Brown-Gitler Spectra — Brown-Gitler spectra were introduced by E.H. Brown, Jr. and Samuel Gitler
[1] to study higher order obstructions to immersions of manifolds, but immediately found wide applicability
in a variety of areas of homotopy theory, most notably in the stable homotopy groups of spheres ([9] and
[4]), in studying homotopy classes of maps out of various classifying spaces ([3], [10], and [8]), and, as might
be expected, in studying the Immersion Conjecture for manifolds ([2] and [5]).

The mod p homology H,X = H,.(X,Z/pZ) comes equipped with a natural right action of the Steenrod
algebra A4 which is unstable: at the prime 2, for example, this means

0=Sq' : H,X — H, ; X, 2i > n.

Write U, for the category of all unstable right modules over A. This category has enough projectives; indeed,
there is an object G(n), n > 0, of U, and a natural isomorphism

Homy, (G(n), M) = M,

where M, is the vector spaces of elements of degree n in M. The module G(n) can be explicitly calculated.
For example, if p = 2 and z,, € G(n),, is the universal class, then the evaluation map A — G(n) sending 6

to x, 0 defines an isomorphism '
X" A/{Sq" : 2i >n}A=G(n).

These are the dual Brown-Gitler modules.

This pleasant bit of algebra can be only partly reproduced in algebraic topology. For example, for general
n there is no space whose (reduced) homology is G(n); specifically, if p = 2, the module G(8) cannot support
the structure of an unstable coalgebra over the Steenrod algebra. However, after stabilizing, this objection
does not apply and we have the following result from [1],[4],[6]: there is a unique p-complete spectrum 7'(n)
so that H,T'(n) =2 G(n) and for all pointed CW complexes Z, the map

[T(n),S%Z] » 0,2

sending f to f.(z,) is surjective. Here X°°Z is the suspension spectrum of Z, the symbol [, | denotes stable
homotopy classes of maps, and H is reduced homology. The spectra T'(n) are the dual Brown-Gitler spectra.
The Brown-Gitler spectra themselves can be obtained by the formula

B(n) = ¥"DT(n)

where D denotes the Spanier-Whitehead duality functor. The suspension factor is a normalization introduced
to put the bottom cohomology class of B(n) in degree 0. An easy calculation shows that B(2n) ~ B(2n + 1)
for all primes and all n > 0.

For a general spectrum X and n #Z £1 modulo 2p, the group [T'(n), X] is naturally isomorphic to the
group D, H,.Q2°°X of homogeneous elements of degree n in the Cartier-Dieudonné module D, H,.Q*° X of the
abelian Hopf algebra H,Q2°°X. In fact, one way to construct the Brown-Gitler spectra is to note that the
functor

X Dy HOQX

is the degree 2n group of an extraordinary homology theory; then B(2n) is the p-completion of the repre-
senting spectrum. See [6]. This can be greatly, but not completely, destabilized. See [7].
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