COLLOQUIUM MATHEMATICUM

VOL. 73

1997

NO. 1

COMPONENTWISE INJECTIVE MODELS OF FUNCTORS TO DGAs

ВY

MAREK GOLASIŃSKI (TORUŃ)

The aim of this paper is to present a starting point for proving existence of injective minimal models (cf. [8]) for some systems of complete differential graded algebras.

Sullivan [7] introduced the rational de Rham theory for connected simplicial complexes and applied it to show that the de Rham algebra A_X^* of differential forms (over the field of rationals \mathbb{Q}) on a simply connected complex X of finite type determines its rational homotopy type. The central results of Sullivan's theory have been generalized by Triantafillou [8] to equivariant context but under the assumption that X is a simplicial set of finite type with a finite group G action which is G-connected and nilpotent, i.e. the fixed point simplicial subsets X^H are nonempty, connected, and nilpotent for all subgroups $H \subseteq G$. In this case not only A_X^* with the induced G-action are considered but also the system of the de Rham algebras $A_{X^H}^*$ for all subgroups $H \subseteq G$. This means that a functor \mathcal{A}_X^* on the category $\mathcal{O}(G)$ of canonical orbits is studied and its injectivity (as an $\mathcal{O}(G)$ -module) is the key observation for the existence of an equivariant analogue of Sullivan's minimal models. In the case X is disconnected we have to work over the category $\mathcal{O}(G, X)$ with one object for each component of X^H for all subgroups $H \subseteq G$. In general, the category $\mathcal{O}(G, X)$ is not finite, and in the category of functors from this category to the category of finitely generated \mathbb{Q} -modules there are not sufficiently many injectives to give a description of the rational homotopy type of X. Thus we have to replace finitely generated Q-modules by a neglected but very useful category of linearly compact \mathbb{Q} -modules considered already by Lefschetz in [5] and then we may omit the assumption on finite type of G-simplicial sets as well.

Now we give an outline of the paper. In Section 1 we investigate the category $k\mathbb{I}$ -Mod of covariant functors (or $k\mathbb{I}$ -modules) from a small category \mathbb{I} to the category of k-modules over a field k. This approach is inspired by a category of functors on categories related to the orbit category $\mathcal{O}(G)$

¹⁹⁹¹ Mathematics Subject Classification: Primary 55N91, 55P62; Secondary 16W50, 18G05.

determined by a finite group G. For simplicity we replace these categories by an EI-category \mathbb{I} (i.e. a small category such that all endomorphisms are isomorphisms). We introduce basic notions and present some properties of functors from \mathbb{I} to the category of linearly complete (or compact) k-modules. In particular, we show (Proposition 1.5) that on the de Rham algebra A_X^* of rational polynomial forms on a simplicial set X there is a natural complete linear topology.

In Section 2 we show (Theorem 2.1) that for any complete $k\mathbb{I}$ -algebra \mathcal{A} there exists a complete and injective (as a $k\mathbb{I}$ -module) $k\mathbb{I}$ -algebra $\mathfrak{Q}(\mathcal{A})$ and a natural cohomology isomorphism $\mathcal{A} \to \mathfrak{Q}(\mathcal{A})$. Then we generalize the notion of an *injective minimal* system of k-differential graded algebras considered in [8] to such systems indexed by some EI-category. The results will be applied in the forthcoming paper to the category of G-simplicial sets, where G is a finite group.

The author wishes to express his indebtedness to Professor S. Balcerzyk for carefully reading the manuscript, very useful discussions and suggestions.

1. Preliminaries on systems of modules. Let k be a (discrete) field. The category of (left) k-modules is denoted by k-Mod. If \mathbb{I} is a small category then a covariant functor $\mathbb{I} \to k$ -Mod is called a *left* $k\mathbb{I}$ -module (or a system of k-modules) and the category of left $k\mathbb{I}$ -modules is denoted by $k\mathbb{I}$ -Mod and called the *category of left* $k\mathbb{I}$ -modules. We also have the category of contravariant functors $\mathbb{I} \to k$ -Mod, alias right $k\mathbb{I}$ -modules and denoted by Mod- $k\mathbb{I}$.

The notions of submodule, quotient module, kernel, image and cokernel for $k\mathbb{I}$ -modules are defined object-wise. For each object $I \in Ob(\mathbb{I})$ we have the right $k\mathbb{I}$ -module

$$k\mathbb{I}(-, I) : \mathbb{I} \to k \operatorname{-Mod}$$

determined by the Yoneda functor $\mathbb{I}(-, I)$ and similarly, the left $k\mathbb{I}$ -module $k\mathbb{I}(I, -)$. Projective and injective $k\mathbb{I}$ -modules are defined by usual lifting properties. Observe that the category of projective right $k\mathbb{I}$ -modules is isomorphic to the category of all injectives in the category of all covariant functors from \mathbb{I} to the category k-Mod^{op} dual to k-Mod.

