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Greenberger–Horne–Zeilinger (GHZ) state

▶ A GHZ state is an entangled quantum state of n(> 2) qubits.

▶ In 1999, a three-photon GHZ state was first produced experimentally.

◆ ∣GHZ3,2⟩ = 1√
2
(∣000⟩ + ∣111⟩)

▶ They also established the violation of Bell inequalities, as predicted by theory
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Generating GHZ states of large dimension

▶ The entanglement shared among several parties is used in:

◆ Communication protocols (Distributed quantum computing)
◆ Cryptographic applications (Quantum Byzantine agreement)

▶ Huge effort is beeing made by several experimental groups around the world
to push the size of GHZ states
◆ Photonic technology is one of the main players in this game

▶ Can high-dimensional GHZ states be created in quantum optical experiments
with probabilistic photon sources and linear optics?

▶ Part I of the talk: How does this question translate to graph theory?

▶ Part II of the talk: How to approach this graph theoretic question?
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Graph for a experiment for 3-dimensional 4-photon GHZ state

▶ Undirected coloured graphs correspond to quantum optical experiments,
using probabilistic photon-pair sources and linear optics.

▶ Vertices correspond to photon detectors in the output of some photon path.

▶ Edges correspond to photon pairs that emerge from two photon paths.

▶ Perfect matchings correspond to a multi-photon event where each single
photon detector detects a photon.
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Graph for a experiment for 3-dimensional 4-photon GHZ state

▶ Edge colors correspond to the mode number of photons in the path.
◆ Can be bi-colored, as the two photons can have different mode numbers

▶ Edge weights correspond to the amplitude of the corresponding photon pair

▶ Mode number of photons in a path and amplitude of a photon pair can be set
by the experimenter

▶ Therefore, we are interested in finding a colouring and weight assignment for
a given graph, satisfying certain properties.
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The GHZ property

▶ In a GHZ state, impure terms have weight 0.
▶ Weight of graphs filtered by non-monochromatic vertex colourings should is 0.

◆ w(gggrrg) = i ⋅ i ⋅ 1 + 1 ⋅ 1 ⋅ 1 = −1 + 1 = 0

▶ In a GHZ state, pure terms have weight 1.
▶ Weight of graphs filtered by monochromatic vertex colourings is 1

◆ w(gggggg) = 1 ⋅ 1 ⋅ 1 = 1

▶ ∣GHZ6,2⟩ = 1√
2
(∣000000⟩ + ∣111111⟩)
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One dimensional GHZ state
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▶ There is one inherited vertex colouring which is monochromatic and its
weights sum up to one.

▶ ∣GHZ4,1⟩ = ∣0000⟩
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Two dimensional GHZ state
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Three dimensional GHZ state
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▶ There are three inherited vertex colourings which are monochromatic and
their weights sum up to one.

▶ ∣GHZ4,3⟩ = 1√
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Dimension of GHZ state and matching index

▶ The best dimension achievable over all possible colourings and weights which
satisfy GHZ property is the matching index of a graph, µ̄(G).

▶ Matching index of K4 is 3

Question 1

Are there graphs for with a high matching index?
If yes, we can design experiments to generate a high-dimensional
Greenberger-Horne-Zeilinger state!

So far, no graphs other than K4 is known with a matching index at least 3.
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Simpler case: No destructive interference

▶ Destructive interference allows intricate cancellation of impure terms
▶ When there is no destructive interference, the GHZ property is simply:

◆ All perfect matchings in the graph are monochromatic.

Why?

▶ Given an unweighted coloured graph with such a property, it is easy to assign
weights such that the graph is perfectly monochromatic.
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w(e) = (#PM(c(e))−2/n
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(unweighted) GHZ graphs
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(unweighted) A coloured graph which is not GHZ
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Bounding (unweighted) matching index

Theorem 2 (Bogdanov17, Thomason78)

If G is not isomorphic to K4, then µ(G) ≤ 2 and µ(K4) = 3.

▶ Proof idea: Assume there is GHZ graph with three colours (say red, blue,
green) towards a contradiction.
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Union of perfect matchings is a Hamiltonian cycle

▶ The union of any two perfect matchings is a disjoint union of cycles.

▶ Consider the union of a red perfect matching and green perfect matching
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▶ Therefore, union of any two perfect matchings is a Hamiltonian cycle
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A blue can’t split the hamiltonian cycle into two even parts
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Therefore, all blue edges split the Hamiltonian cycle into two odd parts
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Not all edges can split the Hamiltonian cycle into odd parts
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Therefore, the (unweighted) matching index is at most 2 when graph is not
isomorphic to K4.
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Structure of Type 2 graphs

▶ Type 0 graphs. µ(G) = 0. They have no perfect matching, therefore µ̄(G) = 0.

