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THE GEOMETRY OF THE HOPF FIBRATIONS

4

- by Herman Gruck, Frank WARNER and Wolfgang ZILLER !)

This is an elementary expositionr of the geometry, and especially the
symmetries, of the Hopf fibrations of spheres by great spheres.

Using the complex numbers C, the quaternions H and the Cayley
mumbers Ca, we will describe the Hopf fibrations

§' o §2""1 5 CP""! = complex projectivevn—ly_ space,
3¢ §4 1, gprot = quaternionic projective n—1 space, and
"o §® 5§¥,

These fibrations were introduced by Heinz Hopf [Ho 1, 2] about fifty years
ago. Even the littlest one, S! ¢, S* — CP! = §2, had a powerful effect on
topology: it provided the first example of a homotopically nontrivial map
from one sphere to another of lower dimension, spurring the development
of both homotopy theory and fibre spaces in their infancy.

The Hopf fibrations have ‘many beautiful properties. For example, we
will see that their fibres are parallel, in the sense of having constant
distance from one another. This actually characterizes the Hopf fibrations
among all fibrations of round spheres by great subspheres, as was proved by
Wong [Won] and Wolf [Wol 1, 2] and later by Escobales [Es] and Ranjan
[Ra]. See [GWZ] for an expository account.

Another striking property of the Hopf fibrations is that they all have
a large group of symmetries, acting transitively on the total space and in
particular on the fibres. We will determine these groups here. The finale
is the calculation that the symmetry group of the “exceptional” Hopf
fibration S7 ¢, §1% — $® is isomorphic to Spin(9), the simply connected double
cover of the special orthogonal group SO(9). This will involve us in details
about the arithmetic of Cayley numbers and the “Triality Principle” for
S0(8). .

) We thank the National Science Foundation for their support and Wolfgang
Ziller also thanks the Sloan Foundation.
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1. HOPF FIBRATIONS WITH FIBRE S'

We describe the Hopf ﬁbrétion ,
HSI c, §n-1 _, cpn—1
as follows. Choose. ortﬁgnoriﬁél.coéfdiﬁates in real 2n-space R?*" and write
(%15 %25 s xinil > xln) = (x4 +ixé > oo X2m—1 +ix32,)
o N ,‘ | ' = (ql,.f.,"u,(), y
thus identifying R?" with vccv)‘mpléx n-spéce C" .
_ The complex lines in. C”, each looking like a real 2-plane, form the

complex projective space CP"7! and fill out C", with any two meeting

only at the origin. The unit circles on these complex lines give us the

Hopf fibration of §2"~1,
The simplest case occu

rs for n' = 2. The complex lines in° C* are of
the form Wt : ‘

L, = {(wmu):ueC}: foreach meC,
and " Lo ={0,0):veC}. -
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Note that there is one Hopf circle for each complex number m, and one for
the number co0. So the set of Hopf circles is topologically a 2-sphere.

Above is a sketch of the Hopf fibration H: S ¢ S* — 52, due to Roger
Penrose [Pe]. '

The portions of the this sketch may be identified as follows:

1) Circlex} + x5 =1, x3=0x,=0 fibre
2 Torusx? + x% ='3/4, x3 + x2 = 1/4 = union of fibres
3) Torus x3 + x§:=:,1/2, X2+ x: =12 - " union of fibres
4) Torus?cf + x3 = 1/4; x§'+ xZ = 3/4 union of fibres
5) Circle x1 =0, =0, x}+x3=1 fibre

In the construcﬁqn of the Hopf fibration of S?"~! by great circles,
we began by choosing orthonormal coordinates for R*". A different choice
of such coordinates simply turns the picture of the Hopf fibration around

by a rigid motion of S$2"~!, and we refer to all of these as “Hopf
fibrations”. ,

A key geometric feature of the Hopf fibrations is given by

ProposiTION 1.1 The Hopf circles on S*1 are parallel to one another.

What do we even mean By this? Two ‘subsets P and Q of a metric
space will be said to be parallel if there is some real number d such that
each point of P has minimum distance d from 0, and vice versa. If P and
Q are parallel great circles on S2"! at distance d apart, then each lies
on the boundary of a. tubular nelghborhood of radius d about the other.

To see this with more precision, first suppose that P and Q are
arbitrary great circles on $>"~', and use the same- symbols -to denote the
2-planes through the origin that they span in R2?". Let o, denote the
smallest angle that any line. in P makes with @, and let a, denote the
largest such angle. Then 0 < a; < o, < m/2. These angles are called the
principal angles between P and Q.

One can always choose an orthonormal basis ey, .., €3, for R?" so that
e; and e, form an orthonormal basis for P, while cosa, e; + sina; €3
and cos o, e, + sin a, e, form an orthonormal basis for Q. Then P and Q
are parallel if and only if the two principal angles o, and o, are equal



176 H. GLUCK, F. WARNER 'AND W. ZILLER

.cosaye; + sin o, e,

cos o, eq + sin oy e;

\A\

deURE %

Note that with respect to. these. bases, the matrix for‘ orthogonal pro-
jection of P onto Q (or vice versa) is given by

‘ cos oy 0
0 .cosay/’

Thus P and Q are parallel 1f and only if orthogonal projection of P
to Q is a conformal map. For future use, we also note that if A is the
matrix of a linear map with respect to orthonormal bases, then that map
is conformal if and only if 4 A' = A 1.

