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In this paper we address two questions: the geometrical formulation of D = 11 supergravity 
and the derivation of the super Lie algebra it is based on. The solutions of the two problems are 
intimately related and are obtained via the introduction of the new concept of a Cartan integrable 
system described in this paper. The previously developed group manifold framework can be 
naturally extended to a Cartan integrable system manifold approach. 

Within this scheme we obtain a geometric action for D = 11 supergravity based on a suitable 
Cartan system. This latter turns out to be a compact description of a two-element class of 
supergroups containing, besides Lorentz Jab, translation P, and ordinary supersymmetry Q, the 
following extra generators: two- and five-index skew-symmetric tensors Z,~2, Z~...a5 and a 
further spinorial charge Q'. Q' commutes with itself and everything else except Jab. It appears in 
the commutators of Q with P,, Z~2,  Z~...,~. 

1. Introduction 

Simple supergravity in D = 11 was introduced by Cremmer/Julia and Scherk in 
ref. [1] and later formulated by Cremmer and Ferrara in superspace [14]. It is the 
maximally extended supertheory containing at most spin-2 particles; by dimensional 
reduction [2] it yields N = 8 supergravity in 4 dimensions which is considered, with 
increasing interest, a possibly viable theory for the unification of all interactions. 

An up to now unsolved problem is the identification of the supergroup underlying 
this theory. 

This is no academic question, rather a fundamental one. Indeed, supergravity 
claims to be the local theory of a suitable supergroup allowing the unification of all 
truly elementary particles in a single supermultiplet; therefore a supergravity theory 
whose supergroup is unknown is somehow incomplete. The need for a supergroup 
was already felt by the inventors of the theory who, in their original paper [1], 
proposed Osp(32/1) as the most likely candidate. This proposal is based on two 
fa&s: 

(i) Osp(32/1) is the minimal grading of Sp(32) which, on the other hand, is the 
maximal bosonic group preserving the Majorana property of a Majorana spinor. 
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(ii) The generators of Osp(32/1) are, with respect to the Lorentz subgroup 
SO(I, 10) c Osp(32/1), the following tensors (or spinors): 

Pa, Jab, Za,-..as, Q~, (1.1) 

where Jab a n d  Za, .  "as  are  skew symmetric. Jab, Pa, Q~ can be respectively interpreted 
as the Lorentz, translation and supersymmetry generators. The 5-index skew-sym- 
metric generator Z~,...as on the other hand, can be conceived to be associated to the 
physical A~p field appearing in D = 11 supergravity in the follo .wing indirect way. 
The potential associated to Z~,...as is a 1-form Ba, . .  "as: multiplying Ba,...as by 5 
elfbeins Va,/X .. • A Vas (the gauge fields of the generator Pa)  we obtain a 6-form B: 

B = B a''" "as A Va, A • • • A Va5. (1.2) 

Calling B~,,...~,, its space-time components and ~,...~,~ their curl, 

(1.3) 

it is attractive to assume that ~,.--~,7 is related to the curl of A~p by a duality 
relation: 

0~1" " ".tl'7 = const × e~,.. -~,7~,- - "v? vtA~'2v3v4" (1.4) 

If this is the case, then there should be a formulation of D = 11 supergravity which 
utilizes B~,...~6 as a fundamental field instead of A~,~2~3. Nicolai, Townsend and van 
Nieuwenhuizen tried to find it [3]. In this respect it must be noted that in the graded 
Lie algebra of Osp(32/1) the generators Zat...a5 are not abelian and mix, in a 
non-trivial way, with the space-time symmetries Pa, Jab" Indeed Osp(32/1) is de- 
scribed by the following curvatures: 

R ab ~- ~ab(o~) -~- l~2 V a / k  V b "~- ~ 3 ~ F  ab/k ~ "~- cl4 Bac''" "c4/k B b (1.5a) 
. C l .  • . C 4 ,  

R a = @ V  a - -  ½i r a/x + a tab, " +so,...CsBb,. .bs A B¢,...cs, (1.5b) 

R a,'" "as = @B a''" "as -- ½ i ~ r  a,'" "as A Ip + or5 Ea~'" "a'b'b2b3c'c2C3Bb,b2b3P,p2 A Bctc2c p 'p2,  

(1.5c) 

p = @~ + ia6Fa~ A V a + ict7Fa,.. "as~ A B at . . . .  5 ,  (1.5d) 

where ® denotes the Lorentz covariant derivative and @ab is defined as 

(ff~ab = dtoab __ toac A O~c b , 
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where a t ,  a 2 . . . . .  ol 7 are numerical constants, fixed by Jacobi identities [that is 
integrability conditions (dd = 0) of eqs (1.5) at zero curvature]. Because of this 
property of the algebra, a theory based on Osp(32/1) is bound to violate the 
Coleman-Mandula theorem [4] since it will provide a non-trivial unification of 
internal and external symmetries at the bosonic level [5]. Therefore, before looking 
into a B~,~...~, formulation of D = 11 supergravity it is advisable to perform an 
IniSnu-Wigner contraction of Osp(32/1) by setting 

O) ab ~ O~ ab , R ab --~ R ab , (1.6a) 

V a ~ e V  a , R a ~ e R  a , (1.6b) 

B a l  . .  "as _~, e B a l  "" "as, R a l .  . .a~ ~ e R a , . . - a ~ ,  (1.6c) 

~k --' ~/e~k, p ~ p ,  (1.6d) 

where e is a scaling parameter. In the contraction limit e--, 0 one obtains the 
contracted Osp(32/1) supergroup: 

R a b  : 6"~ab, 

R a - - - - ® V a - - ½ i ~ A F a ~ ,  

Rat ..  " a s  : ®Ba, '"  "as - -  ½ i ~ A  F a''" "as~, 

p = ® ~ ,  

(1.7a) 

(1.7b) 

(I .7c) 

(1.7d) 

which is free from the Coleman-Mandula disease since n o w  Zai...a5 is abelian. 
Even with these precautions, however, the result of Nicolai, Townsend and van 
Nieuwenhuizen was negative. The 6-form formulation of D = 11 supergravity doesn't 
seem to exist [3]. As the reader will see, we reach the same conclusion in a totally 
different set up. 

This being the state of the art, the situation we had to force was the following: 
(i) D = 4 and D = 5 simple supergravities are interpretable as local theories of a 

suitable supergroup. Their lagrangians can be retrieved in a systematic way using the 
group manifold approach [6] which utilizes the 1-form potential of the supergroup as 
the only fundamental field and the geometric operations d ( =  exterior derivative), 
A (---- wedge product) as the only allowed manipulations in the construction of the 
action. 

(ii) The supergroup interpretation of D = 11 supergravity and, hence, its geometric 
formulation within the group manifold approach is not straightforward, essentially 
because of the following fact: the field A~pp of the Cremmer-Julia-Scherk theory is a 
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3-form rather than a 1-form and therefore it cannot be interpreted as the potential of 
a generator in a supergroup. 
The solution of the dilemma shows up almost naturally when the problem is 
formulated in these terms. Since Cremmer, Julia and Scherk's theory contains forms 
of higher degree, then the physical fields are not 1-form potentials of a super Lie 
algebra, rather they are p-form potentials of a generalized Cartan integrable system. 
The notion of Cartan integrable system (CIS), discussed in sect. 2, is a natural 
generalization to the case of p-forms of the Maurer-Cartan equations defining a 
(super) Lie algebra. All the concepts advocated by the group manifold framework, 
namely curvature, covariant exterior derivative, cosmo-cocycle condition for the 
existence of the vacuum solution and rheonomy can be almost trivially extended to 
the case of a CIS manifold. In this paper we first introduce the notion of Cartan 
integrable system and then, after showing the existence of a specific CIS in D : 11 
we construct supergravity as a geometric theory on this CIS manifold. Later, once 
the theory has been obtained, we address the question whether our CIS is equivalent 
to an ordinary supergroup; namely, whether our 3-form A can be viewed as a 
polynomial in a set of ordinary 1-forms in such a way that, giving the exterior 
derivatives of these latter, we recover the exterior derivative of the former (A). 

The answer is yes and we actually get a dichotomic solution: there are two 
different supergroups whose 1-form potentials can be alternatively used to pa- 
rameterize the 3-form A. 

Both in establishing the integrability of our CIS and in solving the cosmo-cocycle 
condition for the linear part of the lagrangian a central role is played by Fierz 
identities. Because of that, in sect. 3 we study the systematics of D = 11 Fierz 
identities following the group theoretical technique fully explained in ref. [7]. In this 
respect we want to point out that Fierz identities in D = 11 and also the specific CIS 
we use were already derived by D'Adda and Regge in some unpublished notes [8] 
which were very inspiring for us. 

The structure of the paper is the following: 
Sect. 2 describes the notion of Caftan integrable system and the related concepts 

for the construction of a geometric theory on a CIS manifold. 
In sect. 3 we give the systematics of Fierz identities for Majorana spinor 1-forms 

in eleven dimensions and we introduce the specific CIS we shall use in the sequel. 
Sect. 4 deals with the construction of the lagrangian of D = 11 supergravity 

utilizing the cosmo-cocycle closure equation (vacuum condition) to fix the linear part 
and the 3-form gauge-invariance principle to determine the quadratic term coeffi- 
cients. 

Sect. 5 deals with the equations of motion and the rheonomy property. 
In sect. 6 we discuss the supergroup problem, deriving the equivalence of our CIS 

to two different ordinary supergroups whose 1-form potentials can be alternatively 
used to parametrize the physical 3-form A. 

Sect. 7 contains our conclusions. 



R. d "Auria, P. Fr~ / Geometric supergravity 105 

2. Cartan integrable systems 

It is very well known that a (super) Lie algebra can be described in two equivalent 
ways. The first is provided by the familiar commutation relations among the 
generators (GCR). One starts with a set of operators T A forming the basis of the 
tangent space T(M) to a manifold M. If we can write a set of commutation relations 

[ T A, TB} = cLBTL, (2.1) 

where cLB are structure constants satisfying the Jacobi identities, 

[r . ,  I t . ,  rc} } + (-)*("+C)[r . ,  [rc, r.} } + I t . ,  r.} } = 0, 

(2.2) 

then the manifold M is a (super) Lie group and (2.1) is its (super) Lie algebra. The 
Jacobi identities (2.2) is all we have to check in order to be sure that (2.1) defines a 
viable (super) Lie algebra. The second description of a (super) group, equally well 
known but, just for historical reasons, less used in the physical literature, consists of 
the Maurer-Cartan equations. 

