induces an isomorphism

H,(Ran(X); A) — H.(Ran"(X); A).

Proof of Proposition 2.4.8. By virtue of Lemma 2.4.12, it will suffice to show that the canonical
map Ho(Ran(X); A) — Ho(Speck; A) is an isomorphism.

Let Fin® denote the category whose objects are nonempty finite sets and whose morphisms
are surjections. The construction (R, S, i) — S determines a Cartesian fibration of categories
¢ : Ran(X) — Fin® (see Remark 2.3.5), whose fiber over an object S € Fin® can be identified
with X (which we regard as a prestack). We therefore obtain

C.(Ran(X);A) =~ lim  C.(X%A)
SeFinser
in the oco-category Modjy .

Each of the chain complexes C,(X®;A) is connective: that is, its homologies are concen-
trated in non-negative degrees. It follows that we can identify Ho(Ran(X); A) with the direct
limit hﬂ SeFinsor Ho(X®; A), computed in the ordinary category of abelian groups. Since X is

connected, the construction S +— Hg(X®;A) is equivalent to the constant functor taking the
value A. The category Fin® has weakly contractible nerve (since it has a final object), so that
the colimit lim Ho(X9; A) is also isomorphic to A. O

Corollary 2.4.13 (Acyclicity of the Ran Space). If X € Schy is connected, then the reduced
chain complex CT**(Ran(X); A) is acyclic for A € {Z;,Q,, Z/(?Z}.

Proof. Combine Lemma 2.4.12 with Theorem 2.4.5. g

2.5. Universal Homology Equivalences. Fix an algebraically closed field & and a prime
number ¢ which is invertible in k. At many points in this paper, we will need to argue that a
(weak) morphism of prestacks f : € — D induces an isomorphism of ¢-adic homology groups
fe : Hi(C;Zy) — H,(D; Zy) (and therefore also an isomorphism f* : H*(D; Z,) — H*(C; Z;), by
duality). We have already encountered several formal conditions on f which guarantee this:

e The map f, is an isomorphism if f is right cofinal (see Remark 2.3.37).

e The map f, is an isomorphism if f admits an adjoint (on either side) which is compatible

with the projection to Ring, (this is an immediate consequence of Remark 2.3.32).
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e The map f, is an isomorphism if f induces an equivalence after stackification with
respect to the fppf topology (Remark 2.3.33).

In this section, we will study another class of morphisms f which induce isomorphisms on
{-adic cohomology, which we call universal homology equivalences.

Definition 2.5.1. Suppose we are given a morphism of prestacks

A

Ring,, .

We say that F' is a universal homology equivalence if, for each object D € D, the canonical map

lim  C.(Specn(C); Zy) — C.(Specn’(D); Zy)
CeCxpDpy

is an equivalence in Modg,.

Remark 2.5.2. In the situation of Definition 2.5.1, suppose that the functor F': € — D is a
Cartesian fibration. Then, for each object D € D, the inclusion

GX@{D} — Cxp DD/

is right cofinal. Consequently, 7 is a universal homological equivalence if and only if, for each
object D € D, the canonical map

lim  C.(Specn(C); Z¢) — C,.(Specn’(D); Zy)
7(C)=D
is an equivalence in Modg, .

Remark 2.5.3. In the situation of Definition 2.5.1, suppose that F' is a universal homology
equivalence. It follows immediately that for each object D € D, the canonical maps

lim  C.(Specm(C); A) — C.«(Specn’(D); A)
Ccel xp DD/

lim  C*(Specw(C);A) = C*(Specn’(D); A)
ceexn Dp,

are equivalences in Mody, for A € {Z,, Q,, Z/(Z}.
Example 2.5.4. In the situation of Definition 2.5.1, we can identify the direct limit

lim  C.(Specm(C); Ze)
CeC xp DD/

with the complex of Z,-chains on the prestack € xp Dp,.

Suppose that D is a prestack in groupoids, and let D € D be an object with /(D) = R.
Then 7' induces an equivalence Dp, ~ Ringp (Example 2.3.36). We may therefore identify
the forgetful functor Dp, — D with a map Spec R — D. In this case, Definition 2.5.1 requires
that the canonical map

C.(C xp Spec R; Zy) — Ci(Spec R; Zy)

be an equivalence.
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Remark 2.5.5. Let F': € — D be a functor between (small) co-categories. Then composition
with F' induces a functor F* : Fun(D?,Modz,) — Fun(C°?,Modz,). Under some mild set-
theoretic hypotheses on € and D, one can show that the functor F* admits a left adjoint
Fy : Fun(C°?, Modz, ) — Fun(D°?, Modg, ). Concretely, the functor F) is given by the formula

AOD) =ty F(O).

Cel xp DD/

We refer to Fi(F) as a left Kan extension of F' along D.
Suppose now that F' is a map of prestacks

G\F D

Ring,, .

Define functors F : €°® — Ring,, ' : D°® — Ring,, by the formulae
F(C) = C.(Specn(C); Zy) F'(D) = C.(Specn’'(D); Zy).

Then F = F*F, so we obtain a canonical map o« : 1 F — F. The map F is a universal
homology equivalence if and only if the natural transformation « is an equivalence.

Remark 2.5.6. Suppose that F': € — & is a Cartesian fibration between categories. Then,
for every object E € &, the inclusion functor

Cg=20C Xg{E} — C Xe EE/
is right cofinal. It follows that for each object F € Fun(€°?, Modgz,), the left Kan extension
F\(F) is given by the formula F\(F)(E) = @CECE F(O).

Remark 2.5.7. Suppose we are given a map of prestacks F' : € — D, and auxiliary category

&, and a commutative diagram
r D
X 7
&

where the vertical maps are Cartesian fibrations. Let o : F{ F — F’ be as in Remark 2.5.5. Then
F induces a map on Zg-valued chains C,(C; Z;) — C.(D;Zy) which is given by the composition

C* (€ Zy) liy (Gy F)(E)

e

2
all

1R

ﬁgH!(FI?)

€

&
o

T tim (1) (B)

Eeé
~ C"(D;Zy)
By virtue of Remark 2.5.6, to show that F' induces an isomorphism on Z,-homology, it will
suffice to show that the induced map
lim F(C) — lim (D)
CeCp DeDg

is an equivalence for each object E € €.
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The construction which carries a functor F : €°? — Modgz, to its colimit lim . F(C) €

Modz, can be regarded as a special kind of left Kan extension: namely, left Kan extension
along the projection map € — A°. Invoking the transitivity of the formation of left Kan

extensions, we obtain the following:

Proposition 2.5.8. Let F': C — D be a universal homology equivalence of prestacks. Then F
induces an equivalence Cy(C;Zg) — Ci(D; Zy).

Corollary 2.5.9. Let u : € — D be a universal homology equivalence of prestacks. Then u
induces equivalences
Cu(€Z/1Z) —» C(D;Z/1Z)  Cu(C;Zy) —» Cu(D;Ze)  Cu(CQy) — Cu(D; Q)
C*(D;Z/Z) — CH (G Z/t"Z)  C*(DiZy) — C*(C;Ze)  CH(D;Qp) = C* (& Qy).
Remark 2.5.10. The collection of universal homology equivalences is closed under composi-

tion. This follows immediately from the characterization of universal homology equivalences
supplied by Remark 2.5.5.

Proposition 2.5.11. Suppose we are given a pullback diagram of prestacks

o gy

L,k

C——D

where u is a coCartesian fibration. If [ is a universal homology equivalence, then [’ is a
universal homology equivalence.

Proof. To prove this, it suffices to show that for every object D’ € D’ having image D € D,
the canonical map € x g D’D,/ — €xp Dp, is right cofinal. In fact, this functor has a right
adjoint, by virtue of our assumption that D’ — D is a coCartesian fibration. 0
Corollary 2.5.12. Let f : € — D be a morphism of prestacks, and suppose that D is a prestack
in groupoids. The following conditions are equivalent:

(1) The morphism f is a universal homology equivalence.
(2) For every homotopy pullback diagram

¢ ——7
lf/ lu
f
C——7D
in the 2-category of prestacks, the morphism f’ is a universal homology equivalence.

(3) For every homotopy pullback diagram

G/le

lf/ lu
f
e—l-p

in the 2-category of prestacks, the morphism f' induces an isomorphism of (-adic ho-
mology groups
fal( : H*(e/v Z@) — H*(Dlv Z@)
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(4) For every map n : Spec R — D, the induced map
H.(Spec R xp C;Zy) — H.(Spec R; Zy)
18 an equivalence.

Proof. The implication (1) = (2) follows from Proposition 2.5.11 and Remark 2.3.20. The
implication (2) = (3) follows from Proposition 2.5.8. The implication (3) = (4) is immediate,
and the equivalence (1) < (4) follows from Example 2.3.36. O

Example 2.5.13. Let 7 : € — Ring, be a prestack. Then 7 is a universal homology equivalence
(when regarded as a morphism from € to Spec k in the 2-category of prestacks) if and only if it
induces an isomorphism

H*(G; Zg) — H*(Spec k; Z() ~Zy.
The “only if” direction is clear, and the converse follows from Proposition 2.3.40.

Example 2.5.14. Let X be a k-scheme of finite type, and let € be a vector bundle over X.
Then the projection map € — X is a universal homology equivalence. To prove this, we must
show that for every map Spec R — X, the induced map

C.(Spec R x x &;Zy) — C.(Spec R; Zy)

is an equivalence. By virtue of Proposition 2.3.34, this assertion can be tested locally with
respect to the Zariski topology on Spec R. We may therefore reduce to the case where Spec Rx x
& >~ Spec R X gpec ik A". Using Proposition 2.3.40, we are reduced to proving that C*(Al; Zy) ~
Z,, which follows from our assumption that £ is invertible in the field k.

Proposition 2.5.15. Let R be a finitely generated k-algebra, and suppose we are given a
diagram of prestacks o :

C D

N

Spec R.

Let R’ be a finitely generated R-algebra for which the map Spec R’ — Spec R is faithfully flat.
If the map Spec R’ Xgpec R € — Spec R’ Xgpec B D is a universal homology equivalence, then the
map C — D is a universal homology equivalence.

Proof. Fix an object D € D whose image in Spec R is a finitely generated R-algebra A, and let
€ denote the fiber product € xp Dp,. We wish to prove that the canonical map & — Spec A
induces an equivalence C,(&;Zy) — C,(Spec A;Zy). Let R® denote the cosimplicial R-algebra
determined by R’ (so that R™ is the (n+ 1)st tensor power of R’ over R) and set A®* = R*®p A.
We have a commutative diagram

|C(Spec R® Xspecr €;Z¢)| — |Cx(Spec A®; Zy)|

| |

C.(&;Zy) C.(Spec R; Zy),

where the vertical maps are equivalences by virtue of Proposition 2.3.34. We are therefore re-
duced to proving that each of the maps C. (Spec R™ Xspec RE; Ze) — Ci(Spec A™; Zy) is an equiv-
alence, which follows from our assumption that the map Spec R’ Xgpec g € — Spec R’ Xgpec g D
is a universal homology equivalence. O
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We now describe some examples of universal homology equivalences which are related to the
constructions of §2.4.

Construction 2.5.16. Let X be a quasi-projective k-scheme. We define a category Ran™ (X)
as follows:

e The objects of Ran™ (X) are pairs (R, S) where R is a finitely generated k-algebra, and
S is a (possibly empty) finite subset of X (R).

e A morphism from (R, S) to (R’,S’) is a k-algebra homomorphism ¢ : R — R’ for which
the induced map X (R) — X (R') carries S to a subset of S’.

Put more informally: the category Rant(X) is defined in the same way as the category
Ran"(X), except that we do not require our subsets of X to be nonempty or the maps be-
tween them to be surjective. Note that we can regard Ran®(X) as a (non-full) subcategory of
Ran™(X).

Remark 2.5.17. Heuristically, we can think of the prestack Ran™(X) as a geometric object
obtained from Ran(X) by adding a new point (corresponding to the empty set) and drastically
modifying its topology, so that a finite subset S C X lies in the closure of a finite subset S’ C X
whenever S’ C S. In particular, the empty subset () C X can be regarded as a “generic point”
of Ran™(X).

Remark 2.5.18. Let X be a quasi-projective k-scheme. The empty set ) C X (k) determines a
k-valued point Spec k — Ran™ (X)), which is a section of the projection map Ran™*(X) — Spec k.
It follows immediately from the definitions that these morphisms are adjoint (in the 2-category of
prestacks), and therefore induce mutually inverse isomorphisms on the level of ¢-adic homology
and cohomology (Remark 2.3.32). In particular, we obtain isomorphisms

Z@ if*=0

H*(Ran+(X); Ze) = {O otherwise

Theorem 2.5.19. Let X be a quasi-projective k-scheme. If X is connected, then the maps
Ran(X) — Ran"(X) — Ran™(X)
are universal homology equivalences.

Remark 2.5.20. If X € Schy is connected, then Theorem 2.5.19 and Remark 2.5.18 supply
isomorphisms

Zg if*=0

H.(Ran(X);Z,) ~ Hy(Ran"(X); Z¢) ~ i
0 otherwise,

which is the content of Theorem 2.4.5 (and Corollary 2.4.13). However, this result does not
come for free: we will use Theorem 2.4.5 in our proof of Theorem 2.5.19.

Example 2.5.21. Let us outline an application of Theorem 2.5.19 which we will need in §7.7.
Let X be a connected quasi-projective k-scheme and suppose we are given nonempty closed
subscheme Y C X. Let Ran™(X)’ denote the full subcategory of Ran™(X) consisting of those
pairs (R, S C X(R)) having the property that for every k-valued point 7 € Spec R, the image
of S in X (k) has nonempty intersection with Y (k). Let Ran(X)" denote the inverse image of
Ran™(X)’ in Ran(X). We claim that the inclusion maps

u : Ran(X)" — Ran(X) u® : Ran™(X)" — Ran™(X)
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induce isomorphisms on Zg-homology. Note first that the inclusion Ran™(X)" < Ran™(X) is
a coCartesian fibration (since the condition that the image of a map S — X (k) intersects Y (k)
is stable under enlarging S). Applying Proposition 2.5.11 to the pullback diagram

Ran(X)’ Ran™ (X))’

Ran(X) — Ran™ (X),

we deduce from Theorem 2.5.19 that horizontal arrows are universal homology equivalences.
Consequently, to prove that u induces an isomorphism on Z,-homology, it will suffice to show
that u™ induces an isomorphism on Z,-homology. To prove this, choose a point y € Y (k),
and for each R € Ring;, let yr denote the image of y in Y(R). The construction (R,S) —
(R,S U {ygr}) determines a morphism of prestacks v : Ran™(X) — Ran™*(X)’. Applying the
two-out-of-six property to the diagram

Ran™ (X))’ “ Ran™(X) 5 Ran™ (X)’ “ Ran™ (X)),
we are reduced to proving that the composite maps
vou' :Ran(X) — Ran™(X)
uT ov:Ran®(X) — Ran™t(X)
induce isomorphisms on homology. Both of these maps are the identity on homology, since they

are related to the identity map by a 2-morphism (in the 2-category of prestacks); see Remark
2.3.32.

We can break the statement of Theorem 2.5.19 into two parts:

Proposition 2.5.22. Let X be a quasi-projective k-scheme. Then the prestack morphism
Ran(X) — Ran"(X) is a universal homology equivalence.

Proposition 2.5.23. Let X € Schy be a connected quasi-projective k-scheme. Then the inclu-
sion Ran"(X) — Ran™ (X) is a universal homology equivalence.

Proof of Proposition 2.5.22. The proof is a slight elaboration Lemma 2.4.12 (which can be
regarded as a special case). Fix an R-valued point of Ran“(X) given by a nonempty finite
subset S C X(R), and let € = Ran(X) Xganu(x) Ran"(X) (g g)/. We wish to prove that the
projection map f : € — Spec R induces an isomorphism on Z,-homology. For every finitely
generated R-algebra R’ let Sg/ denote the image of S under the induced map X (R) — X(R').
Unwinding the definitions, we can identify the objects of € with triples (R’, S’, u), where R’ is
a finitely generated R-algebra, S’ is a nonempty finite set, and p : S” — X (R’) is a map of sets
with u(S") = Sgs. The functor f admits a right adjoint, given on objects by R’ — (R', Sg/,id).
It follows that the maps f and g induce mutually inverse isomorphisms on the level of homology
(Remark 2.3.32).

O

Proof of Proposition 2.5.23. Fix an object of Rant(X) given by a pair (R, S) where R is a
finitely generated k-algebra and S is a finite subset of X (R). Let C denote the fiber product
Ran"(X) Xgant(x) Ran*(X)(r,s),. We wish to show that the canonical map 0 : C.(C; Z,) —
C.(Spec R; Zy) is a quasi-isomorphism.

For every finitely generated R-algebra R’, let Sk denote the image of S in X(R’). Let us
identify the fiber product Spec R Xgpecr Ran“(X) with the prestack whose objects are pairs
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(R',S"), where R’ is a finitely generated R’-algebra and S’ is a nonempty finite subset of X (R’).
Unwinding the definitions, we see that there is a fully faithful embedding

f: €<= Spec R Xgpeck Ran"(X),

whose essential image consist of those pairs (R’, S’) for which S’ contains Sg,. The functor f
admits a left inverse g, given on objects by the formula g(R’, S") = (R/, S’ USg/). We therefore
have a commutative diagram

C(€;Zg) —T = C.(Spec R xspecr Ran™ (X ); Zy) —— O, (€; Zy)

le ; le

C.(Spec R; Zy) C.(Spec R; Zy) C.(Spec R; Zy),

where the upper horizontal composition is the identity map. By a diagram chase, we are reduced
to proving that the map #’ is a quasi-isomorphism. This follows immediately from Proposition
2.3.40 and Theorem 2.4.5. O

3. NONABELIAN POINCARE DUALITY

Let k£ be an algebraically closed field, let X be an algebraic curve over k, and let ¢ be a
prime number which is invertible in k. To every smooth affine group scheme over X, we can
associate a moduli stack Bung(X) of principal G-bundles on X. Our goal in this section is to
prove an f-adic version of Theorem 1.4.13: that is, to articulate a “local-to-global” principle
which controls the structure of the ¢-adic chain complex C.(Bung(X);Z,) (and, by extension,
the structure of the f-adic homology and cohomology of Bung(X)). We begin in §3.1 by
giving a more leisurely exposition of the theory of nonabelian Poincare duality in the setting
of classical topology. In §3.2, we adapt this discussion to the algebraic setting by introducing a
prestack Rang (X) which classifies principal G-bundles trivialized away from a finite subset of X
(Definition 3.2.3). We then formulate our main result: the forgetful map Rang(X) — Bung(X)
induces an isomorphism on ¢-adic homology (Theorem 3.2.9) whenever the generic fiber of G is
semisimple and simply connected.

The remainder of this section is devoted to the proof of Theorem 3.2.9. Roughly speaking,
the idea is to show that the map Rang(X) — Bung(X) has acyclic fibers. For a more detailed
outline of our strategy, we refer the reader to the end of §3.3.

Remark 3.0.1. The material of §3.1 is presented purely for motivation, and is not logically
necessary for our proof of Theorem 3.2.9. Readers suffering from a surfeit of motivation can
safely skip directly to §3.2.

3.1. Motivation: Poincare Duality in Topology. Recall the statement of Poincare duality
for (possibly noncompact) oriented manifolds:

Theorem 3.1.1 (Poincare Duality). Let M be an oriented topological manifold of dimension
n and let A be an abelian group. Then there is a canonical isomorphism
Hy(M; A) = H,,—.(M; A);
here H,(M; A) denotes the compactly supported cohomology of M with coefficients in A.
In this section, we will discuss a generalization of Theorem 3.1.1 to the case of “nonabelian”
coefficients. This result can be regarded as a prototype (in the setting of classical topology) for

the main result of §3. The material here is presented purely for motivation, and may be safely
skipped by the reader who prefers to work entirely in the setting of algebraic geometry. Since
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the rest of the paper is logically independent of these ideas, we will not give any proofs; for a
more detailed discussion, we refer the reader to §HA.5.5.6 (see also [48], [39], and [46] for some
related results.).

3.1.1. Poincare Duality for Abelian Coefficients. Let M be an oriented n-manifold. We let
U(M) denote the partially ordered set of all open subsets of M and Uy(M) the subset of U(M)
consisting of open subsets U which are homeomorphic to Euclidean space R™. For each open
set U € U(M), let C.(U; A) denote the singular chain complex of U, and let C*(U; A) denote
the compactly supported cochain complex of U. Then the constructions

U C.(U; A) U CHU; A)

can be regarded as functors from U(M) to the category Chain of chain complexes of abelian
groups, or to the oco-category Modyz introduced in §2.1. Theorem 3.1.1 is an immediate conse-
quence of the following three facts:

Proposition 3.1.2. The constructions U — C*(U; A) and U — Cy_,(U; A) determine equiv-
alent functors from Uo(M) into Modz.

Proposition 3.1.3. The canonical map
lig C.(U; A) = C(M; A)
UeUo (M)

is an equivalence (here the colimit is computed in the co-category Modz ).

Proposition 3.1.4. The canonical map
lim O3 (Us A) = C(M; A)
UelUo(M)
is an equivalence (here the colimit is computed in the co-category Modz ).
Remark 3.1.5. Proposition 3.1.2 amounts to a local calculation: the compactly supported
cohomology of Euclidean space is given by
Z ifx=
H{(R™ Z) ~ heen
0  otherwise.
HI(R"; A) ~H{(R";Z) ®z A.
The isomorphism H}(R";Z) ~ Z is unique up to a sign, and a choice of isomorphism is
equivalent to the choice of an orientation on the manifold R™.
It follows that if U C M is homeomorphic to R", then the homologies of the chain complexes
CX(U;A) and C.(U; A) are concentrated in a single degree. A choice of orientation of U
determines an isomorphism of abelian groups H? (U; A) ~ Ho(U; A) which lifts to an equivalence

between C(U; A) and C,(U; A) (after applying a suitable shift). An orientation of the manifold
M allows us to choose these equivalences functorially in U.

Remark 3.1.6. Let C be an oco-category which admits colimits and let F : U(M) — C be a
functor. We say that F is a C-valued cosheaf on M if the following condition is satisfied:

() For every open set U C M and every open cover {U,} of U, the canonical map
liy (V) — F(U)
%

is an equivalence in €, where the colimit is taken over all open sets V' C M which are
contained in some U,,.
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Using the fact that M has finite covering dimension and that Ug(M) forms a basis for the
topology of M, one can show that any C-valued cosheaf I determines an equivalence

i F(U) — F(M).
UelUo(M)

Propositions 3.1.3 and 3.1.4 can be deduced from the following more basic facts:

(a) For any topological space M, the construction U + C,(U; A) determines a Modz-valued
cosheaf on M.

(b) For any locally compact topological space M, the construction U — C*(U; A) deter-
mines a Modg-valued cosheaf on M.

Assertions (a) and (b) articulate the idea that homology and compactly supported cohomol-
ogy satisfy excision. For example, if U and V are open subsets of M, then condition (a) implies
that the diagram

C(UNV;A) —— O (U; A)

| |

Cu(V;A) ———=C.(UUV; A)

is a pushout square in Modz, which in turn implies (and is morally equivalent to) the existence
of a long exact Mayer-Vietoris sequence

S H(UNVA) 5 H(U;A) @ H (V; A) 5 Ho(UUV;A) » He ((UNV;A) = -

3.1.2. Poincare Duality for Nonabelian Coefficients. Recall that cohomology is a representable
functor on the homotopy category of spaces. More precisely, for every abelian group A and
every integer n > 0, one can construct a topological space K(A,n) and a cohomology class
n € H*'(K(A,n); A) with the following universal property: for any sufficiently nice space M,
the pullback of 7 induces a bijection

[MvK(Avn)} ~ H"(M; A),

where [M, K(A,n)] denotes the set of homotopy classes of maps from M into K(A,n). The
space K(A,n) is called an Filenberg-MacLane space. It is characterized (up to weak homotopy
equivalence) by the existence of isomorphisms

A ifi=n
0  otherwise.

m K(A,n) ~ {

When n = 1, one can define an Eilenberg-MacLane space K (G, n) even when the group G
is nonabelian. In this case, K(G,1) is called a classifying space of G, and denoted by BG. It
can be constructed as the quotient of a contractible space by a free action of G. This motivates
one possible definition of nonabelian cohomology:

Definition 3.1.7. Let G be a discrete group and let M be a manifold (or any other reasonably
nice topological space). We let HI(M ; G) denote the set of homotopy classes of maps from M
into K(G, 1) = BG.

Definition 3.1.7 has many other formulations: the set H'(M;G) can be identified with the
set of isomorphism classes of G-torsors on M, or (in the case where M is connected) with the
set of conjugacy classes of group homomorphisms m M — G. However, the formulation given
above suggests a much broader notion of nonabelian cohomology:
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Definition 3.1.8. Let Y be a topological space, and let M be a manifold (or any other
sufficiently nice space). Then the cohomology of M with coefficients in 'Y is the set of homotopy
classes of maps from M into Y, which we will denote by [M,Y].

We have the following table of analogies:

Abelian Cohomology Nonabelian Cohomology

Abelian group A Pointed topological space (Y, y)

H"(M; A) [M,Y] = mo Map(M,Y)
C*(M; A) Map(M,Y)
CZ(M; A) Map,(M,Y")
C.(M; A) 277

Here Map(M,Y’) denotes the space of continuous maps from M into Y, and Map . (M,Y")
denotes the subspace consisting of maps which are compactly supported: that is, maps [ :
M — Y such that the set {x € M : f(z) # y} has compact closure (to avoid technicalities,
it is sometimes convenient to view Map(M,Y") and Map,(M,Y) as simplicial sets, rather than
topological spaces; we will ignore the distinction in what follows).

We can now ask if there is any analogue of Poincare duality in the above setting. That is,
if M is a manifold, does the space Map,.(M,Y") of compactly supported maps from M into ¥
admit some sort of “homological” description? By analogy with classical Poincare duality, we
can break this question into two parts:

(a) What does the mapping space Map,.(M,Y) look like when M ~ R"?
(b) Can we recover the mapping space Map,(M,Y) from the mapping spaces Map,(U,Y),
where U ranges over the open disks in M?

Question (a) is easy to address. The space of compactly supported maps from R" into a
pointed space (Y,y) is homotopy equivalent to the space of maps which are supported in the
unit ball of R™: that is, the n-fold based loop space Q™(Y").

To address question (b), we note that the construction U — Map,(U,Y) can be regarded as
a covariant functor of U: any compactly supported map from U into Y can be extended to a
compactly supported map on any open set containing U (by carrying the complement of U to
the base point of Y'). We can regard this construction as a functor from the partially ordered
set U(M) to the oo-category 8 of spaces. We might then ask the following:

Question 3.1.9. Let (Y,y) be a topological space. Is the construction U — Map (U,Y) a
S-valued cosheaf on M7

For example, Question 3.1.9 asks if, for any pair of open sets U,V C M, the diagram of
spaces

Map (UNV)Y) Map,(U,Y)

| l

Map,.(V,Y) Map (UUV)Y)
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is a pushout square in the oco-category 8 (such a diagram of spaces is commonly referred to as a
homotopy pushout square). This is an unreasonable demand: if it were true, then the diagram

7o Map, (U NV,Y) ——— mg Map_(U,Y)

| l

mo Map,.(V,Y) ——— 7y Map (U U V,Y)

would be a pushout square in the ordinary category of sets. In other words, any compactly
supported map from U UV into Y would need to be homotopic (through compactly supported
maps) to a map which is supported either in U or in V. This is generally not true.

To understand why Question 3.1.9 has a negative answer, we should emphasize that the co-
categories § and Modgz have very different behavior. The cosheaf property for the functor U +—
C¥(U; A) implies (and is essentially equivalent to) the existence of Mayer-Vietoris sequences

S HI(UNVA) - H (U A) @ HA(V;A) 5 HE(U UV A) S U NV A) — -

The existence of such a sequence says that any compactly supported cohomology class u €
H'(U UV; A) satisfying the condition §(u) = 0 can be written as a sum u = v’ + «”, where v’
is supported on U and u” is supported on V. Here it is crucial that we can add cohomology
classes (and the cocycles that represent them): there is no reason to expect that we can arrange
that «’ or u” is equal to zero.

In the setting of nonabelian cohomology, there is generally no way to “add” a compactly
supported map v’ : U — Y to a compactly supported map v” : V' — Y to obtain a compactly
supported map from u : U UV — Y. However, there is an obvious exception: if U and V are
disjoint, then there is a canonical homeomorphism Map (U, Y) x Map,.(V,Y) ~ Map (UUV,Y),
which we can think of as a type of “addition”. It turns out that if we take this structure into
account, then we can salvage Proposition 3.1.4.

Theorem 3.1.10 (Nonabelian Poincare Duality for Manifolds). Let M be a manifold of di-
mension n, let Uy (M) denote the collection of all open subsets of M which are homeomorphic
to a disjoint union of finitely many open disks, and let Y be a pointed topological space which
is (n — 1)-connected. Then the canonical map

lim  Map,(U,Y) — Map,(M,Y)
UelU, (M)

is an equivalence in the oco-category 8. In other words, Map.(M,Y) can be realized as the
homotopy colimit of the diagram MUGU () Map, . (U,Y).
1

For a proof, we refer the reader to Theorem HA.5.5.6.6.

Remark 3.1.11. The formation of singular chain complexes T +— C.(T;Z) determines a
functor of co-categories 8§ — Modz which preserves colimits and carries products of spaces
to tensor products in Modz. Consequently, Theorem 3.1.10 implies that the chain complex
Cy(Map,(M,Y); Z) can be realized as a colimit

lim  C,(Map (U, U---UU,,Y);Z) =~ lig Q) C.(Map, (U;, Y); Z),
Ui,...,Upn Ui,...,Upn

where the U; range over all collections of disjoint open disks in M. This expresses the informal
idea that C.(Map.(M,Y);Z) can be obtained as a continuous tensor product of copies of
cochain complex C,(2"Y;Z), indexed by the points of M (or open disks in M).
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Warning 3.1.12. When Y = K(A,m) is an Eilenberg-MacLane space, the homotopy groups
of the mapping space Map,(M,Y") can be identified with the compactly supported cohomology
groups H(M; A). However, Theorem 3.1.10 is perhaps better understood as supplying infor-
mation about the homology groups of the mapping space Map.(M,Y) (see Remark 3.1.11).
Nevertheless, Theorem 3.1.10 can be regarded as a generalization of classical Poincare duality.
More precisely, it can be used to deduce the local-to-global principle articulated by Proposition
3.1.4. To prove this, we first note that the singular chain complex construction X — C,(X;Z)
determines a functor from the oo-category of spaces to the oo-category Modgz. This functor
admits a right adjoint, which we will denote by N, — K(N,). More concretely, this right ad-
joint carries a chain complex of abelian groups N, to the generalized Eilenberg-MacLane space
K (N,), whose homotopy groups are given by

K (N,) ~ H,(N,)

In particular, if N, is quasi-isomorphic to the chain complex consisting of a single abelian
group A concentrated in homological degree n, then K(N,) can be identified with the usual
Eilenberg-MacLane space K(A,n)). More generally, for every manifold M and every integer
m > 0, there is a canonical homotopy equivalence

K(C:™(M; A)) ~ Map,(M, K(A,m)).
To prove Proposition 3.1.4, we wish to show that the composition
g CH(U3A) S lim CHUA) S CH(M; A)
UecUo (M) UeUy (M)

is an equivalence in Modz. Using the additivity of the co-category Modyz, one shows that the
construction (U € Uy (M)) — C*(U; A) is left Kan extension of its restriction to Uy(M), so
that the map ¢ is an equivalence. To prove that 1 is an equivalence, it will suffice to show that
the induced map of spaces

K(y): K( lim  CI™(U; A)) — K(CZT™(M; A)) = Map, (M, K (A, m))
UelU, (M)

is a homotopy equivalence for m > 0. Unwinding the definitions, this map fits into a commu-
tative diagram

lim Map,.(U, K(A,m))

; s+m ([].
im0 K (lim Cxtm(U; A))

—SUeuy (M) ¢

p K(v)
\Mapw, K(4, n?»/

If m > dim(M), then one can show that the map 6 is a homotopy equivalence (in other words,
that passage to the colimit commutes with the functor K), and the map p is a homotopy
equivalence by virtue of Theorem 3.1.10. For more details, we refer the reader to §HA.5.5.6.

Remark 3.1.13. Theorem 3.1.10 provides a convenient mechanism for analyzing the homo-
topy type of the mapping space Map,(M,Y): the partially ordered set U, (M) indexing the
colimit depends only on manifold M, and the individual terms Map_(U,Y) are (noncanoni-
cally) homotopy equivalent to products of finitely many copies of Q"Y' which depends only on
Y.

Remark 3.1.14. The hypothesis that Y be (n — 1)-connected is necessary for Theorem 3.1.10.
For example, if n > 0 and Y is disconnected, then the constant map from a compact manifold
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M to a point 3’ € Y belonging to a different connected component than the base point y € Y
cannot be homotopic to a map which is supported in a union of open disks of M.

On the other hand, suppose that Y is (n — 1)-connected and that M is a compact manifold
which admits a triangulation. Then any continuous map f : M — Y is nullhomotopic on the
(n — 1)-skeleton of M, and therefore homotopic to a map which is support on the interiors of
the n-simplices of M. This implies that the map hﬂUeul(M) Map.(U,Y) — Map.(M,Y) is
surjective on connected components.

Theorem 3.1.10 asserts the existence of a homotopy equivalence

lim  Map,(U,Y) = Map.(M,Y),
UelU, (M)
whose codomain can be viewed as a kind measuring the (compactly supported) nonabelian
cohomology of the manifold M with coefficients in Y. As in the case of classical Poincare

duality, the left hand side can be viewed as a kind of homology. However, it is not the homology
of M itself, but of the Ran space Ran(M).

Theorem 3.1.15 (Nonabelian Poincare Duality). Let M be a topological manifold of dimension
n, let Y be a pointed space which is (n — 1)-connected, and let Ran(M) be defined as in §2.4.
Then there exists an S-valued cosheaf F on the topological space Ran(M) with the following
property: for every collection of disjoint connected open sets Uy,...,Ux C M, we have

FRan(Uy,...,Ux)) ~Map,(U1,Y) x --- x Map, (U, Y).

Theorem 3.1.15 is essentially a reformulation of Theorem 3.1.10. If M is connected, it implies

that we can recover Map,(M,Y) ~ F(M) as a homotopy colimit
lig Map.(U1,Y) x -+ x Map_.(Ug,Y),
Upseos Uy,

where the colimit is taken over all collections of disjoint open disks in M (this follows from the
fact that sets of the form Ran(Uy,...,U) form a basis for the topology of Ran(M)). This is
essentially the same as the colimit which appears in the statement of Theorem 3.1.10 (though
there are a few subtleties; see §HA.5.5.6 for a more detailed discussion).

Remark 3.1.16. The cosheaf F appearing in the statement of Theorem 3.1.15 is not lo-
cally constant. Unwinding the definitions, one can identify the costalk of F at a point § =
{z1,...,2m} € Ran(M) with the product [[, Map.(U;, M), where {U;}1<i<m is a collection of
disjoint open disks around the points {z; }1<i<m. In particular, the costalk of F at S is non-
canonically equivalent to Q"(Y)™: a homotopy type which depends only on the target space
Y, and not on the manifold M.

3.1.3. Heuristic Reformulation. Let f : E — B be any map of topological spaces (not neces-
sarily a fibration). For each open set V C B, let F(V) = f~1(V). Then F can be regarded
as a covariant functor from the partially ordered set of open subsets of B to the oco-category
8. One can show that this construction determines a 8-valued cosheaf on B. Conversely, any
sufficiently nice 8-valued cosheaf F on B arises via this construction (this is true, for example,
if F is constructible with respect to some triangulation of B). We therefore obtain the following
heuristic version of Theorem 3.1.15:

(¥) Let M be an n-manifold and let Y be an (n — 1)-connected pointed space. Then
there should exist a map 7 : E — Ran(M) with the following property: for every
finite collection of disjoint connected open sets Ui,...,Uy C M, the inverse image
f~tRan(Uy,...,Uy) is homotopy equivalent to Map,(U; U---U Uy, Y). In particular,
if M is connected, then E ~ Map,(M,Y).
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Remark 3.1.17. The singular cochain functor T — C*(T;Z) determines a contravariant
functor which carries colimits in 8 to limits in the oco-category Modz. It therefore follows
from Theorem 3.1.15 that if M is an n-manifold and Y is an (n — 1)-connected space, then
there exists a Modz-valued sheaf A on Ran(M) with the property that A(Ran(Uy,...,Up)) ~
C*(I[; Map,.(U;,Y); Z) when the U; are disjoint connected open subsets of M (take A(V) =
C*(F(V);Z)). It : E — Ran(M) is as in (x), then the sheaf A can be described by the formula
AU) = C* (== (U); Z).

If M is connected, then the cochain complex C*(Map,.(M,Y);Z) is given by the global
sections of the sheaf A. One of the main goals of this paper will be to construct an analogue
of the sheaf A in the setting of algebraic geometry (where we replace M by an algebraic curve
and Y by the moduli stack of principal bundles).

3.2. Statement of the Theorem. Fix an algebraically closed field k, a prime number ¢ which
is invertible in k, and an algebraic curve X over k. Let G be an algebraic group over k and let
BGy denote its classifying stack, so that the moduli stack of Gy-bundles on X can be identified
with the moduli stack of maps from X into BGy. Our goal in this section is to formulate an
analogue of Theorem 3.1.10, which asserts that the /-adic cohomology of this moduli stack does
not change if we restrict our attention to maps which are supported on a finite subset of X
(Theorem 3.2.9).
For our applications, it will be convenient to consider a more general situation:

o We replace the algebraic group Gg over k with a smooth affine group scheme G over X,
which we do not assume to be constant (so our result can more properly be regarded
as version of Poincare duality for a non-constant coefficient system).

e We formulate our result not only for G-bundles on X, but also “compactly supported”
G-bundles on nonempty open subsets U C X (which we take to mean G-bundles on X
which are trivialized on some divisor with support X — U).

We begin by introducing some notation.

Definition 3.2.1. Let G be a smooth affine group scheme over X, and let D C X be an
effective divisor. For every finitely generated k-algebra R, we let D denote the fiber product
D Xspeck Spec R, which we regard as an effective divisor in the relative curve Xr. We define a
category Bung (X, D) as follows:
e The objects of Bung (X, D) are triples (R, P, y) where R is a finitely generated k-algebra,
P is a G-bundle on X, and + is a trivialization of P |p,.
e A morphism from (R, P,v) to (R',P?',7) in Bung (X, D) consists of a k-algebra homo-
morphism R — R’ together with an isomorphism of G-bundles P x x, Xp/ ~ P" which
carries v to v'.
The construction (R, P,~) — R determines a coCartesian fibration of categories Bung (X, D) —
Ringy,, which exhibits Bung (X, D) as a prestack. We will refer to Bung (X, D) as the moduli
stack of G-bundles on X with a trivialization along D.

Remark 3.2.2. In the situation of Definition 3.2.1, the prestack Bung(X, D) is a smooth
algebraic stack over k (in particular, it satisfies descent for the fppf topology). In the special
case where D is empty, Bung (X, D) is isomorphic to the moduli stack Bung(X) introduced in
Definition 2.3.2.

We next introduce the Beilinson-Drinfeld Grassmannian Rang(X) associated to a group
scheme G over X. Roughly speaking, Rang(X) parametrizes G-bundles on X which are
equipped with a trivialization outside of a (specified) finite subset of X. We begin by for-
mulating a more precise definition:
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Definition 3.2.3. Let G be a smooth affine group scheme over X. We define a category
Rang,(X) as follows:

e The objects of Rang,(X) are quadruples (R,P,S,v) where R is a finitely generated
k-algebra, P is a G-bundle on the relative curve Xr = Spec R Xgpeck X, S is a finite
subset of X(R), and + is a trivialization of P on the open set Xr — |S| determined by
S.

e A morphism from (R,?,S,v) to (R/,%,S,7') in Ran’(X) consists of a k-algebra
homomorphism ¢ : R — R’ which carries S C X(R) into S" C X(R), together with an
isomorphism of G-bundles Xg x x,, P ~ P’ which carries 7 to '

The construction (R,P,S,v) + (R,S) determines a forgetful functor § : Ran5(X) —
Ran®(X). It follows immediately from the definitions that ¢ is a coCartesian fibration, so
that Rang(X ) can be regarded as a prestack and 6 as a morphism of prestacks.

We define two more prestacks by the formulae

Rang(X) = Ran(X) Xgan+(x) Rang,(X) Rang(X) = Ran"(X) Xgan+(x) Rang(X).

Remark 3.2.4. Each of the prestacks introduced in Definition 3.2.3 can be described informally
as a “moduli space for G-bundles on X which are trivialized away from a finite set S C U”,
where U is a nonempty open subset of X. They differ slightly in details of implementation:
whether the set S is given as an abstract set or as a subset of U, and whether we require maps
between our finite sets to be surjections.

Remark 3.2.5. In the situation of Definition 3.2.3, we need not require the algebraic curve
X to be complete. In particular, for every nonempty open subset U C X, we can consider the
prestack Rang(U ), which is equivalent to the fiber product

Rang,(X) X Ran* (X) Ran™ (U).

That is, we can identify Rang(U ) with the full subcategory of RanE(X ) spanned by those
quadruples (R, P, S,v) where S is contained in the subset U(R) C X (R) (similar remarks apply
to the variants Rang (U) and Rang(U)).

Example 3.2.6. Suppose that the group scheme G is trivial. Then the projection maps
Rang(U) — Ran(U) Rang,(U) — Ran“(U) Rang,(U) — Ran(U)
are equivalences of prestacks.

Remark 3.2.7. The definition of the Beilinson-Drinfeld Grassmannian Rang(X) is local with
respect to the étale topology. More precisely, suppose we are given an étale morphism f: U —
V between smooth (not necessarily complete) algebraic curves over k. Let Gy be a smooth
affine group scheme over V and let Gy = U Xy Gy. Suppose that R is a finitely generated
k-algebra and S is a finite subset of U(R) having image f(S) in V(R) for which the map of
divisors |S| — |f(S)] is bijective. Then the commutative diagram
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determines a pullback square of categories of G-torsors

Torsg, (Ug — |9|) Torsg,, (Ur)

| T

Torsg, (Xr — | f(S)|) =<—— Torsq(Xr)

(see Notation A.1.3). Tt follows that we have a canonical equivalence of prestacks
Rang,, (V) XRan(v) Ran’(V) = Rang,, (V) Xpan(v) Ran'(V),

where Ran’(V) denotes the full subcategory of Ran(V) spanned by those triples (R, S, ) for
which the map of divisors |u(S)| — |f(u(S))] is bijective. In particular, we have a canonical
equivalence

Rang,, (V) Xgan(v) V =~ Rang,, (U) Xganw) V.-

Since the forgetful functor 6 : Ranj(U) — Ran™ (U) is a coCartesian fibration, Proposition
2.5.11 and Theorem 2.5.19 immediately yield the following result:

Proposition 3.2.8. Let G be a smooth affine group scheme over X and let U C X be a
nonempty open subset. Then the maps

Rang(U) — Rang(U) — Rang;(U)
are universal homology equivalences.

We can think of the prestack Rang (U) as parametrizing G-bundles on X which are trivialized
away from a finite subset S C U, and are therefore “supported” on a union of small (formal)
disks around the points of S. Heuristically, this is an algebro-geometric incarnation of the
homotopy colimit

lim Map,.(V1,BG) x - -+ x Map_.(Vi, BG)
Vi,..,V},CU
appearing in Proposition 3.1.10 (at least in the case where G is a constant group). We have
the following table of analogies:

Abelian Cohomology  Nonabelian Cohomology Algebraic Geometry
Manifold M Manifold M Open Curve U = X — D
Abelian group A Pointed space (Y, y) G (or BG)
C*(M; A) Map, (M, Y) Bung (X, D)
Open disk V C M Open disk V C M Completion of U at x € U
Cx(V; A) Map,.(V,Y) G-bundles trivialized on X — {z}
Cu(M; A) hﬂvh__yk [TMap,.(V;,Y) Rang(U)

Note that if D C X is an effective divisor, we have an evident forgetful functor

Rang (X — D)* — Bung (X, D),
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given on objects by the formula (R,P?,S,7y) — (R,P,v|p,). Composing with the forgetful
functor Rang (X — D) — Rang(X — D)™, we obtain a map Rang(X — D) — Bung (X, D). We
can now formulate the first main result of this paper:

Theorem 3.2.9 (Nonabelian Poincare Duality). Let G be a smooth affine group scheme over
X, let D C X be an effective divisor, and suppose that the generic fiber of G is semisimple
and simply connected. Then the forgetful functor p : Rang(X — D) — Bung (X, D) induces an
isomorphism

H, (Rang(X - D), Zg) — H, (Bung(X, D), Zg)

Remark 3.2.10. The hypothesis that the generic fiber of G be simply connected can be
considerably weakened. Our proof depends only on the fact that the character lattice of the
geometric generic fiber of G is a permutation representation of the Galois group of the fraction
field of X. This is also true if the generic fiber of G is split reductive or has trivial center.

Remark 3.2.11. In the special case where the group scheme G is trivial, Theorem 3.2.9 reduces
to Theorem 2.4.5.

Taking the divisor D to be empty in Theorem 3.2.9, we obtain the following:

Corollary 3.2.12. Let G be a smooth affine group scheme over X suppose that the generic fiber
of G is semisimple and simply connected. Then the forgetful functor p : Rang(X) — Bung(X)
induces an isomorphism

H. (Rang(X); Z¢) — H.(Bung(X); Zy).
We will deduce Theorem 3.2.9 from the following slightly stronger result:

Theorem 3.2.13. Let G be a smooth affine group scheme over X whose generic fiber is
semisimple and simply connected and let D C X be an effective divisor. Then the forgetful
functor
Rang,(X — D) — Bung(X, D)
18 a universal homology equivalence.
Remark 3.2.14. The projection map 6 : Rang (X —D) — Bung(X, D) factors as a composition
Rang(X — D) — Ranf,(X — D) — Bung(X, D).

Consequently, it follows from Theorem 3.2.13 (together with Proposition 3.2.8) that 6 is a
universal homology equivalence. Similarly, the map 6% : Rang,(X) — Bung(X, D) is a universal
homology equivalence.

3.3. Outline of Proof. Throughout this section, we fix an algebraically closed field &, a prime
number ¢ which is invertible in k, an algebraic curve X over k, and an effective divisor D C X.

Because Bung (X, D) is a prestack in groupoids, Theorem 3.2.13 is equivalent to the assertion
that for every map 7 : Spec R — Bung (X, D), the projection map

7 : Spec R X Bung (X,D) Rang(X — D) — SpecR

induces an isomorphism on Z,-homology (Corollary 2.5.12). We can identify the map n with
a pair (P,vp), where P is a G-bundle on the curve Xg, and 7y is a trivialization of P on the
divisor Dg. Let us denote the domain of the projection map 7 by Sect p(P). Roughly speaking,
we can think of Sectp(P) as a moduli space for rational trivializations of P, which are defined
and equal to vy on the divisor Dr. Unwinding the definitions, we can describe the prestack
Sectp(P) as follows:
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e The objects of Sect p(P) are triples (A4, S,v), where A is a finitely generated R-algebra,
S is a finite subset of X (A) such that |S| N D4 = (), and « is a map of schemes which
fits into a commutative diagram

XASL>1)
Xr

whose restriction to D4 is given by ~q.

e A morphism from (A4, S,v) to (4’,5’,7') is an R-algebra homomorphism ¢ : A — A’
having the property that S’ contains the image of S under the induced map X(A) —
X (A"), and the diagram of schemes

XA/—|S/ 4>XA—|S‘

~,

Using Corollary 2.5.12; we can reformulate Theorem 3.2.13 as follows:

commutes.

Theorem 3.3.1 (Acyclicity of Spaces of Rational Sections). Let G be a smooth affine group
scheme over X whose generic fiber is semisimple and simply connected, let R be a finitely
generated k-algebra, let P be a G-bundle on Xg, and let o be a trivialization of P along the
divisor Dr C Xgr. Then the canonical map

H.(Sectp(P); Z;) — H.(Spec R; Zy)
18 an isomorphism.

The remainder of §3 is devoted to the proof of Theorem 3.3.1. Our strategy is to first treat
the following special case, which we will discuss in §3.4:

Theorem 3.3.2. Let G be a smooth affine group scheme over X whose generic fiber is semisim-
ple and simply connected and let vo : D — G be the restriction to D of the identity section of
G. Then the canonical map

H.(Sectp(G);Zy) — H.(Speck; Zy) ~ Zy
18 an tsomorphism.

Example 3.3.3. Consider the case where D = ) and G is the constant group scheme associated
to the multiplicative group Gy, (strictly speaking, this is not a special case of Theorem 3.3.2,
because the multiplicative group Gy, is not semisimple). In this case, we can think of Sectp(G)
as a parameter space for rational maps from the algebraic curve X into G,,,. We can therefore
embed Sectp(G) into a larger prestack Sectp(G), which parametrizes rational maps from X into
the affine line A*. The prestack Sectp(G) behaves like an affine space of infinite dimension (it
is an algebro-geometric incarnation of the function field Kx of the curve X), and the prestack
Sectp(G) behaves as if it were obtained from Sectp(G) by removing the origin. From this
heuristic description, it is natural to expect that Sectp(G) and Sectp(G) are both acyclic with
respect to Zy-homology.
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In order to reduce Theorem 3.3.1 to Theorem 3.3.2, the main obstacle we need to overcome
is that a G-bundle P on a relative curve Xp need not be trivial. However, since we are
only interested in studying rational sections, the following weaker condition can serve as a
replacement:

Definition 3.3.4. Let R be a finitely generated k-algebra and let U be an open subset of Xg.
We will say that U is full if the composite map U — X — Spec R is surjective. In other
words, U is full if it contains the generic point of each fiber of the map Xr — Spec R.

Let D C X be an effective divisor, let P be a G-bundle on Xg, and let vy be a trivialization
of P along the divisor Dr. We say that vy extends to a rational trivialization of P if there exists
a full open subset U C X which contains Dg, and a trivialization of P |y which extends g.

Remark 3.3.5. If the divisor D C X has positive degree, then any open set U C X which
contains D is automatically full.

The second main ingredient in our proof of Theorem 3.3.1 is the following result, which we
will prove in §3.7

Theorem 3.3.6 (Existence of Rational Trivializations). Let R be a finitely generated k-algebra,
and let P be a G-bundle on Xg equipped with a trivialization g on Dgr. Then, after passing to
an étale covering of Spec R, we can arrange that vy extends to a rational trivialization of P.

We devote the remainder of this section to the deduction of Theorem 3.3.1 from Theorems
3.3.2 and 3.3.6. The main idea is that the classification of rational maps depends only on the
generic behavior of the G-bundle P.

Definition 3.3.7. Let R be a finitely generated k-algebra, let P be a G-bundle on X g equipped
with a trivialization 7o over the relative divisor D C Xg. Suppose we are given a finite subset
So € X(R) such that |So| N Dr = 0.

We let Sectl%s0 (P) denote the full subcategory of Sectp(P) spanned by those triples (A4, .5, v)
for which S contains the image of the map Sy C X (R) — X (A).

In the situation of Definition 3.3.7, the inclusion functor Sect%s °(P) — Sectp(P) admits a
left adjoint (in the 2-category of prestacks), given on objects by (A4, S,v) — (A,S’,v), where
S’ is the union of S with the image of Sy, and + is the restriction of 7. Applying Remark
2.3.32, we obtain the following:

Lemma 3.3.8. In the situation of Definition 3.3.7, the inclusion Sect=°(P) — Sect(Pg) in-
duces an equivalence

C.(Sect2 (P); Z¢) — C.(Sectp(P); Ze)
in Modg, .

Proof of Theorem 3.3.1. Let R be a finitely generated k-algebra and let P be a G-bundle on
Xgr equipped with a trivialization 9 on the relative divisor Dr. We will show that the map
Sectp(P) — Spec R is a universal homology equivalence. By virtue of Proposition 2.5.15, this
assertion can be tested locally with respect to the fppf topology on Spec R. We may therefore
use Theorem 3.3.6 and Corollary A.2.10 to reduce to the case where there exists a finite subset
S C X(R) such that [S| N Dr = 0 and 7o extends to a trivialization v of P |x,_|g/. Then v
determines an equivalence of prestacks Sect%s(ﬂ’) o~ Sect%S(G x x Xgr) (where the projection
map G Xx Xr — Xpg is equipped with the unit section over D). Using Lemma 3.3.8, we can
replace P by the trivial G-bundle G x x X (and 7o by its tautological section). In this case, P
and 7o are defined over k. We may therefore assume without loss of generality that R = k, in
which case the desired result follows from Theorem 3.3.2 (together with Example 2.5.13). O
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3.4. Proof of Theorem 3.3.2. Throughout this section, we fix an algebraically closed field
k, a prime number ¢ which is invertible in k, and an algebraic curve X over k.

Suppose that D C X is an effective divisor, and that G is a smooth affine group scheme
over X whose generic fiber is semisimple and simply connected. Our goal is to show that that
the projection map Sectp(G) — Spec k induces an isomorphism on ¢-adic homology (where the
prestack Sectp(G) is defined using the map D — G given by the identity section). To prove
this, we will exploit the fact that the generic fiber of G is automatically quasi-split, so that
there is a close relationship between sections of the map G — X and equivariant maps from
some ramified cover X of X into an algebraic group which is split over k. To formulate this
relationship more precisely, it will be convenient to introduce a bit of notation.

Notation 3.4.1. Let X be an algebraic curve over k and let I be a finite group with a faithful
(but not necessarily free) action on X for which the quotient X /T is isomorphic to X (here the
quotient is formed in the category of k-schemes). Let D C X be an effective divisor, and let D
denote the fiber product D x x X (which we regard as an effective divisor in X ).

For every finitely generated k-algebra R, we let X r denote the fiber product Spec R X gpec k)A(: ,
and Xy the quotient )?R/F ~ Spec R Xgpeck X. Let D = D Xgpeck Spec R and 53 =
D X Spec k Opec L.

Definition 3.4.2. Suppose we are given a finitely generated k-algebra R, a k-scheme Y
equipped with an action of I', and a I'-equivariant map « : ¥ — X r equipped with a I'-
equivariant section ap : BR — Y over the relative divisor D r C X R.
We define a category Sectr p(Y) as follows:
e The objects of Sectr p(Y') are triples (A4, S, o) where A is a finitely generated R-algebra,
S is a finite subset of X(A) such that |S|N D4 =0, and o : X xx (X4 —|S]) = Y is
a I'-equivariant map of X r-schemes whose restriction to D r coincides with «q.
e A morphism from (4, S, ) to (4’,5",¢’) in Sectr, p(Y) is an R-algebra homomorphism
A — A’ which carries S C X (A) to a subset of S C X(A’), and for which the diagram

X xx (Xa —|S]) X xx (Xa—18])

R

commutes.

In the special case where D = (), we will denote Sectr p(Y) by Sectr(Y). If, in addition, the
group I is trivial, we will denote Sectr(Y") by Sect(Y).

Remark 3.4.3. In the special case where the group I' is trivial and P — Xp is a bundle
for some group scheme G on X, the prestack Sectr p(P) agrees with the prestack Sectp(?P)
introduced in §3.2.

Remark 3.4.4. In the situation of Notation 3.4.2, the construction (4, S, a) — A determines
a coCartesian fibration Sectr p(Y) — Ringy, so that we can regard Sectr p(Y') as a prestack.
We will refer to Sectr p(Y') as the prestack of I'-equivariant rational sections of m extending .

The following result is the main technical ingredient in our proof of Theorem 3.3.2:

Proposition 3.4.5. Let )~(, D, and T be as in Notation 3.4.1. Let G be a simply connected
semisimple algebraic group over the field k, and suppose that we are given an action of I' on
G which preserves a pinning (see §A.4), and consider the constant I'-equivariant map D — G
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given by the identity element of G. Then the canonical map Sectp,D()N( Xgpeck G) — Speck is
a universal homology equivalence.

The proof of Proposition 3.4.5 will be given in §3.5. The remainder of this section is devoted
to the deduction of Theorem 3.3.2 from Proposition 3.4.5. We begin by introducing some
notation.

Notation 3.4.6. Let H be a smooth affine group scheme over X. For each integer n > 0, let
H(—nD) denote the X-scheme obtained from H by dilitation of H at the divisor nD along its
identity section (that is, the scheme obtained by iteratively taking the (n);)th order dilitation
at the points z;, if D = > A\;x;); see §A.3. Then each H(—nD) is a smooth affine group scheme
over X, equipped with a map H(—nD) — H which is an isomorphism over the open subset
X — D C X. Moreover, if n > 0, then the fiber of H(—nD) at a point € D is a vector group
(that is, it is isomorphic to a product of finitely many copies of the additive group).

Our proof of Theorem 3.3.2 depends on the following:

Lemma 3.4.7. Let n be a nonnegative integer. Then:

(a) If the canonical map ¢ : Sectp(G(—nD)) — Sectp(G) induces an isomorphism
Ho(Sectp(G(—nD)); Z;) — Ho(Sectp(G); Zy),

then it induces isomorphisms H;(Sectp(G(—nD)); Zy) — H;(Sectp(G); Zg) for all i >
0.

(b) If the map Hy(Sectp(G(—nD)); Zy) — Ho(Sectp(G); Zy) factors through the augmenta-
tion € : Ho(Sectp(G(—nD)); Z¢) — Ho(Speck; Zy) ~ Zy, then Ho(Sectp(G); Zy) ~ Zy.

Proof of Theorem 3.3.2. Let G be a smooth affine group scheme over X whose generic fiber
is semisimple and simply connected. Since the ground field k is algebraically closed, Tsen’s
theorem implies that the function field Kx has dimension 1 (that is, every finite extension of
Kx has trivial Brauer group). It follows that the generic fiber Gy = Spec Kx X x G is quasi-
split (see [10]). Let G’ denote the split form of Gy, regarded as a semisimple algebraic group
over k. Since G is quasi-split, we can choose a finite Galois extension Kx of Kx with Galois
group I' = Gal(f( x/Kx), an action of T on G’ which preserves a pinning, and a I'-equivariant
isomorphism
ug : Spec K x Xspeck G = Spec Kx x x G.

The field Ky is the function field of an algebraic curve X over k, which comes equipped with
a faithful action of I and an isomorphism )?/F ~X. Let H=X Xspeck G, which we regard
as ['-equivariant group scheme over X. For each open subset U C X, let U denote the inverse
image of U in X. Choosing U sufficiently small, we may assume that I' acts freely on U and
that ug extends to a I'-equivariant isomorphism

u:ﬁx}?H:(}xxG.

If the divisor D were contained in U (this is automatic, for example, if the divisor D is empty),
then the desired result would easily from Proposition 3.4.5. To handle the general case, we will
need to work a bit harder. Shrinking U if necessary, we may assume that U = X — (D U D’),
where D’ C X is an effective divisor which does not intersect D. Let D and D’ denote the

(scheme-theoretic) inverse images of D and D’ in X, respectively. Using Proposition A.3.11,
we can choose an integer n > 0 with the property that the map

UxgzH(-nD) = UxzHSUxxG
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extends (uniquely) to a map of (X — D')-schemes
7: (X —D')xg H(-nD) = (X = D') xx G.
Similarly, we can choose an integer m > n such that the inverse u~! extends to a map
7: (X = D') xx G(=mD) — (X — D') x ¢ H(—nD).

Note that w and v are I'-equivariant homomorphisms between group schemes over X-D (since
this can be checked over the dense open subscheme U C X — D’).
Note that the natural map Sectp(G(—mD)) — Sectp(G) factors through

Sectp, p(H(—nD)) ~ Sectr, (n4+1)p (H)
(see Remark A.3.10). Proposition 3.4.5 implies that the projection map
Sectr, (n+1)p(H) — Speck
induces an isomorphism on homology, so that the map
Ho(Sectp(G(—mD);Z¢) — Ho(Sectp(G); Ze)

factors through Ho(Speck;Zy) ~ Z,. Applying (b) of Lemma 3.4.7, we deduce that that
Sectp(G) is connected: that is, we have Hy(Sectp(G); Zs) ~ Z,. Applying the same argument
to G(—mD), we obtain Hg(Sectp(G(—mD))) ~ Zy, so that the map Sectp(G(—mD)) —
Sectp(G) induces an isomorphism on degree zero homology. Combining this with part (a) of
Lemma 3.4.7, we conclude that the natural map

H..(Sectp(G(—mD)); Z;) — H.(Sectp(G; Zy)

is an isomorphism. It follows that the commutative diagram

H.(Sectp(G(—mD)) — H,(Sectp, p(H(—nD)); Zy) — H.(Sectp(G); Zy)

& : -
H, (Spec k; Zg) ———%— > H, (Spec k; Zy) ———<—~ H, (Spec k; Zy).
exhibits ¢ as a retract of ¢'. Since ¢’ is an isomorphism(Proposition 3.4.5), it follows that ¢

is an isomorphism, so that the projection map Sectp(G) — Speck induces an isomorphism on
¢-adic homology and is therefore a universal homology equivalence (Example 2.5.13). (|

The proof of Lemma 3.4.7 will require a bit more preparation.

Notation 3.4.8. Let H be a smooth affine group scheme over X and let D C X be a divisor.
For every finitely generated k-algebra A and each finite subset S C X(A) with |S|N D4 = 0,
let F(S,A) denote the set of all X-scheme morphisms v : X4 — |S| — H which vanish on the
divisor D. Let F(A) denote the direct limit lim  F (S, A), where S ranges over all finite subsets
of X(A) such that [S|N Dy = 0. We let Sect?,(H) denote the prestack in sets determined by
the functor F' (so that the objects of Secty,(H) are given by pairs (A4,n) where A € Ring,, and
n € F(A)). Note that:

e We can regard F as a functor from Ring;, to the category of groups, so that Sect?,(H)
is a group-valued prestack in the sense of Remark 2.3.41.

e There is an evident forgetful functor Sectp(H) — Sect?,(H), given on objects by
(A,S,v) — (A,~). This functor is right cofinal, and therefore induces an equivalence
C.(Sectp(H); Zg) ~ C(Secth, (H); Zy).
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e Let n > 0 be an integer, and let H,p denote the group scheme given by the Weil
restriction of nD X x H along the finite flat map nD — Speck. Then restriction to
nD yields a map of group-valued prestacks Sect?,(H) — H,p, and the composite map
Sect},(H) — H,p — Hp vanishes.

Remark 3.4.9. The prestack Sect?,(H) can be regarded as an alternate version of Sectp(H)
which is slightly more convenient for some purposes (for example, it is a prestack in sets).

Lemma 3.4.10. For each integer n > 0, the restriction map
Sect}, (G) — ker(Gnp — Gp)
becomes a surjection after sheafification with respect to the fppf topology.

Remark 3.4.11. Lemma 3.4.10 implies in particular that the sequence
Sect%(G) — G,p — Gp

is exact at the level of k-valued points. This can be proven by a more elementary argument: it
suffices to show that any section of G over nD can be extended to a section of G over an open
subset of X, which is a special case of Lemma 3.9.7.

Proof of Lemma 8.4.7, assuming Lemma 3.4.10. Note that we have a commutative diagram

Sectp(G(—nD)) —— Sectp(QG)

| |

Sect}, (G(—nD)) LA Sect?, (G),
where the vertical maps induce isomorphisms on homology (see Notation 3.4.8). Note that
we can regard @ as an inclusion between group-valued prestacks, let € denote the quotient of
Sect?,(G) by the action of Sect?,(G(—nD)). Then restriction of germs defines fully faithful
embedding of prestacks 6 : € — ker(G,p — Gp), and Lemma 3.4.10 (together with Remark
A.3.10) shows that 6 becomes an equivalence after sheafification with respect to the fppf topol-
ogy. Since G is smooth, the kernel ker(G,,p — G p) is isomorphic to a finite extension of vector
groups and is therefore isomorphic (in the category of k-schemes) to an affine space A Tt
follows that
Z, ifx=0
H(CZ)~ 70 HFT0
0 otherwise.
Assertions (a) and (b) now follows immediately from the corresponding assertions of Corollary
2.3.42. O

Proof of Lemma 8.4.10. Let H = G(—D) and let Hy be the generic fiber of H. Since Kx has
dimension 1, the group Hj is quasi-split. We may therefore choose a pair of Borel subgroups
B_, By C Gg which are in general position (so that the intersection B_N B is a maximal torus
in Hy). Let U_ and U, denote the unipotent radicals of B_ and By, and let Co = U_TU,
denote the associated big cell (which we regard as an open subset of Gy).

Since Hy is simply connected, the maximal torus 7T is a product of induced tori and is
therefore isomorphic (as a Kx-scheme) to an open subset of an affine space. Similarly, the
unipotent groups U_ and U, admit finite filtrations whose successive quotients are vector
groups, and are therefore isomorphic (as K x-schemes) to affine spaces. We may therefore
choose an open immersion j : Cy — A? Xspeck Opec K x, where d is the dimension of Gy. By
a direct limit argument, we can choose a dense open subset V' C X, an affine open subset
C C H xx V with generic fiber Cy, and an open immersion j : C' < A¢ XspeckV extending j.
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Shrinking V' if necessary, we may assume that C contains the identity section of H x x V and
that V = X — (DUD’), where D’ is a nonempty effective divisor in X which does not intersect
D.

