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COMPONENTWISE INJECTIVE MODELS OF FUNCTORS TO DGAs

BY

MAREK GOLAS I Ń SK I (TORUŃ)

The aim of this paper is to present a starting point for proving existence
of injective minimal models (cf. [8]) for some systems of complete differential
graded algebras.

Sullivan [7] introduced the rational de Rham theory for connected sim-
plicial complexes and applied it to show that the de Rham algebra A∗X
of differential forms (over the field of rationals Q) on a simply connected
complex X of finite type determines its rational homotopy type. The cen-
tral results of Sullivan’s theory have been generalized by Triantafillou [8]
to equivariant context but under the assumption that X is a simplicial set
of finite type with a finite group G action which is G-connected and nilpo-
tent, i.e. the fixed point simplicial subsets XH are nonempty, connected,
and nilpotent for all subgroups H ⊆ G. In this case not only A∗X with
the induced G-action are considered but also the system of the de Rham
algebras A∗XH for all subgroups H ⊆ G. This means that a functor A∗X
on the category O(G) of canonical orbits is studied and its injectivity (as
an O(G)-module) is the key observation for the existence of an equivariant
analogue of Sullivan’s minimal models. In the case X is disconnected we
have to work over the category O(G, X) with one object for each component
of XH for all subgroups H ⊆ G. In general, the category O(G, X) is not
finite, and in the category of functors from this category to the category
of finitely generated Q-modules there are not sufficiently many injectives to
give a description of the rational homotopy type of X. Thus we have to re-
place finitely generated Q-modules by a neglected but very useful category
of linearly compact Q-modules considered already by Lefschetz in [5] and
then we may omit the assumption on finite type of G-simplicial sets as well.

Now we give an outline of the paper. In Section 1 we investigate the
category kI-Mod of covariant functors (or kI-modules) from a small category
I to the category of k-modules over a field k. This approach is inspired by
a category of functors on categories related to the orbit category O(G)
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determined by a finite group G. For simplicity we replace these categories
by an EI-category I (i.e. a small category such that all endomorphisms are
isomorphisms). We introduce basic notions and present some properties of
functors from I to the category of linearly complete (or compact) k-modules.
In particular, we show (Proposition 1.5) that on the de Rham algebra A∗X of
rational polynomial forms on a simplicial set X there is a natural complete
linear topology.

In Section 2 we show (Theorem 2.1) that for any complete kI-algebra
A there exists a complete and injective (as a kI-module) kI-algebra Q(A)
and a natural cohomology isomorphism A → Q(A). Then we generalize
the notion of an injective minimal system of k-differential graded algebras
considered in [8] to such systems indexed by some EI-category. The results
will be applied in the forthcoming paper to the category of G-simplicial sets,
where G is a finite group.

The author wishes to express his indebtedness to Professor S. Balcerzyk
for carefully reading the manuscript, very useful discussions and suggestions.

1. Preliminaries on systems of modules. Let k be a (discrete)
field. The category of (left) k-modules is denoted by k-Mod. If I is a small
category then a covariant functor I → k-Mod is called a left kI-module
(or a system of k-modules) and the category of left kI-modules is denoted
by kI-Mod and called the category of left kI-modules. We also have the
category of contravariant functors I → k-Mod, alias right kI-modules and
denoted by Mod-kI.

The notions of submodule, quotient module, kernel , image and cokernel
for kI-modules are defined object-wise. For each object I ∈ Ob(I) we have
the right kI-module

kI(−, I) : I→ k -Mod

determined by the Yoneda functor I(−, I) and similarly, the left kI-module
kI(I,−). Projective and injective kI-modules are defined by usual lifting
properties. Observe that the category of projective right kI-modules is iso-
morphic to the category of all injectives in the category of all covariant
functors from I to the category k -Modop dual to k -Mod.

In various categories considered in algebraic topology endomorphisms
are isomorphisms. Therefore, let I be an EI-category which by definition, is
a small category in which each endomorphism is an isomorphism. Following
[6] we define a partial order (which is crucial for the sequel) on the set Is(I)
of isomorphism classes I of objects I ∈ Ob(I) by

I ≤ J if I(I, J) 6= ∅.

