Designing Quantum Experiments via Graph Theory

Rishikesh Gajjala NYU Abu Dhabi

Quantum Colloquium May 12, 2025

イロト イロト イヨト イヨト 三日

1/28

Greenberger-Horne-Zeilinger (GHZ) state

A GHZ state is an entangled quantum state of n(> 2) qubits.

Greenberger-Horne-Zeilinger (GHZ) state

A GHZ state is an entangled quantum state of n(>2) qubits.

▶ In 1999, a three-photon GHZ state was first produced experimentally.
 ♦ |GHZ_{3,2}⟩ = ¹/_{√2} (|000⟩ + |111⟩)

Greenberger-Horne-Zeilinger (GHZ) state

- A GHZ state is an entangled quantum state of n(>2) qubits.
- In 1999, a three-photon GHZ state was first produced experimentally.
 (GHZ_{3,2}) = ¹/_{√2} (|000⟩ + |111⟩)
- ▶ They also established the violation of Bell inequalities, as predicted by theory

イロト イロト イヨト イヨト 二日

2/28

Scientific Background on the Nobel Prize in Physics 2022

"FOR EXPERIMENTS WITH ENTANGLED PHOTONS, ESTABLISHING THE VIOLATION OF BELL INEQUALITIES AND PIONEERING QUANTUM INFORMATION SCIENCE"

The Nobel Committee for Physics

▶ The entanglement shared among several parties is used in:

▶ The entanglement shared among several parties is used in:

◆ Communication protocols (Distributed quantum computing)

▶ The entanglement shared among several parties is used in:

- ◆ Communication protocols (Distributed quantum computing)
- Cryptographic applications (Quantum Byzantine agreement)

▶ The entanglement shared among several parties is used in:

- ◆ Communication protocols (Distributed quantum computing)
- Cryptographic applications (Quantum Byzantine agreement)
- ▶ Huge effort is beeing made by several experimental groups around the world to push the size of GHZ states

▶ The entanglement shared among several parties is used in:

- ◆ Communication protocols (Distributed quantum computing)
- Cryptographic applications (Quantum Byzantine agreement)
- ▶ Huge effort is beeing made by several experimental groups around the world to push the size of GHZ states

Photonic technology is one of the main players in this game

▶ The entanglement shared among several parties is used in:

- Communication protocols (Distributed quantum computing)
- Cryptographic applications (Quantum Byzantine agreement)
- ▶ Huge effort is beeing made by several experimental groups around the world to push the size of GHZ states

♦ Photonic technology is one of the main players in this game

- Can high-dimensional GHZ states be created in quantum optical experiments with probabilistic photon sources and linear optics?
- Part I of the talk: How does this question translate to graph theory?
- Part II of the talk: How to approach this graph theoretic question?

Undirected coloured graphs correspond to quantum optical experiments, using probabilistic photon-pair sources and linear optics.

- Undirected coloured graphs correspond to quantum optical experiments, using probabilistic photon-pair sources and linear optics.
- Vertices correspond to photon detectors in the output of some photon path.

- Undirected coloured graphs correspond to quantum optical experiments, using probabilistic photon-pair sources and linear optics.
- Vertices correspond to photon detectors in the output of some photon path.
- Edges correspond to photon pairs that emerge from two photon paths.

- Undirected coloured graphs correspond to quantum optical experiments, using probabilistic photon-pair sources and linear optics.
- Vertices correspond to photon detectors in the output of some photon path.
- Edges correspond to photon pairs that emerge from two photon paths.
- Perfect matchings correspond to a multi-photon event where each single photon detector detects a photon.

• Edge colors correspond to the mode number of photons in the path.

4 ロト 4 日 ト 4 目 ト 4 目 ト 1 の 4 で
5 / 28

• Edge colors correspond to the mode number of photons in the path.

♦ Can be bi-colored, as the two photons can have different mode numbers

イロト イヨト イヨト イヨト

5/28

Edge colors correspond to the mode number of photons in the path.
 Can be bi-colored, as the two photons can have different mode numbers

Edge weights correspond to the amplitude of the corresponding photon pair

- Edge colors correspond to the mode number of photons in the path.
 Can be bi-colored, as the two photons can have different mode numbers
- Edge weights correspond to the amplitude of the corresponding photon pair
- Mode number of photons in a path and amplitude of a photon pair can be set by the experimenter

- Edge colors correspond to the mode number of photons in the path.
 Can be bi-colored, as the two photons can have different mode numbers
- Edge weights correspond to the amplitude of the corresponding photon pair
- Mode number of photons in a path and amplitude of a photon pair can be set by the experimenter
- Therefore, we are interested in finding a colouring and weight assignment for a given graph, satisfying **certain properties**.