▶ Type 1 graphs. µ(G) = 1.
▶ Type 2 graphs. µ(G) = 2.
▶ K4 is the only Type 3 graph. µ(K4) = 3 and µ̄(K4) = 3.

It is sufficient to consider the matching covered graphs of Type 2 graphs.
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Structure of Type 2 graphs
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▶ Drum is a cycle in the order (i, i + 1, j, j − 1), where i, j are of different parity.

▶ All non-cycle edges must be part of exactly one drum

▶ These drums don’t intersect each other.
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Weighted matching index of Type 2 graphs

Theorem 3

If µ(G) ≠ 1, then µ̄(G) = µ(G). There are graphs with µ(G) = 1 and µ̄(G) ≠ µ(G)

We can only expect high dimensional GHZ graphs when µ(G) = 1

Proof idea:

▶ Recall Type 0, Type 3 graphs satisfy above.

▶ We prove that the presence of certain gadget imply µ̄(G) = 2

▶ We then use the structural characterisation for Type 2 graphs and show that
it should contain such a gadget.

▶ We will now look at an an example of Type 1 graph for which µ̄(G) ≠ µ(G)
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Type 1 graph with µ̄(G) = 2
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Why is it is a Type 1 graph?

1

2 3

4

50

1

1

2 3

4

50

1

1

2 3

4

50

1

1

2 3

4

50

1

22 / 28



Why is it is a Type 1 graph?

1

2 3

4

50

1

1

2 3

4

50

1

1

2 3

4

50

1

1

2 3

4

50

1

22 / 28



Why is it is a Type 1 graph?

1

2 3

4

50

1

1

2 3

4

50

1

1

2 3

4

50

1

1

2 3

4

50

1

22 / 28



Why is it is a Type 1 graph?

1

2 3

4

50

1

1

2 3

4

50

1

1

2 3

4

50

1

1

2 3

4

50

1

22 / 28



Krenn-Gu Conjecture

Question 4

Are there graphs with a higher matching index?

Conjecture 5 (Krenn and Gu)

There are no graphs other than K4 with a matching index at least 3

▶ If true, we save huge computational efforts and get insights into quantum
resource theory

▶ If false, we can find a high-dimensional Greenberger-Horne-Zeilinger state!
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KG Conjecture for Sparse Graphs

Theorem 6 (CGI, MFCS 2024)

Krenn-Gu conjecture is true for (sub-)cubic graphs and graphs with vertex
connectivity at most 2.

Theorem 7 (CGI2024)

The minimum counter example to Krenn-Gu conjecture matching index is
4-vertex connected.

Useful for automated GHZ graph searches using tools like PyTheus.
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Proof Ideas

Scaling lemma:

▶ Reformulation of the conjecture in more general terms

▶ This is handy for reductions.

Graph reduction:

▶ Capture all weights on smaller components:
▶ Requires very delicate constructions adjusting weights such that GHZ

property is retained
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But do we have any bounds on the dimension?

Conjecture 8 (CKA, Quantum 2022)

It is not possible to generate a n > 4 vertex GHZ experiment graph (without
multi-edges) with dimension > n/2

▶ True for graphs with ≤ 8 vertices [CKA2022]

Theorem 9 (CG, Quantum 2024)

It is not possible to generate a n > 4 vertex simple GHZ experiment graph with
dimension ≥ n/

√
2
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Bounds on the dimension

We find a list of contradicting forbidden structures which are unavoidable in high
dimensional GHZ graphs (if they exist).

However, high-dimensional GHZ graphs also require a lot of intricate structures to
be present in them.
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Table: Current state-of-the-art results, conjectures and our results

Destructive
Interfer..

Multi
Edges

Bichromatic
Edges

Dimension Status

7 3 3 n ≥ 4, d ≤ 3 Proved in
[KGZ17]

7 3 3 n ≥ 4, d ≤ 3 Characterized
in [CG23]

3
3 7 n = 6, d < 3

n = 8, d < 4
[CKA22]

3
3 7

n > 4, d <
n

2
CKA conjec-
ture

3 7 3 n > 4, d <
n√
2

[CG24]

3 3 3 n > 4, d ≤ 2 KG conjec-
ture

3 3 3 n = 4, d ≤ 3 [Mantey24]
3 3 3 n > 4, d ≤ 2 For sparse

graphs [CGI24]
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