This induces a partial ordering on the set Is(I) of isomorphism classes of
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objects, since the EI-property ensures that I ≤ J and J ≤ I implies I = J .
We write that I < J if I ≤ J and I 6= J . As it was shown in [3] injective
kI-modules can be constructed from injective modules over group rings. If
I ∈ Ob(I) with the automorphism group Aut(I), we let k[I] = k Aut(I)
be the group ring of Aut(I) and write k[I]-Mod for the category of left
k[I]-modules.

For a fixed I ∈ Ob(I) we introduce the following covariant functors.
The cosplitting functor SI : kI -Mod → k[I] -Mod is defined as follows.

If M is a kI-module, let SI(M) be the k[I]-submodule of M(I) equal to
the intersection of kernels of all k-homomorphisms M(f) : M(I) → M(J)
induced by all non-isomorphisms f : I → J with I as a source. Each
automorphism g ∈ Aut(I) induces a map M(g) : M(I) → M(I) which
maps SI(M) into itself. Thus SI(M) becomes a left k[I]-module. It is clear
how SI is defined on morphisms.

The restriction functor ResI : kI -Mod→ k[I] -Mod sends M to M(I).
The coextension functor EI : k[I] -Mod → kI -Mod sends N to

Homk[I](kI(−, I), N).
The coinclusion functor InI : k[I] -Mod → kI -Mod assigns to a k[I]-

module N the kI-module InI(N) defined by

InI(N)(J) =
{

Homk[I](kI(J, I), N) if J = I,
0 if J 6= I.

We say a kI-module M is of type T , for T ⊆ Is(I), if the set {I ∈ Is(I) |
M(I) 6= 0} is contained in T . For any I ∈ T choose a representative I ∈ I
and fix a k[I]-monomorphism

0→M(I)→ QI ,

where QI is injective. If M is of type T then we get a monomorphism of
kI-modules

0→M →
∏
I∈T

EIQI .

In particular, it follows that any injective kI-module of type T is a direct
summand of a kI-module

∏
I∈T EIQI , where QI are injective k[I]-modules

for I ∈ T .
The next result follows easily from the above definitions.

Lemma 1.1. (1) The functors EI and ResI and the functors SI and InI

are adjoint , i.e. there are natural isomorphisms of k-modules

HomkI(M,EIN)→ Homk[I](ResI M,N)

and
Homk[I](N,SIM)→ HomkI(InI N,M).
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(2) SI ◦EI : k[I] -Mod→ k[I] -Mod is naturally equivalent to the identity
functor. The composition SJ ◦ EI is zero for I 6= J.

(3) SI and EI preserve products, monomorphisms and injective modules.

The dual category k -Modop is isomorphic to the category k -Modc of
linearly compact k-modules considered in [5]. For our purpose we briefly
present some results on the category k -Modc. A topological k-module M
is said to be linearly topological if it is Hausdorff and there is a fundamen-
tal system N (M) of neighborhoods of zero consisting of k-submodules. A
linearly topological k-module M is called linearly compact if for every col-
lection {Fi}i∈I of closed affine subsets of M (i.e. Fi = mi + Mi for some
closed k-submodule Mi ⊆M) with the finite intersection property we have⋂

i∈I Fi 6= ∅. For linearly topological k-modules M and N let Homt
k(M,N)

be the set of all continuous k-linear maps. We topologize this k-module by
requiring that for any linearly compact k-submodule K ⊆ M and an open
k-submodule V ⊆ N the k-submodules {f ∈ Homt

k(M,N) : f(K) ⊆ V }
form a subbasis of a linear topology on Homt

k(M,N). For a k-module M
let M∗ = Homt

k(M,k) be its topological dual.

Theorem 1.2 [5]. (1) A linearly topological k-module M is linearly com-
pact if and only if M∗ is discrete.

(2) If M is linearly compact or discrete then the canonical map M →
M∗∗ is a topological isomorphism.

(3) If M and N are linearly compact or discrete k-modules then the
canonical map Homt

k(M,N) → Homt
k(N∗,M∗) is a topological isomor-

phism.

