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Greenberger—Horne—Zeilinger (GHZ) state

» A GHZ state is an entangled quantum state of n(> 2) qubits.

P In 1999, a three-photon GHZ state was first produced experimentally.
¢ |GHZ3 ) = %(|000)+ [111))

P They also established the violation of Bell inequalities, as predicted by theory

Scientific Background on the Nobel Prize in Physics 2022

“FOR EXPERIMENTS WITH ENTANGLED PHOTONS,
ESTABLISHING THE VIOLATION OF BELL INEQUALITIES AND
PIONEERING QUANTUM INFORMATION SCIENCE™

The Nobel Commirree for Physics
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Generating GHZ states of large dimension

» The entanglement shared among several parties is used in:

& Communication protocols (Distributed quantum computing)
& Cryptographic applications (Quantum Byzantine agreement)

P Huge effort is beeing made by several experimental groups around the world
to push the size of GHZ states

@ Photonic technology is one of the main players in this game

» Can high-dimensional GHZ states be created in quantum optical experiments
with probabilistic photon sources and linear optics?

P Part I of the talk: How does this question translate to graph theory?

» Part IT of the talk: How to approach this graph theoretic question?
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» Undirected coloured graphs correspond to quantum optical experiments,
using probabilistic photon-pair sources and linear optics.
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P Vertices correspond to photon detectors in the output of some photon path.

» Edges correspond to photon pairs that emerge from two photon paths.
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» Undirected coloured graphs correspond to quantum optical experiments,
using probabilistic photon-pair sources and linear optics.

P Vertices correspond to photon detectors in the output of some photon path.

» Edges correspond to photon pairs that emerge from two photon paths.

P Perfect matchings correspond to a multi-photon event where each single
photon detector detects a photon.
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» Edge colors correspond to the mode number of photons in the path.
¢ Can be bi-colored, as the two photons can have different mode numbers
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» Edge weights correspond to the amplitude of the corresponding photon pair

» Mode number of photons in a path and amplitude of a photon pair can be set
by the experimenter
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Graph for a experiment for 3-dimensional 4-photon GHZ state
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» Edge colors correspond to the mode number of photons in the path.
¢ Can be bi-colored, as the two photons can have different mode numbers

» Edge weights correspond to the amplitude of the corresponding photon pair

» Mode number of photons in a path and amplitude of a photon pair can be set
by the experimenter

» Therefore, we are interested in finding a colouring and weight assignment for
a given graph, satisfying certain properties.
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The GHZ property

b GY . ve), wh wefi) i forie[1,2,3,6
(a) An edge coloured edge-weighted graph GV Em)d{éd f’u::)e ‘[1 ;Tz 1l e S A | 3,6]

» In a GHZ state, impure terms have weight 0.
» Weight of graphs filtered by non-monochromatic vertex colourings should is 0.
& w(gggrrg)=i-i-1+1-1-1=-1+1=0

P In a GHZ state, pure terms have weight 1.
P> Weight of graphs filtered by monochromatic vertex colourings is 1
¢ w(gggggg)=1-1-1=1

> |GHZgo) = % (]000000) + |111111))
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One dimensional GHZ state
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Two dimensional GHZ state
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Two dimensional GHZ state
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P There are two inherited vertex colourings which are monochromatic and their

weights sum up to one.

> |GHZ, ) = % (]0000) + [1111))
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» There are three inherited vertex colourings which are monochromatic and

their weights sum up to one.
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Three dimensional GHZ state
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» There are three inherited vertex colourings which are monochromatic and
their weights sum up to one.

» |GHZy3) = [0000) + |1111) + |2222))
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Dimension of GHZ state and matching index

P The best dimension achievable over all possible colourings and weights which
satisfy GHZ property is the matching index of a graph, i(G).
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Dimension of GHZ state and matching index

P The best dimension achievable over all possible colourings and weights which
satisfy GHZ property is the matching index of a graph, i(G).

» Matching index of Ky is 3

Question 1

Are there graphs for with a high matching index?
If yes, we can design experiments to generate a high-dimensional
Greenberger-Horne-Zeilinger state!

So far, no graphs other than K, is known with a matching index at least 3.
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» When there is no destructive interference, the GHZ property is simply:
@ All perfect matchings in the graph are monochromatic.
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(unweighted) GHZ graphs

Figure: A couloured graph
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(unweighted) GHZ graphs

Figure: A couloured graph Figure: First perfect Figure: Second perfect
Cg matching matching
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(unweighted) A coloured graph which is not GHZ

Figure: 6 vertex graph with four
perfect matchings
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(unweighted) A coloured graph which is not GHZ
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Bounding (unweighted) matching index

Theorem 2 (Bogdanov17, Thomason7g)
If G is not isomorphic to K4, then u(G) <2 and u(Ky) = 3.

» Proof idea: Assume there is GHZ graph with three colours (say red, blue,
green) towards a contradiction.
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Union of perfect matchings is a Hamiltonian cycle

» The union of any two perfect matchings is a disjoint union of cycles.
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Union of perfect matchings is a Hamiltonian cycle

» The union of any two perfect matchings is a disjoint union of cycles.