In various categories considered in algebraic topology endomorphisms are isomorphisms. Therefore, let \mathbb{I} be an *EI-category* which by definition, is a small category in which each endomorphism is an isomorphism. Following [6] we define a partial order (which is crucial for the sequel) on the set $Is(\mathbb{I})$ of isomorphism classes \overline{I} of objects $I \in Ob(\mathbb{I})$ by

$$\bar{I} \leq \bar{J}$$
 if $\mathbb{I}(I,J) \neq \emptyset$.

This induces a partial ordering on the set Is(I) of isomorphism classes of

objects, since the EI-property ensures that $\overline{I} \leq \overline{J}$ and $\overline{J} \leq \overline{I}$ implies $\overline{I} = \overline{J}$. We write that $\overline{I} < \overline{J}$ if $\overline{I} \leq \overline{J}$ and $\overline{I} \neq \overline{J}$. As it was shown in [3] injective $k\mathbb{I}$ -modules can be constructed from injective modules over group rings. If $I \in Ob(\mathbb{I})$ with the automorphism group Aut(I), we let k[I] = k Aut(I) be the group ring of Aut(I) and write k[I]-Mod for the category of left k[I]-modules.

For a fixed $I \in Ob(\mathbb{I})$ we introduce the following covariant functors.

The cosplitting functor $S_I : k\mathbb{I}$ -Mod $\to k[I]$ -Mod is defined as follows. If M is a $k\mathbb{I}$ -module, let $S_I(M)$ be the k[I]-submodule of M(I) equal to the intersection of kernels of all k-homomorphisms $M(f) : M(I) \to M(J)$ induced by all non-isomorphisms $f : I \to J$ with I as a source. Each automorphism $g \in \operatorname{Aut}(I)$ induces a map $M(g) : M(I) \to M(I)$ which maps $S_I(M)$ into itself. Thus $S_I(M)$ becomes a left k[I]-module. It is clear how S_I is defined on morphisms.

The restriction functor $\operatorname{Res}_I : k\mathbb{I} \operatorname{-Mod} \to k[I] \operatorname{-Mod}$ sends M to M(I).

The coextension functor $E_I : k[I]$ -Mod $\rightarrow k\mathbb{I}$ -Mod sends N to $\operatorname{Hom}_{k[I]}(k\mathbb{I}(-,I),N)$.

The coinclusion functor $\operatorname{In}_I : k[I] \operatorname{-Mod} \to k\mathbb{I} \operatorname{-Mod}$ assigns to a k[I]-module N the $k\mathbb{I}$ -module $\operatorname{In}_I(N)$ defined by

$$\operatorname{In}_{I}(N)(J) = \begin{cases} \operatorname{Hom}_{k[I]}(k\mathbb{I}(J,I),N) & \text{if } \overline{J} = \overline{I}, \\ 0 & \text{if } \overline{J} \neq \overline{I}. \end{cases}$$

We say a $k\mathbb{I}$ -module M is of type T, for $T \subseteq \text{Is}(\mathbb{I})$, if the set $\{\overline{I} \in \text{Is}(\mathbb{I}) \mid M(I) \neq 0\}$ is contained in T. For any $\overline{I} \in T$ choose a representative $I \in \overline{I}$ and fix a k[I]-monomorphism

$$0 \to M(I) \to Q_I,$$

where Q_I is injective. If M is of type T then we get a monomorphism of $k\mathbb{I}$ -modules

$$0 \to M \to \prod_{\bar{I} \in T} E_I Q_I.$$

In particular, it follows that any injective $k\mathbb{I}$ -module of type T is a direct summand of a $k\mathbb{I}$ -module $\prod_{\bar{I}\in T} E_I Q_I$, where Q_I are injective k[I]-modules for $\bar{I}\in T$.

The next result follows easily from the above definitions.

LEMMA 1.1. (1) The functors E_I and Res_I and the functors S_I and In_I are adjoint, i.e. there are natural isomorphisms of k-modules

$$\operatorname{Hom}_{k\mathbb{I}}(M, E_I N) \to \operatorname{Hom}_{k[I]}(\operatorname{Res}_I M, N)$$

and

$$\operatorname{Hom}_{k[I]}(N, S_I M) \to \operatorname{Hom}_{k\mathbb{I}}(\operatorname{In}_I N, M).$$

(2) $S_I \circ E_I : k[I] \operatorname{-Mod} \to k[I] \operatorname{-Mod}$ is naturally equivalent to the identity functor. The composition $S_J \circ E_I$ is zero for $\overline{I} \neq \overline{J}$.

(3) S_I and E_I preserve products, monomorphisms and injective modules.