For a linearly topological k-module M and its closed k-submodule M ′

the quotient topology on M/M ′ is linear. In particular, if M ′ is an open
submodule then this topology on M/M ′ is discrete. Let ωM ′ : M →M/M ′

be the canonical map. For V1, V2 ∈ N (M) such that V1 ⊆ V2, let ωV1
V2

:
M/V1 → M/V2 be the canonical map and M∧ = lim←−V ∈N (M) M/V . Write
πV : M∧ →M/V for the canonical projection. Then the collection {ker πV :
V ∈ N (M)} of k-submodules forms a subbasis of a linear topology on M∧.
The k-module M∧ with this topology is called the completion of M . The
collection of maps ωV : M →M/V for V ∈ N (M) determines a continuous
monomorphism ω : M →M∧ such that ω(M) is dense in M∧. A topological
k-module M is said to be complete if the map ω is a topological isomorphism.
Of course, if M is linearly compact or discrete then ω(M) is closed in M∧

and thus M is complete as well.
For two linearly topological k-modules M and N let M ⊗ N be their

tensor product over k. If V ⊆ M and W ⊆ N are two open k-submodules,
we write [V,W ] = V ⊗N + M ⊗W . Then the following lemma holds.
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Lemma 1.3. If M and N are linearly topological k-modules then the col-
lection of k-submodules [V,W ] of M ⊗ N with open k-submodules V ⊆ M
and W ⊆ N forms a linear topology on M⊗N such that the canonical bilin-
ear map M ×N →M ⊗N is universal with respect to uniformly continuous
k-bilinear maps to linearly topological k-modules.

Write M ⊗̂ N for the completion (M ⊗ N)∧ and call it the complete
tensor product of M and N . Then the canonical map M ×N →M ⊗̂N is
universal with respect to uniformly continuous k-bilinear maps to complete
k-modules.

Now let I be an EI-category. A covariant functor from I to k -Modc

is said to be a linearly compact left kI-module. For two linearly compact
left kI-modules M , N we define their complete tensor product M ⊗̂N as a
linearly compact left kI-module such that (M ⊗̂N)(I) = M(I) ⊗̂N(I) for
all I ∈ Ob(I).

Let DGAk be the category of homologically connected commutative dif-
ferential graded k-algebras (or simply k-algebras). We briefly recall some
constructions presented in [4]. For a map γ : B → E in DGAk, where B is
augmented, Halperin [4] considers its “minimal factorization”. Namely, he
generalizes the notion of a minimal k-algebra [7] to a minimal KS-extension
given by a special sequence of augmented k-algebras

E : B
i−→ C

π−→ A,

where A is free as a graded commutative k-algebra generated by some graded
k-module M = {Mi}i≥0. If M0 = 0 then the extension E is called positive.
In [4] it is shown that for any map γ : B → E [4] of connected k-algebras,
where B is augmented, there is a unique (up to isomorphism) minimal KS-
extension

E : B
i−→ C

π−→ A

and a homology isomorphism % : C → E such that % ◦ i = γ.
The extension E together with the map % : C → E is called a KS-

minimal model for γ. In particular, for a k-algebra A and the canonical
map k → A one gets a minimal algebra MA together with a homology
isomorphism %A : MA → A called the minimal model for A.

An object A = {An}n≥0 in DGAk is called complete if

(1) An is a complete linearly topological k-module and the differential
d : An → An+1 is continuous for all n ≥ 0,

(2) multiplication An × Am → An+m is uniformly continuous for all
n, m ≥ 0 (with respect to the linear product topology on An ×Am).

The key example of a complete algebra is produced as follows. For the
field of rationals Q and a simplicial set X one can form a Q-algebra A∗X
by taking collections of Q-polynomial forms on each simplex (sums of terms
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of type ω(t0, . . . , tn) dti1 ∧ . . . ∧ dtil
, where ω is a Q-polynomial) that agree

when restricted to common faces (see [1] for more details). We define a
natural topology on the Q-module An

X of n-forms on X as follows: for any
map x̃ : ∆(l) → X, the k-submodules ker(An

X(x̃) : An
X → An

∆(l)), where
∆(l) is the l-simplex, form a fundamental system of neighborhoods of zero
in An

X . The following proposition holds.

