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COMPONENTWISE INJECTIVE MODELS OF FUNCTORS TO DGAs
BY

MAREK GOLASINSKI (TORUN)

The aim of this paper is to present a starting point for proving existence
of injective minimal models (cf. [8]) for some systems of complete differential
graded algebras.

Sullivan [7] introduced the rational de Rham theory for connected sim-
plicial complexes and applied it to show that the de Rham algebra A%
of differential forms (over the field of rationals Q) on a simply connected
complex X of finite type determines its rational homotopy type. The cen-
tral results of Sullivan’s theory have been generalized by Triantafillou [8]
to equivariant context but under the assumption that X is a simplicial set
of finite type with a finite group G action which is G-connected and nilpo-
tent, i.e. the fixed point simplicial subsets X are nonempty, connected,
and nilpotent for all subgroups H C G. In this case not only A% with
the induced G-action are considered but also the system of the de Rham
algebras A%, for all subgroups H C G. This means that a functor A%
on the category O(G) of canonical orbits is studied and its injectivity (as
an O(G)-module) is the key observation for the existence of an equivariant
analogue of Sullivan’s minimal models. In the case X is disconnected we
have to work over the category O(G, X) with one object for each component
of X# for all subgroups H C G. In general, the category O(G, X) is not
finite, and in the category of functors from this category to the category
of finitely generated Q-modules there are not sufficiently many injectives to
give a description of the rational homotopy type of X. Thus we have to re-
place finitely generated Q-modules by a neglected but very useful category
of linearly compact Q-modules considered already by Lefschetz in [5] and
then we may omit the assumption on finite type of G-simplicial sets as well.

Now we give an outline of the paper. In Section 1 we investigate the
category kI-Mod of covariant functors (or kI-modules) from a small category
I to the category of k-modules over a field k. This approach is inspired by
a category of functors on categories related to the orbit category O(G)
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determined by a finite group G. For simplicity we replace these categories
by an El-category I (i.e. a small category such that all endomorphisms are
isomorphisms). We introduce basic notions and present some properties of
functors from I to the category of linearly complete (or compact) k-modules.
In particular, we show (Proposition 1.5) that on the de Rham algebra A% of
rational polynomial forms on a simplicial set X there is a natural complete
linear topology.

In Section 2 we show (Theorem 2.1) that for any complete kl-algebra
A there exists a complete and injective (as a kl-module) kl-algebra Q(.A)
and a natural cohomology isomorphism A — £(A). Then we generalize
the notion of an injective minimal system of k-differential graded algebras
considered in [8] to such systems indexed by some El-category. The results
will be applied in the forthcoming paper to the category of G-simplicial sets,
where G is a finite group.

The author wishes to express his indebtedness to Professor S. Balcerzyk
for carefully reading the manuscript, very useful discussions and suggestions.

1. Preliminaries on systems of modules. Let k£ be a (discrete)
field. The category of (left) k-modules is denoted by k-Mod. If T is a small
category then a covariant functor I — k-Mod is called a left kl-module
(or a system of k-modules) and the category of left kI-modules is denoted
by kI-Mod and called the category of left kI-modules. We also have the
category of contravariant functors I — k-Mod, alias right kI-modules and
denoted by Mod-£I.

The notions of submodule, quotient module, kernel, image and cokernel
for kI-modules are defined object-wise. For each object I € Ob(I) we have
the right kl-module

El(—,I):1— k-Mod
determined by the Yoneda functor I(—, I) and similarly, the left kI-module
EL(I,—). Projective and injective kl-modules are defined by usual lifting
properties. Observe that the category of projective right kI-modules is iso-
morphic to the category of all injectives in the category of all covariant
functors from I to the category k-Mod®°® dual to k-Mod.

In various categories considered in algebraic topology endomorphisms
are isomorphisms. Therefore, let I be an EI-category which by definition, is
a small category in which each endomorphism is an isomorphism. Following
[6] we define a partial order (which is crucial for the sequel) on the set Is(I)
of isomorphism classes I of objects I € Ob(I) by

T<J it I(I,J)#0.

This induces a partial ordering on the set Is(I) of isomorphism classes of
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objects, since the EI-property ensures that / < .J and J < I implies I = J.
We write that I < J if I < J and I # J. As it was shown in [3] injective
kI-modules can be constructed from injective modules over group rings. If
I € Ob(I) with the automorphism group Aut([), we let k[I] = k Aut([)
be the group ring of Aut(I) and write k[/]-Mod for the category of left
k[I]-modules.

For a fixed I € Ob(Il) we introduce the following covariant functors.

The cosplitting functor Sy : kI-Mod — k[I]-Mod is defined as follows.
If M is a kl-module, let S;(M) be the k[I]-submodule of M(I) equal to
the intersection of kernels of all k-homomorphisms M (f) : M(I) — M(J)
induced by all non-isomorphisms f : I — J with I as a source. Each
automorphism g € Aut(/) induces a map M(g) : M(I) — M(I) which
maps S;(M) into itself. Thus S;(M) becomes a left k[I]-module. It is clear
how St is defined on morphisms.