(a) An edge coloured edge-weighted graph G_c^w

(b) $\mathcal{F}(G_c^w, vc)$, where vc(i) is green for $i \in [1, 2, 3, 6]$ and red for $i \in [4, 5]$

(b) $\mathcal{F}(G_c^w, vc)$, where vc(i) is green for $i \in [1, 2, 3, 6]$ and red for $i \in [4, 5]$

▶ In a GHZ state, *impure* terms have weight 0.

(b) $\mathcal{F}(G_c^w, vc)$, where vc(i) is green for $i \in [1, 2, 3, 6]$ and red for $i \in [4, 5]$

- ▶ In a GHZ state, *impure* terms have weight 0.
- Weight of graphs filtered by non-monochromatic vertex colourings should is 0.

(b) $\mathcal{F}(G_c^w, vc)$, where vc(i) is green for $i \in [1, 2, 3, 6]$ and red for $i \in [4, 5]$

- ▶ In a GHZ state, *impure* terms have weight 0.
- Weight of graphs filtered by non-monochromatic vertex colourings should is 0.
 - $w(gggrrg) = i \cdot i \cdot 1 + 1 \cdot 1 \cdot 1 = -1 + 1 = 0$

(b) $\mathcal{F}(G_c^w, vc)$, where vc(i) is green for $i \in [1, 2, 3, 6]$ and red for $i \in [4, 5]$

- ▶ In a GHZ state, *impure* terms have weight 0.
- ▶ Weight of graphs filtered by non-monochromatic vertex colourings should is 0.
 ♦ w(gggrrg) = i · i · 1 + 1 · 1 · 1 = -1 + 1 = 0
- ▶ In a GHZ state, *pure* terms have weight 1.

(b) $\mathcal{F}(G_c^w, vc)$, where vc(i) is green for $i \in [1, 2, 3, 6]$ and red for $i \in [4, 5]$

- ▶ In a GHZ state, *impure* terms have weight 0.
- ▶ Weight of graphs filtered by non-monochromatic vertex colourings should is 0.
 ♦ w(gggrrg) = i · i · 1 + 1 · 1 · 1 = -1 + 1 = 0
- ▶ In a GHZ state, *pure* terms have weight 1.
- Weight of graphs filtered by monochromatic vertex colourings is 1

(a) An edge coloured edge-weighted graph G_c^w

(b) $\mathcal{F}(G_c^w, vc)$, where vc(i) is green for $i \in [1, 2, 3, 6]$ and red for $i \in [4, 5]$

イロト イヨト イヨト イヨト

- ▶ In a GHZ state, *impure* terms have weight 0.
- Weight of graphs filtered by non-monochromatic vertex colourings should is 0.
 \$\psi(qqqrrq) = i \cdot i + 1 + 1 \cdot 1 + 1 = -1 + 1 = 0\$
- ▶ In a GHZ state, *pure* terms have weight 1.
- Weight of graphs filtered by monochromatic vertex colourings is 1
 - $w(gggggg) = 1 \cdot 1 \cdot 1 = 1$

•
$$|\text{GHZ}_{6,2}\rangle = \frac{1}{\sqrt{2}} (|000000\rangle + |111111\rangle)$$

One dimensional GHZ state

<□ > < />

(□ > < />

(□) < </p>

(□) < </p>
(□) < </p>

(□) < </p>
(□) < </p>
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
<

One dimensional GHZ state

There is one inherited vertex colouring which is monochromatic and its weights sum up to one.

One dimensional GHZ state

There is one inherited vertex colouring which is monochromatic and its weights sum up to one.

$$\blacktriangleright |\text{GHZ}_{4,1}\rangle = |0000\rangle$$

Two dimensional GHZ state

Two dimensional GHZ state

There are two inherited vertex colourings which are monochromatic and their weights sum up to one.

Two dimensional GHZ state

There are two inherited vertex colourings which are monochromatic and their weights sum up to one.

$$|\operatorname{GHZ}_{4,2}\rangle = \frac{1}{\sqrt{2}} \left(|0000\rangle + |1111\rangle\right)$$

Three dimensional GHZ state

< □ ▶ < □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < 28
 9 / 28

Three dimensional GHZ state

There are three inherited vertex colourings which are monochromatic and their weights sum up to one.
Three dimensional GHZ state

There are three inherited vertex colourings which are monochromatic and their weights sum up to one.