The dual category k-Mod^{op} is isomorphic to the category k-Mod^c of linearly compact k-modules considered in [5]. For our purpose we briefly present some results on the category k-Mod^c. A topological k-module Mis said to be *linearly topological* if it is Hausdorff and there is a fundamental system $\mathcal{N}(M)$ of neighborhoods of zero consisting of k-submodules. A linearly topological k-module M is called *linearly compact* if for every collection $\{F_i\}_{i\in I}$ of closed affine subsets of M (i.e. $F_i = m_i + M_i$ for some closed k-submodule $M_i \subseteq M$) with the finite intersection property we have $\bigcap_{i\in I} F_i \neq \emptyset$. For linearly topological k-modules M and N let $\operatorname{Hom}_k^t(M, N)$ be the set of all continuous k-linear maps. We topologize this k-module by requiring that for any linearly compact k-submodule $K \subseteq M$ and an open k-submodule $V \subseteq N$ the k-submodules $\{f \in \operatorname{Hom}_k^t(M, N) : f(K) \subseteq V\}$ form a subbasis of a linear topology on $\operatorname{Hom}_k^t(M, N)$. For a k-module Mlet $M^* = \operatorname{Hom}_k^t(M, k)$ be its topological dual.

THEOREM 1.2 [5]. (1) A linearly topological k-module M is linearly compact if and only if M^* is discrete.

(2) If M is linearly compact or discrete then the canonical map $M \rightarrow M^{**}$ is a topological isomorphism.

(3) If M and N are linearly compact or discrete k-modules then the canonical map $\operatorname{Hom}_k^t(M,N) \to \operatorname{Hom}_k^t(N^*,M^*)$ is a topological isomorphism.

For a linearly topological k-module M and its closed k-submodule M'the quotient topology on M/M' is linear. In particular, if M' is an open submodule then this topology on M/M' is discrete. Let $\omega_{M'}: M \to M/M'$ be the canonical map. For $V_1, V_2 \in \mathcal{N}(M)$ such that $V_1 \subseteq V_2$, let $\omega_{V_2}^{V_1}:$ $M/V_1 \to M/V_2$ be the canonical map and $M^{\wedge} = \varprojlim_{V \in \mathcal{N}(M)} M/V$. Write $\pi_V: M^{\wedge} \to M/V$ for the canonical projection. Then the collection {ker $\pi_V :$ $V \in \mathcal{N}(M)$ } of k-submodules forms a subbasis of a linear topology on M^{\wedge} . The k-module M^{\wedge} with this topology is called the *completion* of M. The collection of maps $\omega_V: M \to M/V$ for $V \in \mathcal{N}(M)$ determines a continuous monomorphism $\omega : M \to M^{\wedge}$ such that $\omega(M)$ is dense in M^{\wedge} . A topological k-module M is said to be *complete* if the map ω is a topological isomorphism. Of course, if M is linearly compact or discrete then $\omega(M)$ is closed in M^{\wedge} and thus M is complete as well.

For two linearly topological k-modules M and N let $M \otimes N$ be their tensor product over k. If $V \subseteq M$ and $W \subseteq N$ are two open k-submodules, we write $[V, W] = V \otimes N + M \otimes W$. Then the following lemma holds.

FUNCTORS TO DGAs

LEMMA 1.3. If M and N are linearly topological k-modules then the collection of k-submodules [V, W] of $M \otimes N$ with open k-submodules $V \subseteq M$ and $W \subseteq N$ forms a linear topology on $M \otimes N$ such that the canonical bilinear map $M \times N \to M \otimes N$ is universal with respect to uniformly continuous k-bilinear maps to linearly topological k-modules.

Write $M \otimes N$ for the completion $(M \otimes N)^{\wedge}$ and call it the *complete* tensor product of M and N. Then the canonical map $M \times N \to M \otimes N$ is universal with respect to uniformly continuous k-bilinear maps to complete k-modules.

Now let \mathbb{I} be an EI-category. A covariant functor from \mathbb{I} to k-Mod^c is said to be a *linearly compact left* $k\mathbb{I}$ -module. For two linearly compact left $k\mathbb{I}$ -modules M, N we define their complete tensor product $M \otimes N$ as a linearly compact left $k\mathbb{I}$ -module such that $(M \otimes N)(I) = M(I) \otimes N(I)$ for all $I \in Ob(\mathbb{I})$.

Let DGA_k be the category of homologically connected commutative differential graded k-algebras (or simply k-algebras). We briefly recall some constructions presented in [4]. For a map $\gamma : B \to E$ in DGA_k , where B is augmented, Halperin [4] considers its "minimal factorization". Namely, he generalizes the notion of a minimal k-algebra [7] to a minimal KS-extension given by a special sequence of augmented k-algebras

$$\mathbb{E}: B \stackrel{i}{\longrightarrow} C \stackrel{\pi}{\longrightarrow} A,$$

where A is free as a graded commutative k-algebra generated by some graded k-module $M = \{M_i\}_{i\geq 0}$. If $M_0 = 0$ then the extension \mathbb{E} is called *positive*. In [4] it is shown that for any map $\gamma : B \to E$ [4] of connected k-algebras, where B is augmented, there is a unique (up to isomorphism) minimal KS-extension

$$\mathbb{E}: B \stackrel{i}{\longrightarrow} C \stackrel{\pi}{\longrightarrow} A$$

and a homology isomorphism $\varrho: C \to E$ such that $\varrho \circ i = \gamma$.