In this set up one considers a manifold M and its cotangent space CT(M): CT(M) 
is the vector space of 1-forms on the manifold M. Given a basis o a of CT(M), the 
exterior derivative do '4 is a 2-form and can be decomposed in the basis provided by 
0 B / ~  0 C, 

do A = F A B c t l  B A o C .  (2.3) 

If we can find a set (o a } such that FABc are constants, 

FABC = - -  ½ C A (2.4) .BC, 

consistent with the integrability condition dd = 0; namely, if we can set 

~oB A o  c ~ A  - - 0  doA +~ "~.BC--  , (2.5) 

and, using, (2.5) we automatically get out 

ddaA= -C.aBc dot~ ?xac= -±CA2 .BcCI~.RsOR AoS AoC=O, (2.6) 

then M is a (super) Lie group and (2.5) are its Maurer-Cartan equations. The (super) 
Lie algebra of M is obtained via the introduction of a dual basis in the tangent space 
T(M): indeed if (TA} is a set of tangent vectors such that 

oA(TB) = 8~, (2.7) 
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eq. (2.5) implies eq. (2.1) and vice versa. In the same way eq. (2.6) implies Jacobi 
identities (2.2) and vice versa. Therefore, all we have to do in order to be sure that 
eq. (2.5) defines a true (super) Lie group is to check whether eq. (2.6) holds. Eq. (2.6) 
is the integrability condition of the Maurer-Cartan equations (2.5). 

As we have already pointed out, the two ways of describing a Lie algebra are 
totally equivalent, yet the first is more customary in physics. Dealing with gravity 
and supergravity theories, however, the second approach is more appropriate for the 
following reason. Since the ultimate goal is the construction of an action integral for 
the (super) group potentials, if we start with the Maurer-Cartan equations (2.5) the 
transition to the potentials is simply performed via the replacement of the 1-forms 
o A satisfying (2.5) (left-invariant 1-forms) with a set of 1-forms #A which do not 
satisfy (2.5) (soft forms or supergroup potentials). The 2-forms 

R A = R A [ l X ]  = d#A + 1 r . A  . s ~'.~.sc~ A #  c (2.8) 

expressing the deviation from the Maurer-Cartan equations are called the curvatures 
of #A. The physical action is the integral of a polynomial (in the exterior algebra 
sense) in/~A and R A with the eventual addition of some 0-forms. The rules of this 
game, which goes under the name of group manifold approach, are discussed for 
example in [6] or with more details in [9]: all supergravity theories so far examined 
fit nicely into this framework. 

The notion of Cartan integrable system appears to be a most natural generaliza- 
tion of the concept of (super) Lie group if we adopt the language of the Maurer- 
Cartan equations as the primary description of the group structure. 

Suppose that we have a manifold M whose dimension, however, is not, at this 
point, fixed. (In the case of the proper super Lie group instead the dimension of M is 
just equal to the number of generators T A or, equivalently, of left-invariant 1-forms 
oA.) Suppose that on M we define a set of p-forms of various degree {O A{p)} whose 
exterior derivative dO A(p) can still be expressed as a polynomial in O A(p) with 
constant coefficients: 

N 
dOA(P)+ ~ 1cA<P) A AOB.(P.)=O 

B l ( P l  ) -  - . B n ( P n ) ~ J  B I ( p l )  / ~  • . . 
n 

1 n =  

(2.9) 

The number N is equal to Pmax + 1, where Pmax is the highest degree in the set 
{OA(p)}. 

Obviously, since all addends in eq. (2.9) have to be (p  + 1)-forms, the constants 
C A{p} are different from zero only if B~(pO. • .B.(p~) 

Pl + " '"  + P n = P  + 1. (2.10) 
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Moreover, they have the prop.er symmetry in the exchange of any two neighbouring 
indices: 

CBA(P) I(POB2(p2)" " "Bi(pi)Bi+ I ( P i +  I ) "  " " Bn(Pn) 

: [ - -  lhBiBi+ '+PiPi+I [ - 'A(P)  (2.11) 
\ i ]  ,,...Bl(Pl)B2(P2)...Bi+l(p~+l)Bi(P~)...Bn(Pn). 

We say that eq. (2.9) is a generalized Maurer-Cartan equation (GMCE) and that it 
describes a Cartan integrable system (CIS) if and only if the integrability condition 
ddO A(p) = 0 follows automatically from (2.9). Explicitly, the condition for (2.9) to be 
a CIS is the following: 

N N 

ddOA(p)=_ ~ ~ :,A(p) Cs,(p,) "-'Bl(pl)-..Bn(pn ) Dl(ql)"'Dm(qm ) 
n : l  m : l  

x • D I ( q l ) ' ' ' A  " ' "  AoDrn(qm) A O B2(p2) A " ' "  A O B n ( P n ) = O .  (2.12) 

Eq. (2.12) is the analogue of eq. (2.6) and therefore it is just the analogue of the 
Jacobi identities (2.2) of an ordinary Lie algebra. 

Given a CIS all concepts advocated by the group manifold approach can be 
naturally extended. Let us go through their list. 

(i) Soft forms or CIS potentials. A set {O A(p)} satisfying the GMCE (2.9) is 
named a left-invariant set. 

A new set {H A(p)} which does not satisfy (2.9) will instead be a soft-set. H A(p) 
may be viewed as the Yang-Mills potentials of the CIS, in the same way as #A are 
the Yang-Mills potentials of the ordinary supergroup described by the ordinary 
Maurer-Cartan equations (2.5) 

( ii) CIS curvatures, CIS Bianchi identities and CIS covariant derivatives. Given a 
soft set H A(p), its deviation from the GMCE (2.9) is named the curvature set of 
(rl~(p)): 

N 

R ' 4 ( P + D = d H A ( P ) +  ~ I C a ( P )  A . . .  A I I B n ( P - ) = 0 .  (2.13) 
n = l  n BI(PO'''Bn(pn)I'[BI(PO 

The integrability of the CIS, condition (2.12), yields a differential identity on the 
curvatures R A(p+ 1) which is worth the name of Bianchi identity: 

N 

V R  A(p+I) = d R  a<r+l) + ~ Cff<<Pp))....~(p.)R Bt(p+I) A 1"[ B2(p2) A . . .  A Y [  B~(",) = O. 
n : ]  

(2.14) 
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In complete analogy with what one does in Chevalley cohomology theory (see [9]) we 
say that the 1.h.s. of eq. (2.14) defines the covariant derivative of an adjoint set. 

Suppose H '~p+l) is a set of (p  + l)-forms: the combination 

VHA(p+ l) : dHA(p+ I) + 
N 

c B A ( P )  H B l ( p l  + l )  / ~  l ' - I ' B 2 ( p 2 )  A • • • / \ I I  Bn(pn) 
i ( p l ) "  " "Bn(Pn) x~. 

(2.15) 

will be named the covariant adjoint derivative of H A(p+l). With this definition, the 
Bianchi identity (2.14) just states that the covariant adjoint derivative of the 
curvature is zero as happens with ordinary supergroups. Let us now assume that we 
have a multiplet VA(d-p- l) of forms whose degree is the complement of the degree of 
HA(p+ 1) with respect to some fixed number d. We say that (~'md-p- ~)) is a coadjoint 
set of d-form if 1, obtained multiplying H "40'+ ~) with ~'A(d-p- l) is an invariant: 

I = H A(p+ 1)/k ~}A(d-p- 1)- (2.16) 

Invariant just means the following: the covariant derivative of I coincides with its 
ordinary exterior derivative: 

VI  = v H  A<p+ l ) /~  Pa(d--p-- 1) + ( -- )P+ IHA(P+ 1) A ~7pa(d_ p -  l) 

=dI=dHmp+l)Ava(a_p_l)+(--1)P+lHA(P+l)AduA(d_p_~). (2.17) 

Eq. (2.17) provides the definition of coadjoint covariant derivative. Indeed, in order 
for (2.17) to be true, we must have 

N 

vpA(d_p_  l) : dpA(a_p_ l) _ ( _ ) p +  ~ y,  ,..n,<p,) ~A(p)B:(p2  ). . . Bn(p.  ) 

X Y [  B 2 ( p 2 ) / ~  " • • / ~ r [  Bn(p")/~ P B l ( d _ p l _  1) ' (2.18) 

where 

P l  + 1 = p  + P 2  + P 3  + " " " +P,-  

(iii) Contraction. The notion of contraction of a generic polynomial f~ in the soft 
forms II A(p) coincides with the concept of functional variation. Therefore, we set 

8 
,~(p) Ifl - 8iiA(p ) ft. (2.19) 
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(iv) Geometric actions and cosmo-cocycle equation for the vacuum condition. A 
(pure) geometric theory on a CIS manifold will be characterized by an action 
principle of the following type: 

fig = fM { A + R A(*'+ 1) /~ l tA(d_p_ 1) -'~ R A ( P  + 1 ) / ~  R B ( q +  1 ) / ~  ilAB ( d - p -  q-- 2) "F • • " } ,  

d 

(2.20) 

where M d C M  is a floating hypersurface of dimension d and A, Yard_p_1), 
VAB(d_p_q_2) are polynomials in IIc<") of degree d, d - p  - 1, d - p  - q - 2, respec- 
tively. 

The condition to be satisfied by (2.20) in order to admit the vacuum solution is the 
straightforward generalization of the cosmo-cocycle condition customary in the 
group manifold approach (see [9] or [6]). It reads 

A(P) IA + ~7gA(d-p-o=O, at RA(p+l) = 0. (2.21) 

In the sequel we shall construct D = 11 supergravity as a geometric theory on an 
appropriate CIS manifold. Before coming to that we want to address another 
algebraic question of some relevance. Is a Cartan integrable system reducible to an 
ordinary (super)group? 

This question arises naturally when we try to identify the manifold M on which 
the left-invariant forms O A(p) or their soft analogues H A(e) five. 

Indeed, as we pointed out at the very beginning of our discussion, the dimension 
of M has not been fixed, so we do not know how many independent tangent vectors 
T~ there are on which to project our generalized Maurer-Cartan equation (2.9). A 
very natural set of questions to ask is, therefore, the following: 

(i) Is there a manifold M of minimal dimension 8 - - d i m  M which supports the 
forms OA(P)? 