1

$$|\operatorname{GHZ}_{4,3}\rangle = \frac{1}{\sqrt{3}} \left(|0000\rangle + |1111\rangle + |2222\rangle \right)$$

The best dimension achievable over all possible colourings and weights which satisfy GHZ property is the **matching index** of a graph, $\bar{\mu}(G)$.

- The best dimension achievable over all possible colourings and weights which satisfy GHZ property is the **matching index** of a graph, $\bar{\mu}(G)$.
- Matching index of K_4 is 3

- The best dimension achievable over all possible colourings and weights which satisfy GHZ property is the **matching index** of a graph, $\bar{\mu}(G)$.
- Matching index of K_4 is 3

Question 1

Are there graphs for with a high matching index? If yes, we can design experiments to generate a high-dimensional Greenberger-Horne-Zeilinger state!

> < □ > < 部 > < 書 > < 書 > 差 の Q (~ 10 / 28

- The best dimension achievable over all possible colourings and weights which satisfy GHZ property is the **matching index** of a graph, $\bar{\mu}(G)$.
- Matching index of K_4 is 3

Question 1

Are there graphs for with a high matching index? If yes, we can design experiments to generate a high-dimensional Greenberger-Horne-Zeilinger state!

So far, no graphs other than K_4 is known with a matching index at least 3.

- Destructive interference allows intricate cancellation of impure terms
- When there is no destructive interference, the GHZ property is simply:
 - ♦ All perfect matchings in the graph are monochromatic.

• Destructive interference allows intricate cancellation of impure terms

- When there is no destructive interference, the GHZ property is simply:
 - ◆ All perfect matchings in the graph are monochromatic.

Why?

• Destructive interference allows intricate cancellation of impure terms

- ▶ When there is no destructive interference, the GHZ property is simply:
 - ◆ All perfect matchings in the graph are monochromatic.

Why?

Given an unweighted coloured graph with such a property, it is easy to assign weights such that the graph is perfectly monochromatic.

Destructive interference allows intricate cancellation of impure terms

- ▶ When there is no destructive interference, the GHZ property is simply:
 - ◆ All perfect matchings in the graph are monochromatic.

Why?

Given an unweighted coloured graph with such a property, it is easy to assign weights such that the graph is perfectly monochromatic.

イロト イヨト イヨト イヨト

Destructive interference allows intricate cancellation of impure terms

- ▶ When there is no destructive interference, the GHZ property is simply:
 - ◆ All perfect matchings in the graph are monochromatic.

Why?

Given an unweighted coloured graph with such a property, it is easy to assign weights such that the graph is perfectly monochromatic.

イロト イヨト イヨト イヨト

(unweighted) GHZ graphs

Figure: A couloured graph C_8

(unweighted) GHZ graphs

Figure: A couloured graph C_8

Figure: First perfect matching

◆□ → < 団 → < 臣 → < 臣 → 目 → ○ < (~ 12 / 28

(unweighted) GHZ graphs

Figure: A couloured graph C_8

Figure: First perfect matching

Figure: Second perfect matching

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の 4 (や 12 / 28

Figure: 6 vertex graph with four perfect matchings

4 ロト 4 日 ト 4 目 ト 4 目 ト 目 の Q (や 13 / 28

Figure: PM 1

Figure: 6 vertex graph with four perfect matchings

Figure: 6 vertex graph with four perfect matchings

◆□ → ◆□ → ◆ ■ → ◆ ■ → へ ○ 13/28

Figure: 6 vertex graph with four perfect matchings

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Figure: PMFigure: PMFigure: PM1234

Figure: 6 vertex graph with four perfect matchings

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bounding (unweighted) matching index

Theorem 2 (Bogdanov17, Thomason78)

If G is not isomorphic to K_4 , then $\mu(G) \leq 2$ and $\mu(K_4) = 3$.

• **Proof idea:** Assume there is GHZ graph with three colours (say red, blue, green) towards a contradiction.

▶ The union of any two perfect matchings is a disjoint union of cycles.

- ▶ The union of any two perfect matchings is a disjoint union of cycles.
- Consider the union of a red perfect matching and green perfect matching

- ▶ The union of any two perfect matchings is a disjoint union of cycles.
- Consider the union of a red perfect matching and green perfect matching

- ▶ The union of any two perfect matchings is a disjoint union of cycles.
- Consider the union of a red perfect matching and green perfect matching

▶ Therefore, union of any two perfect matchings is a Hamiltonian cycle

Therefore, all blue edges split the Hamiltonian cycle into two odd parts

4 ロト 4 日 ト 4 目 ト 4 目 ト 1 の 4 で 4 日 ト 4 日 ト 4 日 ト 4 目 ト 4 目 ト 1 6 / 28

< □ ▶ < ⑦ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ℃ 17/28

< □ > < 部 > < 書 > < 書 > ■ の < で 17/28

Therefore, the (unweighted) matching index is at most 2 when graph is not isomorphic to K_4 .

