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Abstract. The classification of surfaces theorem was one of the earliest tri-

umphs of algebraic topology. It states that any closed connected surface is

homeomorphic to the sphere, the connected sum of n tori, or the connected
sum of m projective planes. This paper begins by defining the geometric,

topological, and algebraic tools necessary to understanding the theorem, then

proceeds through the technical motivation of the theorem and its proof, and
closes with its extension to surfaces with boundary. Along the way, a variety

of examples and other pertinent information are provided. Some knowledge of

algebraic topology will be helpful.
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1. The Goal

The main result of this paper, the classification of surfaces theorem, is as follows:

Theorem 1.1 (Classification of Surfaces). Let X be a compact connected surface.
Then X is homeomorphic to S2, the n-fold torus Tn, or the m-fold projective plane
Pm.

The proof of the theorem has three essential parts. The first is to show that a
compact surface is triangulable; we omit this section of the proof, as noted in Section
5. The next step involves reducing the problem of classifying compact surfaces to
that of classifying quotient spaces of polygons, and verifying that this reduction
maintains rigor. This portion of the proof is sketched in Section 5. Finally, there
remains to classify polygonal quotient spaces; this portion of the proof we give in
detail, beginning in Section 2.

As noted in the abstract, the final section of the paper extends the above result
to surfaces with boundary.

Date: August 26, 2011.
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2. Building Blocks

We begin with an explanation of the geometric terms and tools that will allow
us to construct surfaces from 2-dimensional polygons.

Consider a set of points pi in the plane, all of which lie on a circle. Consider also
the set of lines drawn between any two successive points. Then the space enclosed
by these lines is called the polygonal region P determined by the points pi. The
points pi are called the vertices of P ; the line segment joining pi−1 and pi is called
an edge of P ; the union of the edges of P is denoted ∂P , and P − ∂P is denoted
Int(P ).

Given a line segment L in R2, an orientation of L is an ordering of its end
points. The first, say a, is called the initial point and the second, say b, is called
the final point of the oriented line segment. If L′ is another line segment, oriented
from c to d, then the positive linear map of L onto L′ is the homeomorphism h
that carries the point x = (1− s)a+ sb of L to the point h(x) = (1− s)c+ sd of L′.

Let P be a polygonal region in the plane. A labelling of the edges of P is a map
from the set of edges of P to a set S called the set of labels. Given an orientation
of each edge of P , and given a labelling of the edges of P , we define an equivalence
relation on the points of P as follows.

Each point of Int(P ) is equivalent only to itself. Given any edges of P that
have the same label, let h be the positive linear map of one onto the other, and
define each point x of the first edge to be equivalent to the point h(x) of the second
edge. This relation generates an equivalence relation on P . The quotient space X
obtained from this equivalence relation is said to have been obtained by pasting the
edges of P together according to the given orientations and labelling.

Let P be a polygonal region with successive vertices p0, . . . , pn, where p0 = pn.
Given orientations and a labelling of the edges of P , let a1, . . . , am be the distinct
labels that are assigned to the edges of P . For each k, let aik be the label assigned
to the edge pk−1pk, and let εk = +1 or −1 according as the orientation assigned to
this edge goes from pk−1 to pk or the reverse. Then the number of edges of P , the
orientations of the edges, and the labelling are completely specified by the symbol
w = (ai1)ε1(ai2)ε2 · · · (ain)εn . We call this a labelling scheme of length n for the
edges of P ; it is simply a sequence of labels with exponents +1 or −1.

Example 2.1. The 1-fold torus T1 can be expressed by the labelling scheme of
length 4 given by w = aba−1b−1.

We now verify an important property of the surfaces X which we are constructing
from polygonal regions.

Proposition 2.2. Let X be the space obtained from a finite collection of polygonal
regions by pasting edges together according to some labelling scheme. Then X is a
compact Hausdorff space.

Proof. We prove the proposition for one polygonal region; the general case is a
simple extension.