Proposition 1.4. Let X be a simplicial set. Then:

(1) the natural topology on An
X is complete for all n ≥ 0,

(2) the multiplication An
X × Am

X → An+m
X of differential forms is uni-

formly continuous (with respect to the product topology on An
X ×Am

X),
(3) the differential dn

X : An
X → An+1

X is continuous.

P r o o f. (1) First, observe that for a simplicial map x̃ : ∆(l)→ X there
is an isomorphism An

X/ ker An
x̃ ≈ An

∆(l) of discrete Q-modules. Then the
map

φ : An
X → lim←−

x̃:∆(l)→X

An
X/ ker An

x̃ ≈ lim←−
x̃:∆(l)→X

An
∆(l)

such that φ(ω) = (An
x̃(ω))x̃:∆(l)→X , for ω ∈ An

X , is the required topological
isomorphism.

(2) For a simplicial map x̃ : ∆(l) → X and the corresponding open
k-submodule V = ker(An+m(x̃) : An+m

X → An+m
∆(l) ) consider the subspaces

U1 = ker(An(x̃) : An
X → An

∆(l)) and U2 = ker(Am(x̃) : Am
X → Am

∆(l))
of An

X and Am
X , respectively. Then the image of U1 × Am

X and An
X × U2

under the multiplication map of differential forms is contained in V , so the
multiplication is uniformly continuous.

(3) The differential dn
X is natural with respect to X, hence it is continuous

as well.

Write DGA∧k for the subcategory of DGAk determined by complete dif-
ferential graded k-algebras.

For a minimal k-algebra M let M(n) be its subalgebra generated by el-
ements of degree at most n. Then M is said to be nilpotent if each M(n)
is constructed from M(n − 1) by a finite number of elementary extensions
(see [4] for details). A homologically connected k-algebra A is said to be
nilpotent if its minimal model MA is nilpotent. If X is a (connected) nilpo-
tent simplicial set then the de Rham Q-algebra A∗X of differential forms is
nilpotent as shown in [1]. If a k-algebra A is augmented let Ã = ker(A→ k)
be its augmentation ideal. Recall that decomposability of the differential d
of A means that d(A) ⊆ Ã · Ã.

Let I be an EI-category and kI-DGAk the category of all covariant
functors from I to DGAk called kI-algebras (or systems of k-algebras). We
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say that a kI-algebra A is complete if the algebras A(I) are complete for
all I ∈ Ob(I) and A is injective if the left kI-modules An are injective for
n ≥ 0, where An(I) = (A(I))n for all I ∈ Ob(I).

For any complete injective (as a kI-module) kI-algebra A and a complete
left kI-module M we consider two types of cohomology of A.

(1) The kI-module Hn(A) such that Hn(A)(I) = Hn(A(I)) for I ∈
Ob(I) and n ≥ 0.

(2) The cohomology Hn(A,M) = Hn(Hom(M,A)) with coefficients in
M for n ≥ 0, where {Hom(M,An)}n≥0 is a cochain complex in the category
of complete left kI-modules. For a projective resolution M (?) of M in the
category of complete kI-modules we form the double complex Hom(M (?),A).
The standard homological algebra arguments yield a spectral sequence

Epq
2 = Extp(M,Hq(A))⇒ Hp+q(A,M).

Notice that the injectivity of A (as a kI-module) implies the convergence of
this sequence and Hn(A,M) = Hom(M,Hn(A)) if M is projective.

2. Injective extension of systems of algebras. The spectral se-
quence considered in the previous section plays a key role in a construction
of an injective minimal model for a complete injective kI-algebra A, for an
EI-category I. This is the reason why the injectivity of A (as a kI-module)
is necessary. Theorem 2.1 in this section shows that for any complete kI-
algebra A there exists a complete injective kI-algebra Q(A) and a natural
cohomology isomorphism A → Q(A).