To prove the proposition, let P and Q be two Hopf circles on §*7 1.
If u is any unit vector in the 2-plane P, then u and iu form an ortho-
normal basis for P. Likewise we get an orthonormal basis v and iv for Q.
With respect to these bases, the matrix 4 of orthogonal projection of P
onto Q is given by

~ (a = <uv> b= <uiv>
¢ = <inv>  d= <iu,iv>)'

But multiplication by i is an isometry; hence @ = d and b = —c. Thus
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a b o fa*+b2 0
A 3 t -
(—b a> amd A4 (o a* + b2>’

showing that A4 is conformal, and hence that P and Q are parallel. ~QED

We remark here that, unlike the usual situation in Euclidéan space,
being parallel is not a transitive relation in spherical geometry Cons1der
for example, the following three great circles in $3: -

Py = {(x,y, % y):x* + y* = 1/2}
P, = {(x,5,0,0): x> + y*> = 1}
= {x 3% —y):x* + y* = 1/2}.

Then P, and P, are each parallel to P,, but certamly not to each other
since they meet in two points.

Since the Hopf fibrations of Sz" ! have parallel ﬁbres, they can be
viewed as Riemannian submersions as follows.

Let n: M — N be a smooth map between smooth manifolds. This map is
said to be a submersion if its differential m, has maximal rank at each
point. A submersion between closed manifolds must be a fibration: ~

If in addition M and N are Riemannian manifolds, then a submersion
between them is said to be a Riemannian submersion if its differential
preserves the lengths of tangent vectors orthogonal to the fibres n~ Yy, yeN.

Suppose now that : M — N is a submersion of one complete connected
smooth manifold onto another. The following facts are easy te deduce:

)If M and N have Riemannian metrics which make m a
Riemannian submersion, then the fibres of m are parallelin M.

2) If M has a Riemannian metric in which the fibres of =n are

parallel, then one can choose a Riemannian metric on N in terms of which
. becomes a Riemannian submersion. ' )

In particular, there is a Riemannian metric on CP*~' which makes the
Hopf projection m:8>*"~! - CP*~! into a Riemannian submersion. This
is known as the canonical metric on CP"~!. The distance between points
on CP"~! equals the distance between corresponding Hopf fibres on §*"~ 1.
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ProrosiTioN 1.2. The canonical metrlc on CP1 makes it into a round

two-sphere of radius 1/2. .

‘We've already noted that for the lowest drmensronal Hopf fibration
H:S' ¢, S — CP., the base space is topologically a two-sphere. Let P
denote one of the fibres of H, say the unit circle on the X,X,-plane.
 Let Pt denote the orthogonal fibre, in this case the unit circle on the
x3x4-plane We let P correspond to the north “pole and P! to the south
pole on a round two-sphere $%(1/2) of radius 1/2.

For each quarter circle on $* from P to P, orthogonal to P and P,
we obtain a family of fibres of H, one through each point of the quarter
circle. These will correspond to the points of a semicircle on- S%(1/2) from

the north pole to the south pole.
Now consider all the fibres of H whlch are at distance o from P,

O0<a< n/2 They ﬁll out the torus
T = {x1+x2—-cos o, x3+x4=srn o}
= S'(cos a) x Si(sina). A
Every fibre. on this torus is the graph of a “linear”  bijection from
S'(cos ) to S'(sin oc) Each such fibre meets a small circle (cos &, 0, 0, 0)
x S'(sin o) at a single point. But these points are further apart than the

actual distances between the fibres. The following diagram shows that in the
limit, as ¢’ approaches g, the scale correction factor is cos o

§'(sin u)

A

2nsina

e S(cOs o)

2m cos a

FIGURE 3
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Hence the fibres of H which lie on the torus T, form a circle of
radius sin o cos o. But a circle of latitude on S%(1/2), located at distance «
from the north pole, has radius (1/2) sin 2a = sin & cos o. It follows that
@ere is a correspondence between fibres of H and points of $%(1/2) which
is a Riemannian isometry, proving the proposition. ‘QED

Besides being parallel the fibres of the Hopf fibration are assembled
i a very regular way. The following two geometric features glvc an
expression of this regulanty, and were 1mportant in [GWZ] ’

)'Constancy Feature. Refer again to the ﬁgure showmg the HOPf
fibration of §3, in which we see S® decomposed into a pair of orthogonal
great circles and a family of intermediating tori: 4

Ty = S¥1) x 0
T, = S'cosa) x Sisina) - 0 <o <m2
Tﬂ/2 = 0 x Sl(l) . V

Any two of these intermediating tori are a constant distance apart, and
hence parallel to one another. There is a natural “radial projection” map
between them, which matches closest neighbors on the two surfaces. It is
easy to see that this map also matches Hopf circles, and in’ this sense we
regard the Hopf fibration as “constant” on the family of tori. A corres-
ponding phenomenon can be observed in all the Hopf fibrations.

2) Inductive Feature. A Hopf fibration contains within itself copies
of lower dimensional Hopf fibrations, and can be regarded as assembled
from these in a certain way. For example, just as C” contains C" 1,
so does the Hopf fibration of $2"~ ! contain the Hopf fibration of Sz" 3

2. SYMMETRIES OF THE HOPF FIBRATIONS WITH FIBRE S
Let H:S! ¢, §2"~!  CP"~! denote a Hopf fibration with fibre S'.
B‘y a symmetry of H we mean a rigid motion of S?" ! which takes Hopf
circles to Hopf circles. We want to find these symmetries explicitly.
The unitary group

Gl(n, C) n O(2n)

complex general linear group N orthogonal group

Un)
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consists of complex linear maps which are also rigid. Since these maps take
complex lines to complex lines, they must be symmetnes of the above Hopf

- fibration.
N {But there are other stmetries. Define eomplex' conjugation
C'>C by ey ) = (Z, Zy)

Note that ¢ lies in 0(2n) but not in Gl(n, C) yet takes complex lines to
complex lines, hence must be a symmetry of the Hopf fibration. Note also
that ¢ reverses the natural onentatlons of the complex lines in C".