Because the quotient map pastes edges together continuously, X is clearly com-
pact. To demonstrate that X is Hausdorff, it suffices to show that the quotient map
π is closed, or that for each closed set C of the polygonal region P , the set π−1π(C)
is closed in P . Note that the set π−1π(C) contains all points of C, and also any
other points of P that are pasted to C under π. In order to determine these other
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Figure 1. The torus T1 can be realized as the labelling scheme
w = aba−1b−1

points of P , define for each edge e of P Ce to be the compact subspace C ∩ e of
P . If ei is an edge of P that is pasted to e under the pasting homeomorphism fi,
then the set De = π−1π(C)∩e equals the union of Ce and the spaces fi(Cei), taken
as ei ranges over all edges of P that are pasted to e. This union is compact, and
therefore closed in P . Finally, because π−1π(C) is the union of C and all the De,
it is closed in P . �

We continue by defining two of the three structures to which we will demonstrate
all surfaces are homeomorphic. The third, the sphere, is simply the set S2 =
{(x, y, z) | x2 + y2 + z2 = 1} ⊂ R3.

Definitions 2.3. Consider the space obtained from a 4n-sided polygonal region P
by means of the labelling scheme (a1b1a

−1
1 b−11 )(a2b2a

−1
2 b−12 ) · · · (anbna−1n b−1n ). This

space is called the n-fold connected sum of tori, or simply the n-fold torus,
and is denoted Tn.

The labelling scheme abab is called the projective plane. Let m > 1. Consider
the space obtained from a 2n-sided polygonal region P in the plane by means
of the labelling scheme (a1a1)(a2a2) · · · (amam). This space is called the m-fold
connected sum of projective planes, or simply the m-fold projective plane,
and is denoted Pm.

We now consider constructions that will bring us to a definition of the fundamen-
tal group of a space. This tool will prove amply useful in demonstrating whether
spaces are homeomorphic.

Definitions 2.4. A path in a space X is a continuous map f : I → X where I is
the unit interval [0, 1]. A homotopy of paths in X is a family
ft : I → X, 0 ≤ t ≤ 1, such that

(1) The endpoints ft(0) = x0 and ft(1) = x1 are independent of t.
(2) The associated map F : I×I → X defined by F (s, t) = ft(s) is continuous.
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Two paths connected by a homotopy of paths are called homotopic. We write
this as f0 ' f1.

We now demonstrate a basic piece of information about the algebraic structure
of homotopies on paths:

Proposition 2.5. The relation of homotopy on paths with fixed endpoints in any
space is an equivalence relation.

The following definitions provide clarification and tools to prove this proposition:

Definitions 2.6. The equivalence class of a path f under the equivalence relation
of homotopy will be denoted [f ] and called the homotopy class of f .

Given two paths f, g : I → X such that f(1) = g(0), there is a composition
or product path f · g that traverses first f and then g, and moves twice as fast
along either path as it did originally. We define it as:

f · g(s) =

{
f(2s) 0 ≤ s ≤ 1/2
g(2s− 1) 1/2 ≤ s ≤ 1

Proof. We must demonstrate reflexivity, symmetry, and transitivity.
Reflexivity is evident: set ft = f . Symmetry follows from the fact that if f0 ' f1

via ft, then via f1−t we have f1 ' f0.
Transitivity requires us to demonstrate that if f0 ' f1 via ft, and g0 ' g1 via gt

with f1 = g0, then f0 ' g1. This follows from the above definition of a composition
path, wherein we have f0 ' f1 via ht, which equals f2t for 0 ≤ t ≤ 1/2, and which
equals g2t−1 for 1/2 ≤ t ≤ 1. Because f1 = g0, ht is well-defined at t = 1/2, and
furthermore ht is continuous because it is composed of continuous maps. �

Definitions 2.7. Consider a path f : I → X such that f(0) = f(1) = x0 ∈ X.
Then we call f a loop and call x0 the loop’s basepoint. The set of all homotopy
classes [f ] of loops f : I → X at the basepoint x0 is denoted π1(X,x0), and is
called the fundamental group of X at the basepoint x0.

Example 2.8. The fundamental group of the circle S1 is Z.
Essentially, we are examining two objects here: π1(S1) and Z. Both, of course,

are groups. This example states that there exists an isomorphism between the
two groups. To see this, picture the isomorphism as a map, say i, that sets up a
correspondence between an integer and the number of times a given loop circles S1.
So, for example, the integer 12 would correspond to the loop in S1 that traverses
the circle 12 times.

It is a basic fact of algebraic topology that the set π1(X,x0) is a group with
respect to the product [f ][g] = [f · g]; we do not prove it here.