(ii) Is there a basis of T(M) composed of left-invariant tangent vectors (left 
invariant means that the components of their commutator are constants C .~ )  

[ T,,, Tp} = C~,eT~,, (2.22) 

and such that the value of O A(p) on a set of p tangent vectors T~ is a constant, 

oA+(r. , ,  .... r+) 
p a l '  ~ 2 " " ' a P  • (2.23) 

If the answer to both questions is yes, the manifold M is an ordinary (super) Lie 
Group G and the GMCE (2.9) are just the shadow of the ordinary Lie algebra (2.22). 
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The most appropriate way to answer these questions is to go over to a dual 
description of the Lie algebra (2.22) in terms of left invariant 1-forms o ~. The 
problem can be formalized as it follows. First we set 

O ' s ( P )  : 1KA(P) o " '  A o " :  A • • • A o % ,  
p @1 , ""  ' , ~ p  

(2.24) 

where "~a,,..,%t'A(P) are constants. Next we put 

d o  '~ + ½C.%voE A o ~' : O. (2.25) 

Then the constants K A(È) and C.%v have to satisfy two conditions: 
( A )  Jacobi  identit ies on C ~ • "E~'" 

ddo@=__~r~  rE  o S A o n A o v : O  2 " 'B ' r " "  8~ (2.26) 

( B )  Equiva lence  with eq. (2.9), namely 

d e  "4(p) = K A ( p )  d o " '  A 0 `'2 A • • • A o %  
¢~1 " " " @ p  

- - _ I K A ( p )  C a, o E A o V A o ' ~ 2 A . . .  Aoap 
- -  2 a I -  - -ap - E l y  

~- - -  E ! c A ( P )  "Bn(p.) ~)BI(pl )  A e B 2 ( p 2 )  A " ' "  A e B ~ ( P ' )  
n = l  n BI(PO'" 

N 
= -  E I : ' A ( P )  K B I ( P ' )  K B 2 ( p 2 )  

n X"Bt(PO'" .B,(pn)  I P 2 2 
n = l  E~ Bp, E~... E:2 

I I n n 

• • • K E A p D  a B~ A • • • A o  Er~ A .  • • A o  E' A • • • A g  E," . (2.27) 
n n 

E ,  %. 

Any solution of these algebraic equations on the coefficients C.%y and teA(p) yields 
a supergroup interpretation of the CIS and reduces a theory on a CIS manifold to a 
theory on a ordinary supergroup manifold. 

What is by no means guaranteed is the uniqueness of the solution of eqs. (2.26) 
and (2.27). For instance in the case of the D = 11 supergravity CIS we shall find a 
dichotomic solution yielding two supergroups as possible substitutes of the CIS. This 
means that a Cartan integrable system is a compact way of describing a collection of 
(super)groups and a geometric theory on a CIS manifold is actually a class of group 
manifold theories which are physically equivalent. 
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3. Systematics of Fierz identifies in D : 11 and identificafion of a Cartan 
integrable system 

The basic technical tool in the derivation of geometric supergravity theories both 
at the on-shell and off-shell level is provided by the group theoretical decomposition 
of gravitino 1-form wedge products popularly called Fierz identities. This group 
theoretical technique has been described in [7] and was already applied to the 
auxiliary field problem of D = 5 supergravity in [7] and of D - 10 super Yang-Mills 
theory in [10]. In this section we present the systematics of D = 11 Fierz identities to 
be used both in the identification of the CIS and in the construction of the 
lagrangian. Most of the results of this section were already obtained by D'Adda and 
Regge in unpublished notes. They used different normalizations and conventions: 
however, an a posteriori comparison of our numbers revealed a perfect match 
providing a very important check. 

We start by giving the dimensionality of the SO(l, 10) representations appearing 
in the symmetric product of two, three and four gravitino 1-forms ~k (~P is a spin ½ 
Majorana 1-form). The notations of table 1 are similar to the notations of table 1 of 
ref. [10] and are easily explained. 

The eleven-dimensional Lorentz group SO(l, 10) has, like SO(1,9), rank 5 and 
therefore its irreducible representations are labeled by 5 integer or half-integer 
numbers. 

In the integer case we are dealing with a bosonic representation and the 5-num- 
bers X1, ~2, X3, ~4, X5 labeling it can be identified with the number of boxes in each 
row of a Young tableau. In this way the representation (1)2(0) 3 corresponds, for 

TABLE 1 
Dimensions of SO(I, 10) irreps appearing in the symmetric products of 2, 3, 4 irrep (½)5 

Bose irreps Fermi irreps 

type dimension type dimension 

(0) 5 1 
(1)(0) 4 11 
(1)2(0) 3 55 
(1)3(0) 2 165 
(1)4(0) 330 
(1) 5 462 
(2)(0) 4 65 
(2)(1)(0) 3 429 
(2)2(0) 3 1144 
(2)(1) 4 4290 
(2)2(1) 3 17160 
(2) 5 32604 

32 
3 1 4 (:)(:) 320 

(3~2(1~3 1408 
\ 2 ]  \ : 2  

(2)  5 4224 
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instance, to the tableau B , namely to an antisymmetric tensor T~,~. Analogously 
(2)2(0) 3 corresponds to the tableau ~ that is to the tensor Tala2 while (15) is a 

a3a4 

skew-symmetric 5-index tensor ~ Ta,.. "as" 
In the half-integer case the representation is of the Fermi type. The corresponding 

object is a spinor tensor having in its vectorial indices the symmetry of the Young 
tableau A1 -- 1, ~k 2 __ l ,  ~3 --  1, h4  __ ½, ~5 -- ½" Moreover, it is irreducible in the sense 
that whatever trace can be obtained by contracting it with F-matrices is zero. 

For instance the irrep (~)(½)4 is a spinor tensor with the symmetry (1)(0) 4 in its 
Bose indices, namely -~. The irreducibility means Fa~- a = 0. Analogously (~)2(~)3 is 
a spinor tensor with Bose indices of the type (1)2(0) 3, namely - (skew symmetric). 

~ a l a  2 

The irreducibility condition is Fa2~_a,a2 = O. 

The use of numerology provides an easy tool to work out the representations 
appearing in each symmetric product. We find 

I 5 {(½)3 ® (~) }sym=(1)(O) 4 ~(1)2(0) 3 ~D(1)5 ' 

32 X 33 ) 
- 5 2 8 =  11 + 55 +462  ; (3.1) 

, 1 , { ( 2 )  ~ ( 2 )  ~ ( ~ ) ) s y m -  I 5 3 1 4 3 2 I 3 3 

3 2 X 3 3 X 3 4  __ + 320 + 4 2 2 4 /  32 + 1408 (3.2) 
3 X 2  ] 

1 5 ( ( 1 ) 5  ~ (1)5  ~ (1)5  ~ ( ~ ) ) s y m  = 

( 0 ) 5 ~ ( 1 ) 3 ( 0 ) 2 ~ ( 1 ) 4 ( 0 ) ~ ( 1 ) 5 ~ ( 2 ) ( 0 ) 4 @ ( 2 ) ( 1 ) ( 0 ) 3 ~ ( 2 ) 2 ( 0 ) 3 ~ ( 2 ) 2 ( 1 ) 3 ~ ) ( 2 )  5 , 

32  x _ 3 3 _ x  3_4>< 35 = 

4 X 3 X 2  

1 + 165 + 330 + 4 6 2 +  65 + 429 + 1144 + 17160 + 3 2 6 0 4 ) ,  

(3.3) 

These decompositions are made explicit in the following way. Let ~k be the Majorana 
gravitino 1-form and ~ =  ~ktF0 = ~kTC be its bar conjugate. Then we can write the 

~(320)¢1~a'~(320) ~ 0), Fierz decompositions given in table 2, where .-(32), -a  ~ - - a  
"-(a~8)(Fa2-~aO~8)=0), "~a a (Fa~'--a a4a = 0 )  are, respectively, the irreducible 

I 2 I 2 I ' ' "  5 I ' ' "  5 
1 5  3 1 4  3 2 1 3  3 5  representations (~) , (~)(~) , (~) (~) , (~) listed in table 1. Similarly, X °), X (65)~, 

b 
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TABI~ 2 
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Explicit Fierz decomposition 

t~A = 3 2 ( r a ~ A r % p - - l r ' a l a 2 t p r  . . . .  / ~ p A t - ~ a l "  . . . .  ~pI ~al " ' a s A t ~ )  

~p A ~ A  Fa~b = -~a 32°) + ~ P a  --(32) 

, ~ P  d, - -  ~ ( 1 4 0 8 )  _ _2 F w ( 3 2 0 )  Jr_ _ l p  ,~ (32)  
~ A ' q ' * a l a 2 ~ / " -  ~ala 2 9 [a l~a2]  I I * a l a 2 ~  

.k A ~TA Fa,. lb - -  ~(4224) _]_ '~ r .--(1408) 
• "asv - -  ~at" " "a5 Z'l[ala2a3~a4a5] 

5 F ,~ (320) 1 i~ ~(32) 
~- 9 [a I • • -a4--a5] - -  if7 a I • • -a 5 -  

~ A  Fa, ~ A ~ A  ra2 ~ = X(65)+ ill8 . . . .  X ( ' )  
a2 

-- -- (429) X(165 ) A r.,afl. A ~ A ra,~ = X.,a2 + . . . . . .  
a3 

.~-A P .t. - -  V(a I la4,4) ± V(330) 

a3a4 

4 ~ ,  x~ (65) 2 ~ala 2 v ( l )  
-~-~0 lal A a 2 ] -  u ."t 

[a 3 a41 11 a3a 4 

• X(462) (429o) 
~A to,....5¢ A ~ A  r.~¢ = %..o~b,-..b~ b I " " 'b5 Jr- X£/I" . . . .  

a6 

X(330) ~A r., .  .... + A ~ A F  . . . .  +=;6iea,. . . . .  b , . . . b ,  b r " b ,  

i (429o) (17160) 
--  , ,  t X b l ' "  ' b s q -  X a u " a  5 ~bl" " -b5a I • as ta  6 a7 ] a6a 7 

-- ~j° 8 ~a6ja~X(~136a~ l -- i 1 2 0 0  ~[aa6 )(a(2~2) aslaT] 

/ ~ ( 1 6 5 )  X ( 3 3 0 )  Xa(146.2)as, . (429) v ( 1 1 4 4 )  . ( 4 2 9 0 )  v ( 1 7 1 6 0 )  
la2a3, a l . . . a 4  , . . .  . ,~a la2 ,  A a l a 2 ,  . , ~ b l . . . b 5 ,  A a l ' ' ' a 5  a r e ,  respectively, the 

a3 a3a4 a 2 b l b 2  
bosonic irreducible representations (0) 5, (2)(0) 4, (13)(0) 2, (14)(0), (1) 5, (2)(1)(0) 3, 
(2)2(0) 3, (2)(1) 4, (2)2(1) 3, also listed in table 1. Moreover, we have 

.e~a(72). a6 = E a t . . . a 6 b , . . . b s X ( b 1 4 6 . 2 ) b s .  (3.4) 

As we have explained in [7] the decomposition of table 2 is a substitute for all Fierz 
identities which correspond to the appearance of the same irreps in several different 
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products of fermionic currents. The irreps - and X form a complete and orthonor- 
mal basis for the decomposition of, respectively, 3-tk and 4-ff terms. 