The next proposition indicates that there are no further symmetries.

PROPOSIT10N21 The group G of all symmetrzes of the Hopf fibration H
is G = U vucUn).

Let g be a rigid motion of §2"~' taking complex lines to complex
lines. In case g reverses the natural orientations of complex lines, compose
it with ¢ so as to preserve these orientations. The new g commutes with

multiplication by i, hence is complex linear. Since it is also rigid, it lies
in U(n). QED

Remark. Note that all the symmetries are orientation preserving when
n is even, while half are orientation reversing when n is odd.

The group of symmetries of the Hopf ﬁbvration is quite large, and this
may be underscored by exhibiting symmetries with preassigned features. We
collect some of these in the following proposition.

PROPOSITION 29, Let H:S'c, 5§21 CP" ! be a Hopf fibration.

Then

a) There is a symmetry of H inducing the identity on the base space
(and thus taking each Hopf circle to itself) and restricting to a preassigned
rotation on a given Hopf circle.

b) If P and Q are any two fibres of the Hopf fibration, then any
preassigned rigid motion of P onto Q can be extended to a symmetry
of H.

©) The group of symmetries acts transitively on S**~', and in particular
acts transitively on fibres. '

By contrast, here is a limitation on the possible symmetries.
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d) There is no symmetry of H inducing the identity on the base space and
reversing the orientations of the Hopf circles.

Consider the symmetries z+ Id, | z| = 1, which multiply each coordinate
in C" by the complex number z of unit length. They induce the identity
on the base space, and can be selected to take a fibre to itself by a
preassigned rotation, proving a).

The transformations in U(n) can take any complex line in C" to any
other by a preassigned orientation preserving rigid motion. Complex conjuga-
tion then adds the orientation reversing ones, proving b).

In particular, this implies c).

Suppose there were a symmetry of H: §! ¢, §2"~* —» CP"™* taking each
Hopf circle to itself with reversal of orientation. Then, by restriction to C?,
such a symmetry would also exist for n = 2. Its reversal of orientation on

the total space $* would then contradict the remark following Proposition 2.1.
This proves d). : QED

Remarks. 1) Note that the existence of symmetries of H rotating each
Hopf circle within itself shows again that these circles must be parallel
. 2) Also note that a symmetry of H:S! ¢ S~ — CP"" 1 induces an
isometry of the base space CP* ! in its canonical metric. We remark
without proof that all isometries of CP""! can be produced this. way.

-3, HOPF FIBRATIONS WITH FIBRE S°

Choose orthonormal coordinates in R*" and identify this spacef with
quaternionic n-space H". A little care is needed in dealing with. H" because
the quaternions form a non-commutative division algebra:

1) Scalars ve H will act ‘on vectors (u,..,u,) € H" from the right.

(Uy s s thy) U = (Ug D, ooy Up D)«
2) H-linear transformations of H" will be expressed by matrices of
qQuaternions acting from the left (so as to commute with scalar multiplication).
The quaternionic lines in H", each looking like a real 4-plane, form the’
quaternionic projective space HP*~* and fill out H", with any two meeting

only at the origin. The unit 3-spheres on these quaternionic lines give us
the Hopf fibration :

. H:SP 6 S L HPY o
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PROPOSITION 3.1: "The Hopf 3-spheres on S*~' are parallel to one
another. o & g T o BB B
The proof is similar to that of Proposition 1.1 for Hopf circles; it
uses the fact that scalar multiplication by-i, j and k are isometries of H"
Alternatively, it will follow, as in Remark 1 above, from Proposition 4.2 a.
, ’ PR R e QED
" 'The Riemannian metric. on' HP"™* which makes the Hopf projection
§*-1 , HP" 1 into a Riemannian submersion is known as the canonical
metric on HP"~!. The canonical metric on HP! makes it into a round
4-sphere of radius 1/2. This follows by the same argument given in Pro-
pos1t10n 12 for the case H: S1 o S3 - CP1 Rt

4. SYMMETRIES OF THE HOPF HBRATIONS WITH FIBRE S°
We now invesfigate the symmetries of the Hopf ﬁbratipn
HS3c,S4"1—->HP"1
The symplectlc group _ o
Sp(n) Gl (n, H) n O(4n)

consists of quaternionically linear maps which are also rigid. Since ‘these
maps take quaternionic lines to quaternionic lines, they must be symmetries

of the above Hopf fibration.
There are other symmetries. For each unit’ quatermon v, consider the

action of right scalar multlphcatlon by v on H",
Ro(ul,.. U,) = (u1 D, vy Up V) -

This map is certainly not H-linear, since

Rv [(ul 5.8y un)w] = (ul Wb, .., U, w U) ’
while [R(uy, i)W = (U, ow, .., 4, vw).
Nevertheless, R, takes each quaternionic line in H" to itself. Thus the group
S of unit quaternions, acting on H" from the nght, must also be counted
among the symmetries of our Hopf fibration.

Since the symplectic group Sp(n) acts on S4~1 from the left, while
the group S* of unit quaternions acts from the right, these two actions
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commute. The actions also overlap, because they both contain multiplication
by — 1. Hence they combine to give an action of the group “

Sp(n) x S*
‘ 2 V ;
on §*"~1 where this group is obtained from Sp(n) x $* by dividing out by

the two-element subgroup consisting of the identity and the antipodal map.
The following lemma asserts that there are no further symmetries.

