
ON CHERN-SIMONS MATRIX MODELS

STAVROS GAROUFALIDIS AND MARCOS MARIÑO

Abstract. The contribution of reducible connections to the U(N) Chern-Simons invariant
of a Seifert manifold M can be expressed in some cases in terms of matrix integrals. We show
that the U(N) evaluation of the LMO invariant of any rational homology sphere admits a
matrix model representation which agrees with the Chern-Simons matrix integral for Seifert
spheres at the trivial connection.
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1. Introduction

Chern-Simons invariants of links and three-manifolds have been a rich arena for the inter-
actions of mathematics and physics in the last years. More recently, there has been a growing
connection between Chern-Simons invariants and topological string theory/Gromov-Witten
theory. This has motivated various developments and results. One of these developments
has been the representation of Chern-Simons invariants of three-manifolds in terms of ma-
trix integrals over a Lie algebra [Mar05, AKMV04]. This representation has its origin in
the work of Rozansky on the trivial connection contribution to the Chern-Simons invariant
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[Roz96], and on the results of Lawrence and Rozansky on the SU(2) Chern-Simons invariant
of Seifert homology spheres [LR99].

In this short note we clarify these results in the light of the LMO invariant [LMO98] and
its Aarhus integral representation [BNGRT02]. After reviewing in section 2 the connection
between Chern–Simons theory and matrix integrals, we show in section 3 that the LMO
invariant of a rational homology sphere M , evaluated for the U(N) weight system, can be
always represented as a matrix integral. If the manifold M is obtained through surgery
on a link L in S3, the matrix model ‘potential’ involved in the matrix integral is related
to the Kontsevich integral of L. Since the LMO invariant is conjectured to capture the
trivial connection contribution to the Chern-Simons invariant of M , this suggests that this
contribution always has a matrix integral representation, as shown in [Mar05].

Acknowledgement. M.M. would like to thank D. Bar-Natan and N. Wyllard for discus-
sions.

2. The Witten-Reshetikhin-Turaev invariant as a matrix integral

2.1. The Witten-Reshetikhin-Turaev invariant. The Witten-Reshetikhin-Turaev (WRT)
invariant of a three-manifold M was originally defined by Witten in [Wit89] as the partition
function of a certain topological quantum field theory on M , the so-called Chern-Simons
theory. Fortunately, the invariant can be defined in a purely combinatorial way, as we now
describe.

The WRT invariant depends on a choice of gauge group G and of an integer k related to
the level of the affine Lie algebra based on G. We will use the following notations: r denotes
the rank of G, and d its dimension. y denotes the dual Coxeter number. The fundamental
weights will be denoted by λi, and the simple roots by αi, with i = 1, · · · , r. ρ denotes as
usual the Weyl vector, given by the sum of the fundamental weights. The weight and root
lattices of G are denoted by Λw and Λr, respectively. Finally, we put l = k + y.

The WRT invariant can be defined in terms of a surgery presentation of M . By theorem
due to Lickorish, any three-manifold M can be obtained by surgery on a link L in S3. Let us
denote by Ki, i = 1, · · · , L, the components of L. The surgery operation means that around
each of the knots Ki we take a tubular neighborhood Tub(Ki) that we remove from S3. This
tubular neighborhood is a solid torus with a contractible cycle αi and a noncontractible cycle
βi. We then glue the solid torus back after performing an SL(2,Z) transformation given by
the matrix

(1) U (pi,qi) =

(

pi ri

qi si

)

.

This means that the cycles piαi + qiβi and riαi + siβi on the boundary of the complement
of Ki are identified with the cycles αi, βi in Tub(Ki).