With these tools we are now ready to address the question about the Cartan 
integrable system suitable for D -- 11 supergravity. 

We first narrow down our hunting ground by taking into account the following 
remarks. 

(i) Since supergravity contains ordinary gravity plus the Rarita-Schwinger field, 
our CIS must be an extension of the following ordinary Maurer-Cartan equations: 

d t o  ab - ~Oa.c/~ tO cb = 0 ,  

o v  a - A - l i (  A r %  = o ,  

d 6  - ¼~o ~b A Fab ~ : O, 

(3.5a) 

(3.5b) 

(3.5c) 

which correspond to the super Lie algebra of the graded Poincar6 group in eleven 
dimensions. The indices a, b, c run from 0 to 10 and the standard minkowskian 
metric 

T a b  = 

. . . . . .  0 

0 --1 

0 - 1  

(3.6) 

is used in the raising and lowering operations. 
The skew-symmetric o~ ab= -~0 ba is the Lorentz connection 1-form, V a is the 

elfbein 1-form and ~ is the Majorana gravitino 1-form. The conventions adopted for 
F-matrices are listed in the appendix. 

(ii) Since in D = 11 there is no internal symmetry group whose indices can be 
used and since we admit only massless particles of spin smaller than 2 the only other 
Bose fields which might enter the lagrangian are skew-symmetric tensors of the type 
A~,~2...~p. These latter are nothing other than p-forms. 

(iii) If we assume that supersymmetry is linearly realized, the transformation rule 
of A~,...~p must be of the following type: 

6A,,...~,~ = const × ~I't~,:..,,_ ~,1" (3.7) 

Eq. (3.7) means that, in the vacuum, which is what matters for the derivation of 
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GMCE, the exterior derivative of A (p) has to be the following: 
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dA (p) = apffA Y a ' '  -ap_,¢ A Va, A - . .  A V:p_,, (3.8) 

where etp is some non-zero constant. Since the only non-vanishing currents are those 
corresponding to symmetric F-matrices, namely 

~A Fa¢, ~A Fa'a2¢, ~A r", " "a5¢, (3.9) 

and their duals 

~AFa,.--a,0¢, ffAFa, . . . .  9¢, ~ A F a , " a , ¢ ,  (3.10) 

we conclude that the only a priori viable forms are A (2), A 0), A (6), A (7), A do) and A (u). 
The Cartan system obtained by the addition of eq. (3.8) to eqs. (3.5) must, however, 
be integrable; namely, we must have 

d d A ( P ) = a p ® ( ~ / A F ~ " " a . - ' ¢ A  Va, A . . .  AVa~_, ) 

= ( p  _ 1 ) % ½ [ A  to,  . . . .  p-'¢ A~A Fa,¢ A Va2A"" AVap_, = 0 .  

(3.11) 
Whether eq. (3.11) holds depends on the structure of the Fierz identities listed in 
table 2. Indeed, in order for (3.11) to be true we must have 

(3.12) 

which happens only if 

p - - 2 = l ,  p - - 2 = l O ,  

p - - 2 = 2 ,  p - 2 = 9 .  (3.13) 

Conditions (3.13) are easily understood recalling eq. (3.3) which states that the only 
antisymmetric tensors absent in the decomposition of {(½)5 ® (½)5 ® (½)5 ® (½)5}sy m 
are (1)(0) 4, (1)2(0) 3 and obviously their duals (1)l°(0), (1)9(0) 2. 

Therefore, the viable p-forms which can be embedded together with o/b, V% ¢ in a 
CIS are those among p --- 2,3,6,7, 10, 11 which also satisfy eq. (3.13), namely 

p =  3, p =  11. (3.14) 
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Now since A (I I) is a form of maximum degree, its curl ( =  exterior derivative) cannot 
enter the lagrangian of D = 11. Hence it is to be dismissed. Therefore, we conclude 
that the CIS corresponding to a linear representation of supersymmetry in eleven 
dimensions later to be called CI is described by the following generalized curvatures: 
Cartan integrable system C~ 

@t ab= dto a b -  60ac A ~Oc b, (3.15a) 

R " = ® V a - ½ i ~ A  ra~k, (3.15b) 

p = ® f f ,  (3.15c) 

R t2 = dA  - ½~A A V a A V b. (3.15d) 

The GMCE obtains when ~,b, V a, 1~, A are left invariant and the curvatures are set 
to zero. In the soft-case, when the curvatures are different from zero, the integra- 
bility of the system shows up as Bianchi identities: 
CIS Bianchi of C 1 

V R  ab = °~Rab = 0, (3.16a) 

V R  a = @R a + R ab A V b -  i ~ A  Fap = 0, (3.16b) 

v p  = ®o + ¼Fab'k A R "b = 0,  (3.16c) 

VR c~ = d R  u - ~ A  F~'a~p A V~, A V~ + ~ A  r'~,a~b AR~ A V . = 0 .  

(3.16d) 

If {Pab, P~, n, Pro) is a coadjoint set where Pab, P~, n are of degree ( d -  2) and Pt~ is of 
degree d -  4, and we write the invariant 

I =  RabAPab + R a A p a +  ~ A n + R D APtz, (3.17) 

the procedure outlined in sect. 2 (eq. (2.16) and following ones) yields the definition 
of the coadjoint covariant derivative: 
Coadjoint covariant derivative of C l 

VPab = 6"~Pab "~- V[aA l, Pb] "~/~A F~bn, (3.18a) 

VJ'a-~@~a--~Ar'al,~p A Vb AprT,  (3.18b) 

Vn = ®n - I',,,,,fl, A Va 'A  Va2 A pD --iFa~bAt 'a, (3.18c) 

VPD -- dPt~. (3.18d) 
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Being through with these preliminaries, we could now start turning the crank and 
constructing our geometric lagrangian based on Cl. We wish, however, to anticipate 
a problem we are going to have. It concerns the propagation of the 3-form A, namely 
the A, ,  o field of the Cremmer-Julia-Scherk formulation [1]. In fact, since A~,  o is a 
physical particle, it demands a kinetic term of the type 

*R tz A R  m (3.19) 

involving the notion of Hodge duality on the space-time submanifold. As is well 
known, Hodge dualization is a meaningless operation in the geometric group 
manifold approach and terms like (3.19) have to emerge in the second-order 
lagrangian after the elimination of some non-propagating fields appearing in the 
first-order one. So far only two mechanisms are known to get this result. One was 
found in D = 5 supergravity [11, 12] and also in the coupling of a scalar field to 
gravity [16]. In D = 5 supergravity it works in the following way. 

The torsion equation, obtained through the ~,b variation yields 

e,,t,¢,c2e3Re' A V e2 A V ¢3 + 7IV a A Vt, A R ® = O, ( 3 . 2 0 )  

where 71 = -+- 1, R c, is the supertorsion and 

a * = d B  ® - A ( 3 . 2 1 )  

is the curvature associated to the Maxwell 1-form B = B~,dxC Eq. (3.20) implies that 
the supertorsion R" has space-time components proportional to the curl of B~,. 
Indeed the solution of (3.20) is 

R ® = F,,bV" A V b, (3.22a) 

R a = _ ±~,abcdf17"  IZ A V f .  
4 Jl ¢ a bcV d , • (3.22b) 

Inserting (3.22) back into the first-order lagrangian, one realizes that the geometric, 
Hodge-dual-free, term, 

R ® / ~ R  a / ~  Va ,  (3,23) 

becomes the kinetic term, 

FrSFrse, , . . .asV a' A • "" A V "5, (3.24) 

of the B~ field. Unfortunately, this beautiful mechanism is not accessible to the A~,~p 
field of D = 11 supergravity because in D = 11 the analogue of eq. (3.20) would be 

eabc, . . . .  9R c' A V c, A . . .  A V c9 + ~IV a A V b A R (8) = 0 ,  (3.25) 
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where R ts) is the curl of a 7-form At,. --~,7 and not of a 3-form Az~z2~3 or of a 6-form 
Am...~6 , interpretable as the dual potential of the former. 

The second mechanism for the geometric generation of the dual was introduced in 
N =  2 and N =  3 supergravity by one of us [13]. It consists of the addition of the 
0-form Fab as an independent dynamical field and it corresponds to a first-order 
formulation of the Maxwell lagrangian. The analogue of this mechanism in D = 11 
supergravity would be the addition of a 0-form Fa~...a. In the sequel we shall be 
forced to introduce this trick, which, however, results in an impure character of the 
geometric lagrangian. In fact, Fa,...a, is not directly interpretable as the 1-form 
potential of any group generator. 

Because of that, before resorting to this mechanism we shall explore another 
possibility suggested by conformal supergravity [15]. In that theory one has a 
dilation field D and an axion field A. The equation of motion of the conformino, 
namely the gauge field of the S-supersymmetry, implies that curl R(D) is the dual of 
curl R(A). This relation inserted back into the lagrangian transforms the geometric 
term 

R ( A ) A R ( D )  

into the kinetic term of the axion. A similar thing might happen also in D = 11 
supergravity. If, besides A we also had a 6-form B, then we might hope that the 
gravitino equation forces curl B to be the dual of curl A, transforming, in this way, 
the geometric term 

R ( A ) A R ( B )  

into the kinetic term of A. 
This conjecture is to be taken into serious consideration because it is also 

supported by a remarkable algebraic fact rooted in Fierz identities: the CIS C~ can 
be extended in a non-trivial way, precisely by the introduction of a 6-form B. 