Enlarging D’ if necessary, we may further assume that D’ can be written as the vanishing
locus of a regular function ¢ on X — D. For each integer g, let j, denote the composition of j
with the open immersion

A% Xgpee k(X — (DUD")) = A Xgpee k(X — D)

(yla - Yd, Z‘) — ((b(x)th sy ¢(x)qyda ZC)
Form a pushout diagram

C— > Hxx (X-D)

Ad xSpeck(X - D) C(Q)

Then C(q) is an X-scheme which is not necessarily separated. However, the scheme C(q) admits
a covering by two open affine subsets (the images of H x x (X — D) and A% Xgpee (X — D))
with affine intersection (by virtue of our assumption that C is affine), so that the diagonal
map C(q) — C(¢) Xspeck C(q) is affine. It follows that the Weil restriction of C(gq) along
the projection map X — Speck is representable by an algebraic space Y (¢) which is locally
of finite type over k (see, for example, Theorem SAG.5.4.3.1). Moreover, the unit section
of H xx (X — D’') extends to a section s, of the projection map C(¢) — X, and therefore
determines a k-valued point y, of Y (g).

Note that each C(q) is a smooth X-scheme. Let T¢ (), x denote the relative tangent bundle of
C(q) over X and let &, denote the vector bundle on X obtained by pullback of T¢(4), x along s,.
Every section of the map C'(¢) — X determines a map from a formal neighborhood of D into the
group scheme H; this observation determines a map of algebraic spaces p, : Y (q) = H(—1)p
for each integer n > 0. Using obstruction theory, one sees that s, belongs to the smooth
locus of p, provided that the cohomology group H'(X; €,(—(n —1)D)) vanishes. Note that the
vector bundles &, are related to one another by the formula €,41 = &,(D’), so that we have
H'(X;&,(—(n—1)D)) provided that q is sufficiently large (compared with n). We may therefore
choose ¢ > 0 so that s, belongs to the smooth locus of the map p,. It follows that there exists
an étale map u : Spec R — H(,,_1)p whose image contains the identity element of H,_1)p such
that u factors through p,. By definition, u classifies a map «’ : (n —1)D x x Spec R — H. The
assumption that u factors through p, guarantees that u’ extends to a map @' : Xp — C(q).
The inverse image @'~ ' (H xx (X — D)) C Xg is an open subset containing the divisor Dg.
Using Corollary A.2.10, we can choose an fppf covering Spec R’ — Spec R and a finite subset
S C X(R') such that [S|N Dr = 0 and @[ x,,_|g| factors through H xx (X — D'). Tt follows
that the induced map v : Spec R" — Hy,,_1)p factors through the restriction map

r: Sect],(G) — ker(G,p — Gp) ~ Hey—1)p.

Let W C H,_1)p be the image of the map . Then W is a nonempty open subset of
H,—1)p, and 7 determines a faithfully flat surjection Spec R" — W. Note that the fibers H,
are vector groups for x € D, so that H(,_1)p is a finite extension of vector groups and therefore
connected. It follows that H(,_1)p is equal to the union of all translates of W by the elements
of W(k).

Let Z C H(,—1)p be the sheafification (with respect to the fppf topology) of the essential
image of the map r. Then Z contains W. Since Since r is a group homomorphism, Z is a
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subgroup of H(,_1)p, and therefore contains every translate of W by a point of W (k). It
follows that Z = H(_1)p, as desired. O

3.5. Equivariant Sections. Throughout this section, we let k£ be an algebraically closed field,
£ a prime number which is invertible in &, X an algebraic curve over k which is equipped with a
faithful (but not necessarily free) action of a finite group I'. Let X = X /T denote the quotient
of X by the action of T' (formed in the category of k-schemes), let D C X be an effective divisor,
and let D denote its inverse image in X.

Our ultimate goal in this section is to give the proof of Proposition 3.4.5, which asserts
the acyclicity of the prestack of I'-equivariant rational maps from X into a simply connected
semisimple algebraic group G over k (on which I' acts by pinned automorphisms). The basic
strategy is to compare the space of rational maps into G with the space of rational maps into
the open subset of GG given by the “big cell” of the Bruhat decomposition.

Notation 3.5.1. Let R be a finitely generated k-algebra, let Y be a quasi-projective k-scheme
equipped with an action of I" and a I'-equivariant map ¥ — X Rr, and let U C Y be a I'-invariant
open subscheme. We let Sectr p(U C Y') denote the full subcategory of Sectr p(Y’) spanned
by those triples (4, S, a) for which the map a=}(U) C X xx X4 — Spec A is surjective. Then
Sectr p(U CY) inherits the structure of a prestack.

Remark 3.5.2. In the situation of Notation 3.4.2, suppose that U C Y is a I'-invariant open
set which contains the image of ag. If the divisor D is nonempty, then we have Sectr p(U C
Y) = SeCtp,D(Y).

Proposition 3.5.3. Let R be a finitely generated k-algebra, let Y be a scheme with an action
of I' equipped with a I'-equivariant map 7 :Y — )?R, and let ag : ER — Y be a I'-equivariant
section of m over the relative divisor Dr C Xg. Let U C Y be a D-invariant open subscheme
which contains the image of ag. Then the canonical map Sectr p(U) — Sectr p(U CY) is a
universal homology equivalence.

Remark 3.5.4. In the situation of Proposition 3.5.3, suppose that we are given a I'-equivariant
open embedding U < Y’, where Y is another X g-scheme equipped with an action of I". Then
the inclusions

Sectp’D(U - Y) — Sectp,D(U) — Sectr,D(U - Y/)
are universal homology equivalences. We will invoke this principle repeatedly to “simplify” the
codomains of our rational maps.

Proof of Proposition 3.5.3. Fix an object C' = (A, S, o) of the category Sectr p(U C Y) and
let € denote the fiber product

Sectr,p(U) Xsectr p(wcy) Sectr p(U CY)¢y.

Let K be the image of a~1(Y — U) under the projection map )N(A — X 4. Since the map
a~Y(U) — Spec A is surjective, K has finite intersection with each fiber of the map X —
Spec A. Since aq factors through U, the intersection K N D4 is empty.

We wish to prove that the canonical map C.(C;Z;) — C.(Spec A;Z,) is an equivalence.
This assertion can be tested locally with respect to the fppf topology on Spec A (Proposition
2.5.15). We may therefore apply Corollary A.2.10 to reduce to the case where there exists a
finite subset Ty C X (A) such that K C |Tp| and Da N [To| = 0.

Unwinding the definitions, we see that C can be identified with the category whose objects
are pairs (B,T), where B is a finitely generated A-algebra and T is a finite subset of X (B)
satisfying the following condition:
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(*) The set T contains the image of S C X (A), the divisor |T'| contains the inverse image
of K, and |[T|N D4 = 0.

Let €y denote the full subcategory of € spanned by those pairs (B,T) where T contains the
image of Tp € X (A). Note that the inclusion ¢ : €y < € admits a left adjoint (in the 2-category
of prestacks) given on objects by (B,T) — (B,T"), where T" is the union of T' with the image of
To. It follows that ¢ induces an isomorphism H. (Co; Z,) — H.(C; Z;). We are therefore reduced
to proving that the canonical map H,(Co; Z,) — H.(Spec A4; Z,) is isomorphism. This is clear,
since the category Cy contains (A4,S UTp) as an initial object. O

Corollary 3.5.5. Let R be a finitely generated k-algebra, let Y be a scheme with an action of T
equipped with a I'-equivariant map w:Y — )?R, and let ag : BR — Y be aI'-equivariant section
of m over the relative divisor BR C )?R- Suppose that ag factors through a I'-invariant open
subset U C Y. If D is nonempty, then the inclusion Sectr p(U) — Sectr p(Y) is a universal
homology equivalence.

Proof. Combine Remark 3.5.2 with Proposition 3.5.3. O

Proof of Proposition 3.4.5 when D # (). Let G be an algebraic group over k which is semisimple,
simply connected, and equipped with an action of I' which preserves a pinning (B, T, {¢a})-
Let B’ be the unique Borel subgroup of G which contains T" and is in general position with
respect to B. Let U and U’ denote the unipotent radicals of B and B’, respectively, and set
V =UTU’' C G. Then V is a I-invariant open subset of G which contains the image of the
map «g. By virtue of Corollary 3.5.5, the inclusion

SeCtnD(X XSpec k V) — SeCtRD(X XSpec k G)

is a universal homology equivalence. It will therefore suffice to show that the projection map
Sectr. p(X Xgpeck V) — Speck induces an isomorphism on Z,-homology.

Using the Bruhat decomposition, we can identify V' with the product U Xspeck 1" Xspec k U’
as a k-scheme. Let w: V — T be the projection onto the middle factor, and let ¢ : T — V be
the inclusion map. We will show that the maps 7 and ¢ induce mutually inverse isomorphisms
between the ¢-adic homology of SectnD()N( Xgpeck V') and Sectr, p(X Xgpeck T).

Let ay,...,a, : T — G,, be the system of simple roots of G determined by the choice of
Borel subgroup G. Then composition with {a;}1<i<, determines a group homomorphism

Hom(G,T) = [[ Hom(G,n, Gp) ~ 2.
1<i<r

This is an injective map between free abelian groups of the same rank, and is therefore a rational
isomorphism. In particular, we can choose an integer n > 0 and a cocharacter 8 : G,, — T
such that a; o B is given by the nth power map G,, — G,, for 1 < i < r. Note that f is
invariant under the action of I'. Consider the map h : G, Xgpeck V — V given on k-points by
the formula

h(A, utu') = B uBN) BN~ ' B(N).
Then h extends uniquely to a map h : Al XspeckV — V, whose restriction to {0} Xgpecr V'
coincides with the composition ¢ o7 : V' — V. The map h induces a map of prestacks

0: Al XSpec k SeCtp’D(X XSpec k V) — SeCtF,D(X XSpec k V)
Note that the composition of 6 with the inclusion

el {1} XSpcck SeCtnD(X XSchk V) — Al XSchk‘ SectpyD()Z' XSchk‘ V)
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is the identity map, and therefore induces an isomorphism on Z,-homology. Since e; also
induces an isomorphism on Zg-homology, it follows from the Kiinnethformula (Proposition
2.3.40) that 6 induces an isomorphism of Z,-homology. It follows that the composition of
with the inclusion

eg : {0} X Spec k SeCtF’D(X XSpec k V) — Al XSpec k SeCtnD(X XSpec k V)
induces an isomorphism on Zy,-homology, so that the composite map
SeCtF,D(X X Spec k V) N SeCtp’D(X XSpec k T) N SeCtF’D(X XSpec k V)

also induces an isomorphism on Z,-homology. We are therefore reduced to proving that the
projection map Sectp,D(f( Xspeck I') — Spec k induces an isomorphism on Z,-homology.

Since the group G is simply connected, the simple coroots {«) : G,,, — T} determine a I'-
equivariant isomorphism G;, ~ T, where I" acts on G}, by permuting the factors. In particular,
there is a I'-equivariant open immersion j : T' < A", where I' acts linearly on A". Modifying
this open immersion by a translation if necessary, we may suppose that it carries the identity of
T to the origin in A”. Corollary 3.5.5 implies that j induces a universal homology equivalence

SeCt[‘,D(}? XSpeck T) — SeCtF,D()? XSpec k AT).
We are therefore reduced to proving that the projection map
SeCt[‘,D(jZ Xspeck A") — Speck

induces an isomorphism on Zy-homology.
Note that the map A' x A” — A" given by (\,v) — v determines a A'-homotopy from the
identity map id : A" — A" to the zero map A” — Speck — A”. Arguing as above, we reduce to

proving that the map g : Sectr p(X) — Speck induces an isomorphism on Z,-homology. This
follows from Remark 2.3.32, since ¢g admits a left adjoint f (in the 2-category of prestacks). O

The remainder of this section is devoted to the proof of Proposition 3.4.5 in the case D = §).
This will require some preliminaries.

Proposition 3.5.6. Let R be a finitely generated k-algebra, let Y be a k-scheme equipped with
an action of T, and let m : Y — Xpg be a I'-equivariant map. Suppose we are given a finite
collection of T-invariant open subsets Uy, ..., U, CY. For every subset I C {1,...,n}, letUr =
Micr Us. If the forgetful functor Sectr(Ur CY) — Spec R is a universal homology equivalence
for every nonempty subset I C {1,...,n}, then the forgetful functor Sectr(|JU; CY) — Spec R
s a universal homology equivalence.

We begin by proving Proposition 3.5.6 in the special case n = 2.

Lemma 3.5.7. In the situation of Definition 3.4.2, suppose we are given a pair of I'-invariant
open subsets U,V C Y. Let C denote the full subcategory of Sectr(Y) given by the union of
Sectr (U C Y) and Sectr(V C Y). Then the inclusion € — Sectr(U UV CY) is a universal
homology equivalence.

Proof. Suppose we are given an object C' = (A, S,a) € Sectr(UUV CY), and let C¢, denote
the category € Xgect, (vuvcy) Sectr(U UV CY)e,. We wish to prove that the canonical map

Ci(Ccy;Zg) — Ci(Spec A; Zy)

is an equivalence in Modgz,. In fact, we claim that the map ¢ : €, — Spec A is a universal
homology equivalence. Let Wy C Spec A denote the image of o~ 'U, and let W; C Spec A
denote the image of a~'V. By assumption we have Wy U W = Spec A.
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By virtue of Proposition 2.5.15, the assertion that # is a universal homology equivalence
can be tested locally with respect to the fppf topology. We may therefore assume that either
Wy = Spec A or Wi = Spec A. In this case, the map 6 is an equivalence and there is nothing
to prove. O

Remark 3.5.8. Let C be a category containing full subcategories Cy, C; C € which satisfy the
following conditions:

e The subcategories Cy and C; are cosieves in C: that is, for any morphism f : C — D
in €, if C belongs to C;, then so does D.
e Every object of € belongs to either Gy or C;.

Then the diagram of simplicial sets

N(GO N 61) —_— N(eo)

L

N(€1) —=N(€)

is a pushout square. It follows that for any co-category D which admits colimits and any functor
F: € — D, the diagram

hﬂoeeo ne;p F(C) h—n}CeGo F(C)

i |

i e, F(C) ——lim  F(C)
is a pushout square in D (see §HTT.4.2.3).

Proof of Proposition 3.5.6. Using induction on n, we can reduce to the case where n = 2. Let
7 :Y — Xpg be as in Definition 3.4.2. For each I'-invariant open set U C Y, the full subcategory
Sectr (U CY) C Sectr(Y) is a cosieve. If V' is another I'-invariant open subset of Y, then the
irreducibility of X gives an equality

Sectr(UNV CY) =Sectr(U CY)NSectr(V CY).
Combining Remark 3.5.8 with Lemma 3.5.7, we obtain a pushout diagram

C.(Sectr(UNV CY);Zy) C.(Sectr(U CY);Zy)

l l

C.(Sectr(V CY);Zy) —— Ci(Sectpr (UUV CY);Zy)

in the oo-category Modg,. O

The main ingredient we will need is for the proof of Proposition 3.4.5 is the following result,
which we will prove in §3.6:

Proposition 3.5.9. Let € be a I'-equivariant vector bundle on )Z', let R be a finitely generated
k-algebra, let V C )N(R be a T'-invariant open subset, let Y be a I'-equivariant E-torsor over
V, and let U C Y be a I'-invariant open subset such that the projection map U — Spec R is
surjective. Then the map C.(Sectr(U CY);Zs) — Ci(Spec R; Zy) is an equivalence in Modg, .

Our proofs of Proposition 3.4.5 and Proposition 3.5.9 both depend on the following “transi-
tivity” result:
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Lemma 3.5.10. Let R be a finitely generated k-algebra, let Y and Z be schemes equipped with
an action of I', and suppose we are given a commutative diagram of I'-equivariant maps

Y—¢>Z
Xn.

Let U CY be aI'-invariant open set, let V.= ¢(U), and assume that V is open. Suppose that
the following condition is satisfied:

() For every object (A, S, ) € Sectp(V C Z), set Yo =Y x5 (X xx (Xa —|S])) and set
Up = Yy xy U. Then the canonical map C.(Sectr(Uy C Yy); Zs) — Ci(Spec A;Zy) is
an equivalence.

Then the map Sectr(U CY) — Sectr(V C Z) is a universal homology equivalence. In partic-
ular, if the map Sectr(V C Z) — Spec R is a universal homology equivalence, then the map
Sectr (U CY) — Spec R has the same property.

Proof. Fix an object C' = (A, S,a) € Sectr(V C Z), and set C = Sectr(U C Y) Xgectr(vC2)
Sectr (V' € Z)¢;. We wish to prove that the map C.(C;Zg) — C.(Spec A;Zy) is a quasi-
isomorphism. Define Uy C Yj as in (). Unwinding the definitions, we can identify € with the
full subcategory of Sectr(Uy C Yp) spanned by those objects (B, T, ) where T contains the
image of S in X (B). The inclusion € < Sectr(Uy C Yp) admits a left adjoint (in the 2-category
of prestacks), given on objects by (B, T, 3) — (B,TUSp, ") where Sp denotes the image of S
in X(B) and f’ is the restriction of . It follows that C.(C;Z,) ~ C,(Sectr(Uy C Yy); Z¢), so
that the desired result follows from assumption (x). O

Proof of Proposition 3.4.5 when D = (. Write G as a product of simple factors [],.; Gs, so
that I' permutes the set I. For each i € I, let I'; denote its stabilizer in I'. Then the prestack
Sectr (X Xgpeck G) is equivalent to [ Sectr, (X Xgpecr Gi), where the product is taken over a
set of representatives for the orbits of I' on /. Using the Kiinneth formula (Proposition 2.3.40),
we can reduce to the case where the group G is simple.

We now argue that it suffices to prove the analogue of Proposition 3.4.5 where the group
G has been replaced by an open subset of the big Bruhat cell of G (assertion (x) below). Let
(B, T,{¢a}) be a pinning of G which is invariant under the action of I', and let B’ be the unique
Borel subgroup of G which contains 71" and is in general position with respect to B. Let U and
U’ denote the unipotent radicals of B and B’, respectively, and set V = UTU’ C G. Then V is
a dense open subset of G. Note that an element g € G(k) belongs to V (k) if and only if gB’g~!
is in general position with respect to B.

Let Gy denote the identity component of the fixed point set G, and let VT denote the
open subset of G given by UgeGO(k) gV. Using Propositions A.4.2 and A.4.4, we see that either
V*+ = G or (in the special case where G = SLa,, 11, the characteristic of k is equal to 2, and T
is nontrivial) the difference G — V¥ can be written as a disjoint union of components K_ 1T K,
which are permuted by I'. Since X is connected, no I'-invariant map from X to G can factor
through K_ II K., so in any case we have

SeCtF()fZ X Spec k vt - X X Spec k G) = Sectp()? X Spec k G)

Since V1 is quasi-compact, we can choose finitely many points g1,...,g, € G' (k) such
VT = Uicjcn 9;V. For every subset J C {1,...,n}, let V; = ﬂjngj_lV. By virtue of
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Proposition 3.5.6, it will suffice to show that the map
Sectp()? X Speck V; C X XSpec k G) — Spec k

is a universal homology equivalence for every nonempty subset J C {1,...,n}. Choose an
element j € J, so that multiplication by g; determines an isomorphism of V; with a I'-invariant
open subset of V. We are therefore reduced to proving the following:

(x) Let W be a nonempty I'-invariant open subset of the big cell V' C G. Then the forgetful
functor Sectp()N( Xspec kW C X Xspec k G) — Spec k is a universal homology equivalence.
Using Remark 3.5.4, we see that (x) can be reformulated as follows:
(+) Let W be a nonempty I'-invariant open subset of the big cell V' C G. Then the forgetful
functor Sectp(X Xgpec kW C X Xspeck V) — Spec k is a universal homology equivalence.
Note that U admits a I'-equivariant filtration

xk=UyCULC---CUs=0,

where each quotient U;/U;_; is a vector group equipped with a linear action of T'; choose a
similar filtration

x=U,CU C---CU,=U".
For 0 < i < d, let V; denote the double quotient U;\V/U/, and let W; denote the image of W
in V;. Applying Lemma 3.5.10 and Proposition 3.5.9, we deduce that each of the maps

SeCtF(X ><Speck: Wz g X ><Speck: ‘/z) — SeCtF(X ><Speck Wi+l g X ><Speck ‘/i-l—l)

is a universal homology equivalence.
Note that Vj is isomorphic to a maximal torus T' C G. Consequently, we are reduced to
proving the following;:

(+") Let W be a nonempty I'-invariant open subset of T. Then the map
Sectp()? Xspeck W C X Xgpeck I') — Speck

is a universal homology equivalence.

Since G is simply connected, the character lattice of the torus T is freely generated by the
fundamental weights of G, which are permuted among themselves by the group I". Consequently,
there exists a I'-equivariant open immersion 7' < A" where r is the rank of G and the group
T acts linearly on A". Invoking Remark 3.5.4 again, we are reduced to proving the following
assertion:
(+") Let A" be an affine space equipped with a linear action of ', and let W be a nonempty I'-
invariant open subset of A”. Then the map Sectp(X Xspec kW C X x SpeckA") — Speck
is a universal homology equivalence.

This is a special case of Proposition 3.5.9. 0

3.6. Sections of Vector Bundles. Throughout this section, we let k denote an algebraically
closed field, ¢ a prime number which is invertible in k, and X an algebraic curve over k. Our
goal is to give a proof of Proposition 3.5.9. The main step is to establish the following special
case:

Lemma 3.6.1. Let R be a finitely generated k-algebra and let U C Xp xspeCkAl be a full open
subset. Then the map

C.(Sect(U € Xg Xspeck AYY:Z)) — C.(SpecR; Zy)

s an equivalence in Modgz,.



WEIL’S CONJECTURE FOR FUNCTION FIELDS 83

Let us first show that Lemma 3.6.1 implies Proposition 3.5.9.

Proof of Proposition 3.5.9. Let X be an algebraic curve equipped with a faithful action of a
finite group I' with X = X /T, let € be a I'-equivariant vector bundle on X let R be a finitely
generated k-algebra, let V' C X g be a I'-invariant open subset, let Y be a I'-equivariant &-torsor
over V, and let U C Y be a I'-invariant open subset such that the projection map U — Spec R
is surjective. We wish to show that the canonical map

C.(Sectr (U CY);Zs) — Cy(Spec R; Zy)

is an equivalence in Modg,.

Let W C X be a dense open subset with the property that the map v : XxxW > W
is étale. Over the open subset X xx W C X, the action of I on € furnishes descent data:
that is, we have a I'-equivariant isomorphism €& | Txxw v* &y, for some vector bundle &g
on W. Shrinking the open set W if necessary, we may suppose that the vector bundle &g is
trivial. Note that replacing U by U xx W does not change the category Sectr(U C Y). We
may therefore assume without loss of generality that the set U is contained in the open subset
Y xx W C Y. Using Remark 3.5.4, we can replace V by V x x W. Then the action of ' on
V is free, so that we can write Y as the pullback of a £p-torsor Y/T" over the open subscheme
V/T C Xg.

Working locally on Spec R, we can use Proposition A.2.8 to reduce to the case where Xgp—V/T’
is contained in a closed subscheme E C Xy which is finite and flat (of positive degree) over
R. Note that replacing U with U xx, (Xgr — E) does not change the category Sectr(U CY).
We may therefore assume without loss of generality that U C Y x x, (Xr — E). Using Remark
3.5.4 again, we can replace V by the inverse image of X — E, and thereby reduce to the case
where V/T is affine. It follows that every €g-torsor on V/T is trivial, so that Y/T' ~ &y xy V/T
and we therefore have a I'-equivariant isomorphism Y ~ V' Xgpecr A", where I' acts trivially
on A". Using induction on n and Lemma 3.5.10, we can reduce to the case where n = 1. Using
Remark 3.5.4 again, we can replace Y by X R XSpeck A'. Note that the data of a I'- equivariant

map X x x (X4 —|5|) = Y of X-schemes is equivalent to the data of a map of X-schemes from
Xa—15]to X Xspeck Al We may therefore reduce to the case where the group I is trivial, in
which case the desired result follows from Lemma 3.6.1. O

We now turn to the proof of Lemma 3.6.1. Here we invoke the same basic idea as in Example
3.3.3: the prestack Sect(Xpr Xspeck Al) behaves like an infinite-dimensional affine space (and
is therefore acyclic), and the prestack

Sect(U Q XR XSpeck Al)

is obtained from Sect(X g Xspec k Al) by removing a closed subset of infinite codimension (which
has no effect on Z,-homology).

Proof of Lemma 3.6.1. The proof can be broken into three steps:

(a) Every A-valued point of Sect(U C Xpg Xgpeck Al) determines an effective divisor
K C X4 (namely, the divisor on which the relevant section is not defined). Using
the acyclicity of the Ran space Ran(X), we reduce the proof of Lemma 3.6.1 to estab-
lishing an analogous result for a variant of the prestack Sect(U C Xpr Xspeck Al ) where
the divisor K has been fixed (and is nonempty); we will denote this variant by €.

(b) The collection of regular functions from X4 — K into A’ admits a filtration, whose nth
stage consists of those rational functions on X 4 having poles of order at most n along
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the divisor K. We will define a corresponding filtration
coycemcec: -

of the prestack €. We are then reduced to the problem of showing that the map
H..(€'(m); Z¢) ~ H.(Spec R; Zy) is an isomorphism for m > .

(c) We show that the prestack €'(m) is highly connected for m > 0 by showing that it is
equivalent to an open subset of an affine space having large codimension.

We begin with step (a). Note that the forgetful functor Sect(U C X g Xspeck A') — Ran™ (X)
is a coCartesian fibration of categories. Set € = Sect(U C Xg Xgspeck A') X Rant(x) Ran(X).
Using Theorem 2.5.19 (and Proposition 2.5.11), we see that the canonical map

C.(C;Zg) — Cu(Sect(U C Xpg xspeck A'); Zy)

is an equivalence. Unwinding the definitions, we can identify € with the category whose objects
are triples (A, : S — X(A), ), where A is a finitely generated R-algebra, S is a nonempty
finite set, p is a map of sets, and a : X4 — |u| = Xpr Xspeck A' is a map of Xp-schemes for
which a=1U C X4 is full.

We wish to prove that the canonical map C.(C;Z,) — C.(Spec R;Z;) is an equivalence.
Note that this map factors as a composition

C4(C:Z¢) 5 O (Ran(X) Xspeck Spec R; Z¢) & O, (Spec R; Zy).

It follows from Corollary 2.4.13 (together with Proposition 2.3.40) that ¢’ is an equivalence.
It will therefore suffice to show that 6 is an equivalence. We have a commutative diagram of
categories

Ran(X) Xgpeck Spec R

| \Fms /

where the vertical maps are Cartesian fibrations. It will therefore suffice to show that for each
nonempty finite set S, the induced map

Cs — (Ran(X) Xsgpeck Spec R) Xpins {S} ~ X2

induces an isomorphism on Z,-homology, where Cg denotes the fiber product € xXpins{S}.
Because the forgetful functors

Ran(X) Xspeck Spec R — Fin® + €
are Cartesian fibrations of categories, the canonical maps
Cu(Cs3Ze) = ((vu)iw* F)(S)  Cu(X3;Ze) = (0 F)(S)

are equivalences. We are therefore reduced to proving that the forgetful functor ¢ : € — X 1%
induces an equivalence C.(Cg;Z¢) — Ci(X35;Z¢). In fact, we claim that 1 is a universal
homology equivalence. To prove this, fix a finitely generated R-algebra A and a map of R-
schemes Spec A — X}%, classifying a map of sets u : S — X(A). Set ¢’ = Cg Xx$ Spec A.
Unwinding the definitions, we can identify € with the category whose objects are pairs (B, «),
where B is a finitely generated A-algebra and o : Spec B Xspec 4 (X4 — |1t]) = Xg Xspeck Al
is a map of X p-schemes satisfying the following condition:

(x) The projection map a~*(U) — Spec B is surjective.
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We now proceed with step (b). We wish to prove that the canonical map C,(C';Z,) —

C.(Spec A;Zy) is an equivalence. Let € denote the category whose objects are pairs (B, «a),
where B is a finitely generated A-algebra and o : Spec B Xgpec 4 (X4 — |¢t]) = Xr Xgpeck Alis

a map of Xg-schemes (so that € is the full subcategory of ¢ spanned by those objects which
satisfy condition (x)).

Let K = |u| denote the effective divisor in the relative curve X4 determined by u. For each
integer m, we let O(mK) denote the sheaf on X4 determined by the divisor mK. If B is a
finitely generated A-algebra, we let O(mK)p denote the pullback of O(mK) to the relative
curve Xp, and O(coK)p the direct limit lim O(mK)p. Unwinding the definitions, we see that

€ can be identified with the category whose objects are pairs (B, «a), where B is a finitely
generated A-algebra and « is a global section of the quasi-coherent sheaf O(coK)p. For each

integer m > 0, we let é:n denote the full subcategory of ¢ spanned by those pairs (B, «) where

o is a section of O(mK) g, and set €, = €., NC. Let s denote the cardinality of S (so that s is
the degree of the finite flat map K — Spec A). Using the Riemann-Roch theorem, we deduce

that there exists constants mg and C such that for m > my, Glm is representable by a vector

bundle E,, over Spec A of rank C' 4+ ms. Applying Example 2.5.14, we deduce that the map
C,(C. . Zy) = C\(Em; Z¢) — Cs(Spec A; Zy)

is an equivalence for m > mg. Consequently, to prove that the projection map C.(C';Z;) —
C.(Spec A; Zy) is an equivalence, it will suffice to show that the natural map
—/
Hd(G’(m); Zg) — Hd(e (m), Zz)
is an isomorphism for m > d.

We now carry out step (). Note that for m > my, the prestack €., is representable by an
open subscheme E; C F,,. It will now be convenient to use Verdier duality for /-adic sheaves
(see §4.5 for a more detailed discussion). Let wg, denote the dualizing sheaf of E,,, so that we
can identify 6 with the canonical map

H,YES: j*wp, ) = H; Y By wg,).

Let Y,,, denote the complement of EY, in E,, and let ¢ denote the inclusion of Yy, into E,,. We
then have an exact sequence

Ho N (YVitwp,,) =& Ho Y By j*wE,,) = H, Y(Emiws,,) = B, (Y itwp,,).

It will therefore suffice to show that the groups H, ¥ (Y;,; i*wg, ) and H, 4(Y;,;i*wg, ) vanish
for large values of m.

For m > mg, the map FE,, — Spec A is smooth of relative dimension ms + C. Since the
dualizing sheaf of Spec A is concentrated in cohomological degrees < 0, we conclude that wg,,
is concentrated in cohomological degrees < —2(ms+ C). Note also that the map Y;, — Spec A
has finite fibers, so that dim(Y;,) < dim(Spec A). It follows that the desired vanishing holds
whenever —2(ms + C) + 2dim(Spec A) < —d — 1. O

3.7. Existence of Rational Trivializations. Throughout this section we let k be an alge-
braically closed field, X an algebraic curve over k, D C X an effective divisor, and G a smooth
affine group scheme over X whose generic fiber G is semisimple and simply connected.

Let R be a finitely generated k-algebra, let Dr = D Xgpeck Spec R, and let P be a G-bundle
on Xg which is equipped with a trivialization vy on the divisor Dr C Xg. To prove Theorem
3.3.6, we would like to show that, after passing to an étale cover of Spec R, we can extend 7y to
a rational trivializaton of P. When R = k, the existence of a rational trivialization of P follows
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from the vanishing of the cohomology set H'(Kx;Go) (where G denotes the generic fiber of
G). Consequently, for each k-valued point y of Spec R, we can choose a trivialization v, of the
fiber P, over a dense open subset U C X. Moreover, there are no infinitesimal obstructions
to extending this trivialization to a neighborhood of y: if U is affine, then the smoothness of
P implies that v, can be extended to a trivialization of P over U Xgpecr Spec R/mg7 where
m, denotes the maximal ideal of R determined by the point y. In other words, we can choose
a generic trivialization of P over a formal neighborhood of y in Spec R. However, there is no
obvious way to extend this trivialization from a formal neighborhood to an étale neighborhood,
because the collection of generic trivializations of P is not parametrized by any reasonable finite-
dimensional algebro-geometric object. We might attempt to remedy the situation by studying
trivializations which are defined over the entire curve X: these are parametrized by an affine R-
scheme of finite type (given by the Weil restriction of P along the map Xz — Spec R). However,
this Weil restriction could be empty (since G-bundles on X can be globally nontrivial).

Following Drinfeld and Simpson ([15]), we will circumvent these difficulties by first looking
for a weaker structure on the G-bundle P: namely, a reduction of structure group from G to
a Borel subgroup. Since the fraction field Kx has dimension 1, the group Gy is automatically
quasi-split ([10]); we may therefore choose a Borel subgroup By C Gy. Let B denote the
scheme-theoretic closure of By in G. Then B is an affine group scheme which is flat (but not
necessarily smooth) over X. We will deduce Theorem 3.3.6 from the following result, which we
will prove in §3.9:

Theorem 3.7.1. Let G be a smooth affine group scheme over X such that the generic fiber
of G is either semisimple and simply connected or semisimple and adjoint. Let R be a finitely
generated k-algebra, let P be a G-bundle on X, and let vo be a trivialization of P |p,,. Then,
étale locally on Spec R, the G-bundle P admits a B-reduction which is compatible with ~q.

Using Theorem 3.7.1, we can reduce the problem of finding rational trivializations of G-
bundles to the problem of finding rational reductions of B-bundles, which we will discuss in
§3.9.

Remark 3.7.2. In the special case where the group scheme G is constant and D = (), Theorem
3.7.1 is proven in [15].

The remainder of this section is devoted to the deduction of Theorem 3.3.6 from Theorem
3.7.1. Note that the generic fiber of B is a smooth algebraic group over the fraction field Kx.
We may therefore choose a dense open subset U C X containing D such that B xx (U — D)
is a smooth affine group scheme over U — D. Shrinking U if necessary, we may further assume
that U is affine and that D is the vanishing locus of a regular function ¢ € Ox (U).

Let P be as in the statement of Theorem 3.7.1. Note that both P and B\ P are smooth
X-schemes (Lemma 3.9.6). Let us denote their relative tangent bundles by 7' = Tp /x and
T' = T(p\ p)/x, respectively. Then the projection map m : P — B\ P induces a map of vector
bundles e : T — 7*T" on P. Note that e is surjective over the open set P xx (U — D). Since
Pxx(U — D) is affine, the map e admits a section s over the open set P xx(U — D) C P.
For n > 0, the product t"s extends (uniquely) to a regular map e’ : (7*T")|p x vy = TP xxU-
Replacing D by nD (and arbitrarily lifting o to a trivialization of P over nD), we may assume
that n = 1. In this case, we have the following result:

Lemma 3.7.3. Suppose we are given a B-reduction of P, given by a map f : Xr — B\ P.
Suppose that m > 2, and that we are given a map Bm+1 : (m+ 1)Dr — P in the category of
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Xg-schemes such that the diagram

ﬂvrt+1

(m+1)Dp ——7P

|,

Xg B\ P

commutes. Then there exists a map of Xr-schemes Bpyo @ (m + 2)Dr — P such that
Bm+1lmbr = Bm+2|mbpy and the diagram

B'rn+2

(m+2)Dp ——= 7P

|,

Xp—2L -~ B\?
commutes.

Proof. Since P is smooth, we can choose a map f3,, 5 : (m+2)Dgr — P extending S,,,+1. Since
m > 2, we can view the structure sheaf of (m+2)Dp as a square-zero extension of the structure
sheaf of mDpg by an ideal J, so that the collection of all maps (m + 2)Dg — P compatible with
Bumtalmpy can be identified with H(Dg; T|mp, ®J) (so that the identity element corresponds
to B,,42). Similarly, we can identify the set of all maps from (m + 2)Dg — B\ P compatible
with (78,,42)|lmpy With the set of global sections H(Dg; (7*T")|mp, ® J). In particular, the
restriction f|(y12)p, determines an element [f] € H°(Dpg; (7*T")|;mp, ® J). Unwinding the
definitions, we wish to prove that f belongs to the image of the map

H(Dp; Tlimps @ 9) = B (Dp; (7*T")lnpy, ©9).
In fact, we claim that [f] belongs to the image of the composite map
HY(Dg; (7 T")lmp ©9) = H(Dp; Tlmp, ©9) = H(Dp; (1°T")|mp, ®9),

where the first map is induced by ts : (7*T")|p xyu — T|pxyv- This is equivlent to the
assertion that [f] is divisible by ¢, which follows immediately from the commutativity of the
diagram

(m+1)Dg ™

|,

X34f>B\fP.
d

Lemma 3.7.4. In the situation of Theorem 8.3.6, there exists €tale covering of Spec R over
which there is a reduction of P to a B-bundle Q C P such that vy extends to a trivialization of
Q over the formal completion of Xr along Dg.

Proof. Since G is smooth, we can extend vy to a map of Xg-schemes 33 : 3Drp — P. Using
Theorem 3.7.1, we can choose a B-bundle Q C P such that S5 factors through Q. Repeatedly
applying Lemma 3.7.3, we can choose maps {8, : mDgr — Q},,>3 such that SBy+1|mpy =
Bm+2|mpyr- Then the sequence of restrictions {Spm+1|mbDy }m>2 determines a trivialization of Q
on the formal completion of Xx along Dg. O
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Note that to prove Theorem 3.3.6, we are free to enlarge the divisor D; in particular, we
may always assume that D is nonempty. By virtue of Lemma 3.7.4, we are reduced to proving
the following:

Proposition 3.7.5. Assume that the divisor D is nonempty. Let R be a finitely generated
k-algebra, let Q be a B-bundle on Xg, and let 7 be a trivialization of Q on the formal com-
pletion Dy of Dy in Xgr. Then there exists a full open subset U C Xp containing Dr and a
trivialization of Q|y which agrees with 5 on the divisor Dg.

Our proof of Proposition 3.7.5 will rely on the following elementary algebraic fact, whose
proof we defer until the end of this section.

Lemma 3.7.6. Let R be a reduced Noetherian ring such that Spec R is connected. Let f be
an invertible element in the Laurent series ring R((u)) = Rl[[u]][u~]. Then f = u"g for some
invertible element g in R[[u]].

Proof of Proposition 8.7.5. Our argument will proceed in three steps:

(a) We reduce the proof of Proposition 3.7.5 to a density statement concerning the set of
A-valued points of the torsor Q (assertion () below).

(b) We show that (x) follows from the analogous assertion for the maximal torus 7' C B.

(¢) Using the simple connectivity of G, we show that the requisite density statement for
the torus T follows from elementary ring-theoretic considerations.

We begin with step (a). Let Gg be the generic fiber of G. Since Kx has dimension 1, the
group G is quasi-split (see [10]). It follows that there exists a dense open subset V' C X such
that Gy =V xx G is a quasi-split semisimple group scheme over V. Shrinking V if necessary,
we may assume that D NV = (), that V/ = V U D is affine, and that D is the vanishing locus
of a regular function ¢ on V',

Let S denote the set of all relative divisors D' C X such that D'NDg = () and Xgp—D’ C V},.
For each D’ € S, the difference Xp — D’ is an affine open subset of Xy, which we can write
as Spec Aps for some finitely generated R-algebra Ap/. We will abuse notation by identifying
¢ with its image on Aps, so that Xz — (D’ U Dg) ~ Spec Ap/[t71]. Let A denote the t-adic
completion of Aps: note that this completion depends only on the divisor D, and not on D’.
Let us regard A and A\[t_l] as equipped with the t-adic topology. Note that for any affine
A-scheme Y = Spec B, the t-adic topologies on A and E[t_l} determine topologies on the sets
Y(E) and Y(A\[t_l]); we will apply this observation in the case ¥ = Q.

For every commutative ring C equipped with a map SpecC' — Xg, we let Q(C') denote the
set of trivializations of Q x x, Spec C: that is, the set of Xpg-scheme morphisms from SpecC
into Q. Then Q(A) can be identified with the set of trivializations of Q over the formal completion
D7. Under this identification, the collection of those trivializations which coincide with v on
the divisor D corresponds to an open subset of Q(ﬁ), which we can identify with a nonempty
open subset of W C Q(A[t™1]).

For each D’ € S, we have a pullback square

Q(Apr) —= Q(Ap[t™'])

| |

Q(A) —— Q(A[tY)).

Consequently, to show that there exists a trivialization of Q over X — D’ which agrees with
4 on the divisor D, it will suffice to show that the image of the map Q(Ap/[t71]) — Q(A[t™1])
has nonempty intersection with W. To complete the proof, it will suffice to show the following:
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(x) The union of the images of the maps Q(Ap/[t~!]) — Q(A[t~1]) is dense in Q(A[t~1])
(as D' ranges over S).

We now proceed with step (b). Note that By =V x x B is the scheme-theoretic closure of
By in Gy, which is a Borel subgroup of Gy . It therefore fits into an exact sequence

0 —rad, By - By - T — 0,

where T is a diagonalizable group scheme over V. Since Gy is simply connected, T is isomorphic
to a finite product of induced tori: that is, there exists a collection of finite étale maps {V; —
V}<i<m such that T is isomorphic to the product of Weil restrictions

H ReSVi/V(Gm XSpeck Vz)

1<i<m

Without loss of generality, we may assume that each V; is connected. Let X; denote the smooth
projective curve having the same fraction field as V;, so that we have finite maps X; — X with
Vi ~ X; xx V. Each of the projection maps By — T — Resy, /v (G Xspeck Vi) classifies a
map By Xy V; = Gy, Xgpeck Vi of group schemes over V;. Using Proposition A.1.8, we see that
each of these maps can be extended to a map B X x X; — Gy, Xgpeck X; of group schemes over
X;. In particular, the B-bundle Q on Xg determines a line bundle £; on X;g for 1 <i < m.

For each index i, let D; denote the (scheme-theoretic) inverse image of D in X;, and choose
a k-rational point x; of X; — D;. Choose an integer N > 0, so that each of the line bundles
L;(Nz;) has degree > 2g; + deg(D;) along each fiber of the map v; : X;gr — Spec R. It follows
that H*(X;r; £i(Nx; — D;g)) vanishes, and therefore the restriction map

HO(X;R; £4(Nw;)) = H*(Dig, Li |D,r)

is surjective. Since Q is trivial along the divisor D, the line bundles £; admit trivializations
along the relative divisors D;r. We may therefore lift these trivializations to sections s; of
L;(Nx;). Let F; C X;r denote the union of {z;} x Spec R with the vanishing locus of s; (since
D # () and s; does not vanish on D;, this vanishing locus is a relative divisor).

Let S’ C S denote the collection of those divisors D’ € S which contain the image of each
E;. If D' € S’ then each of the line bundles £; is trivial on X;r xx, (Xg — D’). It follows
that the T-bundle on Xg — (Dr U D’) induced from Q is trivial: that is, Q is induced from
a rad, By-bundle over the open set Xp — (Dr U D’). Since Xr — (Dr U D) is affine and
rad,, By admits a finite filtration by vector groups, every rad, By-bundle on Xg — (Dr U D)
is automatically trivial. It follows that Q|x,_(p,upr) is trivial, so that we have identifications

QAp ') = Bv(Ap[t7'])  QA[t™']) = By (Al)),
Since S’ is cofinal in S, assertion (x) can be reformulated as follows:
(*') The map
lim By (Ap/[t") = By (Al))
D’eS’
has dense image.
Note that assertion (*') depends only on the structure of By as a V-scheme, and not on
the group structure of By . Since T is affine and rad, (By) is a successive extension of vector
groups, we have an isomorphism (in the category of V-schemes) By ~ T Xy &, where & is the

total space of a vector bundle over V. It follows easily that the map &(Ap/[t~1]) — &(A[t1])
has dense image for any D’ € S’. We are therefore reduced to proving that the map

lim T(Ap/[t™']) - T(Al™)
D’eS’
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has dense image.

We now carry out step (c). Writing T as a product of induced tori T; = Res""/"(

pm XSpeck
cs Ti(AD/ [til]) — Tz(Az [til]) has
dense image. Write X; X x (Xgr — D') ~ Spec A;pr, where A;p. is a finite flat Ap/-module, and
let EZ be the t-adic completion of A;ps (which is independent of D’). We are then reduced to
showing that the map

Vi), we are reduced to proving that each of the maps h_ng o

lim Ajp [t 1] — lim At 1]
D’es’
has dense image.

Let {x1,...,Zm,} be the closed points of X; which belong to the divisor D;. For 1 < j < m,
choose a rational function u; on X; which vanishes at the point x;, and has neither zeroes
nor poles on the set {x1,...,&;_1,%j41,...,%m}. Shrinking V if necessary, we may assume
that each u; is a regular function on X; xx V', which vanishes only at the point x;. Let
us abuse notation by identifying each w; with its image in A;p/ (for each D’ € §’) and A;.
Then A; is isomorphic to the product [Ti<j<m Rllu;]l, and A;[t™1] is isomorphic to the product
ngjgm R((u;)).

Factoring R as a product if necessary, we may assume without loss of generality that Spec R
is connected. Let rad(R) denote the nilradical of R. For each D’ € S’, we have a commutative
diagram of exact sequences

rad(R) ®g Aip A (Aipr/rad(R)A;p/)* ——0

lqﬁ’ lq& \L¢//

[T <j<mrad(R)((u;)) — [Ti<jcm B((u5)) — Ili<j<pm (B/ rad(R))((u;)) —0
where the map ¢ has dense image. Consequently, we may replace R by R/rad(R) and thereby
reduce to the case where R is reduced. In this case, it follows from Lemma 3.7.6 that the units
in the ring [[, -, ,, R((u;)) are given by
It will therefore suffice to proving the following:

(+") The map

hg“ Ay — gzx
D’es’
has dense image.

To prove (x”), choose any D' € S’. Let = be an invertible element in ﬁf For each n > 0,
we can choose an element y € A;p/ whose image in A; is congruent to x modulo ¢". Then y
is a regular function on X;r X x, (Xgr — D’) which does not vanish along the divisor D;g. Let
E C X;r denote the union of D’ x x X; with the vanishing locus of y, and let D" denote the
image of E in Xp. Then D" is an effective divisor which contains D’ and does not intersect D.
It follows that D" belongs to S’, and the image of y in A;p~ is invertible by construction. Since
n was chosen arbitrarily, it follows that x admits arbitrarily close approximations by elements

. o . . X
of the direct limit @D'es' Al O

Proof of Lemma 8.7.6. Suppose first that R is an integral domain. For every nonzero f in

R((u)), let A(f)u™) denote the monomial of lowest degree which occurs in f. If g is another
nonzero element, we have

A(fg) =AMHAg)  n(fg) =n(f) +nlg).
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In particular, if fg = 1, then we have A(f)A(g) = 1, so that A(f) is an invertible element of R.
It follows that u="() f € A(f) + wR[[u]] is an invertible element of R[[u]].

We now treat the general case. Suppose that f is an invertible element of R(()). Then for
every prime ideal p C R, the image of f in (R/p)((u)) is invertible. We may therefore write the
image of f as a product u"(®)g,, where g, is an invertible element of (R/p)[[u]]. Note that n(p)
is uniquely determined by p. Moreover, if p C g, then the image of g, in (R/q)[[u]] is invertible,
so that g, = gq and n(p) = n(q). It follows that the function p — n(p) is constant on each
connected component of Spec R. Since Spec R is connected, the function p — n(p) is constant
with value n, for some integer n. Replacing f by u~" f, we may assume that n = 0.

Write f = Y c;u’. The above argument shows that for each prime ideal p C R, we have
c; € p for i < 0. Consequently, the elements ¢_1,c_o,... € R belong the nilradical of R. Since
R is reduced, we deduce that ¢; = 0 for i < 0. Moreover, ¢q ¢ p for each prime ideal p € R, so
that ¢ is invertible in R. It follows that f is an invertible element of R][[u]]. O

3.8. Digression: Maps of Large Degree. Throughout this section, we let k denote an
algebraically closed field, G a semisimple algebraic group defined over k, and I' a finite group
which acts on G by automorphisms that preserve a pinning (B, T, {uq }) of G (see §A.4). Let X
be an algebraic curve over k equipped with a faithful (but not necessarily free) action of T' and
let X denote the quotient X /T" (formed in the category of k-schemes). Our goal in this section
is to establish the following technical result which will be needed for the proof of Theorem 3.7.1:

Proposition 3.8.1. Let D C X be an effective divisor and let £ be a line bundle on X. Then
there erists a map s : X — G/ B with the following properties:

(a) The map s is I'-equivariant.

(b) The restriction s|p is equal to the constant map from D to the base point of G/B.

(¢c) The cohomology group Hl()?;[/@s*Tg/B) vanishes. Here T p denotes the tangent
bundle to the flag variety G/B.

Every character A : B — Gy, of the group B determines a G-equivariant line bundle on the
flag variety G/ B, which we will denote by L. If s : X — G/B is a map, we let deg,(s) denote
the degree of the line bundle s* £,. The function A — deg,(s) is linear in A, and therefore
given by pairing A with a coweight deg(s) € Hom(G,,,T).

Let g denote the Lie algebra of G, and b C g the Lie algebra of the Borel subgroup B. It fol-
lows from the structure theory of reductive groups that the quotient g/b admits a B-equivariant
filtration, whose successive quotients are one-dimensional representations of B associated to the
characters a : T" — Gy, where « is a negative root. It follows that the tangent bundle T, p
admits a finite filtration whose successive quotients are the line bundles £, where « is a neg-
ative root of G. Consequently, for each line bundle £ on X and every map S : X =G /B, the
cohomology group Hl()N( ; L ®s5* T/ p) admits a finite filtration, whose succesive quotients are

subquotients of the groups HI(X;L ®s* L,) where «a is a negative root of G. These groups
vanish provided that deg,(s) > 2¢g — 2 + deg(£). Proposition 3.8.1 is therefore an immediate
consequence of the following:

Proposition 3.8.2. Let D C X be an effective divisor and let C' be an integer. Then there
erists a map s : X - G /B with the following properties:

(a) The map s is I -equivariant.

(b) The restriction s|p is equal to the constant map from D to the base point of G/B.

(¢) For every negative root o of G, we have deg,(s) > C.

The proof of Proposition 3.8.2 depends on the following:
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Lemma 3.8.3. Let G be a reductive group and B a Borel subgroup of G. For every dominant
weight u of G, there exists a map f: P! — G/B of degree —p.

Proof. Let Bunf (P') denote the moduli stack of B-bundles on P! having degree —u. For every
such bundle P, let €5 denote the vector bundle on P! associated to the represntation g/b of B.
Note that £p admits a filtration whose successive quotients are line bundles of degree (—pu, «v),
where « ranges over the negative roots of G. Since p is dominant, the cohomology group
H'(P'; &p) vanishes. It follows that the inclusion of B into G induces a smooth morphism of
algebraic stacks u : Buny(P') — Bung(P!). Since Bun/y(P!) is nonempty, the image of u is a
nonempty open substack of Bung(P?!). According to [15], the diagonal map BG — Bung(P1)
is an open immersion with dense image, so that the fiber product BG Xpun(p1) Bun%(Pl)
is nonempty. In particular, we can choose a B-bundle P on P! of degree —u for which the
associated G-bundle is trivial. Then P is classified by a map P! — G/B having degree —pu. O

Proof of Proposition 3.8.2. We may assume without loss of generality that D is nonempty,
that G is semisimple and simply connected, and that C > 0. Choose a rational function
on X = X/T' which vanishes on the image of the divisor D. This choice determines a I-
equivariant map ¢ : X — P! (where I acts trivially on P'). Composing g with a map from
P! to itself if necessary, we may suppose that g has degree > C. Consequently, to construct
amap s : X — G/B satisfying conditions (a), (b), and (¢), it will suffice to construct a map
so : P! — G/B satisfying the following analogous conditions:

(a’) The map s is I'-equivariant (in other words, sq factors through the subgroup G C G).

(b') The map sg carries the point 0 € P! to the base point of G/B.
() For every negative root a of G, we have deg,(sg) > 0.

Let G denote the identity component of G, and let By = BNGy. Using Remark A.4.8 and
Corollary A.4.7, we see that Gq is a reductive group and that By is a Borel subgroup of Gy.
According to Lemma 3.8.3, there exists a map u : P! — Go/By such that — deg(u) is a strictly
dominant weight of Gy. Without loss of generality, we may assume that this map carries the
origin 0 € P! to the base point of Go/By. Then the composite map

P! - Gy/By — G/B
evidently satisfies conditions (a’) and (b’), and satisfies (¢’) by virtue of Proposition A.4.10. O

3.9. Existence of Borel Reductions. Throughout this section, we let k& denote an alge-
braically closed field, X an algebraic curve over k, G a smooth affine group scheme over X, and
assume that the generic fiber of G is either semisimple and simply connected or semisimple and
adjoint. Let By a Borel subgroup of the generic fiber of GG, and B the scheme-theoretic closure
of By in G. Our goal is to give a proof of Theorem 3.7.1, which asserts that any G-bundle on
X admits a B-reduction étale locally on Spec R.

Notation 3.9.1. Let R be a finitely generated k-algebra and let P be a G-bundle on Xz. Then
B actson Pviaamapa: B Xxx P — P. Let mo : B xx P — P denote the projection onto the
second factor. The diagram

PEBxxPBP
exhibits B x x P as an fppf equivalence relation on P. We let B\ P denote the quotient of P by
this equivalence relation (in the category of fppf sheaves on Ring,). It follows from a general
theorem of Artin that B\ P is representable by an algebraic space ([1]).

Remark 3.9.2. In the situation of Notation 3.9.1, we have maps

P % B\P 5 Xp,
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where 8 o « is smooth and « is faithfully flat. It follows that B\ P is smooth over Xg.

Notation 3.9.3. Let R be a finitely generated k-algebra and let P be a G-bundle on Xg. Let
F1(P) denote the algebraic space obtained by Weil restriction of B\ P along the map Xp —
Spec R (for a general discussion of Weil restriction, we refer the reader to [41]). In other words,
F1(P) is the R-scheme whose A-valued points can be identified with commutative diagrams

XAHB\T

N

Xk

Similarly, we let F1(Pp,) denote the Weil restriction of (B\ P) x x,, Dg along the projection
map Dr — Spec R. We have an evident restriction map FI(P) — FI(Pp,). If vo is a trivializa-
tion of P |p,,, then vy determines a map Spec R — F1(Pp,,); in this case, we let Flp(P) denote
the fiber product

SpecR XFI(':PDR) Fl(fp)

Let R, P, and vy be as in Theorem 3.7.1. Unwinding the definitions, we see that there is
a bijective correspondence between A-valued points of Flp(P) and isomorphism classes of B-
reductions of the G-bundle X 4 X x,, P which are compatible with vy. Consequently, Theorem
3.7.1 is equivalent to the assertion that the map Flp(P) — Spec R admits étale local sections.
Let Flp(P)° denote the smooth locus of the projection map Flp(P)° — Spec R. Since a smooth
surjection admits étale local sections, Theorem 3.7.1 will follow if we can show that the map
Flp(P)° — Spec R is surjective.

Let y be a k-valued point of Spec R, and let § be a k-valued point of Flp(P) lying over y.
Let P, denote the G-bundle on X determined by y, so that § can be identified with a section
s of the projection map 7 : B\ P, — X which is compatible with n9. The map 7 is smooth;
let T denote its relative tangent bundle (a vector bundle on B\ P,). A standard deformation-
theoretic argument shows that the cohomology group H'(X; (s*Ty)(—D)) controls obstructions
to deforming the section s (where the deformation is fixed along the divisor D). In particular,
if the group H'(X; (s*T,)(—D)) vanishes, then 7 belongs to the smooth locus F1(P)°. It will
therefore suffice to show that for each k-valued point y of Spec R, we can choose a section s
(which is compatible with 7o) such that H'(X; (s*Ty(—D)) vanishes. In this case, we might as
well replace R by k. It will therefore suffice to prove the following:

Proposition 3.9.4. Let P be a G-bundle on X, let w : B\P — X be the projection map, and
let so : D — B\'P be a map of X-schemes which can be lifted to a map D — P. Then sy can
be extended to a section s of m with the property that H'(X; (s*Ty)(—D)) ~ 0.

Remark 3.9.5. If the group scheme B is smooth, then the projection map P — B\ P is a
smooth surjection. In this case, the existence of a map D — P lifting sg is automatic.

The proof of Proposition 3.9.4 will require some preliminaries.

Lemma 3.9.6. Let P be a G-bundle on X. Then the quotient B\ P is (representable by) a
scheme (automatically separated, since B is closed in G).

Lemma 3.9.7. Let P be a G-bundle on X and let vy be a trivialization of P over D. Then
there exists a dense open subset U C X which contains D and a trivialization of P |y which
extends -

The proofs of Lemmas 3.9.6 and 3.9.7 will be given at the end of this section.
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Lemma 3.9.8. Let P be a G-bundle on X, and let so : D — B\ P be a map of X-schemes
which can be lifted to a map 3o : D — P. Then sq can be extended to a section of the projection
map 7 : B\P? — X.

Proof. Since k is an algebraically closed field, the function field Kx has dimension 1. The
generic fiber of G is a connected reductive algebraic group over Kx, so that every G-bundle on
Spec Kx is trivial (see [10]). Choose a rational trivialization of P, determining bijections giving
isomorphisms P(L) ~ G(L) for every field extension L of Kx.

Since By is a parabolic subgroup of Gy, the fiber product B\ P x x Spec Kx is proper over
Spec Kx. It follows that there exists a dense open subset V' C X for which the quotient
B\ P xxV is proper over V. Shrinking V if necessary, we may suppose that V N D = 0.
Enlarging D, we may assume that V =X — D.

Applying Lemma 3.9.7, we deduce that there exists an open set U C X containing D and a
trivialization of P |y which is compatible with 3. This trivialization determines a map f fitting
into a commutative diagram

U—tB\p

l 4l
Ve
Ve
7 id
X ——X.

We now complete the proof by observing that the map f admits an extension as indicated in the
diagram, by virtue of the valuative criterion of properness for the map (B\P) xx V — V. O

Lemma 3.9.9. Let ¢ : & — & be a map of vector bundles on X which is an epimorphism at
the generic point of X. If H*(X;&') ~ 0, then H'(X; &) ~ 0.

Proof. The exact sequence of quasi-coherent sheaves 0 — ker(¢) — & — &' /ker(¢) —
0 determines an exact sequence of cohomology groups H'(X;&') — H'(X;& /ker(¢)) —
H?(X;ker(¢)). Since X is a curve, H*(X;ker(¢)) ~ 0. It follows that H'(X; & / ker(¢)) ~ 0.
The short exact sequence of sheaves
0 — & /ker(¢) — & — coker(¢) — 0
determines a short exact sequence
H'(X; & /ker(¢)) — H'(X; &) — H'(X; coker(¢)).

Since ¢ is generically surjective, the sheaf coker(¢) has finite support so that HY(X; coker(¢)) ~
0. Tt follows that H*(X; &) ~ 0 as desired. O

Lemma 3.9.10. Let € be a vector bundle on X and let [ : X > X bea finite flat map of
curves which is generically étale. If HY(X; f* &) ~ 0, then H'(X; &) ~ 0.

Proof. Since f is generically étale, the trace map f. O — Ox induces a generically surjective
map of vector bundles f.f*€ ~ f, 05 ®E& — €. Because HY(X; f.f* &) ~ Hl()z;f* &) ~ 0,
Lemma 3.9.9 implies that H'(X; &) ~ 0. O

Proof of Proposition 3.9.4. Let Gy denote the generic fiber of G, let G’ denote a split semisimple
algebraic group over k of the same type as G, let B’ C G’ be a Borel subgroup, and let
Y = B'\G’ be the associated flag variety. Since Gg is quasi-split, we can choose a Galois
extension L of Kx such that Gy splits over L, an action of the Galois group I' = Gal(L/Kx)
on G’ (via pinned automorphisms), and a I'-invariant isomorphism

Spec L x x G ~ Spec L Xspeck G'.
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Then L is the fraction field of a smooth curve X equipped with a finite generically étale map
f:X—=X.

Choose a map 50 : D — P lifting s¢. Using Lemma 3.9.7, we can extend 5y to a trivialization
5 of P over some open set V' C X containing D and all points x € X for which the fiber G,

is not semisimple. The proof of Lemma 3.9.8 shows that the composite map V' 5P B\?P
extends uniquely to a map s : X — B\ P which extends sg.
The trivialization 5 determines an isomorphism

(B\ {P) Xx SpecKX ~ Bo\Go,

where we can identify By\Go with the quotient of Y Xgpec ks Spec L by the diagonal action of T
It follows that there exists a dense open subset U C V and a I'-equivariant isomorphism

p:YXSpeckﬁ*)(B\fP) Xxﬁ,

where U = U x x X denotes the inverse image of U in X. Shrinking U if necessary, we may
suppose that DNU = 0. Let 7 : X — Y Xgpecr X be the map whose projection onto the first
factor is the constant map determined by the base point of Y, and note that the diagram

X

e |

Y XSpeckijL)B\?

commutes. Write X — U = {z1,...,2m}. Using Lemma 3.9.6 and Proposition A.3.11, we
deduce that there exist integers nq,...,n, > 0 and a commutative diagram

Y Xspeck(ﬁjgp><B\?) Xxﬁ

N

Z (B\P) xx X,

where Z is obtained from Y Xgpeck X by performing an n;th order dilitation along r at the
point z; for each 1 <i < m. Let D' = > n;z;. Enlarging the integers n; if necessary, we may
suppose that D’ is the inverse image~0f a divisor in X which contains D.

Let p: Z — Y and ¢ : Z — X denote the projection maps. Applying Remark A.3.2
repeatedly, we obtain a canonical isomorphism 7', /% p*Ty @ q* O 5 (—D"). By construction, r
lifts to a map 7 : X - Z. Invoking Proposition 3.8.1, we can choose a map 7’ : XY X Spec k)?
with the following properties:

(a) The map 7’ is I'-equivariant.

(b) Let D denote the inverse image of D in X. Then the restriction of r'|5, ,, is given by
the constant map from D +~D’ to the base point of Y.

(¢) The cohomology group H'(X; ()*(Ty K O5(—D — D’)) vanishes.

Using (b) and Proposition A.3.7 (applied to the maps r, ' : X > Y'), we deduce that 7’ = por’
for some map 7 : X — Z such that po 7|5 is compatible with so. Using (c), we deduce that
H'(X; (7T, 5)(=D)) = 0. Let 5" = p o7, which we identify with a map from X into B\ P.
Then p induces a map of vector bundles

—/% ~T%
Ty x5 —s Ty
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which is a generic isomorphism. Applying Lemma 3.9.9, we conclude that the cohomology
group H'(X; (3*T,)(—=D)) vanishes. Since 3 is I-invariant, it descends to a map s’ : X ~
X /T — B\P. Then ' is a section of the projection 7 : B\ P — X, and the cohomology group

H'(X; (s"*T,)(—D)) vanishes by virtue of Lemma 3.9.10. O
We now turn to the proofs of Lemmas 3.9.6 and 3.9.7.

Proof of Lemma 3.9.6. Let U C X be an affine open subset; we will show that U xx (B\ P)
is a scheme. Write U = Spec A and let U x x G = Spec H, where H is a Hopf algebra over
A. Then we can write U Xx B = Spec H’, where H' is the quotient of H by a Hopf ideal
I C H. Let us view H as a left comodule over itself, and note that H is A-flat. Since A is a
Dedekind ring, we can write H as a filtered colimit lim H,,, where each H,, is a submodule of H
which is projective of finite rank over A and invariant under the right coaction of H on itself.
Let I, = H, N 1. Then we have an injective map H, /I, < H’. Since B is flat over X, H’
is a torsion-free A-module so that H, /I, is also torsion-free. Note that I = |J, Io. We may
therefore choose an index « such that I is generated by I, (as an ideal in H). Let & denote
the vector bundle on U determined by H,, let d denote the rank of I, as an A-module, and let
Grg(&) denote the U-scheme which parametrizes subbundles of € having rank d. The choice of
submodule I, C H, determines a map of U-schemes s : U — Gry(€).

The H-comodule structure on H, determines a right action of Gy = U xx G on &, and
therefore also on the scheme Gry(€). Since I is a Hopf ideal, the comultiplication map A :
H — H®x H carries I into I ®4 H+ H ®4 I, so that the composite map

IH2HosH - HoqH

carries I into I ® 4 H'. It follows that this map also carries I, into I, ® 4 H’, so that s is
invariant under the action of By = U xx B on Grgy(€). We claim that By = U xx B is
precisely the stabilizer of the section s. To prove this, we let A’ denote an arbitrary A-algebra,
and suppose we are given a point g € G(A’), which is classified by an A-algebra homomorphism
¢: H— A'. If g fixes the section s, then the composite map

I, s HAHo HAHo, A

carries I, into I, ® 4 A’. Let € : H — A denote the augmentation on A, so that e annihilates
I,. Then the composite map

I, s HA3Ho HSS Ag A~ A

vanishes. It follows that ¢ annihilates I, and therefore (since I, generates the ideal I) the
element g belongs to the subgroup B(A’) C G(A’), as desired.

Let B\G denote the quotient of G by the left action of B, so that evaluation on the section
s determines a monomorphism of algebraic spaces

U xx (B\G) — Grd(E).
This map is G-invariant, and therefore determines a map
p:U xx (B\P) — Grg(&) x¢ P,

where Gry(€) x& P denotes the quotient of Gry(€) x x P by the diagonal action of G. Then y is
a quasi-compact monomorphism of algebraic spaces, hence quasi-affine ([27]). Consequently, to
prove that U x x (B/®P) is a scheme, it will suffice to show that Gryq(€) x“ P is a scheme. This
is clear: the product Grg(€) x P can be identified with Gry(€'), where €’ is the vector bundle
on U x x Xr determined by € and P (so that Gryq(€) x¢ P is projective over U x x Xg). O



WEIL’S CONJECTURE FOR FUNCTION FIELDS 97

Our proof of Lemma 3.9.7 will use the following fact, which was communicated to us by
Brian Conrad:

Lemma 3.9.11. Let R be a complete discrete valuation ring with mazimal ideal m, let K be
the fraction field of R, let Y be a smooth affine K-scheme, and let U CY be a dense open set.
Then U(K) is dense in Y (K) (where we equip Y (K) with the m-adic topology).