To define the WRT invariant we use the representation of SL((2,Z) in the space of inte-
grable representations of the affine Lie algebra associated to G. A representation given by
a highest weight Λ is integrable if the weight ρ + Λ is in the fundamental chamber Fl The
fundamental chamber is given by Λw/lΛr modded out by the action of the Weyl group. In
the following, the basis of integrable representations will be labeled by the weights in Fl. In
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the case of simply-laced gauge groups, the Sl(2,Z) transformation given by U (p,q) has the
following matrix elements in the above basis [Roz96, HT04]:

U
(p,q)
αβ =

[i sign(q)]|∆+|

(l|q|)r/2
exp
[

−
idπ

12
Φ(U (p,q))

]

(

Vol Λw

VolΛr

)
1

2

·
∑

n∈Λr/qΛr

∑

w∈W

ǫ(w) exp
{ iπ

lq
(pα2 − 2α(ln + w(β)) + s(ln + w(β))2

}

.(2)

In this equation, |∆+| denotes the number of positive roots of G, and the second sum is over
the Weyl group W of G. Φ(U (p,q)) is the Rademacher function:

(3) Φ

[

p r
q s

]

=
p + s

q
− 12s(p, q),

where s(p, q) is the Dedekind sum

(4) s(p, q) =
1

4q

q−1
∑

n=1

cot
(πn

q

)

cot
(πnp

q

)

.

In terms of the above data, the WRT invariant of M is given by:

(5) Z(M, l) = eiφfr

∑

α1,··· ,αL∈Fl

Zα1,··· ,αL
(L)U (p1,q1)

α1ρ · · · U (pL,qL)
αLρ .

In this equation, Zα1,··· ,αL
(L) is the quantum group invariant of the link L with representation

αi − ρ attached to its i-th component (recall that the weights in Fl are of the form ρ + Λ).
The phase factor eiφfr is a framing correction that guarantees that the resulting invariant is
in the canonical framing for the three-manifold M . Its explicit expression is

(6) φfr =
πkd

12l

( L
∑

i=1

Φ(U (pi,qi)) − 3σ (L)

)

,

where σ(L) is the signature of the linking matrix of L. One can show that the above definition
of WRT is invariant under Kirby moves, therefore it defines a topological invariant of the
three-manifold M .

The WRT invariant was originally defined by Witten in quantum-field theoretic terms,
as the partition function of Chern-Simons theory on the three-manifold M . The action of
Chern-Simons theory is given by

(7) SCS(A) =
k

4π

∫

M

Tr
(

A ∧ dA +
2

3
A ∧ A ∧ A

)

,

where A is a G-connection on M , and the WRT invariant is given by

(8) Zk(M) =

∫

DAeiSCS(A).

The description given above in terms of combinatorial data can be derived from Chern-
Simons theory in the context of canonical quantization.
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2.2. Matrix integral representation of the WRT invariant. The fact that the WRT
invariant is the partition function of a quantum field theory suggests that it can be evaluated
semiclassically as a sum over critical points of the action. In the case of the Chern-Simons
functional (7), the critical points are flat connections on M . Each term in the sum is in turn
an asymptotic, perturbative expansion around the flat connection in powers of the coupling
constant of the model. Moreover, it can be argued that the terms in this perturbative expan-
sion contain important topological information about the three-manifold M . For example,
the one-loop contribution involves the analytic torsion of the flat connection [Wit89], while
the two-loop contribution around the trivial flat connection turns out to be equal to the
Casson-Walker invariant of M [Roz96].

From the point of view of combinatorial definition of the WRT invariant, the properties
that emerge in the asymptotic expansion in powers of the coupling constant are far from
being obvious. In the case of Seifert spaces, it was shown in [LR99] that the WRT invariant
for gauge group SU(2) can be written as a sum of contour integrals and residues which cor-
respond to the contributions associated to the different flat connections. Some of the results
of [LR99] were generalized in [Mar05] to general simply-laced groups, where it was shown
that the contribution of reducible flat connections can be written as a matrix integral. In
[BW05], Beasley and Witten have presented a very elegant derivation of this matrix integral
representation in the case of the trivial flat connection, by using non-abelian localization. A
similar result has been recently obtained in [BT06].