Indeed if we add the following equation to eqs. (3.15) we still get an integrable 
system, hereafter named C2: 

dB -- ½i~A r a ,  "as~/A Va~ A " "  A Va5 

--~d/AI'a'aM/AVa AVa2AA=O.  (3.26) 

The Maurer-Cartan equation (3.26) is integrable because 

d d B =  --¼~AF~"~4m~kA Va, A . - -  AV~ A~rmA~ k 

-I- 15~A Fam~ A Va A ~A Fm~ A..'I 

+ ~ A  Fa,a2~b A ~A ra3a4~/A V a, A . . .  A V a4, (3.27) 
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and 

lffA F a,'" "a4m~l A I~A l'~m~ = 3ffA F [ala2~ A ~A Fa3~']~k, 

f fA Fam~k A ~A F,.~k = 0, 

as may be checked by looking at table 2. 
The Bianchi identities and coadjoint 

respectively: 
C 2 Bianchi identities 

V R  ab = @R ab = O, 

v R  a = @R a + R ab A V b -  i ~ A  rap = 0 ,  

Vp  = 6~p + krab ~ A R a° = O, 

covariant derivative of the 

VR E] = dR u -- ~ A  ra'a2~/A Va, A Va2 + ~ A  ra'a2~ A R~, A Va2 = O, 

( 3 . 2 8 a )  

(3.28b) 

C z CIS are, 

( 3 . 2 9 a )  

(3.29b) 

(3.29c) 

(3.29d) 

VR ® = dR e - - i~A Fa'" " "a'p A V~, A " '"  A V~, 

+~i~AFa, ' "o ,qJARa,  AVa A " '"  AVe, 

- - 1 5 ~ A F a ' a ' o A A  A Va, A V a z + ~ A F a ~ a 2 ~ A R  n A Va, A Va2 

- 15~A F"'"2~ AA A R,,t A Va~ = 0. (3.29e) 

C 2 eoadjoint eovariant derivative 

X7Pab = @p,,b + VI,,A gbl + ¼~A I',,b~ , (3.30a) 

v p ,  = ®p - qTA Fabq~A VbA  V u --~i~AFab,. . .b,+A Vb'A " ' '  A Vb*A p® 

- -  15~A Fab ~ A V b AA A ~®, (3.30b) 

Vn=®n-- i I 'aq~Av , , - -Fa 'a~qjA  V,, A V~ A v  D 

- - i r a " " a ' ~ b A  Ira, A . . -  AVaAP ® - -  1 5 r a t a 2 1 / J  A Va, A Va2AA Ap®, 

(3.30c) 

Vv® = dr®, (3.30d) 

Vpu = dp[] - ~qTA Fala2~ k A Va, A Va2 A p®, (3.30e) 
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where R ab, R a, R u,  p are given by eqs. (3.15) and 

R ® = d B  - ½ i~A  r a''" .a,~ A Va, A . . .  A Va, 

- ~ k  A Fa,%k A V~, A Va2AA (3.31) 

is the curvature associated to the 6-form B; p® is a ( d -  7)-form, vn is a ( d -  4)-form 
and lab, ~ ,  n are ( d -  2)-forms. 

In the following sections we construct the geometric theory of the C 2 CIS manifold 
and we show how the requirement of gauge invariance under the transformation 

~A = d ~ ,  

necessary for rheonomy, kills all the B-dependent terms reducing the theory to the 
C~ CIS manifold. This result is in full agreement with the results of ref. [3] and might 
be related to the fact that eq. (3.26) introduces a non-linear representation of 
supersymmetry. In any case it is a confirmation of the fact that a magnetic dual 
formulation of D = 11 supergravity does not exist and forces us to resort to the 
0-form trick. 

4. Construction of the geometric lagrangian 

In this section, following the scheme outlined in eq. (2.20), we construct a 
geometric action associated to the CIS C 2. It will be of the following type: 

~=fM { A + R a b A P " b + R a A ~ ' a + P A n + R D A u r n + R ~ A l p ® + R A A R a A v A " } '  
11 

(4.1) 

where Mll is an eleven-dimensional floating surface in the C 2 CIS manifold and 
accordingly, all addends in the action (4.1) are 11-forms. 

We shall make use of the following three building principles: 
(a)  The action is locally Lorentz invariant. This means that A, Pab, Pa, n, UP, 

P®, ~'AS are polynomials in V a, ~b, A,  B the spin-connection to ab being excluded. 
Moreover, everything is an SO(l, 9) good tensor. 

(b)  The vacuum ( R a b = R  a = R  ® = R D = p  =0)  is a solution. This condition is 
fulfilled if the following cosmo-cocycle conditions are satisfied by the 
{Pab, va, n, PD, P* ) multiplet: 

VPat,= 0 (4.2a) 

__~ A + Vv,~ = 0 (4.2b) 
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+__J A + Vn = 0 at R ab = R a • R D = R e = P = 0. (4.2c) 

D I A + X7J'D = 0 (4.2d) 

A + V~'. = 0 (4.2e) 

( c )  T h e  equa t ions  o f  m o t i o n  are  i n v a r i a n t  u n d e r  the  scale  t r a n s f o r m a t i o n  wh ich  

l eaves  the  G M C E  invar ian t .  T h e  last requirement needs further explanations. Let us 
first note that the definitions (3.15) and (3.31) of the C 2 curvatures are invariant 
under the following scale transformation: 

R ab --> R ' a b  : R ab , o9 ab ---> o) pab : ~o ab , 

R a ~ R 'a = e R  a , V a ..~ Vta = e V  a , 

R[ ]  ~ R , D  = e 3 R  ra, A ~ A '  = e3A , 

R ® ~  R '® = e 6 R  ® , B ~ B '  = e 6 B ,  (4.3) 

where e is a real parameter. Since the equation of motions of the theory are relations 
among the curvatures and the potentials, in order to be consistent, they must not 
depend on the specific choice of e. 

Indeed every value of e singles out an element in an equivalence class of 
isomorphic CIS. The equations of motion of the dynamical theory should depend 
only on the equivalence class and not on the specific element in the class. Otherwise, 
it is almost evident that the theory will be trivial, admitting, at most, the vacuum 
solution. In fact, if the equations of motion depend on e, they will provide relations 
among the curvature components also depending on e. 

Suppose that, this notwithstanding, some of the curvature components are differ- 
A - -  A ent from zero R. F~.-.Fp--f~,.--Fp(e)" Giving a special value to e we could, nonethe- 

less, put them to zero yet working with the same CIS as before. The only solution to 
this paradox is that f : A . . . e ,  = O. 

This scale criterion is very powerful and easily implemented: it is just sufficient 
that, under the transformation (4.3), all terms in the action (4.1) scale with the same 
power of e. Since the Einstein term 

R ab A V cl A • • • A VCgeabc~...c9 (4.4) 

has to be there and it has scale dimension e 9 this fixes the scale of all other terms. 
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The scale criterion was not clearly stated in previous work on the group manifold 
approach, but it can be checked that in existing theories like D = 4 and D = 5 
supergravity it just kills those terms which have to be suppressed in order for the 
theory to be non-rigid. (For example in D = 4 the requirement of Lorentz and parity 
invariance plus the vacuum condition yields the action 

(~= fM,{Rab A VC A Vdeabcd+ 4 ~ A  y52tapA Va + aRaab~A ys~.ab~} , (4.5) 

which is trivial unless a = 0 (for a discussion of this point see ref. [9], p. 26). Now it 
happens that the last term in (4.5) has scale dimension e while all the others have 
scale dimension e2: hence it must be suppressed.) 

The most general form of the polynomials A, V~b, 1,~, n, I,[], re ,  1,AB which fulfills 
criteria (a) and (c) is the following: 

A =- a ~ A  r a ' a ~  A ~ A  Fa3a,~ A V a5 A . . .  A va'tea,...4,, 

+b~A Fa,"~kA~A F~,~,~kA Va, A--- AV~ AA, (4.6a) 

Pab = - -  l e a b c , "  "c9 ][/'c' A . . .  A V c9 ,  (4.6b) 

~ : i f l y a A ~ A r C , ' " c , ~ / A  VC~A . . .  AVC, ,ec, . . .c , ,  

-I-fl2~A Fab4~A Vb A B ® d-i f l3~A rac,...c,~ A V c' A . . . A VC" A A ,  

(4.6c) 

n = hiFc,...~8~ A V ¢, A . .  • A V ~8 + h2Fab ~ A V a A V b A B ® 

-~-ih3Fc, . . . .  I~A V c' A --- AV~sAA, (4.6d) 

J'f7 = i k l ~  A Fa t . . . .  ~ A V a' A " ' "  A V a5 -t-k2~A rab ~ A V a A V b AA,  

(4.6e) 

p® ---- k3~A Fab~b A V a A V b, (4.6f) 

R A A R n A p A n = y I R U  A R  m A A  +~¢2 Rtz A R  ®, (4.6g) 

where a, b, ill, f12, f13, hi, h2, ha, k', k",  k, ~1, ~2 are numerical constants. The first 
eleven, namely all except 'h and Y2 are determined by the vacuum conditions (4.2). 
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Implement ing eqs. (4.2), after extremely long but  straightforward manipulat ions 
which make essential use of  the Fierz-decomposit ion of  table 2 we arrive at the 
following system of 16 algebraic equations: 

(EQ1) 

(EQ2) 

(EQ3) 

(EQ4) 

(EQ5) 

(EQ6) 

(EQ7) 

(EQ8) 

(EQ9) 

(EQ10) 

(EQ1 l) 

(EQ12) 

(EQI3)  

(EQ14) 

(EQ15) 

(EQ16) 

h l - - 2  , 

14 
/31 - 3T. hl  = O, 

/ 3 2 - h 2 = 0 ,  

/33 - -  ~h3 ---- 0 ,  

k 2 - 15 (k3+kl)+2b=O, 

6/33 + 4b - -  ~ /32  - -  k2  - 15k3 = O, 

7 a -  15 ~/31 -~- ~6 (k l  "~ 1/32) + ~6 (-52k3 - / 3 3 )  = O, 

/33 5k3+5(~/32+k~)+ " - 6 .~/31 = 0 ,  

- ~ ' ~,)+~-~0o(5k3-/33)--0 -½/3, ~(~/32 + 

/32 = h 2 ,  

6133 + ( 4 b - - ~ h  2 -- 15k3-kz)=O, 

12/33 -- 45h 3 + (4b - ~ h  2 - 15k 3 - k2) = O, 

-/33 +~h3 + ( 4 b - ~ h 2 -  15k3- k2) =0 ,  

• • ) ~ k l )  + 2 .6!5!3f l l  + - -12 5 ! ( ½ h 3 - - k 3 ) + 2 4  5 . ( ~ h 2 +  7 ! 4 ! 4 a = 0 ,  

_ 2 8 h l  ± 5 -- 18h 2 -- gk  1 - ~h 3 + 2k + 80/31 - 13AZa = 0,  

-- 112h I -- l h  2 - k I - 7h 3 + 7k 3 - 120ill + 672a -- 0.  (4.7) 

These 16 equations are subdivided in the following way. (EQ1) - (EQ4)  come f rom 
condit ion (4.2a) and correspond, respectively, to the annihilation of  the following 
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terms: 

(EQ1) 

(EQ2) 

(EQ3) 

(EQ4) 
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e a b c l . . . c ~ A  F c ~  A V c2 A • • • A V c9, 

VaAVbA~AFC,'"C,~AVC6A . . .  AVC,,ec,...c,,, 

V I a A ~ A  ~Irn~ A V m  A B ,  

V[aA~AFb]c,...~,~A V c' A " "  AV~4AA.  (4.8) 