Hereafter, we assume that I is an EI-category with the filtration ∅ =
T0 ⊂ T1 . . . ⊂ Tm = Is(I) such that I ∈ Tk, J ∈ Tl, I < J implies k > l and
all kI-algebrasA are homologically connected, i.e. satisfyH0(A) = k, where
k is the constant kI-module determined by a field k. To show the main result
we need some constructions. An augmented k-algebra A is called acyclic if
Hn(Ã) = 0 for all n ≥ 0, where Ã is the augmentation ideal of A. If M is
a graded k-module then the k-algebra F(M) freely generated by M ⊕ sM ,
where sM is a copy of M with a shift of degree +1 and d(m) = sm for
m ∈M , is an augmented acyclic k-algebra. In particular, for a kI-algebra A
and I ∈ Ob(I) we get an associated system F(EISIA) of acyclic kI-algebras
such that F(EISIA)(J) = F(EISIA(J)) for J ∈ Ob(I), where EI and SI

are functors defined in the previous section. Now we are in a position to
present a generalization of Theorem 1 in [2].

Theorem 2.1. If I is an EI-category such that k[I] is a semisimple ring
for all I ∈ ob(I) and there is a filtration

∅ = T0 ⊂ T1 ⊂ . . . ⊂ Tm = Is(I)
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satisfying the above condition then for any complete kI-algebra A there is
a complete and injective (as a kI-module) kI-algebra Q(A) and a natural
inclusion iA : A → Q(A) which is a cohomology isomorphism.

P r o o f. We proceed by induction over the filtration of Is(I) to construct
a sequence of kI-algebras and natural inclusions

A = Q0(A) i0−→ Q1(A) i1−→ . . .
im−1−→ Qm(A) = Q(A)

which are cohomology isomorphisms.
Let Q0(A) = A and Q1(A) be a kI-algebra such that

Q1(A)(J) =
{
A(J) ⊗̂ F(

∏
I∈T1

EISIA)(J) if J 6∈ T1,
A(J) otherwise.

The value of Q1(A) on a morphism φ : J → K in the category I is defined as
follows. If K 6∈ T1 then the map Q1(A)(φ) : Q1(A)(J) → Q1(A)(K) is in-
duced by the maps A(φ) : A(J)→ A(K) and EISI(A)(φ) : EISI(A)(J)→
EISI(A)(K). For K ∈ T1 the map Q1(A)(φ) is determined by the maps
A(φ) : A(J)→ A(K) and

∏
I∈T1

(EISIA)(J) πK−→ (EKSKA)(J)
(EKSKA)(φ)−−−−−−→

(EKSKA)(K) = SKA
ηK−→ A(K), where πK is the projection map and ηK

the inclusion SKA → A(K). Write i0 : Q0(A) → Q1(A) for the canoni-
cal inclusion; it is a cohomology isomorphism since F(

∏
I∈T1

EISIA)(J) are
acyclic k-algebras for all J ∈ Ob(I).

Given Ql(A) let Ql+1A be a kI-algebra such that

Ql+1(A)(J) =
{

Ql(A)(J) ⊗̂ F(
∏

I∈Tl+1
EISIQlA)(J) if J 6∈ Tl+1,

Ql(A)(J) otherwise.

The values of Ql+1(A) on morphisms are defined in the same way as for
Q1(A). Write il : Ql(A) → Ql+1(A) for the canonical inclusion which
is a cohomology isomorphism since F(

∏
I∈Tl+1

EISIQlA)(J) are acyclic k-
algebras for all J ∈ Ob(I). Define Q(A) = Qm(A) and iA = im−1 ◦ . . . ◦
i0 : A → Q(A). Then iA is a cohomology isomorphism and from the
construction it follows that Q is a functor and i : idI-DGAk

→ Q is a natural
transformation, where idI-DGAk

is the identity functor.
It remains to show that Q(A) is injective, i.e. by [3] it can be written

as a product of kI-modules EIM for some I ∈ Ob(I) and k[I]-modules M .
Again the argument goes inductively over the filtration of Is(I). First observe
that Q1(A) as a graded kI-module contains the injective graded kI-module∏

I∈T1
EIA(I). Therefore, there is a split short exact sequence of graded

kI-modules
0→

∏
I∈T1

EIA(I)→ Q1(A)→ R1 → 0,

where R1(I) = 0 for I ∈ T1 and SIQ1(A) = SIR1 for I 6∈ T1. In particular,
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SIQ1A = R1(I) for I ∈ T2 \ T1. Then from the construction of Q2(A) it
follows that the injective kI-module

∏
I∈T1

EIA(I) ⊕
∏

I∈T2\T1
EIR1(I) is

contained in Q2(A). Hence there is a split short exact sequence

0→
∏

I∈T1

EIA(I)⊕
∏

I∈T2\T1

EIR1(I)→ Q2(A)→ R2 → 0,

where R2(I) = 0 for I ∈ T2 and SIQ2(A) = SIR2 for I 6∈ T2. In particular,
SIQ2(A) = R2(I) for I ∈ T3 \ T2.