Seifert homology spheres can be constructed by performing surgery on a link L in S3

with n+1 components, consisting on n parallel and unlinked unknots together with a single
unknot whose linking number with each of the other n unknots is one. The surgery data are
pj/qj for the unlinked unknots, j = 1, · · · , n, and 0 on the final component. pj is coprime to
qj for all j = 1, · · · , n, and the pj ’s are pairwise coprime. After doing surgery, one obtains
the Seifert space M = X(p1

q1
, · · · , pn

qn
). This is rational homology sphere whose first homology

group H1(M,Z) has order |H|, where

(9) H = P
n
∑

j=1

qj

pj

, and P =
n
∏

j=1

pj.

We will denote e = H/P . For n = 1, 2, Seifert homology spheres reduce to lens spaces,
and one has that L(p, q) = X(q/p). For n = 3, we obtain the Brieskorn homology spheres
Σ(p1, p2, p3) (in this case the manifold is independent of q1, q2, q3). By using the formulae
for the WRT invariant presented above, one can write the contribution of reducible flat
connections to the Chern-Simons partition function of X(p1

q1
, · · · , pn

qn
) as

(−1)|∆+|

|W| (2πi)r

(

Vol Λw

Vol Λr

)

[sign(P )]|∆+|

|P |r/2
e

πid
4

sign(H/P )+ πidy
12l

φ

·
∑

t∈Λr/HΛr

∫

dβ e−~eβ2/2−lt·β

∏n
i=1

∏

α>0 2 sinh β·α
2pi

∏

α>0

(

2 sinh β·α
2

)n−2(10)
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In this equation, β is an element of Λw ⊗ R, φ is given by

(11) φ = e − 3sign (e) − 12

n
∑

i=1

s(qi, pi).

and we have introduced

~ =
2πi

k + y
.

The lattice Λr/HΛr decomposes in different Weyl orbits, and each of these orbits correspond
to a different, reducible flat connection. The contribution of the trivial flat connection is
obtained by setting t = 0 in (10).

3. Matrix integrals and the LMO invariant

In this section, we will show that the LMO invariant of a rational homology sphere,
evaluated through the U(N) weight system, can be always expressed as a matrix integral.
This follows very simply by the definition of the LMO invariant in terms of formal Gaussian
integration given in [BNGRT02], and the detailed structure of the U(N) weight system.
Since the LMO invariant is conjectured to capture the contribution of the trivial connection
to the WRT invariant, our result indicates that this contribution is expected to have a
representation in terms of matrix integrals, as it happens with the Seifert homology spheres.
In particular, we will show that the result (10) for Seifert spheres agrees with the U(N)
evaluation of the LMO invariant calculated in [BNL04].

3.1. A review of the Kontsevich integral. The physics origin of the Kontsevich integral
of a link in S3 is Chern-Simons perturbation theory along the trivial flat connection of the
backround 3-space. The Feynmann diagrams of the theory are trivalent graphs with legs (so-
called unitrivalent graphs). The legs are colored by the components of the link, and the edges
along the trivalent vertices are equipped with a cyclic ordering. The graphs are considered
modulo the AS and IHX relations. The graphs can be multiplied (using the disjoint union)
and can be graded (where the degree of a graph is half the number of vertices). Using formal
linear combinations (with coefficients in Q) of these graphs, we can define a completed graded
algebra A(⋆X) where X is a set in 1-1 correspondence with the components of the link.

It turns out that the Konstevich integral of a link is a group-like element of A(⋆X) (i.e.,
the exponential of a series of connected diagrams), thus we can define its logarithm

F(S3, L) = logZ(S3, L)

which lies in the completed vector space Ac(⋆X) generated by connected unitrivalent graphs,
modulo the AS and IHX relations. Agp(⋆X) will denote the set of group-like elements.

There are two degrees of a diagram D in A(⋆X):

• The Vassiliev degree deg1(D), which equals to half the number of vertices.
• The Euler degree deg2(D) which equals to −χ(D).