Furthermore, the spaces X we are constructing from the above-defined polygonal
regions will all be path-connected, and thus there exists a path f between any two
given points x0 and y0. Therefore, considering the fundamental group of the space
from the basepoint x0 is equivalent to considering the fundamental group of the
space from the basepoint y0; it requires merely a composition with f , the path
between them. This does not change the fundamental group because no extra loop
has been traversed, we have merely moved our point of consideration along a well-
defined path in the space. For this reason, this paper will from now on consider
the fundamental group of a space π1(X), without worrying about the basepoint.
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Fundamental groups are incredibly important and useful algebraic tools for an-
alyzing topological structures. We now use them to demonstrate a fundamental
portion of the classification theorem: that the spaces under consideration are them-
selves topologically distinct.

Theorem 2.9. Let Tn and Pm denote the n-fold connected sum of tori and the
m-fold connected sum of projective planes, respectively. Then the surfaces S2;
T1, T2, . . .; P1, P2, . . . are topologically distinct.

This theorem is a consequence of Van Kampen’s Theorem, a fundamental tool
of algebraic topology which we will not state or address here. Essentially, Van
Kampen provides us with the resources to calculate the fundamental groups of a
wide variety of spaces, including the n-fold torus and the m-fold projective plane.
It is easy to use Van Kampen to see that the n-fold torus and the m-fold projective
plane do not have isomorphic fundamental groups. Furthermore, the sphere has
trivial fundamental group, because any loop on the sphere can be shrunk over the
surface of the sphere to a point; thus our spaces are topologically distinct.

3. Technical Motivation

The following three sections, that is Sections 2, 3, and 4, follow the general form
of Munkres’ classification of surfaces in his Topology.

Our present goal is to prove the classification theorem for polygonal quotient
spaces, which is as follows:

Theorem 3.1 (Classification of Surfaces). Let X be the quotient space obtained
from a polygonal region in the plane by pasting its edges together in pairs. Then X
is homeomorphic to S2, the n-fold torus Tn, or the m-fold projective plane Pm.

In order to do so, we need to be able to ‘cut and paste’ various polygonal regions
in the plane in order to represent a space given by a certain collection of regions
and a labelling scheme as a different collection of regions and a different labelling
scheme.

First, we formalize our notion of ‘cutting apart’ a polygonal region. Consider a
polygonal region P with vertices p0, . . . , pn = p0, and take k with 1 < k < n − 1.
Then we have the polygonal regions Q1, with vertices p0, p1, . . . , pk, p0, and Q2,
with vertices p0, pk, . . . , pn = p0. If we slide the region Q1 by a translation in R2,
and in doing so produce another region Q′1 that has vertices q0, q1, . . . , qk, q0, where
qi is the image of pi under the translation, we have cut apart the region P along
the line from p0 to pk.

Similarly, we can ‘paste together’ the regions Q′1 and Q2 to reform the region P
with the positive linear map between the edge q0qk of Q′1 and p0pk of Q2.

Now we discuss elementary operations on labelling schemes. An elementary
operation on a labelling scheme is an operation on the scheme that does not
affect the resulting quotient space X. These operations will be useful in helping us
demonstrate that a wide variety of possible labelling schemes can only result in an
easily-enumerated list of potential quotient spaces. These operations are as follows:

(i) Cut : The scheme w1 = y0y1 can be replaced with the sequence of schemes
y0c
−1, cy1, as long as c does not appear elsewhere in the total scheme and y0

and y1 both have length at least two.
(ii) Paste: The reverse of the above, the sequence of schemes y0c

−1, cy1 can be
replaced with the scheme w1 = y0y1.
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(iii) Relabel : All instances of a given label can be changed to another label that
does not already appear in the scheme. Similarly, the sign of all the exponents
of a given label can be changed.

(iv) Permute: Any scheme wi can be replaced by a cyclic permutation of wi.
(v) Flip: The scheme wi = (ai1)ε1(ai2)ε2 · · · (ain)εn can be replaced with its formal

inverse w−1i = (ain)−εn · · · (ai1)−εn .
(vi) Cancel : The scheme wi = y0aa

−1y1 can be replaced by the scheme y0y1, as
long as a does not appear elsewhere in the total scheme and both y0 and y1
have length at least two.