Proof. The assertion is local with respect to the Zariski topology on Y. We may therefore
assume without loss of generality that there exists an étale morphism of k-schemes ¢ : Y — Al
where d is the dimension of Y. Let Z denote the complement of U In Y. Since U is dense, we
have dim(Z) < d, so that the image under ¢ of Z is contained in a proper closed subscheme of
A?. We may therefore choose a nonzero polynomial f (21,...,24) which vanishes on the points
of $(Z(K)), so that ¢(Z(K)) cannot contain any nonempty open subset of K™. It follows from
Hensel’s lemma that ¢ induces an open map Y (K) — K% so that Z(K) cannot contain any
open subset of Y (K) and therefore U(K) is dense in Y (K), as desired. O

Proof of Lemma 3.9.7. By Tsen’s theorem, the fraction field Kx is a field of dimension 1. It
follows that the G-bundle P is trivial at the generic point of X (see [10]). Let us view this
trivialization as a map 7 : Spec Kx — P fitting into a commutative diagram

Spec Kx S

~

Using a direct limit argument, we see that 1 can be extended to a map of X-schemes V' — P,
where V is a dense open subset of X. Shrinking V' if necessary, we may assume that V' N.D = ().
Let U be the open subset of X given by the union of V and D. We wish to show that
after modifying the set V' and the trivialization 7, we can arrange that n and s extend to a
trivialization of P |y .

Write D = {z1,...,2,}. Since G is smooth, we can extend -y to a trivialization v of P
over ITSpec Q,,, where O,, denotes the complete local ring of X at the point z; (so that O,
is noncanonically isomorphic to a power series ring k[[t]]). For 1 < i < n, let K,, denote the
fraction field of O, so that n and ~ determine two different trivializations of P |gpec Ko, - These
trivializations differ by some elements g; € G(K,). Let d; denote the multiplicity of x; in the
divisor D, let m; denote the maximal ideal of O,,, and let S; denote the kernel of the reduction
map G(O,,) — G(O,, /m¥). Unwinding the definitions, we see that ~ is compatible with 7 if
and only if each g; belongs to the set S;.

To complete the proof, we wish to show that we can change the trivialization n to arrange
that each g; belongs to S;. In other words, we wish to prove that we can choose g € G(Kx) so
that each of the products gg; € G(K_,) belongs to S;.

Let us regard each G(K,,) as a topologlcal space as in Lemma 3.9.11. By construction, the
product [],<;<,, Sig; - is a nonempty open subset of [[,,., G(K,,). It will therefore suffice
to prove the following: o

(¥) The map G(Kx) = [[;<;<, G(Kz,) has dense image.

Let Gy be the generic fiber of G. Since the field Kx has dimension 1, the group Gq is
quasi-split. Let By be a Borel subgroup of Gy, let Ty C By be a maximal torus, let Bf be the
unique Borel subgroup of GGy which contains Ty and is in general position with respect to By,
and let Uy and Uy be the unipotent radicals of By and By, respectively. Then W = U}T,Uy is
a Zariski-dense open subset of G, so that Lemma 3.9.11 implies that [[,.,.,, W(K,) is dense
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in [[,<;<, G(Ky,). It will therefore suffice to show that the map W (Kx) — [[,<,<, W(Ks,)
has dense image. T

Using the lower central series of Uy, we obtain a sequence of surjective algebraic group
homomorphisms

Uo-)Ul—)U2—>—>Um:{O}

Each of the kernels of these maps is a vector group over Kx, and therefore isomorphic (as a
scheme) to an affine space over Kx. Since each U; is an affine scheme, the maps U; — U, 41
admit sections (in the category of schemes), so that Uy is isomorphic (as a scheme) to a product
of finitely many copies of the affine line A' over Kx. Similarly, U} is isomorphic to a product
of finitely many copies of A'. Using the decomposition W ~ Uy x T x U}, (and our assumption
that the generic fiber of G is either semisimple or adjoint), we see that the K x-scheme W is
isomorphic to product of finitely many factors W3, where each W3 is isomorphic either to the
affine line A over K x or to a restriction of scalars of the multiplicative group G,, from a finite
extension Lo C L of Kx. The desired result now follows from the observations that the maps

KEx— [ E.. Li— ] (Looxs Ke)*

1<i<n 1<i<n

have dense image. O

4. THE FORMALISM OF /¢-ADIC SHEAVES

Let k be an algebraically closed field, let £ be a prime number which is invertible in k, let
X be an algebraic curve over k, and let G be a smooth affine group scheme over X. In §3,
we proved that if the generic fiber of G is semisimple and simply connected, then the forgetful
functor Rang(X) — Bung(X) is a universal homology equivalence (see Theorem 3.2.13). In
particular, the pullback map

H*(Bung(X); Z¢) — H*(Rang(X); Z¢)

is an isomorphism. The formulation and proof of this statement use the language of /-adic
cohomology, but only in its most elementary incarnation: all cohomology (or homology) is
taken with constant coefficients.

Unfortunately, the calculation of H*(Bung(X); Z¢) supplied by Theorem 3.2.13 is not ade-
quate for our needs in this paper. In order to prove Theorem 1.3.5, we will need to establish
¢-adic analogues of the other topological formulae for the cohomology of Bung(X) outlined in
§1.4. For this purpose, the language of §2 is not sufficient: we need not only the theory of ¢-adic
cohomology, but also the more elaborate theory of /-adic sheaves. Consequently, we devote this
section to giving a review of the formalism of ¢-adic sheaves in a form which is convenient for
our purposes.

We begin in §4.1 by reviewing the theory of étale sheaves. To every scheme Y and every com-
mutative ring A, one can associate a stable co-category Shv(Y'; A) of Moda-valued étale sheaves
on Y (Notation 4.1.2). This can be regarded as an “enhancement” of the derived category of
the abelian category of sheaves of A-modules on Y, whose objects are cochain complexes

Y e N A S Ly L,

The oo-category Shv(Y; A) contains a full subcategory Shv®(Y’; A) of constructible perfect com-
plexes, which we will discuss in §4.2. However, the oo-category Shv®(Y; A) is too small for many
of our purposes: it fails to contain many of the objects we are interested in (for example, the
cochain complex C*(Bung(X); Z/¢Z) typically has cohomology in infinitely many degrees), and
does not have good closure properties under various categorical constructions we will need to
use (such as the formation of infinite direct limits). On the other hand, allowing arbitrary chain
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complexes (in particular, chain complexes which are not bounded below) raises some technical
convergence issues. We will avoid these issues by restricting our attention to the case where
the scheme Y has finite type over an algebraically closed field. In this case, the étale site of
Y has finite cohomological dimension, which implies that Shv(Y; A) is compactly generated by
the subcategory Shv®(Y; A) (Proposition 3.5.4).

The construction Y +— Shv(Y;A) depends functorially on A: every map of commutative
rings A — A’ induces base change functors

Shv(Y;A) — Shv(Y;A') Shv(Y; A) — Shve(Y; A').
In particular, we have a tower of co-categories
oo = Shve(Y; Z/6%) — Shve(Y; Z/0?) — Shve(Y; Z/0Z).

We will denote the (homotopy) inverse limit of this tower by Shvj(Y'), and refer to it as the
oco-category of constructible £-adic sheaves on Y. In §4.3, we will study the Ind-completion
Shv,(Y) = Ind(Shvy(Y)) of Shvy(Y), which we refer to as the oo-category of (-adic sheaves
on Y. These oco-categories provide a convenient formal setting for formulating most of the
constructions of this paper: the co-category Shv,(Y) contains all constructible ¢-adic sheaves
F € Shv(Y) as well as other objects obtained by limiting procedures (such as localizations of
the form F[¢~1]). Many important foundational results in the theory of étale cohomology (such
as the smooth and proper base change theorems) can be extended to the setting of ¢-adic sheaves
in a purely formal way; we will review the situation in §4.5. However, it is sometimes necessary
to make convergence arguments which require us to restrict our attention to f-adic sheaves
satisfying boundedness conditions; we therefore devote §4.4 to a review of the construction of
a t-structure on Shvy(Y) (which formally determines a t-structure on the co-category Shv,(Y")
as well).

For any quasi-projective k-scheme Y, the usual (left derived) tensor product of sheaves
determines a symmetric monoidal structure on the oo-category Shv,(Y'), whose underlying
tensor product functor we denote by

® : Shvy(Y) x Shve(Y) = Shv,(Y).

In §4.6, we will study the Verdier dual of this operation: this determines a second symmetric
monoidal structure on Shv,(Y"), whose underlying tensor product we denote by

@' 1 Shvy(Y) x Shvy(Y) — Shv,(Y).

The unit object of Shv,(Y) with respect to this second tensor product is not the constant sheaf,
but instead the dualizing complex of Y which we denote by wy € Shv(Y).

4.1. Etale Sheaves. Let X be a scheme and let A be a commutative ring. One can associate
to X an abelian category A of étale sheaves of A-modules on X. The derived category D(A)
provides a useful setting for performing a wide variety of sheaf-theoretic constructions. However,
there are other basic constructions (such as the formation of mapping cones) which cannot be
carried out functorially at the level of derived categories. One way to remedy the situation is
to introduce an oco-category Shv(X; A) whose homotopy category is equivalent to the derived
category D(A). It is possible to produce such an oo-category by applying a purely formal
procedure to the abelian category A (see §HA.1.3.2 and §HA.1.3.5). However, it will be more
convenient for us to define Shv(X;A) directly as the co-category of (hypercomplete) Mody -
valued sheaves on X. Our goal in this section is to give a brief introduction to this point of
view, and to review some of the basic properties of étale sheaves which will be needed in the
later sections of this paper. We will confine our attention here to the most formal aspects of the
theory, where the coefficient ring A can be taken to be arbitrary; for the essential base change
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and finiteness results for étale cohomology, which require additional hypotheses on A, will be
discussed in §4.3 and 4.5.

Remark 4.1.1. Since the apparatus of étale cohomology is treated exhaustively in other
sources (such as [2] and [13]; see also [17] for an expository account), we will be content to
summarize the relevant definitions and give brief indications of proofs.

Let k& be an algebraically closed field, which we regard as fixed throughout this section. To
simplify the exposition, we will restrict our discussion to the setting of étale sheaves on quasi-
projective k-schemes. This is largely unnecessary: much of the theory that we describe can be
carried out for more general schemes. However, some restrictions on cohomological dimension
are needed in the proof of Lemma 4.1.13 (and the many other statements which depend on it).

Notation 4.1.2. Let Schy denote the category of quasi-projective k-schemes. For each X €
Schy,, we let Sch% denote the category whose objects are étale maps U — X between quasi-
projective k-schemes. Morphisms in SchS are given by commutative diagrams

U\X'/V

We will say that a collection of morphisms {f, : Uy — V} in Sch% is a covering if the induced
map MU, — V is surjective. The collection of coverings determines a Grothendieck topology
on the category Sch%7 which we refer to as the étale topology.

Let A be a commutative ring, and let Mod, be the oco-category of chain complexes over A
(see Example 2.1.23). A Mody -valued presheaf on X is a functor of co-categories

F : (Sch%)°P — Mody .

If 7 is a Mod y-valued presheaf on X and U € Sch$, then we can regard F(U) as a chain complex
of A-modules. For each integer n, the construction U +— H, (F(U)) determines a presheaf of
abelian groups on X. We let m, ¥ denote the étale sheaf of abelian groups on X obtained by
sheafifying the presheaf U — H,, (F(U)). We will say that F is locally acyclic if, for every integer
n, the sheaf m, F vanishes.

We let Shv(X;A) denote the full subcategory of Fun((Sch$)°P, Mod,) spanned by those
Modj-valued presheaves & which have the following property: for every locally acyclic object
F' € Fun((Sch%)°?, Mod, ), every morphism « : 7 — F is nullhomotopic.

Remark 4.1.3. Let JF : (Sch‘ig)"p — Modp be a Mody-valued presheaf on a quasi-projective
k-scheme X. Then F € Shv(X;A) if and only if the following conditions are satisfied:

(1) The presheaf F is a sheaf with respect to the étale topology on Sch%. That is, for every
covering {f, : U, — V}, the canonical map F(V) — @?(U) is an equivalence in
Mod,, where the limit is taken over all objects U € Sch$} for which the map U — V
factors through some f,.

(2) The Modx-valued sheaf F is hypercomplete, in the sense of Definition SAG.1.2.1.15
(this is a technical hypothesis which is necessary only because we consider potentially
unbounded complexes, where descent for Cech coverings does not necessarily imply
descent for arbitrary hypercoverings).

Example 4.1.4. Let M be a finite abelian group equipped which is a module over some
commutative ring A. For every quasi-projective k-scheme X, the construction U — C*(U; M)
(see Definition 2.2.6) satisfies conditions (1) and (2) of Remark 4.1.3, and can therefore be
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regarded as an object of Shv(X;A). Condition (1) follows immediately from the definition,
and condition (2) is automatic since the cochain complexes C*(U; M) are concentrated in
nonnegative cohomological degrees.

Example 4.1.5. If X = Speck, then the oo-category Shv(X;A) is equivalent to Mod,. Con-
cretely, this equivalence is implemented by the global sections functor F — F(X) € Mod,.

Remark 4.1.6. Let X and A be as in Notation 4.1.2. For each integer n € Z, we let
Shv(X;A)<y denote the full subcategory of Shv(X;A) spanned by those objects I for which
TmF =~ 0 for m > 0, and we let Shv(X;A)>, denote the full subcategory of Shv(X;A)
spanned by those objects F for which 7, & ~ 0 for m < 0. Then the full subcategories
(Shv(X; A)>0, Shv(X; A)<o) determine a t-structure on Shv(X;A). Moreover, the construction
F +— mp F determines an equivalence of categories from the heart

Shv(X;A)¥ = Shv(X; A)>o N Shv(X;A)<o

of Shv(X;A) to the abelian category of étale sheaves of A-modules on X (see Proposition
SAG.2.1.1.3). In what follows, we will use this equivalence to identify the abelian cate-
gory of sheaves of A-modules on X with a full subcategory of Shv(X;A)Y. In particular, if
F € Shv(X;A), we will generally identify the sheaves m, F with the corresponding objects of
Shv(X;A)7.

Warning 4.1.7. In this paper, we will use homological indexing conventions when working
with t-structures on triangulated categories, rather than the cohomological conventions which
can be found (for example) in [8]. One can translate between conventions using the formulae

<n >n

=C>_p =C<p.

Warning 4.1.8. Let X and A be as in Notation 4.1.2, and let F be an object of the abelian
category A of étale sheaves of A-modules on X. Then there are two different ways in which F
can be interpreted as a Modj-valued presheaf on X:

(a) One can view J as a presheaf with values in the abelian category Mod} of (discrete)
A-modules, which determines a functor

Fo : (Sch$)°P — Mody € Mody .

(b) Using the equivalence of abelian categories A ~ Shv(X;A)", one can identify F with
an object

F, € A~ Shv(X;A)” C Shv(X;A) C Fun((Sch$)°P, Mod, ).

The functors Fy and F; are generally not the same. By construction, the functor Fy has the
property that for every étale X-scheme U, the chain complex Fy(U) € Mod, has homology
concentrated in degree zero, but the homologies of F1(U) are given by the formula

H, (F1(U)) ~ He" (U; F[v)-

Note also that F; is a Mody-valued sheaf with respect to the étale topology on Sch‘}g but Fy is
not (in fact, ¥y can be identified with the sheafification of Fy with respect to the étale topology).

Remark 4.1.9 (Functoriality). Let f : X — Y be morphism of quasi-projective k-schemes and
let A be a commutative ring. Then f determines a base-change functor Sch$’ — Sch%, given
by U — U xy X. Composition with this base-change functor induces a map Shv(X;A) —
Shv(Y;A), which we will denote by f. and refer to as pushforward along f. The functor
f+ admits a left adjoint, which we will denote by f* and refer to as pullback along f. If
F € Shv(Y; A), we will sometimes denote the pullback f*JF by F|x, particularly in those cases
when f exhibits X as a subscheme of Y.
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Example 4.1.10. Let f: X — Y be an étale morphism between quasi-projective k-schemes.
Then composition with f induces a forgetful functor u : Schﬁ? — Sch‘;@. The pullback functor
f* : Shv(Y;A) — Shv(X;A) is then given by composition with u. From this description, we
immediately deduce that f* preserves limits and colimits. Using Corollary HTT.5.5.2.9, we
deduce that f* admits a left adjoint which we will denote by f;. In the special case where f is
an open immersion, we will refer to f as the functor of extension by zero along f.

Proposition 4.1.11. Let X be a quasi-projective k-scheme, and let F € Shv(X;A) for some
commutative ring A. The following conditions are equivalent:

(1) The sheaf F vanishes.
(2) For every k-valued point n : Speck — X, the stalk n*F € Shv(Speck;A) ~ Mody
vanishes.

Proof. The implication (1) = (2) is trivial. Suppose that F satisfies (2); we will show that
F ~ 0 by proving that the identity map id : ¥ — F is nullhomotopic. For this, it will suffice to
show that F is locally acyclic: that is, each of the sheaves of abelian groups 7, ¥ vanishes. We
may therefore assume without loss of generality that F belongs to the heart of Shv(X;A). We
will abuse notation by identifying F with the corresponding sheaf of abelian groups on Sch.
Choose an object U € Sch% and a section s € F(U); we wish to show that s = 0. Let V C U
be the largest open subset for which s|y = 0. Suppose for a contradiction that V' # U. Then
we can choose a point 7y : Speck — U which does not factor through V. Let 1 denote the
composition of 7y with the map U — X, so that n* F ~ 0 by virtue of (2). It follows that the
map 7y factors as a composition
Speck — U — U,

where s|; = 0. We conclude that s vanishes on the open subset of U given by the union of V'
with the image of U , contradicting the maximality of V. O

Proposition 4.1.12. Suppose we are given a diagram of quasi-projective k-schemes o :

’

UXL>UY

N

X ——Y,
where j' and j are étale. If o is a pullback diagram, then the associated diagram of co-categories

Shv(Ux; A) <—— Shv(Uy; A)

T T

Shv(X;A) =<—— Shv(Y;A)

satisfies the Beck-Chevalley property: that is, the induced natural transformation j| f"™* — f*7
is an equivalence of functors from Shv(Uy;A) to Shv(X;A) (see §4.5 for a more detailed dis-
cussion).

Proof. Passing to right adjoints, we are reduced to proving that the canonical map j* f, — f1j"*
is an equivalence. Let F € Shv(X;A). Using the descriptions of the pullback and pushforward
functors supplied by Remark 4.1.9 and Example 4.1.10, we must show that for every object
V € Schyy, , the restriction map F(Ux xy, V) = F(X xy V) is an equivalence. This is evidently
satisfied whenever o is a pullback square. O
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The theory of étale sheaves makes sense for arbitrary schemes, not just those which are
quasi-projective over an algebraically closed field k. However, technical difficulties can arise
when dealing with unbounded chain complexes. In the setting of quasi-projective k-schemes,
these difficulties can be circumvented using the finiteness of cohomological dimension:

Lemma 4.1.13. Let X be a quasi-projective k-scheme of Krull dimension d, and let F be an
étale sheaf of abelian groups on X. Then the cohomology groups H™ (X ; F) vanish for n > 2d+1.

Proof. Let Shvyis(X; Z) denote the full subcategory of Fun((Sch$ )°?, Modz) spanned by those
functors which are sheaves with respect to the Nisnevich topology, and let ¢ : Shv(X;Z) <
Shvyis(X; Z) denote the inclusion map. Let F’ denote the object of the heart Shv(X;Z)%
corresponding to F, so that we have a canonical isomorphism H"(X;J) ~ H_, 3'(X). Since
the oo-topos of Nisnevich sheaves on X has homotopy dimension < d (see SAG.1.1.5), it will
suffice to show that F’ belongs to Shvis(X;A)>_q—1. To prove this, it will suffice to show
that for every map n : Spec R — X which exhibits R as the Henselization of X with respect
to some finite extension of some residue field of X, the cohomology groups H™ (Spec R; n* F)
vanish for m > d + 1. Let x’ denote the residue field of R, and let 79 : Specx’ — X be the
restriction of 7. Then &’ is an extension of k of trancendence degree < d, and is therefore a
field of cohomological dimension < d (see [50]). Since the ring R is Henselian, the canonical
map H™(Spec R;n* F) — H™(Specx’;ng F) is an isomorphism so that that H™ (Spec R; n* F)
vanishes for m > d + 1 as desired. O

To any Grothendieck abelian category A, one can associate a stable oo-category D(A) called
the (unbounded) derived co-category of A, whose homotopy category is the classical derived
category of A; see §HA.1.3.5 for details.

Proposition 4.1.14. Let X be a quasi-projective k-scheme and let A be a commutative ring.
Then the inclusion Shv(X;A)Y < Shv(X;A) extends to an equivalence of oco-categories 0 :
D(Shv(X;A)%) ~ Shv(X; A). In particular, the homotopy category of Shv(X;A) is equivalent
to the unbounded derived category of Shv(X;A)Y.

Proof. When restricted to chain complexes which are (cohomologically) bounded below, this
follows from the fact that the Grothendieck site SchS is an ordinary category (rather than
an oo-category) and that A is an ordinary ring (rather than a ring spectrum); see Proposi-
tion SAG.2.1.1.8. It follows from Lemma 4.1.13 that the equivalence extends to unbounded
complexes; see Proposition SAG.2.1.1.11 for more details. g

Remark 4.1.15. Let X be a quasi-projective k-scheme and let A be a commutative ring. Then
an object F € Shv(X; A) belongs to Shv(X;A)>¢ if and only if, for every point 7 : Speck —
X, the stalk n* F € Shv(Speck;A) ~ Modp belongs to (Moda)so. Similarly, F belongs to
Shv(Spec k; A)<o if and only if each stalk n* F belongs to (Moda)<o.

Proposition 4.1.16. Let X be a quasi-projective k-scheme. Then, for every commutative ring
A, the full subcategory Shv(X;A) C Fun((Sch¥)°P, Mody) is closed under colimits.

Proof. The inclusion Shv(X;A) < Fun((Sch%)°?, Mody) is a left exact functor between stable
oo-categories and therefore preserves finite colimits. It will therefore suffice to show that it
preserves filtered colimits. Let {F,} be a filtered diagram of objects of Shv(X;A) having
colimit F. We wish to prove that for each U € Sch%, the canonical map ligﬂ?a(U) — F(U)
is an equivalence. In other words, we want to show that for each integer n, the induced map
lim 77y, Fo(U) = 7, F(U) is an isomorphism of abelian groups. Shifting if necessary, we may
suppose that n = 0. Replacing each F, by a truncation if necessary, we may suppose that
each F, belongs to Shv(X;A)>o. Using Lemma 4.1.13, one can show that there exists an
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integer N >> 0 such that the canonical map 7o §(U) — mo(7<n §)(U) is an isomorphism, for
each § € Shv(X;A). Replacing each F, by 7<n Fo, we may assume that {F,} is a diagram in
Shv(X; A)<n for some integer N. The desired result now follows formally from the fact that the
Grothendieck topology on Schgﬁ is finitary (that is, every covering admits a finite refinement);
see Corollary SAG.1.3.2.20 for more details. d

Corollary 4.1.17. Let f : X — Y be a morphism of quasi-projective k-schemes. Then, for
every commutative ring A, the pushforward functor f. : Shv(X;A) — Shv(Y;A) preserves
colimits.

Remark 4.1.18. Let f : X — Y be as in Corollary 4.1.17. Applying Corollary HTT.5.5.2.9,
we deduce that the functor f, admits a right adjoint. In the special case where f is proper,
we will denote this right adjoint by f'. We will refer to f' as the exceptional inverse image
functor. We will primarily be interested in the functor f' in the special case where f is a closed
immersion.

Warning 4.1.19. If the coefficient ring A is finite, there is a good definition of the exceptional
inverse image functor f' for an arbitrary morphism f : X — Y. However, the functor f' is
right adjoint to the compactly supported direct image functor fi, rather than the usual direct
image functor f.. Since we do not wish to address the homotopy coherence issues which arise in
setting up an “enhanced” six-functor formalism, we will not consider this additional generality:
that is, we consider the functor f' as defined only when f is proper, and the functor fi as
defined only when f is étale (a special case of the relationship between f' and f; is articulated
in Example 4.5.15).

Example 4.1.20. Let n be a positive integer which is invertible in k and let A = Z/nZ. For
every k-scheme X, let u,x denote the invertible object of the abelian category Shv(X;A)Y
corresponding to the sheaf of abelian groups U — {f € Ox(U) : f* =1} If f : X - Y is
a proper smooth morphism of relative dimension d, then the main result of [56] supplies an
equivalence
FIFay2,®d @) g,
Remark 4.1.21. Let X be a quasi-projective k-scheme which is smooth of dimension d, let n
be a positive integer which is invertible in &, and let n : Speck — X be a point of X. Then
there is an equivalence
N'Z/nZ ~ 52 uE 4,
where fi, = finspeck € Shv(Speck;Z/nZ). To prove this, we can work locally with respect to
the étale topology on X, and thereby reduce to the case where X = P” so that there exists a
proper morphism 7 : X — Speck. In this case, Example 4.1.20 supplies an equivalence
N'Z/nZ =~ (7T g

(mon) S~ ug

~ E*Qd‘u‘®*d

- n
Proposition 4.1.22. Let i : Y — X be a closed immersion of quasi-projective k-schemes.
Then:

(1) The functor ' preserves filtered colimits.
(2) The functor i, preserves compact objects.

Proof. The implication (1) = (2) follows from Proposition HTT.5.5.7.2. We will prove (1).
Since the functor i, is a fully faithful embedding which preserves colimits (Corollary 4.1.18), it
will suffice to show that the composite functor F + i,i' F preserves filtered colimits. Using the

12
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existence of a fiber sequence i,i' F — F — j,j*F, we are reduced to proving that the functor
F +— ji«g* F preserves filtered colimits, which follows from Corollary 4.1.17. 0

Proposition 4.1.23. Let X be a quasi-projective k-scheme. Then there exists an integer n
with the following property: for every closed immersion i :Y — X and every commutative ring
A, the functor i carries Shv(X; A)Y into Shv(Y;A)>,.

Proof. Let d be the Krull dimension of X. We will prove that n = —2d has the desired property.
Let 7 : Y < X be a closed immersion, and let j : U — X be the complementary open immersion.
To prove that the functor i' carries Shv(X; A)¥ into Shv(Y; A)s,,, it will suffice to show that the
composite functor 4,4 carries Shv(X;A)? to Shv(X;A)s,. Using the fiber sequence of functors

$j. " = et = id,
we are reduced to proving that the functor j, carries Shv(U;A)Y into Shv(X;A)s, 1. Let
F € Shv(U;A)¥. We will prove that j.F € Shv(X;A)s, 1 by proving that (j. F)(V) €
(ModA)Zn,l for every étale map V — X. Equivalently, we must show that the cohomology
groups H' (U xx V;F|uxyv) vanish for ¢ > 2d 4 1, which follows from Lemma 4.1.13. O

Remark 4.1.24. Let i : Y — X be a closed immersion of quasi-projective k-schemes schemes,
let U =X-Y,andlet j: U — X be the complementary open immersion. Then the pushforward
functor 4, : Shv(Y; A) — Shv(X; A) is a fully faithful embedding, whose essential image is the
full subcategory of Shv(X; A) spanned by those objects F € Shv(X; A) such that j*F ~ 0 (see
Proposition SAG.2.2.1.14)

Let F € Shv(X; A). Then the fiber X of the canonical map F — j,j* F satisfies j* K ~ 0, so
we can write X ~ i, Ko for some Ky € Shv(Y;A). For each § € Shv(Y; A), we have canonical
homotopy equivalences

MapShv(Y;A)(gv Ko) =~ MapShv(X;A) (ix G, 14 Ko)

fib(Mapgy,y (x;a) (@5 9, F) = Mapgy, (x;a) (i 9, 55" F))
~  fib(Mapgyy(x;a)(ix 9, F) = Mapgyy(u;a) (174 9,5 F))
~  Mapgpy(x;a)(ix 5, F).

R

so that K, can be identified with the sheaf ' . In other words, we have a canonical fiber
sequence

W F =T = F.
Using similar reasoning, we obtain a canonical fiber sequence
WrF=TF = iadt T

Remark 4.1.25. If i : X — Y is a closed immersion of quasi-projective k-schemes, then Re-
mark 4.1.24 gives an explicit construction of the functor i' (which does not depend on Corollary
4.1.17): namely, for each object F € Shv(X;A), we can identify ' with a preimage (under the
functor i,) of the fiber of the unit map F — j.j* F.

4.2. Constructible Sheaves. Let k be an algebraically closed field, which we regard as fixed
throughout this section. Let X be a quasi-projective k-scheme and let A be a commutative
ring. In §4.1, we introduced the stable oo-category Shv(X; A) of étale sheaves of A-modules on
X. In this section, we will show that the co-category Shv(X;A) is compactly generated, and
that the compact objects of Shv(X; A) can be identified with the (perfect) constructible sheaves
on X (Proposition 4.2.5).
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Notation 4.2.1. Let X be a quasi-projective k-scheme, so that there is a unique morphism of
k-schemes f : X — Speck. Pullback along f determines a functor

Mody ~ Shv(Spec k; A) N Shv(X; A),
which we will denote by M +— M . For each M € Mod,, we will refer to M x as the constant
sheaf on X with value M. By construction, the functor M — M x is left adjoint to the global

sections functor F + F(X) € Mod,. In the special case where M = A = Z/{?Z, the constant
sheaf M y is given by the formula M (U) = C*(U; Z/¢%Z) (see Definition 2.2.6).

Proposition 4.2.2. Let X be a quasi-projective k-scheme and let A be a commutative ring.
Then the co-category Shv(X; A) is compactly generated. Moreover, the full subcategory

Shv®(X;A) C Shv(X;A)

spanned by the compact objects is the smallest stable subcategory of Shv(X; A) which is closed
under retracts and contains every object of the form ji\y, where j : U — X is an object of the
category Schl.

Proof. We first show that for each j : U — X in Sch%, the sheaf jiA;; is a compact object of
Shv(X;A). To prove this, it suffices to show that the functor

F = Mapgy,(x;a) (31Ay, F) = Mapyoq, (A, F(U))

commutes with filtered colimits, which follows immediately from Proposition 4.1.16.

Let ¢ C Shv(X;A) be the smallest full subcategory which contains every object of the
form j5iA;; and is closed under retracts. Since € consists of compact objects of Shv(X; A), the
inclusion € < Shv(X;A) extends to a fully faithful embedding F' : Ind(€) — Shv(X;A) which
commutes with filtered colimits (Proposition HTT.5.3.5.10). Moreover, since C is closed under
retracts, we can identify € with the full subcategory of Ind(€) spanned by the compact objects.
To complete the proof that Shv(X; A) is a compactly generated co-category and that € is the
oo-category of compact objects of Shv(X;A), it will suffice to show that F' is an equivalence of
oo-categories. Using Corollary HT'T.5.5.2.9, we deduce that F' has a right adjoint G. We wish
to show that F' and G are mutually inverse equivalences. Since F' is fully faithful, it will suffice
to show that G is conservative. Since G is an exact functor between stable oco-categories, it
will suffice to show that if F € Shv(X;A) satisfies G(F) ~ 0, then F ~ 0. This is clear, since
G(F) ~ 0 implies that

mo Mape (X" 1Ay, G(F)) ~ mo MapShv(X;A)(an!Aa F) ~ H,(F(U))
vanishes for each U € Sch. O

Remark 4.2.3. For every quasi-projective k-scheme X, we can regard Shv(X; A) as a symmet-
ric monoidal co-category (see §SAG.2.1.1), whose unit object is the constant sheaf A y. Suppose
that F is a dualizable object of Shv(X;A) with dual 7. For any diagram of objects {G,} of
Shv(X;A), we have a commutative diagram

h_n} Mapgpy(x;a) (F,5.) ——— Mapgpy(x;a) (T, hﬂ Sa)

l |

lim Mapgy(x,a)(Ax, 7 ® Ga) ——= Mapgyy(xia) (Ax, T ©lim G,).

Consequently, since Ay is a compact object of Shv(X; A) every dualizable object of Shv(X; A)
is compact.

We now give another characterization of the compact objects of Shv(X;A).
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Definition 4.2.4. Let X be a quasi-projective k-scheme. We will say that an object F €
Shv(X;A) is constant if it is equivalent to M, for some M € Moday. We will say that
F is locally constant if there is an étale covering {f, : Uy — X} for which each pullback
frF € Shv(Uy; A) is constant.

Proposition 4.2.5. Let X be a quasi-projective k-scheme. Then an object F € Shv(X; A) is
compact if and only if the following conditions are satisfied:

(1) There exists a finite sequence of quasi-compact open subsets
0=0CU,C---CU,=X

such that, for 1 < i < mn, if Y; denotes the locally closed reduced subscheme of X with
support U; — U; 1,

(2) For every k-valued point n : Speck — X, the stalk n*F € Shv(Speck; A) ~ Mod, is
perfect (that is, it is a compact object of Mody ).

Definition 4.2.6. We will say that an object & € Shv(X; A) is constructible if it satisfies condi-
tions (1) and (2) of Proposition 4.2.5 (equivalently, if it is a compact object of Shv(X;A)). We
let Shv®(X; A) denote the full subcategory of Shv(X; A) spanned by the constructible objects.

Warning 4.2.7. When the commutative ring A is finite, some authors use the term con-
structible to refer to sheaves which are required to satisfy some weaker version of condition (2),
such as the finiteness of the graded abelian group H.(n* F) for each point 7, : Speck — X.

Proof of Proposition 4.2.5. We begin by showing that every compact object F € Shv(X;A)
satisfies conditions (1) and (2). Using Proposition 4.2.2, we may reduce to the case where
F = jiA, for some étale map j : U — X. We first show that F satisfies (1). We may assume
that X # (), otherwise the result is vacuous. Using Noetherian induction on X (and Proposition
4.1.12), we may suppose that the restriction F |y is satisfies (1) for every nonempty closed
subscheme Y C X. It will therefore suffice to show that F |y satisfies (1) for some nonempty
open subscheme V' C X. Passing to an open subscheme, we may suppose that j : U — X is
finite étale of some fixed rank r. In this case, we claim that jiA is locally constant. Choose a
finite étale surjection 2 X — X such that the fiber product U x x X is isomorphic to a disjoint
union of r copies of X. Using Proposition 4.1.12, we may replace X by X. In this case, the
sheaf jiA; ~ A% is constant.

We now show that for every étale map j : U — X, the sheaf jiA; satisfies condition (2).
Using Proposition 4.1.12, we may replace X by Spec k and thereby reduce to the case where X is
the spectrum of an algebraically closed field. In this case, U is a disjoint union of finitely many
copies of X, so that jiA;; can be identified with a free module A" as an object of Shv(X;A) ~
MOdA.

Now suppose that F is a sheaf satisfying conditions (1) and (2); we wish to show that F is a
compact object of Shv(X;A). Without loss of generality we may suppose that X is nonempty.
Using Noetherian induction on X, we may assume that for every closed immersion 7 : ¥ — X
whose image is a proper closed subset of X, the pullback i* F is a compact object of Shv(Y;A).
Using Proposition 4.1.22 we deduce that i,i* F is a compact object of Shv(Y;A). Let j : U — X
denote the complementary open immersion, so that we have a fiber sequence

WP F = TF =i dt T

It will therefore suffice to show that there exists a nonempty open subset U C X such that
Jij* F is a compact object of Shv(X;A). Since the functor j* preserves colimits, j; preserves
compact objects; it will therefore suffice to show that we can choose U such that j*F is a
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compact object of Shv(U; A). Since F satisfies (1), we may pass to a nonempty open subscheme
of X and thereby reduce to the case where JF is locally constant.

Choose a collection of jointly surjective étale maps j, : U, — X such that each pullback
j& F is constant, hence of the form M(a)U for some M («) € Mod,. Using condition (2), we

deduce that each M/(«) is perfect, hence a dualizable object of Moda. It follows that each
pullback j* F is a dualizable object of Shv(Ug; A), so that F is a dualizable object of Shv(X; A)
and therefore compact by virtue of Remark 4.2.3. O

Remark 4.2.8 (Extension by Zero). Let ¢ : X — Y be a locally closed immersion between
quasi-projective k-schemes, so that ¢ factors as a composition

Xx4Hx 8y

where X denotes the scheme-theoretic closure of X in Y, ¢” is a closed immersion, and i’ is an
open immersion. We let 4; denote the composite functor

Shv(X;A) KA Shv(X;A) Ly Shv(Y; A),
which we will refer to as the functor of extension by zero from X to Y.

Remark 4.2.9. It follows from Proposition 4.2.5 that for every compact object F € Shv(X; A),
there exists a finite stratification of X by locally closed subschemes Y,, and a finite filtration of
JF whose successive quotients have the form i, F,, where F, € Shv(Y,; A) is a locally constant
sheaf with perfect stalks, and i, : Y, — X denotes the inclusion map.

Corollary 4.2.10. Let X be a quasi-projective k-scheme and let A be a field. If F € Shv(X;A)
is compact, then each truncation >, F and 7<, F is also a compact object of Shv(X;A).

Remark 4.2.11. The conclusion of Corollary 4.2.10 holds more generally under the assumption
that A is a ring of finite projective dimension; for example, it also holds when A = Z.

Proposition 4.2.12. Let X be a quasi-projective k-scheme, let A be a field, and let F be an
object of Shv(X; A)V. If F is constructible, then F is a Noetherian object of the abelian category
Shv(X;A)".

Proof. Proceeding by Noetherian induction, we may suppose that for each proper closed sub-
scheme Y C X that each constructible object G € Shv(Y;A)¥ is Noetherian.
By virtue of Proposition 4.2.5, it will suffice to prove the following:

(¥n) Let F € Shv(X;A)Y be constructible. Suppose there exists a nonempty connected open
subset U C X containing a point = such that F |y is locally constant and the stalk F,
has dimension < n (when regarded as a vector space over A). Then F is a Noetherian
object of Shv(X;A)".

The proof proceeds by induction on n. Let U and F satisfy the hypotheses of (x,,). We will
abuse notation by identifying F with a sheaf of A-vector spaces on X. Suppose we are given an
ascending chain of subobjects

FoCF1C -
of F; we wish to show that it is eventually constant. If each restriction F,, |y vanishes, then we
have F,,, ~ i,i* F,,. We are therefore reduced to proving that the sequence of inclusions

FFgCiTF,C
stabilizes, which follows from our inductive hypothesis. We may therefore assume that some

Fm v # 0 for some integer m. Using Proposition 4.2.2 we can write ¥, as the colimit of
a filtered diagram {F,} of constructible objects of Shv(X;A). Using Corollary 4.2.10, we
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can assume that each F, belongs to Shv(X;A)¥. Choose an index « for which the map
Fuolv = Fm|u is nonzero. Using Proposition 4.2.5, we can choose a nonempty open subset
U’ C U such that F, |y is locally constant. Choose an étale U-scheme V' such that the map
Fa(V) = Fpn (V) C F(V) is nonzero (as a map of vector spaces over A), and let V! = U’ xy V.
Then V' is dense in V, so that the map F(V) — F(V’) is injective. Using the commutativity
of the diagram

Fo(V) ——=Fo (V')

L

FV) ——=3(V"),

we deduce that the map of vector spaces F, (V') — F(V’) is nonzero, so that the map of sheaves
Fo luvr = F |ur is nonzero. Replacing U by U’, we may reduce to the case where F,, |¢ is locally
constant. Note that the cofiber of the map F, — F is constructible, so that (by virtue of
Corollary 4.2.10) the cokernel G = coker(F, — F) is a constructible object of Shv(X;A)¥. For
any point x € U, we have dim G, < dimJ,, so that our inductive hypothesis implies that G
is a Noetherian object of Shv(X;A)¥. The sheaf F/F,, is a quotient of G, and therefore also
Noetherian. It follows that the sequence of subobjects {Fpr / Fry C F/ Fpn b >m is eventually
constant, so that the sequence {F,,y C F},r>m, is eventually constant. [l

Proposition 4.2.13. Let X be a quasi-projective k-scheme, and let A be a field. Then there
exists an integer n with the following property: for every pair of objects F,G € Shv(X;A)Y, if
F is compact object of Shv(X;A), then Extgy,(x;0)(F,5) =0 for m > n.

Proof. Using Proposition 4.1.23, we can choose an integer n’ such that, for every closed immer-
sion i : Y < X, the sheaf i' G belongs to Shv(Y; A)s, . Let d be the Krull dimension of X. We
will prove that n = n’ + 2d + 1 has the desired property. For this, it will suffice to prove the
following:

(¥) Let H € Shv(X; A) have the property that i' 3 € Shv(Y; A)>, for every closed immer-
sion i : Y — X. Then Extgj,(x,1)(F,H) =0 for m > n.

We prove (x) using Noetherian induction on X. Using Proposition 4.2.5, we can choose an
open immersion j : U — X such that j*JF is locally constant, hence a dualizable object of
Shv(X;A)Y. Let i : Y — X be a complementary closed immersion, so that we have a fiber
sequence

T F = iidt g,
We therefore obtain an exact sequence
Ext@y i) (5% T 30) = Ext@y o) (F, 50 = Ext@ya) (i* T4 50).

The first group can be identified with H™(U; (j* F)¥ ®4 7* H)), which vanishes for m > n by
virtue of Lemma 4.1.13. The third group vanishes for m > n by the inductive hypothesis, so
that Extg,(x,a)(F, H) also vanishes for m > n. O

Proposition 4.2.14. Let X be a quasi-projective k-scheme and let § € Shv(X;Z/l4Z) for
d > 1. Then J is constructible if and only if the object (Z/lZ) ®z/paz F € Shv(X;Z/lZ) is

constructible.
Proof. 1t follows from Proposition 4.1.16 that the forgetful functor
Shv(X;Z/lZ) — Shv(X;Z/(°Z)



110 DENNIS GAITSGORY AND JACOB LURIE

preserves colimits and therefore the left adjoint I+ (Z/¢Z)®z 4173 preserves compact objects;
this proves the “only if” direction. For the converse, suppose that F € Shv(X;Z/(?Z) has the
property that (Z/(Z) ®z sz I € Shv(X;Z/lZ) is constructible. Let € C Modg sz denote the
full subcategory spanned by those objects M for which the functor

S = Mapgyy(x,z/002) (T, M @704z G)

preserves filtered colimits. Then € contains Z/¢Z and is closed under the formation of exten-
sions. It follows that C contains Z/¢?Z, so that F is constructible. 0

The theory of étale sheaves is particularly well-behaved when the coefficient ring A has the
form Z/¢?Z, where ¢ is a prime number which is invertible in k. We close this section by
recalling some of the special features of this situation, which will play an important role in our
discussion of ¢-adic sheaves in §4.3.

Proposition 4.2.15 (Persistence of Constructibility). Let f : X — Y be a morphism of quasi-
projective k-schemes, let { be a prime number which is invertible in k, and let d > 0. Then:
(1) The pushforward functor f. : Shv(X;Z/¢?Z) — Shv(Y; Z/9Z) carries Shv’(X; Z/9Z)
into Shv®(Y; Z/0°Z).
(2) The pullback functor f* : Shv(Y;Z/¢?Z) — Shv(X;Z/(?Z) carries Shv®(Y;Z/(?Z)
into Shv®(X; Z/4Z).
(3) If f is proper, then the exceptional inverse image functor

f':Shv(Y;Z/0%Z) — Shv(X;Z/0Z)

carries Shv®(Y; Z/04Z) into Shv®(X;Z/(?Z).
(4) If f is étale, then the functor

fi: Shv(X; Z/09Z) — Shv(Y;Z/°Z)
carries Shv®(X; Z/04Z) into Shv®(Y;Z/(?Z).

Remark 4.2.16. Assertions (2) and (4) of Proposition 4.2.15 follow immediately from the fact
that the functors f, and f* preserve filtered colimits (and remain valid when Z/¢?Z is replaced
by an arbitrary commutative ring).

Proof of Proposition 4.2.15. By virtue of Proposition 4.2.14, we can assume without loss of
generality that d = 1. In this case, the desired result is proven as Corollaire 1.5 (“Théoréme de
finitude”) on page 234 of [13] (note that our definition of constructibility is different from the
notion of constructibility considered in [13], but the two notions agree in the case d = 1; see
Warning 4.2.7). O

Remark 4.2.17. Let X be a quasi-projective k-scheme, let ¢ be a prime number which is
invertible in &, and let F be a compact object of Shv(X;Z/¢?Z). Using Propositions 4.2.15 and
4.2.5, we see that that there exists a finite collection of locally closed immersions i, : Y, < X
(having disjoint images) such that F admits a filtration with successive quotients of the form
tax Fo, where each F, is a locally constant sheaf on Y, with perfect stalks (compare with
Remark 4.2.9).

Corollary 4.2.18. Let f : X — Y be a proper morphism between quasi-projective k-schemes,
let ¢ be a prime number which is invertible in k, and let d > 0. Then the functor f' :
Shv(Y; Z/¢1Z) — Shv(X; Z/l1Z) preserves filtered colimits.

Proof. This is a reformulation of assertion (1) of Proposition 4.2.15. O
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Corollary 4.2.19. Let X be a quasi-projective k-scheme, let £ be a prime number which is
invertible in k, let and let F,G € Shv®(X;Z/(?Z) for some integer d > 0. Then the groups

EXtéhv(X;Z/[dz) (5,9) are finite.

Proof. Using Proposition 4.2.2, we may reduce to the case where F = j!Z/EdZU for some
étale morphism j : U — X. In this case, we have

Extén(x.z 002y (F>G) =~ EXtéhv(U;Z/Zd'Z)(Z/KdZUvj*9)
H' (m.j* )

where m : U — Speck denotes the projection map. The desired result now follows from
Proposition 4.2.15. O

R

Proposition 4.2.20. Let X be a quasi-projective k-scheme, let £ be a prime number which
is invertible in k, and let F € Shv®(X;Z/lYZ) for some d > 0. The following conditions are
equivalent:

(1) The sheaf F vanishes.
(2) For every point 1 : Speck — X, the stalk F,, = n* T vanishes.
(3) For every point 1 : Speck — X, the costalk ' F € Shv(Spec k; Z/(?Z) vanishes.

Proof. The implications (1) = (2) and (1) = (3) are obvious, and the implication (2) = (1) is
Proposition 4.1.11 (and is valid for any coefficient ring A). Assume that F satisfies (3); we will
prove that ¥ ~ 0 using Noetherian induction on X. Using Proposition 4.2.5, we can choose
a nonempty open subset U such that F|y is locally constant. Shrinking U if necessary, we
may suppose that U is smooth of dimension n > 0. Let ¢ : ¥ — X be a closed immersion
complementary to U. Then i'F € Shv(Y; Z/¢?Z) satisfies condition (3), so that i' F ~ 0 by the
inductive hypothesis. We may therefore replace X by U, and thereby reduce to the case where
F is locally constant. The assertion that F vanishes is local on X; we may therefore suppose
further that X is smooth and F € Shv(X;Z/¢%Z) has the form M y for some perfect object
M € Modg/paz. Arguing as in Remark 4.1.21 (and choosing a primitive ¢%h root of unity in
k), we see that for any point 7 : Speck — X, the pullback ' J is equivalent to 72" M. It then
follows from (3) that M ~ 0, so that F ~ 0 as desired. O

4.3. f-adic Sheaves. Throughout this section, we fix an algebraically closed field k£ and a prime
number ¢ which is invertible in k. Let X be a quasi-projective k-scheme. For every commutative
ring A, the theory outlined in §4.1 associates an oo-category Shv(X;A) of (hypercomplete)
Moda-valued étale sheaves on X. This theory is very well-behaved when the commutative
ring A has the form Z/¢?Z for some d > 0, but badly behaved when A = Z or A = Q. To
remedy the situation, it is convenient to introduce the formalism of ¢-adic sheaves: roughly
speaking, a (constructible) ¢-adic sheaf on X is a compatible system {F4}q>0, where each Fy
is a (constructible) object of Shv(X;Z/¢4Z). The collection of f-adic sheaves on X can be
organized into an co-category which we will denote by Shvy(X). Our goal in this section is to
review the definition of the oo-categories Shvy(X) and summarize some of the properties which
we will need later in this paper.

Definition 4.3.1. Let A be a commutative ring, and let M be an object of Mod. We will say
that M is £-complete if the limit of the diagram

s MASMS M

vanishes in Mody .
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Remark 4.3.2. In the situation of Definition 4.3.1, we have a tower of fiber sequences

(M5 M = Z/1'Z 97 M}aso.
Passing to the limit, we see that M is f-complete if and only if the canonical map
M — lim((Z/0"Z) @7 M)
is an equivalence in the oo-category Mod,.

Remark 4.3.3. Let A be a commutative ring. Then an object M € Mod, is ¢-complete if
and only if each homology group H, (M) is ¢-complete, when regarded as a discrete object of
Mody,. To prove this, we may assume without loss of generality that A = Z, in which case M
is noncanonically equivalent to the product [], ., X" H,(M).

If A is Noetherian and each homology group H,, (M) is finitely generated as a A-module,
then M is f-complete if and only if each of the homology groups H, (M) is isomorphic to its
¢-adic completion @HR(M)/W H, (M), where the limit is taken in the abelian category of
A-modules.

Remark 4.3.4. Let A be a commutative ring, let M, be a simplicial object of Mod,, and let
| M| € Mod, denote its geometric realization. Suppose that there exists an integer n € Z such
that the simplicial abelian groups H,,(M,) vanish for m < n. Then if each M, is ¢-complete,
the geometric realization |M,| is ¢-complete. To prove this, it will suffice to show that each
homology group H;(|M,|) is ¢-complete (Remark 4.3.3). We may therefore replace M, by a
sufficiently large skeleton, in which case |M,] is a finite colimit of ¢-complete objects of Modj,.

Definition 4.3.5. Let X be a quasi-projective k-scheme and let A be a commutative ring. We
will say that an object F € Shv(X; A) is £-complete if, for every object U € Sch_e;g, the object
F(U) € Mod, is f-complete.

Remark 4.3.6. Let F € Shv(X;A). The following conditions are equivalent:

(1) The sheaf JF is ¢-complete.

(2) The limit of the tower

5545547

vanishes.
(3) The canonical map F — @(Z/Zdz ®z F) is an equivalence in Shv(X;A).
Remark 4.3.7. Let X be a quasi-projective k-scheme, let A a commutative ring, and let

C C Shv(X;A) be the full subcategory spanned by the ¢-complete objects. Then the inclusion
functor € < Shv(X;A) admits a left adjoint L, given by the formula

L?:ggmmm®zﬂ.

We will refer to L as the ¢-adic completion functor. Note that an object F € Shv(X;A) is
annihilated by the functor L if and only if the map ¢ : F — F is an equivalence.

Remark 4.3.8. Let X be a quasi-projective k-scheme, A a commutative ring. We will regard
Shv(X;A) as a symmetric monoidal co-category, with tensor product we will denote by ®j.
Suppose we are given objects F,F € Shv(X;A). If multiplication by ¢ induces an equivalence
from JF to itself, then multiplication by ¢ also induces an equivalence from F®, F' to itself. It
follows that the full subcategory € C Shv(X; A) spanned by the f-complete objects inherits the
structure of a symmetric monoidal co-category, with tensor product &, given by the formula

FONF = L(FanF)

where L denotes the ¢-adic completion functor of Remark 4.3.7.
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If  : A — A’ is a morphism of commutative rings, then ¢ induces a base-change functor
Shv(X;A) — Shv(X;A’) (which is left adjoint to the forgetful functor from Shv(X;A’) to
Shv(X;A)). In particular, we always obtain a map of co-categories

6 : Shv(X; A) — lim Shv(X; A/€7A).
d>0

Proposition 4.3.9. Let A be a commutative ring and suppose that £ is not a zero-divisor in
A. Let X be a quasi-projective k-scheme and let € C Shv(X; A) be the full subcategory spanned
by the £-complete objects. Then the composite functor

€ = Shv(X; A) 5 lim Shv(X; A/¢7A)
d>0

is an equivalence of co-categories.

Proof. We first prove that 6 is fully faithful when restricted to C. Let F and F’ be objects of
Shv(X;A). We compute

Map(6(F),0(F)) =~ i MapShv(X;A/ZdA)((Z/EdZ) ®z F, (Z/1Z) 97 F")

M=

im Mapgy,, (x;a) (5, (Z/1°Z) ©72 F)

-

R

%
%
=)

= MapShv(X;A) (?7 L 34)
where L is defined as in Remark 4.3.7. If ¥ is ¢-complete, then the canonical map
Mapgy, (x:4)(F, F') = Map(0(F), 0(F"))

is a homotopy equivalence.
It remains to prove essential surjectivity. Suppose we are given an object of the inverse limit
]gl >0 Shv(X;A/¢4A), which we can identify with a compatible sequence of objects

{Fq € Shv(X; A/LIA)}g>0.
Let us abuse notation by identifying each F4 with its image in Shv(X;A), and set F = I&n Jaq €

Shv(X;A). Since each Fy is f-complete, it follows that F is also ¢-complete. Moreover, we have

a canonical map 6(F) — {Fy}a>o in the co-category lim _ Shv(X; A/¢?A). To prove that this

map is an equivalence, it will suffice to show that for each integer d > 0, the canonical map
(A/fdA) &A l'&n?e - Fy

e>d

is an equivalence in Shv(X;A/¢9A). Since A/¢4A is a perfect A-module, we can identify this
with the natural map

Wm(A/€TA) @p Fe o= Hm((A/0IA) @5 (A/LA)) @njeen Te = (A/LIA) @pppen T -

e>d e>d
This map is an equivalence, since the inverse system {(A/¢4A) @5 (A/€°A)}e>q is equivalent to
A/0?A as a Pro-object of the oo-category Mody. O

Definition 4.3.10. Let X be a quasi-projective k-scheme. We will say that an object I €
Shv(X;Z) is a constructible £-adic sheaf if it satisfies the following conditions:

(1) The sheaf F is f-complete.
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(2) For each integer d > 0, the tensor product
(Z/1PZ) @7 F € Shv(X; Z/(°Z)
is constructible.

We let Shv(X) denote the full subcategory of Shv(X; Z) spanned by the constructible ¢-adic
sheaves.

Remark 4.3.11. In the situation of Definition 4.3.10, it suffices to verify condition (2) in the
case d = 1, by virtue of Proposition 4.2.14.

Remark 4.3.12. Let F be as in Definition 4.3.10. Then the tensor product (Z/{Z) @z F is
constructible as an object of Shv(X;Z/¢Z) if and only if it is constructible as an object of
Shv(X;Z). Consequently, condition (2) can be rephrased as follows:

(2") The cofiber of the map ¢ : F — F is a constructible object of Shv(X;Z).

Remark 4.3.13. It follows from Proposition 4.3.9 that the forgetful functor Shv(X;Z,) —
Shv(X;Z) is an equivalence when restricted to ¢-complete objects. Consequently, we can replace
Shv(X; Z) by Shv(X; Z,) in Definition 4.3.10 without changing the notion of constructible ¢-adic
sheaf.

Warning 4.3.14. Let X be a quasi-projective k-scheme. Neither of the full subcategories
Shvy(X),Shv®(X;Z) C Shv(X;Z) contains the other. Objects of Shv®(X;Z) are generally not
¢-complete (this is true even if we replace Z by Z;), and objects of Shvi(X) need not be locally
constant when restricted to any nonempty open subset of X.

Proposition 4.3.15. Let X be a quasi-projective k-scheme.
(1) For each integer d > 0, the full subcategory Shv®(X; Z/¢4Z) C Shv(X;Z/l?Z) contains
the unit object and is stable under tensor products.
(2) Let C C Shv(X;Z) be the full subcategory spanned by the £-complete objects, and regard
€ as a symmetric monoidal co-category with respect to the completed tensor product Ry,
of Remark 4.3.8. Then the full subcategory Shvy(X) C € contains the unit object of C
and is closed under tensor products.

Proof. Assertion (1) follows from the characterization of constructible sheaves supplied by
Proposition 4.2.5, and assertion (2) follows from (1). O

Remark 4.3.16. Let X be a quasi-projective k-scheme. Then we can identify Shvy(X) (as
a symmetric monoidal co-category) with a homotopy inverse limit of the tower of symmetric
monoidal co-categories

oo — Shv®(X; Z/0PZ) — Shv(X; Z/(*Z) — Shv’(X; Z/IZ).

Proposition 4.3.17. Let X be a quasi-projective k-scheme. Then the equivalence of oo-
categories Shvy(X) ~ I'&H{Sth(X; Z/0PZ)}a>o induces an equivalence of homotopy categories
6 : hShv(X) — Lim{hShv§(X; Z/¢'Z) }azo-

Remark 4.3.18. Proposition 4.3.17 implies that the homotopy category of Shvy(X) can be

identified with the constructible derived category of Z,-sheaves considered elsewhere in the
literature (see, for example [8]).

Proof of Proposition 4.3.17. Tt follows immediately from the definitions that 6 is essentially
surjective; we will show that 6 is fully faithful. For every pair of objects F,§ € Shvj(X) having
images F(d), §(d) € Shv®(X; Z/¢?Z), we have a Milnor exact sequence

0 — lim"{Ext" "' (F(d), §(d))} — Ext"(F,9) — lim°{Ext"(F(d), §(d))} — 0.
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Since each of the groups Ext" ' (F(d), §(d)) is finite (Corollary 4.2.19), the first term of this
sequence vanishes. It follows that the canonical map
Mapyspye (x) (F, 9) — Lim Mapy,gyy(x.z,/042) (F(d), §(d))

is bijective. O
We now discuss the functorial behavior of some of the preceding constructions.

Proposition 4.3.19. Let f: X — Y be a morphism of quasi-projective k-schemes. Then:

(1) The pushforward functor f. : Shv(X;Z) — Shv(Y;Z) carries constructible (-adic
sheaves to constructible ¢-adic sheaves sheaves.

(2) The resulting map from Shvy(X) to Shvy(Y) admits a left adjoint f}, which carries an
object F € Shv(X) to the £-completion of f*F.

Proof. The functor f, preserves limits, and therefore carries ¢-complete objects to ¢-complete
objects. Assertion (1) is now a consequence of Proposition 4.2.15. To prove (2), let L :
Shv(X;Z) — Shv(X;Z) denote the f-completion functor. If F € Shvy(Y), then we have a
natural homotopy equivalence

Mapgyy (v:z) (T, £ 9) ~ Mapgpy(x,z) (Lf*3F,9)

whenever § € Shv(X;Zy) is {-complete. It will therefore suffice to show that Lf*F is con-
structible. By construction, Lf*JF is ¢-complete. It will therefore suffice to show that each
tensor product

(Z/19Z) @z Lf*F ~ (Z/1OZ) @z f*F ~ f*(Z/1VZ @7 F)

is a constructible object of Shv(X;Z/¢?Z) for each d > 0, which follows immediately from
Proposition 4.2.15. 0

Warning 4.3.20. In the situation of Proposition 4.3.19, the pullback functor f* : Shv(Y; Z,) —
Shv(X; Zs) does not preserve constructibility. For example, if Y = Speck and F € Shv(Y’; Z,)
is the constant sheaf with value Z,, then the chain complex (f* F)(X) computes the étale
cohomology of X with coefficients in the constant sheaf associated Z;, while the chain complex
(fXF)(X) computes its f-adic completion C*(X;Zy).

Proposition 4.3.21. Let f : X — Y be a proper morphism between quasi-projective k-schemes.
Then the functor f': Shv(Y;Z) — Shv(X;Z) carries Shvy(Y) into Shv§(X).

Proof. The functor f' preserves limits and therefore carries f-complete objects to f-complete
objects. It will therefore suffice to show that if F € Shvj(Y"), then

(Z/1Z) @z ['F =~ [ ((Z/1Z) @7, F)
is constructible for each d > 0, which follows from Proposition 4.2.15. g

Remark 4.3.22. In the situation of Proposition 4.3.21, the functor f': Shv{§(Y) — Shv{(X)
can be identified with the inverse limit of the tower of exceptional inverse image functors

f'Shve(Y; Z/04Z) — Shv®(X; Z/0Z).
Example 4.3.23. Let Z,(1) denote the inverse limit of the sequence

cee ,UZS(k) — /,LgZ(k) — Hf(k),



116 DENNIS GAITSGORY AND JACOB LURIE

where p14(k) denotes the group of £?th roots of unity in k. For each integer n, we let Z,(n)
denote the nth tensor power of Zy(1). If f : X — Y is a smooth morphism of relative dimension
n, then Example 4.1.20 supplies an equivalence

f! F ~ ZQnZg(n>X Xz, f* F,

which depends functorially on F € Shv(Y"). Since both sides commute with filtered colimits in
F, we obtain an equivalence of functors f' ~ ZQ"Zg(n)X ®z, [*.

Proposition 4.3.24. Let f : X — Y be an étale morphism between quasi-projective k-schemes.
Then:

(1) The pullback functor
f*:Shv(X;Z) — Shv(Y; Z)

carries Shv(X) into Shvi(Y).
(2) When regarded as a functor form Shvy(X) to Shvi(Y), the functor f* admits a left
adjoint f{*, which carries an object F € Shvy(X) to the £-completion of fi F.

Proof. We first prove (1). If F € Shv(Y;Z) is a constructible f-adic sheaf, then Z/(‘Z @7 F
belongs to Shv®(Y;Z/(?Z), so that Proposition 4.2.15 shows that

Z/Z @q [*F ~ fH(Z/1Z 24 F) € Shve(X;Z/19Z)

for each d > 0. Since f is étale, the pullback functor f* preserves limits, and therefore carries
{-complete objects to f-complete objects.

We now prove (2). Let fi denote the left adjoint to the pullback functor f* : Shv(Y;Z) —
Shv(X;Z) (see Example 4.1.10), and let f* denote the composition of fi with the ¢-completion
functor. It follows immediately from the definitions that for every object F € Shv(X;Z) and
every ¢-complete object § € Shv(Y';Z), we have a canonical homotopy equivalence

Mapgy,, (v.z) (f* F,9) = Mapgy,x.2) (T F*9)-

It will therefore suffice to show that if F is an f-adic constructible sheaf, then f{* F is an ¢f-adic
constructible sheaf. Since f*F is (-complete by construction, we are reduced to proving that
each tensor product

Z/1Z 0g f) F ~ (/07 94 F)
is a compact object of Shv(Y'; Z/¢?Z), which follows from Proposition 4.2.15. O

Proposition 4.3.25. Let X be a quasi-projective k-scheme and let F € Shvj(X). The following
conditions are equivalent:

(1) The sheaf F vanishes.
(2) For every point n : Speck — X, the stalk F,, = n* F vanishes.
(3) For every point 1 : Speck — X, the costalk n* F € Shv,(Speck) ~ Modgz, vanishes.

Proof. Note that since F is ¢-complete, it vanishes if and only if Fy = (Z/{Z) ®z F vanishes.
Similarly, the stalk (costalk) of F at a point n € X (k) vanishes if and only if the stalk (costalk)
of F; vanishes at 1. The desired result now follows from the corresponding assertion for F; €
Shv(X;Z/¢Z) (Proposition 4.2.20). O

For our purposes in this paper, the setting of constructible ¢-adic sheaves will be too restric-
tive: we will meet many examples of sheaves which are not constructible. To accommodate
these examples, we introduce the following enlargement of Shvj(X):
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Definition 4.3.26. Let X be a quasi-projective k-scheme. We let Shv,(X) denote the oo-
category Ind(Shvy (X)) of Ind-objects of Shvy(X) (see §HTT.5.3.5). We will refer to Shv(X)
as the oco-category of £-adic sheaves on X.

Remark 4.3.27. Let X be a quasi-projective k-scheme. By abstract nonsense, the fully faithful
embedding Shvj(X) — Shv(X;Z,) extends to a colimit-preserving functor 6 : Shv,(X) —
Shv(X;Z,). However, this functor need not be an equivalence of co-categories, since the objects
of Shv(X) need not be compact in Shv(X;Z,).

Example 4.3.28. If X = Speck, then the essential image of the inclusion Shvj(X) —
Shv(X;Z;) ~ Modz, consists precisely of the compact objects of Modgz,. It follows that the
forgetful functor of Remark 4.3.27 induces an equivalence Shv,(X) — Shv(X;Z;) ~ Modg, .

Remark 4.3.29. Let X be a quasi-projective k-scheme. Then there is a fully faithful exact
functor Shv(X) — Shve(X). We will generally abuse notation by identifying Shvy(X) with its
essential image under this embedding.

Notation 4.3.30. Let f : X — Y be a morphism between quasi-projective k-schemes. Then
the adjoint functors

f« 1 Shvp(X) — Shvj(Y) fx:Shvy(Y) — Shv(X)

extend (in an essentially unique way) to a pair of adjoint functors relating the oco-categories
Shv,(X) and Shv,(Y), which we will denote by

fi 2 Shve(X) — Shve(Y) ¥ Shve(Y) — Shve(X).

If f is proper, then the functor f' : Shv§(Y) — Shv{(X) admits an essentially unique
extension to a functor Shvy(Y) — Shv,(X) which commutes with filtrered colimits. This
extension is a right adjoint to the pushforward functor f. : Shvy(X) — Shv(Y), and will be
denoted by f'.