The extension \mathbb{E} together with the map $\rho : C \to E$ is called a KSminimal model for γ . In particular, for a k-algebra A and the canonical map $k \to A$ one gets a minimal algebra M_A together with a homology isomorphism $\rho_A : M_A \to A$ called the minimal model for A.

An object $A = \{A^n\}_{n>0}$ in DGA_k is called *complete* if

(1) A^n is a complete linearly topological k-module and the differential $d: A^n \to A^{n+1}$ is continuous for all $n \ge 0$,

(2) multiplication $A^n \times A^m \to A^{n+m}$ is uniformly continuous for all $n, m \ge 0$ (with respect to the linear product topology on $A^n \times A^m$).

The key example of a complete algebra is produced as follows. For the field of rationals \mathbb{Q} and a simplicial set X one can form a \mathbb{Q} -algebra A_X^* by taking collections of \mathbb{Q} -polynomial forms on each simplex (sums of terms

of type $\omega(t_0, \ldots, t_n) dt_{i_1} \wedge \ldots \wedge dt_{i_l}$, where ω is a Q-polynomial) that agree when restricted to common faces (see [1] for more details). We define a *natural topology* on the Q-module A_X^n of *n*-forms on X as follows: for any map $\tilde{x} : \Delta(l) \to X$, the k-submodules ker $(A_X^n(\tilde{x}) : A_X^n \to A_{\Delta(l)}^n)$, where $\Delta(l)$ is the *l*-simplex, form a fundamental system of neighborhoods of zero in A_X^n . The following proposition holds.

PROPOSITION 1.4. Let X be a simplicial set. Then:

- (1) the natural topology on A_X^n is complete for all $n \ge 0$,
- (2) the multiplication $A_X^n \times \hat{A}_X^m \to \hat{A}_X^{n+m}$ of differential forms is uniformly continuous (with respect to the product topology on $A_X^n \times A_X^m$),

(3) the differential $d_X^n : A_X^n \to A_X^{n+1}$ is continuous.

Proof. (1) First, observe that for a simplicial map $\tilde{x} : \Delta(l) \to X$ there is an isomorphism $A_X^n / \ker A_{\tilde{x}}^n \approx A_{\Delta(l)}^n$ of discrete Q-modules. Then the map

$$\phi: A_X^n \to \varprojlim_{\tilde{x}:\Delta(l)\to X} A_X^n / \ker A_{\tilde{x}}^n \approx \varprojlim_{\tilde{x}:\Delta(l)\to X} A_{\Delta(l)}^n$$

such that $\phi(\omega) = (A_{\tilde{x}}^n(\omega))_{\tilde{x}:\Delta(l)\to X}$, for $\omega \in A_X^n$, is the required topological isomorphism.

(2) For a simplicial map $\tilde{x} : \Delta(l) \to X$ and the corresponding open k-submodule $V = \ker(A^{n+m}(\tilde{x}) : A_X^{n+m} \to A_{\Delta(l)}^{n+m})$ consider the subspaces $U_1 = \ker(A^n(\tilde{x}) : A_X^n \to A_{\Delta(l)}^n)$ and $U_2 = \ker(A^m(\tilde{x}) : A_X^m \to A_{\Delta(l)}^m)$ of A_X^n and A_X^m , respectively. Then the image of $U_1 \times A_X^m$ and $A_X^n \times U_2$ under the multiplication map of differential forms is contained in V, so the multiplication is uniformly continuous.

(3) The differential d_X^n is natural with respect to X, hence it is continuous as well. \blacksquare

Write DGA_k^{\wedge} for the subcategory of DGA_k determined by complete differential graded k-algebras.

For a minimal k-algebra M let M(n) be its subalgebra generated by elements of degree at most n. Then M is said to be *nilpotent* if each M(n)is constructed from M(n-1) by a finite number of elementary extensions (see [4] for details). A homologically connected k-algebra A is said to be *nilpotent* if its minimal model M_A is nilpotent. If X is a (connected) nilpotent simplicial set then the de Rham Q-algebra A_X^* of differential forms is nilpotent as shown in [1]. If a k-algebra A is augmented let $\widetilde{A} = \ker(A \to k)$ be its augmentation ideal. Recall that decomposability of the differential dof A means that $d(A) \subseteq \widetilde{A} \cdot \widetilde{A}$.

Let \mathbb{I} be an *EI*-category and $k\mathbb{I}$ -DGA_k the category of all covariant functors from \mathbb{I} to DGA_k called $k\mathbb{I}$ -algebras (or systems of k-algebras). We

FUNCTORS TO DGAs

say that a $k\mathbb{I}$ -algebra \mathcal{A} is complete if the algebras $\mathcal{A}(I)$ are complete for all $I \in \mathrm{Ob}(\mathbb{I})$ and \mathcal{A} is *injective* if the left $k\mathbb{I}$ -modules \mathcal{A}^n are injective for $n \geq 0$, where $\mathcal{A}^n(I) = (\mathcal{A}(I))^n$ for all $I \in \mathrm{Ob}(\mathbb{I})$.