Notice that the Euler degree of a connected diagram is rkH1(D) − 1 ≥ −1, and that
deg1(D) = deg2(D) + |Legs(D)|.
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3.2. A review of the LMO invariant. In this section we review the LMO integral. The
physics origin of the LMO invariant (and its cousin, the Aarhus integral) is Chern-Simons
perturbation theory along the trivial flat connection.

Consider a framed link L of r components in S3, and let M denote the 3-manifold obtained
by surgery on L. The Aarhus integration map:

∫

dX : A(⋆X) −→ A(∅)

takes values in the completed vector space A(∅) of trivalent graphs with vertex orientations
modulo the AS and IHX relations. If the integrand a is group-like (i.e., the exponential of a
series of connected diagrams), so is the result of integration.

This allows us to define

Z0(L) =

∫

Z(S3, L)

as well as

Z(M) =
Z0(L)

Z0(S3, U+)σ+(L)Z0(S3, U−)σ−(L)

where U± is the unknot with framing ±1 and σ±(L) is the number of positive (resp. negative)
eigenvalues of the linking matrix of L. It turns out that Z(M) is depends only on M and
not on the framed link L. Moreover, Z(M) is group-like, that is we can define its logarithm:

F(M) = logZ(M)

which takes values in Ac(∅).
Here is a rough description of the Aarhus integration

∫

.

• Consider an element a ∈ A(⋆X). Concentrate on a2m, the piece of a that contains
diagrams with exactly 2m legs of each color.

• Then,
∫

a dX is the sum of all ((2m−1)!!)|X| ways of pairing up the legs of each color
X.

• We consider the result in A(∅).
• If a is group-like, then we can assemble the pieces

∫

a dX into a group-like element
in A(∅).

3.3. Weight systems. For every semisimple Lie algebra g, we have a weight system map:

Wg : Ac(⋆X) −→ ~S(g⊕|X|)g[[~]]

Specifically, if D is a unitrivalent graph with 2m vertices and l legs then Wg(D) ∈ Sl(g⊕|X|)g ~m.
Notice that m = −χ(D) + l.

Let W U = WglN
, for arbitrary N . We now describe in detail the W U weight system.

Following Bar-Natan, let us introduce the vector space spanned by marked surfaces.

Definition 3.1. An X-marked surface (Σ, γ) is an oriented compact topological surface Σ
with nonempty boundary, together with a choice γ of points (colored by X) on ∂Σ. Let MX

denote the completed vector space of formal Q-linear combinations of X-marked surfaces.
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If |X| = 1 and Σ is connected, γ gives rise to a partition (0γ01γ1 . . . ), where γj is the
number of boundary components of Σ with j points.

Like unitrivalent graphs, marked surfaces have two degrees:

• The Vassiliev degree deg1(Σ, γ) of a marked surface is −χ(Σ)+|γ|, where |γ| =
∑

j jγj.

• The Euler degree deg2(Σ, γ) of a marked surface is −χ(Σ).

Thus, |γ| in the case of a marked surface plays the role of the number of legs.
Marked surfaces can be multiplied (via the disjoint union) and graded (by the Vassiliev

degree). Let Mc
X be defined analogously.

There is a map:
Ψ : A(⋆X) −→ MX

defined by:

D −→
∑

M

(−1)sM (ΣD,M , γD,M)

where

• the sum is over all possible markings M of the trivalent vertices of D by 0 or 1,
• sM is the sum, over the set of trivalent vertices, of the values of M
• ΣD,M denotes the X-marked surface obtained by thickening the trivalent vertices of

D as follows:

(12) 10

and thickening the edges of D, and connected up to a surface. The legs of D become
the choice γD,M of points in ΣD,M . It turns out that ΣD,M is well-defined and oriented.