(EQ5) comes from condition (4.2d) and corresponds to the annihilation of the term: 

(EQ5) 

(EQ6)-(EQ9) come 
annihilation of: 

(EQ6) 

(EQ7) 

(EQ8) 

(EQ9) 

X ( 3 3 ° )  a /~  V a' /~ " ' "  /~ V a4. (4.9) 
1 ' ' "  4 

from condition (4.2b) and correspond, respectively, to the 

They correspond to the annihilation of the following terms: 

(EQ10) --a"~(320) A V a A B  ® , ra,-~(32) A V a A B  ® , (4.1 la) 

(1408) A Val  A ' '  • A V a4 A A ,  (4.11b) (EQI I) F[a,a2 ~ a3a4 ] , ,  

(EQ12) r ~" O2°)A V a, A . . .  A V a 4 A A ,  (4.1 lc) 
~[ala2a3 ~ a4] 

(EQ13) F a . . . . a 4  %~(32) A V a' A . . .  A V a4 A A ,  (4.11d) 

(14o8) A V a' A . . .  A V a7 (4.1 le) (EQ14) Ft,,~-.-as-- ","~1 ' 

(EQ15) Fa~" • ",,6--a7~'(320) A V"~A "'" AV a;, (4.110 

(EQ16) F a , . . . a ?  "~<32) A V a' /~ . . .  /~ V a~ . (4.1 lg) 

Xa O3°) A V c, A VC2A V c3 AA, (4.10a) 
CLC2C3 

x o3o) A A . . .  A (4.10b) 
I" " "f4 

X/(,~2) A V f, A . . .  A V A A V a, (4.10c) 
I" " "f5 

X/(4920) ^ VA A . . .  A V / , e / '  "f" (4.10d) 
1"" "f5 " "  a 

where X O3°) X } ~ 2 ! / ,  yO29o) / , . - . A  . . . .  ~ " A . . . / 5  are the irreducible representations appearing in 

the decomposition of talkie 2. Finally (EQ10)-(EQ16) come from condition (4.2c). 
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The linear system (4.7) contains more equations than unknowns: many equations, 
however, are linearly dependent and because of that the system is solvable. Actually 
a little bit of inspection reveals that, after use of (EQ1)-(EQ4) the remaining 
equations depend only on the variables 

a, b, fl,, (½f12 + kl) ,  (f13 -- 5k3), k2- 

With respect to these unknowns the system has a 1-parameter family of solutions. 
The reason why 4 variables patch together in 2 fixed combinations is that there are 
just two Lorentz invariant 10-forms whose scaling degree is e 9, namely 

t ~ I = i ~ A F a , ' " a 5 ~ A V ~ , A  . . .  A V a s A A  , 

~2=~Arab~bA V~A Vb A B ®. 

(4.12a) 

(4.12b) 

~linear = Rab A Pab "-~- Ra A v,, + R D A v~  + R ~  A v .  + ~ A n  + A, 

~inear = ~ linear + a l  d~l + a2 d~2 .  

Obviously (4.13a) and (4.13b) are physically equivalent because they differ by the 
total divergence 

a l d ~ l + a 2 d ~  2 . (4.14) 

On the other hand, explicitly computing the derivatives d ~ l  and dt~2 we see that: 

' = ' + R ® A  ' + ~ A n ' + A '  (4.15) ~linear Rab AV'b W Ra Av"  + R D AVQ p® , 

where (v~'b, 1,', v~,  v~, n', A} is a new solution of the cosmo-cocycle condition (4.2) 
which is related to the previous one by the following transformation: 

a ' = a + l - ~ 2 ( a , - a 2 ) ,  b ' = b - ? o q ,  

fl~ = i l l ,  fl~ = t2  + 2a2, fl~ = t3  + 5 a , ,  

k~ = k I - a l ,  k~ = k2,  k; = k 3 + tX2, 

h '  1 = h i ,  h~ = h E + 2 a 2 ,  h~ = h a + 2a I . (4.16) 

It follows that the linear system (4.7) must be invariant under the transformation 

(4.13a) 

(4.13b) 

Why is this relevant to the solution of system (4.7)? The argument is the following. 
Assume that we have a solution {Yah, v a, vD, v . ,  n, A}  of the cosmo-cocycle condi- 
tion (4.2); we can form the following two linear lagrangians: 
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(4.16) and this explains why, after implementation of (EQ1)-(EQ4), the effective 
variables are 6 instead of 8. Since d~l and d~2 represent total divergences, without 
any loss of generality, we can use them to set 

/32 = 0 ,  f13 = 0 .  (4.17) 

With this choice the solution of system (4.7) is 

a=¼(1 - ~sk), b =  - 15(14-½k) ,  

t~l = ~0,  t~2 = t~3 = 0 ,  

k l =  - 8 4 + k ,  k2 = -840(1 - ~ k ) ,  

h I = 2 ,  h 2 = h 3 = 0 ,  (4.18) 

corresponding to the following action: 

~ ('~l, "Y2, k) = fe0(~, ,  "/2, k) ,  (4.19a) 

Eo(~'l, Y2, k)  = - ~R a'a2 A V a3 A . . .  A vattea,. . .al, 

+ 7 i R a  A V a A ~ A  F b " " b s ~  A Vb6 A "'" A V b ~ e b ,  .. .b,, 

+kR* A~A Fab ~ A V a A V b 

+ i(k - 84)R [] A ~ A  Fa,...as~p A V ' '  A " "  A V "~ 

+ 8 4 o ( ~ I , -  1)R = A ~ A  Vo~+A V°A V~AA 

+2~ A r~,...~?kA V~'A . . .  AW~ 

+¼(1 - - ~ k  )~/ A r~ 'a~$  A~/ A r a ' a ' ~  A V~' A " " " AVa"ea,.. .a,, 

+ 1 5 ( ½ k - - 1 4 ) ~ A F a ' a 2 ~ A ~ A I ' a 3 a 4 ~ b A  VaA"" A Va4AA 

+yl  R[] A R D AA + 3,2 Rtz A R ® , (4.19b) 

which still depends on the 3-parameters k, yj,-f 2. They are now fixed by the 
requirement of gauge invariance of the action (4.19) under the transformation 

a - ) a  + 8A, 8A = de p, (4.20) 
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where qo is an arbitrary 2-form. The motivations of this requirement are the 
following: 

(a) Analogy with D = 5 supergravity where the gauge invariance under 

8B=d~p (4.21) 

fixes the coefficients of the quadratic terms in such a way as to guarantee non-trivial- 
ity of the theory [ 12]. 

(b) Analogy with the Cremmer-Julia-Scherk formulation where 

8A~p = 3[~ e ~01 (4.22) 

is indeed an invariance of the action 
(c) Actual inspection of the equations of motion which reveals the following: if 

the terms with a bare A do not cancel identically in all equations, the only possible 
solution is the vacuum (R ~b = R ~ = R [] = R* = 0 = 0). 

Performing the explicit variation of £0 we obtain 

8A =dqo~8~o = -840(1 -5~k)R D A ffA Fab~b A VaA VbAdep 

+),,R m AR t] Adqo+ 15(½k- 14)~AF~,a2~bA~AFa,a,~bA V a' A - - -  A Va4A dog 

--~-y2 Rn A ~ A  I'~,a2~k A Va, A V~2 A de p. (4.23) 

An integration by part shows that 8E 0 is a total divergence only if the following 
conditions are satisfied: 

Vl = - 840, '/2 = 2 k.  (4.24) 

When (4.24) holds, the k-dependent terms of the lagrangian sum up to a total 
divergence: 

k( 5-~6R u A ~ A  Lb~kA VaA Vb AA + iR u A~A L,...a,~A V a' /~ ... Ava5 

+ R  ® A ~ A  tab, ~ A V a A V ° -I- 2R ® AR r~ 

-- ~-~AFa'a2~k A ~ A  Fa:'q~A Va,  A . . .  A vanea,...au 

+ ~ A  ra'a21kAffA I 'a : '~kA Va A . - .  A V a A A  } 

= 2 k d ( A  A d B )  (4.25) 

and, therefore, may be dropped. 
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However, the k-dependent terms are also the only ones containing the 6-form B. 
Hence the A-gauge invariant lagrangian E0(~q = - 840, Y2 = 2k, k) does not contain 
B and it is based on the C~ CIS described by eqs. (3.15). Although we started with a 
larger CIS we end up with the minimal one containing only the 3-form A. This is a 
confirmation of the component approach result of ref. [3] ruling out the B~,...~, 
formulation. 

The sad point is that our hopes for a spontaneous generation of the Maxwell 
kinetic term die simultaneously with B. The lagrangian E0(Y~--- -840,  Y2 = 2k, k) 
lacks the Maxwell lagrangian of A and is, therefore, bound to yield only the vacuum 
solution. Indeed, setting k = 0, "/1-- -840,  ~'2 = 0 and performing the variation of 
(4.19) in the A 3-form, we obtain the following equation of motion: 

15R D A RE3 + 15R D A ~A Fab ~ A V a A V b -]- i ~ A  F a , . . . ~ p  A V ~' A • "" A V "5 ----- O. 

(4.26) 

Projected onto 8 elfbeins, eq. (4.26) yields 

g D R E3 " "a4bl'" "b'lclc2c3 : O ,  
a~. . .a4 bt" " "b4 eal" (4.27) 

which instead of being the Maxwell equation for the space-time components RaP . . . .  4 

of R D is an algebraic constraint on the latter implying R~.. .a,  = 0. 
Since all other possibilities have been explored we have now no other option than 

resorting to the 0-form trick. In complete analogy with the procedure adopted for 
N = 2, D = 4 supergravity [13] we introduce the following action: 

 :fe(m, n), (4.28a) 

E(m, n) = E0(yl : - 8 4 0 ,  Y 2 = O , k : O ) + E ' ( m , n ) ,  (4.28b) 

where E0(~fl, 72, k ) i s  given by eq. (4.19b) and E'(m, n) is given below: 

E'( m, n) = m F  ~' '  " " a ' R n  A V a~ A . . "  A g a , , e a , .  . .a,,  

+ h E a l .  " .a4Fal"  " a 4 v  ct A " " " A VCIlecI . . .CI |  , (4.29) 

Fa,...o, being a 4-index skew-symmetric 0-form and m, n two numerical parameters. 
Eq. (4.29) corresponds to the lst-order formulation of the Maxwell lagrangian. 