For any complete injective (as a $k\mathbb{I}$ -module) $k\mathbb{I}$ -algebra \mathcal{A} and a complete left $k\mathbb{I}$ -module M we consider two types of cohomology of \mathcal{A} .

(1) The kI-module $H^n(\mathcal{A})$ such that $H^n(\mathcal{A})(I) = H^n(\mathcal{A}(I))$ for $I \in Ob(\mathbb{I})$ and $n \geq 0$.

(2) The cohomology $H^n(\mathcal{A}, M) = H^n(\operatorname{Hom}(M, \mathcal{A}))$ with coefficients in M for $n \geq 0$, where $\{\operatorname{Hom}(M, \mathcal{A}^n)\}_{n\geq 0}$ is a cochain complex in the category of complete left $k\mathbb{I}$ -modules. For a projective resolution $M^{(\star)}$ of M in the category of complete $k\mathbb{I}$ -modules we form the double complex $\operatorname{Hom}(M^{(\star)}, \mathcal{A})$. The standard homological algebra arguments yield a spectral sequence

$$E_2^{pq} = \operatorname{Ext}^p(M, \boldsymbol{H}^q(\mathcal{A})) \Rightarrow H^{p+q}(\mathcal{A}, M)$$

Notice that the injectivity of \mathcal{A} (as a kI-module) implies the convergence of this sequence and $H^n(\mathcal{A}, M) = \operatorname{Hom}(M, H^n(\mathcal{A}))$ if M is projective.

2. Injective extension of systems of algebras. The spectral sequence considered in the previous section plays a key role in a construction of an injective minimal model for a complete injective $k\mathbb{I}$ -algebra \mathcal{A} , for an EI-category \mathbb{I} . This is the reason why the injectivity of \mathcal{A} (as a $k\mathbb{I}$ -module) is necessary. Theorem 2.1 in this section shows that for any complete $k\mathbb{I}$ -algebra \mathcal{A} there exists a complete injective $k\mathbb{I}$ -algebra $\mathfrak{Q}(\mathcal{A})$ and a natural cohomology isomorphism $\mathcal{A} \to \mathfrak{Q}(\mathcal{A})$.

Hereafter, we assume that \mathbb{I} is an EI-category with the filtration $\emptyset = T_0 \subset T_1 \ldots \subset T_m = \operatorname{Is}(\mathbb{I})$ such that $\overline{I} \in T_k$, $\overline{J} \in T_l$, $\overline{I} < \overline{J}$ implies k > l and all $k\mathbb{I}$ -algebras \mathcal{A} are homologically connected, i.e. satisfy $\mathbf{H}^0(\mathcal{A}) = \underline{k}$, where \underline{k} is the constant $k\mathbb{I}$ -module determined by a field k. To show the main result we need some constructions. An augmented k-algebra \mathcal{A} is called *acyclic* if $H^n(\widetilde{\mathcal{A}}) = 0$ for all $n \geq 0$, where $\widetilde{\mathcal{A}}$ is the augmentation ideal of \mathcal{A} . If M is a graded k-module then the k-algebra $\mathfrak{F}(M)$ freely generated by $M \oplus sM$, where sM is a copy of M with a shift of degree +1 and d(m) = sm for $m \in M$, is an augmented acyclic k-algebra. In particular, for a $k\mathbb{I}$ -algebra \mathcal{A} and $I \in \operatorname{Ob}(\mathbb{I})$ we get an associated system $\mathfrak{F}(E_I S_I \mathcal{A})$ of acyclic $k\mathbb{I}$ -algebras such that $\mathfrak{F}(E_I S_I \mathcal{A})(J) = \mathfrak{F}(E_I S_I \mathcal{A}(J))$ for $J \in \operatorname{Ob}(\mathbb{I})$, where E_I and S_I are functors defined in the previous section. Now we are in a position to present a generalization of Theorem 1 in [2].

THEOREM 2.1. If I is an EI-category such that k[I] is a semisimple ring for all $I \in ob(I)$ and there is a filtration

$$\emptyset = T_0 \subset T_1 \subset \ldots \subset T_m = \mathrm{Is}(\mathbb{I})$$

M. GOLASIŃSKI

satisfying the above condition then for any complete $k\mathbb{I}$ -algebra \mathcal{A} there is a complete and injective (as a $k\mathbb{I}$ -module) $k\mathbb{I}$ -algebra $\mathfrak{Q}(\mathcal{A})$ and a natural inclusion $i_{\mathcal{A}} : \mathcal{A} \to \mathfrak{Q}(\mathcal{A})$ which is a cohomology isomorphism.

Proof. We proceed by induction over the filtration of $Is(\mathbb{I})$ to construct a sequence of $k\mathbb{I}$ -algebras and natural inclusions

$$\mathcal{A} = \mathfrak{Q}_0(\mathcal{A}) \stackrel{i_0}{\longrightarrow} \mathfrak{Q}_1(\mathcal{A}) \stackrel{i_1}{\longrightarrow} \dots \stackrel{i_{m-1}}{\longrightarrow} \mathfrak{Q}_m(\mathcal{A}) = \mathfrak{Q}(\mathcal{A})$$

which are cohomology isomorphisms.