» Consider the union of a red perfect matching and green perfect matching

» Therefore, union of any two perfect matchings is a Hamiltonian cycle
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A blue can’t split the hamiltonian cycle into two even parts
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A blue can’t split the hamiltonian cycle into two even parts

Therefore, all blue edges split the Hamiltonian cycle into two odd parts
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Not all edges can split the Hamiltonian cycle into odd parts

Therefore, the (unweighted) matching index is at most 2 when graph is not
isomorphic to Ky.
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Structure of Type 2 graphs

» Type 0 graphs. pu(G) = 0. They have no perfect matching, therefore ji(G) = 0.
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Structure of Type 2 graphs

» Type 0 graphs. u(G) = 0. They have no perfect matching, therefore i(G) = 0.
» Type 1 graphs. u(G) = 1.

» Type 2 graphs. u(G) = 2.

» K, is the only Type 3 graph. u(K,4) = 3 and ja(Ky) = 3.

It is sufficient to consider the matching covered graphs of Type 2 graphs.
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Structure of Type 2 graphs

13 12 11 10

» Drum is a cycle in the order (4,4 + 1, 4,5 — 1), where 4, j are of different parity.
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Structure of Type 2 graphs

13 12 11 10

» Drum is a cycle in the order (4,4 + 1, 4,5 — 1), where 4, j are of different parity.
P All non-cycle edges must be part of exactly one drum

P These drums don’t intersect each other.
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Weighted matching index of Type 2 graphs

Theorem 3
If u(G) £ 1, then g(G) = u(G). There are graphs with u(G) = 1 and G(G) £ u(G)

We can only expect high dimensional GHZ graphs when u(G) =1
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Type 1 graph with i(G) = 2
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Type 1 graph with i(G) = 2

. “ u 0
O—0O O—O O—0 )
4

b g O—0
OZ20. O— © O #
o

1 21/28



Why is it is a Type 1 graph?
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Krenn-Gu Conjecture

Question 4

Are there graphs with a higher matching index?
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Krenn-Gu Conjecture

Question 4
Are there graphs with a higher matching index?

Conjecture 5 (Krenn and Gu)

There are no graphs other than K4 with a matching index at least 3

P If true, we save huge computational efforts and get insights into quantum
resource theory

P If false, we can find a high-dimensional Greenberger-Horne-Zeilinger state!
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KG Conjecture for Sparse Graphs

Theorem 6 (CGI, MFCS 2024)

Krenn-Gu conjecture is true for (sub-)cubic graphs and graphs with vertex
connectivity at most 2.
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KG Conjecture for Sparse Graphs

Theorem 6 (CGI, MFCS 2024)

Krenn-Gu conjecture is true for (sub-)cubic graphs and graphs with vertex
connectivity at most 2.

Theorem 7 (CGI2024)
The minimum counter example to Krenn-Gu conjecture matching index is

4-verter connected.

Useful for automated GHZ graph searches using tools like PyTheus.
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Proof Ideas
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Proof Ideas

Scaling lemma:

P Reformulation of the conjecture in more general terms
P This is handy for reductions.

Graph reduction:

» Capture all weights on smaller components:
» Requires very delicate constructions adjusting weights such that GHZ
property is retained
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But do we have any bounds on the dimension?

Conjecture 8 (CKA, Quantum 2022)

It is not possible to generate a n > 4 vertex GHZ experiment graph (without
multi-edges) with dimension > n/2

» True for graphs with = 8 vertices [CKA2022]
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But do we have any bounds on the dimension?

Conjecture 8 (CKA, Quantum 2022)

It is not possible to generate a n > 4 vertex GHZ experiment graph (without
multi-edges) with dimension > n/2

» True for graphs with < 8 vertices [CKA2022]

Theorem 9 (CG, Quantum 2024)

It is not possible to generate a n > 4 vertex simple GHZ experiment graph with
dimension = n/2
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Bounds on the dimension

We find a list of contradicting forbidden structures which are unavoidable in high
dimensional GHZ graphs (if they exist).

G—) (;r-,ﬁ/f;;; T —

A

fious ik P M / i
O—)| |O—)| |[&O—
(a) Passible (b) Possible (c) Passible (d) Nat possible (e) Not possible

However, high-dimensional GHZ graphs also require a lot of intricate structures to

be present in them.
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Table: Current state-of-the-art results, conjectures and our results

Destructive | Multi Bichromatic | Dimension Status
Interfer.. Edges Edges
X v v nz4,d<3 Proved in
[KGZ17]
X v v nz4,d<3 Characterized
in [CG23]
v v X n=6,d<3 [CKA22]
n=8 d<4
v v X n>4,d< n CKA conjec-
2 ture
v X v n | [CG24]
n>4,d< N3
v v v n>4,d<2 KG  conjec-
ture
4 v v n=4,d=<3 [Mantey24]
v v v n>4,d<2 For  sparse

graphs [CGI24
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