ProrosiTION 4.1. The group G bf all symmetries of the Hopf fibration
H is )

Spn) x §*
5 :

G =

Let g be a symmetry of the Hopf fibration, ie., a rigid map of H"
taking quaternionic lines to quaternionic lines. Composmg g with an appro-
priate element of Sp(n), we can arrange that the new g be mvanant on
each quaternionic coordinate line 0 x ..-x H x .. X 0. ) ‘

We claim this new g is orientation preserving on H X 0x .. x0.
Suppose not. Then composing it with appropriate elements of Sp(n) and S8,
we can further arrange that g(u, - .) = (@,..). Here we use the fact that.
left and right multiplication by unit quaternions generates the group S0(4)
Since g takes quaternionic lines to quatermonlc hnes, we must have

g, u,..) = (&, mi,.), forsome ‘m#0.

Then for any s,

glu, su, ..) = (u misu), ...) = (u mas,.).

As u varies, these image points must also fll out a quatermomc lme
hence mu§ = t 4. Putting u = 1, we get t=mS5 Thus mus = mSu.
Cancelling the m, we get &5 = §u. Since both u and s are arbitrary,
this is impossible, establishing the claim. ’ .
Thus g is orientation preserving on H x 0 X ... ‘x 0, and we compose it
with appropriate elements of Sp(n) and S so as to make it the identity
there. Then we again use the fact that g takes quaternionic lines to qua-
ternionic lines to conclude that ‘

g, u, .y 1) = (4, my 4, ., M, u).
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Hence: - -

g(ul > uZ’ n) - (ul H mz u2’ =3 mn un) ’
so the current version of g must lie i 1n Sp( ). QED

Remark Note that all the symrnetnes are orlentatlon preserving, since the
group G is connected.- Rl N ; ‘

Let H: 83 ¢, §4°1 HP""1 denote our current Hopf fibration, and let
us orient the fibres in a consistent fashion. The next. proposition shows
that this fibration is highly symmetrlc yet shghtly less so than the Hopf
fibrations by circles. - :

PROPOSITION 4.2, Let H S3 ¢ S* 1 HP*' be a Hopf fibration.

Then . ;

a) The only symmetries of H _inducing the identity on the base space
are the right multiplications by unit quaternions. This is just a 3-parameter
subgroup of the 6-parameter group. O(4) of all rigid motions of a fibre.

b) If P and Q are any two fibres, then any preassigned orientation
~ preserving rigid motion of P. onto. Q .can be extended to a symmetry

" of H. But no orientation reversing one can. -

)] The group of symmetries acts transztwely on S“" ! and in particular
acts transitively on fibres. . ‘

.. It . follows - easﬂy from the non-commutativity of the quatermons that
the only transformations in. Sp(n) which take each quaternionic line to
itself are +Id. Then a) follows immediately from the description of the
symmetry group given in Proposition 4.1.

Even the subgroup Sp(n) of G acts transitively on $*"~1, and c) follows.

To prove b), we can now assume that P and Q both coincide with
the unit 3-sphere on H x 0 x .. x 0. Then left and right multiplication
by unit quaternions takes this fibre to itself, and generates SO(4). No
orientation reversing transformation of this fibre can be achieved, since
the group of symmetries is connected. This proves b). QED

Remarks. 1) Note that the existence of syinmetries of H taking each fibre
to itself and acting transitively on a given fibre shows that these fibres
must be parallel. } .

2) Also note that a symmetry of H:S? ¢, S ! - HP""! induces an
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isometry of the base space HP"™! in its canonical metric. It is easy to
check that when n = 2, every orientation preserving isometry of the base
HP' = §%(1/2) can be produced this way, while no- orientation reversing
one can (since the group is connected). We remark without proof that all
isometries of HP"™1, n > 2, can be produced this way, and that they are
all orientation preserving. '

5. NORMED DIVISION ALGEBRAS AND THE CAYLEY NUMBERS

In order to describe the Hopf fibration H: S7 ¢ S'* — §® in the next
section, we first review here some facts about normed division algebras
and the arithmetic of Cayley numbers. More can be found in two excellent
references, [Cu] and [H-L, pp. 140-145]. ‘

A normed division algebra B is a finite dimensional algebra over the reals R,
with multiplicative unit 1, and equ1pped w1th an inner. product < , >
whose associated norm | I satisfies

|xy]=1x||y| foral x,yeB.- .

By Hurwitz’ Theorem ([Hu 1], 1898), a proof of which we will outline
here, every normed division algebra is isomorphic to either the reals R,
the complex numbers C, the quaternions H or the Cayley numbers Ca.
Actually, what Hurwitz proved is that normed division algebras can ‘only
occur in dimensions 1, 2, 4 and 8. He stated the corresponding: uniqueness
result without proof. In [Hu 2], published in 1923 after his death, Hurwitz
credits E. Robert [Ro] with writing out the details of the uniqueness
argument in a 1912 Zurich thesxs

Now let B denote a given normed division algebra Let Re B denote
the one-dimensional linear subspace spanned by the identity 1, and Im B the
orthogonal complcment of Re B. Then each x € B has a umque orthogonal
decomposition,

x=x,.+x’, x;€ReB and x’eImB,v
into its real and imaginary parts. Conjugation in B is defined .by':‘
‘ X = g —=X

