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We would like to describe the influence that this theorem has had in the development of
several techniques of differential geometry and topology: the development of zeta-function
renormalization, the formulation of the equivariant Atiyah-Singer index theorem, and the
localization theorem for equivariant differential forms. For some further bibliographic
references, see for example the bibliography of [2].

Let us summarize Atiyah and Bott’s first proof of their theorem [40], which differs a
little from the proof in [42]. Let ϕ be a diffeomorphism of a compact manifold M , and let
T ∈ Hom(E , ϕ∗E) be a bundle isomorphism of a bundle E over M which covers ϕ. Denote
also by T the bounded operator on L2(M, E) induced by T ∈ Hom(E , ϕ∗E). If ∆ is a
positive elliptic differential operator on E , then the trace

ζT (s) = Tr
(
T · ∆−s

)
(1)

has a meromorphic extension to the whole complex plane, and is holomorphic at s = 0.
Atiyah and Bott observed that Trζ(T ) = ζT (0) is a renormalized trace of T .

Now, take an elliptic complex

0 −→ E0
D0−−→ . . .

Dp−1−−−→ Ep −→ 0, (2)

with automorphisms Ti of Ei covering a diffeomorphism ϕ of M , and such that Ti+1 ·
Di = Di · Ti. Denote by Hi the cohomology space ker(Di)/ im(Di−1), and by τi the
endomorphism induced by the bundle map Ti on Hi. Choose any Hermitian metrics on the
bundles Ei, and form the positive second-order elliptic operators ∆i = D∗

i+1Di + Di−1D
∗
i .

We have the basic formula

p∑
i=0

(−1)i Tr(τi) =
p∑

i=0

(−1)i Tr
(
Ti · ∆−s

i

)
. (3)

Analytically continuing to s −→ 0, we see that

p∑
i=0

(−1)i Tr(τi) =
p∑

i=0

(−1)i Trζ(Ti). (4)

Since ϕ has non-degenerate fixed points, the right-hand side is actually quite easy to
calculate, and one obtains the Atiyah-Bott fixed point formula.
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The renormalized trace may just as well be defined using the heat operator: it is just
the constant coefficient a0 in the asymptotic expansion

Tr
(
T · e−t∆

)
∼

∞∑
k=0

ak tk−dim(M)/2. (5)

This leads to a formula for the index of a Dirac operator which has been exploited by
McKean and Singer [5] and Patodi [6], among others, culminating in Bismut’s formula for
the index of a family of Dirac operators [4].

The fixed point formula has inspired a number of other theorems. In the first of these,
one replaces the group of automorphisms Z by a compact Lie group G acting on the
manifold M and on two bundles E and F over M , and the elliptic complex by an invariant
elliptic operator D : C∞(M, E) −→ C∞(M,F). (It would be quite interesting to permit
non-compact Lie groups here, but it is not known how this might be done: see also our
final remarks.)

The kernel ker(D) and cokernel coker(D) of the operator D are finite-dimensional repre-
sentations of G, whose difference ind(D) = ker(D) − coker(D) is an element of the virtual
representation ring R(G). This element was calculated by Atiyah and Segal [1], using
Segal’s theory of equivariant K-theory and the Atiyah-Singer index theorem. However, in
the special case where D is a generalized Dirac operator, there is a proof due to Bismut
[3], extending earlier work of Gilkey and Patodi, which starts with the analogue of (3): if
indg(D) is the character of ind(D) ∈ R(G) at g ∈ G, then

indg(D) = Tr
(
ge−tD∗D)

− Tr
(
ge−tDD∗)

for g ∈ G. (6)

Another direction in which the influence of the fixed point formula was immediately felt
is Bott’s discovery of the localization principal for equivariant differential forms [43]. Let
M be a compact manifold, and let X be a vector field whose flow is periodic, and such
that the zeroes of X are discrete. Stated in its simplest form, Bott proved the following
result.

Theorem. If ω is a differential form on M such that dω = ι(X)ω, then∫
M

ω =
∑

X(x)=0

ω(x)

det1/2(Lx(X))
,

where Lx(X) ∈ End(TxM) is the endomorphism of TxM induced by the Lie derivative with
respect to X at the zero x.

This theorem is proved by a remarkable elementary calculation, resembling a higher
dimensional version of the proof of Cauchy’s theorem. However, in the intoduction to [43],
Bott states that he originally came upon the result as an application of the fixed point
formula, and only later found the simple proof.

Like Cauchy’s theorem, the localization theorem has many important applications.
Bott’s original application is to prove the following result on characteristic numbers. If M
has dimension n, let Φ be an invariant polynomial on the Lie algebra so(n): thus, Φ is a
polynomial in the Pontryagin classes and the Euler class. Let Φ(M) = 〈Φ(TM), [M ]〉 be
the corresponding characteristic number.
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Theorem. If Φ is a homogeneous invariant polynomial of degree k ≤ `, then

∑
X(x)=0

Φ(Lx(X))

det1/2(Lx(X))
=

{
Φ(M), k = `,

0, k < `.

The localization theorem has been greatly generalized. In particular, it has been seen
to fit together beautifully with the theory of equivariant differential forms initiated by H.
Cartan (see Chapter 7 of [2].) Also, Baum and Bott proved an analogue of the result
which holds in the algebraic context [49]. For another recent application, see the work of
Bott and Taubes on the elliptic genus [91]. However, many mysteries remain, the most
reknowned being to understand whether Harish-Chandra’s formula for the character of a
discrete series representation, which seems to be a formal consequence of the the Atiyah-
Bott fixed point formula might follow from a suitable generalization.
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