The above map preserves the Vassiliev and Euler degrees deg1 and deg2.
Moreover, there is a map:

Φ : Mc
X −→ Λ⊗r[N, ~]

where Λ is the ring of symmetric polynomials. This map is defined by:

(Σ, γ) −→ Nγ0(
∞
∏

n=1

pγn
n ) ~m ∈ Λ⊗r

l [N, ~]

where m = deg1(Σ, γ), l = deg1(Σ) − deg2(Σ), and pn is the power sum
∑

j xn
j . We remind

that products of power sums provide a basis for the ring of symmetric polynomials in the
variables xj . We will also use in the following the basis of Λ given by Schur functions sλ, which
are labeled by a partition λ. An r-uple of partitions will be denoted by λ = (λ1, · · · , λr). A
basis of Λ⊗r is therefore provided by the products sλ = sλ1

· · · sλr .

Remark 3.2. In fact, the map Φ is a vector space isomorphism, although we will not use
this.

Proposition 3.3. [BN95, CD99] We have a commutative diagram

exp(Ac(⋆X)) exp(Mc
X)

exp (Strp
r)

-
Ψ

jW U � Φ
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where we define

(13) Strp
r :=

{
{

∑∞
g=0

∑

λ6=0
ag

λ sλ

∣

∣

∣
ag

λ ∈ ~2g−2+|λ|Q[N, ~]
}

⊂ Λ⊗r[N, ~] if r > 0
1
~2 Q[N, ~] if r = 0.

Proof. Let ei,j for 1 ≤ i, j ≤ N be a basis for glN . We have

tr(ei,jek,l) = δi,l δj,k

[ei,j, ek,l] = δj,k ei,l − δl,i ek,j.

A diagram consists of a number of Y graphs some of whose half-edges are glued in pairs.
The weight system colors each half-edge by an element of glN . Graphically, the above
equations become:

e ij i

j

and Equation (12).
This computes the corresponding element in S(glN)glN .
Let E = (eij) denote the N by N matrix with commutative entries eij . Consider the

X-marked ribbon graph of genus 0:

Rn :=

N
∑

i1,...,in=1
ni n−1i e

.....
4i 3i 

e
3i 2i 

e
2i 1i 

e

Then, it is easy to see that WglN
(Rn) = tr(En).

We have S(glN)glN ∼= S(hN)SymN , where hN is the Cartan subalgebra spanned by xi := Eii

for i = 1, . . . , N . Under this isomorphism, E maps to a diagonal matrix diag(x1, . . . , xN),

thus tr(En) gets mapped to
∑N

i=1 xn
i = pn. �

Example 3.4. If w2 := x x is the wheel with 2 legs colored by X = {x}, we have:

w2
Ψ

−→ 2

(

−

)

Φ
−→ 2(Np2 − p2

1)~
2.

More generally, for a wheel w2n with 2n legs colored by {x}, we obtain

(Φ Ψ)(w2n) =
∑

1≤i,j≤N

(xi − xj)
2n = ~2n

2n
∑

s=0

(−1)s

(

2n

s

)

psp2n−s,

where we set p0 = N .

We will define

(14) ZU := W U Z FU := W U F .

We may think of FU(S3, L) as the potential for a matrix model. As we will see, this potential
the 3-manifold invariant, by integration on the full Lie algebra.
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3.4. Weight systems commute with LMO integration.

Definition 3.5. Let us define
∫

dX : MX −→ M∅

as follows:

∫

∏

j

p
γj

j dX =











〈

⊔i(⊔
γiRi),

∏

x∈X
1

m!

( xx

2

)〉

X

~−m if |γ| = 2m

0 if |γ| 6= 2m

where for two ribbon surfaces Σ and Σ′ with X-marked boundary, 〈Σ, Σ′〉X is the sum over
all pairings of the X-marked ends of Σ with those of Σ′ (if they match, otherwise zero).

Example 3.6. For m = 1, we have:

∫

p2 dX =

〈

R2,

xx

2

〉

=

〈

xx
,

xx

2

〉

= = N2

∫

p2
1 dX =

〈

R1 ⊔ R1,

xx

2

〉

=

〈

xx
,

xx

2

〉

= = N

and
∫

w2 dX = 2(N3 − N)~.