Let $\mathfrak{Q}_0(\mathcal{A}) = \mathcal{A}$ and $\mathfrak{Q}_1(\mathcal{A})$ be a kI-algebra such that

$$\mathfrak{Q}_1(\mathcal{A})(J) = \begin{cases} \mathcal{A}(J) \widehat{\otimes} \mathfrak{F}(\prod_{\bar{I} \in T_1} E_I S_I \mathcal{A})(J) & \text{if } \bar{J} \notin T_1, \\ \mathcal{A}(J) & \text{otherwise.} \end{cases}$$

The value of $\mathfrak{Q}_1(\mathcal{A})$ on a morphism $\phi: J \to K$ in the category \mathbb{I} is defined as follows. If $\overline{K} \notin T_1$ then the map $\mathfrak{Q}_1(\mathcal{A})(\phi): \mathfrak{Q}_1(\mathcal{A})(J) \to \mathfrak{Q}_1(\mathcal{A})(K)$ is induced by the maps $\mathcal{A}(\phi): \mathcal{A}(J) \to \mathcal{A}(K)$ and $E_I S_I(\mathcal{A})(\phi): E_I S_I(\mathcal{A})(J) \to E_I S_I(\mathcal{A})(K)$. For $\overline{K} \in T_1$ the map $\mathfrak{Q}_1(\mathcal{A})(\phi)$ is determined by the maps $\mathcal{A}(\phi): \mathcal{A}(J) \to \mathcal{A}(K)$ and $\prod_{\overline{I} \in T_1} (E_I S_I \mathcal{A})(J) \xrightarrow{\pi_K} (E_K S_K \mathcal{A})(J) \xrightarrow{(E_K S_K \mathcal{A})(\phi)} (E_K S_K \mathcal{A})(K) = S_K \mathcal{A} \xrightarrow{\eta_K} \mathcal{A}(K)$, where π_K is the projection map and η_K the inclusion $S_K \mathcal{A} \to \mathcal{A}(K)$. Write $i_0: \mathfrak{Q}_0(\mathcal{A}) \to \mathfrak{Q}_1(\mathcal{A})$ for the canonical inclusion; it is a cohomology isomorphism since $\mathfrak{F}(\prod_{\overline{I} \in T_1} E_I S_I \mathcal{A})(J)$ are acyclic k-algebras for all $J \in Ob(\mathbb{I})$.

Given $\mathfrak{Q}_l(\mathcal{A})$ let $\mathfrak{Q}_{l+1}\mathcal{A}$ be a kI-algebra such that

$$\mathfrak{Q}_{l+1}(\mathcal{A})(J) = \begin{cases} \mathfrak{Q}_l(\mathcal{A})(J) \widehat{\otimes} \mathfrak{F}(\prod_{\bar{I} \in T_{l+1}} E_I S_I \mathfrak{Q}_l \mathcal{A})(J) & \text{if } \bar{J} \notin T_{l+1}, \\ \mathfrak{Q}_l(\mathcal{A})(J) & \text{otherwise.} \end{cases}$$

The values of $\mathfrak{Q}_{l+1}(\mathcal{A})$ on morphisms are defined in the same way as for $\mathfrak{Q}_1(\mathcal{A})$. Write $i_l : \mathfrak{Q}_l(\mathcal{A}) \to \mathfrak{Q}_{l+1}(\mathcal{A})$ for the canonical inclusion which is a cohomology isomorphism since $\mathfrak{F}(\prod_{\bar{I}\in T_{l+1}} E_I S_I \mathfrak{Q}_l \mathcal{A})(J)$ are acyclic k-algebras for all $J \in \mathrm{Ob}(\mathbb{I})$. Define $\mathfrak{Q}(\mathcal{A}) = \mathfrak{Q}_m(\mathcal{A})$ and $i_{\mathcal{A}} = i_{m-1} \circ \ldots \circ i_0 : \mathcal{A} \to \mathfrak{Q}(\mathcal{A})$. Then $i_{\mathcal{A}}$ is a cohomology isomorphism and from the construction it follows that \mathfrak{Q} is a functor and $i : \mathrm{id}_{\mathbb{I}-\mathrm{DGA}_k} \to \mathfrak{Q}$ is a natural transformation, where $\mathrm{id}_{\mathbb{I}-\mathrm{DGA}_k}$ is the identity functor.