If f is étale, then the functor f/* : Shvj(X) — Shv{(Y) admits an essentially unique extension
to a functor Shv,(X) — Shv,(Y) which commutes with filtered colimits. This extension is left
adjoint to the pullback functor f* : Shv,(Y) — Shvy(X), and will be denoted by fi.

Remark 4.3.31. Let X be a quasi-projective k-scheme and let f : X — Speck be the projec-
tion map. For F € Shv,(X), we will often denote the direct image f. F by C*(X;F).

Warning 4.3.32. There is some potential for confusion, because the operations introduced
in Notation 4.3.30 need not be compatible with the corresponding operations on étale sheaves
studied in §4.1. That is, the diagrams of co-categories

Shve(Y) ——> Shv(X) Shve(X) — = Shv,(Y)
Shv(Y'; Z¢) ——> Shv(X; Z¢) Shv(X; Z¢) —L> Shv(Y; Z)
Shv,(Y) | Shvy(X)

L,

Shv(Y; Zg) ——> Shv(X; Z,)
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need not commute, where the vertical maps are given by the forgetful functors of Remark 4.3.27.
In the first two cases, this is because the definition of f* and f; on ¢-adic sheaves involves the
process of f-completion; in the third, it is because the functor f' : Shv(Y;Z,) — Shv(X;Z,)
need not preserve colimits. However, the analogous diagram

Shv(X) —L = Shvy(Y)

| l

Shv(X;Zy) L Shv(Y'; Zy)
does commute (up to canonical homotopy).

Remark 4.3.33. Let X be a quasi-projective k-scheme and let 7 : Speck — X be a k-valued
point of X. Then the pullback functor n* : Shvy(X) — Shv,(Speck) carries each ¢-adic sheaf
F € Shv,(X) to an object of Shvy(Spec k) ~ Modz,. We will denote this object by F, and refer
to it as the stalk of F at the point 7.

Warning 4.3.34. Proposition 4.3.25 does not extend to non-constructible ¢-adic sheaves. It
is possible to have a nonzero object F € Shv,(X) whose stalk F,, vanishes for every k-valued
point n € X (k).

We say that an object F € Shvy(X) is £-complete if the inverse limit of the tower

N N

vanishes.

Remark 4.3.35. Let X be a quasi-projective k-scheme. An object F € Shvy(X) is ¢-complete
if and only if, for every object F’ € Shv,(X), the inverse limit of mapping spaces

¢ ¢
e MapShVK(X) (‘?’7 3‘) - MapSth(X)(SF/v 3:) - MapShVE(X)(‘rf/a ?)
is contractible. Moreover, it suffices to verify this condition when 3’ € Shv{(X) is constructible.

Remark 4.3.36. Let X be a quasi-projective k-scheme. Then every constructible ¢-adic sheaf
F on X is ¢-complete (this follows from Remark 4.3.35, since JF is ¢-complete when viewed as
an object of Shv(X;Z)).

Let X be a quasi-projective k-scheme. It is generally not true that the vanishing of an /-adic
sheaf F € Shv,(X) can be tested stalkwise: there can exist nonzero objects of Shv,(X) whose
stalks vanish at every point x € X. However, this phenomenon does not arise for /-complete
objects:

Proposition 4.3.37. Let X be a quasi-projective k-scheme and let F € Shvy(X) be £-complete.
The followign conditions are equivalent:

(1) The sheaf F vanishes.

(2) For every étale morphism f: U — X, the object C*(U; f*F) € Modgz, vanishes.

(3) For every k-valued point x € X (k), the stalk x* F vanishes.

Proof. The implication (1) = (2) is trivial. Conversely, suppose that (2) is satisfied. Write F
as the colimit of a filtered diagram {F,} in Shvj(X). For each integer d > 0, let F; denote the
cofiber of the canonical map £¢ : F — ¥, so that F; can be written as a colimit ligna Fa,d Where
Foq = cofib(f? : F,, — F,). Note that we can identify the diagram {F, 4} with an object of
the Ind-category Ind(Shv®(X; Z/¢?Z)) ~ Shv(X;Z/¢?Z). Using condition (2) we see that this
Ind-object vanishes, so that F4 ~ 0. Since J is f-complete, it follows that F ~ Igl&”d ~ (. This
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proves that (2) = (1). The proof that (1) and (3) are equivalent is similar (using Proposition
4.1.11). O

The existence of the adjunction (fi, f*) when f : X — Y is an étale morphism has the
following consequence:

Proposition 4.3.38. Let f : X — Y be an étale morphism between quasi-projective k-schemes.
Then the pullback functor f* : Shvy(Y) — Shv,(X) preserves limits.

In fact, we have the following stronger assertion:

Proposition 4.3.39. Let f : X — Y be a smooth morphism between quasi-projective k-
schemes. Then the functor f* : Shvy(Y) — Shvy(X) preserves limits.

Proof. Using Corollary 4.3.42 and Proposition 4.3.38, we see that the result is local with respect
to the étale topology on X. We may therefore assume without loss of generality that f factors
as a composition
xLprxy Ly,

where the map f’ is étale. Since f’* preserves limits (Proposition 4.3.38), we may replace f by
f” and thereby reduce to the case where f is smooth and proper. In this case, the functor f*
is equivalent to a shift of the functor f' (Example 4.3.23) and therefore admits a left adjoint
(given by a shift of f). O

Remark 4.3.40. Let X be a quasi-projective k-scheme. Then the symmetric monoidal struc-
ture on Shvy(X) described in Proposition 4.3.15 determines a symmetric monoidal structure on
Shv(X) = Ind(Shvj(X)), which is determined uniquely by the requirement that the inclusion
Shvy(X) < Shvy(X) be a symmetric monoidal functor and that the associated tensor product
functor
® : Shve(X) x Shvy(X) — Shvy(X)

preserves colimits separately in each variable. We will denote the unit object of Shv,(X) by
Zy . Beware that this notation conflicts with that of Remark 4.3.27: the forgetful functor
Shvy(X) — Shv(X;Zs) of Remark 4.3.27 is not symmetric monoidal in general; in particular,
it does not carry Zy . to the constant sheaf given in Definition 4.2.4.

Let X be a quasi-projective k-scheme. For every commutative ring A, the theory of Mody-
valued sheaves on X satisfies effective descent for the étale topology: that is, the construction

(U € Sch%) + Shv(U; A)

is a sheaf of oo-categories with respect to the étale topology. We now prove the analogous
statement for f-adic sheaves.

Proposition 4.3.41 (Effective Cohomological Descent). Let f : U — X be a surjective
étale morphism between quasi-projective k-schemes, and let U, denote the simplicial scheme
given by the nerve of the map [ (so that Uy, is the (m + 1)st fiber power of U over X ). Then
the canonical map

¥ Shv(X) — %iLnSth(U.)

is an equivalence of co-categories.

Corollary 4.3.42. Let f: X — Y be a smooth surjection between quasi-projective k-schemes.
Then the functor f* : Shvy(Y) — Shvy(X) is conservative.

Proof. Since f is a smooth surjection, there exists a map ¢g : X’ — X such that the composite
map f o g is an étale surjection. Replacing X by X', we may suppose that f is étale. In this
case, the desired result follows immediately from Proposition 4.3.41. d
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The proof of Proposition 4.3.41 depends on the following result:

Lemma 4.3.43. Let X be a quasi-projective k-scheme. Suppose that Fo is an augmented
simplicial object of Shviy(X) satisfying the following conditions:
(a) There exists an integer n such that Z/lZ ®z Fe is an augmented simplicial object of
Shv(X; Z/0Z)>,.
(b) The image of Fo in Shv(X; Z/lZ) is a colimit diagram (that is, it exhibits (Z/0Z)RzF 1
as a geometric realization of the simplicial object (Z/0Z) @z F).
Then Fo is a colimit diagram in both Shv(X;Z) and Shv,(X).

Proof of Proposition 4.3.41. Tt follows from Corollary HA.4.7.6.3 (and the Beck-Chevalley prop-
erty given in Variant 4.5.5) that the functor ¢ admits a fully faithful left adjoint

¢ : lim Shv,(Us) — Shvy(X).

To complete the proof, it will suffice to show that for each object F € Shv,(X), the counit
map v : (¢ o )(F) — F is an equivalence in Shv,(X). For each n > 0, let f, : U, — X
denote the projection map. Unwinding the definitions, we can identify v with the natural map
|forfEF| — F. Writing F as a colimit of constructible f-adic sheaves, we may assume without
loss of generality that F is constructible. By virtue of Lemma 4.3.43, it will suffice to prove
this after tensoring with Z/¢Z, in which case the desired result follows from the fact that the
construction U — Shv(U; Z/{Z) satisfies étale descent. O

Proof of Lemma 4.3.43. We first prove that F, is a colimit diagram in Shv(X;Z): that is, that
the canonical map

Oé:|3'.|—>5r,1

is an equivalence in Shv(X;Z). Condition (b) implies that « is an equivalence after tensoring
with Z/¢Z. Since the codomain of « is ¢-complete, it will suffice to show that the domain of
« is also ¢-complete. For each integer m, let F(m) denote the colimit of the m-skeleton of F,
(formed in the oco-category Shv(X;Z). Then each F(m) belongs to Shvy(X) and is therefore
¢-complete, and we have an equivalence | Fo | ~ @?(m). Fix an étale map V — X; we wish
to prove that

|54 (V) = lim F(m)(V) € Mody,

is f-complete. According to Remark 4.3.3, this is equivalent to the assertion that for every
integer i, the abelian group h_r)nHl(H’(m)(V)) is ¢-complete (in the derived sense). To prove
this, it will suffice to show that the direct system of abelian groups {H;(F(m)(V))} is eventually
constant. Let K(m) denote the fiber of the map F(m) — F(m + 1), so that we have an exact
sequence

H;(X(m)(V)) = Hi(F(m)) = Hi(F(m + 1)(V)) = Hia (K(m) (V).

It will therefore suffice to show that the groups H;(X(m)(V)) vanish for m > i. Since K(m) is
{-complete, we have a Milnor exact sequence

lim' {H 1 1(Z/¢'Z @2 K(m)(V)) = H;(K(m)(V)) — Im{H;(Z/¢"Z @7 K(m)(V))}.

Corollary 4.2.19 implies that the left hand side vanishes. We are therefore reduced to proving
that H;(Z/(Z ®z K(m)(V)) ~ 0 for m > i. Using induction on d, we can reduce to the case
d = 1. Using Lemma 4.1.13, we are reduced to the problem of showing that Z/{Z ®z K(m) €
Shv(X;Z/0Z)>; for m > i. This follows easily from assumption (a). This completes the proof
that « is an equivalence in Shv(X;Z).
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Note that each F(m) is a constructible ¢-adic sheaf, and is a colimit of the m-skeleton of
F.o in both Shv(X;Z) and Shvy(X). The sheaf F_; can be identified with the colimit of the
sequence

FO0)—=F(1)—---
in the oo-category Shv(X;Z); we wish to show that F is also a colimit of this sequence in
Shv,(X). Equivalently, we wish to show that for every object § € Shv(X), the canonical map

h_n}MaPShv;(X)(gv F(m)) — MapShvg(X)(g’ )

is a homotopy equivalence. For each m > 0, let F’(m) denote the cofiber of the canonical map
F(m) — F, so that we have a fiber sequence

limg Mapgpye (x) (9, F(m)) = Mapgyye (x) (9, F) = lim Mapgpe(x (9, F'(m)).
It will therefore suffice to show that the space

@Mapsm;(x)(gvsﬂ(m))
is contractible. We will prove the following more precise statement: for every integer ¢, the
mapping space MapShvg( (S, F'(m)) is g-connective for m sufficiently large (depending on ¢).
Since F'(m) is f-complete, we can identify Mapgyye(x;z,) (9 F'(m)) with the limit of a tower of
spaces Mapgy«(x,z,)(9, Z /17 ®z F'(m)). Tt will therefore suffice to show that each of these
spaces is (¢ + 1)-connective. Using the existence of a fiber sequence

Mapgpye(x) (9 Z/lZ ©7 F'(m))

|

Mapgyye (x)(9: Z/04Z ©7 F' (m))

|

MapShvz(X)(gv Z/de ®z Sr/(m))7

we can reduce to the case d = 1. That is, we are reduced to proving that the mapping spaces
Mapghy(x.z/02)(Z/VL ®7 G, Z/VZ Rz F'(m)) are (q + 1)-connective for ¢ > m. This follows
from Proposition 4.2.13, since condition (a) guarantees that the sheaves Z/(Z ®z F'(m) are
highly connected for m > 0. O

4.4. The t-Structure on /-Adic Sheaves. Throughout this section, we fix an algebraically
closed field k and a prime number ¢ which is invertible in k. In §4.3, we associated to every
quasi-projective k-scheme X an oo-category Shv(X) of ¢-adic sheaves on X. In this section, we
will describe the relationship of Shv,(X) with the abelian category of ¢-adic sheaves introduced
in [23]. Our starting point is the following:

Proposition 4.4.1. Let X be a quasi-projective k-scheme. Then there exists a t-structure
(Shv(X)>0,Shvy(X)>0) on the oco-category Shvy(X) of constructible (-adic sheaves on X,
which is uniquely characterized by the following property:

o A constructible £-adic sheaf F € Shvy(X) belongs to Shvg(X)>o if and only if Z/lZ Rz F
belongs to Shv(X;Z/{Z)>.

Warning 4.4.2. In the situation of Proposition 4.4.1, we can regard Shvj(X) as a full subcat-
egory of Shv(X;Z), which is equipped with a t-structure by virtue of Remark 4.1.6. However,
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the inclusion Shvy(X) — Shv(X;Z) is not t-exact. However, it is left t-exact: see Remark 4.4.5
below.

Example 4.4.3. Let X = Speck, so that Shvj(X) can be identified with the oco-category
Mod%flZ of perfect Zy-modules. Under this identification, the t-structure of Proposition 4.4.1

agrees with the usual t-structure of Mod%fz.

Lemma 4.4.4. Let A be an abelian category. For each object M € A, let M/t4M and M[¢9]
denote the cokernel and kernel of the map ¢4 : M — M. Suppose we are given a tower of objects

"'*)Mg*)MQ*)MlﬁMO

satisfying the following conditions:
(a) Each of the maps My11 — My induces an equivalence Md+1/€d ~ My.
(b) The object My is Noetherian.

Then, for each integer m > 0, the tower {My[l™]}a>0 is equivalent to a constant Pro-object of
A.

Proof. For each d > 0, let Ny denote the image of the natural map Mgy, [(™] — Mg[¢™]. If
d > m, multiplication by £¢~™ induces a map 04 : M,, — My[f™]. Let N/ denote the fiber
product M, X s, Ng, which we regard as a subobject of M,,. Assumption (a) implies that M,
admits a finite filtration by quotients of My, so that M, is Noetherian by virtue of (b). Note
that N = ker(0aym) € Nj,,, so that the subobjects Nj; C M,, form an ascending chain

Ny © Njpy © Nippy S

Since M, is Noetherian, this chain must eventually stabilize. We may therefore choose an
integer ag such that N/ = N(’a_l)m = ker(04m) for a > ag. Using the commutative diagram
of short exact sequences

Oam
(a—1)m M,, Im(0y,) —0

R

0(a )
0 N M, — M0 1)m — 0,

0—— N/

we see that multiplication by £™ induces an isomorphism from Im(0s,) to Im(6(441)m) for
a > ag. This isomorphism factors as a composition

T (Barm) < Mam (€] 5 T (B(qs1)m),
so that for a > ag the object My, [¢™] splits as a direct sum Im(04m) @ Ngm. Note that
the restriction map Mg 1)m[€™] — Mam[€™] has image N, and kernel Im(0(q41)m), and
therefore restricts to an isomorphism N, y1ym — Nam for a > ag. It follows that the tower
{Mom[l™]}a>a, is isomorphic to the direct sum of a constant tower {Ngm, }a>q, and a tower

{Im(04m) }a>q, With vanishing transition maps, and is therefore equivalent to a constant Pro-
object of A. O

Proof of Proposition 4.4.1. For each integer n, let Shvy(X)<, denote the full subcategory of
Shvy(X) spanned by those objects F such that, for each object § € Shvj(X)>o, the mapping
space MapShvz(X) (G, X7™F) is contractible for m > n. To prove Proposition 4.4.1, it will suffice

to show that for each object F € Shv(X), there exists a fiber sequence
F—-F -3
where ' € Shv{(X)so and F’ € Shvj(X)<_1.
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For each integer d > 0, let Fq = (Z/{?Z) @7z F denote the image of F in Shv(X;Z/(Z), so
that F ~ l.&n{f}'d}dzo. Set 3’4 = @1{7’20 grd}dzo and 9’4/ = 1.&1{73—1 g:d}dzo, where the limits
are formed in Shv(X;Z). We will prove that 5 € Shv{(X)>o. Assuming this, it follows that
F" € Shvj(X). Note that for § € Shv{(X)>0, the mapping space

Mapgyye(x)(9,F) =~ lmMapge(x) (9, 7<—1 Fa)
=~ 1&1ME’LPShW(X;Z/edz)(Z/NZ ®z G, 7<—1Fq)

is contractible, since each tensor product Z/¢?Z ®z G belongs to Shv(X;Z/(?Z)>¢. Tt follows
that F’ belongs to Shv{(X)<_1, as desired.
It remains to prove that F’ € Shvj(X)>o. For this, we must establish three things:
(a) The object 3" € Shv(X;Z) is f-complete.
(b) The tensor product (Z/¢Z) @z F' is a compact object of Shv(X;Z/(Z).
(¢) The tensor product (Z/(Z) ®z F' belongs to Shv(X; Z/lZ)>o.
Assertion (a) is obvious (since the collection of ¢-complete objects of Shv(X; Z) is closed under
limits). We will deduce (b) and (¢) from the following:
(¥) The tower
{(Z/1Z) ®z m>0 Fa}axo
is constant when regarded as a Pro-object of Shv(X;Z/(Z).
Note that if a tower {Cy4}q>0 in some co-category € is Pro-equivalent to an object C' € €, then
C can be identified with a retract of Cy for d > 0. In particular, using assertion (*) (and the
fact that the construction (Z/(Z) ®z e preserves limits), we can identify (Z/(Z) ®z ' with a
retract of some § = (Z/{Z) ®z >0 Fq for some d > 0. From this, assertion (c) is obvious and
assertion (b) follows from Proposition 4.2.5.
Note that the tower {(Z/¢Z) @z (Z/¢?Z)} determines a constant Pro-object of Modz, so
that the Pro-objects {(Z/{(Z) @z Fq}a>o0 and {7>0(Z/lZ @z F4) }a>0 are likewise constant. For
each d > 0, form a fiber sequence

(Z/HZ) @z 750 Fa = T>0((Z/UZ) @7 F4) = Ga..

To prove (x), it will suffice to show that the tower {G4}4>0 is constant. Unwinding the defi-
nitions, we see that each Gy belongs to the heart Shv(X;Z)%, where it can be identified with
the kernel of the map n_1 F3 — 7_1 F4 given by multiplication by ¢. For each integer m, let us
regard 7, F as an object of Shv(X;Z)?, and let (7, F)/¢¢ and (7, F)[¢?] denote the cokernel
and kernel of the multiplication map ¢% : 7, F — m,,, F, so that we have exact sequences

0— (’/T,1 ?)/gd =T 1Fg— (W,Q?)[gd} —0
which determine an exact sequence of Pro-objects

0= {(m-1 5)/€D)[0}az0 = {Sa}azo = {(m—2 F)[}azo-

The last of these Pro-objects is trivial (it has vanishing transition maps), so we are reduced to
proving that the Pro-object {(7_1 F)/¢?)[¢]}a>0 is constant. Note that (7_; F)/¢ is a subobject
of 7_1 F1, and is therefore a Noetherian object of the abelian category Shv(X; Z/¢Z)" by virtue
of Proposition 4.2.12. The desired result now follows from Lemma 4.4.4. O

Remark 4.4.5. Let X be a quasi-projective k-scheme and let ¥ € Shvj(X). The proof of
Proposition 4.4.1 shows that F belongs to Shvy(X)<o if and only if the canonical map F —
I'&nTSO(Z/ﬂdZ ®z F) is an equivalence in Shv(X;Z). In particular, every object of Shvy(X)<o
belongs to Shv(X;Z)<¢. In other words, the inclusion Shvy(X) < Shv(X;Z) is left t-exact.
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Remark 4.4.6. Let X be a quasi-projective k-scheme and let F € Shvj(X). For each integer
d>0,let Fg = (Z/lZ)®7F € Shv(X;Z/lZ). If F € Shv{§(X)<p, then Remark 4.4.5 implies
that F € Shv(X;Z)<, so that each F4 belongs to Shv(X; Z/¢?Z)<,,+1. Conversely, if F1 belongs
to Shv(X;Z/lZ)<, 1, then it follows by induction on d that each F4 € Shv(X;Z/(?Z) <41,
so that the proof of Proposition 4.4.1 shows that F € Shv(X)<n1.

Proposition 4.4.7. Let X be a quasi-projective k-scheme. Then the t-structure on Shvy(X)
is right and left bounded: that is, we have

Shv§(X) = | JShvi(X)<n = | JShvi(X)> .

Proof. Let F € Shv§(X). For each integer d > 0, let F4 = Z/{Z ®7 F € Shv®(X;Z/°Z).
The characterization of constructibility given by Proposition 4.2.5, we see that there exists an
integer n > 0 such that ¥y € Shv(X;Z/¢Z)>_, N Shv(X;Z/lZ)<,,. It follows by induction on
d that each F4 belongs to Shv(X;Z/¢¢Z)>_,, N Shv(X;Z/l?Z)>,, so that F € Shvy(X)>_, N
Shv(X)<n. O

We now discuss the functorial behavior of the t-structure introduced in Proposition 4.4.1.

Proposition 4.4.8. Let f : X — Y be a morphism of quasi-projective k-schemes. Then the
pullback functor f* : Shvy(Y) — Shvj(X) is t-exact.

Proof. If ¥ € Shvy(Y) >0, then
(Z/0Z) @7 [* T

1R

f*(Z/KZ Rz 9:)
f* ShV(Y; Z/ZZ)ZO
Shv(X;Z/lZ)>.

N m

This proves that the functor f* is right t-exact.
To prove left exactness, we must work a little bit harder. Assume that F € Shv(Y)<o, and
for d > 0 set F4 = (Z/( Z) ®7 F € Shv(Y;Z/(?Z). We have
T>1f*F > @Tzl(z/gdz ®z f*F)
l'&nTZUM(Z/ZdZ ®z J)
= yLnTZlf* Fa
~ lgn ffr>1Fq.
It will therefore suffice to show that 1&1 f*1>1Fq vanishes in Shv(X;Z). Since the limit is
{-complete, we are reduced to proving that the limit
Z/KZ Xz @f*Tzl Fg~ mf*(Z/fZ Kz T>1 de)
vanishes. Using the characterization of Shv(Y)<o obtained in the proof of Proposition 4.4.1,

we see that the limit @(Z/ZZ ®z 7>1 Fq) vanishes in Shv(Y; Z/¢Z). Tt will therefore suffice to
show that the natural map

fUm(Z/0Z ©7 721 Fa) = Y fY(Z/0Z ®z 7>1 T a)

is an equivalence in Shv(X;Z). This follows from assertion () from the proof of Proposition
4.4.1. O

1R

Corollary 4.4.9. Let f : X — Y be a morphism of quasi-projective k-schemes. Then the
pushforward functor f. : Shvy(X) — Shvi(Y) is left t-exact. If f is a finite morphism, then f.
18 t-exact.
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Proof. The left t-exactness of f, follows immediately from the right t-exactness of the adjoint
functor f* (Proposition 4.4.8). If f is a finite morphism, then for F € Shvj(X) we have
Z/Z Rz [ F ~ [J(Z/NZ®zTF)
S f* ShV(X,Z/KZ)ZO
C Sh(Y;Z/0Z)50,
so that f, is left t-exact. O

Corollary 4.4.10. Let f : X — Y be a finite morphism of quasi-projective k-schemes. Then
the functor f': Shv§(Y) — Shv{(X) is left t-evact.
Corollary 4.4.11. Let X be a quasi-projective k-scheme. Then:
(a) An object F € Shvy(X) belongs to Shvy(X)>o if and only if, for each point n : Speck —
X, the stalk n* F € Shvy(Speck) ~ Mod%fz belongs to (Modz,)>o.-
(b) An object F € Shv(X) belongs to Shvy(X)<o if and only if, for each point n : Speck —
X, the stalk n* F € Shvi(Speck) ~ Mod%ftZ belongs to (Modz,)<o-
Proof. We will prove (b); the proof of (a) is similar. The “only if” direction follows immediately
from Proposition 4.4.8 and Example 4.4.3. Conversely, suppose that n* F belongs to (Modz, )<
for each point 7 : Speck — X. Since the functor n* is t-exact (Proposition 4.4.8), it follows

that the canonical map o : 7 — 7<¢ J induces an equivalence after passing to the stalk at each
point, so that « is an equivalence by virtue of Proposition 4.3.25. O

Our next goal is to describe the heart of the t-structure of Proposition 4.4.1. First, we need
to introduce a bit of terminology:

Definition 4.4.12. Let X be a quasi-projective k-scheme and let F € Shv(X;Z/(?Z)%. We
will say that the sheaf F is imperfect constructible if it satisfies the following conditions:

(1) There exists a finite sequence of quasi-compact open subsets
0=0,CU, C---CU,=X

such that, for 1 < i < n, if Y; denotes the locally closed reduced subscheme of X with
support U; — U, _1, then each restriction F |y, is locally constant.

(2) For every k-valued point 1 : Speck — X, the pullback n*F € Shv(Speck;Z/lZ) ~
MOsz) Jpaz is finite (when regarded as an abelian group).

We let Shv® (X ; Z/¢9Z) denote the full subcategory of Shv(X; Z/¢¢Z)" spanned by the imperfect
constructible objects.

Example 4.4.13. Let § € Shv®(X;Z/¢?Z). Then each of the cohomology sheaves m; F is
imperfect constructible.

Remark 4.4.14. If X is a quasi-projective k-scheme, then the full subcategory
Shv®(X;Z/0%Z) C Shv(X;Z/?Z)"

is closed under the formation of kernels, cokernels, and extensions. Consequently, it forms an
abelian category.

Remark 4.4.15. For every pair of integers d’ > d > 0, the construction
F— Tgo((Z/de) ®Z/gd/z Sr)
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carries Shv® (X; Z /(% Z) into Shv®(X; Z/(?Z). We therefore have a tower of (abelian) categories
and right-exact functors
- = Shv®(X; Z/(*Z) — Shv®(X; Z/(*Z) — Shv°®(X; Z /(7).
We will denote the homotopy inverse limit of this tower by Shv®(X).
Proposition 4.4.16. Let X be a quasi-projective k-scheme, and let
¢ : Shvy(X)>o — Shv®(X)
be the functor given on objects by the formula
O(F) = {7<0(Z/t"Z @7 F)}azo-

Then 0 induces an equivalence of categories Shv§(X)Y ~ Shv®(X). In particular, Shv®(X) is
an abelian category.

Proof. Let ¢ : Shv®(X) — Shv(X;Z) be the functor given by ¥{Fs}ta>0 = m Fyg (where
the limit is formed in the oco-category Shv(X;Z)). The proof of Proposition 4.4.1 shows that
the composite functor 1 o ¢ : Shv(X)>¢o — Shv(X;Z) is given by F — 7<0F (where the
truncation is formed with respect to the t-structure of Proposition 4.4.1). Consequently, v is
a left homotopy inverse of the restriction ¢|ghy(x;z). To complete the proof, it will suffice to
show that v factors through the full subcategory Shv§(X)¥ C Shv(X;Z) and that it is a right
homotopy inverse to ¢|Shv;‘( x)yo- To prove this, we must prove that for every object {Fg}i>0 of
Shv°(X) has the following properties:
(a) The inverse limit F = lim Fg (formed in the oo-category Shv(X;Z)) is ¢-complete.
(b) The tensor product (Z/¢Z) ®z F is a constructible object of Shv(X;Z/{(Z).
(¢) The limit F = lim ¥y belongs to Shvy(X)>o: in other words, the tensor product
(Z/VZ) @z F belongs to Shv(X;Z/l(Z)>.
(d) The limit F = lim ¥4 belongs to Shvy(X)<o.
(e) For each integer d > 0, the canonical map 7<o(Z/¢?Z) @z F) — F4 is an equivalence in
Shv(X;Z/¢Z)%.
Assertion (a) is clear. Note that the tensor product (Z/¢Z) ®z F can be identified with the
limit of the diagram {(Z/¢Z) @z Fa}a>0. For each d > 1, we have

F1 ifi=0
Ti(Z/L Q7 Fq) ~ ker(£: Fg — Fq) ifi=1
0 otherwise.

Using Lemma 4.4.4 and Proposition 4.2.12, we see that the tower {ker(¢ : F4 — Fg)}a>1 is
constant as a Pro-object of Shv®(X;Z/¢Z). Tt follows that m;(Z/¢Z ®z F) is F1 when i =0, a
retract of some ker(¢ : F4 — Fy) if ¢ = 1, and vanishes otherwise. This proves (b) and (c). To
prove (d), we note that for § € Shv(X)>¢, the mapping space

MapShv(X;Z)(97 Z_l ?> = 1.Lnlv[apShv(X;Z) (9’ 2_1 ?d>
1'&ﬂ1\/Iapsm(x;zudz)(Z/edz ®z 9,57 Fa)
is contractible because each (Z/(?Z) ®z G belongs to Shv(X;Z/¢?Z)>o. To prove (e), we first
observe that for d’ > d, we have

12

Fq ifi=0
WZ((Z/EdZ) ®z S:d/)ﬁ kel‘(gdigjd/ —)ffd/) ifi=1
0. otherwise
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Using Lemma 4.4.4 and Proposition 4.2.12, we see that the tower {ker(¢? : Ty — Fur)}ar>a is
equivalent to a constant Pro-object of Shv®(X; Z/¢4Z), so that the tower {((Z/(?Z)®zF 4 }ar>d
is constant and we obtain an equivalence

Teo Ym((Z/0Z) ®z Far) = lim7<0((Z/€"Z) @z Far) ~ Ty
d’ d’

is an equivalence. O

Notation 4.4.17. Let X be a quasi-projective k-scheme. We let Shv,(X)>o and Shv,(X )<
denote the essential images of the fully faithful embeddings

Ind(Shvy(X)>0) < Ind(Shvy(X)) = Shv,(X)
Ind(Shvy(X)<o) < Ind(Shvy (X)) = Shv,(X).

)
It follows from Proposition 4.4.1 that the full subcategories (Shv,(X)>o, Shv,(X)<¢) determine
a t-structure on the co-category Shvy(X).

Remark 4.4.18. Let f : X — Y be a morphism of quasi-projective k-schemes. Then
the pullback functor f* : Shv,(Y) — Shv,(X) is t-exact, and the pushforward functor f, :
Shvy(X) — Shv,(Y) is left t-exact. If f is finite, then f, : Shvy(X) — Shvy(Y) is t-exact and
f' i Shv(Y) — Shvy(X) is left t-exact. These assertions follow immediately from Proposition
4.4.8, Corollary 4.4.9, and Corollary 4.4.10. Beware that the analogue of Corollary 4.4.11 for
non-constructible /-adic sheaves is generally false: for example, one can find nonzero objects of
Shv,(X) with vanishing stalks (or costalks) at every point.

Proposition 4.4.19. Let X be a quasi-projective k-scheme. Then the t-structure on Shvy(X)
is right and left bounded: that is, we have

Shvi(X) = [ JShvi(X)<n = | JShvi(X)>n.

Let X be a quasi-projective k-scheme. Then the t-structure on Shvy(X) is right complete (that is,
the canonical map Shv,(X) — lim Shve(X)>_, is an equivalence of co-categories). Moreover,
the canonical map

Sth (X) — l&n ShVe(X)Sn

is fully faithful.
Remark 4.4.20. We do not know if the t-structure on Shv,(X) is left complete.

Lemma 4.4.21. Let X be a quasi-projective k-scheme. Then there exists an integer q with
the following property: if F € Shvi(X)<o and G € Shv(X)>q, then every morphism F — G is
nullhomotopic.

Proof. By virtue of Proposition 4.2.13, we can choose an integer n for which the groups
Extgh,,(x.z2/ez) (', §) vanish whenever &' € Shv®(X;Z/(Z), §' € Shv(X;Z/(Z)7, and m > n.
We will show that ¢ = n+3 has the desired property. Let F € Shvy(X)< and § € Shvy(X)>p3;
we wish to prove that Extghw(x)(ff,g) ~ 0. Writing G is a filtered colimit of objects of
Shvy(X)>n+3, we may assume that G is constructible. For each d > 0, set

Fa=(Z/°Z) 22 F  Gy=(Z/1Z) 22 G.

Note that F can be regarded as an object of Shv(X;Z)<o (Remark 4.4.5), so that each Fy
belongs to Shv(X;Z/¢?Z)<_1. We have a canonical homotopy equivalence

Mapgyy, (x)(F, 9) ~ lim Mapgy, (x.z)(F, Ga)
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which gives rise to Milnor exact sequences
0 — lim" {Extgy, .z (F, Ga)} = Extgyy, ) (F> §) — lm {Extgyy x.z) (F, Ga)}-

It will therefore suffice to show that the groups ExtiShV(X;Z)(fT, Gq) vanish for i € {0,—1}.
Writing G, as successive extension of finitely many copies of §G;, we may reduce to the case
d = 1. We are therefore reduced to showing that the groups EXtiShV(X;Z/ZZ)(Stla G1) vanish for
1 € {0,—1}. The desired result now follows by writing F; and G; as successive extensions of
objects belonging to the heart Shv(X;Z/(Z)°. O

Proof of Proposition 4.4.19. The right completeness of the Shvy(X) follows formally from the
right boundedness of Shvy(X) (Proposition 4.4.19). To see this, we first observe that the
full subcategory Shve(X )< is closed under infinite direct sums. To show that Shv,(X) is right
complete, it will suffice to show that the intersection () Shvy(X)<_,, consists only of zero objects
(Proposition HA.1.2.1.19). To prove this, let F € (| Shv(X)<_,. If F # 0, then there exists
an object ' € Shvj(X) and a nonzero map F' — F. This is impossible, since F’ belongs
to Shv¢(X)>,, for some integer m (by virtue of the right boundedeness of the t-structure on
Shvy(X)).

To complete the proof, it will suffice to show that for every object § € Shv,(X), the canonical
map § — lim7<, G is an equivalence. Equivalently, we must show that the object lim 7>,
vanishes. To prove this, we argue that for each constructible object F € Shvy(X), the mapping
space Mapgyy,(x)(F, im 7>, §) is contractible. We have Milnor exact sequences

liml{ExtgL;Zl(X) (F, 720 9)}nz0 = Extdly, (x) (T, im 7>, §) — Hm{Ext&,, x)(F, T>n G) }nz0.

The desired result now follows from Lemma 4.4.21 (and the left boundedness of Shvj(X)),
which guarantees that the groups Extg;’;ll(x)(?, 7>n §) and Extgp,, x)(F, 7>, 9) are trivial for
n > 0. O

4.5. Base Change Theorems and Dualizing Sheaves. Throughout this section, we fix an
algebraically closed field k and a prime number ¢ which is invertible in k. In this section, we
recall some nontrivial results in the theory of ¢-adic sheaves which will be needed in the later
sections of this paper. We begin with a few general categorical remarks.

Notation 4.5.1. Suppose we are given a diagram of oo-categories and functors o :

f

C——D

yoo

;o /

¢ ——7D
which commutes up to specified homotopy: that is, we are given an equivalence of functors
a:g' of~ f'og. Suppose that f and f’ admit left adjoints f¥ and f'%, respectively. Then o

determines a map 3 : f'¥ o g’ — go fL, given by the composition
f/LOg/%flLOg/OfOfLgf/LOf/OgofL%gOfL
where the first and third maps are given by composition with the unit and counit for the
adjunctions between the pairs (fL, f) and (f'L, f'), respectively. We will refer to § as the
left Beck-Chevalley transformation determined by «. We will say that the diagram o is left
adjointable if the functors f and f’ admit left adjoints and the natural transformation [ is an
equivalence. If f and f' admit right adjoints f% and f'%, then a dual construction yields a
natural transformation
vigofft— ffog,
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which we will refer to as the right Beck-Chevalley transformation determined by o. We will
say that o is right adjointable if the functors f and f’ admit right adjoints ant the natural
transformation ~y is an equivalence.

Remark 4.5.2. In the situation of Notation 4.5.1, suppose that the functors f, f’, ¢ and ¢’
all admit left adjoints. We then obtain a diagram o”:

@’L@

J/f/L lfL
L

e e

3

which commutes up to (preferred) homotopy, and the vertical maps admit right adjoints ¢’ and
g. We therefore obtain a right Beck-Chevalley transformation f'* o g’ — go f& for o, which
agrees (up to canonical homotopy) with the left Beck-Chevalley transformation for o.

Remark 4.5.3. Suppose we are given a diagram of oo-categories o :

f

C——D

-
e ! D

where the functors f and f’ admit left adjoints f% and f'*, and the functors g and ¢’ admit right

adjoints ¢gf* and ¢’%. Applying the Construction of Notation 4.5.1 to ¢ and to the transposed

diagram o :

e ¢

lf lf '
DT
we obtain left and right Beck-Chevalley transformations
B:ffog wgoft y:ifogt—gfof
Unwinding the definitions, we see that ~ is the natural transformation obtained from g by

passing to right adjoints. In particular, under the assumption that the relevant adjoints exist,
the diagram o is left adjointable if and only if the diagram o? is right adjointable.

We now specialize to the setting of algebraic geometry. Suppose we are given a commutative
diagram o :
f/

X —
J/p/ J/p
, f
S —— S5
of quasi-projective k-schemes. Then o determines a diagram of oco-categories

*

Shv(S) —2— Shv,(X)

|- |

Shv(S") —— Shv,(X").



130 DENNIS GAITSGORY AND JACOB LURIE

Each functor in this diagram admits a right adjoint, so we obtain a right Beck-Chevalley
transformation 8 : f*p. — p. f"*. The following is summarizes some of the main foundational
results in the theory of étale cohomology:

Theorem 4.5.4 (Smooth and Proper Base Change). Suppose we are given a pullback diagram
of quasi-projective k-schemes

f/

X ——

Lk

S —— 8.

If either p is proper or f is smooth, then the Beck-Chevalley morphism B : f*p. — plf™* is an
equivalence of functors from Shv,(X) to Shv,(S’).

Proof. Let F € Shv,(X’); we wish to prove that the canonical map Sy : f*p. F — plf*F
is an equivalence in Shv,(S’). Writing F as a filtered colimit of constructible f-adic sheaves
(and using the fact that the functors f*, p., pl, and f"* commute with filtered colimits), we
can reduce to the case where F is constructible. In this case, the domain and codomain of B4
are constructible f-adic sheaves (see Notation 4.3.30). We may therefore identify Sy with a
morphism in the oo-category Shvi(S’) C Shv(S’;Z,). Since the domain and codomain of Sz
are f-complete, it will suffice to show that the induced map

(Z/0Z) @z, [*p. F — (Z/MZ) @z, . f*TF

is an equivalence in Shv(S’; Z/¢Z). For this, it suffices to show that the diagram of co-categories

Shv®(S; Z/(Z) ——> Shv®(X; Z/(Z)

l i if

Shv(S'; Z/1Z) —— Shv®(X'; Z/(Z).

is right adjointable: that is, that the canonical map f*p. § — p. f’* G is an equivalence for each
constructible object § € Shv(X;Z/¢Z). The constructibility of § implies that it can be written
as a finite extension of suspensions of objects belonging to the heart Shv(X;Z/¢Z) (which
we can identify with the abelian category étale sheaves of Z/¢Z on X). The desired result
now follows from the usual smooth and proper base change theorems for étale cohomology (see
[13]). O

In the situation of Theorem 4.5.4, suppose that the map f is étale. Then the pullback
functors f* and f’* admit left adjoints fi and f|. Invoking the dual of Remark 4.5.3, we obtain
the following version of Proposition 4.1.12:

Variant 4.5.5. Suppose we are given a pullback diagram of quasi-projective k-schemes

f/

X ——
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where f is étale. Then the diagram of co-categories

*

Shve(S) ——> Shv(S")

1%

Shvy(X) —L > Shv,(X).

is left adjointable. In other words, the associated Beck-Chevalley transformation 8’ : f/p™* —

p* fi is an equivalence of functors from Shv,(S’) to Shvy(X).

/
!

Remark 4.5.6. It is easy to deduce Variant 4.5.5 directly from Proposition 4.1.12; the full
force of the smooth base change theorem is not required.

In the situation of Theorem 4.5.4, the right adjointability of the diagram

*

Shv(S) ——= Shv(X)
l s i P
Shv(5') —2> Shv(X").

is equivalent to the left adjointability of the diagram

’

Shve(X') — > Shve(X)
lpi il’*
Shv(S") — = Shv,(S)

(Remark 4.5.2). If p is proper, then the vertical maps admit right adjoints given by p' and p”,
respectively. Invoking Remark 4.5.3, we obtain:

Variant 4.5.7. Suppose we are given a pullback diagram of quasi-projective k-schemes

f/

X ——

P!

f

S —— 8,

where p is proper. Then the diagram of co-categories

Shv(X") — = Shv,(S")
.
Shve(X) —2> Shv(S)
is right adjointable. In other words, the right Beck-Chevalley transformation
B fup" = 't

is an equivalence of functors from Shv,(S’) to Shv,(X).
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Construction 4.5.8. Suppose that we are given a pullback diagram of quasi-projective k-
X’ L>

schemes
lpl J/p
f

S ——=25
where f is étale, so that the diagram of co-categories

1%

Shvy(X) ——> Shv,(X")
lp* lpi
Shv(S) — > Shv,(S)

commutes up to canonical homotopy (Theorem 4.5.4). Note that the horizontal maps admit left
adjoints f/ and fi, respectively, so that there is an associated left Beck-Chevalley transformation
v : fipl. = paf{. By virtue of Remark 4.5.2, we can also identify v with the right Beck-Chevalley
transformation associated to the diagram

Shve(S") —> Shvy(X)
|s |
Shve(S) —— Shve(X)
of Variant 4.5.5.
Proposition 4.5.9. Suppose that we are given a pullback diagram of quasi-projective k-schemes

f/

X —
v
st

where f is étale. If p is proper, then the natural transformation -y : fipl, — p. f{ of Construction
4.5.8 is an equivalence. In other words, the diagram of co-categories

1%

Shv(X) ——> Shv,(X)
lp* ipl
Shve(S) —L > Shve(S)

1s left adjointable, and the diagram of co-categories

Shve(S') —> Shve(X")

C

Shv,(S) —2— Shv(X)

s Tight adjointable.
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Proof. Let F € Shvy(X'); we wish to show that the map s : fip), F — p. f| F is an equivalence
in Shv,(.S). Writing J as a filtered colimit of constructible ¢-adic sheaves (and using the fact that
the functors fi, p«, f{, and p/, commute with filtered colimits), we can reduce to the case where
F is constructible. In this case, the domain and codomain of 5 are also constructible /-adic
sheaves. Using Proposition 4.3.25, we are reduced to showing that S5 induces an equivalence
n*fip, F — n*p. fi F for every point 7 : Speck — S. Using Theorem 4.5.4 and Variant 4.5.5,
we can replace S by Speck. In this case, S’ is isomorphic to a disjoint union of finitely many
copies of Spec k and the result is easy. O

Corollary 4.5.10 (Projection Formula). Let f: X — Y be a proper morphism between quasi-
projective k-schemes. Then for every pair of objects F € Shvy(X) and G € Shvy(Y), the
canonical map

ﬂ?,g:(f*?)(@g_)f*(?@f*g)

is an equivalence in Shvy(Y).

Proof of Corollary 4.5.10. The construction (F,9) + By g commutes with filtered colimits sep-
arately in each variable. We may therefore assume without loss of generality that F and G are
constructible /-adic sheaves. In this case, S5 g is a morphism between constructible ¢-adic
sheaves. Consequently, to prove that 8 g is an equivalence, it will suffice to show that the im-
age of B g in Shv(Y;Z/¢Z) is an equivalence. In other words, it suffices to prove the analogue
of Corollary 4.5.10 when F and § are constructible objects of Shv(X;Z/¢Z) and Shv(Y;Z/{Z),
respectively.

Let us regard J as fixed. Using Remark 4.1.18, we see that the construction § — Bz g
preserves colimits. It follows that the collection of those objects § € Shv(Y;Z/¢Z) for which
B g is an equivalence is closed under colimits. Using Proposition 4.2.2, we may suppose that
§= ng/EZU for some étale map j : U — Y. Form a pullback diagram

UXJH

lf’ if
U—Lsv.
Unwinding the definitions, we can identify (f, F) ® G with the object jij*f. F, and FRf* G
with ji{j™* F. Under these identifications, the map S g factors as a composition
e Bl aw B .k
3 F = fdT = gt g,

where ' is an equivalence by Theorem 4.5.4 (since j is étale) and " is an equivalence by
Proposition 4.5.9 (since f is proper). O

We also have the following dual version of Construction 4.5.8:

Construction 4.5.11. Suppose that we are given a pullback diagram of quasi-projective k-
schemes
fl

X —

]

S —— 8
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where p is proper, so that the diagram of co-categories

Shve(X) —2> Shv(S)
e
Shyvy (X/) —2> Shv,(S")
commutes up to canonical homotopy (Theorem 4.5.4). Note that the horizontal maps admit
right adjoints p' and p”', so that there is an associated right Beck-Chevalley transformation

v f#pt — p'f* of functors from Shv,(S) to Shvy(X’). Using Remark 4.5.2, we can also
identify +" with the left Beck-Chevalley transformation associated to the diagram

Shv(S") — > Shv,(S)

o

Shve(X') — > Shve(X)
of Variant 4.5.7.

Proposition 4.5.12. Suppose we are given a commutative diagram of quasi-projective k-
schemes

x L x

o,k

[

where p is proper. If f is smooth, then the natural transformation v : f*p' — p' f* of Con-
struction 4.5.11 is an equivalence. In other words, the diagram of co-categories

Shve(X) —2> Shv(S)

| |r

Shv(X') —= Shv,(S")

is right adjointable and the diagram of co-categories

Shve(S') — > Shv(S)

o

Shve(X') —* = Shve(X)
is left adjointable.

Remark 4.5.13. In the situation of Proposition 4.5.12, suppose that p is proper and f is
étale. In this case, the natural transformation 7/ : f*p' — p' f* is obtained from the natural
transformation v : fip,, — p. f/ of Construction 4.5.8 by passing to right adjoints. In this case,
Proposition 4.5.12 reduces to Proposition 4.5.9.

Proof of Proposition 4.5.12. Fix an object F € Shv,(S); we wish to show that the map ~/ :
f*p'F — p' f*F is an equivalence. Since the construction F — 74 preserves filtered colimits,
we may assume without loss of generality that F is a constructible ¢-adic sheaf. For every point
n : Speck — X, let i, denote the inclusion of the fiber product X’ x x Speck into X’. By
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virtue of Proposition 4.3.25, it will suffice to show that z'n*ygt is an equivalence for each 7. Let
f" + X’ xx Speck — Speck denote the projection map, so that i!nvg fits into a commutative
diagram

i!nf/*p!

N
f//*nlp! B" Z'npllf*

It will therefore suffice to show that 5’ and " are equivalences. We may therefore replace the
map p by either  or p on, and thereby reduce to the case where p is a closed immersion.

Let j : U — S be an open immersion complementary to p, let U’ denote the fiber product
U xgS’, and let j' : U — S’ denote the projection onto the second factor. If p is a closed
immersion, then the pushforward functor p/ is fully faithful. It will therefore suffice to show
that the p/7% is an equivalence. Identifying p, f"*p'F with f*p.p' F, we see that p,~} fits into
a commutative diagram of fiber sequences

o' & 3 [ F
lp'm’? J{id lp
P —— [T —— L
It will therefore suffice to show that p is an equivalence. This follows from Theorem 4.5.4, since
f is smooth. O

Example 4.5.14. Let X be a quasi-projective k-scheme, and let 7 : U — X be an open
immersion whose image is also closed in X. Then j is a proper map, and the diagram

Uy

b |
U—1-X
is a pullback square. Then Proposition 4.5.12 supplies a canonical equivalence
§ ~id* g ~idt g e~ gt

Example 4.5.15. Let f : X — Y be a morphism between quasi-projective k-schemes. Let
U C X be the locus over which f is étale, let fy be the restriction of f to U, let j : U — X
be the inclusion map, and let § : U — U xy X be the diagonal map. Then § exhibits U as a
direct summand of U xy X, so that Example 4.5.14 supplies an equivalence §' ~ §*. Applying
Proposition 4.5.12 to the pullback square

UXyXMHX

S

v—>" oy,

we obtain a natural equivalence

F ST f St fy Sy~ f
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In particular, if f is both étale and proper, then the functors f' and f* are canonically equivalent
to one another (one can show that this equivalence agrees with the one supplied by Example
4.3.23).

Variant 4.5.16. Suppose we are given a commutative diagram of quasi-projective k-schemes

f/

X ——

J/pl J/p
,
S —— 5
where p is proper. Let U C X be an open subset for which the restriction p|y is smooth, and

let U’ C X' denote the inverse image of U. Then the natural transformation +' : f*p' — p/* f*
of Construction 4.5.11 induces an equivalence

(P D)o = 0" o
for each object F € Shv,(S). In particular, if p is smooth, then 7 is an equivalence.

Proof. The assertion is local on U. We may therefore assume without loss of generality that
there exists an étale map of S-schemes g : U — P Xgpecr S. Let I' C U x P™ denote the graph
of g, let T C X Xgpeck P™ be the closure of T and let ¢ : T — X be the projection onto the first
factor. Then ¢ is a proper morphism which restricts to an isomorphism over the open set U.
Using Example 4.5.15, we can replace X by I' and thereby reduce to the case where ¢ extends
to a map g : P™ Xgpeck S. Using Example 4.5.15 again, we can replace X by P" Xgpeck S,
and thereby reduce to the case where p is smooth. In this case, the desired result follows from
the description of the functors p' and p”* supplied by Example 4.3.23 (and the fact that this
description is compatible with base change). O

Construction 4.5.17. Suppose that we are given a pullback diagram of quasi-projective k-
schemes
fl

X ——

b

S ——=5
where p is proper and f is étale. Then Proposition 4.5.12 supplies a commutative diagram of
oo-categories

Shve(S) — > Shv,(S)

! "
\Lp lp
1%

Shve(X) — Shv,(X).

Note that the horizontal maps admit left adjoints fi and f/, so that there is an associated left
Beck-Chevalley transformation § : f/p" — p'fi of functors from Shv,(S’) to Shvy(X). Using
Remarks 4.5.2 and 4.5.13, we see that ¢ can also be identified with the right Beck-Chevalley
transformation associated to the diagram of co-categories

Shv,(X7) LN Shv,(S”)

s

Shv(X) —> Shv,(S)
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given by Proposition 4.5.9.

Proposition 4.5.18. Suppose we are given a commutative diagram of quasi-projective k-
schemes
f/

X —

Py

[
where p is proper and f is étale, and let 6 : flp" — p'fi be the natural transformation of
Construction 4.5.17. If U is an open subset ofX such that ply is smooth, then § induces an
equivalence

( ,’p” Plo — (p!f! Pl

for each object F € Shve(S"). In particular, if p is smooth, then § is an equivalence, so that the
diagrams of co-categories

Shve(S) — > Shve(S") Shve(X') 2> Shve(S)
J/p! lp/! if!/ lf'
Shv(X) ——> Shv,(X") Shvy (X) —2 > Shv,(S)

are left and right adjointable, respectively.

Proof. Arguing as in the proof of Variant 4.5.16, we may reduce to the case where p is smooth,
in which case the desired result follows from the desciption of the functors p' and p”* supplied
by Example 4.3.23. O

Construction 4.5.19. Let f : X — Y be a proper morphism of quasi-projective k-schemes
and suppose we are given objects F, G € Shv,(Y). Tensoring the counit map f.f'G§ — G with
F and applying Corollary 4.5.10, we obtain a map

P FofG) ~Faff's»Fes,
which in turn classifies a map
prg: [*Ff'S = f(FY)
in Shvy(X).

Proposition 4.5.20. Let f : X — Y be a proper morphism between quasi-projective k-schemes.
Let U C X be an open subset for which f|y is smooth. Then the natural map

prs: fFRf G f(Fe9)
iduces an equivalence

(f*Fef 9l = f(Fe9)
for every pair of objects F,G € Shv,(Y).

Proof. Let Zy,, denote the unit object of Shv,(Y'). Note that we have a commutative diagram

*Forf's

Pty \

[T ez, — TS
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It will therefore suffice to show that the maps PS.Zs, and pg g 5,2, are equivalences over the
open set U. We may therefore reduce to the case where § = ﬁy. Since the construction
F— P32, Dreserves filtered colimits, we may assume without loss of generality that F is a
constructible f-adic sheaf. In this case, PF 2y, is a morphism of constructible ¢-adic sheaves.
To prove that it is an equivalence over U, it will suffice to show that its image in Shv(U;Z/¢Z)
is an equivalence. In other words, we are reduced to proving that for each constructible object
F1 € Shv(Y;Z/{Z), the canonical map

(f*F@f ZHL )l — (f F1)|o

is an equivalence. Using Proposition 4.2.2, we may assume without loss of generality that
Fi1 =92 /EZV where g : V — Y is an étale map. In this case, the desired result follows from
Proposition 4.5.18. ]

Notation 4.5.21. If f : X — Y is a proper morphism of quasi-projective k-schemes, we let
wx,/y € Shv,(X) denote the f-adic sheaf given by f!ﬁy.

In the special case where Y = Speck, we will denote wy,y by wx, and refer to it as the
dualizing sheaf of X.

Remark 4.5.22. In §4.6, we will extend the definition of wx to the case where X is an arbitrary
quasi-projective k-scheme (Notation 4.6.15).

Example 4.5.23. If f : X — Y is a proper smooth morphism of relative dimension d, then
Example 4.3.23 supplies an equivalence wx,y =~ Edeg(d)X. More generally, one can show that

if U C X is an open subset for which f|y is a smooth morphism of relative dimension d, then
wx/y|u is equivalent to 22ng(d)X.

Remark 4.5.24. Suppose we are given a commutative diagram of quasi-projective k-schemes

x—1ox

b

Y —=Y,

where the vertical maps are proper. Then Construction 4.5.11 supplies a canonical map
[fwx/)y — wxryr, which is an equivalence over the inverse image of the smooth locus of
p (Variant 4.5.16).

Remark 4.5.25. Let f : X — Y be a proper morphism of quasi-projective k-schemes. For
each object F € Shv,(Y'), Construction 4.5.19 supplies a canonical map

[ Fewsy = 19,
which induces an equivalence over the smooth locus of f (Proposition 4.5.20).

4.6. Kiinneth Formulae and the !-Tensor Product. Throughout this section, we fix an
algebraically closed field k and a prime number ¢ which is invertible in k.

Notation 4.6.1. Let Schy denote the category of quasi-projective k-schemes, and let Schy"
denote the subcategory of Schy, whose morphisms are proper maps of quasi-projective k-schemes.

If X and Y are quasi-projective k-schemes, we let X x Y denote the Cartesian product of X
and Y in the category Schy: that is, the fiber product X Xgpecr Y in the category of schemes.
This fiber product is equipped with projection maps

XEXxy By,



WEIL’S CONJECTURE FOR FUNCTION FIELDS 139

Given a pair of objects F € Shvy(X), § € Shv,(Y), we let FX G denote the tensor product
7% F@my G, formed in the oo-category Shv,(X x Y). We will refer to FX G as the external
tensor product of F and G.

Note that if f : X — Y is a morphism of quasi-projective k-schemes and Z is another
quasi-projective k-scheme, then we have a canonical equivalence

(f xidz)"(HKG) ~ f*HXG

for H € Shvy(Y), § € Shvy(Z). Taking H = f.F for F € Shvy(X) (and composing with the
counit map f*H — F, we obtain a map

O5.g: f. FRG = (f x idz).(FRG).

Proposition 4.6.2. Let f : X — Y be a morphism of quasi-projective k-schemes and let Z be
a quasi-projective k-scheme. Then for every pair of objects F € Shvy(X) and G € Shvy(Z), the
canonical map

93",9 : (f* 97) X 9 — (f X 1dZ)*(f}'|Z 9)

is an equivalence in Shv,(Y x Z).

Proof. The construction (¥, G) — 05 g preserves filtered colimits in F and §. We may therefore
assume without loss of generality that F and G are constructible /-adic sheaves. In this case,
0.5 is a morphism of constructible ¢-adic sheaves on Y x Z. Consequently, to prove that 65 g
is an equivalence, it will suffice to show that the image of 05 ¢ in Shv(Y x Z;Z/¢Z) is an
equivalence. It will therefore suffice to prove the analogue of Proposition 4.6.2 where F and §
are compact objects of Shv(X;Z/¢Z) and Shv(Z;Z/{Z), respectively.

We first consider two special cases:

(a) If the map f is proper, then the desired result follows immediately from the projection
formula (Corollary 4.5.10).

(b) Suppose that Z is smooth and that G is locally constant. In this case, we can assume
that § is the constant sheaf M ,, where M € Modg,z is perfect (since the assertion is
local with respect to the étale topology on Z). The collection of those M for which 65 g
is an equivalence is closed under shifts, retracts, and finite colimits; we may therefore
assume that M = Z/¢Z. In this case, the desired result follows from the smooth base
change theorem (Theorem 4.5.4).

We now treat the general case. For the remainder of the proof, we will regard f : X — Y and
F € Shv(X;Z/lZ) as fixed. Let d denote the dimension of Z; we will proceed by induction on
d. Tt follows from case (a) that if we are given a proper map g : Z — Z’, then we can identify
07,4, g with the image of 05 g under the pushforward functor (id xg), : Shv(Y x Z;Z/VZ) —
Shv(Y x Z';Z/{Z).

Since the desired conclusion can be tested locally on Z, we may assume without loss of
generality that Z is affine. In this case, we can use Noether normalization to choose a finite
map g : Z — A% Then cofib(f5 g) vanishes if and only if g, cofib(fs.g) =~ cofib(fs 4, g)
vanishes. We may therefore replace G by g, G, and thereby reduce to the case where Z = A? is
an affine space.

Using Proposition 4.2.5, we can choose a nonempty open subset U C Z such that G|y is
locally constant. Applying a translation if necessary, we may suppose that U contains the origin
0€ AY = Z. Set H = cofib(f5.g), so that H € Shv’(Y x Z;Z/(Z). Using (b), we see that H
vanishes on the open set Y x U. We wish to prove that JH{ ~ 0. Suppose otherwise: then H has
nonvanishing stalk at some closed point (y, z) of Y x Z. Since H vanishes on Y x U, z is not
the origin of Z ~ Al Applying a linear change of coordinates, we may assume without loss of
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generality that z = (1,0,...,0). Let Z = P! x A%"! let j : Z — Z denote the inclusion map,
let G =75Gand H = b5 5 € Shv®(Y x Z;\). Let g : Z — A" denote the projection map onto
the second fiber. Since H vanishes on Y Xspeck U, the support of H has finite intersection with
the fiber (id xg)~{(y,0)}. Using the proper base change theorem (Theorem 4.5.4), we see that
the stalk of 7 at (y, z) can be identified with a direct summand of the stalk of (id x g).{ at the

point (y,0). In particular, we have 0 # (id xg).H =~ cofib(f4 , 5), contradicting our inductive
hypothesis. O

Corollary 4.6.3. Let f : X — Y be a morphism of quasi-projective k-schemes and let Z be
another quasi-projective k-scheme, so that we have a pullback square

xxz-1Lsvxz
P,
X —f> Y.
For each sheaf F € Shvy(X), the canonical map ¢'* f F — fLg* F is an equivalence.
Proof. Apply Proposition 4.6.2 in the special case § =Zy, € Shv,(Z). O

Corollary 4.6.4. Let f : X — Y and ' : X' — Y’ be morphisms of quasi-projective k-schemes.
For every pair of (-adic sheaves

F e Shvy(X)  F € Shvy(X')

the canonical map
(R BR(fLT) = (f x [)(TRT)

is an equivalence in Shv,(Y x Y").

Corollary 4.6.5. Let X and X' be quasi-projective k-schemes. For every pair of £-adic sheaves
F € Shvy(X), 3" € Shv,(X'), the canonical map

C*(X;F) ®z, C*(X;F) - C*(X x X'; FRTF)
is an equivalence in Modg,.

Example 4.6.6 (Kiinneth Formula). Let X and X’ be quasi-projective k-schemes. It follows
from Corollary 4.6.5 the the canonical map

C*(X3Zy) @z, C*(X'1Z¢) — C*(X x X' Zy)
is an equivalence in Modg,.

In the situation of Proposition 4.6.2, suppose that the morphism f : X — Y is proper. For
every pair of objects F € Shvy(Y') and § € Shv,(Z), we obtain a canonical map

(f'FRG) = I TRG) L fU(ff TFRG) — [(TRG).
where f' = (f xidz): X x Z =Y x Zand 0 =0 5 5.

Proposition 4.6.7. Let f: X — Y be a proper morphism between quasi-projective k-schemes,
let Z be a quasi-projective k-scheme, and let f' = f xidy : X x Z —Y x Z. Then, for every
pair of objects F € Shve(Y) and § € Shvy(Z), the map

prg: fFRG — fHTRG)

constructed above is an equivalence.
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Proof. We first treat the case where f is a closed immersion. In this case, f.(1s,g) can be
identified with a homotopy inverse to the equivalence 0 5 g of Proposition 4.6.2, and the
desired result follows from the fact that the functor f,. is fully faithful (and, in particular,
conservative).

To treat the general case, we first choose an immersion ¢ : X < P™. Then f factors as a
composition

x“pnyy Sy

where 7 denotes the projection onto the second factor. Since f is proper, the map (i, f) :
X — P x Y is a closed immersion. Using the first part of the proof, we can replace f by the
projection map 7 : P™ xY — Y. In this case, the desired result follows from Proposition 4.5.20
and Remark 4.5.24. g

Corollary 4.6.8. Let f : X — Y and f' : X' — Y’ be morphisms of quasi-projective k-
schemes. For every pair of (-adic sheaves F € Shv,(Y) and F' € Shv,(Y"), there is a canonical
equivalence

(fRRSI) = (f x ) (TR
of £-adic sheaves on X x X'.

Remark 4.6.9. Proposition 4.6.7 (and Corollary 4.6.8) are also valid for non-proper morphisms
of k-schemes provided that the exceptional inverse image functor has been appropriately defined.

We now discuss some consequences of Proposition 4.6.7.

Construction 4.6.10. Let X be a quasi-projective k-scheme and let § : X — X x X denote
the diagonal map. For every pair of ¢-adic sheaves F, G € Shv,(X), we define

F@'G=6"(FNRG) e Shv,(X).

The construction (F,G) — F®'G determines a functor ®' : Shv,(X) x Shvy(X) — Shv,(X),
which we will refer to as the !-tensor product functor.

Remark 4.6.11. Let X be a quasi-projective k-scheme. We then have a commutative diagram

N

XXxX——— > XxX

where s denotes the automorphism of X x X which interchanges the factors. For F, G € Shv,(X),
we obtain equivalences

FR'G ~ §(FXY)
(s06)(TXG)

12

~ §'s'(FRY)
~ §(SXTF)
~ G®'F.

In other words, the !-tensor product ®' is commutative up to canonical equivalence. It is also
associative up to equivalence: given a triple of f-adic sheaves F, G, H € Shv,(X), it follows from
Proposition 4.6.7 that the iterated tensor products

FR'Y'H  FRU(GR'H)
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can both be identified with §)'(FRGX H), where 6©) : X — X x X x X denotes the ternary
diagonal.

Combining the preceding arguments with appropriate organizational principles, one can
prove a much stronger assertion: the !-tensor product endows the oo-category Shv,(X) with
the structure of a symmetric monoidal co-category. We will prove this in §5.5.

Remark 4.6.12. Let f: X — Y be a closed immersion of quasi-projective k-schemes. Then
the diagram
X — X x X

lf lfxf
Y —Y xY

is a pullback square. Using Variant 4.5.7, we deduce that for every pair of f-adic sheaves
F,§ € Shv(X), the canonical map

f(F&'G) = TR S
is an equivalence.

Proposition 4.6.13. Let X be a quasi-projective k-scheme. Then the !-tensor product on X
is unital. In other words, there exists an object & € Shvy(X) for which the functor

T ER'T
is equivalent to the identity map from Shve(X) to itself.

Proof. Choose an open embedding j : X — X, where X is a projective k-scheme. Let 7 : X —
Speck be the projection map and let ws = 7'Z; denote the dualizing sheaf on X. Let

Sx X X xX g X—-oXxX
denote the diagonal maps, and let 7 : X x X — X be the projection onto the first factor. Using
Proposition 4.6.7, we obtain a canonical equivalence 7} G ~ wxXG for each object § € Shv, (X).
Applying the functor 5!?, we obtain an equivalence

wy® G 5%(&)?@ §) ~ 5%77129 ~G.

For any object F € Shvy(X), we have canonical equivalences
F = i3

J g @ 4. 9)
> 0% (wx M F)

12

22

0% (j % 5)" (wx B j. F)
~ Ox(fwx Mt )
~ Sy (jrwg ®T)
= Jwg Q' F,
where the equivalence « is obtained by applying Proposition 4.5.12 to the pullback square

X xxX

e

ox

X "> X x X.
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It follows that j*w+ is a unit for the tensor product ®'. O

Remark 4.6.14. In the situation of Proposition 4.6.13, the object & € Shv,(X) is determined
uniquely up to equivalence. To see this, we note that if & and &’ are two objects of Shv,(X)
which satisfy the requirements of Proposition 4.6.13, then we have equivalences

grep'e e rie~e.