(vii) Uncancel : The reverse of the above, the scheme y0y1 can be replaced with the
scheme y0aa

−1y1, where a appears nowhere else in the total scheme.

We define two labelling schemes for collections of polygonal regions to be equiv-
alent if one can be obtained from the other by a sequence of elementary scheme
operations. Because each elementary operation has as its inverse another such
operation, this is an equivalence relation.

We will now embark on demonstrating the above-stated geometric portion of the
classification theorem: every space obtained by pasting the edges of a polygonal
region together in pairs is homeomorphic either to S2, the n-fold torus Tn, or the
m-fold projective plane Pm. We note here that this does not completely accomplish
the task of classifying surfaces, as there remains to show that all surfaces can in
fact be obtained by these polygonal quotient spaces; we demonstrate this in Section
5.

Definitions 3.2. Suppose w1, . . . , wk is a labelling scheme for the polygonal regions
P1, . . . , Pk. If each label appears exactly twice in this scheme, we call it a proper
labelling scheme. Note that if we apply any sequence of elementary operations to
a proper scheme, we obtain another proper scheme.

Let w be a proper labelling scheme for a single polygonal region. We say that w
is of torus type if each label in it appears once with exponent +1 and once with
exponent −1. Otherwise, we say w is of projective type.

The following are a list of lemmas and corollaries necessary to prove the theorem.
Because of space constraints, we omit their proofs. All proofs can be constructed
from manipulating a polygonal region with the given labelling scheme in the ap-
propriate manner.

Lemma 3.3. Let w be a proper scheme of the form w = [y0]a[y1]a[y2], where some
of the yi may be empty. Then one has the equivalence w ∼ aa[y0y

−1
1 y2], where y−11

denotes the formal inverse of y1.

Corollary 3.4. If w is scheme of projective type, then w is equivalent to a scheme
of the same length having the form (a1a1)(a2a2) · · · (akak)w1, where k ≥ 1 and w1

is either empty of of torus type.

Lemma 3.5. Let w be a scheme of torus type that does not contain two adjacent
terms having the same label. Then w is equivalent to a scheme of the same length
as w, and of the form w1 = aba−1b−1w2, where w2 is of torus type or is empty.

Lemma 3.6. Let w be a proper scheme of the form w = w0(cc)(aba−1b−1)w1.
Then w is equivalent to the scheme w′ = w0(aabbcc)w1.

Remark 3.7. Note that, because of our cyclic permutation operation, the changes
that are realized in the two preceding lemmas can be realized in any other portion
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of a scheme. For example, lemma 3.5 can just as easily be used to obtain a scheme
in which the sequence of terms aba−1b−1 comes at the end.

4. The Classification

Theorem 4.1 (Classification of Polygonal Quotients). Let X be the quotient space
obtained from a polygonal region in the plane by pasting its edges together in pairs.
Then X is homeomorphic to S2, the n-fold torus Tn, or the m-fold projective plane
Pm.

Proof. Take w to be the labelling scheme by which X is formed from the polygon
P . We claim that w is equivalent to one of the following schemes:

(1) aa−1bb−1, which produces the 2-sphere,
(2) abab, which produces the 1-fold projective plane P1,
(3) (a1a1)(a2a2) · · · (amam),m ≥ 2, which produces the m-fold projective plane

Pm, or
(4) (a1b1a

−1
1 b−11 )(a2b2a

−1
2 b−12 ) · · · (anbna−1n b−1n ), n ≥ 1, which produces the n-fold

torus Tn.

We begin by demonstrating that if w is of torus type, it is equivalent to scheme
(1) or scheme (4). Note that if w has length four, by the definition of a scheme of
torus type, it must either have the form aa−1bb−1 or aba−1b−1, the first of which
is scheme (1) and the second of which is of the type of scheme (4).

If w has length greater than four and is equivalent to no shorter scheme of torus
type, then w contains no pair of adjacent terms with the same label. Lemma 3.5
then tells us that w is equivalent to a scheme of the form aba−1b−1w3, where w3

cannot be empty because w has length greater than four, and so must be of torus
type. Further, w3 cannot contain adjacent terms with the same label because w
cannot be reduced. Thus we may apply the lemma to w3, drawing the conclusion
that w is equivalent to a scheme of the form (aba−1b−1)(cdc−1d−1)w4, where w4

is either empty or of torus type. If empty, we are done, and if of torus type, we
continue inductively to the conclusion that w is of the type of scheme (4).