It remains to show that $\mathfrak{Q}(\mathcal{A})$ is injective, i.e. by [3] it can be written as a product of $k\mathbb{I}$ -modules E_IM for some $I \in \mathrm{Ob}(\mathbb{I})$ and k[I]-modules M. Again the argument goes inductively over the filtration of $\mathrm{Is}(\mathbb{I})$. First observe that $\mathfrak{Q}_1(\mathcal{A})$ as a graded $k\mathbb{I}$ -module contains the injective graded $k\mathbb{I}$ -module $\prod_{\overline{I}\in T_1} E_I\mathcal{A}(I)$. Therefore, there is a split short exact sequence of graded $k\mathbb{I}$ -modules

$$0 \to \prod_{\bar{I} \in T_1} E_I \mathcal{A}(I) \to \mathfrak{Q}_1(\mathcal{A}) \to R_1 \to 0$$

where $R_1(I) = 0$ for $\overline{I} \in T_1$ and $S_I \mathfrak{Q}_1(\mathcal{A}) = S_I R_1$ for $\overline{I} \notin T_1$. In particular,

 $S_I \mathfrak{Q}_1 \mathcal{A} = R_1(I)$ for $\overline{I} \in T_2 \setminus T_1$. Then from the construction of $\mathfrak{Q}_2(\mathcal{A})$ it follows that the injective $k\mathbb{I}$ -module $\prod_{\overline{I} \in T_1} E_I \mathcal{A}(I) \oplus \prod_{\overline{I} \in T_2 \setminus T_1} E_I R_1(I)$ is contained in $\mathfrak{Q}_2(\mathcal{A})$. Hence there is a split short exact sequence

$$0 \to \prod_{\bar{I} \in T_1} E_I \mathcal{A}(I) \oplus \prod_{\bar{I} \in T_2 \setminus T_1} E_I R_1(I) \to \mathfrak{Q}_2(\mathcal{A}) \to R_2 \to 0.$$

where $R_2(I) = 0$ for $\overline{I} \in T_2$ and $S_I \mathfrak{Q}_2(\mathcal{A}) = S_I R_2$ for $\overline{I} \notin T_2$. In particular, $S_I \mathfrak{Q}_2(\mathcal{A}) = R_2(I)$ for $\overline{I} \in T_3 \setminus T_2$.

Assume that $\mathfrak{Q}_{l}(\mathcal{A}) \approx \prod_{\bar{I} \in T_{1}} E_{I}\mathcal{A}(I) \oplus \prod_{\bar{I} \in T_{2} \setminus T_{1}} E_{I}R_{1}(I) \oplus \dots$ $\dots \oplus \prod_{\bar{I} \in T_{l} \setminus T_{l-1}} E_{I}R_{l-1}(I) \oplus R_{l}$ as $k\mathbb{I}$ -modules, $R_{l}(I) = 0$ for $\bar{I} \in T_{l}$ and $S_{I}\mathfrak{Q}_{l}(\mathcal{A}) = S_{I}R_{l}$ for $\bar{I} \notin T_{l}$. Then $S_{I}\mathfrak{Q}_{l}\mathcal{A}(I) = R_{l}(I)$ for $\bar{I} \in T_{l+1} \setminus T_{l}$ and $\mathfrak{Q}_{l+1}\mathcal{A}$ contains an injective $k\mathbb{I}$ -module $\prod_{\bar{I} \in T_{1}} E_{I}\mathcal{A}(I) \oplus \prod_{\bar{I} \in T_{2} \setminus T_{1}} E_{I}R_{1}(I) \oplus \dots \oplus \prod_{\bar{I} \in T_{l+1} \setminus T_{l}} E_{I}R_{l}(I)$ and there is a split short exact sequence

$$0 \to \prod_{\bar{I} \in T_1} E_I \mathcal{A}(I) \oplus \prod_{\bar{I} \in T_2 \setminus T_1} E_I R_1(I) \oplus \ldots \oplus \prod_{\bar{I} \in T_{l+1} \setminus T_l} E_I R_l(I) \\ \to \mathfrak{Q}_{l+1}(\mathcal{A}) \to R_{l+1} \to 0,$$

where $R_{l+1}(I) = 0$ for $\overline{I} \in T_{l+1}$ and $S_I \mathfrak{Q}_{l+1} \mathcal{A} = R_{l+1}$ for $\overline{I} \in T_{l+2} \setminus T_{l+1}$. Finally, we obtain $\mathfrak{Q}(\mathcal{A}) = \mathfrak{Q}_m(\mathcal{A}) \approx \prod_{\overline{I} \in T_1} E_I \mathcal{A}(I) \oplus \prod_{\overline{I} \in T_2 \setminus T_1} E_I R_1(I) \oplus \dots \oplus \prod_{\overline{I} \in T_m \setminus T_{m-1}} E_I R_{m-1}(I)$ as a graded $k\mathbb{I}$ -module, since $R_m(I) = 0$ for $\overline{I} \in T_m$, so $\mathfrak{Q}(\mathcal{A})$ is injective as a graded $k\mathbb{I}$ -module.

If \underline{k} is the constant $k\mathbb{I}$ -algebra determined by a field k then \underline{k} is not in general injective as $k\mathbb{I}$ -module. But for any $k\mathbb{I}$ -algebra \mathcal{A} (injective as a $k\mathbb{I}$ -module) there is a map $\mathfrak{Q}(\underline{k}) \to \mathcal{A}$ of \mathbb{I} -algebras extending the canonical inclusion $\underline{k} \to \mathcal{A}$ as follows from a more general fact.