Notation 4.6.15. Let X be a quasi-projective k-scheme. We let wx denote a unit with respect
to the I-tensor product on Shv,(X). We will refer to wy as the dualizing sheaf on X. The proof
of Proposition 4.6.13 shows that this notation is compatible with Definition 4.5.21 in the special
case where X is projective.

Remark 4.6.16. Let f : X — Y be a proper morphism between quasi-projective k-schemes.
Using the commutative diagram

f

x— 7' .y
b
xxx L yxy

and Corollary 4.6.8, we obtain for every pair of f-adic sheaves F,G € Shvy(Y) a chain of
equivalences

f(Fe'9) = ['6y (FRG)

1

Oy (f x [)(TRG)

12

S (f TR S)

=~ (f' )& (f'9).

In fact, much more is true: one can refine f' to a symmetric monoidal functor between the
oo-categories Shvy(Y) and Shvy(X); see Corollary 5.5.22.

Let X be a quasi-projective k-scheme. The !-tensor product functor ®' factors as a compo-
sition
Shv(X) x Shve(X) 3 Shvy(X x X) % Shv,(X).
The functor §' commutes with all limits (because it is a right adjoint), but the external tensor
product functor X does not commute with limits in general. Nevertheless, the !-tensor product

®' can be shown to commute with limits in good cases. For later reference, we record one result
to this effect:

Proposition 4.6.17. Let X and Y be quasi-projective k-schemes. Suppose that F* is a cosim-
plicial object of Shve(X ) <o and that G° is a cosimplicial object of Shv,(Y)<o. Then the canonical
map

Tot(F*) K Tot(G*) — Tot(F* X G°)

is an equivalence in Shv,(X xY).
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Lemma 4.6.18. Let X be a quasi-projective k-scheme and let F, G € Shvy(X)<o. ThenF®§ €
ShV[ (X)SQ.

Remark 4.6.19. With more effort, one can show that the tensor product functor carries
Shvy(X) <o x Shve(X)<o into Shv,(X)<1, but Lemma 4.6.18 will be sufficient for our purposes.

Remark 4.6.20. Let X be a quasi-projective k-scheme and let A be a field. Then the tensor
product functor ® : Shv(X;A) x Shv(X;A) — Shv(X;A) is left t-exact: that is, it carries
Shv(X;A)<o x Shv(X;A)<o into Shv(X;A)<o. This follows from Remark 4.1.15, since the
tensor product ®4 : Moda x Moda — Mod, carries (Moda)<o x (Moda)<o into (Moda)<o.

Proof of Lemma 4.6.18. Since Shvy(X)<1 is closed under filtered colimits and the tensor prod-
uct ® preserves filtered colimits separately in each variable, we may assume without loss of
generality that F and G are constructible, so that F® G is likewise constructible. Set F; =
(Z/0Z)®2F and 1 = (Z/0Z)®7S. Using Remark 4.4.6 we see that F1,G; € Shv(X;Z/0Z)<;.
Using Remark 4.6.20, we conclude that the tensor product

(Z/NMZ) 27 (F®G) ~TF1®@z/02z 51
belongs to Shv(X;Z/{Z)<, so that F® G belongs to Shvy(X)<s by Remark 4.4.6. O

Lemma 4.6.21. Let X be a quasi-projective k-scheme, let F € Shv,(X)<o, and let G°* be a
cosimplicial object of Shvy(X)<o. Then the canonical map

6 : FRTot(S®%) — Tot(F®G*)
is an equivalence in Shve(X).

Proof. For each n > 0, let Tot™(G°®) denote the nth stage of the Tot-tower of G°* (that is,
the limit of the restriction of § to the category A<, of simplices of dimension < n). The
construction §°* — Tot™(G®) is given by a finite limit, and therefore commutes with any exact

functor. It follows that 8 can be identified with the composition

F@Tot(§*) =~ F®lmTot"(S%)

= lim(F® Tot™(G*))
~ limTot"(F® §°)
~ Tot(F®G®).

>

We are therefore reduced to proving that 6’ is an equivalence. Since Shv,(X) is right complete,
it will suffice to show that the fiber of § belongs to Shvy(X)<_,, for each integer m. For
n > m+ 2, let H, denote the cofiber of the natural map Tot™(G*) — Tot™2(G*), so that we
have a pushout square

F @ lim Tot™(§%) —lim |, (F @ Tot"(§%))

L,

?@@Hn ]Lm&"@il{n

Since each §? belongs to Shvy(X)<o, the cofibers 3,, belong to Shv,(X)<_,,—2. Using Lemma
4.6.18, we deduce that the domain and codomain of 8” belong to Shv(X)<_,, so that fib(8") ~
fib(6”) belongs to Shv,(X)<_, as desired. O



WEIL’S CONJECTURE FOR FUNCTION FIELDS 145

Proof of Proposition 4.6.17. Embedding X and Y into projective space, we may assume with-
out loss of generality that X and Y are smooth. Let p: X XY — X and ¢: X XY — Y denote
the projection maps onto the first and second factor, respectively. Unwinding the definitions,
we wish to show that the composite map

Tot(F*) X Tot(G®) =~ p*Tot(F*) @ ¢* Tot(G®)
% Tot(p* F*) @ Tot(q* G°)
% Tot(p* F* @ Tot(q* G*))
% Tot(Tot(p* F* 0¢* G°))

12

Tot(F* K G°)

is an equivalence. The map 6 is an equivalence by Proposition 4.3.39, and the maps 6" and 0"
are equivalences by virtue of Lemma 4.6.21. g

5. THE PropucT FORMULA

Let k£ be an algebraically closed field, let £ be a prime number which is invertible in k, let
X be an algebraic curve over k, and let G be a smooth affine group scheme over X. In §3,
we proved that if the generic fiber of G is semisimple and simply connected, then the forgetful
functor Rang(X) — Bung(X) induces an isomorphism of ¢-adic homology groups

H*(Rang(X); Zz) — H*(Bung(X); Zz)

(Corollary 3.2.12). We can regard this as a sort of local-to-global principle for computing the
l-adic (co)homology of the moduli stack Bung(X): rather than contemplating arbitrary G-
bundles on X, it suffices to consider G-bundles which are “supported” on finite subsets of X.
In the special case where X and G are defined over some finite subfield F, C k, we would
like to use this principle to compute the trace of the (arithmetic) Frobenius automorphism of
H*(Bung(X); Zg). For this, it is useful to contemplate the diagram of prestacks

Rang(X)

[ P
Bung(X/ \Ran(X).

For purposes of motivation, let us suppose that the formalism of ¢-adic sheaves has been ex-
tended to the setting of prestacks, and let Z, denote the constant f-adic sheaf on Rang(X).
Then Corollary 3.2.12 supplies isomorphisms
H* (Bung(X): Z) & H*(Rang(X);Z)
~ H"(Ran(X);A),

where A denotes the ¢-adic sheaf on Ran(X) given by 1. Z,.
To understand the structure of the sheaf A, we need to understand the map ¢ : Rang(X) —
Ran(X). Let us begin by describing the fibers of 7. Let Grg denote the fiber product

Rang(X) XRan(X) X ~ Rang(X) X Fin® {<1>}

We will refer to Grg as the affine Grassmannian of G. Unwinding the definitions, we see that
Grg is a prestack whose R-valued points can be identified with triples (s, P, ) where s € X (R),
P is a G-bundle on X, and v is a trivialization of P over the open set Xp — |s|, where |s]
denotes the image of the map Spec R — Xp determined by s. The construction (s, P,~y) — s
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determines a morphism of prestacks Grg — X. For each k-valued point € X (k), we let Grg
denote the fiber product Grg xx{z}.

Fix a point z € X (k). Let O, denote the completed local ring of X at the point z, and
let K, denote its fraction field. Unwinding the definitions, we see that the fiber product
Rang(X) XRan(x) Speck is a prestack whose k-points are given by pairs (P, ), where P is a
G-bundle on X and v is a trivialization of P over the open set X — {x}. Since k is algebraically
closed and G is smooth, we can always choose a trivialization of P over the formal completion
of X at z. It follows that P is obtained by “regluing”: that is, it can be obtained by gluing
the G-bundle on X — {z} to the trivial G-bundle on Spec O, using some isomorphism over
Spec K, which we can identify with an element of G(K,). Here the trivialization of P over
X — {z} is given as part of the data, but we are free to modify the trivialization on Spec O,:
consequently, the A-points of the fiber Rang(X) Xgan(x) Speck can be identified with the
quotient G(K,)/G(0O,).

We will denote the fiber product Rang(X) Xgran(x) Speck by Grg, and refer to it as the
affine Grassmannian of G at the point z. It is generally not representable by a scheme, but
one can show that it is an Ind-scheme: more precisely, it can be written as a the direct limit of
a sequence

Y(0)—=Y(1)—=Y(2)—---
of quasi-projective k-schemes, where each of the morphisms is a closed embedding. If G is
reductive, then each of the k-schemes Y (m) is actually projective. In fact, even more is true:
if G is reductive, then the projection map 1 : Rang(X) — Ran(X) itself is Ind-proper, so that
one has base change and Kiinneth equivalences
Agsy 5 C*(Grg Zy) & Q) C*(Grg: Zo).
€S
We may therefore regard the chain complex C*(Ran(X);A) as a sort of continuous tensor
product of the chain complexes C*(Grg; Zy), so that Corollary 3.2.12 supplies a version of the
equivalence
&) C*(GrE; Zy) ~ C* (Bung (X); Zy)
zeX
appearing in Example 1.4.11.
Remark 5.0.1. Suppose that k is the field C of complex numbers, and that G is the split
reductive group scheme over C corresponding to a reductive algebraic group Gg over C, so that
Go(C) is a complex Lie group. In this case, we can view the C-points of the affine Grassmannian
of G (at any chosen point € X)) as a topological space, which is given (as a set) by the quotient
Go(C((t)))/Go(CI[t]]). Here Go(C((t))) has the homotopy type of the free loop space of Go(C),
while Go(C[[t]]) has the homotopy type of Go(C) itself. The quotient Grg , has the homotopy
type of the based loop space QGo(C) ~ Q2B Go(C).

Recall that if Y is a quasi-projective k-scheme and F € Shvy(Y) is a constructible ¢-adic
sheaf on Y, and the pair (Y,J) is defined over a finite field F, C k, then the trace of the
geometric Frobenius automorphism Frob on the compactly supported cohomology H(Y;F)
can be computed using the Grothendieck-Lefschetz trace formula

Tr(Frob |H;(Y; ) = > Tr(Frob|H*(5,))
yeY (Fq)
Taking F to be the Verdier dual of another /-adic sheaf G, we can rewrite this formula as
(10) Tr(Frob ' |H*(Y;G)) = Tr(Frob|H*(D(S),)).
yeEY (Fq)
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Roughly speaking, we would like to prove Theorem 1.3.5 by applying a version of this formula
where Y is replaced by the Ran space Ran(X), and G is replaced by the f-adic sheaf A.

Unfortunately, things are not so simple. The Ran space Ran(X) is an infinite-dimensional
algebro-geometric object and the sheaf A is not constructible, so the usual theory of Verdier
duality is not directly applicable. To address this difficulty, we will need to modify the notion of
sheaf. In §5.2, we will define oo-category Shvy(Ran(X)) whose objects we refer to as !-sheaves
on Ran(X). Roughly speaking, an object F of the oo-category Shvy(Ran(X)) consists of a
collection of (-adic sheaves {F7) € Shvy(XT)} (here T ranges over all nonempty finite sets),
equipped with a coherent family of identifications 6!T T FT) ~ (1) (where 0p/p/ : X Ty xT
denotes the diagonal map associated to a surjection of finite sets T — T”). Heuristically, we
can think of F as a sheaf on Ran(X) which is generated by its compactly supported sections,
and T as the l-restriction of F along the map X7 — Ran(X). In particular, if T is given as
a finite subset of X (k), then we have a canonical point 7 : Speck — X7, and we can consider
the costalk F 1y = n'FD e Modg, .

If 7 : Z — Y is a map of quasi-projective k-schemes, then we let [Z]y denote the ¢-adic sheaf
given by m,m*wy . In §5.1 we will extend the definition of [Z]y to the case where Z is an arbitrary
prestack. In §5.4, we apply this general constructions to produce a !-sheaf B € Shvé(Ran(X ),
whose costalks at a point v : T'— X (k) is given by

VBT = (K) C*(BGa; Zo).

zev(T)

The !-sheaf B can be regarded as a sort of Koszul dual to A (more precisely, we will prove in
§9 that certain “reduced” versions of A and B differ by a covariant version of Verdier duality).
In §5.4, we will construct a canonical map

. / B — C*(Bung(X); Zo):

here [ B denotes the complex of compactly supported cochains on Ran(X) with coefficients in
B (or the chiral homology of B), which we will study in §5.3. The second main result of this
paper (Theorem 5.4.5) asserts that the map p is a quasi-isomorphism.

Suppose that T is a union of nonempty finite sets 77 and 7", and that v : T — X (k) has
the property that v(7”) and v(T") are disjoint. Then we have a canonical equivalence

(1/|T/)! BT ®(V|TH)! BT ~ D)
This equivalence behaves well as v varies: in fact, it is given by a map of ¢-adic sheaves
BT g BT _y BT
Letting 7" and T" vary, we can view these maps as defining a multiplication
m:BxB — B,

where x denotes the convolution product on !-sheaves which we study in §5.5. We will show that
this multiplication B with the structure of a commutative factorization algebra, so that B can be
functorially recovered from the f-adic sheaf B = [BG]x (Theorem 5.6.4); in concrete terms,
the costalk of B at a point given injective map v : T — X (k) is given by 1! BT Ryerv(t) B,
In §5.7, we will use this observation to give a reformulation of Theorem 5.4.5 which expresses
the cochain complex C*(Bung(X);Z,) as a “continuous tensor product” @, C*(BGy; Zy)

(Theorem 5.7.1); compare with Theorem 1.4.9.



148 DENNIS GAITSGORY AND JACOB LURIE

5.1. The Cohomology Sheaf of a Morphism. Throughout this section, we fix an alge-
braically closed field &k and a prime number ¢ which is invertible in k. Let X be a quasi-
projective k-scheme and let wx denote its dualizing sheaf (Notation 4.6.15). Given any mor-
phism f : Y — X of quasi-projective k-schemes, we let [Y]x € Shvy(X) denote the f-adic
sheaf given by f.f*wx. We will refer to the ¢-adic sheaf [Y]x as the cohomology sheaf of the
morphism f.

Remark 5.1.1. We will primarily be interested in the construction ¥ +— [Y]x in the special
case where Y is smooth over X. In this case, for any proper morphism of quasi-projective
k-schemes ¢g : X’ — X, Variant 4.5.5 and Proposition 4.5.12 supply an equivalence of ¢-adic
sheaves

Y xx X'|x ~¢'[Y]x.

Taking X’ = Spec k, we obtain the following informal description of [Y]x: it is the ¢-adic sheaf
whose costalk at a point n € X (k) can be identified with the cochain complex C*(Y,); Z;), where
Y, denotes the fiber Y x x Speck of f over the point 7.

Our goal in this section is to generalize the construction ¥ — [Y]x to the case where Y is
a prestack. For the purpose of setting up the definitions, it will be convenient to consider a
further generalization which depends on a choice of ¢-adic sheaf F € Shv,(X).

Construction 5.1.2. Let X be a quasi-projective k-scheme and let € be a prestack equipped
with a map 7 : € — X. For each object n € €, we let R,, denote its image in Ring;, so that =
determines a map of k-schemes Spec R,, — X which we will (by abuse of notation) denote by

7.
For each (-adic sheaf F € Shv,(X), we let [C]g denote the inverse limit

1'&177*77* F € Shvy(X).

nee
Example 5.1.3. Let 7 : ¥ — X be a morphism of quasi-projective k-schemes. For each
object F € Shvy(X), we can identify [Y]s with the pushforward m.7*F. In particular, if
F € Shv(X)<y for some integer n, then [Y]y € Shvy(X)<,,.

Notation 5.1.4. Let X be a quasi-projective k-scheme and let € be a prestack equipped with
amap 7: C — X. We let [C]x denote the sheaf [C],, € Shvy(X), where wy is the dualizing
sheaf of X.

Example 5.1.5. Let X = Speck. Then for every prestack €, we have a canonical equivalence
[Clx =~ C*(C;Zy).

Remark 5.1.6. Let X be a quasi-projective k-scheme and let € be a prestack with a map
C — X. Then the ¢-adic sheaf [C]x is {-complete. When € is a quasi-projective k-scheme this
follows from Remark 4.3.35 (since [C]x is constructible), and the general case follows from the
observation that the collection of ¢-complete objects of Shv,(X) is closed under limits.

Remark 5.1.7 (Functoriality). Let X be a quasi-projective k-scheme, and suppose we are
given a commutative diagram of prestacks

f

C——=D

NS

X.
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For every f-adic sheaf F € Shvy(X), the morphism f induces a pullback map
[+ [Dlr — [Cls.

We can summarize the situation informally by saying that the ¢-adic sheaf [C]5 depends func-
torially on €. We will discuss this functoriality in more detail below and in §A.5.

Remark 5.1.8. Let X be a quasi-projective k-scheme and let ¥ € Shv,(X). Let € be a
prestack equipped with a map 7 : € — X. Suppose that C can be realized as a filtered colimit
of prestacks {C,}. Then the canonical map [C]y — @a[ea]g is an equivalence in Shv,(X).

We will typically be interested in the special case of Construction 5.1.2 where C is an Artin
stack. In this case, we do not need to use the entire category C to compute the limit [C]gy =

].&nne(‘f 2N J.
We now establish a generalization of Remark 5.1.1:

Proposition 5.1.9. Let f : X' — X be a proper morphism of quasi-projective k-schemes,
let C be an Artin stack with affine diagonal which is equipped with a morphism 7w : C — X,
and let © = €xxX'. Then for every (-adic sheaf F € Shvy(X), there is a canonical map
(€419 — f'[Cly, which is an equivalence when  is smooth. In particular (taking F = wx),
when T is smooth there is a canonical equivalence [C']x/ ~ f'[C]x.

Remark 5.1.10. The assumption that € have affine diagonal is not really needed; however,
it is satisfied in all of our applications and allows for a slightly simpler proof. Similarly, the
hypothesis that f is proper can be removed given a more robust theory of the exceptional
inverse image functor f'.

Lemma 5.1.11. Let X be a quasi-projective k-scheme and let C be an Artin stack with affine
diagonal equipped with a map € — X. Let Uy be a quasi-projective k-scheme equipped with a
surjective map Uy — C, and let Uy be the simplicial scheme given by the iterated fiber powers
of Uy over C. For every object F € Shvy(X), the canonical map

[Clg = Tot[Us] 7
is an equivalence in Shv,(X).

Proof. For each object n € C, we can identify n with a map of prestacks Spec R, — €. Then
U, can be identified with a cosimplicial object of €, given by a map p: A — C. Let Gy C C
denote the full subcategory spanned by those objects n € C for which the map Spec R,, — €
factors through Up. Note for each object n € €, the fiber product A x¢ €/, is empty if 5 ¢ Co,
and weakly contractible otherwise. It follows that p induces a right cofinal map A — Cy. For
any quasi-projective k-scheme X, any morphism 7 : € — X, and any object F € Shv,(X),
we can regard [Us]s as a cosimplicial object of Shv,(X), whose totalization is equivalent to
[Co]5. The desired result now follows from the observation that the inclusion Gy < € induces
an equivalence after étale sheafication (by virtue of our assumption that the map Uy — € is
surjective). O

Proof of Proposition 5.1.9. Elementary considerations of functoriality supply a natural com-
parison map

[Gl]f! F f![e]ff
(see §A.5 for a detailed discussion); we will prove that this map is an equivalence. Writing C as

a union of quasi-compact open substacks, we can reduce to the case where € is quasi-compact
(see Remark 5.1.8). Choose a smooth surjection p : Uy — €, where Vj is an affine scheme. Let
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U, be the simplicial (affine) scheme given by the nerve of p. For each integer 7, let 7(7) denote
the composite map V; — € = X, and form a pullback diagram

i
U ——=U;

iﬂ/ (i) lﬂ(z)

x o x

Note that each of the maps 7 (%) is smooth. We may therefore identify 6 with the composition
! ~ BT . -\ *
flely = f i w(i)en(i)* 7
[ileA
lim fr(i).m(i)" F
[BESPAN
lim ' (i).g;m (i) F
ilea
im 7' (i)' (0) f' F
[ileA
~ [Cpg
of equivalences supplied by Proposition 4.5.12 and Remark 5.1.11. 0

12

1

1

We will also need a slight variation on Proposition 5.1.9.

Definition 5.1.12. Let f : € — D be a morphism of prestacks in groupoids. We will say
that f is an open immersion if the following conditions is satisfied: for every quasi-projective
k-scheme X and every map X — D, the fiber product € xp»X is representable by an open
subscheme U C X.

Proposition 5.1.13. Let f : Y’ — Y be a proper morphism between quasi-projective k-schemes,
let m: D — Ring,, be a prestack in groupoids, let j : C = Y Xgpeck D be an open immersion,
and form a pullback diagram

¢ ——=¢

.
Then for every object F € Shvy(Y'), the canonical map u : [C']p1 5 — f'[Cly is an equivalence in
Shv,(Y"). In particular, we have an equivalence [€']y =~ f'[C]y.
Remark 5.1.14. Propsition 5.1.13 is valid more generally if the map j : € = Y Xgpecr D is

a smooth relative Artin stack; similarly, the hypothesis that the morphism f be proper can be
removed given a more general theory of the exceptional inverse image functor f'.

Lemma 5.1.15. Let f :Y' — Y be a proper morphism of quasi-projective k-schemes, let Z be
a quasi-projective k-scheme, let U be an open subset of Y x Z, and form a pullback diagram

f/

U——=U
A v

Then, for every object F € Shvo(Y), the natural map v : 7" f*'F — f"7* F is an equivalence in
Shv, (U”).
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Proof. The assertion is local on U (see Proposition 4.5.12). Enlarging U, we may assume
without loss of generality that U =Y X Z, in which case the desired result is a special case of
Proposition 4.6.7. g

Proof of Proposition 5.1.13. For each object D € D, let Up denote the open subscheme of
Y Xgpeck Specw(D) given by the fiber product Specm(D) xp €, and form a pullback square

Ub*)UD

-
v .y
A simple cofinality argument shows that u can be identified with a limit of maps
up T s F = faperh I
The desired result now follows by combining Variant 4.5.7 with Lemma 5.1.15. 0
Example 5.1.16. Let f : X — Y be a proper morphism of quasi-projective k-schemes and let C

be an arbitrary prestack. Then, for each I € Shv,(Y"), the canonical map 6 : [C Xgpec . X| 1 5 —
F'[€ Xspec kY] is an equivalence in Shv,(X).

Example 5.1.17. Let Y be a projective k-scheme, let X be a quasi-projective k-scheme, and
let C be a prestack. Applying Example 5.1.16 to the projection map X x Y — X, we obtain
an equivalence

(€ Xspec k(X X Y)]xxy = [€ Xgpec kX ]| x Hwy.

In particular, if X = Speck, we obtain an equivalence
[G XSpeCkY]Y ~ C*(G, Zf) ®Zz Wy .

We conclude this section with an elaboration on Remark 5.1.7 and Proposition 5.1.9, which
supplies a more complete description of the functorial dependence of the ¢-adic sheaf [C]x on
both X and C.

Informal Definition 5.1.18. We define an oo-category Shv!e informally as follows:

e The objects of Shvz are pairs (X,J), where X is a quasi-projective k-scheme and
F € Shvy(X) is an ¢-adic sheaf on X.

e A morphism from (X,F) to (X', F') in Shv} consists of a proper morphism of quasi-
projective k-schemes f : X — X’ together with a map f, F — F’ of f-adic sheaves on
X' (or, equivalently, a map F — f'J” of f-adic sheaves on X).

Informal Definition 5.1.19. We define a 2-category AlgStaLckI informally as follows:

e The objects of AlgStackI are pairs (X, €), where X is a quasi-projective k-scheme and C
is a quasi-compact Artin stack with affine diagonal equipped with a smooth morphism
C—X.

e A morphism from (X, €) to (X’,€) in AlgStack' is a proper morphism of k-schemes
f: X — X’ together with a map X x x/ @ — € of Artin stacks over X.

We regard AlgStack! as a symmetric monoidal oco-category with tensor product given by
(X,0)® (X,C)=(X xX',ex¢e).
The following result refines Remark 5.1.7 and Proposition 5.1.9:

Proposition 5.1.20. The construction (X,C) — (X,[Clx) determines a functor ® from
AlgStack' to Shv}.
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For precise definitions of the oco-categories Shv!e and AlgStack! and a proof of Proposition
5.1.20, we refer the reader to §A.5.

5.2. I-Sheaves on Ran(X). Throughout this section, we fix an algebraically closed field & and
a prime number ¢ which is invertible in k. If X is a quasi-projective k-scheme, we let Ran(X)
denote the prestack introduced in Definition 2.4.9, so that the R-valued points of X can be
identified with pairs (T, v) where T is a nonempty finite set and v : T — X (R) is any map.
Our goal in this section is to introduce the notion of a !-sheaf on Ran(X).

Definition 5.2.1. Let Sch}" denote the category whose objects are quasi-projective k-schemes
and whose morphisms are proper maps, let Shvz be the co-category of Definition 5.1.18, and
let ¢ : Shv), — Sch?" be the forgetful functor given by ¢(X,F) = X. If X is a quasi-projective
k-scheme, then the construction 7'+ X7 determines a functor p : Fin®*” — Sch}". We define
a laz !-sheaf on Ran(X) to be a functor p : (Fin®)°? — Sch}" which fits into a commutative
diagram

Shvz

e
(Fin®)o» —2 Schy".
We define a !-sheaf on Ran(X) to be a lax !-sheaf for which F carries each morphism in

Fin® to a ¢-Cartesian morphism in Shv,. We let Shvi™(Ran(X)) denote the oo-category
Fungp,rr ((Fin®)°P, Shv}) whose objects are lax !-sheaves on Ran(X), and we let Shvy(Ran(X))

lax

denote the full subcategory of Shvy™(Ran(X)) whose objects are !-sheaves on Ran(X).

Notation 5.2.2. Let X be a quasi-projective k-scheme, and let F € Shvi™*(Ran(X)). For every
nonempty finite set 7', we let F 1) ¢ Shv,(XT) denote the f-adic sheaf obtained by applying F
toT. If T ={1,...,n} for some positive integer n, we will denote FT) by Fm),

Remark 5.2.3. More informally, a lax !-sheaf on Ran(X) is given by the following:

(a) For every nonempty finite set T', an ¢-adic sheaf FT) ¢ Shv,(XT).
(b) For every surjection of nonempty finite sets 7 : T'— T, with associated diagonal map

o/ XT' 5 XT 4 morphism «;; : FT (51[/T/ FT) of -adic sheaves on X7’ (or,

equivalently, a morphism B, : o771/, F (™) 5 F(T) of p-adic sheaves on X .
(c¢) Additional coherence data expressing the idea that construction 7 — a; is compatible
with composition.
A l-sheaf on Ran(X) is a lax !-sheaf for which the morphisms a, appearing in (b) are
equivalences.

Example 5.2.4. Let X be a quasi-projective k-scheme. Then the construction T' — wxr
determines a !-sheaf on Ran(X'), which we will denote by wran(x). We will refer to wran(x) as
the dualizing sheaf on Ran(X).

Remark 5.2.5. Let X be a quasi-projective k-scheme. Then the construction 7"+ Shv,(X7)
determines a functor from the category Fin® to the oco-category Cats, of oco-categories, which
assigns to each surjection T — T the exceptional inverse image functor §!T T Shvy(XT) —

Shv,(XT"). The co-category Shvy(Ran(X)) is an explicit realization of the (homotopy) inverse
limit Jim,, Shv,(XT).
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Example 5.2.6. Let X = Speck. Then the functor T+ Shv,(X7) is constant. Since the
simplicial set N(Fin®) is weakly contractible, it follows that the evaluation functor & — F
induces an equivalence of co-categories Shvy(Ran(X)) — Shv,(X) ~ Modg, .

Definition 5.2.7. Let X be a quasi-projective k-scheme. We let Shv?iag(Ran(X )) denote the

lax

full subcategory of Shv,™(Ran(X)) spanned by those commutative diagrams

Shv}

=
(Fin®)o» —2 Schy".

for which JF carries each morphism in Fin® to a ¢-coCartesian morphism in Shvz.

Remark 5.2.8. More informally, a lax !-sheaf F € Shvi™*(Ran(X)) belongs to Shv§*#(Ran(X))
if and only if, for each surjection of finite sets 7 : 7" — T", the associated map Br : dp 7. FT)
FT) is an equivalence of ¢-adic sheaves on X7

Remark 5.2.9. The category Fin® has a final object, given by the one-element set 7' = {1}.

It follows that a lax l-sheaf F € Shv®™(Ran(X)) belongs to Shv?iag(Ran(X)) if and only if it is
a ¢-left Kan extension of its restriction to the full subcategory {T'} C (Fin®)°P (see SHTT.4.3

for a discussion of relative Kan extensions). In particular, the construction F FU induces
an equivalence of co-categories Shv§ *8(Ran(X)) — Shv,(X).

Remark 5.2.10. Let X be a quasi-projective k-scheme. Then the full subcategory
Shv8(Ran(X)) C Shvj™(Ran(X))

is contained in Shvy(Ran(X)). To prove this, consider an arbitrary surjection 7 : T/ — T of
nonempty finite sets, so that we have a commutative diagram o :

x—4 . x

\L(ST i&T/
X7 T
We wish to show that, for each object F € Shv,(X), the canonical map
Sruid' F — 8l b7, F

is an equivalence. This follows from Theorem 4.5.4, since o is a pullback square and the map
dps /7 is proper.

Let X be a quasi-projective k-scheme. Then the full subcategory
Shvy(Ran(X)) C Shvi™(Ran(X))

is closed under limits and colimits. It follows from the adjoint functor theorem (Corollary
HTT.5.5.2.9) that the inclusion Shv}(Ran(X)) < Shvi*(Ran(X)) admits a left adjoint (it also
admits a right adjoint, but we will not need this). In other words, we can regard Shv}(Ran(X))

as a localization of Shvy™(Ran(X)). Our next result describes this localization more explicitly.
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Proposition 5.2.11. Let X be a quasi-projective k-scheme, let
L : Shvj™(Ran(X)) — Shv}(Ran(X))

denote a left adjoint to the inclusion functor, and let F € Shvi™(Ran(X)). Then L(F) ~ 0 if
and only if the following condition is satisfied for every nonempty finite set T':

[e]
(x7) Let XT denote the open subset of XT whose k-valued points are injective maps v : T —

X (k). Then the colimit
lig (87 F7)] o,
/=T

vanishes in Shvy(XT). Here the colimit is indexed by (the opposite of) the category
(Fin®) /7.
The proof of Proposition 5.2.11 will require some preliminaries.
Remark 5.2.12. Let X be a quasi-projective k-scheme. For every nonempty finite set 7', the
evaluation functor
er - Shvi™*(Ran(X)) — Shv,(X7T)
F s g0

admits a left adjoint ek, given by relative left Kan extension along the functor {T'} — Fin®.

More concretely, we have
(29" = P dax,
a:T'—=T
where the direct sum is indexed by all surjections « : T/ — T and 6 : XT — X T" denotes the
associated diagonal map.
For every object F € Shv*(Ran(X)), we have a canonical equivalence
F~ lim ek (F™).
TEFin®

In particular, the co-category Shvi™*(Ran(X)) is generated under small colimits by the essential
images of the functors {e%}TeFins.

Remark 5.2.13. Let X be a quasi-projective k-scheme and let F € Shvy™(Ran(X)). Then
F is a !-sheaf if and only if for every surjection of nonempty finite sets o : T — T and every
object G € Shvy(XT), the canonical map

et (6774 §) — e (9)

induces a homotopy equivalence
MapShvlf"(Ran(X))(e%’(g)v F) — MapShvlﬁx(Ran(X))(e%’ (67174 9), F).

Proof of Proposition 5.2.11. Let € denote the full subcategory of Shvj*™*(Ran(X)) spanned by
those objects F for which L(F) ~ 0. We first show that every object of € satisfies condition
(1) for every nonempty finite set 7. Using Remark 5.2.13, we see that C is generated under
small colimits by cofibers of maps

€5 (0575 §) — €5(S)
where S’ — S is a surjection of nonempty finite sets and G € Shv,(X*). It will therefore suffice
to show that every such cofiber satisfies (*7). Equivalently, we must show that the canonical
map
0: lim 0 e (s/5.9)") = lim 67, pe§(5)T)
T'—T T'—=T
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is an equivalence over the open set X7 C XT.
Appealing to the definition of e%, we can identify the codomain of 6 with

iy ) 8} e s. 5.
T'—=T T8

Note that if we are given surjections o : TV — T, 8 : T’ — S, then the f-adic sheaf
(5IT, /T(ST/ /S 9)|)0(T vanishes unless « factors as a composition

T hs T,
o
and is otherwise equivalent to (& 7 9) |)0(T. It follows that over the open set X7, we can identify
]
the codomain of 6 with (Pg_, 1 (5IT/S 9)l¢ .. Similarly, over the open set XT we can identify the

X
domain of 6 with (Pg _, 1 5!T/S 9)|;{T. It now suffices to observe that if S — T is a surjection
which does not factor through the map S’ — S, then 6!T/S 9)|§T ~ 0.

We now prove the converse: suppose that F € Shvi™(Ran(X)) satisfies condition (x7) for
every nonempty finite set 7. The fiber of the canonical map ¥ — L F belongs to the co-category
C and therefore also satisfies condition (x7) for every nonempty finite set T'. It follows that L F
also satisfies condition (x7) for each T. Since L F is a !-sheaf, we have

lim 8,7 (LF) T = (LF)T),

T'—=T
so that (L ’J")(T)|§<T ~ 0 for each T' € Fin®. It follows by induction that each of the ¢-adic
sheaves (L F)(T) vanishes, so that L F ~ 0 as desired. O

Remark 5.2.14. Let X be a quasi-projective k-scheme and let
L : Shvl™(Ran(X)) — Shvy(Ran(X))

lax

denote a left adjoint to the inclusion. For each object F € Shv,*(Ran(X)) and each nonempty
finite set T', Proposition 5.2.11 shows that the canonical map

lim 6y, T = Tim 6y, (LF)T) = (LF)D
T'—=T T'—=T

is an equivalence when restricted to the open set X7 C X7,
Our next goal is produce some nontrivial examples of !-sheaves on Ran(X).

Definition 5.2.15. Let X be a quasi-projective k-scheme. We define a Ran(X)-prestack to be
a category € equipped with a coCartesian fibration € — Ran(X).

Notation 5.2.16. Let € be a Ran(X)-prestack. For every nonempty finite set T, let e

denote the fiber product C Xpi,s{T'}, so that the map p : € — Ran(X) induces a map of
prestacks p(T) : e™  XT. Suppose we are given a surjection of finite sets a : T — T".
We can identify e ~r X7 with the category comprised of those objects C' € € for which
p(C) € Ran(X) has the form (R,T,v), where v : T — X(R) is provided with a factorization

’
v

T3 T % X(R). Since 7 is a coCartesian fibration, the natural map (R, T,v) — (R, T',v')
in Ran(X) can be lifted to a p-coCartesian morphism C' — C’ in €. The construction C +— C’
determines a functor

Fo: T xr XT' — T,
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Remark 5.2.17. In the situation of Notation 5.2.16, the construction T s (X7, €T deter-
mines a functor from (Fin®)°P to the 2-category RelStack' of Construction A.5.14. Conversely,
any functor (Fin®)°P — RelStack' is equivalent to one which arises in this way, for an essentially
unique Ran(X)-prestack C.

Example 5.2.18. If X is an algebraic curve and G is a smooth affine group scheme over X, then
the Beilinson-Drinfeld Grassmannian Rang(X) (see Definition 3.2.3) is a Ran(X)-prestack.

Construction 5.2.19. Let X be a quasi-projective k-scheme and let p : € — Ran(X) be a
Ran(X)-prestack. We let [C]ran(x) denote the lax !-sheaf on Ran(X) given objectwise by the
formula

[G}g,;)n(X) = [e™)]xr € Shve(XT),

where €7 is defined as in Notation 5.2.16 and [C")]xris defined as in §5.1. More formally,
[ClRan(x) is defined by composing the functor (Fin®)°? — RelStack' of Remark 5.2.17 with the

functor W' : RelStack' — Shv!e of Remark A.5.24. We will refer to [Clran(x) as the cohomology
sheaf of the morphism p.

Example 5.2.20. The identity map id : Ran(X) — Ran(X) exhibits Ran(X) as a Ran(X)-
prestack, and its relative cohomology sheaf [Ran(X)|gran(x) can be identified with the dualizing
sheaf Wran(x) of Example 5.2.4.

5.3. Chiral Homology. Throughout this section, we fix an algebraically closed field k and a
prime number ¢ which is invertible in k. Let X be a quasi-projective k-scheme. In §5.2, we
defined the co-category Shvy(Ran(X)) of -sheaves on the Ran space of X. In this section, we
will introduce a functor

/ : Shv}(Ran(X)) — Modg, ,

which we will refer to as the chiral homology functor. Heuristically, we can think of an object
F € Shvy(X) as a rule which assigns to each “compact subset” K of Ran(X) a space of sections
supported on K, and [ F can be described as the direct limit of these spaces as the size of K
increases.

Remark 5.3.1. While the chiral homology functor | : Shv),(Ran(X)) — Modz, can be defined
for any quasi-projective k-scheme X, we will consider only the case where X is projective (for
our applications in this paper, we are only interested in the case where X is a projective algebraic
curve).

We begin with some general remarks.

Construction 5.3.2. Let f : X — Y be a proper morphism of quasi-projective k-schemes.
Then f determines proper morphisms f7 : X7 — Y7, depending functorially on T' € Fin®. We
let

Ran(f)' : Shvi™(Ran(Y)) — Shvj™(Ran(X))

denote the functor given on objects by the formula (Ran(f)! )™ = fT' #T) We let Ran(f).
denote a left adjoint to Ran(f)', given on objects by the formula (Ran(f), F)) = fT FD,

Remark 5.3.3. Let f : X — Y be a proper morphism of quasi-projective k-schemes. Then
the functor Ran(f)' restricts to a functor Shvi(Ran(Y)) — Shvy(Ran(X)), which we will also
denote by Ran(f)'. However, the functor Ran(f), generally does not carry Shvy(Ran(X)) into
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Shvy(Ran(Y')): for a surjection of finite sets T — T”, the induced diagram
XT' . XT
YT' s YT
is generally not a pullback square.

Example 5.3.4. Let f : X — Y be a proper morphism of quasi-projective k-schemes. Then
the functor Ran(f)' carries the dualizing sheaf WRan(y) to the dualizing sheaf Wran(x)-

Definition 5.3.5. Let X be a projective k-scheme, and let m : X — Speck be the projection
map. We let [ : Shvi**(Ran(X)) — Modz, denote a left adjoint to the composite functor

Modz, ~ Shvh(Ran(Spec k)) Ran(p) Shvh(Ran(X)) C Shvi™(Ran(X)).

If F is a lax !-sheaf on Ran(X), we will refer to [ J as the chiral homology of F.

Remark 5.3.6. We will generally abuse notation by not distinguishing between the chiral
homology functor [ and its restriction to the full subcategory Shvj(Ran(X)) of l-sheaves on
Ran(X), which can be identified with a left adjoint to the composite functor

Modz, ~ Shvj(Ran(Speck)) Ran(g) Shvy(Ran(X)).

Remark 5.3.7. For any projective k-scheme X, we can regard the oo-categories Shv,(X) and
Shvi™(Ran(X)) as tensored over the symmetric monoidal co-category Modgz,. Unwinding the
definitions, we see that the chiral homology functor F — [ F is left adjoint to the functor

Modz, — Shvi™*(Ran(X))

M — M Rz, WRan(X)-

In particular, we have a canonical homotopy equivalence

MapModz[ (/ ‘rf’ ZZ) =~ MapShvlzax(Ran(X)) (?a WX)‘

Remark 5.3.8. Let X be a projective k-scheme. Then the right adjoint of the chiral homology
functor [ can be identified with the composition

Modg, —  Fun((Fin®)°?, Modz, )

~ Shv™(Ran(Spec k))
Fen Shy!™ (Ran(X)).
These functors each admit left adjoints, given by Ran(w). and h? : Fun((Fin®)°P, Modz,) —

Modg,, respectively. It follows that the chiral homology functor | is given on objects by the
formula

/9: lim C*(X"; 1)

TeFin®
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Example 5.3.9. Let X be a projective k-scheme. Then we have

Jormn = lm € (XTiwxr)
TeFin®

lim C.(XT;Z)

TG%HS

~ C.(Ran(X);Zy).

12

If X is connected, then Theorem 2.4.5 supplies an equivalence f WRan(X) = Zy-

Example 5.3.10. Let f : X — Y be a proper morphism of quasi-projective k-schemes and
let € be an arbitrary prestack. Then we can regard € Xgpecr Ran(X) and € Xgpecr Ran(Y) as
Ran(X) and Ran(Y")-prestacks, respectively. Using Example 5.1.16, we can identify the relative
cohomology sheaf [€ Xspec k Ran(X)]ran(x) With the exceptional inverse image

Ran(f)'[€ Xspec & Ran(Y)|ran(y)-
In particular, if X is projective, we can take Y = Spec k to obtain an equivalence
[€ XSpec k Ran(X)|ran(x) =~ Ran(f)'(C*(C; Z¢) @z, Wran(speck)) = C*(€; Ze) ®z, Wran(x)-
It follows that the chiral homology [[€ Xgpeck Ran(X)]ran(x) can be identified with C*(C; Zy).

Let X be a projective k-scheme. To analyze the chiral homology functor
/ : Shv™(Ran(X)) — Modz,,

it is convenient to consider the natural filtration on Ran(X) given by measuring the cardinalities
of finite subsets of X.

Construction 5.3.11. For each integer d > 0, we FinZ, denote the full subcategory of Fin®
spanned by the nonempty finite sets having cardinality < d. If X is a projective k-scheme and

F is a lax l-sheaf on Ran(X), we let f(d) F denote the colimit lim_ .. .~ C* (XT; 57D, We
lflSd
regard the construction F — f(d) F as a functor from Shv*(Ran(X)) to Modg, .

Remark 5.3.12. The category Fin® can be identified with the (filtered) colimit of the sequence
of full subcategories

) = FinZ, C FinZ; C FinZ, C ---
It follows that the chiral homology functor [ : Shvi™(Ran(X)) — Modg, is a colimit of the

sequence of functors {f(d)}dzo.

The individual functors [ @ have the following convenient property (which is not shared by
the chiral homology functor | = lim il @ itself):

Proposition 5.3.13. Let X be a projective k-scheme and let d > 0 be an integer. Then the
functor f(d) : Shvl™ (Ran(X)) — Modg, preserves limits when restricted to Shvy(Ran(X)).

The proof of Proposition 5.3.13 will require some preliminaries.

Lemma 5.3.14. Let X be a projective k-scheme and let A C X? be the closed subscheme given
by the image of the diagonal map X — X2. For each d > 1, let A1) C X% denote the “fat
diagonal” given by the union of the closed subschemes {pi_le}lﬁiJSd? where p;; + X — X?
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denotes the projection onto the ith and jth factors. Let X* C X% be the complement of A®.
Then for each F € Shvy(Ran(X)), we have a canonical fiber sequence

(d-1) (d) . )
/ 3"—>/ F— O (XLFD | s,

in the oo-category Modg, .

Lemma 5.3.15. Let Y be a quasi-projective k-scheme equipped with a free action of a finite
group G, so that G also acts on the oo-category Shv,(Y). Let F be a G-equivariant object of
Shv,(Y), so that C*(Y; F) is a G-equivariant object of Modgz, (where the group G acts trivially
on Modz,). Then the norm map Nm : C*(Y;F)g — C*(Y;F)C is an equivalence (for a
definition of group actions and norm maps in the co-categorical setting, we refer the reader to
§HA.6.1.6).

Proof of Proposition 5.3.13. We proceed by induction on d. If d = 0, then f(d) can be identified
with the constant functor taking the value 0 € Modg,, and there is nothing to prove. To carry
out the inductive step, we note that Lemma 5.3.14 supplies a fiber sequence

(d=1) (d) v Sd. old)
/ CF—>/ F-C"(X4TF |)o(d)2d

depending functorially on F € Shvy(Ran(X)). It will therefore suffice to show that the func-
tor F — C*(X%FD | )s, preserves limits when restricted to Shvy(Ran(X)). This follows

%4
immediately from Lemma 5.3.15, since the symmetric group X4 acts freely on X<. O
We now turn to the proofs of Lemmas 5.3.14 and 5.3.15.

Proof of Lemma 5.3.14. Let Fin®; denote the category whose objects are finite (possibly empty)
sets and whose morphisms are surjections. The construction T +— X7 determines a functor
Fin®l® — Schy". We let C.. denote the fiber product (Fin®; ) xgpr Shv{. More informally, we
can identify €, with the co-category whose objects are pairs (T, F), where T is a finite set and
F € Shv,(XT). Let € denote the full subcategory of €, spanned by those pairs (T, F) where T
is nonempty, and let ¢ : € — (Fin®)° denote the projection map. Then Shvi™(Ran(X)) can be
identified with the co-category of all sections of ¢, and Shvll(Ran(X )) with the full subcategory
spanned by the Cartesian sections of g.

Suppose that F € Shvy(Ran(X)). Let ¥ € Shvi™(Ran(X)) be a ¢-left Kan extension of
the restriction F |(Fin2 L ,)ePs SO that we have an evident map v : ¥ — JF which induces an

equivalence [ @D g~ Ik @1 3 1t follows that the cofiber of the canonical map Ik @Dy

f(d) F can be identified with f(d) F", where " = cofib(v). By construction, we have 1) ~ 0
if the cardinality of 7' is < d. It follows that F” |(Fins o is a left Kan extension of F" |(Finz )or s

where Fin? ; denotes the full subcategory of Fin® spanned by those finite sets having cardinality
exactly d. Note that Fin? ; is equivalent to a category having a single object, with automorphism
group Yg4. We therefore obtain an equivalence

(d)
/ F'= lim (X" F' 1)) ~ lim  C* (X7 7'y ~ o (X F" D)y
T€Fing, T€Fin?
Note that we have ¥ 4-equivariant maps

CH (XY & o (XL F@ |, ) Lo (XEFD, ),
xXd Xd
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We will complete the proof by showing that o and 8 are equivalences.

To show that 3 is an equivalence, it will suffice to show that F@ vanishes on X¢. Unwinding
the definitions, we see that for each nonempty finite set T, the sheaf F e Shv,(XT) is given
by the formula

limg 5(E)x 5T/E,
where the colimit is taken over all equivalence relations E on T such that 7'/FE has cardinality
< d, and §(E) : XT/E — XT denotes the corresponding diagonal map. It now suffices to
observe that when T' = {1,...,d}, each of the maps §(E) has image contained in the big
diagonal A4 C X1,

To prove that « is an equivalence, it will suffice to show that the sheaf /¥ € Shv,(X4) is the
pushforward of a sheaf on X¢. Note that the complement A(® of X% is the union of the images
of the closed embeddings §(E), where E ranges over all equivalence relations on 7' = {1,...,d}
such that T/E has cardinality < d. It will therefore suffice to show that &(E)' F"@D vanishes

for every such equivalence relation E. Unwinding the definitions, we see that 6(E)' F'D s the
cofiber of the canonical map

0 : lim 6(E)'6(E"). 77 — §(B) 7T,
E/

where the colimit is taken over all equivalence relations £’ on T such that T/ E’ has cardinality
< d. For every such equivalence relation E’, let EE’ denote the equivalence relation on S
generated by E and E’, so that we have a pullback diagram of schemes

XT/EE"S(E’E') XT/E
lé(E/,E) lé(E)
XT/E ﬂ) x7T.

Using the proper base change theorem (Theorem 4.5.4), we can identify 6 with the canonical
m ap

lim §(E, E').8(E', B) F7/F) — 5(B) 3.

E/
Invoking our assumption that F is a !-sheaf, we are reduced to proving that the canonical map

E/

is an equivalence. Let P denote the partially ordered set of all equivalence relations E’ on
S such that E/ = EFE’. The construction E' — 0(E, E’). FT/EE) tactors through the map
E’ — EFE’ and is therefore a left Kan extension of its restriction to P. We are therefore reduced
to showing that the canonical map

hg §(E,E"), F(T/EE") _, 5(T/E)

E'EP

is an equivalence. This is clear, since the equivalence relation FE itself is a final object of P°P. [J

Proof of Lemma 5.3.15. Let Z denote the quotient Y/G, let ¢ : Y — Z denote the projection
map, and let ' : Shv,(Z) — Modz, denote the global sections functor. Let § = ¢, F, so that we
can identify § with a G-equivariant object Shvy(Z), and we have a G-equivariant equivalence
C*(Y;F) ~ I'(G). The functor I" preserves limits (since it is right adjoint to pullback along
the projection map Z — Speck) and colimits (since it is defined as the Ind-extension of the
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global sections functor on constructible sheaves). It follows that the norm map Nm can be
identified with the image under I' of the natural map Nmg : G5 — SG. We are therefore
reduced to proving that Nmg is an equivalence. By virtue of Corollary 4.3.42, it will suffice to
prove that ¢* Nmg is an equivalence in Shv,(Y"). The functor ¢* admits left and right adjoints
q,q« : Shve(Y) — Shvy(Z), and therefore preserves limits and colimits and so commutes
with the formation of norm maps. We are therefore reduced to proving that the norm map
Nmg- g : (¢*9)a — (¢*9)¢ is an equivalence in Shv,(Y). This follows from the observation
that the counit map ¢* G = ¢*¢. F — F exhibits ¢* § as an induced representation of G. O

If we restrict our attention to !-sheaves satisfying appropriate boundedness hypotheses, then
we can prove an analogue of Proposition 5.3.13 for the chiral homology functor F — [ F itself.

Corollary 5.3.16. Let ¢ : Z>o — Z be a function which is nondecreasing and unbounded, and
let Cy C Shv!g(Ran(X)) denote the full subcategory spanned by those !-sheaves F which satisfy
the following additional condition:

(%) For each integer d > 1, C*(X%; F¥ |)o(d) belongs to (Modz, )<_g(a)-
Then the functor F — [ F preserves limits when restricted to Cy.

Remark 5.3.17. For any nondecreasing unbounded function ¢ : Z>¢ — Z, the full subcategory
Cs C Shvy™(Ran(X)) appearing in the statement of Corollary 5.3.16 is closed under limits.

Proof of Corollary 5.3.16. For each integer e, let T, : Shvi™(Ran(X)) — (Modz,)s_. be the
functor given by T.(F) = 7>_. [ F. We will complete the proof by showing that each of the
functors T, commutes with limits when restricted to C4. To prove this, choose an integer d

such that ¢(d’) > e for d’ > d. It follows from Proposition 5.3.13 that the functor F — f(d) F

commutes with limits. It will therefore suffice to show that the map 7>_. [ @g_, T>_e [Fis
an equivalence for F € Cy4. In fact, we claim that for each d’ > d, the map

(d) (d")
T>_¢ 3“_>TZ*€/ F

is an equivalence. Using induction on d’, we are reduced to proving that the natural map

(d'-1) (d")
’7'2,6/ 37—>T2,e/ F

is an equivalence for d’ > d. Using Lemma 5.3.14, we are reduced to proving that
CrUd); 5 uwn)s,
belongs to (Modz,)<—_.—1. Lemma 5.3.15 supplies an equivalence
CHU): T s, = C O ):FD |y ™.

It will therefore suffice to show that C’*(U(d’);&"(d/) lu@@y)™ € (Modz,)<—c—1. Because
(Modz,)<—c—1 is closed under limits in Modz,, we are reduced to proving that

CHU); FY |yay) € (Modz,)<—e—1,

which follows from (x) since f(d') > e. O
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5.4. The Product Formula: First Formulation. Throughout this section, we let k£ denote
an algebraically closed field and ¢ a prime number which is invertible in k. Let X be an algebraic
curve over k and let G be a smooth affine group scheme over X. For each point z € X, let
G, denote the fiber product G x x {z}, and let BG, denote the classifying stack of G,. Our
goal is to formulate an algebro-geometric version of Theorem 1.4.9, which expresses the cochain
complex C*(Bung(X);Zy) as a “continuous direct limit” of cochain complexes of the form
C*([I,er BGa; Ze) where T ranges over all finite subsets of X.

Construction 5.4.1. We define a category RanG(X) as follows:
e The objects of RanG(X ) are quadruples (R, T,v,P) where R is a finitely generated k-
algebra, T is a nonempty finite set, v : T'— X (R) is a map of sets, and P is a G-bundle
on the divisor |v(T)| C Xg determined by v.
e A morphism from (R, T,v,?P) to (R',T’,v/,P') in the category Ran® (X) consists of a
morphism (R, T,v) — (R',T’,v') in Ran(X), together with a G-bundle isomorphism
P~ |V/(T/)| X|u(T)| P.

The construction (R, T, v, P) — (R, T, v) determines a forgetful functor Ran®(X) — Ran(X),
which exhibits Ran® (X)) as a Ran(X )-prestack. For each nonempty finite set T, we can identify
the prestack RanG(X )(T) with the classifying stack for the group scheme over X7 given by the
Weil restriction of G xx D along the map D — X7 where D C X Xgpeck X denotes the
“incidence divisor” determined by the natural maps from X7 into X. In particular, for each

point x € X (k), the fiber product RanG(X) X Ran(G) OPec k can be identified with the classifying
stack BG,.

Notation 5.4.2. We let B € Shvi™(Ran(X)) denote the lax !-sheaf given by the formula
B = [RanG(X )Ran(x). In situations where it is necessary to emphasize the dependence of B
on the group scheme G (which we will encounter in §7.1), we will denote B by B¢.

Proposition 5.4.3. The lax !-sheaf B of Notation 5.4.2 is a !-sheaf on Ran(X).

Proof. For every nonempty finite set 7', let A C X7 Xgpeck X be the incidence divisor (con-
sisting of those points ({z¢}ter,y) where y = x; for some t), and let G(T') denote the scheme
given by the Weil restriction of G x x Az along the finite flat map A7 — X7, Then the fiber
Ran®(X)T = Ran®(X) xpins {T'} can be identified with the classifying stack of G(T') (where
we regard G(T') as a group scheme over X7T). For each integer n, we let G(T),, denote the nth
fiber poewr of G(T) over X7T.

Let T/ — T be a surjection of nonempty finite sets, and let § : X7 — X7 be the as-
sociated diagonal map. We wish to show that the canonical map £ : [Ran®(X)™)]xr —
§'[Ran®(X)(T)] 47 is an equivalence in Shv,(XT). Using Proposition 5.1.9, we can identify
the codomain of 8 with [Ran®(X)T") x v+ XT] xr. Tt follows that § can be identified with the
map of totalizations induced by a morphism of cosimplicial ¢-adic sheaves

[G(T).]XT — [G(T/). X xr! XT]XT.
To complete the proof, it will suffice to show that the natural map
8"+ [E(T)ulxr = (G X X7 ]cr
is an equivalence for each n > 0. Consider the diagram
G(T')n x o X7 5 G(T),, 5 X7
Unwinding the definitions, we see that 8" is given by the map

Ut wxr = Putpud P wxr
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determined by the unit transformation v : id — ¢.¢*. To complete the proof, it will suffice to
show that u is an equivalence. This follows from the observation that, Zariski-locally on X7, u
can be identified with the projection map

A xG(T), = G(T)n
for some integer d > 0 (since the kernel of the map G(T") x yr» XT — G(T) is an extension of

vector bundles over X7). O

Remark 5.4.4. Let ¢ : Speck — Ran(X) be the point classifying an inclusion v : T — X (k),
so that the fiber product RanG(X) XRan(X) Speck can be identified with the product stack
[I;cr BGy(s). Using Proposition 5.1.9, we see that the costalk /' B can be identified with the
cochain complex C*([[,cr BGy(1); Ze)-

Any G-bundle on the entire curve X can be restricted to any divisor on X. The formation
of restrictions determines a morphism of Ran(X)-prestacks

Ran(X) Xspec s Bung(X) — Ran®(X),
hence a map of !-sheaves
[Ran(X)]Ran(x) = [Ran(X) Xspec k Bung(X)]Ran(x)-
We can now formulate our algebro-geometric analogue of Theorem 1.4.9:

Theorem 5.4.5 (Product Formula). Let G be a smooth affine group scheme over X with
connected fibers whose generic fiber is semisimple and simply connected. Then the composite

map
/B = /[RanG(X)}Ran(X)

- /[Ran(X) Xgpec k Bung (X)]ran(x)
~ C*(Bung(X);Zy)
is a quasi-isomorphism (here the last equivalence is supplied by Example 5.5.10).
We will give the proof of Theorem 5.4.5 in §9.

5.5. Convolution of !-Sheaves. Throughout this section, we fix an algebraically closed field
k and a prime number ¢ which is invertible in k. Let X be a quasi-projective k-scheme. In
lax

§5.2, we introduced the oo-category Shv,*(X) of lax l-sheaves on the Ran space Ran(X). In
this section, we will study an operation

* : Shv™(Ran(X)) x Shvy*(Ran(X)) — Shv{**(Ran(X))
called the convolution product, given on objects by the formula
(T« = P 7 rz ™,
T=T'TT"
Here the direct sum is taken over the collection of all decompositions of T" as a disjoint union into
disjoint nonempty T',T"” C T. The main result of this section is to show that the convolution
product induces (nonunital) symmetric monoidal structures on the full subcategories
Shvy(Ran(X)), Shv§ ¥ (Ran(X)) C Shvy™(Ran(X))

(Propositions 5.5.14 and 5.5.19). In the latter case, this symmetric monoidal structure can be
identified with the !-tensor product on Shvy(X) introduced in §4.6.
We begin with some general categorical remarks.
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Construction 5.5.1 (Day Convolution Product). Let € be a symmetric monoidal co-category.
Assume that € admits finite coproducts and that the tensor product

®R:CxC—=C

preserves finite coproducts separately in each variable.
Given a pair of functors
F',F" : (Fin®)°? — €,
one can define a new functor
F'x F": (Fin®)°? — C,
given on objects by the formula

(FpyT) = [ FT)e P,
T=T'1T"
where the coproduct is taken over all decompositions of T' as a disjoint union of subsets T",T" C
T. More formally, F’ x F" is obtained from the composite functor

(Fin®)*? x (Fin®)? "5 exe B @

by left Kan extension along the disjoint union functor
IT: (Fin®)°P? x (Fin®)°? — (Fin®)°P.
We will refer to F’ x I as the Day convolution product of F' and F".
The Day convolution product is commutative and associative up to coherent homotopy. More

precisely, the co-category Fun((Fin®)°P, €) inherits a nonunital symmetric monoidal structure
whose underlying tensor product is given by Day convolution

* : Fun((Fin®)°P, €) x Fun((Fin®)°P, €) — Fun((Fin®)°P, €).

Remark 5.5.2. In the situation of Construction 5.5.1, there is generally no unit object for the
Day convolution product on Fun((Fin®)°P,; €). We could correct this problem by enlarging the
category Fin® to include the empty set, but for our applications it will be more convenient not
to do so.

Remark 5.5.3. Let € be as in Construction 5.5.1 and let F' : (Fin®)°? — € be a functor. Then
the data of a multiplication map m : F x F — F is equivalent to the data of family of maps
mp i F(T') @ F(T") — F(T"T1T"), depending functorially on 7" and T"”. Elaborating on
this observation, one can show that F' has the structure of a lax nonunital symmetric monoidal
functor (where we regard Fin® as a nonunital symmetric monoidal category via the formation
of disjoint unions) if and only if it has the structure of a commutative algebra object of the
oo-category Fun((Fin®)°P, ) (with respect to the convolution product). More precisely, we have
an equivalence of co-categories

CAlg™ (Fun((Fin®)°?, €)) ~ Fun'™((Fin®)°?, €),

where CAlg™ (Fun((Fin®)°P, €)) denotes the co-category of nonunital commutative algebra ob-
jects of Fun((Fin®)°P, €) and Fun'*((Fin®)°P, €) denotes the co-category of lax nonunital sym-
metric monoidal functors from (Fin®)°P into C.

Remark 5.5.4. Construction 5.5.1 is functorial. Suppose we are given a symmetric monoidal
functor F' : € — D, where the oco-categories € and D admit finite coproducts and the tensor
product functors

®:CxC—C DxD—-D
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preserve coproducts separately in each variable. Then composition with F' induces a symmetric
monoidal functor

Fun((Fin®)°P, C) — Fun((Fin®)°?, D),
where we regard each side as equipped with the Day convolution product of Construction 5.5.1.

Example 5.5.5. Let Sch}" denote the category whose objects are quasi-projective k-schemes
and whose morphisms are proper maps. We can regard Sch}" as a symmetric monoidal category
with respect to the formation of Cartesian products. Note that Sch}" admits finite coproducts
(given by disjoint unions of k-schemes), and that the Cartesian product functor

X : Sch)" x Sch}" — Sch}’

preserves coproducts separately in each variable. Applying Construction 5.5.1, we can regard
the Fun((Fin®)°P, Sch}") as a symmetric monoidal category via the Cartesian product. For every
quasi-projective k-scheme X, the construction

T XT

determines a symmetric monoidal functor from (Fin®)°P into Sch}’, which we can view as a
nonunital commutative algebra object of Fun((Fin®)°P, Sch}") (Remark 5.5.3).

Example 5.5.6. Let Shv![ denote the co-category introduced in Definition 5.1.18: the objects
of Shv}, are pairs (X,F) where X is a quasi-projective k-scheme and F € Shv(X) is an (-adic
sheaf, and a morphism from (X,J) to (X’,J’) is a proper map of k-schemes f : X — X'
together with a morphism f,F — F in Shv,(X’). We regard Shv!g as a symmetric monoidal
oo-category, with tensor product given by

(X, e X,F)=(Xx X, TFTRT")
(see §A.5). The oo-category Shv} also admits finite coproducts: the coproduct of (X, ¥F) and
(X", F")is (X T X', F"), where " |x = F and F" |x» = F'. Moreover, the tensor product

® : Shvj x Shvy, — Shv;

(X, F), (X", T)) = (X x X', FRT")
preserves finite coproducts in each variable. It follows that we may regard the co-category
Fun((Fin®)°P, Shv!e) as a nonunital symmetric monoidal oo-category with respect to the Day
convolution product. Note that the forgetful functor

7 : Shvy — Sch’
(X, 9 — X
is symmetric monoidal and preserves coproducts, and therefore induces a nonunital symmetric
monoidal functor
Fun((Fin®)°P, Shv}) — Fun((Fin®)°P, Sch?")

(see Remark 5.5.4).

For our applications, we will need a relative version of Construction 5.5.1. We begin with a
general remark.

Construction 5.5.7. Let m : € — D be a coCartesian fibration of co-categories. For each
object D € D, set

GDZGXD{D} G/DZGXDD/D,
so that we have an evident inclusion map Cp < C,p. Since 7 is a coCartesian fibration, every
morphism e : D — D’ in D induces a functor e, : €p — Cp.. Then, for every object D € D,
the inclusion map €p < €,p admits a left adjoint Lp : €,p — Cp. Concretely, if we identify
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objects of C;p with pairs (C,a) where C' € € and o : 7(C)) — D is a morphism in D, then Lp
is given by the formula Lp(C,a) = ay(C).

Now suppose that the co-categories € and D are equipped with nonunital symmetric monoidal
structures, and that m is a symmetric monoidal functor. For each nonunital commutative algebra
object A € D, the overcategory D, 4 inherits the structure of a symmetric monoidal co-category,
where the tensor product of objects u: M — A and v : N — A is given by the composite map

MoN“3 4458 A,

where m denotes the multiplication on A (see §HA.2.2.2). It follows that €,4 also inherits a
nonunital symmetric monoidal structure. If the collection of 7w-coCartesian morphisms in D is
closed under tensor products, then the tensor product on €, 4 is compatible with the localization
functor L4 defined above, so that the fiber €4 inherits a symmetric monoidal structure which
is determined (up to equivalence) by the requirement that L4 is a symmetric monoidal functor
(see §HA.2.2.1). In this case, the inclusion C4 — €,4 is a lax symmetric monoidal functor.
Concretely, the tensor product ® 4 : €4 x C4 — €4 is given by the formula

C@4C =m(CeC).

Remark 5.5.8. In the situation of Construction 5.5.7, suppose that we are given amape : A —
B between nonunital commutative algebra objects of D. Then the associated map ey : €4 — Cp
inherits the structure of a nonunital symmetric monoidal functor.

Construction 5.5.9. Let 7 : Shvig — Sch}" be the forgetful functor of Example 5.5.6. Then 7
induces a symmetric monoidal functor

7 : Fun((Fin®)°P, Shv}) — Fun((Fin®)°P, Sch?").