Definition 3.5 leads naturally to a map

(15)

∫ U

: exp (Strp
r) → (Strp

0)

such that the following diagram commutes:

exp (Ac(⋆X)) exp (Mc
X) exp (Strp

r)

exp (Ac(∅)) exp (Mc
∅) exp (Strp

0)

-
Ψ

?

R

?

R

-
Φ

?

R U

-
Ψ

-
Φ

3.5. The U(N)-version of the LMO invariant as a matrix model. The next theorem
identifies the ZU(M) invariant of a closed 3-manifold with a matrix model. Consider a
framed link L in S3, and let M denote the closed 3-manifold resulting from Dehn surgery on
L. Then, the image ZU(S3, L) of the Kontsevich integral of L under the glN weight system
lies in exp(Strp

r), where r = |L|. We want to show that the integration (15) induced by
Definition 3.5 agrees with Gaussian matrix model integration.

We first define Gaussian matrix model integration.
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Definition 3.7. For each component Li of L framed by ǫi, define the map
∫

HN

: exp (Strp
1) → (Strp

0)

as follows:
∫

HN

pλ =
1

Z

∫

dM
∏

j

(trM j)kj exp

(

ǫi
1

2
tr(M2)

)

,

where λ = (1k12k2 · · · ), M is a Hermitian, N × N matrix, and

Z =

∫

dM exp

(

ǫi
1

2
tr(M2)

)

.

The measure dM in the matrix integral is given by

dM =
N
∏

i=1

dMii

∏

1≤i<j≤N

d(ReMij)d(Im Mij).

The above definition can be extended to exp (Strp
r) as follows

∫

Hr
N

pµ =

∫

HN

pµ1
× · · · ×

∫

HN

pµr .

Theorem 3.1. We have:
∫ U

=

∫

Hr
N

As a result, the glN version of the LMO invariant is given by a matrix model:
∫

Hr
N

dX ZU(S3, L) = ZU(M).

This theorem follows immediately from the fact that Definition 3.5 is simply the description
of Gaussian integration in terms of Wick contractions, see for example [IZ90, Eqn.2.13],
[DFI93, Lem.3] and [BIZ80].

Example 3.8. We have:
∫

HN

s2 dX =
N(N + 1)

2
∫

HN

s1,1 dX = −
N(N − 1)

2

and p2 = s2 − s1,1 and p2
1 = s2 + s1,1. Comparing with Example 3.6, we confirm the above

claim for partitions with 2 boxes.

Example 3.9. The result of [BNL04] expresses the LMO invariant of a Seifert sphere as

(16) Z = exp
( θ

48
(e0 − 3sign(e0) −

∑

i

S(
qi

pi
))
)

∫ (m)

Ω2−n

x/e
1/2

0

n
∏

ℓ=1

Ω
x/(e

1/2

0
pℓ)
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where Ωx is the element in A(⋆X) (with X = {x}) introduced in [BNGRT00] and given by

Ωx = exp
∞
∑

m=1

b2mw2m,

where
∞
∑

m=0

b2mx2m =
1

2
log

sinh x/2

x/2
.

One easily calculates

(Φ Ψ)(Ω2−n
x

n
∏

ℓ=1

Ωx/pℓ
) = P |∆+|∆−2(x)

∏

i<j

(

2 sinh(
xi − xj

2
)
)2−n

n
∏

ℓ=1

∏

i<j

(

2 sinh(
xi − xj

2pℓ
)
)

,

where ∆(x) =
∏

i<j(xi − xj). On the other hand, it is well known that Gaussian integration

can be expressed in terms of eigenvalues as (see for example [BIZ80])

∫

HN

pλ =

∫
∏N

i=1 dxie
−x2

i /2∆2(x)
∏

j p
kj

j
∫
∏N

i=1 dxie−x2
i /2∆2(x)

.

After writing β =
∑

i xiei, where ei is an orthonormal basis in Λw, we find that ZU is indeed
given by the matrix integral (10), up to an overall factor.
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