In the next section we show that, provided m and n take specific values, the 
lagrangian (4.28b) is non-trivial and describes a rheonomic theory. 
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5. Equations of motion: non-triviality and rheonomy 

The equations of motion of the theory (4.28) are the following ones. 
Torsion equation (variation in toab): 

eabc,. . .c9 R c '  A V c2 A . . .  A V c9 = O. (5.1a) 

First M a x w e l l  equation (F~,...~, variation): 

m R  m A V ~ A • • • A vat 'Eal .  . .a4as. . .a,i "~- 2nFa,. . .a V c' A • • • A VC,,ec, . . . .  ,, = O. 

(5.1b) 

Second M a x w e l l  equation (variation in A): 

168i~A Fa~...~0 A V ~, A --- A V a5 -- 2520~A F~bq~ A V ~ A V b A R ° 

--2520R tz A R  ~ + m ~ F a , . . . ~ A  V~5 A . . .  A Valleal'"all 

+ 7miFa~ . . . .  ,~A Fa6 • A VaT A ' "  A VallEal'" "all : 0 .  (5.1c) 

Gravit ino equation (variation in ~): 

4 F a , .  . .as p A V ~' A . . .  A V ~8 - 168iF~,...asq/A V a' A . . .  A V aS A R n 

- m r ,  b+ A V ~A VbAFc , . . . c4Vc~A " "  A Vct,e c' . . . .  " = 0 .  (5.1d) 

Einstein equation (variation in Vr): 

- - R  ata2 A V a3 A " " " A va|°F.al . " .alo r 

+7iR,A~AI'b,...b,~A Vo A ' "  AVb,,e b,''b,, 

+ 7iRa A V a A ~ A  Fbl...bs~t2 A Vb6 A . . . .  A Vblo ebl'" "bl°r 

+ 7 iV~  A ~A Fo,. . .b,P A Vb~ A . . .  A Vo,,e 6''" .b,, 

--7i~AFb,...b,A V, ARb A VbTA " "  AVb,,eb""b,, 

--420iR n A ~/ A Fa," "a4r#2 A Va A " ' '  A Va, 

+16~AFc,. . .~,~kA W' A . . -  A W  7 

+ 1 l n F ~ , . . . ~ F  ~''" "a4 A V c' A • • • A VclOec,.. "c,or 

+ 7mF~ . . . .  4VasA " " A Va~oA Rrqea""a~°r 

--mFo,...~,ffA I',b~ A V b A  V a s A " "  A V a t e a " " a "  = 0 .  (5.1e) 
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Considering first eq. (5. la) we immediately obtain 

R a = 0 -  (5.2) 

Therefore the supertorsion vanishes on-shell just as in N = 1 and N = 2 4-dimen- 
sional supergravities. Eq. (5.2) can be solved for the connection w"~ as a functional 
of V.~ and 4'~. Explicitly: 

(5.3) 

where ~"~ is the usual connection satisfying the space-time torsionless condition 

0[¢1'~ _.wtzr~lab,,b _-- u. '~ (5.4) 

Considering next eq. (5.1b) we obtain 

RO _ 2nl 1 [ f -"' 
71i~.1~1 ai . . .a4 V I~ " " I~ v a ' .  (5.5) 

Therefore, if we set 

m7!4I m 
n = - -  11! 660 '  (5.6) 

Fa,..-a, Can be identified with the space-time components of the curvature RD: 

.. = R  rn (5.7) 
F. I  "a4 al " " "a4 ' 

which, because of eq. (5.5), has no outer spinorial components: 

R[~  : F a l . . . a  v a l  /~ . . .  I~ V . 4 .  (5.8) 

m = 2 ,  (5.9) 

then the gravitino equation is consistent with the second Maxwell equation and we 
have the solution 

.... . ) ,  (5.1o) 

The choice (5.6) amounts to nothing else than a field redefinition of F,,...a," 
Using now eqs. (5.2) and (5.8) in eqs. (5.1c) and (5.1d) we obtain the following 

result: 
If the parameter m takes the value: 
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TABLE 3 

S u m m a r y  of D = 11 supergravi ty  

131 

C a r t a n  in tegrab le  sys tem 

R "b = d~o ab - to ac A ~O'c b 

R"=®V"-½i~AF% 

p=®,l, 

R D =dA -½~/ \  r"b~/\ voA vb 

Geomet r i c  ac t ion  

• . . . .  o,, 

+ ~ i R  ~ A V a A ~ A F b~" " "bS~b A V b~ A . . .  A vbneb , .  . .bu 

+2~AF~, . . .c~AV q A - . - A V  cs 

- - 8 4 R  D A (i(,Ara,. .... #,aA V "' A . - .  A V  " ' -  10A A ~ A F a O ~ P A  V " A  V b)  

+ ¼~A F " , " N , A ~ A  F" , " 'C ,A  V " , A  - . -  A V"-t , , , .  ..... 

-- 2 1 0 ~  A Fa'a:#/ A ~ A Fa3a4d/ A Va, A . ' '  A Va A A 

_ 8 4 0 R r a  A RD A A  _ i a~-. Tf6Fa~. . .a4F "a4vq A . • .  A VCn%~. . "cn 

+ 2 F a , .  . . . .  R D A VasA  . . .  A Va,,e a'" . . . . .  } 

On-sheU solu t ion  for the curvatures  

R~=0 

R D = F a , . . . a y  ' q A . . .  A V  a4 

" = p o ~  V ° A  v~- l( ir° '°~% A v ° ' + ~  r ° '  . . . . .  ~ t lA  V r n ) F " , "  . . . .  

Rab = Rab V m  A i/n.4- i'g [±pabcmn__ 2_pmnial~b]c 
' ' r a n - -  - -  - -  "P'mn~,2 ~ 9- -  v 

+21"°~'t" 8"]c)'kA Vc--7~AFm.~ Fmnat' + ~  AI''b~'" . . . .  *AFc,. . . . .  • 

Propaga t ion  equa t ions  

(i) rabcphc = 0 

(ii) ® m F  . . . .  2cs - -  ~ 1  ~ClC2C3al. • .asFa~. . .a4Fas...a8 = 0 

(iii) a,- ~ a , - ,  ~c,~2~3 s a c~ . . . .  , R .bin - -  2 8 b R  .ran - -  3 F  Fb~,c:c 3 + a f b F  Fq. . . c4  = 0 
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where Pab and F~,...a, satisfy the following propagation equations: 

Fab~pb~ = 0, (5.1 la) 

1 
2 . 4 ! . 7 !  ec~c2c3a~" " a s F a t ' " a 4 F a s " "  a, : 0 .  (5.1 lb) 

On the other hand, if m v~2 we obtain F ~ , . . . a =  0 and the only solution is 
R a b  = R a  : P : Fa l .  . .a4 : O. 

The various projections of the Einstein equation (5.1e) do not pose any further 
threat and, besides yielding the graviton propagation equation 

R a m  - -  l - ~ a R m n  - -  8 " b - -  • • bin 2 b .ran 3F"C'~2¢3Fb~,~2c3+3-tc"'-~""~'F~,..~4:0, (5.12) 

they give rheonomic conditions which express the outer components R ~'b and R ab • ~ t m  - a [ ]  

in terms of the inner ones O~b and Fa, . . .a ,  (see table 3). 
Therefore when m = 2 and n =-3-~0 the theory described by action (4.28) 

becomes non-trivial and rheonomic: it goes without saying that upon transition to 
space-time second-order formalism it coincides with the Cremmer-Julia-Scherk 
theory [ 1 ]. 

We think it proper to conclude this section with a summary of the final result. It is 
given in table 3. 

6. Supergroup interpretation of the D = 11 Caftan integrable system 

In sect. 2 we have discussed the possible equivalence of a CIS with an ordinary 
supergroup. 

Everything boils down to solving the system of algebraic equations (2.26) and 
(2.27) relating the supergroup structure constants C?av with the components K~a(P.).~, 
of the CIS forms O A(p). In the present section we solve this problem for the specific 
CIS of D = 11 super gravity, defined by eqs. (3.15) and recalled in table 3. 

Since V a, ~0 ab, ~ are already 1-forms and eqs. (3.15) already define a supergroup, 
all we have to do is to find a suitable decomposition of the 3-form A in a basis of 
1-forms. 

Using a little bit of ingenuity we started with an ansatz, thus reducing eqs. (2.26) 
and (2.27) system of ordinary quadratic equations on a set of numerical parameters. 

Our ansatz is the following: 

A = B ab A V~ A V b + alB~,a2 A B.~3 A B ~3~, 

-b a 2  Bb la l "  • "a4 A Bb~2 A B b~al" " "a4 + ot3eal" . "asbt" " "bsm B a l "  " "aS A B bl" " "b5 A V m 

- { -OL4Emz.  . . m 6 n  I. • . n s B  mlm2m3plp2  /~ B m 4 m s m 6 p l p 2  /~ B n l "  • .n 5 

(6.1) 
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where B a b ,  B ~''" .~s are two new skew-symmetric 1-forms, ~ is a new spinorial 1-form 

a n d  a ~ , a 2 ,  aa, a4,  Ol ,  fl2, fl3 are  parameters. The structure of the supergroup is 
described by curvatures of the following type: 

R ab = d6o ab - -  60 ac A OJ "b 
C 

p=®q,, 

(6.2a) 

(6.2b) 

(6.2c) 

Using the Fierz decomposition of table 2 we see that eq. (5.3) is true only if 

+ 1071 - -  720"Y2 = O. (6.4) 

Eq. (6.4) is the specific form taken in our case by condition (2.26). The explicit form 
of eq. (2.27) is now worked out in the following way. We take the ansatz (6.1) and 

[] 
we compute dA at zero curvatures: R ~b = R a = p = R a~a2 = R a '  "a~ = 0 = O. Impos- 

[] 

R ~"" .,,5 = ®B,~, ' ,,5 - ½ i ~ A  F a ' "  ",sq~, (6.2e) 

o =  @~ + i~FaxpA V a + Y l P a b A B  ab 

+ iy:F,, . . . ,5 ~ A B~, " ~ .  (6.2f) 

[] 
When we set R ab = R a = O = R "'~2 = R " '  -as = o = 0, we obtain the Maurer-Cartan 

equations which are viable only if they satisfy the integrability condition dd = 0 
(Jacobi identities). In our case the integrability of eqs. (6.2a)-(6.2e) is self-evident: 
all we have to do is to check the integrability of eq. (6.2f). At zero curvatures we 
obtain: 

= o =½Brae A [ A r o e -  ½ ,ra% i f 

+ ½Y2i,~,.--a,¢ A ~ A  I'~,...~,¢. (5.3) 

[] 