Let X be a quasi-projective k-scheme and let Ax : (Fin®)°? — Sch}" be the functor given
by T +— X7, so that the inverse image 7 '{Ax} can be identified with the oo-category
Shvy**(Ran(X)) of lax !-sheaves on Ran(X) introduced in Definition 5.2.1. It follows from
Example 5.5.5 that we can regard the functor Ax as a nonunital commutative algebra object
of Fun((Fin®)°P, Sch?"). Applying Construction 5.5.7, we see that Shvi™(Ran(X)) inherits a
nonunital symmetric monoidal structure. We will denote the underlying tensor product by

* : Shvl™(Ran(X)) x Shvi™(Ran(X)) — Shvi™*(Ran(X)).
We will refer to this product as the convolution product on Shv®™(Ran(X)).

Remark 5.5.10. Unwinding the definitions, we see that the convolution product is given by
the formula ) -
il " T
(Fx)" = H FIrFT
T=T'TT"

Warning 5.5.11. For every pair of objects F, 5 € Shvbax(Ran(X)), the f-adic sheaf
(F+F )Y e Shvy(X)

vanishes (a set with one element cannot be decomposed as a union of two nonempty subsets).
lax

It follows that the oo-category Shv,/*(Ran(X)) does not have a unit object with respect to the
convolution product.

Remark 5.5.12. Let X be a quasi-projective k-scheme and let F be a lax !-sheaf on Ran(X).
Using Remark 5.5.3, we see that the following data are equivalent:
e Nonunital commutative algebra structures on F (with respect to the convolution prod-
uct).
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e Nonunital lax symmetric monoidal structures on the underlying functor (Fin®)°P —
Shv} (that is, a collection of multiplication

(XT, ?(T) ®(xT’ , ?(Tl)) — (XTHT/’ gj(TUT’))

in Shv!g which are coherently commutative and and associative) which are compatible
with the lax symmetric monoidal structure on underlying map (Fin®)°P — Schy, given
by T — XT.
Example 5.5.13. Let X be a quasi-projective k-scheme. Then the dualizing sheaf Wran(x)
can be regarded as a nonunital commutative algebra object of Shvi™(Ran(X)).

The full subcategory Shvy(Ran(X)) C Shvi™*(Ran(X)) is not closed under the convolution
product of Construction 5.5.9. However, we will prove the following:

Proposition 5.5.14. Let X be a quasi-projective k-scheme and let L : Shvi™(Ran(X)) —
Shvy(Ran(X)) denote a left adjoint to the inclusion functor (see Proposition 5.2.11). Then
there exists an essentially unique nonunital symmetric monoidal structure on Shvy(Ran(X))
for which L can be promoted to a nonunital symmetric monoidal functor.

Notation 5.5.15. Let X be a quasi-projective k-scheme and regard Shv!g(Ran(X )) as equipped
with the nonunital symmetric monoidal structure described in Proposition 5.5.14. We will
denote the underlying tensor product on Shvj(Ran(X)) by

® : Shvj(Ran(X)) x Shvy(Ran(X)) — Shv}(Ran(X)),
and refer to it as the convolution product on Shvj(Ran(X)).

Remark 5.5.16. Let X be a quasi-projective k-scheme. Then the inclusion Shv}(Ran(X)) <
Shvi™*(Ran(X)) is lax symmetric monoidal. Moreover, it induces a fully faithful embedding

CAlg™ (Shv}(Ran(X))) — CAlg™ (Shvi™(Ran(X)))

whose essential image consists of those nonunital commutative algebras F of Shvi™*(Ran(X))
which are !-sheaves.

Remark 5.5.17. Let X be a quasi-projective k-scheme. Then the convolution product on
Shvh(Ran(X)) is given by the formula (FO©F) = L(FxF'), where L : Shvi**(Ran(X)) —
Shvy(Ran(X)) is a left adjoint to the inclusion. Using the description of L given in Remark
5.2.14, we see that the convolution product can be described concretely by the formula

Foor) D)., = lim & EFPRF).
T um a\Jo 1 -
X Oé:T()HTlﬁT X

where X7 C X7 denotes the open subset whose k-valued points are injective maps v : T —
X(k), the colimit is taken over the category
€ = (Fin® x Fin®) xpips (Fin®) ¢

whose objects are surjections o : To II Ty — T, and 6, : X7 — X0 x X™t is the associated
diagonal map. Let € denote the full subcategory of € spanned by those objects o : ToIITy — T
where a|r, and a|r, are injective. If Fy and F; are !-sheaves, then the construction

a0 (F) g F)y
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determines a functor C°® — Shv,(X7T) which is a left Kan extension of its restriction to €' °P.

It follows that the convolution product can be described more simply by the formula

(Fo©T1) (T)| @ Sy 1, (F FoIRF™)|
T ToUT,

X7’

where the direct sum is taken over all pairs of nonempty (not necessarily disjoint) subsets
To,Th7 C T such that To UTy = T, and o7, 1y : XT — XTo x X denotes the associated
diagonal map.

Example 5.5.18. Let X be a quasi-projective k-scheme and let Fo, F; € Shvlg(Ran(X)). Then
we have

(FooF)D ~ FM @' Y,
where the !-tensor product ®' is defined as in §4.6.

Proof of Proposition 5.5.14. Let € C Shv**(Ran(X)) denote the full subcategory spanned by
those objects & such that L(F) ~ 0. It will suffice to show that € is an ideal with respect to
the convolution product: that is, that the convolution product carries Shvy™(Ran(X)) x € into
C (see §HA.2.2.1). Arguing as in the proof of Proposition 5.2.11, we see that C is generated
under colimits by cofibers of maps € is generated under small colimits by cofibers of maps

et (0774 G) = e7(9)
(see Remark 5.2.13), where 7" — T is a surjection of nonempty finite sets and § € Shv,(X7T).
Similarly, Shvy®™*(Ran(X)) is generated under small colimits by objects of the form e5(J) for

F € Shvy(X?®) (see Remark 5.2.12). It will therefore suffice to show that the functor L carries
every morphism of the form

0 : e5(F) et (57774 G) — e§(F) * e (S)

to an equivalence in Shvj(Ran(X)). This follows from Remark 5.2.13, since we can identify 6
with the canonical map

eSur ((Osur /sur)«(FRG)) = efur(FRG).
O

We now discuss the relationship between the convolution product for sheaves on Ran(X)
and the !-tensor product of /-adic sheaves on X.

Proposition 5.5.19. Let X be a quasi-projective k-scheme. Then the oco-category Shv,(X)
admits a symmetric monoidal structure whose underlying tensor product is the functor

@' : Shvg(X) x Shve(X) — Shvy(X)

constructed in §4.6. Moreover, the construction F FU determines a nonunital symmetric
monoidal functor Shvy(Ran(X)) — Shv,(X).

Proof. Let U : Shv,(Ran(X)) — Shv,(X) be the functor given by U(F) = FV. The functor U
admits a fully faithful left adjoint, whose essential image is the full subcategory

Shv&(Ran(X)) C Shv(Ran(X))

introduced in Definition 5.2.7. We may therefore regard U as a colocalization functor on the
oco-category Shvy(Ran(X)). Using Example 5.5.18, we see that U is compatible with the con-
volution product so that Shv,(X) admits an essential unique nonunital symmetric monoidal
structure for which the functor U is nonunital symmetric monoidal (see §HA.2.2.1). Example
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5.5.18 also shows that the tensor product underlying this nonunital symmetric monoidal struc-
ture agrees with the !-tensor product of §4.6. To complete the proof, it will suffice to show
that this nonunital symmetric monoidal structure on Shv,(X) can be promoted to a symmetric
monoidal structure. By virtue of Corollary HA.5.4.4.7, it will suffice to show that there exists
a quasi-unit for the !-tensor product: that is, an object & for which the functor F — F®' € is
equivalent to the identity. This follows from Proposition 4.6.13. O

We now discuss the functorial behavior of some of the preceding constructions. Let f : X —
Y be a proper morphism between quasi-projective k-schemes. It follows from Remark 5.5.8
that the induced map

Ran(f), : Shvj™(X) — Shvi*™(Y)
is a nonunital symmetric monoidal functor. It follows that the right adjoint
Ran(f)' : Shvi™(Y)) — Shvy™(X)

has the structure of a nonunital lax symmetric monoidal functor. More concretely, for every
pair of objects F,G € SthaX(Y), we obtain a natural map

(Ran(f)' F)* (Ran(f)' §) — Ran(f)"(Fx3).

Unwinding the definitions (using the formula for the convolution product given in Remark
5.5.10), we see that this map is an equivalence. This proves the following:

Proposition 5.5.20. Let f : X — Y be a proper morphism of quasi-projective k-schemes.
Then the functors
Ran(f)«

Shvi™(Ran(X ))=—=Shv/*(Ran(Y))
Ran(f)"

commute with convolution products. More precisely, we can regard Ran(f), and Ran(f)' as (an
adjoint pair of ) nonunital symmetric monoidal functors.

In the situation of Proposition 5.5.20, the functor Ran(f)' carries !-sheaves on Ran(Y) to
I-sheaves on Ran(X), and can therefore be regarded as a lax nonunital symmetric monoidal
functor from Shvy(Y) to Shvy(X). More concretely, for every pair of objects F,G € Shvy(Y),
we obtain a canonical map

(Ran(f)' F) ©(Ran(f)' §) — Ran(f) (T ® 9).

It follows easily from the description of the functor ® given in Remark 5.5.17 that this map is
an equivalence. We therefore obtain the following variant of Proposition 5.5.20:

Corollary 5.5.21. Let f : X — Y be a proper morphism of quasi-projective k-schemes.
Then the functor Ran(f)' : Shvy(Ran(Y)) — Shvy(Ran(X)) preserves convolution products:
that is, it can be regarded as a nonunital symmetric monoidal functor from Shvlz(Ran(Y)) to
Shvy(Ran(X)).

Corollary 5.5.22. Let f: X — Y be a proper morphism of quasi-projective k-schemes. Then
we can regard f' : Shvy(Y) — Shv,(X) as a symmetric monoidal functor, where Shv,(X) and
Shv,(Y) are equipped with the symmetric monoidal structure of Proposition 5.5.19.



170 DENNIS GAITSGORY AND JACOB LURIE

Proof. Let Tx : Shvi(Ran(X)) — Shv(X) denote the functor given by Tx(F) = F) and
define Ty similarly, so that we have a commutative diagram

Shv} (Ran(Y")) > Shv,(Y)

lRan(f)’ lf’

Shv)(Ran(X)) 2> Shv,(X).

The functor Ran(f)" is nonunital symmetric monoidal by Corollary 5.5.21 and the functor Tx

is nonunital symmetric monoidal by construction. It follows that Tx o Ran(f)' ~ f' o Ty can

be regarded as a nonunital symmetric monoidal functor. Since Ty is a nonunital symmetric

monoidal colocalization, the functor f' inherits a nonunital symmetric monoidal structure. To

complete the proof, it will suffice to show that f' is quasi-unital: that is, that it carries unit

objects for the !-tensor product on Shv(Y") to unit objects for the !-tensor product on Shv(X).
Since f is proper, we can choose a pullback diagram

x—t.oy

-

x—1.v,
where X and Y are projective k-schemes, and the vertical maps are open immersions. The
proof of Proposition 4.6.13 shows wy = jjwy is a unit object of Shv,(Y’). We complete the
proof by noting that Proposition 4.5.12 supplies an equivalence

- - % - -k
Fivey = jx [ wy = jiws,
which is a unit object of Shv,(X) (as in the proof of Proposition 4.6.13). O

Remark 5.5.23. Let f : X — Y be a proper morphism of quasi-projective k-schemes. It
follows from Corollary 5.5.22 that the pushforward f. : Shvy(X) — Shvy(Y) can be regarded
as a colax symmetric monoidal functor with respect to the !-tensor product. In particular, for
every pair of f-adic sheaves F, G € Shv,(X), we have a canonical map

[(F&'G) = (f.5) & (£ 9).

If f is a closed immersion, then this map is an equivalence (see Remark 4.6.12). In this case, we
can view f, as a nonunital symmetric monoidal functor (though it generally does not preserve
unit objects).

In the situation of Corollary 5.5.21, the functor Ran(f). generally does not carry !-sheaves
on Ran(X) to !-sheaves on Ran(Y). Nevertheless, the functor Ran(f)' : Shvi(Ran(Y)) —
Shvy(Ran(X)) admits a left adjoint, given by composing Ran(f), with a left adjoint Ly to the
inclusion Shvj(Ran(Y')) — Shvi™(Ran(Y)). It follows from Propositions 5.5.20 and 5.5.14 that
this construction is compatible with convolution products:

Corollary 5.5.24. Let f: X — Y be a proper morphism of quasi-projective k-schemes. Then
the functor Ran(f)" : Shvi(Ran(Y)) — Shvh(Ran(X)) admits a nonunital symmetric monoidal
left adjoint Ran(f)e : Shvl(Ran(X)) — Shvh(Ran(Y)).

In the special case where Y = Speck, the functor Ran(f)g of Corollary 5.5.24 can be
identified with the functor of chiral homology. This proves the following:
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Corollary 5.5.25. Let X be a projective k-scheme. Then the functor of chiral homology
/ : Shv},(Ran(X)) — Modg,

18 nonunital symmetric monoidal: that s, it carries convolution products to tensor products.

Remark 5.5.26. In fact, something stronger is true: the functor of chiral homology is nonunital
symmetric monoidal on the entire co-category Shvy™(Ran(X)) of lax !-sheaves. In concrete

terms, this follows from the calculation

/3@9 = li_;)nC’*(XT; (F*9)D)
i @ eI Ry
TeFin® p=7/11T"
lig C* (XT'; S,r(T/)) ®z, C* (XT”; 9(T”))

12

R

T',T" €Fin®
~ (g C(XTFT)) @g, (lig C1(XT6T))
T’E€Fin® T €Fin®

~ (/9)%(/9).

5.6. Commutative Factorization Algebras. Throughout this section, let us fix an alge-
braically closed field & and a prime number ¢ which is invertible in k. Let X be a quasi-
projective k-scheme. In §5.5 we defined the convolution product on Shvy(Ran(X)) and proved
that the restriction map
Shvy(Ran(X)) — Shv,(X)

carries convolution products to !-tensor products of ¢-adic sheaves on X (Proposition 5.5.19).
Our goal in this section is to study the relationship between (nonunital) commutative algebras
in Shvj(Ran(X)) and Shv,(X). We begin by introducing some terminology.

Definition 5.6.1. Let X be a quasi-projective k-scheme. A commutative factorization algebra
on X is a nonunital commutative algebra object A of the co-category Shv)(Ran(X)) which has
the following additional property:
(¥) Let T and T" be nonempty finite sets, and let (X7 x X7")giii € XT x X" be the open
subset whose k-valued points correspond to maps v : TIT" — X (k) with v(T)Nwv(T") =
(). Then the multiplication on A induces an equivalence of ¢-adic sheaves

(.A(T) AT ))|(XT><XT/ — AT |(XT><XTI)disj.

)disj
Remark 5.6.2. Let X be a quasi-projective k-scheme and let A, be a simplicial object of the
oco-category CAlg™ (Shvy(Ran(X))). If each A, is a commutative factorization algebra on X,
then the geometric realization | A, | is also a commutative factorization algebra on X.

Remark 5.6.3. Let X be a quasi-projective k-scheme and let A be a nonunital commutative
algebra object of Shvj(Ran(X)). Then A is a commutative factorization algebra if and only if,
for every integer n > 0, the canonical map

(A(l))@n oA

is an equivalence of /-adic sheaves over the open subset X” C X™ whose k-valued points are
n-tuples of distinct elements of X (k).

Our main goal in this section is to prove the following:
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Theorem 5.6.4. Let X be a quasi-projective k-scheme and let
G: CAlgnu(Sth@(Ran(X))) — CAlg™ (Shv,(X))

be the the functor given by A — AWD . Then the functor G admits a fully faithful left adjoint
Fact : CAlg™ (Shv,(X)) — CAlg™ (Shvy(Ran(X))), whose essential image is the full subcate-
gory of CAlg™ (Shvh(Ran(X))) spanned by the commutative factorization algebras on X .

Example 5.6.5. Let X be a quasi-projective k-scheme. Then the dualizing sheaf wx is the
unit object of Shvy(X) (with respect to the !-tensor product), and therefore inherits the struc-
ture of a nonunital commutative algebra object of Shvy(X). The corresponding commutative
factorization algebra is given by wran(x) € Shv}(Ran(X)) (see Example 5.5.13).

Apart from the description of the essential image of F', Theorem 5.6.4 is subsumed by the
following general category-theoretic principle:

Proposition 5.6.6. Let C and D be nonunital symmetric monoidal co-categories. Assume that
C and D are presentable and that the tensor product functors

R:CxC—=0C DxD—D

preserve colimits separately in each variable. Suppose we are given a pair of adjoint functors

where g is nonunital lax symmetric monoidal, so that g induces a functor G : CAlg™ (D) —
CAlg™ (C). Then the functor G admits a left adjoint F : CAlg™ (€) — CAlg™ (D).

Assume further that the functor g is nonunital symmetric monoidal and preserves colimits.
If f is fully faithful, then F is fully faithful.

Proof. Since the functor G preserves limits and filtered colimits, the existence of F' follows
from the adjoint functor theorem (Corollary HTT.5.5.2.9). Suppose now that g is a nonunital
symmetric monoidal functor which preserves colimits. The adjoint functor theorem implies
that ¢ admits a right adjoint A : € — D, which then inherits the structure of a lax symmetric
monoidal functor. Since the left adjoint to g is fully faithful, the right adjoint A is also fully
faithful (see §HA.2.2.1). It follows that h induces a fully faithful embedding H : CAlg™(C) —
CAlg"™ (D) which is right adjoint to G. Since the right adjoint to G is fully faithful, it follows
that the left adjoint to G is also fully faithful. g

Example 5.6.7. In the situation of Proposition 5.6.6, if the functor f is nonunital symmetric
monoidal, then F' is simply the functor induced by f at the level of nonunital commutative
algebras: in other words, the diagram

CAlg™ (€) — = CAlg™ (D)

l i

¢ D

commutes (up to preferred homotopy).

Example 5.6.8. Let f : X — Y be a closed immersion of quasi-projective k-schemes. Then the
pushforward functor f, : Shvy(X) — Shv,(Y) is nonunital symmetric monoidal (with respect to
the I-tensor product; see Remark 5.5.23) and therefore induces a map f. : CAlg™ (Shv,(X)) —
CAlg™ (Shv,(Y)) which is left adjoint to f': CAlg™ (Shv,(Y)) — CAlg™ (Shv,(X)).
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Example 5.6.9. Let X be a projective k-scheme and let m : X — Speck be the projection
map. Let us regard Shvy(X) as a symmetric monoidal co-category with respect to the I-
tensor product (Proposition 5.5.19) and consider the symmetric monoidal functor 7' : Modz ,
Shvy(Spec k) — Shv(X) given by ©'M = M ® wx. It follows from Proposition 5.6.6 that the
induced map

CAlg"™ (Modz,) — CAlg™ (Shv,(X))

admits a left adjoint 72 : CAlg™ (Shv,(X)) — CAlg"(Modgz,). Note that 7' factors as a
composition

Modz, ~ Shvy(Ran(Speck)) Ran(r) Shvy(Ran(X)) — Shv,(X).

Using Theorem 5.6.4, Example 5.6.7, and Corollary 5.5.25, we see that 7} factors as a compo-
sition

CAlg™ (Shve(X)) 5 CAlg™ (Shv)(Ran(X)) & CAlg™ (Modz, ).
In other words, if A is a commutative factorization algebra on X, then we have a canonical
equivalence 7™ (AM) ~ [ A in the co-category CAlg™ (Modg, ).

Many variations on Proposition 5.6.6 are possible. For example, if € and D admit unit
objects (and g is a lax symmetric monoidal functor), then the same argument shows that the
induced map CAlg(D) — CAlg(C) admits a left adjoint. We will be interested in situations
where this left adjoint is compatible with the functor F' described in Proposition 5.6.6.

Proposition 5.6.10. Let C and D be symmetric monoidal oco-categories with unit objects 1e
and 1. Assume that C and D are presentable and that the tensor product functors

R:CExC—=C DxD—D

preserve colimits separately in each variable. Suppose we are given a pair of adjoint functors

F
where g is lax symmetric monoidal and let CAlgnu(C)?CAlg““(D) be as in Proposition

5.6.6. Suppose that the unit map le — G(1p) induces an equivalence « : F(le) — 1p. Then:

(1) The functor G4 : CAlg(D) — CAlg(C) determined by g admits a left adjoint F.
(2) The diagram

CAlg(€) —™ = CAlg(D)

| l

CAlg™ (€) —L= CAlg™ (D)

commutes (up to canonical homotopy).

Remark 5.6.11. Assertion (1) follows from the proof of Proposition 5.6.6 and does not require
the assumption that « is an equivalence.

Example 5.6.12. Let X be a projective k-scheme, let m : X — Speck denote the projection
map, and let 72" : CAlg™ (Shvy(X)) — CAlg™(Modgz,) be as in Example 5.6.9. If X is
connected, then the acyclicity of the Ran space implies that the natural map

nu
T WX%Z[
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is an equivalence (see Example 5.3.9). Applying Proposition 5.6.10, we deduce that the functor
7t : CAlg(Modgz,) — CAlg(Shv,(X)) admits a left adjoint 7, : CAlg(Shv,(X)) — CAlg(Modz,)
which fits into a commutative diagram

T

CAlg(Shv,(X)) CAlg(Modz, )

L

CAlg™ (Shv, (X)) ——> CAlg™" (Modz, ).

In particular, if A is a commutative factorization algebra on X having the property that AWD e
Shv,(X) admits a unit, then we have a canonical equivalence

71'*}[(1) ~ /A

Proof of Proposition 5.6.10. If B is a nonunital commutative algebra object of D, we say that
amap u: 1lp — B is a quasi-unit for B if the composite map

in CAlg™ (Modgz,).

B21lpo B BoBB B
is homotopic to the identity, where m denotes the multiplication on B. By virtue of Theorem
HA.5.4.4.5, we can identify CAlg(D) with the subcategory of CAlg™ (D) whose objects are
those nonunital commutative algebras which admit quasi-units and whose morphisms are maps
which preserve quasi-units. It will therefore suffice to prove the following:

(a) If Ais a commutative algebra object of €, then F/(A) € CAlg™ (D) admits a quasi-unit.

(b) If A is a commutative algebra object of € and B is a commutative algebra object of D,
then a map of nonunital commutative algebras F'(A) — B preserves quasi-units if and
only if the associated map A — G(B) preserves quasi-units.

To prove (a), let ug : 1¢ — A denote the unit map of A, so that we can regard ug as a map
of nonunital commutative algebra objects of A. Let u : 1o — F(A) be the map given by the
composition

15 % F(le) "% FA).
We claim that u is a quasi-unit for F(A). To prove that, it will suffice to show that the lower
square in the diagram

F(le® A) 29 pag A)

J’ F(u)®id i

F(le) @ F(A) —=F(A) ® F(A)

l“@d lm

1p ® F(A) ——— F(A),

commutes, where m denotes the multiplication on F(A). Since (a®id)os and « are equivalences,
it follows that s is an equivalence. Using the commutativity of the upper square, we are reduced
to proving the commutativity of the outer rectangle. Note that if m’ : A® A — A is the
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multiplication map, then the diagram

F(le® A) 2 pA e A)

e

1p @ F(A) — = F(A)

evidently commutes. It will therefore suffice to show that F(m’) is homotopic to the composite
map

F(A® A) = F(A) @ F(A) & F(A).
Equivalently, if v : A — GF A denotes the unit for the adjunction between F and G, it will
suffice to show that the diagram

AR A n A

iv@v \Lv
G(m)

GFA®GFA——> G(FA® FA)~~ > GF A

commutes, which follows immediately from the fact that v: A — GF A is a map of nonunital
commutative algebras. This completes the proof of (a).

We now prove (b). Let ¢ : FA — B be a morphism of nonunital commutative algebra
objects of D and let ¢ : A — GB be the corresponding morphism of nonunital commutative
algebra objects of €. We wish to prove that ¥ o ug is a quasi-unit for GB if and only if ¢ o u
is a quasi-unit for B. This follows immediately from the observation that ¥ o ug and ¢ o u
correspond to one another under the canonical bijection

™0 MapCAIgnu(.D) (1@, B) ~ T MapCAlgnu(e)(le, GB)
g

f F
Remark 5.6.13. Let G?@ and CAlgnu(G)?CAlgnu(D) be as in Proposition 5.6.10.

Suppose that m is a nonunital commutative algebra object €, and let mII1e be the commutative
algebra obtained by freely adjoining a unit to m. Then for every commutative algebra object
A € D, we have canonical homotopy equivalences

Mapcaigp)(F(m) I 1p, A) =~ Mapgyjgne ) (F/(m), A)
Mapgpjgnu(e)(m, G(A))
~ Mapcaige)(m e, G4 (A))

where G4 : CAlg(D) — CAlg(€) denotes the functor determined by G. It follows that the
functor Fy : CAlg(C) — CAlg(D) left adjoint to G4 carries m @ 1e to F(m) & 1p.

12

We now turn to the proof of Theorem 5.6.4. We will need a few preliminaries.

Lemma 5.6.14. Let X be a quasi-projective k-scheme and let f : A — A’ be a morphism of
commutative factorization algebras on X. Then [ is an equivalence if and only if the induced
map AV — A'D is an equivalence in Shv,(X).

Proof. The “only if” direction is clear. Conversely, suppose that f induces an equivalence
AD — /M We wish to show that f induces an equivalence A™ — A'™ for each integer
n > 1. We proceed by induction on n. Since both A and A’ are !-sheaves, it follows from the
inductive hypothesis that for every diagonal inclusion ¢ : X™ — X" where m < n, the induced
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map i : A™ — A'™ is an equivalence of f-adic sheaves on X™. It will therefore suffice to
prove that f induces an equivalence A |)c;_n — A’ |)o<n, where )O(” C X™ denotes the open
subset whose k-valued points are n-tuples of distinct elements of X (k). We have a commutative
diagram

(A(U)X\n - (A’(l))gn

! i

A > A/(n)
of ¢-adic sheaves on X™. The upper horizontal map is an equivalence by assumption, and the

vertical maps are equivalences when restricted to X™ by virtue of our hypothesis that A and
A" are commutative factorization algebras (Remark 5.6.3). It follows that the lower horizontal

]
map is also an equivalence when restricted to X, as desired. O

Lemma 5.6.15. Let X be a quasi-projective k-scheme, let F € Shv?iag(Ran(X)), and let

A = Sym”°F denote the free nonunital commutative algebra object of Shvy(Ran(X)) generated
by F. Then A is a commutative factorization algebra on X.

Proof. For each integer n > 0, let X™ C X™ denote the open subset whose k-valued points
are n-tuples of distinct elements of X (k). Using the description of the convolution product on
Shvy(Ran(X)) given in Remark 5.5.17, we compute

® m\(n) ~ Xn
MO, ~ DI,

where the sum is indexed by all bijections «: {1,...,m} ~ {1,...,n}. It follows that

A~ PEF°™M)s,,

m>0
is described by the formula A™ ‘)o(

A |§(n o~ (A(l))®"|§m. It is easy to verify that this identification is induced by the multipli-
cation on A, so that A is a commutative factorization algebra by virtue of Remark 5.6.3. [

Proof of Theorem 5.6.4. Let Fact : CAlg™ (Shvy(X)) — CAlg™ (Shv}(Ran(X))) be a left ad-
joint to the restriction map. It follows from Proposition 5.6.6 that the functor Fact exists and is
fully faithful. We next prove that for each object A € Shvy(X), the image Fact(A) is a commuta-
tive factorization algebra on X. Using Proposition HA.4.7.4.14, we can write A as the geometric
realization of a simplicial object Ao of CAlg™ (Shv,(X)), where each A,, is the free nonunital
commutative algebra Sym~° &, for some ¢-adic sheaf F,, € Shv,(X ). Since the functor Fact pre-
serves colimits, we have Fact(A) ~ | Fact(A,)|. By virtue of Remark 5.6.2, it will suffice to show
that each Fact(A,,) is a commutative factorization algebra. Let F), € Shvj“ag (Ran(X)) denote
the image of F,, under the equivalence of co-categories Shvy(X) ~ Shv?iag(Ran(X )). Unwind-
ing the definitions, we see that Fact(A,) can be identified with the free nonunital commutative
algebra generated by F/, and is therefore a commutative factorization algebra by virtue of
Lemma 5.6.15. This completes the proof that the functor Fact takes values in commutative
factorization algebras.

We now prove the converse. Let A be a commutative factorization algebra on X, so that

o |)0( In particular, we have AL ~ F, so that

AL Shv,(X) is a nonunital commutative algebra with respect to the !-tensor product. We
wish to prove that the counit map v : Fact(A")) — A is an equivalence in Shvh(Ran(X)).
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Since the functor Fact is fully faithful, it follows immediately that v induces an equivalence
Fact(AM)® — AM | The desired result now follows from Lemma 5.6.14, since both Fact(A™)
and A are commutative factorization algebras. O

5.7. The Product Formula: Second Formulation. Throughout this section, we fix an
algebraically closed field k, a prime number ¢ which is invertible over k, and an algebraic curve
X over k. Let G be a smooth affine group scheme over X and let B € Shvy(Ran(X)) be the
I-sheaf introduced in Notation 5.4.2. If the fibers of G are connected and the generic fiber of G
is semisimple and simply connected, then Theorem 5.4.5 supplies a quasi-isomorphism

/3 — C*(Bung(X); Zz).

If v is a k-valued point v of XT which can be identified with an injective map v : T — X (k),

then the costalk ! B can be identified with the tensor product Ricr C*(BGy(1); Ze). We
therefore have a natural map

ﬁ:@W“HMmh%%ﬁu@ﬁ”U%/B,

teT

Heuristically, we can think of the chiral homology [ B as a continuous tensor product

&) C*(BG.; Z)

zeX

obtained by assembling the domains of the maps f, as v varies. Since each factor C*(BG,; Z)
can be regarded as a commutative algebra object of Modgz,, we can regard the tensor product
Rex C*(BGy; Zy) as a “continuous colimit” of the commutative algebras {C*(BGy; Zy) }rex
in the co-category CAlg(Modz,). Our goal in this section is to make this heuristic precise by
establishing the following reformulation of Theorem 5.4.5:

Theorem 5.7.1. The (-adic sheaf [BG|x can be regarded as a commutative algebra object of
the co-category Shvy(X) (where we regard Shvy(X) as endowed with the symmetric monoidal
structure given by the !-tensor product; see Proposition 5.5.19), and the canonical map ¢ :
[BG]x — 7'C*(Bung(X); Z¢) can be regarded as a morphism of commutative algebra objects of
CAlg(Shv,(X)).

Let A be a commutative algebra object of Modz,. If the fibers of G are connected and
the generic fiber of G is semisimple and simply connected, then composition with ¢ induces a
homotopy equivalence

MapCAlg(Zl)(O*(BunG(X); Zy),A) — MapCAlg(Sth(X))([BG]Xv W!A)-

Remark 5.7.2. The first part of Theorem 5.7.1 is a special case of a much more general fact:
if € is any Artin stack equipped with a smooth map 7 : € — X to a quasi-projective k-scheme
X, then the diagonal € — € x x € induces a map of /-adic sheaves

[€lx ® [C]x — [€]x

which exhibits [C]x as a commutative algebra with respect to the !-tensor product on Shvy(X).
However, the situation of Theorem 5.7.1 is particularly convenient because Construction 5.4.1
supplies an explicit geometric description of the associated commutative factorization algebra
on X.
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Construction 5.7.3. For every nonempty finite set 7, let Ran® (X)) denote the prestack
RanG(X) X Ran(X) XT (see Construction 5.4.1). For every pair of nonempty finite sets T, 7" €
Fin®, restriction of G-bundles defines a canonical map

my s Ran®(X)™"7" - Ran®(X)7 x Ran®(X)T".
Pullback along these restriction maps determines maps of ¢-adic sheaves
BORBT) = [Ran®(X)7]xr K [Ran®(X)T] 4o
~ [Ran®(X)T x Ran®(X)T'] yrur
- [Ran® (X)) rurs

B(TLIT/)

which exhibit B as a nonunital commutative algebra object of Shvy(Ran(X)).

More formally, we note that the maps my s (together with the evident commutativity and
associativity constraints) exhibit the map 7'+ (X7, Ran®(X)7) as a nonunital lax symmetric
monoidal functor from (Fin®)°P to the 2-category AlgStack' of Definition 5.1.19. Composing
with the symmetric monoidal functor @ : AlgStack! — Shv!e of Construction A.5.26, we can
regard the construction

T (X7, [Ran®(X) ] xr) = (X7, D)

as a nonunital lax symmetric monoidal functor from (Fin®)°P to Shvy, so that B can be regarded
as a nonunital commutative algebra object of Shv!e by virtue of Remark 5.5.12.

Proposition 5.7.4. For any smooth affine group scheme G over X, Construction 5.7.3 exhibits
B as a commutative factorization algebra on X.

Proof. The lax l-sheaf B is a !-sheaf by virtue of Proposition 5.4.3. It will therefore suffice to
show that if T and T” are nonempty finite sets and U C X Ty XT' is the open set whose k-valued
points correspond to maps v : TIIT" — X (k) with v(T) Nv(T") = 0, then the multiplication
on B induces an equivalence

(3(T) &B(T/)NU _, |(TUT) v
of f-adic sheaves on U. This follows immediately from the observation that the map
Ran®(X)™"7T" x rur U = (Ran®(X)” x Ran®(X)™") X yrur U
is an equivalence of prestacks. O
Since the construction F — F) determines a lax symmetric monoidal functor
Shv}(Ran(X)) — Shv,(X)

(see Proposition 5.5.19), it follows from Construction 5.7.3 that we can regard BYY) = [BG]x
as a nonunital commutative algebra object of Shv,(X). Concretely, the multiplication

[BG]x ® [BG]x — [BG]x
is given by pullback along the diagonal map BG — BG x x BG, as indicated in Remark 5.7.2.

Proposition 5.7.5. Let G be a smooth affine group scheme over X. Then the nonunital
commutative algebra [BGlx € CAlg™ (Shv,(X)) can be promoted (in an essentially unique
way) to a commutative algebra structure on [BG|x.
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Proof. By virtue of Theorem HA.5.4.4.5, it will suffice to show that there exists a map u :
wx — [BG]x which is a quasi-unit for the multiplication m on [BG]x: that is, for which the
composite map

[BG]x ~ wx ® [BG]x — [BG]x ®' [BG]x = [BG]x
is homotopic to the identity. Unwinding the definitions, we see that m is given by the compo-
sition

BGlx @' [BGlx = &'([BG]x B [BGx)

§'[BG Xspeck BGlxxx
[BG x x BG|x

% [BGlx.

where § : X x X x X denotes the diagonal map and ¢ is given by pullback along the relative
diagonal BG — BG x x BG. From this description, it is easy to see that the map u : wx =
[X]x — [BG]x given by pullback along the projection BG — X has the desired property. O

12

To compare [BG|x with C*(Bung(X);Z,), we consider another nonunital commutative al-
gebra object of Shvy(Ran(X)) (which is not a commutative factorization algebra):

Construction 5.7.6. Let C be a smooth Artin stack over k which is quasi-compact and has
affine diagonal. For every pair of nonempty finite sets T' and T”, the diagonal of € determines
a map

mlT,T’ : (e XSpec kXTHT,) — (G XSpec kXT) XSpec k (e X Spec kXT/)-
As T and T’ vary, these maps exhibit the construction 7+ (X7, € Xgpeck X ) as a nonunital
lax symmetric monoidal functor from (Fin®)°P to AlgStack'. Composing with the symmetric
monoidal functor @ : AlgStack' — Shv} of Construction A.5.26, we can regard the construction

T — (XT, [G xSpeckXT]XT) = (XT,C*(G;Z() ®wa)

as a nonunital lax symmetric monoidal functor from (Fin®)°P to Shv}, so that C*(€; Z) QWRan(x)

can be regarded as a nonunital commutative algebra object of Shvy(Ran(X)) by virtue of
Remark 5.5.12. Note that this nonunital commutative algebra can be defined more directly by
the formula

C*(C; Z¢) ® Wran(x) = Ran(m)'C*(C; Zy),

where 7 : X — Speck is the projection map.
Let U be a quasi-compact open substack of Bung(X). For any nonempty finite set 7', we
have an evident evaluation map
U XSpeCk XT — BunG(X) xSpeck: XT — RanG(X)T.

These evaluation maps are compatible with the multiplications of Construction 5.7.3 and 5.7.6
and therefore induce a map
B — C*(U;Zy¢) ® Wran(x)

of nonunital commutative algebras in Shvy(Ran(X)). Passing to the inverse limit as U varies,
we obtain a map of nonunital commutative algebras

B — C*(Bung(X); Zg) ® WRan(X)-
Passing to chiral homology (and invoking Example 5.3.9), we deduce that the canonical map

p: [B — C*(Bung(X);Z¢) can be regarded as a map of nonunital commutative algebra
objects of Modgz, .



180 DENNIS GAITSGORY AND JACOB LURIE

Proposition 5.7.7. Let G be a smooth affine group scheme over X. Then the construction
described above determines a map p: [ B — C*(Bung(X); Z¢) of commutative algebra objects
of Modg, .

Proof. Proposition 5.7.5 implies that the algebra [BG]x = BM admits a unit, which we can
identify with a map of nonunital commutative algebras ug : wx — [BG]x in Shvy(X). Let
U : WRan(x) — B be the induced map of commutative factorization algebras on X. Then the

induced map
ZZ:/wRan(X) *)/'B

is a quasi-unit for the nonunital commutative algebra structure on [ B (see the proof of Propo-
sition 5.6.10). By virtue of Theorem HA.5.4.4.5, it will suffice to show that the composite
map

Z[ ~ /wRan(X) &> /B ﬁ) C*(BHHG(X);ZZ)

is homotopic to the unit map v : Zy — C*(Bung(X); Z;). Since X is connected, the composite
map

WRan(x) — B — C*(Bung(X); Z¢) ® Wran(x)-

is homotopic to the tensor product of some map v : Zy — C*(Bung(X); Zy) with the identity
ON WRan(x); We wish to prove that v is homotopic to v'. This assertion can be tested after
passing to the costalk at any point € X (k), in which case the desired result follows from the
description of ug given in the proof of Proposition 5.7.5. g

Let m : X — Speck denote the projection map. It follows from Example 5.6.12 that the
functor 7' : CAlg(Modgz,) — CAlg(Shv,(X)) admits a left adjoint 7, : CAlg(Shv,(X)) —
CAlg(Modg, ), and that the functor 7, carries [BG]x to the chiral homology [B. Combining
this observation with Proposition 5.7.7, we obtain the following:

Proposition 5.7.8. Let G be a smooth affine group scheme over X. Then:

e The chiral homology fB can be regarded as a commutative algebra object of Modg, .

e The map p: [ B — C*(Bung(X); Z¢) can be regarded as a map of commutative algebra
objects of C.

e There is a canonical map of commutative algebras o : [BGlx — f% with the following
universal property: for any commutative algebra object A € CAlg(Modz,), composition
with a induces a homotopy equivalence

MapCAlg(ModZZ)(/'Ba A) — MapCAlg(Sth(X))([BG]Xa W!A)-
Proof of Theorem 5.7.1. Combine Proposition 5.7.8 with Theorem 5.4.5. 0

Remark 5.7.9. It follows from Proposition 5.7.8 that Theorems 5.4.5 and 5.7.1 are equivalent
to one another. In other words, if G is a smooth affine group scheme over X, then the canonical
map p: [ B — C*(Bung(X); Zy) is an equivalence if and only if the natural map

Mapc atg(z,) (C* (Bung(X); Zy), A) = Mapajg(siv, (x)) ([BGlx, ' A)

is a homotopy equivalence for each A € CAlg(Modz,).
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6. CALCULATION OF THE TRACE

Let X be an algebraic curve defined over a finite field F, and let Gy be a smooth affine group
scheme over a X with connected fibers. Let X = Spec Fq XspecF, X0 and G = Spec Fq XSpec Fy
Gy denote the Fq—schemes associated to Xy and Gy, respectively. Let ¢ be a prime number
which is invertible in F,, and suppose we have fixed an embedding Z, — C. Recall that our
goal in this paper is to compute the trace

Tr(Frob™* | H* (Bung (X); Z¢)).

Let B denote the !-sheaf on Ran(X) defined in §5.4. If the generic fiber of G is semisimple
and simply connected, then Theorem 5.4.5 asserts that the canonical map

/B _ @C*(XT;B(T)) — C*(Bung(X); Zy)
T

is an equivalence. Let us assume this result for the moment, and see how it relates to the
calculation of Tamagawa numbers.

For every positive integer n, let X™ C X™ denote the open subset whose Fq—points are n-
[e] [e]
tuples of distinct points in X, and let X (™) denote the quotient of X" by the (free) action of

[e]
the symmetric group X,,. The restriction B ‘)o( descends to an f-adic sheaf B,, on X", and
we have a canonical equivalence

CHX M B,) = CF (X7 B | B,

n

Using Lemmas 5.3.14 and 5.3.15, we see that the chiral homology [ B admits a filtration

¢Y) (@)
0—>/ B—>/ B—---

o

whose successive quotients can be identified with C*(X(");B,,). Modulo issues of convergence,
this leads to a formula

Tr(Frob™" |H*(Bung(X); Z)) = Y Tr(Frob™ " | H (X, B,,)).
n>0

Each X (") is a quasi-projective Fq—scheme which is defined over F. Invoking the Grothendieck-
Lefschetz trace formula (in its Verdier dual incarnation, expressed as Theorem 1.3.2 in the case
of constant coefficients), we expect the individual terms to be given by

Tr(Frob ™' [H*(X(";B,)) = 3 Tr(Frob~ | B,,),
n

o o
where the sum is taken over the (finite) set of all maps 7 : Spec F, — X (™) which are defined
over F,. Unwinding the definitions, we can identify such points with subsets T' = {y1,...,yn} C

X (F,) which have cardinality exactly n and are invariant under the action of the Galois group
Gal(F,/F,). The latter condition holds if and only if we can write 7' as the inverse image of
a finite set {x1,...,x,} of closed points of Xy. In this case, we have n = |T| = deg(z1) +
-+ +deg(zm,). Moreover, the group scheme Gp = Gy, x --- x G, can be written as a product

IL <i<m G.,, where each G, denotes the base change to F, of the group scheme given by the
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Weil restriction of the fiber Gy, along the map Spec k(x;) — SpecF,. We therefore expect the
formula
Tr(Frob™! |H*(Bung(X); Z;) = > Tr(Frob ' [H (][ BGa,; Z0))
{z1,....,2m }CXo

_ Z H Tr(Frob_1 |H*(BG,,; Zy))

{z1,....,2m }CXo 1<i<m
= -1+ [] 0+ Tx(Frob™" |H*(BG,; Zy))).
ze€Xo

Unfortunately, this heuristic calculation is nonsensical: the infinite product (which is taken
over all closed points of the curve Xy) does not converge, since the individual factors 1 +
Tr(Frob™' | H*(BG,,; Z¢)) accumulate to 2.

One strategy for resolving the issue is to carry out a “reduced” version of the preceding
discussion. In §8, we will introduce a new !-sheaf B,.q € Shvy(Ran(X)) whose costalk at a
point T'= {y1,...,yn} of Ran(X) can be identified with the tensor product

® red BGy'ﬂ Z[)
1<i<n

where C}(BGy,; Z,) denotes the reduced ¢-adic cochain complex of the classifying stack BG,, .
Repeating the preceding calculations, we obtain an expectation

(11) TI‘(FI‘Ob71 |/3red) = -1+ H (1 + Tr(Frob™ ! |Hrqg(BGs; Ze)))

reXo
—1+ [ Tr(Frob™" |H*(BGa; Ze)).

zeXo
Using Theorem 5.4.5, we will show that the chiral homology [ B,eq can be identified with the
reduced cochain complex C} ;(Bung(X); Z,) (Theorem 8.2.14), from which we can repeat the
above reasoning to obtain the desired product formula

Tr(Frob ™" [H*(Bung(X); Ze) = [[ Tr(Frob™' |H*(BGy; Zy).
z€Xo

However, we still do not know how to make this heuristic calculation precise. The problem is

o
that the spaces X (™) become increasingly complicated as n grows, so it is hard to verify the
convergence of expressions like

> Tr(Frob™! [H* (X ™ B,,)).
n>0
To circumvent this difficulty, we will consider a different filtration of the ¢-adic cochain com-

plex C*(Bung(X); Z¢). Roughly speaking, the idea is to regard the reduced cochain complex
m = Cf (Bung(X); Zy) as an “ideal” in C*(Bung(X); Z,) and to filter C*(Bung(X);Z,) by
the powers of m. More generally, suppose that A is any commutative algebra object of Modg,
which is equipped with an augmentation € : A — Z;, and let m4 denote the fiber fib(e). In
§6.1, we will construct a tower

-—>mff)—>mf)—>mf41):m,4

which can be regarded as a “derived” m4-adic filtration of A. Moreover, we show that successive
quotients appearing in this filtration can be identified with the symmetric algebra on the cofiber
coﬁb(mf) — my) (Proposition 6.1.17), which we will refer to as the cotangent fiber of A and
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denote by cot(A) (the homologies of the chain complex cot(A) are also referred to in the
literature as the topological André-Quillen homology or the I'-homology of A).

Let us now specialize to the case where A = C*(C;Z;) for some prestack € over k. We will
show that if H(C; Z;) ~ Z; (a condition which is satisfied when € = Bung(X), by virtue of
Theorem 8.3.1), then the m-adic filtration of A converges after inverting ¢: in other words, the
inverse limit of the tower

o m@P e s P s mPey

vanishes (see Proposition 6.1.18). It follows that the cohomology of A[¢~!] can be computed by
means of a spectral sequence whose second page can be identified with the symmetric algebra
on cot(A)[¢7]. If € is defined over a finite field F, C k, we can use this spectral sequence to
calculation the trace of the arithmetic Frobenius Frob™" on H*(C;Z/) in terms of the trace of
its powers Frob™™ on cot(A) (Proposition 6.3.4). We will describe this calculation (and treat
the relevant convergence issues) in §6.3.

In §6.4, we specialize further to the case where A = C*(BH; Z,) for some connected algebraic
group H defined over k. In this case, the cotangent fiber cot(A)[¢~!] can be identified (up to a
Tate twist) with the motive of the group H, as introduced in [21] (at least for reductive groups
H). In the special case where H is defined over a finite field F, C k, we can use Proposition
6.3.4 to infer a version of the Grothendieck-Lefschetz trace formula for the classifying stack BH
(Proposition 6.4.12).

The formalism of §6.1 is quite general, and can be applied to augmented commutative al-
gebras in co-categories other than Modz,. For example, if BG denotes the classifying stack of
G (regarded as a group scheme over X), then the relative cohomology sheaf [BG]x can be re-
garded as a commutative algebra object of the co-category Shv,(X) (equipped with the !-tensor
product of §4.6), so that we can study the cotangent fiber cot[BG]x € Shv,(X). In §6.2, we
construct a canonical map

po : C*(X,cot[BGlx) — cot C*(Bung(X); Zy),

which we prove to be an equivalence using Theorem 5.7.1 (Theorem 6.2.4). As we explain in §6.2,
this can be regarded as an analogue of the Atiyah-Bott calculation of H*(Bungr,, (¥); Q) when
3. is a compact Riemann surface; consequently, we will refer to Theorem 6.2.4 as the Atiyah-
Bott formula. When combined with the results of §6.3 and the connectivity of Bung(X), the
Atiyah-Bott formula leads immediately to a calculation of Tr(Frob™ ' |H*(Bung(X); Z¢)), as
we explain in §6.5.

6.1. The Cotangent Fiber. Let X = Spec A be an affine algebraic variety over a field k and
let « € X (k) be a k-valued point of X, corresponding to a k-algebra homomorphism € : A — k.
We let m, = ker(e), so that m, is a maximal ideal of A. The Zariski cotangent space of X at
the point x is defined to be the k-vector space given by the quotient m,/m2. For each n > 0,
there is an evident surjective map

Sym" (m,/m3) — my /mptt

which is an isomorphism if X is smooth at the point x. Consequently, the structure of the
completed local ring A= l'glA/m;? is in some sense controlled by the finite-dimensional vector
space m, /m2.

Let € be a symmetric monoidal stable oco-category. Then one can consider commutative
algebra objects A € € equipped with an augmentation € : A — 1 (here 1 denotes the unit
object of €). For every such pair (A4, ¢€), one can consider an analogue of the Zariski cotangent



184 DENNIS GAITSGORY AND JACOB LURIE

space, which we will refer to as the cotangent fiber of A and denote by cot(A) (Definition 6.1.6).
Our goal in this section is to review some elementary properties of the construction A — cot(A).

Notation 6.1.1. Let € be a symmetric monoidal co-category which we regard as fixed through-
out this section. We will assume that € is stable, presentable, and that the tensor product

®:ExC—=C

preserves colimits separately in each variable. Let CAlg(C) denote the co-category of commu-
tative algebra object of C and let 1 denote the unit object of €, which we identify with the
initial object of CAlg(C).

For A € CAlg(C), we define an augmentation on A to be a map of commutative algebra
objects € : A — 1. An augmented commutative algebra object of C is a pair (A,€), where
A is a commutative algebra object of €, and e is an augmentation on A. The collection of
augmented commutative algebra objects of € can be organized into an co-category CAlg®'®(C) =
CAlg(€) /1.

If C admits a unit object and (A, €) is an augmented commutative algebra object of C, we
let my denote the fiber of the augmentation map ¢ : A — 1. We will refer to my as the
augmentation ideal of A. Note that m, inherits the structure of a nonunital commutative
algebra object of €. Moreover, the construction A — my4 determines an equivalence from the
oo-category CAlg™®(€) of augmented commutative algebra objects of € to the oo-category
CAlg™(C) of nonunital commutative algebra objects of € (Proposition HA.5.4.4.10).

Definition 6.1.2. Let Fin® denote the category whose objects are finite sets and whose mor-
phisms are surjective maps of nonempty finite sets. For each integer n > 0, we let Fin%,, denote
the full subcategory of Fin® spanned by those finite sets which have cardinality > n.
Suppose that A is an augmented commutative algebra object of €. Then the construction
S — m%s determines a functor Fin® — €. For each integer n > 0, we let mff) denote the
colimit
li m®9,
seFing,

By convention, we set mff) = A.

Example 6.1.3. The category Fin%; has a final object, given by a 1-element set. It follows
that for every augmented commutative algebra object A of €, we have a canonical equivalence

m) ~m.

Example 6.1.4. Let k be a field and let A be an augmented commutative algebra over k (which
we regard as a chain complex concentrated in degree zero), with augmentation ideal m4. Then
we can regard m4 as a nonunital commutative algebra object of the symmetric monoidal co-
category Modg. Then we can think of the object mgl) € Mody, as a “derived version” of the

usual nth power ideal m’; C A. Multiplication in A determines a compatible family of maps

m%s — m’;, which can be amalgamated to give a map mff) — m’;. One can show that this

map is an equivalence if k is of characteristic zero and A is smooth over k (this follows from
Proposition 6.1.17 below).

Remark 6.1.5. Let A be an augmented commutative algebra object of €. Then the inclusions
of categories
cee Finsz3 — Finszg — Finszl

determine maps

(3)

e Sw®

— my )

— my ~my,
depending functorially on A.
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Definition 6.1.6. Let A be an augmented commutative algebra object of €. We let cot(A)

denote the cofiber of the canonical map mff) — mfj) ~ my. We will refer to cot(A) as the
cotangent fiber of A.

Remark 6.1.7. Let € and D be presentable stable symmetric monoidal co-categories for which
the tensor product functors

QR:CxC—=0C R:DxD—=D

preserve colimits separately in each variable, and let F : € — D be a symmetric monoidal
functor. Then F' carries augmented commutative algebra objects A of € to augmented commu-
tative algebra objects F/(A) of D. If F preserves colimits, then we have a canonical equivalence
cot(F(A)) ~ F(cot(A)) for each A € CAlg™"8(C).

Example 6.1.8. Let V be an object of C and let Sym*(V) = @,,~,Sym"(V) denote the
free commutative algebra object of € generated by V. The zero map V' — 1 determines an
augmentation € : Sym* (V) — 1, whose fiber is given by Sym~°(V) ~ @D,,~o Sym™ (V). For any
finite set S, we can identify Sym~°(V)®% with the colimit lim FTos VET wwhere the colimit is
taken over all surjections f: 7T — S. For n > 0, we compute

Sym~0 (V)W ~ lim Sym~%(V)®9

[S|>n

~ lim lim V®T
- =
S|Zn f: TS

~ lim lim yoer
T

T f:T—S,|S|>n

i Ve if |T|>n
1
2o [T <n

@ Sym™ (V).

m>n

R

12

Here in each colimit, we allow T' to range over the category of finite sets and bijections and f
to range over all surjections. In particular, we have a canonical equivalence cot(Sym*(V)) ~ V.

Proposition 6.1.9. The formation of cotangent fibers determines a functor cot : CAlg®"®(C) —
C which preserves colimits.

Proof. To show that the functor cot preserves all colimits, it will suffice to show that it preserves
sifted colimits and finite coproducts. Since the tensor product on € preserves colimits separately
in each variable, the functor V ~— V®5 preserves sifted colimits for every finite set S. It
follows that the construction A — cot(mff)) commutes with sifted colimits for each n, so that
A +— cot(A) commutes with sifted colimits. Since the functor cot clearly preserves initial
objects, we are reduced to showing that it preserves pairwise coproducts. Let A and B be

augmented commutative algebra objects of €; we wish to show that the canonical map
cot(A) @ cot(B) — cot(A ® B)

is an equivalence. Resolving the augmentation ideal m4 by free augmented commutative al-
gebras, we can reduce to the case where A ~ Sym* (V) for some object V' € €. Similarly, we
may suppose that B ~ Sym* (W) for some W € C. In this case, the desired result follows from
Example 6.1.8. g
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6.1.1. Cotangent Fibers and Square-Zero Extensions. For each object V € €, let 1 &V denote

the trivial square-zero extension of 1 by V. The construction V +— 1 & V determines a functor
0% : € — CAlg™&(C).

Proposition 6.1.10. The construction cot : CAlg™8(C) — € is left adjoint to the formation
of trivial square-zero extensions V +— 1 ® V. In other words, for every augmented commutative
algebra A € CAlg™®(C) and every object V € €, we have a canonical homotopy equivalence

Mapgygene(e) (A, 1 © V) =~ Mapg(cot(A), V).

Proof. Theorem HA.7.3.4.13 implies that the functor 2° exhibits C as a stabilization of the
oo-category CAlg®"®(C). In particular, we have an adjunction

oo

CA1gaug(e)%e,

where % : CAlg™#(€) — C denotes the absolute cotangent complex functor introduced in
Definition HA.7.3.2.14. The functor ¥%°° is universal among colimit-preserving functors from
CAlg™&(€) to stable oco-categories. It follows from Proposition 6.1.9 that the formation of
cotangent fibers factors as a composition

cot : CAlg™8(C) el C,

where A is some functor from € to itself. Using Example 6.1.8, we obtain equivalences of
functors

ide =~ cot o Sym™ ~ X o (2°° o Sym™) ~ },
so that A is equivalent to the identity functor. (]

Remark 6.1.11. Let k be a field and let A be an augmented commutative algebra object of
Mody. We can identify I = H"(m,4) with a maximal ideal in the graded-commutative ring
H*(A). We may therefore consider the (purely algebraic) Zariski cotangent space I/I%. Note
that I? is contained in the image of the map

H*(m%?) — H*(ma) =1,

and therefore also in the kernel of the map H*(m4) — H"(cot(A)). We therefore obtain a
canonical comparison map
I/I% — H*(cot(A)).

Proposition 6.1.12. Let k be a field of characteristic zero, let A be an augmented commutative
algebra object of CAlg,., and suppose that the cohomology H*(A) is a graded polynomial ring
(that is, H*(A) is a tensor product of a polynomial ring on generators of even degree and an
exterior algebra on generators of odd degree). Then the comparison map I/I? — H*(cot(A)) of
Remark 6.1.11 is an isomorphism.

Proof. Choose homogeneous polynomial generators {t;};c; of H*(A) which are annihilated by
the augmentation map € : A — k. Let V denote the graded vector space freely generated
by homogeneous elements {T;};c; with deg(T;) = deg(t;) and regard V as a chain complex
with trivial differential. Then we can choose a map of chain complexes ¢g : V — my4 which
carries each T; to a cycle representing the homology class t;. Then ¢ extends to a map of
augmented commutative algebras ¢ : Sym™ (V) — A. The assumption that k has characteristic
zero guarantees that the cohomology of Sym* (V) is a graded polynomial ring on the generators
T;, so that ¢ is an equivalence. It follows from Example 6.1.8 that ¢ determines an equivalence

V =~ cot(Sym*(V)) — cot(A)
in Mody,. O
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Example 6.1.13. Let k be a field of characteristic zero (or, more generally, any Q-algebra), and
let A be an augmented commutative k-algebra with maximal ideal m 4. The cotangent complex
L4/ is a chain complex of A-modules, obtained from the simplicial A-module A @pe Qpe /1,
where P°® is a simplicial resolution of A by free k-algebras. One can show that the cotangent
fiber cot(A) is given by the (derived) tensor product k ®4 L4 4. This follows from Proposition
6.1.12 when A is a free algebra over k, and the general case can be reduced to the case of free
algebras using Proposition 6.1.9 below.

More generally, if k is arbitrary commutative ring and A € CAlg*"®(Mody), then the cotan-
gent fiber cot(A) can be identified with the tensor product k ®4 LY /> Where L /i denotes the

complex of topological André-Quillen chains of A over k (Proposition 6.1.10).

Example 6.1.14 (Rational Homotopy Theory). Let X be a simply connected topological
space, and assume that the cohomology ring H*(X; Q) is finite-dimensional in each degree. Let
2 € X be a base point, so that x determines an augmentation C*(X; Q) — C*({z}; Q) ~ Q of
commutative algebra objects of the co-category Modg. We will denote the augmentation ideal
by C} 4(X;Q). Then the cotangent fiber of C ;(X; Q) is a cochain complex M. One can show
that the cohomologies of this chain complex are given by

H"(M) = Hom(m, (X, z), Q).

Remark 6.1.15. Let k be a field of characteristic zero, and let A be an augmented commutative
algebra object of Mody. One can show that the shifted dual £=! cot(A)Y of the cotangent fiber
cot(A) is quasi-isomorphic to the underlying chain complex of a differential graded Lie algebra
which depends functorially on A. In other words, the construction

A Y eot(A)Y

determines a contravariant functor from the oco-category of augmented commutative algebra
objects of Mody, to the co-category of differential graded Lie algebras over k. This construction
is adjoint to the functor g — C*(g) which carries a differential graded Lie algebra g to the
Chevalley-FEilenberg complex which computes the Lie algebra cohomology of g. See §SAG.4.2
for more details.

6.1.2. The m-adic Filtration. Let k be a field of characteristic zero and let A be an augmented
commutative algebra object of Mody. In good cases, one can recover the tower {coﬁb(mff) —
A)},>1 from the cotangent fiber cot(A) together with the Lie algebra structure on £ =1 cot(A4)V.
However, for our applications in this paper, it will be sufficient to describe the successive
quotients of the filtration m%). This does not require us to consider Lie algebra structure at
all, and works without any restrictions on A or C:

Construction 6.1.16. Let A be an augmented commutative algebra object of €, so that its

cotangent fiber is given by
cot(A) ~ cofib( lim m%T — lim m%7).

—
|T|=2 |T|=1

An easy calculation shows that for every finite set S, we can identify cot(m4)®° with the cofiber
cofib( lim m®T lim m&7),
rT3s fT—=8
where the colimits are taken over the category of all finite sets T equipped with a surjection
f:T — S (which, on the left hand side, is required to be non-bijective).

Let J denote the category whose objects are finite sets T' equipped with an equivalence
relation E such that |T/FE| = n, where a morphism from (T, F) to (T, E’) is a surjection
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of finite sets « : T — T’ such that xFy if and only if a(z)E'a(y). Let Jo denote the full
subcategory of J spanned by those pairs (T, E') where |T'| > n. Then the above considerations
determine an equivalence

Sym” cot(my) =~ cofib( lim m%’ — lim m%7).
(T, E)€do (T,E)ed
We have an evident commutative diagram
Jo——=1
Fin, . ——=Fin%,,
which determines a map
6 : Sym" cot(my4) — coﬁb(mffﬂ) — mff)).

Proposition 6.1.17. Let A be an augmented commutative algebra object of €. Then, for each
integer n > 0, Construction 6.1.16 determines an equivalence Sym" cot(A) — coﬁb(m(fﬂ) —

mff)). In other words, we have a fiber sequence

(

mffﬂ) 1) — Sym" cot(myu).

—m
Proof. The case n = 0 follows immediately from our convention mff) = A. We will therefore
assume n > 0. Let F': Fin® — € denote the functor given by F(S) = m%. For every category
J equipped with a forgetful functor 3 — Fin®, we let F'|; denote the restriction of F' to J, and
hAl(Fb) the colimit of F|s (regarded as a diagram in €). Unwinding the definitions, we wish
to prove that the diagram o :

lim(Flg,) lim(F5)

| |

M (Flpine ) — Im(Flping )

is a pushout diagram in the oo-category €. We will show that this holds for any functor
F:Fin® — C.
Let F': FinSZn — € be a left Kan extension of the functor F' |Fin-; o along the inclusion

Fin%, ., <= Finl,, .

Let U : § — Fin,, denote the forgetful functor. Note that for every object (T, FE) € g, the
functor U induces an equivalence of categories (7 gy — (Fin%,,) 7. Tt follows that F' o U is a
left Kan extension of F'|j, along the inclusion gy — J. We may therefore identify o with the
commutative diagram

liE(T,E)eg F/(T) lign(T,E)eél F(T)

| |

. , .
h—r>nT€Fin§n F(T) — h—r>nT€Fin§n F(T).
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For T € Fin%,,, let F"(T) denote the cofiber of the canonical map F'(T') — F(T'). Unwinding
the definitions, we are reduced to proving that the map
f: lim F'(T) — lim F'(T)
(T,E)ed TEFin®>,
is an equivalence. Let Fin?  denote the full subcategory of Fin® spanned by those sets having
cardinality n, and let J—,, C J denote the inverse image of Fin® , under U. Note that F"'(T) ~ 0
if |T| > n, so that F" is a left Kan extension of its restriction to Fin?, and F” o U is a left
Kan extension of its restriction to J—,. We may therefore identify 6 with the canonical map
lii>n F'(T) — h_I)Il F'(T).
(T,E)€d_,, TeFinZ

This map is an equivalence because U induces an equivalence of categories J—,, — FinZ,. O

6.1.3. Convergence. Let A be an augmented commutative algebra object of C. It follows from
Proposition 6.1.17 that the successive quotients of the filtration

---—>mf)—>m(A2)—>m(Al)—>m(£):A

can be functorially recovered from the cotangent fiber cot(A4). We next study a condition which
guarantees that this filtration is convergent, so that information about the cotangent fiber
cot(A) gives information about the algebra A itself.

Proposition 6.1.18. Suppose that € = Mody, where k is a field of characteristic zero. Let
A be an augmented commutative algebra object of C whose augmentation ideal m4 belongs to
(Mody)<—1. Then, for every integern > 0, the object mff) belongs to (Mody)<—n. In particular,

the inverse limit l'glm(:) vanishes in C.

The proof of Proposition 6.1.18 depends on the following elementary combinatorial fact about
t-structures:

Lemma 6.1.19. Suppose that the co-category C is equipped with a t-structure which is com-
patible with filtered colimits (that is, the full subcategory C<q is closed under filtered colimits).
Let P be a partially ordered set, let A : P — Z>( be a strictly monotone function, and suppose
we are given a functor G : N(P)°P — C such that G(x) € C<_,,_x(z) for each x € P. Then the
colimit ligG belongs to C<_,,.
Proof of Proposition 6.1.18. We define a category J as follows:

e The objects of J are diagrams

Sohs B %Ng,

where each S; is a finite set of cardinality > n, and each of the maps ¢; is surjective
but not bijective.

eLet S=(Sg—= S == Sy)and T = (Ty — Ty — --- — T.,) be objects of J. A
morphism from S to 7' in J consists of a map a : {0, ...,e} — {0,...,d}, together with
a collection of bijections S, ;) ~ T; for which the diagrams

Sa(i) — Sa(iJrl)
T ———Ti1

comimute.
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We have an evident forgetful functor p : J — Fin%,,, given by (So — -+ — S4) = So. We first
prove:

(*) The functor p is left cofinal.
Fix a finite set 7' of cardinality > n, and let J7, denote the fiber product J xpin: (Fin, )r;.

To prove (), we must show that each of the categories J;, has weakly contractible nerve.
Unwinding the definitions, we can identify objects of Iz, with chains of surjections

TAS %8 B... %,

where the maps ¢; are not bijective. Let J7. , denote the full subcategory of J7, spanned by
those objects for which 1) is bijective. Since the inclusion J7. ;< Jr, admits a right adjoint, it
will suffice to prove that the category J7 , has weakly contractible nerve. This is clear, since

IJOT/ contains a final object (given by the map T d T).
Let F:J — C denote the functor given by the formula

F(Sy — -+ — 84) = m§,

It follows from (x) that we can identify m(? with the colimit hg(F) Let P denote the set of
all finite subsets of Z>,,, partially ordered by inclusion. The construction

(So = 81— -+ = Sa) = {[Sol, |51, - -, [Sal}

determines a functor p’ : I — P°P. Let G : N(P)°P — € denote a left Kan extension of F' along
¢, so that m(™) ~ lim G(J).