We now deal with schemes of projective type. In these cases, w will turn out to
be equivalent to either scheme (2) or a scheme of the form of scheme (3). Beginning
with w of length four, corollary 3.4 implies that w is equivalent to either aabb or to
aab−1b, the first of which is of type (3). By applying lemma 3.3 with y0 empty and
y1 = y2 = b, we see that aab−1b can be written in the form ay1ay2 = abab, which
is scheme (2).

Again we induct on the length of w. If w has length greater than four, corollary
3.4 implies that w is equivalent to a scheme of the form w′ = (a1a1) · · · (akak)w1,
where k ≥ 1 and w1 is empty or of torus type. If w1 is empty then we are done, and
if it has two adjacent terms with the same label then w′ is equivalent to a shorter
scheme of projective type and the induction hypothesis applies. If neither of these
is the case, we apply lemma 3.5 to show that w′ is equivalent to a scheme of the
form w′′ = (a1a1) · · · (akak)aba−1b−1w2, where w2 is empty or of torus type.

Then lemma 3.6 tells us that w′′ is equivalent to the scheme (a1a1) · · · (akak)aabbw2.
Continuing in this manner, we will reach a scheme of type (3). �
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5. Compact Surfaces

We must now demonstrate that all compact surfaces can, in fact, be obtained
in the manner we have described: cutting and pasting polygonal regions. We give
only an outline of the proof. A more detailed version can be found in Munkres’
Topology.

We begin with the requisite definitions:

Definitions 5.1. Take X to be a compact Hausdorff space. A curved triangle
in X is a subspace A of X and a homeomorphism h : T → A, where T is a closed
triangular region in the plane. A triangulation of X is a collection of curved
triangles A1, . . . , An in X whose union is X such that for i 6= j, the intersection
Ai ∩Aj is either empty, or a vertex of both Ai and Aj , or an edge of both. We also
require, if hi is the homeomorphism associated with Ai, that when Ai ∩ Aj is an

edge e of both, then the map h−1j hi is a linear homeomorphism of the edge h−1i (e)

of Ti with the edge h−1j (e) of Tj .

It is a basic topological theorem that all compact surfaces have a triangulation;
we do not prove it here. To begin, we have the following theorem:

Theorem 5.2. If X is a compact triangulable surface, then X is homeomorphic
to the quotient space obtained from a collection of disjoint triangular regions in the
plane by pasting their edges together in pairs.

Proof. Take A1, . . . , An to be a triangulation of X, with associated homeomor-
phisms hi. We assume that the Ti are disjoint, and thus the map h : E =
T1 ∪ · · · ∪ Tn → X is a quotient map. Also, because h−1j hi is linear if Ai and
Aj intersect in an edge, h pastes the edges of Ti and Tj together via a linear home-
omorphism.

The proof of the theorem is twofold: first, we must show that (Claim 1 ) for any
edge e of a triangle Ai, there is exactly one other triangle Aj such that Ai∩Aj = e,
and second that (Claim 2 ) if the intersection Ai ∩ Aj equals a vertex v of each,
then there is a sequence Ai, . . . , Aj of triangles with v as a vertex, such that the
intersection of each triangle of the sequence with its successor equals an edge of
each.

(Claim 1 ) Two demonstrate the first claim, we split it into two steps: first, we
must show that an edge e of the triangle Ai is an edge of at least one other triangle
Aj , and second that this edge is an edge of at most one other triangle Aj .

The first step is a result of the following proposition, which we leave to the
reader:

Proposition 5.3. If X is a triangular region in the plane and if x is a point one
one of the edges of X, then x does not have a neighborhood in X homeomorphic to
an open 2-ball.

This proposition is very similar to proposition 6.3 (a), which we treat and prove
in full in the next section. A proof of proposition 5.3 is easily constructed in
a similar manner, by examining towards a contradiction the fundamental groups
of the neighborhood around the point x in the triangle minus x itself, and the
neighborhood around the point h(x) (if our homeomorphism is h) in the open 2-
ball, minus h(x) itself. The groups will not turn out isomorphic.