Here are some basic facts about arithmetic in any normed " division
algebra B: wooowmeday oW -
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1) <xw,yws'= . <x,y>|w|? = <wx,wy>."
- Thus right or left multlphcatlon by a unit vector w is an isometry of B.
2)- ‘Every nonzero x€ B has a umque left and nght inverse:
PR AR Tt »?C_.l«—x/IXI2
3) Given x and y in B with x # 0, the equations -
xw=y and wx =y

can each be solved uniquély, with

w=x71y and - w=yx"

respectively.
5) If x is imaginary (that is, € Im B), then x? = —|x12
6) Orthogonal imaginaries anti- commute That is, .
x,yeIlm'B and <x,y> =0 'imply .xy = —yx.
The Moufang identities, the first two ‘of which ‘saiy that left and right
multiplication by xyx can be performed successively:
(xyx)z = x(1xz))
2xyx) = ((2x)y)x
x y2)x = (xy) (2x) -

47)

~ Given three elenienfs %; y, z € B, their associator is defined by
[x, 3, 2] = (xy)z — x(y2) .

The following weak form of associativity always holds in a normed division
algebra: the trilinear form [x, y, z] is alternating, ie., it vanishes whenever
two of its arguments are equal. Such an algebra is said to be alternatire.

" The Cayley-Dickson process generalizes the way in which the complex
numbers are built up from the reals, and begins with the following

ProposiTioN 5.1. (see [Cu] or [H-L]). Let A be a subalgebra
(containing 1) of the normed division algebra B. Let & be an element
of B orthogonalto A with |e| = 1. Then
1) Ae is orthogonal to A, and

ii) (a+be)(c+de) = (ac—db) + (da+br38 for all a, b ¢, d in A.
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The proof makes use of the commutation rules-given in Fact 6 above.

We note for future use that the above proposition implies that. any
subalgebra of Ca generated. by two elements must be isomorphic to. R, C
or H, and hence must be associative. o

Suppose now that we start with a normed division algebra A and
define a product on 4 @ 4 by .

(a, b) (c, d) = (ac—Jb da+bé).
The new algebra B = A DA is sa1d to be obtamed from A via the
Cayley-Dickson process. In particular, ]
C=RO®R, H—CEBC Ca=HOH

via the Cayley-Dickson process.

ProrosiTioN 5.2. (Jacobson [Jal; : 1958). -Suppose =A®A is
obtained from A by the Cayley-Dickson process. Then

1) B is commutative < A = R.
2) B isassociative < A is commutative.

3) B isalternative <> A is associative.

See [Cu] or [H-L] for details. ‘
From this proposition, we have:

C = R & R is commutative; ,
H = C @ C is associative, but not commutative;
Ca = H @ H is alternative, but not assoma'uve,

Ca @ Ca is not alternative, hence not a normed division algebra )

THEOREM 5.3. (Hurwitz [Hu 1]). The only normed division algebras are
R,C,H and Ca. '

One can check directly that R, C, H and Ca are normed, though the
calculation for Ca is somewhat lengthy. An alternative argument can be
found in [Cu]. That there are no other normed d1v151on algebras’ follows
from Propositions 5.1 and 5.2.

We end this section with the following description of all possible
automorphisms of the Cayley numbers 2ty 3
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* PROPOSITION 5.4. Suppose - e;, e, and - e; -are orthonormal imaginary
Cayley numbers with - e; - orthogonal to e, e,." Then there exists a unique
automorphism ~of Ca  sending i'= (i,0)e;, j=(,0r>e, and
e=(0,1)e;. ' D R

This follows from three applications of Proposition 5.1.
From Proposition 5.4, one concludes that the group of all automorphisms
of the Cayley numbers (a Lie group known as G,) is 14-dimensional

6. TuE HopF FiBRATION S7 ¢, §1° — §®

Choose orthonormal coordinates in R'S and identify it with Cayley
2-space Ca> In Ca? consider subsets of the form

L, = {(uymu):ueCa} foreach meCa,
L, =‘{(0,v):veCa}.f

They are 8-dimensional real linear subspaces of RS, but not Cayley subspaces
of Ca? because they are not closed under Cayley multiplication. This is the
effect of the nonassociativity of the Cayley numbers. Nevertheless, we call
L, and L., Cayley lines for simplicity. V

We need to check that these Cayley lines fill out Ca? with any two
meeting only at the origin. Given (u, v)e Ca? if u = 0 then this point is
on the Cayley line L. Ifu #0,let m = vu~'. Thenmu = (pu"Ju =10
by Fact 3 of the preceding section. Hence the point (u, v) lies on the Cayley
line L,,. Thus the Cayley lines fill out Ca®

Clearly L, meets each other Cayley line only at the origin. And if
the point (u, v) with u # 0, lies on the Cayley lines L, and L,, then
v =mu=nu Hence m = n Thus any two Cayley lines meet only at
the origin.

The unit 7-spheres on these Cayley lmes then define for us the Hopf
Sfibration S7 ¢, §'5 - S8 Note that the base space is clearly homeomorphic
to an 8-sphere, since there is one Cayley line for each Cayley number m,
and one for the number oo. :

In a similar fashion, if we start with any k-dimensional normed division
algebra K, we obtain a Hopf fibration -t

sk—l N Slk—l __’Sx_

Note by Hurwitz’s theorem that K is 1somorphlc to R, C, H or Ca, so
there are really no new cases. »
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PROPOSITION 6.1. The Hopf 7-spheres on S15 are parallel to one another.
We must show that the 8-planes - ' .