Assume that Ql(A) ≈
∏

I∈T1
EIA(I) ⊕

∏
I∈T2\T1

EIR1(I) ⊕ . . .

. . . ⊕
∏

I∈Tl\Tl−1
EIRl−1(I) ⊕ Rl as kI-modules, Rl(I) = 0 for I ∈ Tl and

SIQl(A) = SIRl for I 6∈ Tl. Then SIQlA(I) = Rl(I) for I ∈ Tl+1 \ Tl and
Ql+1A contains an injective kI-module

∏
I∈T1

EIA(I)⊕
∏

I∈T2\T1
EIR1(I)⊕

. . .⊕
∏

I∈Tl+1\Tl
EIRl(I) and there is a split short exact sequence

0→
∏

I∈T1

EIA(I)⊕
∏

I∈T2\T1

EIR1(I)⊕ . . .⊕
∏

I∈Tl+1\Tl

EIRl(I)

→ Ql+1(A)→ Rl+1 → 0,

where Rl+1(I) = 0 for I ∈ Tl+1 and SIQl+1A = Rl+1 for I ∈ Tl+2 \ Tl+1.
Finally, we obtain Q(A) = Qm(A) ≈

∏
I∈T1

EIA(I)⊕
∏

I∈T2\T1
EIR1(I)⊕

. . . ⊕
∏

I∈Tm\Tm−1
EIRm−1(I) as a graded kI-module, since Rm(I) = 0 for

I ∈ Tm, so Q(A) is injective as a graded kI-module.

If k is the constant kI-algebra determined by a field k then k is not in
general injective as kI-module. But for any kI-algebra A (injective as a
kI-module) there is a map Q(k)→ A of I-algebras extending the canonical
inclusion k → A as follows from a more general fact.

Proposition 2.2. Let I be an EI-category satisfying the above condi-
tions. If f : A → B is a map of kI-algebras and B is injective as a kI-module
then there is an extension map f̃ : Q(A)→ B of kI-algebras.

P r o o f. We construct by induction over the filtration of Is(I) a sequence
of maps f̃l : Ql(A)→ B for l = 0, 1, . . . , n.

Let f̃0 = f . Given f̃l : Ql(A)→ B such that the diagram

Ql−1(A) Ql(A)

B
f̃l−1

R
R
R
R
R
R
R
R
R
R
R
R
R
R ((

il−1 //

f̃l

��

commutes we construct a map f̃l+1 : Ql+1(A) → B as follows. The kI-
algebra B is injective, so by [3] there is an isomorphism of kI-modules B ≈
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∏
I∈Is(I)EISIB and f̃l induces maps EISI f̃l : EISIQl(A) → EISIB for

I ∈ Ob(I). Then f̃l together with these maps determines a map f̃l+1 :
Ql+1(A)→ B. The map f̃ = f̃m has the required property.

A kI-algebra A with a map Q(k)→ A is called a kI-algebra under Q(k)
or a based kI-algebra. A based injective, nilpotent and complete kI-algebra
M is said to be minimal if it satisfies the following:

(1) there is an inclusion Q(k) ↪→M;
(2)M(I) is a positive KS-extension of Q(k)(I) for all I ∈ Ob(I);
(3) M(I) is a minimal KS-extension of Q(k)(I) for all terminal I ∈

Ob(I);
(4) if d is the differential of M then d|SIM is decomposable for all I ∈

Ob(I).
A kI-algebra A is called nilpotent if A(I) is nilpotent for all I ∈ Ob(I).

We shall show in the forthcoming paper that injective minimal kI-algebras
play the same role in the category of nilpotent complete kI-algebras as min-
imal algebras in the category of nilpotent k-algebras.
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