The second step of the first claim is, similarly, a consequence of another propo-
sition which we leave to the reader:



THE CLASSIFICATION OF SURFACES WITH BOUNDARY 9

Proposition 5.4. Let X be the union of k triangles in R3, each pair of which
intersect in the common edge e. Let x be a point on e. If k ≥ 3, then x does not
have a neighborhood in X homeomorphic to an open 2-ball.

To prove this proposition, some knowledge of algebraic topology is very helpful,
as the proposition follows from a demonstration that there is no neighborhood W
of x in X such that W − x has abelian fundamental group.

(Claim 2 ) Note that if it were not the case that if the intersection Ai∩Aj equals
a vertex v of each, then there is a sequence Ai, . . . , Aj of triangles with v as a vertex,
such that the intersection of each triangle of the sequence with its successor equals
an edge of each, a situation would be possible in which the surface X consisted of
two regions, each with its own triangulation, with only a vertex in common, and
this vertex could be the vertex of multiple triangles in each region.

To prove the claim, it is necessary to demonstrate that because X is a surface,
this cannot be the case. This can be done by examining the equivalence classes of
triangles connected to each other by other triangles with an edge in common; that
is, take two triangles Ai and Aj having v as a vertex to be equivalent if there is
a sequence of triangles with v as a vertex, beginning with Ai and ending with Aj ,
such that the intersection of each triangle with its successor is an edge of each. The
proof concludes with a demonstration that in the situation mentioned above, the
space W − v is nonconnected. �

To conclude, we extend this result to the following theorem:

Theorem 5.5. If X is a compact connected triangulable surface, then X is home-
omorphic to a space obtained from a polygonal region in the plane by pasting the
edges together in pairs.

Proof. We already have, from the previous theorem, a collection T1, . . . , Tn of tri-
angular regions in the plane which are oriented and labelled such that X is home-
omorphic to the quotient space of these regions.

To extend, we must merely paste the edges of triangles with the same label
together. This gives us a four-sided polygonal region, and we can continue this
process inductively until an n-sided polygonal region is obtained. Because the
space X is connected, a situation in which there are multiple polygonal regions
with no labels in common is impossible. �

6. Extension to Surfaces with Boundary

This final section is based on a series of exercises from Munkres, which can be
found on page 476.

Now that we have built the tools necessary to understanding and proven the
classification of surfaces theorem, we extend our result to a classification of surfaces
with boundary.

Definition 6.1. Let H2 be the subspace of R2 consisting of all points (x1, x2) with
x2 ≥ 0.

Definitions 6.2. A 2-manifold with boundary (or surface with boundary)
is a Hausdorff space X with a countable basis such that each point x of X has a
neighborhood homeomorphic with an open set of R2 or H2.

The boundary ∂X of a 2-manifold X with boundary consists of those points x
such that x has no neighborhood homeomorphic with an open set of R2.
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Proposition 6.3. Let X be a 2-manifold with boundary, and take x ∈ X.

(a) No point of H2 of the form (x1, 0) has a neighborhood in H2 that is homeomor-
phic to an open set of R2.

(b) There is a homeomorphism h mapping a neighborhood of x onto an open set of
H2 such that h(x) ∈ R× 0 if and only if x ∈ ∂X.

(c) The boundary ∂X is a 1-manifold.

Proof. (a) Suppose, towards a contradiction, that there is a point x of the form
(x1, 0) that has a neighborhood A in H2 that is homeomorphic to an open set B
of R2. We may assume that A and B are contractible to a point by passing to a
smaller neighborhood of x, and therefore both have trivial fundamental group. Let
us call our homeomorphism f . Then, should we remove x from A and f(x) from
B, the resulting spaces A − x and B − f(x) remain homeomorphic. However, the
space A−x has, like the space A, trivial fundamental group, but because B is open,
B − x is a space with fundamental group Z. This is a contradiction.

(b) If there exists such a homeomorphism h, h(x) is of the form (x1, 0), and thus
by part (a) has no neighborhood in H2 homeomorphic to an open set of R2. Then
x ∈ ∂X.

To show the converse, let x ∈ ∂X. Take H2
+ to be {(x, y) | y > 0}. Let h be

a homeomorphism taking a neighborhood of x to U ⊂ H2. Assume h(x) is not
in R × {0}. Then U ′ = U ∩ H2

+ contains h(x) and is an open set in R2, and so
h−1(U ′) is a neighborhood of x in X that is homeomorphic to a subset of R2. This
contradicts the fact that x ∈ ∂X, so our assumption was false and h(x) ∈ R× {0}.