P=1L, = {uouw} and Q = {(, wu)}

intersect $*° in parallel great’ 7-spheres

Let the vectors e;,i = 1;..,8 form an orthonormal basis for Ca. Then
the vectors (e, v e;), i = 1,. 8 form an orthogonal basis for P, with each
vector having length (14 |v| 2)”2 This is an 1mmed1ate consequence of Fact 1
from the preceding section. . . ;

Likewise, the vectors (e W ‘e.,),r j e 'li 8 form an orthogonal basis for
0, with each vector having length (1 +|w| 2)1/ <

With respect to these bases, the matnx A = (a;) of orthogonal projection
of Pto Q is given by

a; = <e,e;> + <vey;we >,
L A=I+B.
We want to show that A4 is conformal, i.e.;.that .
AAd =I+B+B +BB =AM

First note that

(B+BY); <ve,,we'>' + <.ve,;We->.«
= <(u+w)e,,(v+w)e > = <ve;, ve;> — C<we;, we;>
= (Pl =) <éie> "
= 2<y, w> 5,,, :
by repeated apphcatlon of Fact 1 of the precedmg section. Thus B + B
is a multiple of the identity. e

Next note that

(B BY); = \E;vf'<"ve:i, we, > <uvej, we, >
L= <ve,ve> | w2 =0 ?w|? 8y,
since we,,r = 1,..,8 is an orthogonal basis for Ca with each vector of
length | w|. Thus B B' is also a multiple of the identity.

It follows that A is conformal, and hence that the 8-planes P = L,
and Q = L, intersect S'* in parallel .great 7-spheres. By continuity, the

15
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same is true if one of.these planes is. L, . Thus the Hopf 7-spheres on
S5 are parallel to one another, as claimed. ., , .- QED

The Riemannian metric on the base space S® which makes the Hopf
projection S'° — S® into a Riemannian submersion is that of a round
8-sphere of radius 1/2, which one sees directly just as in the previous cases.

7. SYMMETRIES OF THE HOPF FIBRATION H:S8" ¢, §° - §

The group L Gof all ‘s"yrhrhétries of the Hopf fibration

ProrosiTION 7.1.
the simply connected double

H:S".c, 15— 88 s isomorphic to ~ Spin(9),
cover of SO(9).
The action is as follows: - =
1) Thereisa geG inducing any preassigned orientation preserving isometry
of the round base S8, but no orientation reversing ones.
2) Given such a g, thereis exactl 'y one other symmetry,
—g = antzpodal mapeog,

 which induces the same action on . S°.
. It is likely that Elie Cartan was aware of ‘this result, since in [Ca2,
esp. pp. 424 and 466] he identified Spin(9) as the group of isometries
fixing a point in the Cayley projective plane CaP?. It is not hard to see
that this is the same as the group of symmetries of our Hopf fibration.
The symmetry groups of the other Hopf fibrations can likewise be identified
with the groups of isometries fixing a point in complex and quaternionic

projective spaces, also known to Cartan. ‘ ‘
We give the proof of Proposition 7.1 in a series of lemmas.

_LEMMA 7.2. The only symmetries which take each fibre to itself are the
‘identity and the antipodal map. - -
Suppose B: R'® — R!¢ is such a symmetry. Since B maps

={® 0}, L, = {(0,1)} ‘and L, = {(»u)}
into themselves, we must have A
_ ‘ , Blu, v) (A(u) A(v))
for some 4 € O(8). Since B maps L = {(u, mu)} into 1tself we gct
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© B(u, mu) =:(A(u), A(mu)) = (A(u), mA(w) .
Thus Almy) = mA(u) , all “mue Ca.

Now in this equation put u = 1and keep m arbltrary;
~A(m) = mA(l) |
where we define a = A(l) Insert this back 1nto the prewous equatxon gettmg
(mu)a = m(ua), for all m,ue Ca

But then it follows from: the nonassociativity ‘of the Cayley numbers that
the element a must be real. Since A€ 0(8), a = +1. Thus A(m) = +m,
and hence B(u,v) = (+u, iv), that 1s, B 18 elther the 1dent1ty or - the
antipodal map, as claimed. : _ e BT - 'QED

If we compare Lemma 7.2 with the corresponding assertions about the
carlier Hopf fibrations, we conclude that the current Hopf fibration is the
least symmetric of all.

LemMMA 7.3; There is a syrﬁmetr}' of our prf fibration inducing any
preassigned orientation preserving isometry of the base which keeps Lo fixed.

Such a symmetry must also take the orthogonal ﬁbre L, = {©, v)} to
itself, and hence must be of the form ' o

(4 0) > (4w, Bw),  where A BeO®)..

Given such a symmetry, the Cayley Tine L A— {(u, mu)} is taken to the
set {(A(w), B(mu))}, which must itself be some ,Cayley line, say L, . Thus
B(mu) = m' A(u). Note that as a function of u, the left hand side is
conformal with conformal factor | m |, while the right hand side is conformal
with factor |m'|. Hence |m| = | m'|. Since the correspondence mi—>m'
is easily seen to be R-linear, it must be an: 1sometry Hence we can write
m = C(m), with C € O(8).

Summarizing so far, a symmetry of our Hopf fibration which takes the
fibre L, to itself must be of the form (4, B) with 4, Be O(8), and there
must exist a C € O(8) such that :

B(mu) = C(m) A(w), - for all m,ue”Ca .

Vice versa, if such a C exists, then the map (A B) is mdeed a symmetry
of the Hopf fibration. s
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Since it is C which- describes the'induced' action on the base space
S®, we need to be able to preassign C e SO(8). The possibility of doing
this is the content of the “Tnahty Pr1nc1ple as follows.