Type 0 graphs. $\mu(G) = 0$. They have no perfect matching, therefore $\bar{\mu}(G) = 0$.

Type 0 graphs. $\mu(G) = 0$. They have no perfect matching, therefore $\bar{\mu}(G) = 0$.

Type 1 graphs. $\mu(G) = 1$.

▶ Type 0 graphs. $\mu(G) = 0$. They have no perfect matching, therefore $\bar{\mu}(G) = 0$.

- Type 1 graphs. $\mu(G) = 1$.
- Type 2 graphs. $\mu(G) = 2$.

- Type 0 graphs. $\mu(G) = 0$. They have no perfect matching, therefore $\bar{\mu}(G) = 0$.
- Type 1 graphs. $\mu(G) = 1$.
- Type 2 graphs. $\mu(G) = 2$.
- K_4 is the only Type 3 graph. $\mu(K_4) = 3$ and $\overline{\mu}(K_4) = 3$.

- Type 0 graphs. $\mu(G) = 0$. They have no perfect matching, therefore $\bar{\mu}(G) = 0$.
- Type 1 graphs. $\mu(G) = 1$.
- Type 2 graphs. $\mu(G) = 2$.
- K_4 is the only Type 3 graph. $\mu(K_4) = 3$ and $\overline{\mu}(K_4) = 3$.

It is sufficient to consider the matching covered graphs of Type 2 graphs.

Structure of Type 2 graphs

Drum is a cycle in the order (i, i + 1, j, j - 1), where i, j are of different parity.

Structure of Type 2 graphs

- Drum is a cycle in the order (i, i + 1, j, j 1), where i, j are of different parity.
- All non-cycle edges must be part of exactly one drum

Structure of Type 2 graphs

イロト イポト イヨト イヨト 三日

19/28

- Drum is a cycle in the order (i, i + 1, j, j 1), where i, j are of different parity.
- All non-cycle edges must be part of exactly one drum
- ▶ These drums don't intersect each other.

Theorem 3

If $\mu(G) \neq 1$, then $\bar{\mu}(G) = \mu(G)$. There are graphs with $\mu(G) = 1$ and $\bar{\mu}(G) \neq \mu(G)$

We can only expect high dimensional GHZ graphs when $\mu(G) = 1$

Theorem 3

If $\mu(G) \neq 1$, then $\bar{\mu}(G) = \mu(G)$. There are graphs with $\mu(G) = 1$ and $\bar{\mu}(G) \neq \mu(G)$

We can only expect high dimensional GHZ graphs when $\mu(G) = 1$

Proof idea:

▶ Recall Type 0, Type 3 graphs satisfy above.

Theorem 3

If $\mu(G) \neq 1$, then $\bar{\mu}(G) = \mu(G)$. There are graphs with $\mu(G) = 1$ and $\bar{\mu}(G) \neq \mu(G)$

We can only expect high dimensional GHZ graphs when $\mu(G) = 1$

Proof idea:

- Recall Type 0, Type 3 graphs satisfy above.
- We prove that the presence of certain gadget imply $\bar{\mu}(G) = 2$

Theorem 3

If $\mu(G) \neq 1$, then $\bar{\mu}(G) = \mu(G)$. There are graphs with $\mu(G) = 1$ and $\bar{\mu}(G) \neq \mu(G)$

We can only expect high dimensional GHZ graphs when $\mu(G) = 1$

Proof idea:

- Recall Type 0, Type 3 graphs satisfy above.
- We prove that the presence of certain gadget imply $\bar{\mu}(G) = 2$
- We then use the structural characterisation for Type 2 graphs and show that it should contain such a gadget.
- We will now look at an an example of Type 1 graph for which $\bar{\mu}(G) \neq \mu(G)$

Theorem 3

If $\mu(G) \neq 1$, then $\bar{\mu}(G) = \mu(G)$. There are graphs with $\mu(G) = 1$ and $\bar{\mu}(G) \neq \mu(G)$

We can only expect high dimensional GHZ graphs when $\mu(G) = 1$

Proof idea:

- Recall Type 0, Type 3 graphs satisfy above.
- We prove that the presence of certain gadget imply $\bar{\mu}(G) = 2$
- We then use the structural characterisation for Type 2 graphs and show that it should contain such a gadget.
- We will now look at an an example of Type 1 graph for which $\bar{\mu}(G) \neq \mu(G)$

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 1 の () 21 / 28

1

1

· • • • • • • • • • • • • • • •

1

・ロト・日本・モン・モン・モン・マークへで
21/28

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 4 目 今 Q ペ 22 / 28

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → <

Krenn-Gu Conjecture

Question 4

Are there graphs with a higher matching index?