(c) Open sets in R are homeomorphic to a countable union of open intervals. We
are working with only one path-connected neighborhood, and so the open subset can
be taken to be just one open interval. We want to show that for all x ∈ ∂X, x has a
neighborhood, call it A, in ∂X homeomorphic to an open interval, call it B. Then
by part (b), there exist h,C such that h(C) is open in H2 and h(x) ∈ R×0. For all
points y ∈ A, h(y) ∈ R× 0 as well, because A ⊆ ∂X. Thus h is a homeomorphism
between A and the interval B ⊂ R. We want to show the interval to be open.
Because h is a homeomorphism, open sets are mapped to open sets, so open A
maps to open h(A), and we are done. �

Example 6.4. We show that the closed unit ball B2 in R2 is a 2-manifold with
boundary.

Take Int(B2) and ∂(B2), where Int(B2) = {(x, y) | x2 + y2 < 1} is the open unit
ball, and ∂(B2) = S1 = {(x, y) | x2 + y2 = 1} is the unit circle.

We claim that for all x ∈ Int(B2), x has a neighborhood homeomorphic to an
open set of R2, and for all x ∈ ∂(B2), x has a neighborhood homeomorphic to an
open set of H2.

To prove the claim, take x ∈ Int(B2) and an open set A ⊆ Int(B2) such that
x ∈ A. Then the homeomorphism could be the identity, and we can, for all x ∈
Int(B2), always find an open neighborhood because Int(B2) is open. To exhibit
the fact that any x ∈ ∂(B2) has a neighborhood homeomorphic to an open set
of H2, see figure 2. It is sufficient to consider an open neighborhood of the point
(0,−1) ∈ B2, as any other point on ∂(B2) has a neighborhood homeomorphic to a
neighborhood of this point by a rotation. The homeomorphism pictured essentially
‘slides’ the curved edge of B2 down onto R× 0, and all points above any point on
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B2 are correspondingly moved down by the same amount. That this is a continuous
motion of the unit disc with a continuous inverse is clear.

Figure 2. A boundary point of B2 has a neighborhood homeo-
morphic to an open set of H2.

Proposition 6.5. Let X be a 2-manifold; let U1, . . . , Uk be a collection of disjoint
open sets in X and suppose that for each i, 1 ≤ i ≤ k, there is a homeomorphism
hi of the open unit ball with Ui. Let ε = 1/2 and let Bε be the open ball of radius

ε. Then the space Y = X −
⋃k
i=1 hi(Bε) is a 2-manifold with boundary and ∂Y has

k components.

Remark 6.6. We call the space Y in the above proposition X-with-k-holes.

Proof. Note that because each hi is a homeomorphism from the open unit ball to
Ui, there are also homeomorphisms from Bε to open subsets of the Ui. Because
every point of X has a neighborhood homeomorphic to an open set of R2, every
point of Y that is of distance a > 0 from any of the hi(Bε) also has a neighborhood
homeomorphic to an open set in R2. For the remaining area of Y , we must show
that there are certain points with a neighborhood homeomorphic to an open set in
H2, and these are the boundary points of Y . All other points then must have a
neighborhood homeomorphic to an open set in R2.

Take a < 1/2. Then examining the a-neighborhoods around each hi(Bε) in Y
is equivalent to examining the annulus B1 − Bε, because the spaces B1 − Bε and
hi(B1−Bε) are homeomorphic under the appropriate hi, and the space hi(B1−Bε)
is equivalent to the a-neighborhood around hi(Bε).

Thus our problem is reduced to showing that B1 − Bε is a 2-manifold with
boundary. This follows from the argument given in example 6.4, but with a small
clarification: B1 is open, and thus every point has a neighborhood homeomorphic to
an open set of R2. Because Bε is also open, B1−Bε contains the curve {(x, y) | x2+
y2 = 1/2}. Points on this curve, as illustrated in figure 3, are the points of B1−Bε
with no neighborhoods homeomorphic to an open set of R2, but homeomorphic to
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an open set of H2. The homeomorphism pictured, as in figure 2, ‘slides’ all points
above the boundary point below them down the appropriate distance (note that,
in figure 3, the point under consideration is (0, ε = 1/2)).