4

- LEMMA 7.4. (Triality Principle for S0(8), see [Cal pp. 370 and 373]
and [Fr]) Conszder the trzples 4, B and C in SO(8) such that

‘ B(mu) “Clm) AW, for all m,ueCd
If any one of these three isometries is preasszgned then the other two
. exist and are unzque up to changmg sign for both of them ,

“We concentrate on. preass1gnmg C Let G be the subset of SO(8)
conSIStlng of all transformations C for- which there exist A and B in
SO(8) satisfying the above equation for all m, u e Ca. First note that G is
actually a subgroup of SO(8). For suppose that C and C’ are in G, and
correspond as above to 4, B and 4',-B’ respectively. Then - _

BB/ (mu) - B(C'(m) A’(u)) CC'(m) AA'(W),

showing that CC’ € G. And 81m11arly for inverses.
We want to show that G is all of SO(8). Let x be an imaginary

Cayley number of unit length We claim .
(7.5) The right an‘d: left' tr‘ar’zslationszx‘ 'arvl:d; Lxr arein G.

To show this, we use the first two Moufang identities. -
. To satisfy B(mu) = C(m) A(u) with C = R.ss choose A= —LR, and
B R We must show that -

(mu)x — — (mx) (xux)
To do this, s1mply take the Moufang 1dent1ty '
o 2(xyx) = ((Zx)y)
and put EEE Y= and z = - mx, gettlng
(mx) (xux) = ((mxx)u)x e (mu)x,

since x2 = —1. Thus R, €G.
To satisfy B(mu) = C(m) A(u)  with C = L.R,, choose A = L, and
B = —L ‘We must show that

—x(mu) (xmx) (xu) .
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To do this, take the Moufang 1dent1ty

(xyx)z = x(y(xz))
adputx = x, y = mand z = xu, getting -
o) () = x{mxxw) = —x(mu),

since x* = —1 as before. Thus LR, € G. Since we already know that G
is a group and that it contams R,, it-must also contain L,, establishing
our claim. T :

Next we claim

(6)  The transformatlons R and Lx, as x ranges over all imaginary
unit Cayley numbers, generate SO(8).

Since the subgroup G contams these transformatlons this will show
that G is all of SO(8). L6

First note that any unit vector can be mapped to any other unit vector
by a composition of such’transformations. To see this, first suppose that
uand v are orthogonal unit vectors: <u,v> = 0..Then <I, wi> =0.
Hence x = yu~! is an imaginary unit Cayley number such that L,(u)
= (u™Yu = v. If u and v are unit vectors, but not necessarily orthogonal,
just pick a unit vector w orthogonal to both. Find L, and L, such that

L.u) = wand L,.(w) = v. Then L,L,(u) = v, as desired.

So now it will be sufficient to show that any transformation in SO(8)
keeping 1 fixed is a composition of right and left translations. by imaginary
unit Cayley numbers. One such transformation is —L,R, for any imaginary
unit Cayley number x. Note that-—L,R,(x) = X, so that this transformation
also keeps x fixed. On the other’ hand if y is an unagmary Cayley number
orthogonal to x, then - ., = . .. ..

' —L R (y) “—xyx =xxy = -y,

since orthogonal 1magmar1es .anti- commute by Fact 6. Thus —L.R, is the
identity on the 2-plane spanned by 1 and x, and is minus the identity
on the orthogonal 6-plane. Viewed just on the imaginary Cayley-numbers,
this transformation is reflection about the line through x.

But it is easy to.see -that the set of reflections through all lines in
R generates SO(7). Hence the transformations R, and L, as x ranges over
all imaginary unit Cayley numbers generate SO(), as claimed.

Thus the subgroup G of transformations C in SO(8), for which one
can find 4 and B in SO(8) satisfying B(mu) = C(m) A(u) for all Cayley
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numbers m and u, must be all of SO@). In a similar fashion, one can
preassign either 4 or B and find the other two completmg the proof of

existence for the Triality Principle.. N
To prove uniqueness up to' sign: change for the Triality Principle,

suppose C is the identity. Thus B(mu) = m A(u) for all m,ue Ca. Put
m = 1 to learn that B(u) = A(u). So now. A(mu) = m A(u). Put u = 1 to get
A(m) = m A(1) = ma, where we define a = A(1). Then put this back in the
previous equation to get (mu)a = m(ua). Since this holds for all m, u e Ca,
the element @ must be real. Since A is orthogonal, a = +1. Thus 4 = B

= +1, proving uniqueness up to sign change when C = I. Uniqueness up
to sign change for all C € SO(8) follows by composition. A similar argument
gives uniquéness up to sign change when A or Bis preassigned, completing

the proof of the Tnahty Pnncnple QED

Preass1gmng C and using the Tnahty Pnnaple to select A and B
then completes the proof of Lemma 7.3: there is a symmetry of our Hopf
fibration inducing any preassigned -orientation: preservmg isometry of the

base which keeps L0 ﬁxed QED

We next use Lemma 7 3 to sharpen 1tse1f

 LEMMA 7.7. There is a symmetry of our Hopf fibration inducing any
preassigned orientation preserving isometry of the base. In particular, there is a
symmetry taking any fibre to any other. ‘

On the base space S®, we take the north pole to be L, and the south
pole to be L.,. Then the equator' will consist of all L, for which
|m| = 1. Now consider the circle consisting of the points L, for real m.
We plan to show that this circle is contained in the orbit of L, under the
symmetry group of H. Since this circle meets the equator in two points,
L, and L_,;, we can then ‘use (7.3) to conclude that the orbit of L,
is all of $%. Combining again with (7.3) will yield (7.7).