R a'a2 = o~sala2  - -  1 ~ / ~  F a , a 2 ~ ,  ( 6 . 2 d )  
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ing that the result be equal to ½~A F~b~ k A V~ A Vb, we get 

d A  = ½~A rab~ A V a A V b -- in  ab A ~A Fa~ A V b -~- "~I~A Fab~ A Bbm A B ma 

+iaz~A F a l ' ' ' a 4 m  . n  , CAg~ AB, a,.-a, 

• . b 2  - ½~d7A r~,~p A ~ A  S ° '  .a,~, A So,...a, 

+ ia3ea,. . .asb,. " .bsm~ A Fa" "asIp A B b'' " .b5 A V m 

4- ½ia3ea,...asbl...bsm Ba' . . . .  5 A B b''" "b5 A ~A  ~m~ 

+ ia4e~, . . . .  6b~...b~ A Fa~a2a3P'P2~P A B p'p2~.~a6 A B b,'" .b~ 

+ ½iot4ff A F ~ . . . a ~  A e~,...a~b,...b6 Bblb2b3plp2 A Bb"bsb6.plp 2 

- i/3,~:/\ r o ( i ~ r - +  A Vm + ivlr""4~ A B,.. + i v2F"" ' "5~bABm, . .  "ms) A V~ 

4- ½iz/3,~ A ran A ~ A roe - / 3 2 ~ A  Fab( isrmq~ A V m 4- v , r ~ " ¢  A Bm, 

+iy2ym"" "m'ff A B=, " "5)  ABab 

4- ½/32~A Fabr/A ~,)k I'a6 ~ 4- ½i2/33~A Fa,...a5~/A ~A Y a''" .a,~ 

--i/33~ A Fal ' "as(  iSFm~ i V m 4- Ylrmn~P i Bran 

+ ir2Fmi. . .ms~p A Bm" "ms ) A B~,. . .a5 

= ½ffA ro~¢ A V~ A V s. (6.5) 

Using the Fierz decomposition of table 2, we see that eq. (6.5) holds only if the 
following system of parameter equations is satisfied: 

( i )  ½ - / 3 , 8  = k ,  

( i i)  1 4- 2/31y 1 - 2/328 = 0 ,  

( i i i)  - ½/3l - 5/32 + 360/33 = o ,  



R.  d 'A uria, P. Frb / Geometric supergravity 135 

(iv) fl1~¢2 + fl38 - 1200/3 = O, 

(v) -~0/, -- 4f12y , = O, 

(vi) ~ ,~  - &~,~ = o ,  

(vii) "q- 10t 2 Jr- 600B3Y2 = 0 ,  

(viii) 5 , = 

(ix) l O f l a y  , + ot 2 + 10fl2y 2 = 0 .  (6 .6)  

Eqs. (6.6) are the explicit form of eq. (2.27). Combined with eq. (6.4) they have two 
distinct solutions which correspond to two different supergroups: 

1 
4!6! 

1 ' 0(4 ~--- 

4 ! 6 !  

1 

2(72) 2 

1 

2(72) 2 

(°) 0/1 = -- ~5 ' 0/2 = 1~ ' 0/3 = 

& =  , & =  ~ ' ~ ' 

~ ' , =  _ ½  , " /2=  - ~  ' 0 " 

Therefore we conclude that also D = 11 supergravity is a standard group manifold 
theory. The supergroup curvatures are the following: 
D = 11 supergravity supergroup curvatures: 

R ab : dw ab - -  w ac A O~c b , (6.8a) 

R a  = 6 ~ v a  - -  l i ~  A Fa+,  (6.8b) 

p = °~qv, (6.8c) 
[] 
R a,a2 = @B ata2 -- ½~/x  Fa'a2~, (6.8d) 

R a ,  . .  -a, = 6 ~ n a l .  . .a,  - -  l i ~  /~ r a , .  . .a,~d, (6.8e) 

( 1 )  ga  ( 1 ) 
o = @ ~ 1 + i  0 Fa~bA + __1 ~ a b S A B a b  

+ i (  _ ~  ~ ) F,,...a ~kAB a'' ' 'a~ (6.8f) 
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The action is the one given in table 3 provided the following replacement is made 
everywhere: 

(4)Bala2AB£a3AB~3a, A : B a b  A V a A  v b +  __4 

( -- 1-~) Anb~2Anb2al.. .a4 "~- I-~ nal'"a'bl 

+ 
1 

4!6! 
1 

4!6! 

ea]. - "asbl. .. bsmBal" " "as A Bb[" "bs A V m  

+ 

1 

2.722 
1 

2- 722 

Ea]" . .asbl. . .bsB ala2a3p]p2 A Ba4asa6.plp 2 A B bl" " "b5 

(1 )~Arab~ABab  "q- ( ~ ) ~ A I ' a ~ A  Va-q- 1 

+i(2~1--~) ~Aral'''a511Aga| " "'as" (6.9) 

Obviously the lagrangian could have been determined by a direct application of the 
standard group manifold method to the supergroups (6.8), without any reference to 
the CIS C 1. It must be noted however that: 

(a) The lagrangian written in terms of the supergroup potentials is gigantic and 
the cosmo-cocycle equation would have been solvable only through the use of a 
computer. 

(b) The supergroups (6.8) introduce the novelty of a second abelian spinorial 
generator Q" which is associated to the 1-form 7/. 

This very intriguing feature could not be guessed a priori. 

7. C o n c l u s i o n s  

D = 11 supergravity is the local theory of one of the two supergroups (6.8). The 
super Lie algebra is immediately read off from eqs. (6.8) and it is given in table 4. 
The A~p field is not elementary; rather, it is a non-linear combination of the 1-form 
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TABLE 4 
Super Lie algebras of D = 11 supergravity 

137 

Normalization of generators 

,o°~(/L. .)  __ ~...ob 

v~(Pb)  = ~g 

+ o ( Q , ) = 8 . ,  no(Qh) =~., 

.... (Zblb2) =~g;~2 Bal'"as(Zbl...b5 ) : ~/a;.". . . . .  .b 5 

Commutation relations 

[jm,m2, j . . . .  ] = __4i 8[nmltJmn;] 1 

[J..,..2, P"] = -2i~r~.,"m., 

[ Jm,m2, Z . . . .  ] = --4i--[m,--m:l/~[n' 7-n2] 

[Jm,o~, ="' "'] : - , 0 ,  ~l:',zZ~ . . . . .  ' 

y Q 

(Pn'l~m]:[Zmlm2'Ztllt~2] :[Zm, " . . . .  'Zrtl" . . . .  ] : [  , n ' Z  . . . .  ] 

= [.o, ~o, 4 - -  [~.,~, ~o, .... ]--o 

t..,Q'l : [zo,  .... ,Q,] :[=o,.2,Q,] :0  

{Q, Q} = iCraPa + iCr . . . .  Z . . . .  + iCF"" .... Z.,. .... 

(Q'.Q'} = 0  

() (Q, Z . . . .  } = g F . . . .  Q, 1 --2 

(1 (Q, z ° , ° , }  = ~'~ r " ,  . . . .  q '  
I 

- -  14 .1  

potentials 

Ba,a2 , Bal" "as, Va , q~,, rl~,. (7.1) 

All the symmetries of the theory are generated by Jab, Pa, Q, Q', Za,a:, Za~...as, 
associated to ~Oab, va, q,,~, Ba,a2, Ba,...a,, respectively. To determine the explicit 
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transformations of all the fields under all the generators what we have to do is the 
following. Starting from eq. (6.9) and taking the derivative we obtain: 

= R a , a 2 / ~ n a a , / ~ n a 3 a ,  R tz RabVaAVb--2BabARaAVb+3 __~ 

nt-(--l-~)Ra""a'b'AB~,b2 .a4--~- -~- 
I~  A Bb,a , . .  . . .  

1 
(7.2) 

Comparing eq. (7.2) with the on-shell curvatures given by table 3 we can determine 
the structure of all the new curvatures 

[ ]  

Rab , Ra , .  . .as , f t .  (7.3) 

Once this is done we have the full set of rheonomic conditions and therefore we have 
the complete on-shell representation of the algebra. This programme is very 
straightforward but long and we postpone it to future publications. 

The authors are grateful to their friends Profs. Tullio Regge and Alessandro 
D'Adda for many essential and enlightening discussions and for access to their 
unpublished result on 11-dimensional Fierz identities which was very useful in the 
beginning of the present work. 

A p p e n d i x  

N O T A T I O N S  A N D  C O N V E N T I O N S  

In this paper the signature of the SO(l,10) Lorentz invariant metric is 
( + , -  . . . . .  - )  and the indices are raised and lowered accordingly. Sometimes, for 
graphical convenience, we do not write some index at the right level but whether it is 
to be raised or lowered is evident from the tensorial character of the formula. This is 
particularly true in table 2 where the position of the indices is already exploited to 
denote the Young tableau symmetry pattern. Moreover, when we write 8~b we mean 
the Lorentz metric nab: 

~ab : ~ab : 

1 0 . . .  0 

0 - 1  . . -  0 

• -. --1 
(A.1) 
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The Levi-Civita tensor is fixed in such a way that 

= El2"" "ll = 1 (A.2) 812. -.11 

The symmetrization and antisymmetrization symbols are respectively defined by 

1 
[al-'-a,] = ~--~. ~ a p o ) - . .  ar(,) 

P 

• 81' . . .  
(al " 'an) =~I.  X ( - - )  ap(i) 

P 

(A.3a) 

ae~,) (A.3b) 

where Ep means sum over permutations and ~p is the parity of the said permuta- 
tions. 

F-matrix conventions are the following: 

r,*=r,, r,*= -r , ,  i=/=l, 

{r~, re} = 2n.b = 2~ob, 

r a , ' " a .  = Fta~ya2... I-~.l 

C T =  - C - - ~ - C  -1  , c F a c  - 1 =  - - ( r a )  T ,  ( g . 4 )  

and we have the following separation of symmetric and antisymmetric F-matrices: 

c r o ,  . .o .c_,  = . - - - -  ( t o , -  ~.) T , n = 1,2, 5,6, 9, 10 (symmetric), (A.5) 

"x(Fa  , . . . . .  )r ,  n =0 ,3 ,4 ,7 ,8  (antisymmetric). 

The bar operation on spinors is defined by 

~ =  ~*F 1 , (A.6) 

and the Majorana condition is 

¢=¢o=c(¢) T. 

Lorentz covariant derivatives and curvature are defined as follows: 

6-OV ~ = d Y  ~ - oY 'b A Vb, 

63B ~,a2 = d B  a,'2 - -  2oa 4 <  A B."c21 , 

63Ba," "a5 = d B ~ , .  . .a5 + 5oo bla, A B"2. . .ad 
"b 

®~p = d +  - -  ¼~o"bFab A ~ k ,  

g o b  = doaab + ~oc A ~ "  . 

(A.7) 

(A.8) 
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