Figure 3. The boundary points of B1 − Bε have neighborhoods
homeomorphic to open sets of H2.

The space ∂Y has k components because all of the Ui are disjoint, and thus each
one has a hi(Bε) inside of it which is disjoint from every other hi(Bε). Because
there are k Ui, there must then be k components of the boundary of Y , each
homeomorphic to the boundary of B1 −Bε. �

Theorem 6.7 (Classification of Surfaces with Boundary). Given a compact con-
nected triangulable 2-manifold Y with boundary such that ∂Y has k components, Y
is homeomorphic to X-with-k-holes, where X is S2 or the n-fold torus Tn or the
m-fold projective plane Pm.

Proof. The strategy of this proof is as follows: we want to (1) ‘fill in’ the holes of Y
by some method, then (2) use the classification of surfaces theorem to show that the
resulting space is homeomorphic to the sphere, n-fold torus, or m-fold projective
plane, and then (3) ‘remove the fillings’ of our holes to complete the proof.

(1) The most effective way to ‘fill in’ the holes is with a homeomorphism h of
each hole’s boundary with S1. Then, we include the unit circle into the unit disc
with i : S1 → B2. Then the map h−1(i(S1)) would ‘fill in’ our hole as desired.
However, in order to show that this works, we must show that each component of
∂Y is homeomorphic to S1. For this we need:

Lemma 6.8. The boundary of a compact manifold with boundary is compact.

Lemma 6.9. A compact connected 1-manifold is S1.

Proof of lemmas. Let X be a compact manifold with boundary. Take a collection
of open sets covering the boundary of X, and extend this to an open cover of X.
This has a finite subcover, which gives us a finite subcover of the boundary. Thus
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our original open cover of the boundary has a finite subcover, so the boundary is
compact.

Every point of a compact 1-manifold has a neighborhood homeomorphic with an
open set of R. But R is not compact. Thus we are dealing with a space in which
every point has a neighborhood homeomorphic to an open set of R, but which is
bounded. The two candidates for this space are a circle or an open line segment.
But an open line segment is not compact, and thus a compact connected 1-manifold
must be S1. This proves the two lemmas, and shows that our notion of ‘filling in
holes’ is well-defined and legitimate. �

We must now show that the resulting space, after the holes of Y have been ‘filled
in’, is a 2-manifold. That is, we must show that points from the original boundary
of Y now have a neighborhood homeomorphic to an open set of R2. In other words,
we must verify that the boundary components of Y and the boundaries of the ‘hole-
fillers’ glue together continuously. Note that there exists, for any boundary point
of either h−1(i(S1)) or Y , a neighborhood homeomorphic to an open set of H2.
Furthermore, each point of the boundary of each ‘hole-filler’ is identified with one
point on the boundary of one of the boundary components of Y . Therefore, we have
two neighborhoods, one on either side of each point of each boundary component,
that are being glued together along the boundaries. This gluing is equivalent to a
gluing along R×{0} of two open sets in H2, which creates an open set of R2. Thus,
we have that every point formerly on the boundary of Y now has a neighborhood
homeomorphic to an open set of R2, rendering the space Y -with-filled-in-holes a
2-manifold.

(2) Now, we have established that we can ‘fill in’ the holes of Y in order to create
a 2-manifold. It follows trivially from the classification of surfaces theorem that the
space Y -with-filled-in-holes is homeomorphic to either S2, Tn, or Pm.

(3) We must now demonstrate that we can ‘remove the fillings’ of Y ’s holes
without affecting the space to which it is homeomorphic, except by a correspond-
ing removal of holes, leaving us with a space homeomorphic to X-with-k-holes,
where X is either S2, Tn, or Pm. In order to show this, recall that the original
boundary components of Y are homeomorphic to S1. Then we can remove the in-
teriors of Y ’s original boundary components with a homeomorphism between these
interiors and B2, as we did above in order to ‘fill in’ the holes. In this case, we
include a component of ∂Y into its interior, and map the result into B2 via our
homeomorphism. Clearly the resulting space is homeomorphic to X-with-k-holes,
where X is either S2, Tn, or Pm. This concludes the proof. �
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