PROPOSITION 2.2. Let \mathbb{I} be an EI-category satisfying the above conditions. If $f : \mathcal{A} \to \mathcal{B}$ is a map of $k\mathbb{I}$ -algebras and \mathcal{B} is injective as a $k\mathbb{I}$ -module then there is an extension map $\tilde{f} : \mathfrak{Q}(\mathcal{A}) \to \mathcal{B}$ of $k\mathbb{I}$ -algebras.

Proof. We construct by induction over the filtration of $\text{Is}(\mathbb{I})$ a sequence of maps $\widetilde{f}_l : \mathfrak{Q}_l(\mathcal{A}) \to \mathcal{B}$ for l = 0, 1, ..., n.

Let $\widetilde{f}_0 = f$. Given $\widetilde{f}_l : \mathfrak{Q}_l(\mathcal{A}) \to \mathcal{B}$ such that the diagram

$$\mathfrak{Q}_{l-1}(\mathcal{A}) \xrightarrow{i_{l-1}} \mathfrak{Q}_{l}(\mathcal{A})$$

$$\downarrow_{\tilde{f}_{l-1}} \qquad \qquad \downarrow_{\tilde{f}_{l}}$$

$$\mathcal{B}$$

commutes we construct a map $\widetilde{f}_{l+1} : \mathfrak{Q}_{l+1}(\mathcal{A}) \to \mathcal{B}$ as follows. The $k\mathbb{I}$ algebra \mathcal{B} is injective, so by [3] there is an isomorphism of $k\mathbb{I}$ -modules $\mathcal{B} \approx$

 $\prod_{\overline{I} \in \mathrm{Is}} (\mathbb{I}) E_I S_I \mathcal{B} \text{ and } \widetilde{f}_l \text{ induces maps } E_I S_I \widetilde{f}_l : E_I S_I \mathfrak{Q}_l(\mathcal{A}) \to E_I S_I \mathcal{B} \text{ for } I \in \mathrm{Ob}(\mathbb{I}).$ Then \widetilde{f}_l together with these maps determines a map $\widetilde{f}_{l+1} : \mathfrak{Q}_{l+1}(\mathcal{A}) \to \mathcal{B}.$ The map $\widetilde{f} = \widetilde{f}_m$ has the required property.

A $k\mathbb{I}$ -algebra \mathcal{A} with a map $\mathfrak{Q}(\underline{k}) \to \mathcal{A}$ is called a $k\mathbb{I}$ -algebra under $\mathfrak{Q}(\underline{k})$ or a based $k\mathbb{I}$ -algebra. A based injective, nilpotent and complete $k\mathbb{I}$ -algebra \mathcal{M} is said to be minimal if it satisfies the following:

(1) there is an inclusion $\mathfrak{Q}(\underline{k}) \hookrightarrow \mathcal{M};$

(2) $\mathcal{M}(I)$ is a positive KS-extension of $\mathfrak{Q}(\underline{k})(I)$ for all $I \in \mathrm{Ob}(\mathbb{I})$;

(3) $\mathcal{M}(I)$ is a minimal KS-extension of $\mathfrak{Q}(\underline{k})(I)$ for all terminal $I \in Ob(\mathbb{I})$;

(4) if d is the differential of \mathcal{M} then $d_{|S_I\mathcal{M}}$ is decomposable for all $I \in Ob(\mathbb{I})$.

A $k\mathbb{I}$ -algebra \mathcal{A} is called *nilpotent* if $\mathcal{A}(I)$ is nilpotent for all $I \in Ob(\mathbb{I})$. We shall show in the forthcoming paper that injective minimal $k\mathbb{I}$ -algebras play the same role in the category of nilpotent complete $k\mathbb{I}$ -algebras as minimal algebras in the category of nilpotent k-algebras.

REFERENCES

- A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 179 (1976).
- [2] B. L. Fine and G. V. Triantafillou, On the equivariant formality of Kähler manifolds with finite group action, Canad. J. Math. 45 (1993), 1200–1210.
- [3] M. Golasiński, Injectivity of the de Rham algebra on G-disconnected simplicial sets, submitted.
- [4] S. Halperin, Lectures on minimal models, Mém. Soc. Math. France 9–10 (1983).
- [5] S. Lefschetz, Algebraic Topology, Amer. Math. Soc. Colloq. Publ. 27, 1942.
- [6] W. Lück, Transformation Groups and Algebraic K-Theory, Lecture Notes in Math. 1408, Springer, 1989.
- [7] D. Sullivan, Infinitesimal computations in topology, Publ. Math. I.H.E.S. 47 (1977), 269–331.
- [8] G. V. Triantafillou, Equivariant minimal models, Trans. Amer. Math. Soc. 274 (1982), 509-532.

Faculty of Mathematics and Informatics Nicholas Copernicus University Chopina 12/18 87-100 Toruń, Poland E-mail: marek@mat.uni.torun.pl

> Received 27 June 1996; revised 11 July 1996