Consider the map A,: Ca® - Ca2 defined by
Ay(u,v) = (cosd) u—sin¢ v, sind u+cosd v).

These maps, for 0 < ¢ < 2r, provide a circle group of isometries of Ca®
We claim S \

(7.8) Each A, isa symmetry of our Hopf fibration.
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.EQUATOR §7 = {L,:|m| = 1}

CIRCLE {L,,: m real}

FIGURE 4

We must show that glven me Ca there exists m’ eCa such that
4y(L,) = L,,. Now " g

Ay, mu) = (g:oé\cb 1‘4“—sin¢ mu, sind) u+cos¢ mu) B y
= ((cosp—sind m) u; (sin+cosd m) ) . . B

Let v = (cos¢p—sind m)u
and m = (sind+cosd m) (cosd—sind m) L.
Then [(smd) +cosd m) (cosd)——smd) m) 1] [(coscb smd) m) u]

The product on the right hand side may be reassociated because all.the
elements lie in the subalgebra of Ca spanned by the two elements m and u.
As noted in section 5, such a subalgebra must be assoc1at1ve But then
clearly R U

my = (sing+cos¢pmu, .
so that we have 7
Ay, mu) W, mu).

Thus AL, = L, , so each- A¢ is a symmetry of our. Hopf ﬁbratlon
as claimed. : LDt B e e : .
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-Since A4(Ly) = Lyyng, We see that the orbit of L, under the various
A, is the circle (L,,: m real). As mdlcatcd above this is enough to complete

the proof of (7.7). QED

. LemMma 7.9. No symmetry of our Hopf ﬁbrdiion can induce an orientation
reversing isometry of the base. :

Suppose there were such a symmetry. Using Lemma 7.7, we can assume it
takes the fibre L, = {(u,0)} to itself. Then it must be of the form
(u, v) — (A(u), B(v)) with A, Be O(8), and as -we saw in (7.3) there must
exist a C € O(8) such that B(mu) .C(m) A(u) for. all m,u e Ca.

Composing our symmetry with. an appropriate one guaranteed by

" Lemma 7.3 we can assume that C(m) = m.: Thus B(mu) = m A(u). Put
m = 1 to conclude that A = B. Thus A(mu) = i A(u). Putu = 1to conclude
that A(m) = mi A(1) = ria. Then put this back in the previous equation to
get (mu)a = m(ua). But mu = um by Fact 4 of section 5. Hence

(u ma = m(u a)

Now replace # by u and m by m to get

(um)a = m(ua) for all umeCa.

But th1s equatlon is impossible, Wthh we see as follows
Simply choose an automorphism of the Cayley numbers, see (5.4), which

moves the element a to a unit quaternion. Apply such an automorphism
to the above equation, and now consider that equation only for the
quaternions: ' _—

(um)a’'= m(ua) forall umeH.

But the quaternions are aissociative, o) v-ve’ remove the parentheses, then
cancel the a and learn that- :
' um = mu for all u, meH .

veliichi s iof conss false QED

Proof of (7.1). Let G again denote the group of all symmetries of the
Hopf fibration H:S? ¢, S'5 — S% Consider the homomorphism G — O(9),
which takes each ge G to its induced action on the base space S% By
Lemma 7.9, the image lies in SO(9). By Lemma 7.7, the homomorphism
is onto. By Lemma 7.2, it is two-to-one. Thus G is a double covering of
SO(9). It remains to show that this covering is nontrivial. -




HOPF FIBRATIONS . . 197

It will be sufficient to look only at the symmetries of H which take the
fibre Ly, = {(u, 0)} to itself, and hence ‘are of the form (u, v) — (A(w), B(v)).
We already know that there must be a C e SO(8) such that B(mu) =. C(m) A(u)
for all m,ueCa. To show that G is’ a nontrivial double covermg of

509, we must find a loop’ of Cs which - lifts to ‘a non- loop of (4, B)’s.

This can be done by using the Moufang 1dent1t1es ‘just as in the
proof of the Triality Principle. Recall from that proof that if x is an
imaginary Cayley number of unit length, then A = Ly, 'B'= —L, and
C= LR, “works”, that is, —L,(mu) = L.R,(m) L, (u) Now let x describe a
semi-circular path-in the i, j-plane from i to.—i. At: the begmmng of the
path, C(m) = imi, while at the end of the path C(m) (= im(—i) = imi.
Thus C describes a loop in SO(8). At the beginning of the path-{Aw), Bv)
= (iu, —iv), while at the end (A(u), B(v)) =. (—iu, iv). Hence (A4, B) describes a

non-loop in G. Thus G xs the non- tnv1a1 double covermg Sp1n(9) of SO(9).
QED

Here is a further indication of the 'exténi)f’g:ymmetry of the Hopf
fibration H: S7 ¢, §1° — S%. Orient the fibres. % " .. N

ProposiTiON 7.10. ‘Let ‘P and Q' ‘be ‘dny two'ﬁbres of H. Thena
Preassigned orientation preserving rigid motion of . P “onto Q. can be
extended to a symmetry of  H.. In partlcular the symmetrles act transttwely
on S5 HETLE i

By Lemma 7.7, the symmetries act transitively on fibres, so we may
take P = Q = L,. To preassign an orientation preserving rigid motion of
L, onto itself is to preassign the map A e SO(8) in the Triality Principle,
which then promises the desired symmetry of H. - .. 'QED
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