Krenn-Gu Conjecture

Question 4

Are there graphs with a higher matching index?

Conjecture 5 (Krenn and Gu)

There are no graphs other than K_4 with a matching index at least 3

▶ If true, we save huge computational efforts and get insights into quantum resource theory

Krenn-Gu Conjecture

Question 4

Are there graphs with a higher matching index?

Conjecture 5 (Krenn and Gu)

There are no graphs other than K_4 with a matching index at least 3

- ▶ If true, we save huge computational efforts and get insights into quantum resource theory
- ▶ If false, we can find a high-dimensional Greenberger-Horne-Zeilinger state!

KG Conjecture for Sparse Graphs

Theorem 6 (CGI, MFCS 2024)

Krenn-Gu conjecture is true for (sub-)cubic graphs and graphs with vertex connectivity at most 2.

KG Conjecture for Sparse Graphs

Theorem 6 (CGI, MFCS 2024)

Krenn-Gu conjecture is true for (sub-)cubic graphs and graphs with vertex connectivity at most 2.

Theorem 7 (CGI2024)

 $The \ minimum \ counter \ example \ to \ Krenn-Gu \ conjecture \ matching \ index \ is \ 4-vertex \ connected.$

KG Conjecture for Sparse Graphs

Theorem 6 (CGI, MFCS 2024)

Krenn-Gu conjecture is true for (sub-)cubic graphs and graphs with vertex connectivity at most 2.

Theorem 7 (CGI2024)

 $The \ minimum \ counter \ example \ to \ Krenn-Gu \ conjecture \ matching \ index \ is \ 4-vertex \ connected.$

Useful for automated GHZ graph searches using tools like PyTheus.

Proof Ideas

Scaling lemma:

▶ Reformulation of the conjecture in more general terms

Proof Ideas

Scaling lemma:

- ▶ Reformulation of the conjecture in more general terms
- ▶ This is handy for reductions.

Proof Ideas

Scaling lemma:

- ▶ Reformulation of the conjecture in more general terms
- ▶ This is handy for reductions.

Graph reduction:

- ▶ Capture all weights on smaller components:
- Requires very delicate constructions adjusting weights such that GHZ property is retained

But do we have any bounds on the dimension?

Conjecture 8 (CKA, Quantum 2022)

It is not possible to generate a n>4 vertex GHZ experiment graph (without multi-edges) with dimension >n/2

▶ True for graphs with ≤ 8 vertices [CKA2022]

But do we have any bounds on the dimension?

Conjecture 8 (CKA, Quantum 2022)

It is not possible to generate a n>4 vertex GHZ experiment graph (without multi-edges) with dimension >n/2

▶ True for graphs with ≤ 8 vertices [CKA2022]

Theorem 9 (CG, Quantum 2024)

It is not possible to generate a n > 4 vertex simple GHZ experiment graph with dimension $\ge n/\sqrt{2}$

Bounds on the dimension

We find a list of contradicting forbidden structures which are unavoidable in high dimensional GHZ graphs (if they exist).

However, high-dimensional GHZ graphs also require a lot of intricate structures to be present in them.

11 h m

୬ ୯ ୯ 27 / 28

Destructive	Multi	Bichromatic	Dimension	Status
Interfer	Edges	Edges		
X	1	1	$n \ge 4, d \le 3$	Proved in
				[KGZ17]
X	1	1	$n \ge 4, d \le 3$	Characterized
				in [C G 23]
1	1	X	n = 6, d < 3	[CKA22]
v			n = 8, d < 4	
1	1	X	$n > 1 d < \frac{n}{2}$	CKA conjec-
•			n > 4, u < 2	ture
1	X	1	$n > 4$. $d < \frac{n}{-}$	[CG24]
			$\sqrt{2}$	
1	1	1	$n > 4, d \le 2$	KG conjec-
				ture
1	1	1	$n = 4, d \leq 3$	[Mantey24]
1	1	1	$n > 4, d \le 2$	For sparse
				graphs [CGI24]

Table: Current state-of-the-art results, conjectures and our results