Fix a finite subset J C Zx,. Since p’ is a coCartesian fibration, G is given by the formula
G(J) = liglFbXPop{J}. For every object § = (Sp — --- — Sg) in J x pen{J}, the set S
has cardinality > d + |Sq| > d+n = |J| + n — 1. The category J X pop{J} is a groupoid in
which every object has a finite automorphism group. It follows that G(J) can be written as
a direct sum of objects of the form (m%”)r, where T is a finite set of cardinality |J| +n — 1
and I is a finite group acting on m%T via permutations of T'. Since k has characteristic zero, it
follows that G(.J) € (Modg)<i—n—|s|- The desired result now follows from Lemma 6.1.19 (take
A P — Z>( to be the function given by A(J) = [J| — 1). O

Proof of Lemma 6.1.19. We will prove the following more general assertion: for every simplicial
subset K C N(P)°P, the colimit hg(G|K) belongs to C<_,,. Writing K as a filtered colimit of
finite simplicial sets, we may reduce to the case where K is finite. We proceed by induction
on the number of nondegenerate simplices of K. If K is empty, there is nothing to prove.
Otherwise, we can choose a pushout diagram

8Am — KO

L

A" — K.

Since h_r)n(G |K,) € C<_y by the inductive hypothesis, it will suffice to prove that the cofiber
of the canonical map 6 : lig(Gh(O) — hg(G|K) belongs to C<_,,. For this, we may replace K
by A™ and Ky by OA™. Let € P°P denote the image of the final vertex {m} € A™. We
will prove that cofib() € €<_,,_x(z). The proof proceeds by induction on m. If m = 0, then
cofib(f) = G(x) and there is nothing to prove. If m > 0, then the inclusion A”" < A™ is right
anodyne and therefore left cofinal. It follows that the composite map

liny(G|ag;) % lim(Glaar) 5 lim(Gar)
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is an equivalence, so that cofib(f) ~ X cofib(’). Using the pushout diagram of simplicial sets

3Am_l Am_l

L

Am dA™,

we can identify cofib(¢") with the cofiber of the induced map 6" : im(G|pam-1) = Im(G[am-1).
Let y € P denote the image of the final vertex of A™~!. Then y > . Since ) is monotone, we
have A(y) > A(z). Using the inductive hypothesis, we deduce that

cofib(6”) € C<_p_a(y) € C<cn_1-A@@)
so that cofib(f) ~ X cofib(#’) ~ ¥ cofib(§”) € C<_,,_ (), as desired. O

6.2. The Atiyah-Bott Formula. Let X be a compact Riemann surface of genus g and let
Bungr, (X) be the moduli stack of rank n vector bundles on X. Then we can write Bungy,, (X)
as a disjoint union of connected components

Myez BunéLn (X),

where BundGLn (X) denotes the moduli stack of vector bundles on X of rank n and degree d.
Each BundGLn (X) determines a complex-analytic stack which has a well-defined homotopy type.

In [4], Atiyah and Bott show that the cohomology ring H* (BundGLn (X); Z) is isomorphic to the
free graded-commutative algebra on homogeneous generators

{xi}zgign {yz‘,j}1<i<n 1<j<2g {Zi}lgign

deg(z;) = 2i — 2 deg(y; ;) =2t —1 deg(z;) = 2i.

The Atiyah-Bott calculation admits a straightforward generalization to algebraic groups
other than GL,,. For simplicity, we will restrict our attention to the case of simply connected
groups. Fix an algebraically closed field k£ and a prime number ¢ which is invertible in k. Let
Gy be a simply connected semisimple algebraic group over k and let BGg denote its classifying
stack. Then the ¢-adic cohomology H* (BGy; Q) is isomorphic to a polynomial ring

Qé[t17"~7t’r‘]

where r is the rank of Gy and each generator ¢; is a homogeneous element of some even degree
d; > 4. The integers d, ..., d, are called the exponents of the group Go. Let X be an algebraic
curve of genus g over k and let G = Gg x X be the associated constant group scheme over
X. One can show that the cohomology ring H* (Bung(X); Q,) is isomorphic to a free graded-
commutative algebra on homogenous generators

{zihi<icr  A{yijh<i<ri<i<eg  {zihi<icr
deg(z;) =d; — 2 deg(y; ;) =di — 1 deg(z;) = d;.
The proof of this assertion can be broken into two steps:

(a) Let us regard the cochain complex C*(Bung(X); Q,) as a commutative algebra object
of Modq,, with an augmentation

€ : C"(Bung(X); Q) — C*(Speck; Q,) ~ Q,

given by the base point of Bung(X). Then one can show that the cotangent fiber
cot(C*(Bung(X); Q,)) is equivalent to the tensor product

Ci(X;Qy) ®q, cot(C(BGo; Qy))-
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It follows from Proposition 6.1.12 that the homology of cot(C*(BGo; Q,)) admits a basis
{T; }1<i<r consisting of homogeneous elements of (cohomological) degree deg(T};) = d;.
One can then calculate that cot(C*(Bung(X);Q,)) is quasi-isomorphic to a graded
vector space V' on homogeneous generators

{xi}lgigr {yi,j}1<i<r 1<j<2g {Zi}lgigr

US>

deg(mi) = di -2 deg(yi,j) = dz -1 deg(zl) = dz
(b) According to Remark 6.1.15, the dual
Y1 cot(C*(Bung(X); Q)Y ~ 27 1vY

is quasi-isomorphic to the underlying chain complex of a canonically determined dif-
ferential graded Lie algebra g. One can show that this Lie algebra is equivalent to an
abelian one and that the natural map

C*(Bung(X); Q) = C*(g)

is a quasi-isomorphism, where

C*(g) = [[(Sg)" = Sym™ (V)

n>0

denotes the cohomological Chevalley-Eilenberg complex of g. Passing to cohomology,
it follows that H*(Bung(X); Q) is isomorphic to a polynomial ring on generators

{zihi<icr  A{yijh<i<ri<i<eg  {zihi<izr

Remark 6.2.1. We will not discuss assertion (b) in this paper. However, it should really
be regarded as a formal consequence of (a). Set g = X~ !cot(C*(Bung(X);Q)) and go =
Y71 cot(C*(BGo; Q). The constructions outlined below can be used to produce a canonical
map
0:9— C"(X; Q) ®q, 90,

and the content of assertion (a) is that this map is a quasi-isomorphism. Given a suitably robust
formalism for Koszul duality (which we do not discuss here), one can realize 6 as a morphism of
differential graded Lie algebras. Since the cohomology H*(BGg; Q,) is a polynomial ring, the
Lie algebra gg can be chosen to be abelian, so that the Lie algebra structure on g can likewise
be chosen abelian.

Remark 6.2.2. Combining assertion (a) with Propositions 6.1.18 and 6.1.17, it follows that
there exists a spectral sequence with second page E3* ~ Sym*(V) which converges to the
cohomology ring H*(Bung(X); Q,). It follows from (b) that this spectral sequence degenerates.
For our purposes, this is irrelevant: our goal is to compute the trace of the arithmetic Frobenius
Frob™! on the cohomology ring H* (Bung(X); Q,) (in the special case where X is defined over
a finite field F,;). Modulo issues of convergence (which we will discuss in §6.5), the existence
of the spectral sequence E}* shows that this is equal to the trace of Frob™! on the symmetric

algebra Sym*(V'), and can therefore be computed directly from the Frobenius eigenvalues of
H*(X; Q) and H"(BGo; Q).

Remark 6.2.3. In [4], Atiyah and Bott actually show that the integral cohomology of the
moduli stacks BunéLn (X) are graded polynomial rings with the structure indicated above.

However, this description is specific to the case of the group GL,: in general, the cohomology
of the moduli stack Bung(X) has torsion.
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We now formulate an analogue (a) for the case of a group scheme G over X which is not
assumed to be constant (Theorem 6.2.4). At this level of generality, we do not expect the
analogue of (b) to hold.

Theorem 6.2.4. Let k be an algebraically closed field, let m : X — Speck exhibit X as an
algebraic curve over k, let G be a smooth affine group scheme over X with connected fibers
whose generic fiber is semisimple and simply connected, and let £ be a prime number which is
invertible in k. Let us regard [BG]x as a commutative algebra object of Shve(X) as in §5.7,
with augmentation [BG]x — wx given by the map X — BG classifying the trivial G-bundle on
X. Then the canonical map

[BGlx — [X Xspeck Bung(X)]x = 7' C*(Bung(X); Z¢)
induces an map cot[BG]x — 7' cot C*(Bung(X); Z¢) which determines an equivalence
6 : 7. cot[BG]x — cot C*(Bung(X); Zy)
in Shve(Speck) ~ Modg, .

Let C*(X; cot[BG]x) denote the image of 7, cot[BG]x under the equivalence of co-categories
Shv,(Spec k) ~ Modgz,. We have formulated Theorem 6.2.4 as a result about the integral ¢-adic
cohomology of Bung(X). However, we will be primarily interested in the following consequence
(obtained by passing to global sections and inverting ¢):

Corollary 6.2.5. Suppose that the fibers of G are connected and that the generic fiber of
G is semisimple and simply connected, and regard C*(Bung(X);Z¢)[¢~!] as an augmented
commutative algebra object of Modq,. Then we have a canonical equivalence

cot(C* (Bung (X); Z)[(71]) ~ C*(X; cot[BG] x)[¢1].

Remark 6.2.6. One can show that for any prestack € and any base point 7 : Speck — C,
the cotangent fiber cot C*(C;Z/¢Z) vanishes (when regarded as an augmented commutative
algebra object of Modg¢z. It follows from this that multiplication by ¢ induces equivalences

£: cot C*(Bung(X); Z¢) — cot C*(Bung(X); Zy) £ : cot[BG]x — cot[BG|x,

so that cot C*(Bung(X); Z,) and C*(X, cot[BG]x) already admit the structure of Q,-modules.
In other words, Theorem 6.2.4 and Corollary 6.2.5 are equivalent to one another.

Remark 6.2.7. Let C be an arbitrary prestack. Then there are (at least) two reasonable
definitions for cohomology of € with coeflicients in Q,: one can consider the rational cohomology
ring H*(C; Q,) introduced in §2.3, or consider the integral cohomology ring H*(C; Z,) and invert
{. These are related by a canonical map

H™ (€ Zo)[71] — H™(€;.Qy).

This map is an isomorphism if € is an algebraic stack of finite type over k (Remark 2.3.30),
but not in general (since the operation of inverting ¢ does not commute with inverse limits;
see Warning 2.3.29). For our purposes, it will be more convenient work with the second def-
inition. Consequently, the results of this section will be phrased in terms of the Q,-modules
H*(Bung(X); Z)[¢~!] and C*(Bung(X); Z)[¢71]. In fact, this makes no difference: one can
show that the natural map

H*(Bung(X); Z)[¢7'] — H*(Bung(X); Q)
is an isomorphism (at least when the generic fiber of G is semisimple and simply connected;

it can fail when Bung(X) has many connected components, for example if G = GL,,), but we
will not need this fact.
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Example 6.2.8. In the special case where G = X x G is a constant group scheme on X,
Corollary 6.2.5 supplies an equivalence

cot(C*(Bung(X); Ze)[fl])

12

C*(X,cot[BG]x)[¢7]

C*(X, cot(C*(BGo; Zy) @ wx))[¢]
C*(X, (cot C*(BGo; Z¢)) @ wx ) [0

~ (cot C*(BGo; Z¢)) ®z, C*(X;wx))[(']
~ (cot C*(BGo; Z¢) @z, Cu(X;Z0))[0 "]
~ cot(C*(BGo; Zo)[(7']) ®q, C+(X;Qy)

as promised in the introduction to this section.

1

Proof of Theorem 6.2.4. Fix an object M € Modz,; we wish to show that composition with 6
induces a homotopy equivalence

O MapMoleZ (cot C*(Bung (X); Z¢), M) — MapModzz (s cot[BG] x, M).

Using the universal property of the cotangent fiber (Proposition 6.1.10), we obtain homotopy
equivalences

Mapyjoa,, (cot C*(Bung(X); Zs), M) ~ Mapeagans (Modz, ) (C*(Bung(X);Zy¢),Ze® M)

Mapyo,, (T« cot[BGx, M) ~ Mapggune sy, (x)) (BGlx, wx @ m'M).

It will therefore suffice to show that the diagram of spaces

Mapcalg(Modz, ) (C7 (Bung (X); Ze), Zy & M) —— Mapgaig(shy, (x)) ([BGlx, wx @ M)

| l

Mapcalg(Modz, ) (C*(Bung (X); Z¢), Zy) ————— Mapcajg(sny, (x)) (BGlx, wx)

is a homotopy pullback square. In fact, the horizontal maps in this diagram are homotopy
equivalences by virtue of Theorem 5.7.1. 0

6.3. Summable Frob-Modules. Let k be an algebraically closed field, let X be an algebraic
curve over k, and let G be a smooth affine group scheme over X. Suppose that X and G
are defined over a finite field F, C k, so that the moduli stack Bung(X) is equipped with a
geometric Frobenius map Frob : Bung(X) — Bung(X). To prove Theorem 1.3.5, we need to
compute the trace Tr(Frob ' |H*(Bung(X); Z,)). However, this requires some care: typically
the cohomology groups H"(Bung(X);Zy) are nonzero for infinitely many values of n. We
therefore devote this section to a discussion of some of the convergence issues which arise when
forming infinite sums such as

Tr(Frob ™" |H*(Bung(X); Z¢)) = » _(—1)" Tr(Frob™" | H" (Bung (X); Z¢)).
n>0
Our main result (Proposition 6.3.4) allows us to deduce the convergence of these sums from the

the structure of the cotangent fiber cot C*(Bung(X); Z,), which we will discuss in §6.2.
Throughout this section, we fix a prime number ¢ and an embedding of fields ¢ : Q, — C.

Definition 6.3.1. Let V* be a graded vector space over Q, and F' an endomorphism of V*.
We will say that (V*, F) is summable if the following conditions are satisfied:

(1) The vector space V™ is finite dimensional for every integer m.
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(2) For each A € C and every integer m, let dy ., denote the dimension of the generalized
A-eigenspace of I on the complex vector space C ®q, V™. Then the sum

> damlA|

m,A
is convergent.

If (V*, F') is summable, we let |[V*|z denote the nonnegative real number ) | dx ,,|A]; we will
refer to |[V*|r as the norm of the pair (V*, F). We let Tr(F|V*) denote the complex number
> ma(=1)™dxmA. Note that this sum converges absolutely, and we have | Tr(F|V*)| < [V*|p.

Remark 6.3.2. The definition of a summable pair (V*, F'), and the trace Tr(F|V*) depend on
a choice of embedding ¢ : Q, — C. However, for the pairs (V*, F') of interest to us, the traces
Tr(F|V*) can be shown to be independent of ¢.

Remark 6.3.3. Suppose we are given graded Q, vector spaces V'*, V* and V'* equipped
with endomorphisms F’, F', and F” respectively, together with a long exact sequence

N V//n—l — Vln — Vn N V//n N Vln+1 e

compatible with the actions of F, F’, and F”. If (V'*, F’) and (V"*, F") are summable, then
(V*, F) is also summable. Moreover, in this case we have

Volp < V5] + [V r Te(EIV) = Te(E V) + Te(F7V7).

Proposition 6.3.4. Let A be an augmented commutative algebra object of Modq, equipped with
an automorphism F. We let V = cot(A) denote the cotangent fiber of A, so that F' determines
an automorphism of V' (which we will also denote by F'). Suppose that the following conditions
are satisfied:

(1) The augmentation ideal ma belongs to (Modq,)<—1-

(2) The graded Q,-vector space H*(V') is finite-dimensional.

(3) For every integer i and every eigenvalue A of F' on C ®q, HY(V), we have |\ < 1.
(H

Then (H*(A); F) is summable. Moreover, we have

Te(F|H*(4)) = exp(3 - Te(E" [ H'(V))),

n>0
where the sum on the right hand side is absolutely convergent.

Remark 6.3.5. Proposition 6.3.4 asserts that, under mild hypotheses, the trace of F' on the
cohomology of A is equal to the trace of F' on the cohomology of the symmetric algebra Sym* (V).

Remark 6.3.6. Let V* be a finite-dimensional graded Q,-vector space equipped with an
automorphism F. We define the L-function of the pair (V*, F') to be the rational function of
one variable t given by the formula

Ly« p(t) = [ det(1 — tF|ym)=0™"
meZ

An easy calculation yields

Ly« p(t) =exp() %Tr(F"| H*(V))).

n>0
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for |t| < C, where C = sup{ \%I} where X\ ranges over the eigenvalues of F. In particular, if all
of the eigenvalues of F' have complex absolute values < 1, then we have

Ly (1) = exp(3 & Te(EP H (V).
n>0

In the situation of Proposition 6.3.4, we can rewrite the conclusion as
Te(F|H*(A)) = Lit- ot ay,r (1) = [] det(1 — F|H™ (V) D™,
m>0
Proof of Proposition 6.3.4. Write the graded vector space H*(V) as a direct sum H®*" (V) &
HoY(V). Let {\i,...,A\m} denote the eigenvalues of F on C ®q, H¥" (V) (counted with

multiplicity), and let {u1,...,um/} denote the eigenvalues of F' on C ®q, H°Y (V) (again
counted with multiplicity). For every integer n > 0, we set

Sn = > CIT »am IT kb

n=nj+-+n,+|S[,SC{1,....m’'} 1<i<m JjES
= S (I
n=ni+-+nm+|S[,SC{1,...,m'} 1<i<m  j€S
It follows from (3) that the sum so+s1+s2+--- converges to [[,;<,, ﬁ [i<jcm (T {150),
so that the sum og + 01 + 02 + -+ converges absolutely to [[,,,, ﬁ [Ticjcm (1= p5)-
For each n > 0, we can identify H*(Sym"(V)) with the nth symmetric power of H* (V') (in
the category of graded vector spaces with the usual sign convention). It follows that
(B (Sym"(V))|p = 5o Te(F[H(Sym"(V))) = on.
(

Let m4 denote the augmentation ideal of A. For each integer n > 1, let m ; ) be as in Definition

(0)

6.1.2, and set my’ = A. For every pair of integers ¢ < j, let (); ; denote the cofiber of the map

mg) — m(j). If ¢ < j, then Proposition 6.1.17 supplies a fiber sequence

Qit1,; — Qi — Sym*'(V).
Applying Remark 6.3.3 repeatedly, we deduce that each pair (H*(Q; ;), F) is summable, with
|H (Qij)lr <sit+-+sjm1 Tr(F|H(Qiy)) =05+ +0j-1.
We next prove the following:

() For each integer n, the pair (H* (m(;)), F') is summable, with

|H (M) |p < sp+ S+

For every integer d > 0, set W(d)* = @,-, Hi(mgn)). To prove (x), it will suffice to show
that each of the pairs (W (d)*, F) is summable with |[W(d)*|r < s, + Spy1 + -+ Without
loss of generality we may assume that d > n. It follows from Proposition 6.1.18 that the map
H (mf:)) — H'(Qn.a+2) is an isomorphism for i < d, so that
(W(d)*|r < |H* (Qnat+2)lr < snt+ -+ 5ap1 < Y 8w < 00,
n'>n

as desired.
Applying (%) when n = 0, we deduce that (H"(A), F) is summable. Moreover, for every
integer n, applying Remark 6.3.3 to the fiber sequence

mgl) — A= Qon
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gives an inequality
| Te(F|H"(A)) =09 =+ —on_a| = |Te(F|H"(A)) — Tr(F|H"(Qo,n))|
| Te(F|H ("))
[ H ()]
5n+5n+1+"' .

INIA

It follows that Tr(F|H"(A)) is given by the absolutely convergent sum

1
ZJ": H 11—\ H (l_lij)~

n>0 1<i<m v i<i<m!

In particular, we have

log Tr(F|H*(A))

1 1
Z logl_)\if Z lOgl—,u

i

1<i<m 1<j<m’
= XN Y S
1<i<mn>0 n 1<i<m’ n>0 "
1
S D ST S
n>0 1<i<m 1<5<m/’
= Z%Tr(FﬂH*(V)).
n>0

O

6.4. The Trace Formula for BG. Let F, denote a finite field, let Y be a smooth algebraic
stack of dimension d over F,, and let Y = Spech XspecF, Y be the associated algebraic
stack over F,. Fix a prime number ¢ which is invertible in F, and an embedding Z, < C.
Pullback along the geometric Frobenius map Frob : Y — Y induces an automorphism of the
¢-adic cohomology H*(Y; Q,), which we will also denote by Frob. If Y is quasi-compact and
quasi-separated, then Behrend proved that (H*(Y; Q,); Frob™') is summable and that its trace
satisfies the following analogue of Theorem 1.3.2:

_ 1
Tr(Frob™ ' |H* (Y;Q,)) = ¢~ ¢ _,
neY (Fgq)

Here the sum is taken over all isomorphism classes of objects in the groupoid Y (F,); see [6] for
more details.

Let us now specialize to the case where Y = BG, where G is a connected algebraic group
over F,. In this case, it follows from Lang’s theorem that every G-bundle on SpecF is trivial,
so that the sum on the right hand side contains only one term. We therefore obtain the formula

qdim(G)

T GEF,)]

Our goal in this section is to give a different proof of this identity using a method which can
be adapted to the case where BG is replaced by the moduli stack of bundles on an algebraic
curve.

We begin with some general remarks.

Tr(Frob™' |H*(BG; Q,))
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Notation 6.4.1. Let k be a field, let £ be a prime number which is invertible in &, and let k
be an algebraic closure of k. Let Y be an Artin stack over k, so that Y =Y X Speck Speck can
be regarded as an Artin stack over the algebraically closed field k. We let Cj,,,,(Y) denote the
cochain complex C*(Y;Z;)[(~'] € Modg,. We will refer to Cy,,,(Y) as the geometric cochain
complez of Y. We let Hy,,,(Y) denote the cohomology of the cochain complex Cgeop(Y);

we will refer to Hg,,,,(Y) as the geometric cohomology of Y. Note that the cochain complex

C* om(Y) and its cohomology HY ... (Y) equipped with an action of the absolute Galois group

geom geom

Gal(k/k).
Remark 6.4.2. The definition of the geometric cohomology H

*
geom

(Y) depends on a choice of
algebraic closure k of k and on a choice of prime number ¢ which is invertible in k. However,
to avoid making the exposition too burdensome, we will often neglect to mention these choices
explicitly.

*

seom (Y) comes

Warning 6.4.3. In the situation of Notation 6.4.1, the geometric cohomology H
equipped with a canonical map

0.1, (V)= H (V;Q,).

geom
This map is an isomorphism if Y is of finite type over k (Remark 2.3.30), but not in general.
For example, if X is a disjoint union of countably many copies of Spec F, then 6 is given by
the canonical monomorphism (I, Ze¢)[(™] = [1;0 Qo)-

Remark 6.4.4. Let Y be a smooth algebraic variety of dimension d over a finite field Fy, so

that the geometric cohomology Hy., (Y) is equipped with a geometric Frobenius automorphism

Frob. Since Hg,,,,,(Y") is a finite-dimensional vector space over Qy, the pair (Hg,,,(Y), Frob™!)
is automatically summable. Moreover, the Grothendieck-Lefschetz trace formula yields an

equality Tr(Frob™* |H:_ (Y)) = q¢ Y (F,)| (see Theorem 1.3.2).

geom

Definition 6.4.5. Let G be a connected algebraic group defined over a field k and let I =
ng%m(G) denote the (two-sided) ideal in Hg,,,,(G) generated by homogeneous elements of

positive degree. We define the motive of G to be the quotient I /I?, which we regard as a
representation of the absolute Galois group Gal(k/k).

Remark 6.4.6. For a reductive group G over a field &, the motive M(G) was introduced by
Gross in [21]. Definition 6.4.5 appears in [59]. Beware that our conventions differ from those
of [21] and [59] by a Tate twist (the motive of G is defined in [21] to be the tensor product
Q/(1) ®q, M(G); see Remark 6.5.4 below).

Remark 6.4.7. Let ¢ : G — H be an isogeny between connected algebraic groups over a
field k. Then ¢ induces an isomorphism ¢* : Hyeop, (H) — Hgeon (G), which restricts to a
Gal(k/k)-equivariant isomorphism M (H) ~ M(G).

Proposition 6.4.8. Let G be a connected algebraic group defined over a field k and let I =
H20 (G). Then the canonical map

geom
M(G) = I/I? = H*(cot C}on (G))
(see Remark 6.1.11) is an isomorphism.
Proof. The group law m : G' Xgpec ks G — G induces a comultiplication
m”* i Heeom(G) = Heeom (G) ©q, Heeom (G),

which endows H}, ., (G) with the structure of a finite-dimensional graded-commutative Hopf

geom
algebra over Q. Since G is connected, it follows that Hg,,,(G) is isomorphic to an exterior
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algebra on finitely many generators x1, ..., z, of odd degrees dy,...,d, (see [40]). The desired
result now follows from Proposition 6.1.12. 0

Remark 6.4.9. Let G be a connected algebraic group over a field k. We have a pullback
diagram of algebraic stacks

G Speck

L]

Speck —— BG.

Applying Lemma 7.1.7, we obtain a pushout square
Coom(G) Com(Speck)

geom geom

T T

Croom(Speck) <—— Cf. .. (BG)

geom geom

of augmented commutative algebra objects of Modq,, hence a pushout diagram of cotangent
fibers

cot Cyeom (G) 0

| |

0 ——— = cot C%,.,(BG)

geom

see Proposition 6.1.9 (here we regard BG as equipped with the base point Speck — BG
corresponding to the trivial G-bundle, and G as equipped with the base point Speck — G
given by the identity section). In other words, we can identify cot C%, . (G) with the suspen-

- geom
sion 3 cot Cf. ., (BG). In particular, we obtain a Gal(k/k)-equivariant isomorphism M(G) =~

geom

H*(cot C*,.,,(BG)) (which shifts the grading by 1).

geom

Remark 6.4.10. Let G be a connected algebraic group over a field k. One can show that the
geometric cohomology ring Hg,,,,(BG) is a polynomial ring on generators of even degree. Tt

follows from Proposition 6.1.12 and Remark 6.4.9 that the motive M (G) can be identified with
the quotient J/J?, where J = H? (BG) is the ideal generated by elements of positive degree.

geom

Remark 6.4.11. Let G be a reductive algebraic group over a field k and let G’ be a quasi-split
inner form of G. Then there exists a Gal(k/k)-equivariant isomorphism M(G) ~ M(G'). To
prove this, we may assume without loss of generality that G and G’ are adjoint (Remark 6.4.7).
In this case, the classifying stacks BG and BG’ are equivalent to one another, so the desired
result follows from the characterization of M(G) and M (G’) given in Remark 6.4.10.

Since G’ is quasi-split, we can choose a Borel subgroup B’ C G’. Let 7" C B’ be a maximal
torus and let A be the character lattice of Spec kX gpecxT”. The Galois group Gal(k/k) acts on A
preserving a system of positive roots, and there is a canonical Gal(k/k)-equivariant isomorphism

chom(BT/) i~ Sym*(Ql(_l) Xz A)
One can show that the restriction map
Hieom (BG') = Hyoom (BT')

is injective, and its image consists of those elements of H;eom(BT’) which are invariant under

the action of the Weyl group (N(T”)/T")(k). Combining this observation with Remark 6.4.10,
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we obtain a very explicit description of the motive M(G) ~ M(G’), which agrees with the
definition given in [21] (up to a Tate twist); see [59] for a more detailed explanation.

Proposition 6.4.12. Let G be a connected algebraic group of dimension d defined over a finite
field ¥y and let BG denote its classifying stack. Assume that € is invertible in Fy. Then
(H:...,(BG),Frob™) is summable, and we have

geom

Tr(Frob™" | H} .o (BG)) =

G(Fy|

Moreover, both sides are equal to

exp(> % Tr(Frob ™" [M(G))) = det(1 — Frob™! [M(G))~,
n>0

where M(G) denotes the motive of G.

Lemma 6.4.13. Let G be a connected algebraic group over a finite field Fy. Then each eigen-
value of the Frobenius automorphism Frob on the motive M (G) has complex absolute value > q.
If G is semisimple, then each eigenvalue has complex absolute value > 2.

Proof. Since F is perfect, the unipotent radical U of G is defined over F,. Replacing G by
the quotient G/U, we may reduce to the case where G is reductive. In this case, the assertion
follows immediately from the explicit description of M (G) supplied by Remark 6.4.11. 0

Proof of Proposition 6.4.12. Proposition 6.4.8 and Remark 6.4.9 supply Frobenius-equivariant
isomorphisms

H*(cot Copn (BG)) =~ M(G) ~ H*(cot Coon (G)),

geom geom

where the groups on the left hand side are concentrated in even degrees and the groups on the
right hand side are concentrated in odd degrees. Applying Proposition 6.3.4 to the augmented
commutative algebras C%.  (BG) and C%, . (G) and using Remark 6.4.4, we obtain

geom geom

Tr(Frob™!|H:,, . (BG)) = exp(Z%Tr(Frob_ﬂM(G)))

geom
n>0

eXp(Z _71 Tr(Frob™ " |M(G)))~!
n>0

= Tr(Frob ' |HZ.,.(G) !

geom

= (¢ IGFHN

IG(Fy)|

Remark 6.4.14. We can rewrite the final assertion of Proposition 6.4.12 as a formula
|G(F,)| = ¢* det(1 — Frob™" |M(G)) = ¢ det(1 — Frob |M(G)")

for the order of the finite group G(F,); this formula is due originally to Steinberg ([53]).
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6.5. Calculation of the Trace. Throughout this section, we fix a finite field Fy, an algebraic

curve X over F,, and a smooth affine group scheme G over X with connected fibers whose

generic fiber is semisimple and simply connected. We also fix an algebraic closure Fq of Fy, a

prime number ¢ which is invertible in F,, and an embedding Z, — C. Our goal is to verify

Theorem 1.3.5 by establishing the following:

Theorem 6.5.1. The pair (H;eom(Bung(X));Frob_l) is summable. Moreover, we have
|/£(x)|dim(G)

Tr(Frob ™" | Hyg,, (Bung(X))) = [ 5=
¢ TL |G (x(@))]

where the product on the right hand side is absolutely convergent.

We will deduce Theorem 6.5.1 by combining the Atiyah-Bott formula (Theorem 6.2.4), Stein-
berg’s formula (Proposition 6.4.12) and the Grothendieck-Lefschetz trace formula.

Construction 6.5.2. Let X = Spech XspecF, X and let G = Spech XspecF, G. We will
regard Shvy(X) as a symmetric monoidal co-category with respect to the !-tensor product of
6§4.6. Let BG denote the classifying stack of G so that we can regard the relative cohomology
sheaf [BGl+ as an augmented commutative algebra object of Shv,(X), as in §6.2. We define
M(G) € Shv¢(X) by the formula

M(G) = (cot[BGl%)[¢ ]
We will refer to M(G) as the motive of G relative to X.
The relative motive M(G) is closely related to the motives defined in §6.4.

Remark 6.5.3. Let x € Y(Fq). Using Remark 6.1.7 and Proposition 5.1.9, we obtain equiva-
lences

#MG) = (ot B
~ cot(z![m]y[éfl])
~ cot(C(BGL; Qy)).
in the co-category Modgq,. In particular, we can identify the cohomology of the chain complex

z' M(G) with the motive M (G,) (see Remark 6.4.9).

Remark 6.5.4. Let U be the largest open subset of X over which the group G is semisimple.
Then we can choose a surjective étale morphism V' — U and an equivalence

4 Xyé ~V XSpech H’
where H is a semisimple algebraic group over F,. We then have
M@y = cot([BGI) v
COt([V XSpech BH]V)[E_l]
cot(C*(BH; Zy) @ wy)[¢!]
cot (C*(BH; Q,)) & wy

It follows that the f-adic sheaf M(G) is lisse when restricted to U (in fact, it is even locally
constant: after base change to V, it is equivalent to a direct sum of finitely many shifted copies
of wy [¢~1]). In particular, for any point z € U(F,) we have a canonical equivalence

2" M(G) = (z' M(G)) @q, B2 Q,(1)

1

1

12
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so that the cohomology of z* M(G) can be identified with the Tate-twisted motive M (G,) ®q,
Q,(1).

Proposition 6.5.5. The cohomology H* (X; M(Q)) is a finite-dimensional vector space over Q,.
Moreover, each eigenvalue of the Frobenius map Frob on H*(X;M(G)) has complex absolute
value > q.

Proof. This can be deduced from Deligne’s work on the Weil conjectures ([14]). However, we
will proceed in a more elementary way. Let H denote a split form of the generic fiber of G,
regarded as an algebraic group over F;. Choose a finite generically étale map X’ — X, where
X' is a smooth connected curve over F, (not necessarily geometrically connected) and the
groups H XgpecF, X' and G x x X' are isomorphic at the generic point of X’. Then there exists
a dense open subset U’ C X’ and an isomorphism

Oé:HXSpech UI':GXXU/

of group schemes over U’. Shrinking U’ if necessary, we may assume that U’ is the inverse
image of a dense open subset U C X, and that the map U’ — U is finite étale.

Let {x1,...,2,} be the set of closed points of X which do not belong to U. Replacing
F, by a finite extension if necessary, we may assume that each z; is defined over F,. Let
fi : SpecFy — X denote the map determined by x; and let U = Spec Fy Xspecr, U, so that we
have an exact sequence

P v (i M(G)) = B (X; M(G) = H (T; M(G)|o)-
1<i<n
It will therefore suffice to prove the following:

(a) For 1 < i < n, the cohomology H*(f} M(G)) is finite-dimensional and each eigenvalue
of Frob on H*(f! M(G)) has complex absolute value > g.

(b) The cohomology H*(U; M(G)|;7) is finite-dimensional and each eigenvalue of Frob on
H*(U; M(G)|g) has complex absolute value > g.

Assertion (a) follows immediately from Lemma 6.4.13 and the identification H*(f} M(G))
M(G,,) supplied by Remark 6.5.3. To prove (b), let H = SpecFy Xgpecw, H, let U =
SpecF, XspecF, U’ and let 7 : U — U denote the projection map. Then M(G)|7 is a di-
rect summand of m,7* M(G) |z, so that H*(U; M(G)|) is a direct summand of
* 77/ * (77! * (MIT
BT MGy ~ H([0cot(C (B Q) ® wp)
R
~ M(H)®q, H*(U;Q,(1)).
The finite-dimensionality of H*(U; M(G)|g) follows immediately. To prove the assertion about

1R

2

Frobenius eigenvalues, we note that each eigenvalue of Frob on H* (ﬁ/; Q,) has complex absolute
value > 1 and therefore each eigenvalue of Frob on H* (ﬁ/; Q,(1)) has complex absolute value
> ¢~1. We are therefore reduced to proving that each eigenvalue of Frob on M (H) has complex
absolute value > ¢2, which follows from Lemma 6.4.13. O

We will also need the following assertion, whose proof will be given in §8.3 (see Theorem
8.3.1):

Proposition 6.5.6. The moduli stack Bung(X) is connected.

Remark 6.5.7. We will prove a stronger version of Proposition 6.5.6 in §8.3 using Theorem
5.4.5 (which we prove in §7). However, it is possible to deduce Proposition 6.5.6 directly from
Theorem 3.2.9 together with some basic facts about the affine Grassmannian of G. Note first
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that if D C X is an effective divisor, then the map Bung (X, D) — Bung(X) is surjective; it
will therefore suffice to verify the connectedness of Bung (X, D). We can then use Theorem
3.2.9 to reduce to proving the connectedness of Rang (X — D). If D is sufficiently large (so that
G is reductive over the open set X — D C X), then the projection map 7 : Rang(X — D) —
Ran(X — D) is Ind-proper (see Lemma 8.5.8). Using the connectedness of Ran(X — D) (Theorem
2.4.5), we are reduced to showing that the fibers of 7 are connected. Note that if p is a k-valued
point of Ran(X — D) corresponding to a finite subset S C X (k), then the fiber of m over the
point 4 can be identified with the product [],.q Grg. It will therefore suffice to show that
each of the Ind-schemes Grg, is connected, which follows from the fact that G is semisimple and
simply connected at the point x (since = ¢ D); see Lemma 9.5.9.

Using Corollary 6.2.5, we can identify the cotangent fiber cot Cgeop, (Bung (X)) with the chain
complex C*(X;M(G)). It follows from Proposition 6.5.5 that the cohomologies of this chain
complex are finite dimensional and that the eigenvalues of Frob™! have complex absolute value
< 1. Proposition 6.5.6 implies that the group chom(Bung(X)) is isomorphic to Q,. Applying

Proposition 6.3.4, we obtain the following preliminary version of Theorem 6.5.1:

Corollary 6.5.8. The pair (H:,, (Bung(X)); Frob™') is summable. Moreover, we have

Tr(Frob™* | Hyeom (Bung (X))) = exp(z % Tr(Frob™ " | H*(X; M(G)))).
n>0

In particular, the sum on the right is absolutely convergent.

6.5.1. Application of the Trace Formula. For each integer n > 0, the Grothendieck-Lefschetz
trace formula and Steinberg’s formula (Proposition 6.4.12) supply equalities

1 _ — 1 _ |
~ Tr(Frob™" | H'(X; M(G))) - > Te(Frob " |H* (' M(G)))
nEX (Fyn)
1 _
= > =Tr(Frob " |M(Gy))
UEX(FQ")
= Z 1Tr(Frob;e |M(Gz))
n=e deg(x) ¢

where the latter sum is taken over all closed points x € X whose degree divides n, and Frob,
denotes the geometric Frobenius at the point . Combining this with Corollary 6.5.8, we obtain
an equality

1 —e
(12) Tl“(FI“Ob | ngom(BunG (X)7 Ql)) = eXp(Z Z g ’I\r(FrObr |M(G$))
n>0edeg(z)=n
Proposition 6.5.9. The double summation appearing in formula (12) is absolutely convergent.

Proof. For each closed point x € X, let Ay 1,..., Az m, € C denote the eigenvalues of Frob, on
C ®q, M(G,), so that Tr(Frob,“ |M(G,)) = Zl<i<mz A, 5 We will show that the triple sum

OND DI DR

n>0 e deg( 'r)_n 1<i<my

is convergent.
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For each integer d, set
DDED DI SR
deg(z)=d e>01<i<m,
we wish to show that that each Cy is finite and that the sum ), ,Cy is convergent. Let g
denote the genus of the curve X, so that we have an inequality | X (Fg4)| < ¢ + 29q% + 1.
It follows that the number of closed points of Xy having degree exactly d is bounded above
by d=1(¢% + ng% +1). Let H be a split form of the generic fiber of G and let r denote the
dimension of M (H) as a vector space over Q, (the number 7 is equal to the rank of the generic
fiber of G, but we will not need to know this). For all but finitely many closed points z € X,
the motive M(G,) is isomorphic to M(H) as a Q,-vector space (see Remark 6.5.4) so that

mg = r. In this case, each of the eigenvalues A;; has complex absolute value > q> (Lemma
6.4.13). For d > 0, we have

d d
q* +2g9q2 +1 I o4
c, < L T2 T § - e
d T eq

- d
e>0
< (2g+2)g'r)y g
e>0
P
< (29+2)q Tm
(29+2)r 4
1—q2 '
It follows that the series ), ,Cy is dominated (apart from finitely many terms) by the geo-
metric series Yoo <f9§2>;”q—d and is therefore convergent. O

Proof of Theorem 6.5.1. By virtue of Proposition 6.5.9, we are free to rearrange the order of
summation appearing in formula (12). We therefore obtain

Tr(Frob™ ! [Hye,, (Bung(X))) = exp(d . > éTr(Frob;‘ﬂM(Gm))

n>0edeg(z)=n

— eXp(Z Z é Tr(Frob, “ |M(Gy))

zeX e>0

— H eXp(Z é Tr(Frob, ¢ |M(G.))

zeX e>0
H | |d1m(G
z€Xo
where the last equality follows from Proposition 6.4.12. 0

Remark 6.5.10. To the relative motive M(G) we can associate an L-function
Lg(cy,prob-1 (1) = det(1 — t Frob™" |H"(X; M(G)))

which is a rational function of ¢. The proof of Proposition 6.5.9 shows that this L-function
admits an Euler product expansion

LM(G Frob~— 1 H LIVI ),Frob 1()
zeX
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where the product on the right hand side converges absolutely for |t| < ¢. Combining this
observation with Steinberg’s formula (Proposition 6.4.12), we obtain

T ‘dim

K (@)
Lm(G)7Fr0b71(1) - H ||£;’()Ii<l'))

reX

The right hand side of this formula is given by

. 1
— dim Bung (X) -1

where 7(G) = pram(G(Kx)\G(A)) denotes the Tamagawa number of G (see the discussion
preceding Conjecture 1.2.18). We therefore obtain an equality

— dim n 1
7(G) L) prob-1 (1) = ¢~ BmBuna(X) E TAut(@)]’
P

which we can regard as a function field analogue of Theorem 9.9 of [21].

7. DECOMPOSITION OF THE SHEAF B

Let k be an algebraically closed field, let £ be a prime number which is invertible in k, let
X be an algebraic curve over k, and let G be a smooth affine group scheme over X. Assume
that the fibers of G are connected and that the generic fiber of G is semisimple and simply
connected, and let B € Shvy(Ran(X)) denote the !-sheaf introduced in §5.4.2. In this section,
we begin our proof of Theorem 5.4.5, which asserts that the canonical map

p: /B — C*(Bung(X); Zy)

is an equivalence (modulo a technical assertion about the compatibility of chiral homology with
inverse limits, which we will establish in §9).

In order to describe our strategy of proof, it will be convenient to first assume for simplicity
that the group scheme G is everywhere reductive. Let Rang(X) denote the Beilinson-Drinfeld
Grassmannian of G (see Definition 3.2.3). It follows from Theorem 3.2.9 that the forgetful
functor Rang(X) — Bung(X) is a universal homology equivalence, and therefore induces a
quasi-isomorphism 6 : C*(Bung(X); Z,) — C*(Rang(X); Z¢). To prove Theorem 5.4.5, it will
suffice to show that the composite map

/ B L C*(Bung(X); Z¢) % C*(Rang (X); Zy)

is a quasi-isomorphism.

The prestack Rang(X) admits a Cartesian fibration ¢ : Rang(X) — Fin®. For every
nonempty finite set S, let Rang(X)s denote the fiber 1y~*{S}, so that we have a canonical
equivalence

C*(Rang(X); Zy) ~ Jim C*(Rang(X)s; Zg).
S€eFin®

Our strategy will be to find a corresponding decomposition of B as an inverse limit @ Bs

S€E€Fin®
for certain !-sheaves {Bg € Shvy(Ran(X))}gerins, so that the composite map fop can be written
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as a composition

(13) /B 5 /1; Bs
SeFin®

(14) 5 lm [ B
SeFin®

(15) - lim C*(Rang(X)s; Ze)
SeFin®

(16) ~ C*(Rang(X);Zy).

Let us now outline the contents of this section. We begin in §7.2 by giving a definition of
the !-sheaves Bg and the maps which appear in diagram (13). For the moment, let us give an
informal summary:

(i) If S is a nonempty finite set, then Bg can be described informally as follows: its !-fiber
at a point v : T — X(k) is the cochain complex of the prestack which parametrizes
G-bundles which are defined on an open subset of X containing the divisor |v(7T')|, and
trivialized away from the image of some map p: S — X.

(#4) Any G-bundle defined on an open neighborhood of the divisor |v(T)| determines a G-
bundle on the divisor |v(T)| itself. This observation determines a map of !-sheaves
B — Bg which depends functorially on S. Passing to the limit over S, we obtain a
map «: B %@SBS.

(#4i) The prestack described in (i) contains Rang(X)g as a full subcategory (comprised of
those objects which correspond to G-bundles which are defined on the entire curve X).
This observation induces a map

Ys : /35 — C*(Rang(X)s; Zg).
Passing to the inverse limit over S, we obtain a map

v: lim [ Bg— lim C*(Rang(X)s;Z,) ~ C"(Rang(X); Zy).
SeFin® SeFin®

To prove Theorem 5.4.5, it will suffice to show that the maps «, 8, and « are quasi-
isomorphisms. In this section, we will take the first steps towards this proof by showing that
the map « is a quasi-isomorphism (Theorem 7.2.10). At the level of costalks, this asserts that
the moduli stack parametrizing G-bundles on the divisor |v(T)| has the same (-adic cohomol-
ogy as the prestack parametrizing G-bundles defined on an open neighborhood of |v(T)|, and
trivialized away from a finite set which does not meet |v(T")|. We will outline the proof of this
statement in §7.3, and carry out the details in §7.4, §7.5, and §7.6.

It is relatively straightforward to show that for every nonempty finite set S, the map
vs : [Bs — C*(Rang(X)s; Z¢) described in (i) is a quasi-isomorphism (Theorem 7.2.11).
Granting this, the proof of Theorem 5.4.5 can be reduced to showing that that the comparison
map

: lim Bg — lim B
ﬁ /Se%ns ° Se%ns °
is a quasi-isomorphism. However, this is not a formality: the definition of chiral homology in-
volves an infinite direct limit, and does not commute with inverse limits in general (in fact, the
map [ generally fails to be a quasi-isomorphism when the generic fiber of G is not simply con-
nected). The proof of Theorem 5.4.5 which we give in §9 will actually proceed along somewhat
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different lines, and does not make direct use of the statement that ~ is a quasi-isomorphism.
We nevertheless include a proof of this fact in §7.7, which the reader can omit if desired.

Our analysis of the map « depends crucially on the fact that for every finite set S, the
Beilinson-Drinfeld Grassmannian Rang(X)g can be written as a direct limit of algebraic va-
rieties which are proper over X°. This statement generally fails when G is not everywhere
reductive. To circumvent this difficulty, we will choose an effective divisor ) C X such that G
is reductive over X — @, and therefore each Beilinson-Drinfeld Grassmannian Rang(X — Q)s
is Ind-proper over (X — Q)° (see Lemma 8.5.8). According to the noncompact version of
nonabelian Poincare duality (Theorem 3.2.9), the prestack Rang(X — @) has the same ¢-adic
cohomology as Bung(X, Q). If the fibers G, are vector group for z € @, then Rang(X — Q)
has the same ¢-adic cohomology as Bung(X) and we can use it as a replacement for Rang(X)
in the argument outlined above. This can always be arranged by replacing G' by an appropriate
dilitation. It will therefore be useful to know that the validity of Theorem 5.4.5 depends only
on the generic fiber of the group scheme G, which we will prove in §7.1 (Proposition 7.1.1).

Remark 7.0.1. Since the theory of Tamagawa numbers depends only on the generic fiber Gg
of G, we are free to choose any integral model that we like for the purposes of proving the

equality
H ‘K(‘r”d =q dim Bung (X) Z 1 )
LL160aay) - TAut (@)
of Conjecture 1.2.18. Consequently, for purposes of proving Weil’s conjecture, the results of
§7.1 are not needed: it suffices to show that there exists an integral model G’ of G for which

both of the equalities

|()|* -1 S —dimB X 1
S — Ty(Frob ™' |H*(Bung: (X); Zy)) = ¢~ 4mBwer (DN
1L et 2 TAu(@)
are valid, and these equalities requires only that we prove Theorem 5.4.5 for the group scheme
G’. We include §7.1 nevertheless, since it may be of independent interest to know that the
equivalence [ B ~ C*(Bung(X);Z,) is valid for any integral model of G (provided that it is
smooth, affine, and has connected fibers).

7.1. Independence of G. Throughout this section, we fix an algebraically closed field k, a
prime number ¢ which is invertible in k, and an algebraic curve X over k. For every smooth
affine group scheme G over X, let B € Shvi**(Ran(X)) be defined as in Notation 5.4.2, and
let pg : [Be — C*(Bung(X);Z¢) denote the map appearing in the statement of Theorem
5.4.5. Our goal is to prove the following:

Proposition 7.1.1. If the fibers of G are connected, then the statement that pe : [ Bg —
C*(Bung(X); Zy) is an equivalence depends only on the generic fiber of G. In other words, if
G and G’ are smooth affine group schemes over X with connected fibers and the generic fibers
of G and G’ are isomorphic, then pg is an equivalence if and only if pg: 15 an equivalence.

We will deduce Proposition 7.1.1 from the pair of lemmas:

Lemma 7.1.2. Let G be a smooth affine group scheme over X, let x be a closed point of X, let
e, denote the identity element of the algebraic group G, and let G' denote the smooth affine
group scheme over X obtained by dilitation of G at the point e, (see §A.3). Suppose that G,
is connected. Then G satisfies the conclusion of Theorem 5.4.5 if and only if G’ satisfies the
conclusion of Theorem 5.4.5. That is, the canonical map

PG /BG — C*(Bung(X);Zg)
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is an equivalence if and only if the canonical map
PG’ :/BG/ — C*(BunGI(X);Zg)

s an equivalence.

Lemma 7.1.3. In the situation of Lemma 7.1.2, suppose that the fiber G, is a vector group.
Then the canonical maps

/ B / Bo C*(Bung(X); Ze) — C*(Bung:(X); Ze)

are equivalences.

Remark 7.1.4. Let G and G’ be as in Lemma 7.1.2. Then the canonical map G’ — G induces
the trivial map G!, — G, so that we have a commutative diagram of algebraic stacks

Bung: (X) — Speck

L

Bung(X) —— BG,.

It is not hard to see that this diagram is a pullback square: that is, Bung/ (X) can be identified
with principal G -bundle Bung (X, {z}) over Bung(X) which classifies G-bundles on X which
are equipped with a trivialization at the point z.

Proof of Proposition 7.1.1. Since the generic fibers of G and G’ are isomorphic, we can choose
an nonempty open set U C X and an isomorphism

CYIUXXG/—>U><XG

of group schemes over U. Suppose that pgs is an equivalence; we will show that pg is an
equivalence. Using Lemma 7.1.2 repeatedly, we can replace G by the group scheme obtained
from G by dilitation at the points of X — U, and thereby reduce to the case where G, is a
vector group for x € X — U.

Using Lemma 7.1.2 and Proposition A.3.11, we can replace G’ by the group scheme obtained
from G’ by finitely many dilitations at the points of X — U and thereby reduce to the case
where « extends to a morphism @ : G’ — G of group schemes over X. Similarly, there exists a
group scheme G” obtained from G by finitely many dilitations at the points of X — U so that
a~! extends to a map of group schemes 3 : G’ — G’. We then have a commutative diagram

J B /Ber J B

iﬂc ll’c/ ll’c”

C*(Bung(X); Zy) — C*(Bung/ (X); Z¢) — C*(Bung» (X); Zy).

The horizontal composite maps are equivalences by virtue of Lemma 7.1.3 and Remark 7.1.4,
so that this diagram exhibits pg as a retract of pgs. Since pgs is an equivalence, it follows that
pc is also an equivalence. O

The proofs of Lemmas 7.1.2 and 7.1.3 will require a few purely algebraic results whose proofs
will be given at the end of this section.
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Lemma 7.1.5. Let A be an associative algebra object of Modz, equipped with an augmentation
€: A — Zy. Suppose that € induces an isomorphism Ho(A) — Zy, that H;(A) ~ 0 for i > 0,
and that H_1(A) is a flat Zy-module. Let ¢ : M — N be a morphism of left A-module objects
of Modz,, and suppose that H;(M) ~ H;(N) ~ 0 for i > 0. Then ¢ is an equivalence if and
only if the induced map Zy @4 M — Zy; @4 N is an equivalence.

Lemma 7.1.6. Let A® be a cosimplicial object of Alg(Modz,). Suppose we are given a cosim-
plicial right A®-module M*® and a cosimplicial left A®-module N® satisfying the following re-
quirements:

(a) For each integer n > 0, the homology groups Hy(M™), Hy(N™), and H.(A™) vanish for
x> 0.

(b) For each integer n > 0, the unit map Z, — Ho(A™) is an isomorphism.

(¢) For each integer n > 0, the homology group H_1(A™) is torsion-free.

Then the canonical map
0 : Tot(M?®) @rog(aey Tot(N®) — Tot(M*® @40 N°®)
is an equivalence in Modzg, .

Lemma 7.1.7. Let H be a connected algebraic group over k, let BH denote the classifying stack
of H, let C be a prestack equipped with a map w: C — BH, and form a pullback square

C———¢

L

Speck —— BH.

Then the associated diagram of cochain complexes
C*(C;Zy) =——— C*(C; Zy)
C*(Speck; Z,) <—— C*(BH; Z,)
is a pushout square in CAlg(Modz,).

Proof. Let Uy = Speck, and let U, denote the simplicial scheme given by the nerve of the
smooth map Uy — BH (so that Uy ~ H?). For each integer d > 0, the pullback diagram oy:

EXBH Uy C xpulUy

| |

Speck xpg Ug — Uy

can be rewritten as

© d+1 © d
exSpeckH + > CLZXSpeCk]{

l |

HAA > g4,
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Using Corollary 2.3.43, we deduce that o4 determines a pushout square

C*(C xpu Ug; Zy) C*(C xpuUyg; Zy)

T |

C*(Speck xpu Ug; Zy) C*(Ug; Zy)

in Modz,. We may therefore identify C*(€) with Tot(M® ® 4+ N*), where A* = C*(U,;Zy),
M*® = C*(C xguUs;Zy), and N* = C*(Speck xgu Us;Zy). To prove Lemma 7.1.7, we must
show that the canonical map

0 : Tot(M*) ®rot(ae) Tot(N*) — Tot(M* @40 N*)

is an equivalence in Modgz,. For this, it will suffice to show that A®, M*®, and N* satisfy the
hypotheses of Lemma 7.1.6. Hypothesis (a) is obvious, and hypotheses (b) and (c¢) follows from
our assumption that H is connected. O

Proof of Lemmas 7.1.2 and 7.1.3. Let us identify x with a closed immersion Speck — X. Set
A =wx @ 2.C}4(BGg; Zy). Using Example 5.6.8 and Remark 5.6.13, we see that A can be
regarded as a commutative algebra object of Shv,(X) with the following universal property:
for every commutative algebra object A’ of Shv,(X), the canonical map

Mapc a g (shv, (x)) (A, A) = Mapcaig(Modz, ) (C7 (BGa; Ze), z' A')

is a homotopy equivalence. In particular, we have a canonical map A — By for which the
composite map A — Bg — B factors through wy. We claim that the diagram o :

A —— Bg

|

wx —— BG/

is a pushout square in CAlg(Shv,(X)). To prove this, it suffices to show that z'(c) is a pushout
square in CAlg(Modgz,) and that j*(o) is a pushout square in CAlg(Shv,(X — {z})), where
j: X —{z} — X is the inclusion map. This is clear, since the horizontal maps in the diagram
z'(o) are equivalences and the vertical maps in j*(o) are equivalences.

Let m, : CAlg(Shv,(X)) — CAlg(Modz,) be as in Example 5.6.12. It follows immediately
from the universal property of A that m, A ~ C*(BGg;Z;). We have a commutative diagram
o:

C*(BGa: Zy) [ Be —%> C*(Bung (X); Ze)
Z( fBG/ P! C*(BunG/(X);Zg)

in the oco-category CAlg(Modgz,), where the left square is given by m. (o) (and is therefore a
pushout square) and the outer square is obtained from the pullback diagram of algebraic stacks

Bung/ (X) —— Bung(X)

| |

Spec k ——— BG,,
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and is therefore a pushout diagram by virtue of Lemma 7.1.7 (see Remark 7.1.4). If G, is a
vector group, then the left vertical map C*(BG,;Z¢) — Z, is an equivalence, so that vertical
maps

/ B — / Bo O (Bung(X)i Ze) — C*(Bung:(X); Ze)

are equivalences; this proves Lemma 7.1.3.
In the general case, we conclude that the right square in the diagram ¢ is also a pushout, so
that we can identify pg with the induced map

Zy D+ (BG,:Z0) /BG — Zy @c(Ba,:z,) C"(Bung(X); Zy)

induced by pg. It follows immediately that if pg is an equivalence, then pg is also an equiva-
lence. The converse follows from Lemma 7.1.5 (applied to the algebra A = C*(BGy;Zy)), since
the cohomologies of C*(Bung(X);Zy) and [ B¢ are concentrated in nonnegative degrees. In
the first case this is obvious, and in the second it follows from Theorem 8.2.18 and Corollary
8.3.6. This completes the proof of Lemma 7.1.2. 0

We now turn to the proof of Lemmas 7.1.5 and 7.1.6.

Lemma 7.1.8. Let A be an associative algebra object of the co-category Modz, equipped with
an augmentation € : A — Z; and let M be a left A-module in Zy. Suppose that € induces
an isomorphism Ho(A) — Zy, that Hi(A) ~ H;(M) ~ 0 for i > 0, and that H_1(A) is a
flat Zg-module. Then the groups H,(Zy ® 4 M) vanish for n > 0, and the canonical map
Ho(M) = Ho(Z; ®4 M) is injective.

Proof. We first construct a sequence of right A-modules
N0%N1*>N24)"'

equipped with a compatible collection of maps €; : N;j — Z;. Set Ng = A and ¢p = €. Assuming
that N; and €; have been defined, let K; = fib(¢;), and regard K; as an object of Modgz,. Then
the canonical map K; — N; extends to a right A-module morphism 6; : K; ®z, A — N;, whose
composition with €; is canonically nullhomotopic. We define N;41 = cofib(6;), and we let €;11
be the extension of ¢; determines by the canonical nullhomotopy of ¢; o f;. Note that the fiber
of the map ¢; 41 can be identified with K; ®z, XK. Since Z; is a principal ideal domain, we
have exact sequences

0= P Torf*(Hy(K;),Hy(Ko)) = Hy 1 (K1) » € Torl (Hy(K;), Hy(Ky)) — 0.
p+qg=n p+g=n—1
It follows by induction on j that H, (K;) ~ 0 for n > 0 and that H_; (K) is flat as a Z,-module.
By construction, each of the maps fib(¢;) — fib(ej4+1) is nullhomotopic as a map of Z,-
modules, so that @ﬁb(ei) ~ 0 and therefore Z, is equivalent to the colimit ligNj. We may
therefore compute

H,(Z; @4 M) =~ Hn(ligle(@AligM)
~ lian(Nj@)AM).

It will therefore suffice to show that the maps H,, (N; ®4 M) — H,,(N;41 ®4 M) are bijective
for n > 0 and injective when n = 0. We have a fiber sequence

(K; @z, A) @a M - M @4 N; > M ®4 Nj11
which determines a long exact sequence of abelian groups
Hn(KJ Kz, A) — Hn(N] ®A M) — Hn(Nj+1 ®A M) — Hn_1<Kj Kz, M)
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We are therefore reduced to proving that the groups H, (M ®z, K;) vanish for n > 0. This
follows immediately from the existence of an exact sequence

0= P Torf*(H,(M),H,(K;)) = Hy(M @z, K;) » € Torf*(H,(M),Hy(K;)) - 0.
p+gq=n p+g=n—1
O

Example 7.1.9. Let € be a prestack. Then A = C*(C;Z;) can be regarded as a commutative
algebra object of Modz,. Writing A as the Zy-linear dual of C(C; Z;), we obtain exact sequences

0 — Bxty, (Hi-n(C; Z¢), Zg) — Hy(A) — Exty, (H_(C; Zy), Zo).
If Ho(C; Z¢) ~ Zy, this gives isomorphisms
0 ifn>0

H,(A) =1 Z ifn=0
Ext, (H (€ Z), Z¢) ifn=—1.

It follows that A satisfies the hypotheses of Lemma 7.1.8.

Proof of Lemma 7.1.5. Let K = cofib(¢); we wish to show that if Zy ® 4 K ~ 0, then K ~ 0.
Note that H;(K) ~ 0 for ¢ > 0. If K # 0, then there exists some largest integer i such that
H;(K) # 0. Applying Lemma 7.1.8, we see that the canonical map H;(K) — H;(Z, ®4 K) is
injective, contradicting our assumption that Z, ® 4 K ~ 0. O

Lemma 7.1.10. Let M*® be a cosimplicial object of (Modz,)<o and let N € (Modz,)<o. Then
the canonical map

Tot(M?®) ®z, N — Tot(M*® ®z, N)

18 an equivalence.

Proof. For each integer p > 0, let K (p) denote the pth partial totaliation of M*®. Since the oper-
ation of tensoring with N is exact, we can identify K (p) ®z, N with the pth partial totalization
of M*® ®z, N. It will therefore suffice to show that the canonical map

0: (lim K(p)) ®z, N — lim(K(p) @z, N)
is an equivalence. Note that for each ¢ > 0, we have a commutative diagram

0

(I&H K(p)) ®z, N w(K(p) Xz, N)

\ /
K(q) ®z, N.

where the fibers of ¢ and ¢ belong to (Modz,)<_4. It follows that the fiber of 6 belongs to
(Modz,)<—_q for all g, so that 6 is an equivalence. O

Lemma 7.1.11. Let M* and N*® be cosimplicial objects of (Modz,)<o. Then the canonical
map

0 : Tot(M*) ®z, Tot(N®) — Tot(M* ®z, N°*)

s an equivalence.
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Proof. Let A denote the category whose objects are the nonempty linearly ordered sets [n] =
{0, ...,n} and whose morphisms are nondecreasing maps. Then the diagonal map A — A x A
is right cofinal (Lemma HTT.5.5.8.4), so that we can identify # with the natural map

( @ M?n) ®Z£ ( m Nn) — m (MHL ®Z2 Nn)

[mleA [njeA [m],[n]eA

This follows from two applications of Lemma 7.1.10. g

Proof of Lemma 7.1.6. If A is an associative algebra object of Modgz, equipped with a right
A-module M and a left A-module N, then the tensor product M ® 4 N can be computed as
the geometric realization of a simplicial object Bar (M, N), with

Bars(M,N), ~ M ®z, A®? @z, N*.
For each integer d, we let Bi (M, N) denote the realization of the d-skeleton of this simplicial
object, so we have a sequence
M ®z, N ~ BY(M,N) — BY(M,N) — ---
with colimit M ®4 N. Moreover, if we let A denote the cofiber of the unit map Z, — A, then
we have cofiber sequences
B4 Y(M,N) — B4(M,N) = M @z, (Y¥A)®? @, N.

If A®, M*®, and N*® are as in the statement of the Proposition, then assumption (a) and
Lemma 7.1.11 supply equivalences

By aey (Tot(M*), Tot(N*)) ~ Tot(B%. (M*®, N*®))
for each integer d > 0. We may therefore identify 6 with the canonical map

lim Tot(B%. (M®, N*)) — Tot(liy Bi. (M*, N*)).
d d

To prove that this map is an equivalence, it will suffice to show that there exists an integer k&
such that B%,(MP, NP) belongs to (Modz, )<y for all p,d > 0. We claim that this is satisfied
for £ = 1. Using the cofiber sequence above, we are reduced to proving that

MP @z, (NA")®? @4, NP
belongs to (Modz, )<1 for all p and all d > 0. It follows immediately from (a) that M? ®z, NP

belongs to (Modz,)<1. To complete the proof, it suffices to show that A" has Tor-amplitude
< —1 for all p > 0, which follows from assumptions (a), (b), and (c). O

7.2. Construction of the Sheaves Bg. Throughout this section, we fix an algebraically
closed field k, a prime number ¢ which invertible in k, an algebraic curve X over k, and a
smooth affine group scheme G over X. We will assume that each fiber of G is connected and
that the generic fiber of G is semisimple and simply connected. We also fix an effective divisor
Q@ C X (in practice, we will take @ to be the set of points at which the group scheme G fails to
be reductive; see Definition 7.2.9 below).

Let B = [RanG(X)]Ran(X) denote the !-sheaf introduced in §5.4.2. Our goal in this section
is to outline a proof of Theorem 5.4.5 by analyzing the composite map

/ B 4 O (Bung(X): Zg) — C*(Bung(X, Q): Ze) — C* (Ranc(X — Q): Ze).

Let us identify C*(Rang(X — Q);Z,) with the chiral homology of the !-sheaf [Rang(X —
Q) Xspec k Ran(X)]ran(x) (Where we regard Rang (X — Q) Xspec x Ran(X) as a Ran(X)-prestack
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via projection onto the second factor). Then the map in question arises from a map of Ran(X)-
prestacks

Rang(X — Q) Xspeck Ran(X) — Ran®(X).
Unwinding the definitions, we can identify R-valued points of the left hand side with quadruples
(L:S = (X-Q)(R),v:T — X(R),P,v) where S and T are nonempty finite sets, P is a
G-bundle on Xg, and 7 is a trivialization of P over the open set X — |u(S)]. With respect to
this identification, the map f is given by

(1:8 = (X —Q)R),v:T = X(R),P,7) ~ (v: T = X(R),P|uer))

in other words, it takes generically trivialized G-bundles which are defined on the entire curve
X and replaces them by their restrictions to the divisor |v(T')| (ignoring their generic trivi-
alizations). The basic observation that we would like to exploit is the following: to form the
restriction P ||, (7| on the divisor [v(T')], it is not necessary that P be defined on the entire curve
X: it is sufficient that P be defined on any open set which contains v(T'). In particular, if K is
a subset of S such that |p(K)| N |v(T)| = 0, then any G-bundle on the open set Xp — |pu(K)|
can be restricted to the divisor |v(T)].

Definition 7.2.1. Let S be a nonempty finite set. We define a category Rang(X —Q)s as
follows:

e The objects of RanTG(X — @)s are septuples
(Rva,K+7N’ 15— (X - Q)(R)vlj T — X(R),T,’Y)

where R is a finitely generated k-algebra, K_ and K, are subsets of S with K_ C K,
T is a nonempty finite set, g : S — (X — Q)(R) and v : T — X (R) are maps of sets
such that |p(K4)| N |v(T)] = 0, P is a G-bundle on Xg, and v is a trivialization of P
over the open set Xp — |u(S)| C Xg.

e Given a pair of objects C = (R, K_, K ,u: S = (X —Q)(R),v:T — X(R),P,v) and
C'=(R,K' K ,)/:S = (X-Q)R),:T — X(R),?.,7)in Rang(X - Q)s,
there are no morphisms from C to C" unless K/ C K_ and K, C K’_. If both of these
inclusions hold, then a morphism from C to C’ consists of a k-algebra homomorphism
¢ : R — R’ which carries p to u/, a surjection of finite sets A : T — T” fitting into a
commutative diagram

TN

\L X() \L

X(R) —= X(R),

and a G-bundle isomorphism between Xp X x, P and P’ over the inverse image of

Xr — |u(K_)| which carries v to .
Remark 7.2.2. The isomorphism class of an object (R, K_,K,,u : S — X(R),v : T —
X(R),P,7y) € Rang(X —Q)s does not depend on the entire G-bundle P, only on its restriction
Po = Plxp—|u(x_)|- Consequently, it may be useful to think of the objects of Rang(X —Q)s
as septuples (R, K_, K4, u,v,Po,v) where Py is a G-bundle on Xp — |u(K_)|. However, it is
important that we consider only those G-bundles on X — |u(K_)| which can be extended to
G-bundles on all of X (this condition is automatic when R = k, but not in general).

Remark 7.2.3. In the situation of Definition 7.2.1, the conditions K_ C K and |pu(Ky)[N
|v(T)| = 0 guarantee that the divisor |v(T')] is contained in the open set Xg — |u(K_)|, which
is the locus of definition of the G-bundle Py of Remark 7.2.2.
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Remark 7.2.4. Let S be a nonempty finite set. We can describe the prestack Rang(X —Q)s
informally as follows: it parametrizes pairs of maps

w:S—-X-Q v:T =X
together with G-bundles that are defined on the open set (X — p(S)) Uv(T) and trivialized on
X — pu(S).
Notation 7.2.5. Let S be a nonempty finite set. Then the construction
(RK_,Ky,pp:S—X(R),v:T— X(R),P,v)— (R,v:T — X(R))
determines a coCartesian fibration Rang(X — Q)s — Ran(X). We may therefore regard

RanL(X—Q)S as a Ran(X)-prestack in the sense of Definition 5.2.15. Let Bg € Shvy™(Ran(X))
denote the lax !-sheaf given by [RanE(X — Q)s]ran(x) (see Definition 5.2.19).

Remark 7.2.6. Let S be a nonempty finite set, and let Rang(X — Q)s denote the fiber
Rang(X — Q) Xpins {S}. There is an evident fully faithful embedding

¢ : Rang(X — Q)s Xspeck Ran(X) — RanE(X - Q)s
given by the formula
(Ryp:S— X(R),P,7),(Rv:T— X(R)))— (R,0,0,u:5 = X(R),v:T— X(R),P,7).
The essential image of this embedding consists of those objects
(R,K_,Ky,u:S— X(R),v:T — X(R),?,7) € Ran,,(X — Q)s
for which K_ = K, = (). Note that ¢ is a map of Ran(X)-prestacks, and therefore determines
a map of relative cohomology sheaves
Bs = [RanS(X — Q)slran(x)
[Rang (X — Q)s Xspeck Ran(X)]ran(x)
~ C*(Rang(X — Q)s; Z¢) @ Wran(x)-
Remark 7.2.7. Let .S be a nonempty finite set. By virtue of Remark 7.2.3, we have a forgetful
functor RanTG(X —Q)s — Ran®(X) given on objects by
(RK_,Ki,u:S—>XR),v:T— X(R),P,v)— (Ryv:T — X(R),?||V(T)\)~
Passing to relative cohomology sheaves, we obtain a morphism of lax !-sheaves
B = [Ran®(X)|gan(x) = [Ranf; (X — Q)sran(x) = Bs -

Remark 7.2.8. Let S be a nonempty finite set and let @ C X be an effective divisor. The con-
structions described in Remarks 7.2.6 and 7.2.7 determine a commutative diagram of Ran(X)-
prestacks

1

Rang(X — Q)s Xspeck Ran(X) —— Bung(X) Xgpeckr Ran(X)

i |

Ran),(X — Q)s Ran(X).
Passing to relative cohomology sheaves, we obtain a commutative diagram of lax !-sheaves

C*(Rang(X — Q)s;Z¢) ® Wran(x) < C*(Bung(X); Z¢) ® Wran(x)

! T

By B.
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It follows from Remark 7.2.8 that the composite map

P a—

/‘B LN C*(Bung(X);Zs) — lim C*(Rang(X — Q)s;Z¢) ~ C*(Rang(X — Q); Zy)
SeFin®

admits another factorization
/3—>/ im Bg 5 lim /354 lim C*(Rang(X — Q)s; Ze)-
SEFmS SeFin® SeFin®

To prove Theorem 5.4.5, it will suffice to show that the maps « and o 8 are equivalences. To
prove this, we wil need to make some additional assumptions on Q.

Definition 7.2.9. Let Q@ C X be an effective divisor. We will say that the group scheme G is
Q-adapted if it satisfies the following conditions:
(a) There exists a simply connected semisimple algebraic group Gy over k, a finite group
I' which acts on G preserving a pinning (By, T, {us}), an algebraic curve X with
an action of I', an isomorphism of algebraic curves X /T ~ X, and a I'-equivariant
homomorphism
)? XxG%X XSpeCkGO
of group schemes over X which is an isomorphism over the open set X x x (X —Q).

Moreover, the projection map X — X is étale over X — Q.
(b) For each point « € @, the fiber G, is a vector group (that is, it is isomorphic to a finite
product of copies of the additive group G,.

We can now state our main results:
Theorem 7.2.10. Assume that the group scheme G is Q-adapted. Then the canonical map
[Ran® (X)|Ran(x) = Lim [Ranf,(X — Q)s]ran(x)

SEFHP
is an equivalence of laz !-sheaves on Ran(X). In particular, the induced map
a: /[RanG( Ran(X) 4>‘/ lim RanG X Q) ]Ran(X)
SGFmS

18 a quasi-isomorphism.
Theorem 7.2.11. For every nonempty finite set S, the inclusion
Rang(X — Q)s Xspeck Ran(X) — Rang(X - Q)s

of Remark 7.2.6 induces a quasi-isomorphism

Vs /Bs - /O*(RaHG(X —Q)s;Z¢) ® Wran(x) =~ C*(Rang (X — Q)s; Zy).

In particular, these maps induce a quasi-isomorphism
v %in Bg — %in C*(Rang(X — Q)s;Z¢) ~ C*(Rang (X — Q); Zy).
SEFin® SEFin®

Most of this section is devoted to the proof of Theorem 7.2.10; we will give an outline in §7.3,
and carry out the details in §7.4, §7.5, and §7.6. Theorem 7.2.11 is a relatively straightforward
application of the acyclicity of the Ran space; we give a proof in §7.7. However, we include a
proof of this statement only to highlight the significance of the sheaves Bg introduced above:
the proof of Theorem 5.4.5 that we give in §9 will not make direct use of Theorem 7.2.11.

Since Theorem 7.2.10 requires the group scheme G to be @Q-adapted, it will be useful to know
that this can always be arranged:
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Proposition 7.2.12. Let G be a smooth affine group scheme over X whose generic fiber is
semisimple and simply connected. Then there exists an effective divisor Q C X and a map
G’ — G of group schemes over X which is an isomorphism over the open set X — Q, where G’
is Q-adapted.

Remark 7.2.13. Using Theorems 3.2.9, 7.2.10, 7.2.11, and Proposition 7.2.12, we can almost
complete the proof of Theorem 5.4.5. Let G be an arbitrary smooth affine group scheme over X
with connected fibers whose generic fiber is semisimple and simply connected. We wish to show
that the canonical map p : [ B — C*(Bung(X); Zy) is a quasi-isomorphism. Using Proposition
7.2.12, we can choose an effective divisor Q C X, a Q-adapted group scheme G’ over X, and
a map of group schemes G’ — G which is an isomorphism over the open set X — Q. Using
Proposition 7.1.1, we can replace G by G’ and thereby reduce to the case where G itself is
Q-adapted. In this case, the projection map Bung (X, Q) — Bung(X) is an affine space bundle
and therefore induces an isomorphism on ¢-adic homology. We are therefore reduced to showing
that the composite map

/ B 4 C*(Bung(X); Z¢) — C*(Bung(X, Q); Z)

is a quasi-isomorphism. Using Theorems 7.2.10, 7.2.11, and 3.2.9, we can factor this composite
map as a composition

/3 ~ / lim B
SeFin®

B .
- @SGFm
lim C*(Rang(X — Q)s; Zy)
SeFin®
~ C*(Rang(X — Q); Zy)
~ C*(BUHG(XaQ)§Z€)’

and thereby reduce to proving that g is an equivalence. Unfortunately, this is not so easy: we
will therefore use a slightly different strategy in §9.

Proof of Proposition 7.2.12. Let Gy denote the split form of the generic fiber of G (regarded
as an algebraic group over k). Since the generic fiber of G is quasi-split, we can choose a
finite Galois extension L of the fraction field Kx with Galois group I = Gal(L/Kx ), an action
of I' on Gy which preserves a pinning, and a I'-equivariant isomorphism o : SpecL xx G =~
Spec L Xgpeck Go. Let X denote the algebraic curve over k with fraction field L, so that the
group I' acts on X with quotient X / I' ~ X. Let H denote the Weil restriction of the group
scheme X Xspeck Go along the map XX , and let H" denote the fixed points for the evident
action of I' on H. Then « induces an isomorphism

Bo : Spec Kx xx G ~ Spec Kx xx H'.

of algebraic groups over Kx. By a direct limit argument, we can choose a finite subset @ C X
such that 5y extends to an isomorphism

B:(X-Q)xxG— (X—-Q)xx H'.

Enlarging @ if necessary, we may assume that the map X — X is étale over the open set X — Q.
Fix N > 0, and let G’ denote the group scheme over X obtained from G by applying an Nth
order dilitation (along the identity section) at each point of @ (see §A.3). It is then clear that
the fiber G’ is a vector group for each z € @, and that the projection map G’ — G is an
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isomorphism over X — (. Using Proposition A.3.11, we see that for sufficiently large N, the
map 3 extends (uniquely) to a map of group schemes G/ — H' which we can identify with
a I'-equivariant map X x x G — X Xspeck Go. By construction, this map is an isomorphism
when restricted to the open subset X xx (X — Q). O

7.3. The Limit of the Sheaves Bg. Throughout this section, we fix an algebraically closed
field k, a prime number ¢ which is invertible in k, an algebraic curve X over k, a finite subset
@ C X, and a smooth affine group scheme G which is @-adapted (see Definition 7.2.9). Our
goal in this section is to outline our strategy for proving Theorem 7.2.10, which asserts that
the canonical map

a: [Ran%(X)]an(x) = lim [Rand (X — Q)s]ran(x)
S€Fin®

is an equivalence of lax l-sheaves on Ran(X).
We begin by noting that the statement that « is an equivalence can be tested locally on the
Ran space Ran(X). This motivates the following:

Notation 7.3.1. Let T be a (possibly empty) finite set. We define a category RanG(X)T as
follows:

e The objects of Ran® (X)T are triples (R, v, P), where R is a finitely generated k-algebra,
v:T — X(R) is a map of sets, and P is a G-bundle on the divisor |v(T)|.

e A morphism from (R,v,P) to (R',v/,%') in Ran®(X)7T is a k-algebra homomorphism
R — R’ for which the composite map

T% X(R)— X(R)
coincides with v/, together with an isomorphism

Spec R’ Xspecr P =~ P’
of G-bundles on the divisor |v/(T)| C Xp.

The forgetful functor (R,v,P) — R is a coCartesian fibration which exhibits Ran®(X)7 as
a prestack, and the map (R,v,P) — (R,v) determines a map of prestacks Ran®(X)T —
XT. Note that if T is nonempty, then we can identify Ran®(X)7T with the fiber product
Ran“(X) X Ran(x) X T

Notation 7.3.2. Let S and T be finite sets, where S is nonempty. We define a category
RanE(X — Q)% as follows:

e The objects of Rang(X — @)% are septuples
(R7 K77K+7Ma V7?17)

where R is a finitely generated k-algebra, K_ and K, are subsets of S with K_ C K,
p:S—= (X—Q)(R)and v : T — X (R) are maps of sets such that |u(K4)|N|v(T)| = 0,
P is a G-bundle on Xg, and + is a trivialization of P over the open set Xg—|u(S5)| C Xg.

e Given a pair of objects C' = (R, K_, Ky, ju,v,P,v) and C' = (R, K’ , K/ , 1/, VP
in RanE(X—Q)Eg, there are no morphisms from C'to C’ unless K’ C K_ and K C K/,
If both of these inclusions hold, then a morphism from C' to C’ consists of a k-algebra
homomorphism ¢ : R — R’ which carries p to ' and v to v/, together with a G-bundle
isomorphism between X g/ x x, P and P’ over the inverse image of X — |u(K_)| which
carries v to /.
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The construction (R, K_, K, u,v,P,v) — R determines a coCartesian fibration
Ranf; (X — Q)L — Ringj,
so that we can regard Rang (X — Q)L as a prestack. Moreover, the construction
(RyK_, Ky, pu,v,P,v)— (R,v)

determines a map of prestacks Rang (X — Q)g — XT. If T is nonempty, we have a canonical
isomorphism

Ranl,(X — Q)% ~ Ran},(X — Q)s XRan(x) X”-
If S and T are as in Notation 7.3.2, then the construction
(Rvaa K+7/1'7 v, (P7 ’7) = (R7 v, P ‘lV(T)‘)
determines a map of prestacks
Ranl;(X — Q)% — Ran®(X)7,
which depends functorially on .S. Theorem 7.2.10 is an immediate consequence of the following:
Proposition 7.3.3. Let T be a finite set. Then the canonical map

[Ran(X)"]xr = lim [Ranf(X — Q)§]xr
SeFin®

is an equivalence in Shv,(XT).

Remark 7.3.4. Theorem 7.2.10 is equivalent to the assertion that Proposition 7.3.3 holds for
every nonempty finite set T. However, our method of proof will require that we also treat
the case where T is empty (this does not really pose any additional difficulties: when T is
empty, Proposition 7.3.3 is a formal consequence of the acyclicity of Ran(X); see the argument
following the statement of Proposition 7.3.12 below).

We will deduce Proposition 7.3.3 from the following stronger assertion:

Proposition 7.3.5. Let T be a finite set and let Y be a quasi-projective k-scheme equipped
with a map Y — XT. Then the canonical map

ay : [Ran(X)" xxr Y]y = lim [Ranf(X — Q)§ xx7 Y]y
SeFin®

is an equivalence in Shv(Y").

The virtue the formulation given in Proposition 7.3.5 is that it will allow us to apply a
devissage to the scheme Y. Suppose that we are given a proper morphism of quasi-projective
k-schemes f : Y’ — Y. We then have a commutative diagram

Ran®(X)7 xxr Yy~ lim__ [Ranf(X — Q) xxr Y]y

|

flay .
f'Ran(X)" xxr Y]y —>lim__ . f' [Ranl, (X — Q)% xxr Y]y

in the co-category Shv(Y”). Since Ran®(X)7 is a smooth Artin stack with affine diagonal over
X7, it follows from Proposition 5.1.9 that the left vertical map in this diagram is an equivalence.
The right vertical map is also an equivalence:
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Proposition 7.3.6. Let T be a finite set and suppose we are given a commutative diagram of

quasi-projective k-schemes
Yy’ ! Y
XT

where f is proper. For every nonempty finite set S, the canonical map

¢: [Ranl (X — Q) xxr Y']yr — f'Ranf(X — Q)% xxr Y]y

is an equivalence in Shvy(Y").

Proof. Let P denote the collection of all pairs (K_, K ), where K_ and K, are subsets of S
satisfying K_ C K. We will regard P as a partially ordered set with (K_, K,) < (K’ ,K’)
if and only if K’ € K_ C Ky C K/ . The construction

(RaK—7K+aM7V7:P7fY) — (K—aK-l‘)

determines a Cartesian fibration 7 : Rang(X — Q)% — P whose fibers are prestacks. The map
¢ can be written as an inverse limit of maps

Or_ syt [ (Ko Ky} xxr Yy = flam (K- Ky} xxr Y]y,

It will therefore suffice to show that each ¢x_ k. is an equivalence in Shv,(Y”). This follows
from Proposition 5.1.13, because each fiber 7=*{K_, K, } admits an open immersion to the
product prestack Rang(X — Q)s Xspeck X - O

Corollary 7.3.7. Let f : Y’ — Y be a proper morphism between quasi-projective k-schemes.
Suppose we are given a finite set T and a map Y — X7, and let ay and ay: be defined
as in Proposition 7.3.5. Then ay: can be identified with the image of ay under the functor
f': Shve(Y) — Shv,(Y").

Corollary 7.3.8. Let T be a finite set and let Y be a quasi-projective k-scheme equipped with a
map Y — XT. Leti:Y' =Y be a closed immersion and let j : U < Y be the complementary
open immersion. If ay and ay/ are equivalences, then ay is also an equivalence.

Proof. It follows from Corollary 7.3.7 that we have a fiber sequence i.(ay’) = ay — j«(av)
in the oo-category of morphisms in Shv(Y). O

To prove Proposition 7.3.5, we proceed by Noetherian induction on Y: that is, we may
assume without loss of generality that 6y is an equivalence for every closed subscheme Y/ C Y.
If Y is non-reduced, we can complete the proof by taking Y’ = Yieq. Let us assume that Y is
nonempty (otherwise, there is nothing to prove). By virtue of Corollary 7.3.8, it will suffice to
prove Proposition 7.3.5 after replacing Y by an arbitrary nonempty open subset of Y.

Definition 7.3.9. Let T be a finite set and let f : ¥ — X7 be a map of quasi-projective
k-schemes, which we identify with a finite set of maps {f; : ¥ — X }ser. We will say that f is
Q-adapted if, for every element ¢ € T', one of the following conditions holds:

(a) The map f; factors as a composition Y — Spec k 4 X, where g € Q C X (k).
(b) The map f; : Y — X factors through X — Q.

Remark 7.3.10. Let f : Y — X7 be as in Definition 7.3.9. If Y is nonempty and reduced,
then there exists a nonempty open subscheme U C Y such that f|y is Q-adapted.
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Using Remark 7.3.10, we see that it will suffice to prove Proposition 7.3.5 in the special case
where the map f : Y — X7 is Q-adapted. In this case, we can write T = Ty II T, where
f = {fi}ter has the property that f; is the constant map corresponding to some ¢; € Q for
t € Ty, and f; factors through X — @ for ¢t € T3.

Lemma 7.3.11. Let f : Y — X7 ~ X0 x X1 be as above. Set Y' =Y, but regard Y’ as
equipped with the map f' : Y' — X' given by composing f with the projection XT — X1,
Then ay is an equivalence if and only if ay: is an equivalence.

Proof. 1t follows immediately from the definitions that we have equivalences of prestacks
Ranl,(X)% x xr ¥ ~ Ran},(X) 5 x yr, V7.
Under these equivalences, we can identify the natural map
Ranl, (X)% x xr Y = Ran®(X)T x xr, YV’
with the composite map
Ranl,(X)% xxr ¥V — Ran®(X)T xxr ¥ % Ran®(X)™ x yr, Y7,

where the map 6 assigns to each G-bundle on a divisor |v(T)| its restriction to the smaller
divisor |v(T7)|. It follows that ay- factors as a composition

Ran®(X)™ x xr, Y'yr & [Ran®(X)T xxr Y]y 2 Im[Ranf,(X)E x xr Y]y,
S

where 0* is the map given by pullback along 6. It will therefore suffice to show that the map
0* is an equivalence in Shvy(Y) = Shv,(Y”).

Note that if v : T — X (R) determines a map Spec R — X7 which factors through f, then
the divisor |v(T")| € Xg can be written as a disjoint union of divisors |v(Tp)| and |v(T1)|. Tt
follows that every G-bundle on |v(7})| extends canonically to a G-bundle on |v(T)| (by taking
that extension to be trivial on |v(Tp)|). This construction determines a map

0" : Ran®(X)"" x yr, Y/ = Ran®(X)T xyr YV
which is left inverse to 6. It will therefore suffice to show that 6’ induces an equivalence
0" : [Ran®(X)T x xr Y]y — [Ran®(X)™t x yr, Y]y

For t € Ty, the map f; : ¥ — X takes some constant value ¢; € Q. Let D C X be the
effective divisor given by the sum ZtETo q:, and let H denote the affine group scheme over
k given by the Weil restriction of G X x D along the projection map D — Speck. Since the
fiber G xx {q} is a vector group for ¢ € @, the group scheme H admits a finite filtration by
vector groups and is therefore isomorphic (as a scheme) to an affine space A? for some d > 0.
We now complete the proof by observing that the map 6" exhibits RanG(X )t X yr, Y/ as an
H-torsor over RanG(X )T x xr Y, and is therefore a fiber bundle (locally trivial with respsect
to the étale topology) with fiber A%, O

By virtue of Lemma 7.3.11, it will suffice to prove Proposition 7.3.5 in the special case where
the map Y — X7 factors through (X — Q)?. Passing to a dense open subset of Y if necessary,
we may assume that Y is smooth and affine. Note that the domain and codomain of ay are
¢-complete (Remark 5.1.6). Consequently, to prove that ay is an equivalence it will suffice to
show that for every étale morphism u : U — Y, the induced map

C*(U; u*[Ran®(X)T x xr Y]y) — lim C*(Usu* [Ranl,(X — Q)% xxr Y]y)
SeFin®



222 DENNIS GAITSGORY AND JACOB LURIE

is an equivalence (Proposition 4.3.37). Replacing Y by U (and using the fact that the dualizing
sheaf wy is equivalent to ¥2?Z,(d) for d = dim(Y’), we are reduced to proving that the natural
map
C*(Ran”(X)" xxr Y;Zs) = lim C*(Ranf(X — Q)§ xxr V;Z)
SeFin®
is an equivalence. In fact, we will prove a slightly stronger statement at the level of homology:

Proposition 7.3.12. Let T be a finite set and let Y be a smooth affine k-scheme equipped with
aamapY — (X —Q)T. Then the canonical map
lim C.(Ranf,(X — Q)§ xx Y;Zs) = Cu(Ran®(X)" xxr Y Z)
SeFin®

is an equivalence in Modg, .

Proof of Proposition 7.3.12 when T = (). Using the Kiinneth formula (Proposition 2.3.40), we
may assume without loss of generality that Y = Speck: that is, we wish to show that the
canonical map
lim C*(RanE(X - Q)% Zy) — C.(Speck; Zy)
SeFin®
is an equivalence in Modgz,. Note that this map factors as a composition
lim C.(Ranb(X — Q)%:Z¢) — lim C.(Ran(X — Q)s;Zs) — C.(Speck; Zy),
SeFin® SeFin®
where the second map is an equivalence by virtue of the acyclicty of Ran(X — @) (Corollary
2.4.13). We will complete the proof by showing that for each S € Fin®, the canonica; map

s : RanE(X - Q)% - Ran(X — Q)s

induces an isomorphism on Zy,-homology.
For the remainder of the proof, we fix a nonempty finite set S and let P be the partially
ordered set introduced in the proof of Proposition 7.3.6. The construction

(R,K_,K+,N,V,T7’Y) — (K—aK-i-)

determines a Cartesian fibration RanTc(X — Q)% — P; let us denote the fiber over an object
(K_,K;) by Rang(X — Q)g(_ k- Unwinding the definitions, we see that the forgetful functor

RanL(X — Q)g ¢ — Ran(X — @Q)g is an equivalence of prestacks. Consequently, the composite
map

C.(Ranf(X — Q)b 51Z) 5
lim  CL(Ranb(X — Q% x,:Z)
(K_,K})eP
~ C.(Rank(X — Q)% Zy)
— Cy(Ran(X — Q)s; Zy).

is an equivalence. To prove that g induces an isomorphism on Zy-homology, we are reduced
to proving that the map p is an equivalence.

For each (K_, K, ) € P, let F(K_, K) denote the chain complex C, (RanTG,(X—Q)K_TKJr)@,
so that F' determines a functor P°® — Modz,. We wish to show that the canonical map

p: F(S,S)— h_r)n(KﬂK”eP F(K_,K,) is an equivalence. Let Py C P be the subset consisting

of those pairs (K_, K1) where K, = S. Then Py contains (5, 5) as a least element, so we can

identify the domain of p with h—I>H(K,,K+)ePU F(K_,K,). Consequently, to show that p is an
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equivalence, it will suffice to show that the functor F' is a left Kan extension of its restriction
to PyP. This is equivalent to the assertion that for each (K_,K ) € P, the canonical map
F(K_,S) —» F(K_,K,) is an equivalence. This is clear: since T' = (), the inclusion Ky < S
induces an equivalence of prestacks RanE(X — Q)?{,, g = RanTc(X — Q)%ﬂ Ky O

To prove Proposition 7.3.12 when T is nonempty, we will need some auxiliary constructions.

Notation 7.3.13. Let R be a finitely generated k-algebra, let P and P’ be G-bundles on Xp. If
U C Xg is an open subscheme, we let Isoy (P, P') denote the set of G-bundle isomorphisms be-
tween P |y and P’ |iy. If D C Xp is a closed subscheme, we let Iso%™ (P, P') = lim Tsoy (P, PN,
where the direct limit is taken over all open subschemes U C Xpg which contain D. We will
refer to Isoy"™ (2, P’ as the set of germs of isomorphisms of P with P’ around D.

Definition 7.3.14. Let T be a nonempty finite set. We define a category Rangerm(X )T as
follows:

(a) The objects of Rangerm(X )T are triples (R,v,P) where R is a finitely generated k-
algebra, v : T — X (R) is a map, and P is a G-bundle on X 4.

(b) A morphism from (R,v,?P) to (R',v/,P") is a k-algebra homomorphism R — R’ such
that v/ coincides with the composite map T % X (R) — X (R'), together with a germ
of isomorphisms between Xp/ X x,, P around the divisor [/(T)| C Xp.

Remark 7.3.15. It may be helpful to think of the objects of Rangrm(X)T as triples (R, v, P)

where P is a germ of G-bundles defined on an open subset of Xy containing the divisor |v(T)|.
However, we consider only germs which can be extended to the entire curve Xg.

Restriction of G-bundles determines morphisms of prestacks

Rang(X — Q)g ¢3 RangGerm(X)T — RanG(X)T7
where ¢g depends functorially on the nonempty finite set S. Proposition 7.3.12 is an immediate
consequence of the following two assertions:

Proposition 7.3.16. Let T be a nonempty finite set and let Y be an affine k-scheme equipped
with a map Y — XT. Then the morphisms ¢g above induce an equivalence

lim C.(Ranf;(X — Q)% xxr Y3 Zs) = Cu(Rang,,,(X)" xxr Y Z).

germ
SeFin®
Proposition 7.3.17. Let T be a nonempty finite set and let Y be an affine k-scheme equipped
with a map f:Y — (X —Q)T. Then the induced map
Ran$  (X)T xxr Y = Ran§  (X)T xxr V

germ

18 a universal homology equivalence.

Proposition 7.3.16 is a formal consequence of nonabelian Poincare duality (more specifically,
of Theorem 3.3.1); the deduction is essentially an elaborate combinatorial exercise which we will
carry out in §7.4. The geometric core of our proof is in the verification of Proposition 7.3.17,
which we prove in §7.6 (using a calculation which we carry out in §7.5): essentially, this result
expresses the idea that there is not much difference between G-bundles defined on a divisor
D C X — @ and G-bundles defined on an open neighborhood of D.
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7.4. Germs of G-Bundles. Throughout this section, we fix an algebraically closed field &, a
prime number ¢ which is invertible in k, an algebraic curve X over k, a finite subset @ C X,
and a smooth affine group scheme G over X which is Q-adapted (Definition 7.2.9). Let T
be a nonempty finite set and let Y = Spec R be an affine k-scheme of finite type equipped
with a map of k-schemes Y — X7 which we will identify with a map v : T — X(R). Let
D = |v(T)| € Xg denote the associated divisor in Xp. For every finitely generated R-algebra
A, we let D4 denote the inverse image of D in X 4.
Our goal is to prove Proposition 7.3.16, which asserts that the canonical map
lim C.(Ranfy(X — Q)F xxr Y1 Z¢) — Cu(RanG,,, (X)T xxr Y Zy)
SeFin®

is a quasi-isomorphism. As a first step, we will identify the left hand side with the chain complex
of a single prestack.

Construction 7.4.1. We define a prestack C as follows:

e The objects of C are septuples (S, K_, K1, A, u, P,v) where S is a nonempty finite set,
K_C Ky CS, Ais a finitely generated R-algebra, u: S — (X — Q)(A) is a map
of sets for which |u(K )| does not intersect D4, P is a G-bundle on X 4, and v is a
trivialization of P on X4 — |u(S9)].

e A morphism from (S, K_, Ky, A, p,P,v) to (', K", K, A", i/, P?",~') in the category
C consists of a surjection of finite sets o : S — S’ satisfying a " 1(K")C K_ C K, C
a~'(K'.), an R-algebra homomorphism A — A’ for which the diagram

S —"> (X - Q)(A)

L
§ e (X~ Q)(A)

commutes, and an isomorphism between the pullbacks of P and P' to X4 x x L (X4 -
|(K_)|) which carries v to .

Note that the construction (S, K_, Ky, A, u,P,v) — S determines a Cartesian fibration of
categories € — Fin®, whose fiber over an object S € Fin® can be identified with the prestack
Y Xxr Rang (X — Q)L. It follows that we have a canonical equivalence

Cu(€;Z¢) = lim C.(Y xxr Ranf(X)§; Z).
SeFin®

We can therefore reformulate Proposition 7.3.16 as follows:
Theorem 7.4.2. The forgetful functor
0:C—=Y xyrRan% (X)7T

germ
(57 K—aK—O—aAaN'v:P,’Y) = (A>:P)
induces an isomorphism H,(C; Z;) — Ho(Y X xr RanS, (X)7:Z,).

germ

Proof. We will show that the functor 6 factors as a composition

cBe, e Be, B e, Be By xer Rl (X)7,

germ
where each C; is a prestack via some forgetful functor m; : C; — Ring, and each 6; is a
morphism of prestacks which induces an isomorphism on f-adic homology. Most of the steps in
our argument will be completely formal: geometric input will be needed only in our proof that
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3 is an equivalence (which depends on the acyclicity of the Ran space) and the proof that 6,4
is an equivalence (which depends on Theorem 3.3.1).

e The category Cg is defined as follows:

— The objects of €y are septuples (S, K_, K, A, u, P,y) where S is a nonempty finite
set, K_ C Ky C S, Ais a finitely generated R-algebra, u: S — (X — Q)(A) is a
map of sets for which |u(K ;)| does not intersect D4, P is a G-bundle on X 4, and
~y is a trivialization of P on X4 — |(S)].

— A morphism from (S, K_, K, A, u,P,~) to (S’,KL,K;,AQNQT/,'V’) in the cate-
gory Gy consists of a surjection of finite sets o : S — S’ satisfying K C a(K_) C
a(K4) € K’ , an R-algebra homomorphism A — A" for which the diagram

S —" = (X - Q)(4)

P,

S —= (X - Q)(A)

commutes, and an isomorphism between the pullbacks of P and P’ to X4 xx,
(X4 — |p(K-)|) which carries v to +'.
We will regard Cgy as a prestack via the forgetful functor

7o : Co — Ring,

TO(S7 K_,K+,A,}L7{J),’Y) =A.

By construction, we can identify € with a (non-full) subcategory of Cy. Let 6y : € — Cg
be the inclusion map. We claim that 6y induces an isomorphism on Zy,-homology. To
prove this, it will suffice to show that the inclusion € < € is right cofinal when regarded
as a functor between co-categories.

Let J denote the category whose objects are given by triples (S, K_, K) where S
is a nonempty finite set and K_ C K, C S, where a morphism from (S, K_, K,) to
(S",K’',K!) is a surjection o : S — 5’ such that K/ C a(K_) C o(K;) C K.
Let J' C J be the subcategory containing all objects, whose morphisms are required
to satisfy the stronger condition that a 'K’ C K_. We have a pullback diagram of
categories

GHGO

]

J—1,

where the vertical maps are Cartesian fibrations. Consequently, it will suffice to show
that the inclusion J° < J is right cofinal (Remark HTT.4.1.2.10 and Proposition
HTT.4.1.2.15). Fix an object (S,K_,K;) € J, and let € denote the fiber product
J x4 d/(s,x_,k.); we wish to prove that the simplicial set N(€) is weakly contractible.
Note that the projection map € — Fin®/g is a Cartesian fibration of categories. It
will therefore suffice to show that for each surjection « : S’ — S, the fiber product
€sr = € Xpine, {5’} has weakly contractible nerve. Unwinding the definition, we see
that g/ can be identified with the partially ordered set of ordered pairs (K’ , K’ ) of
subsets of S’ satisfying K_ C (K’ ), K’ C K/,, and K, C o 'K,. Let €%, denote
the full subcategory of €g spanned by those objects where K, = a~'K,. Then the
inclusion €2, < g admits a left adjoint given by (K’ ,K.) — (K’ ,a 'K;). We
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are therefore reduced to proving that N(€%,) is weakly contractible. This is clear, since
N(£%,) has an initial object (given by the pair ('K, a ' K})).

Let €y denote the full subcategory of Cy spanned by those objects (S, K_, K1, A, u, P, 7)
where K is the largest subset of S for which |u(K )| does not intersect D4. Note
that the inclusion functor €; — @y admits a left adjoint 6, : €y — €1, given on objects
by the formula

91(5, K—7K+’A7H‘aj)a 7) = (57 K—aKf{-7AaM7T57)7

where K7, is the largest subset of S such that |x(K’, )| does not intersect the inverse
image of D. The projection map 7y : Cy — Ring,, restricts to a coCartesian fibration
m @ €1 — Ring;, which exhibits C; as a prestack and #; as a morphism of prestacks.
Using Remark 2.3.32, we deduce that #; induces an isomorphism on ¢-adic homology
(with inverse induced by the weak morphism of prestacks €1 < Cp).
We define a category Cy as follows:
— The objects of Cy are tuples (S, A, u, I, P,7), where S is a nonempty finite set, A is
a finitely generated R-algebra, p: S — (X — Q)(A) is a map of sets, [ is a subset
of u(S) € X(A) such that |I| does not intersection D4, P is a G-bundle on X 4,
and 7 is a trivialization of P on X4 — |u(S5)].
— A morphism from (S, A, i, I,P,v) to (S", A", i/, I',P",~') in Cy consists of a sur-
jection of finite sets S — S/, a map of R-algebras A — A’ such that I’ is contained
in the image of I under the induced map X (A) — X (A’) and the diagram

S —"= (X - Q)(A)

L,

S (X - Q)(A)

commutes, together with an isomorphism between the pullbacks of P and P’ to
Xar Xx, (Xa —|I]) which carries v to «'.
We regard Cy as a prestack via the map my : C2 — Ring, given on objects by
(S, A, 1, I,P,v) — A. There is an evident forgetful functor 6 : €; — €5, given by
(S7 K—3K+7,U'7A7:Pa 7) = (57M7A7N(K—)7:Pv 7)
This functor admits a left adjoint, given by
(Sa/jﬂAaIa ?77) = (S,K_7K+,/J/,A,:P,’Y),

where K_ = p~!(I) and K, is the largest subset of S such that |u(K )| does not
intersect D,4. Invoking Remark 2.3.32, we see that 6 induces an isomorphism on
{-adic homology.

o We define a category C3 as follows:

— The objects of C3 are tuples (A, I, J, P,v) where A is a finitely generated R-algebra,
J is a (possibly empty) finite subset of (X — Q)(A), I is a subset of J such that
|| does not intersect the inverse image of D4, P is a G-bundle on X 4, and v is a
trivialization of P on X4 — |J].

— A morphism from (4,1, J,P,v) to (A’,I',J',P',4) in C3 consists of an R-algebra
homomorphism A — A’ for which the induced map (X — Q)(A) — (X — Q)(A)
carries J into J’, I to a subset of X(A’) which contains I’, together with an
isomorphism between the pullbacks of P and P’ to Xar xx, (Xa — |I|) which
carries v to «'.
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We regard €3 as a prestack via the forgetful functor m3 : €3 — Ring, given by
(A, I,J,P,7) — A. We have an evident map of prestacks 03 : Co — €3, given on
objects by 05(S, A, u, I, P,~v) = (A, I, u(S),P, 7). We observe that 3 fits into a pullback
diagram of prestacks

Co i Cs

l |

Ran(X — Q) — Ran™ (X — Q).

where the vertical maps are coCartesian fibrations. It follows from Theorem 2.5.19 that
the map Ran(X — Q) — Ran™ (X — Q) is a universal homology equivalence. Applying
Proposition 2.5.11, we deduce that 63 is also a universal homology equivalence.
We define a category €4 as follows:
— The objects of Cy4 are triples (A, I, P) where A is a finitely generated R-algebra, I
is a finite subset of (X — Q)(A) such that |I|N D4 = @, and P is a G-bundle on
Xa.
— A morphism from (A, I,P) to (A’,I',?") in C4 consists of an R-algebra homo-
morphism A — A’ for which I’ is contained in the image of the composite map
I — X(A) - X(4'), together with an isomorphism between the pullbacks of P
and j)/ to XA/ XX a (XA — |I|)

We regard C4 as a prestack via the forgetful functor 74 : €4 — Ring, given by
(A,I,P)— A. Let 04 : C3 — C4 denote the map of prestacks given by (4,1, J,P,v) —
(A, 1,P). We claim that 6, is a universal homology equivalence. To prove this, consider
an object C = (A,I,P) € C4, and let D = €3 x¢,(C4)c/. We wish to show that the
canonical map C.(D;Z;) — C.(Spec A;Zy) is an equivalence in Modg, .

Unwinding the definitions, we can identify objects of D with tuples (B, I, J, P5,v5),
where B is a finitely generated A-algebra, I is a subset of X (B) which is contained
in the image of I, J is a finite subset of X (B) containing Iz, Pp is a G-bundle on
Xp — |Ip| compatible with P|x,_|;, and vp is a trivialization of Pp over Xp — |J|.
Let D’ denote the full subcategory of D spanned by those tuples where J contains the
image of I in X(B). The inclusion D" — D admits a left adjoint in the 2-category of
prestacks, and therefore induces an isomorphism on ¢-adic homology by Remark 2.3.32.
Let D" C D’ be the full subcategory spanned by those tuples (B, Iz, J, Pg,~) where I
coincides with the image of I in X (B). The inclusion D" < D" admits a right adjoint
in the 2-category of prestacks, and therefore also induces an isomorphism on homology.

Let Z denote the A-scheme given by the product

II 2 xx{=}.

zEQ
The construction

(B,1p,J,PB,7B) = VBlgs

determines a morphism of prestacks p : D” — Z. Since we have assumed that G,
is a vector group for z € ) and Spec R is affine, Z is isomorphic to an affine space
A? x Spec R over Spec R. It will therefore suffice to show that p induces an isomorphism
in f-adic homology. In fact, we will show that p is a universal homology equivalence.
Fix a map Spec B — Z, so that B is a finitely generated A-algebra and we are given a
trivialization 7o of P over the divisor Q. Let Sectg, (Pp) be the prestack introduced
in §3.3 whose objects are given by triples (B’,S,~) where B’ is a finitely generated
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B-algebra, S is a nonempty finite subset of (X — Q)(B’), and ~ is a trivialization of P
over Xp — |S| which is compatible with 9. Unwinding the definitions, we can identify
D" x 7 Spec B with the full subcategory of Sectq, (P) spanned by those triples (B, S, )
where S contains the image of I. Note that the inclusion D" x z Spec B < Sect,, (P)
admits a left adjoint (in the 2-category of prestacks), and therefore induces an isomor-
phism on Z,-homology (Remark 2.3.32). We are therefore reduced to proving that the
projection map Sectg, (P) — Spec B induces an isomorphism in ¢-adic homology, which
is a special case of Theorem 3.3.1.

We define a category Cs as follows:

— The objects of C5 are pairs (A, P), where P is a finitely generated R-algebra and
P is a G-bundle on X 4.

— A morphism from (A,P) to (A’,P') is an R-algebra homomorphism A — A’
together with an element a € ligUCXA/ Isop (Spec A’ Xgpec 4 P, P'); here the direct
limit is taken over all open subsets U C X 4/ of the form X4 — |J|, where J is a
finite subset of X (A’) for which |.J| does not intersect the inverse image of D.

We regard Cs as a prestack via the forgetful functor 75 : €5 — Ring, given by (A4, P) —
A. The construction (A,I,P) — (A, P) determines a map of prestacks 65 : €4 — Cs.
We claim that the functor w5 is right cofinal and therefore induces an equivalence
Cy(C5;Zy) — Ci(Cyq;Zy). To prove this, it will suffice to show that for every object
C = (A,P) in Cs, the category € = €4 xe;(C5) /¢ has weakly contractible nerve. Note
that every object of € determines in particular a finitely generated R-algebra B together
with a map of R-algebras v : B — A.

Let &y denote the subcategory of € spanned by those objects where B = A and
1 = ida. The inclusion &y — &€ admits a left adjoint, and therefore induces a weak
homotopy equivalence N(€g) — N(&). It will therefore suffice to prove that N(&g)
is weakly contractible. Unwinding the definitions, we can identify objects of &y with
triples (I, Q,«), where I is a finite subset of (X — Q)(A) such that [[|N Dy = 0, Q
is a G-bundle on X4 — |I| which can be extended to a G-bundle on X4, and o €
lim,  Isoy (P, Q); a morphism from (I, Q, @) to (I',Q',a’) is an inclusion I’ C I together
with an isomorphism of Q with Q" |x a—|1] which carries o to /. The weak contractibility
of N(&) follows from the observation that the opposite category g is filtered.
Unwinding the definitions, we can identify the fiber product Y X xr RangGerm(X )T with
the prestack whose objects are pairs (A, P), where A is a finitely generated R-algebra
and P is a G-bundle on X4, where a morphism from (A, P) to (4’,P’) is an R-algebra
homomorphism from A to A’ together with an element « € Iso%e;“ (Xar xx, P,P).

We can therefore identify €5 with a (non-full) subcategory of Y x xr Rangerm(X )T let
0s:Cs =Y Xxr Rangrm(X)T denote the inclusion map.

We claim that 6g is a universal homology equivalence. To prove this, fix an object
of C' = (A,P) € Y xxr Ran€, (X)T and let & denote the fiber product

germ

Cs Xy« o xyr (Y xxr Rang, (X)) ey

xTRang, ., germ
We wish to show that the canonical map 1 : € — Spec A induces an isomorphism on
{-adic homology. Unwinding the definitions, we can identify objects of £ with triples
(B, Q, ), where B is a finitely generated A-algebra, Q is a G-bundle on Xp, and « is
a germ of isomorphisms of Spec B xgpec 4 P with Q near the divisor Dp; a morphism
from (B,Q,a) to (B’,Q',a’) in & is given by an A-algebra homomorphism from B to
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B’ with the property that the germ

r—1
Q" “ Spec B’ Xgpeca P Spec B Xspec B Q,

which is a priori defined on some open subset of X g, containing Dpg/, can be extended
over an open set of the form Xp/ —|I| for some finite set I C X (B’) with [I|NDp = 0.
The construction B +— (B, Spec B Xgpec 4 P,1id) determines a map s : Spec A — € which
is a section of 1. To prove that 1 induces an isomorphism on ¢-adic homology, it will
suffice to show that s is a universal homology equivalence. To prove this, fix an object
C' = (B,?,a) € € and set & = Spec B x¢ Spec A. Note that & can be identified with
the full subcategory of Ringz spanned by those finitely generated B-algebras B’ which
satisfy the following condition:

(%) There exists a finite subset J C X (B’) such that Dp: C Xp/ — |J| and the germ

« extends over the open set U.

Using Corollary A.2.10, we see that Y is a covering sieve of Ringp, with respect to the
fppf topology; the desired result now follows from Proposition 2.5.15.

0

7.5. Digression: Germs of Equivariant Maps. Our goal in this section is to prove a some-
what technical result (Theorem 7.5.2) which will be needed in §7.6. Fix an algebraically closed
field k, a prime number ¢ which is invertible in k, an algebraic curve X over k, and a finite
group I' acting faithfully on X. Let X denote the quotient X /T and let @ be a finite set of
closed points of X such that the quotient map X — X is étale over the openset X —Q C X.
Let R be a finitely generated k-algebra and let D C X be an effective divisor that is contained
in the open curve (X — Q)xg.

Notation 7.5.1. If Y and Z are k-schemes equipped with actions of T, we let Map(Z,Y)
denote the set of I'-equivariant maps from Z into Y. For every finitely generated R-algebra A,

germ

we let Mapy. (X4,Y) denote the direct limit ling, Mapr(U,Y'), where the limit is taken over
all I'-invariant open subsets of X which contain the divisor D A=Dxx, X . Let Eqgerm (Y)
denote the prestack whose objects are pairs (4, ¢), where A is a finitely generated R-algebra
and ¢ € Map?™™ (X 4,Y), and we let Eq(Y) denote the prestack whose objects are pairs (A, ¢g)

where A is a finitely generated R-algebra and ¢ € Mapr(f) 4,Y). Note that the construction
(A, ¢) = (A, ¢|,) determines a map of prestacks Eqgerm(Y) — Eq(Y).

The main result of this section can be stated as follows:

Theorem 7.5.2. Let G be a semisimple simply connected algebraic group over k, and suppose
that we are given an action of I' on G which preserves a pinning. Then the restriction map
Edgerm (G) = Eq(G) is a universal homology equivalence.

For the proof of Theorem 7.5.2, it will be convenient to introduce a bit of terminology.

Definition 7.5.3. Let Y be a k-scheme equipped with an action of the finite group I'. We
will say that Y has the equivariant approzimation property if the restriction map Eqgerm(Y) —
Eq(Y") is a universal homology equivalence.

We will deduce Theorem 7.5.2 from the following:

Theorem 7.5.4. Let G be a semisimple simply connected algebraic group over k, let I' be a
finite group with an action on G which preserves a pinning (B, T,{ua}), let B_ be the unique
Borel subgroup of G satisfying B_NB =T, let V = B_B be the corresponding “big cell” of the
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Bruhat decomposition of G, and let W = |J gV where g ranges over all k-valued points of the
identity component of G*'. Then W has the equivariant approximation property.

Remark 7.5.5. Suppose that G is simple. Using Propositions A.4.2 and A.4.4, we see that
W = G unless the field k has characteristic 2, the group G is isomorphic to SLg, 41 for some
integer n, and the group I' acts nontrivially on G.

We first explain how to deduce Theorem 7.5.2 from Theorem 7.5.4:

Lemma 7.5.6. Let E C X be an effective dwvisor, let E C X be the inverse image of E, and
let ¢ : E - G be any I'-equivariant map. Then there exists a I'-invariant open subset U C X
containing E and a T- equivariant map h : U — G with the following property: for every k-
valued point x of E, the product h(x)p(x) belongs to the subset W (k) C G(k) appearing in the
statement of Theorem 7.5.4.

Remark 7.5.7. In the proof of Theorem 7.5.2, we need only the special case of Lemma 7.5.6
where F is disjoint from . This can be used to slightly simplify the proof given below.

Proof of Lemma 7.5.6. Write G as a product of simple factors [[,.; G;. Factoring G as a
product if necessary, we may reduce to the case where I forms a single orblt under the action
of I'. Choose an index ¢ € I and let I'; C I" denote its stabilizer. Replacing G by G; (and X
by the quotient X /T';), we may reduce to the case where G is simple. Let 'y be the kernel of
the action of I" on G. Replacing X by X/I‘o (and T" by I'/Ty), we may assume without loss of
generality that I' acts faithfully on G. If W = G, then we can choose h to be a constant map.
We may therefore assume without loss of generality that the field & has characteristic 2, the
group G is isomorphic to SLo,11 for some n > 1, and that T' ~ Z/2Z acts nontrivially on G
via an involution ¢ : G — G (Remark 7.5.5).

Fix a pinning (B, T, {uq}) of G which is invariant under the action of I'. Since G = SLay 11,
we can enumerate the simple roots of G as A = {ay,as,...,as,}, where «; is adjacent to Q;
in the Dynkin diagram of G if and only if i — j| = 1. We first claim that there exists a rational
map A : P! — B with the following properties:

e The map A is regular on the open set P! — {0,1}.
e The map ) carries co € P! to the identity element of G and carries each point of
—{0,1, 00} to a regular unipotent element of G.
e The map A satisfies A\(a + 1) = o(A(a)).
To prove this, consider the map ¢ : SLg — SLg, 41 corresponding to the pair of adjacent roots
{an, ant1}, and let Ao : P! — SL3 be the map given by

1
¢
a+1
1

O =l

1
)\0 (a) = 0
0

A simple calculation now shows that the map

M@) = 100(@) T (e (Dt

1<i<n

1

a1

has the desired properties (for any choice of ordering of the product).
For each integer m > 0, let K,,, C G denote the scheme-theoretic image of the map

O, : (P —{0,1})™ = G
(a1, yam) = Ma1) ... Mam)



WEIL’S CONJECTURE FOR FUNCTION FIELDS 231

Each K,, is an irreducible reduced closed subscheme of G, so the ascending chain
Ky C Ky CK3C

must eventually stabilize to a closed subgroup K C G. Note that K is contained in the unipotent
radical of B; in particular, it is a connected solvable subgroup of B. Moreover, we can choose
an integer mg for which K is the scheme-theoretic image of 6,,,.

Let 7 be the involution of X given by the nontrivial element of I'. Let Kx and K g denote the
function fields of the curves X and X , respectively. Then K¢ is a quadratic Galois extension
of Kx. Since Kx has characteristic 2, it follows that K¢ is an Artin-Schreier extension of
Kx. We may therefore choose a nonzero rational function f : X — P! satisfying the identity
flrz) = f(=z) + 1. Note that the poles of f are precisely the fixed points for 7. Write E as a
disjoint union E_TI E+, where the points of E_ are fixed by 7 and the group I' acts freely on
E+ For each point = € E+, consider the regular map

po s (P = {f(2), f(z) +1})™ = G

(1, yamg) = Aar + f(2)) ... AMam, + f(2)).
Note that the Zariski closure Z, of the set {us(a1,...,am,)¢(x)B} in G/B is a closed subset
with an action of the connected solvable group K. It follows that there exists a fixed point
for the action of K on Z,. Since K contains a regular unipotent element of B, the only point
of G/B fixed by the action of K is the identity coset. It follows that {p;(&@)¢(x)B} intersects
every open neighborhood of the base point of G/B. In particular, we can choose a point
a e (P! —{f(x), f(z) + 1})™° for which ju,(@)¢(x) belongs to the big cell of G.

For each point z of E, let V, denote the open subset of (P! —{f(x), f(x)+1})™ consisting
of those points @ such that u,(@)¢(z) belongs to the big cell of G. Then each V,, is a nonempty
open subset of (P1)™0. Since (P!)™0 is irreducible, we can choose a sequence @ = (a1, . - . , Gm,)
which belongs to each V. We now define

U={zeX: \z),Mz)+1¢{Mar), Aaz), ..., Mam,)}

h(z) = May + f(z)) ... Mam, + f(2)).
It follows immediately from the construction that for « € E+, the product h(z)¢(z) belongs to
the big cell of G (and in particular to the open set W C G). If x € E_, then z is fixed by 7 so
that f(z) = oo and therefore h(x) is the identity element of G(k). Consequently, to prove that
h(z)d(x) € W (k) we must show that ¢(x) € W(k), which follows from Proposition A.4.4 (note

that 7(x) = x = ¢(x) = o(é(z))). O

Proof of Theorem 7.5.2. Tt will suffice to show that for every finitely generated R-algebra A
and every map of R-schemes f : Spec A — Eq(G), the induced map

04 : Hi(Edgerm (G) Xgq(e) Spec A; Zy) — H.(Spec A; Zy)

is an isomorphism.

Let ¢ : D4 — G denote the I'- equivariant map determined by f. For every k-valued point
7 of SpecA let D,, denote the fiber product Speck Xspec r D, let D denote its inverse image
in X and let ¢, : D — @G be the restriction of ¢. Let W be the open subset appearing in
the statement of Theorem 7.5.4. Using Lemma 7.5.6, we can choose a ['-invariant open subset
U C X containing D, and a I-invariant map hy, : U — G such that h,(x)¢,(xz) € W for
every k-valued point x of 137,. Since the map Dy — Spec A is proper, there exists an open
subset V,, C Spec A containing the point 7 such that D Xspec R Vy is contained in the open set
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U Xspeck Vi C Xr Xgpec R Vi Shrinking V;; if necessary, we may further assume h, (z)p(x) € W
for every k-valued point = of D XSpec R Vi

Since Spec A is quasi-compact, we can choose finitely many k-valued points 71, ...,n, for
which the open sets V;, form an open covering of Spec A. For each subset I C {1,...,n}, let
Vi = V,,. We then have a commutative diagram

hg[#@ C* (EQgerm(G> ><Eq(G) ‘/17 ZZ) —— C* (querm (G) ><Eq(G) Spec A, Z@)

i 2

M[#@ Cu(Vi; Zy) C.(Spec A, Zy)

where the horizontal morphisms are equivalences (by virtue of Zariski descent). Consequently,
to show that 64 is an isomorphism, it will suffice to show that each of the maps

Edgerm (G) Xgq@) VI = Edform (G) Xgqa) Vi

induces an isomorphism on ¢-adic homology. This follows from Theorem 7.5.4, since multipli-
cation by h,. L (for any i € I) determines a commutative diagram

qucrm(W) ><Eq(W) VI E—— quorm(W) ><Eq(W) VI

]

Vi i Vi

where the vertical maps are equivalences by virtue of Theorem 7.5.4. 0

We now turn to the proof of Theorem 7.5.4.

Lemma 7.5.8. LetY be a k-scheme with an action of ', and let U CY be a I'-invariant open
subset. If Y has the equivariant approximation property, then so does U.

Proof. This follows from Corollary 2.5.12, since the diagram
EQgerm(U) — EQgerm(Y)

| l

Eq(U) Eq(Y)

is a pullback square of prestacks in groupoids. O

Lemma 7.5.9. Let Y be a k-scheme equipped with an action of I'. Suppose that there exists
a collection of T'-invariant open subsets {U, C Y} with the following property: for every finite
set S CY(k), there exists an index o such that S C Uy (k). If each U, has the approzimation
property, then so doesY .

Proof. Fix an integer N, a finitely generated k-algebra A, and a map f : Spec A — Eq(Y). We
wish to show that the induced map

C.(Spec A Xgq(v) Edgerm(Y); Z¢) — Cy(Spec A; Zy)

Is a quasi-isomorphism. This assertion can be tested locally with respect to the Zariski topology
on Spec A. For each closed point € Spec A, f determines a map {z} Xgpeca Da — Y. Since
the domain is a finite k-scheme, the image of this map is contained in some subset U, C Y.
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Shrinking Spec A if necessary, we may suppose that f factors through Eq(U,). In this case, we
have a commutative diagram

Spec A Xgq(u,,) Edgerm(Ua) — Spec A

| |

Spec A Xgq(v) Edgerm(Y) — Spec A

where the vertical maps are equivalences. Since U, has the equivariant approximation property,
the upper horizontal map induces an isomorphism on Zg-homology. It follows that the lower
horizontal map also induces an isomorphism on Z,-homology. O

Lemma 7.5.10. Let Y be a k-scheme with an action of the group T', let V be a finite-
dimensional linear representation of I', and let € be a I'-equivariant V -torsor over Y. IfY
has the equivariant approximation property, then so does €.

Proof of Lemma 7.5.10. The map Eqgerm(€) — Eq(E) factors as a composition

(2 0’
querm(g) — EQ(E) ><Eq(Y) querm(Y) — Eq(g)a

where 60’ is a pullback of the map Eqgerm(Y) — Eq(Y') and is therefore a universal homology
equivalence by virtue of our assumption that ¥ has the equivariant approximation property (and
Corollary 2.5.12). Tt will therefore suffice to show that 6 is a universal homology equivalence.
Fix a map u : Spec A — Eq(€) Xgq(y) Edgerm(Y); we wish to show that the projection map
7 : € — Spec A induces an isomorphism in Z,-homology, where C denotes the fiber product

Edgerm (€) XBq(&) % pq(y) Bdgerm (¥) SPEC A.

Replacing R by A, we may assume that A = R. In this case, we can identify u with a pair
(Fo, ), where Fy : D — &is an equivariant map and f : U—Yisal- equivariant extension of
the composite map

to a ['-equivariant open set U C Xg which contains the divisor D. Shrinking the domain of f

if necessary, we may assume that U is contained in X — Qr. Working étale locally on Spec R,
we may assume that the complement of U is contained in a relative divisor D’ C X r of positive
degree which does not intersect D (Proposition A.2.6). Replacing D' by the sum . y(D') if
necessary, we may assume that D' isT- equivariant. We may then replace U by the compleent
Xp—D' _and thereby reduce to the case where U is affine.

Since U is - equivariant, it is the inverse image of an open subset U C X . Writing U = U /T,
we see that U is affine. The product U Xgpeck V is a I'-equivariant vector bundle over U. Since

U is contained in X — @R, the action of I' on U is free so that we can write U Xspeck V as the
pullback of a vector bundle ¥ on U C Xpg. The I'-equivariant map f : U — Y determines a
I'-equivariant V-torsor & ><y(7 , which we can descend to a F-torsor & on U. Note that the map
Fy determines a trivialization 7o of & over the divisor D C U. Since U is affine, the cohomology
group H'(U; F(—D)) vanishes. It follows that 79 can be lifted to a trivialization 7 of & over
the entire affine open set U C Xg. Using 7, we can identify the prestack C with the category
whose objects are pairs (B, x), where B is a finitely generated R-algebra and x is an element
of the direct limit
lim HO(W:F(=D)|w),
WCUg
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where the direct limit is taken over all open subsets
w g UB =U X Xg XB

which contain the divisor Dp.
The projection map 7 : € — Spec R has a left inverse e : Spec R — €, given on objects by
the construction

(B € Ringp) — (B,0).

To show that m induces an isomorphism on homology, it will suffice to show that the composite
map eo7 : € — € induces a map C.(C;Z;) — C,(C; Z,) which is homotopic to the identity. In
fact, we claim that eor is Al-homotopic to the identity: that is, there exists a map of prestacks

h:GXspec}cAl—)e

such that hle x {0y ~ eom and h|e x{1} = ide. This is clear: at the level of objects, we can take
h to be given by

((B,x) € C,t € B) — (B,tz).
0

Proof of Theorem 7.5.4. Let (B, T,{uq}) be a pinning of G, let B’ denote the unique Borel
subgroup of G satisfying B'N B = T, and let U’ and U denote the unipotent radicals of B_
and B, respectively. Let V = U'TU be the big cell of the Bruhat decomposition of G, let Gg
denote the identity component of G, and let W = UgGGo(k) gV. For each point h € W(k),
the set {g € Go(k) : h € gV (k)} is nonempty and Zariski-open. Because Gy is irreducible, it
follows that for every finite set of points hq, ..., h, € W(k), the set

{g€ Go(k):hy,....,hn € gV(k)}

is nonempty. By virtue of Lemma 7.5.9, it will suffice to show that each gV has the equivariant
approximation property. Since each gV is I'-equivariantly isomorphic to V', we are reduced to
proving that V has the equivariant approximation property.

Choose a I'-invariant filtration of U by normal subgroups

{1}:UmgUm71 C.--CUy =0,
here each quotient U;_1 /U; is isomorphic to a vector group with a linear action of ", and choose
{(31=0,CU, S CUy=U

similarly. For 0 < i < m, let V; denote the double quotient U/\V/U;. We will prove by induction
on ¢ that each V; has the equivariant approximation property. This will complete the proof,
since V,,, ~ V.

We first treat the case where ¢ = 0, so that V; ~ T. Since G is simply connected, we can
identify 7" with the product [[,.g Gm, where the product is indexed by the finite set S of
fundamental weights of G. In particular, there is a I'-equivariant open immersion Vy «— A",
where r is the rank of G, and the group I" acts on A" by permuting the coordinates. By virtue
of Lemma 7.5.8, it will suffice to show that A" has the equivariant approximation property,
which follows immediately from Lemma 7.5.10.

We now carry out the inductive step. Assume that ¢ > 0 and that V;_; has the equivariant
approximation property. We note that the projection map V; — V;_; is a torsor for the
vector group (U;—1/U;) x (U!_;/U}). Applying Lemma 7.5.10, we deduce that V; also has the
equivariant approximation property. O
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7.6. From Divisors to Open Neighborhoods. Throughout this section, we fix an alge-
braically closed field k, a prime number ¢ which is invertible in k, an algebraic curve X over
k, a finite subset Q C X, and a smooth affine group scheme G over X which is Q-adapted
(Definition 7.2.9). Let T be a nonempty finite set and let R be a finitely generated k-algebra
equipped with a map f : Spec R — (X — Q)7 (see Definition 7.3.9), which we can identify with
amap v : T — X(R). Let D = |v(T)| denote the associated divisor in Xp (note that D is
actually contained in the open subscheme (X — Q)g). Our goal is to prove Theorem 7.3.17,
which asserts that the forgetful functor

Ran® (X)T x xr Spec R — Ran®(X)? x yr Spec R

germ
is a universal homology equivalence.
For every finitely generated R-algebra A, we let D 4 denote the fiber product D xgpec RSpPec 4,
which we regard as an effective divisor in the relative curve X 4. The main ingredient we will
need is the following:

Lemma 7.6.1. Let A be a finitely generated R-algebra and let P be a G-bundle on X 4. Then
there exists a faithfully flat étale morphism A — A’ such that the G-bundle P = P x x , X ar is
trivial on an open subset of X o+ which contains the divisor D 4.

Remark 7.6.2. When R = k, Lemma 7.6.1 follows from Theorem 3.3.6. In general, neither
result implies the other: in Lemma 7.6.1 we allow “variable” divisors D C Xg (not necessarily
arising from a fixed divisor in the curve X itself), but we do not allow the fibers of D to intersect
the locus @ € X where G fails to be reductive (which is permitted in Theorem 3.3.6).

Proof of Lemma 7.6.1. The assertion is local with respect to the étale topology on Spec R. We
may therefore assume without loss of generality that there exists an affine open subset V C X
such that the divisor D is contained in Vg (for example, if Q # @, then we can take U = X — Q).
Since G is Q-adapted, we can choose a semisimple simply connected algebraic group Gy over
k, a finite group I which acts on Gy by automorphisms which preserve a pinning (By, Ty, {¢q :
G, — By}) of Gy, an algebraic curve X with an action of I', an isomorphism X /I ~ X for
which the induced map X — X is étale over X — @, and a I'-equivariant homomorphism

ﬂ:)?XXG—)XXSpeCkGO

of group schemes over X which is an isomorphism over the inverse image of X — Q.

Note that By determines a Borel subgroup Bx_g of G over the open set X — Q. Let B
denote the scheme-theoretic closure of Bx_q in G, as in §3.7. Applying Theorem 3.7.1 (to the
case of an empty divisor), we may assume (after passing to an étale cover of Spec A) that P
admits a reduction to a B-bundle Q. Note that  restricts to a map of group schemes

Bp: X xxB—X X Spec k Bo,

so that Q determines a I'-equivariant By-bundle Qg on the curve X A-

Since Gy is simply connected, we can identify the split torus Ty with GI | where I denotes
the finite set of fundamental weights of Gy. Under this identification, the action of I' on Tj
comes from a permutation action of I' on I. The algebraic group By fits into a ['-equivariant
exact sequence

OHUO%B(JE)GL%O,
where Uy denotes the unipotent radical of By. Let Q’O denote the I'-equivariant an—torsor on
X 4 obtained from Qg using the homomorphism 7). Then we can identify Qf with a I'-equivariant
line bundle on the product Xax1 , which we can in turn identify with a line bundle £ on X 4
where X denotes the quotient (X x I)/T.



236 DENNIS GAITSGORY AND JACOB LURIE

Let D4 and V 4 denote the inverse images of D4 and V4 in the relative curve X 4. The map
D4 — Spec A is finite. Passing to a Zariski covering of Spec A if necessary, we may assume that
the line bundle £ is trivial over the divisor D 4. Since V 4 is affine, any trivialization of £ over
D 4 can be extended to a section of £ over V 4, which is a trivialization of £ over an affine open
subset W C V 4. Let W denote the inverse image of W in X A X I, which we can identify with

a collection of affine open subsets {rV[VQ C X }ier. The intersection (), ; W; is a I'-equivariant

il
open subset of X4 xx V and is therefore the inverse image of an affine open subset W C Vj4.
By construction, the affine open set W contains the divisor D4 and the Bx_g-bundle Q |w
arises from a Ux_g-bundle on W, where Ux_¢ denotes the unipotent radical of Bx_qg. Since
Up admits a I'-equivariant filtration by vector groups equipped with linear actions of I', the
group scheme Ux_¢g admits a finite filtration by group schemes associated to vector bundles
over X — Q. It follows that any Ux_g-bundle on an affine scheme is trivial. In particular, Q |y

is trivial and therefore P |y is also trivial. O

Proof of Theorem 7.3.17. We wish to prove that the canonical map
Ran&  (X)T x xr Spec R — Ran®(X)T x yr Spec R

germ
is a universal homology equivalence. Since both sides are prestacks in groupoids, it will suffice
to show that for every map u : Spec A — RanG(X)T X xr Spec R, the projection map

0 :RanS (X)) X Ran¢ (x)7 Spec A — Spec A

germ

induces an equivalence on Z,-homology. Replacing R by A, 