The restriction functor Resy : kI-Mod — k[I]-Mod sends M to M(I).

The coextension functor E; : k[I]-Mod — kI-Mod sends N to
Homkm (kJH(—, I), N)

The coinclusion functor Iny : k[I]-Mod — kI-Mod assigns to a k[[]-
module N the kl-module In;(N) defined by

IHI(N)(J) — {Homk[ﬂ(kﬂ(‘]vl)aN) lf‘{:{a
0 if J#£1.

We say a kl-module M is of type T, for T C Is(I), if the set {I € Is(I) |
M(I) # 0} is contained in T'. For any I € T choose a representative I € I
and fix a k[I]-monomorphism

0— M(I)— Qy,

where Q)5 is injective. If M is of type T then we get a monomorphism of
kI-modules

0—- M — H E[Q[.
IeT
In particular, it follows that any injective kl-module of type T is a direct
summand of a kl-module [[;., E1Qr, where Q are injective k[/]-modules
for I €T.
The next result follows easily from the above definitions.

LEMMA 1.1. (1) The functors Er and Resy and the functors Sy and Iny
are adjoint, i.e. there are natural isomorphisms of k-modules

Homyy (M, EN) — HOHlk[]] (Resy M, N)
and
Homy7(N, SyM) — Homyy(Ing N, M).
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(2) SoEr : k[I]-Mod — k[I]-Mod is naturally equivalent to the identity
functor. The composition Sy o Ej is zero for I # J.
(3) S; and E; preserve products, monomorphisms and injective modules.

The dual category k-Mod®? is isomorphic to the category k-Mod® of
linearly compact k-modules considered in [5]. For our purpose we briefly
present some results on the category k-Mod®. A topological k-module M
is said to be linearly topological if it is Hausdorff and there is a fundamen-
tal system N (M) of neighborhoods of zero consisting of k-submodules. A
linearly topological k-module M is called linearly compact if for every col-
lection {F;};cr of closed affine subsets of M (i.e. F; = m; + M; for some
closed k-submodule M; C M) with the finite intersection property we have
Nic; Fi # 0. For linearly topological k-modules M and N let Homj (M, N)
be the set of all continuous k-linear maps. We topologize this k-module by
requiring that for any linearly compact k-submodule K C M and an open
k-submodule V' C N the k-submodules {f € Hom},(M,N) : f(K) C V}
form a subbasis of a linear topology on Hom},(M, N). For a k-module M
let M* = Hom}, (M, k) be its topological dual.

THEOREM 1.2 [5]. (1) A linearly topological k-module M is linearly com-
pact if and only if M* is discrete.

(2) If M is linearly compact or discrete then the canonical map M —
M** is a topological isomorphism.

(3) If M and N are linearly compact or discrete k-modules then the
canonical map Hom},(M,N) — Hom},(N*, M*) is a topological isomor-
phism.

For a linearly topological k-module M and its closed k-submodule M’
the quotient topology on M /M’ is linear. In particular, if M’ is an open
submodule then this topology on M/M’ is discrete. Let wpp : M — M /M’
be the canonical map. For Vi,V5 € N (M) such that V3 C V3, let w“g :
M/Vy — M/Vy be the canonical map and M”" = limycp(ar) M/V. Write
7y : M — M/V for the canonical projection. Then the collection {ker 7y :
V e N(M)} of k-submodules forms a subbasis of a linear topology on M”".
The k-module M” with this topology is called the completion of M. The
collection of maps wy : M — M/V for V € N(M) determines a continuous
monomorphism w : M — M” such that w(M) is dense in M”. A topological
k-module M is said to be complete if the map w is a topological isomorphism.
Of course, if M is linearly compact or discrete then w(M) is closed in M"
and thus M is complete as well.

For two linearly topological k-modules M and N let M ® N be their
tensor product over k. If V. C M and W C N are two open k-submodules,
we write [V, W] =V @ N + M ® W. Then the following lemma holds.
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LEMMA 1.3. If M and N are linearly topological k-modules then the col-
lection of k-submodules [V, W] of M ® N with open k-submodules V- C M
and W C N forms a linear topology on M ® N such that the canonical bilin-
ear map M x N — M ® N is universal with respect to uniformly continuous
k-bilinear maps to linearly topological k-modules.

Write M & N for the completion (M ® N)" and call it the complete
tensor product of M and N. Then the canonical map M x N — M @ N is
universal with respect to uniformly continuous k-bilinear maps to complete
k-modules.

Now let T be an El-category. A covariant functor from I to k-Mod®
is said to be a linearly compact left kI-module. For two linearly compact
left kI-modules M, N we define their complete tensor product M @ N as a
linearly compact left kI-module such that (M & N)(I) = M(I) ® N(I) for
all I € Ob(I).

Let DGA}, be the category of homologically connected commutative dif-
ferential graded k-algebras (or simply k-algebras). We briefly recall some
constructions presented in [4]. For a map v: B — E in DGAy, where B is
augmented, Halperin [4] considers its “minimal factorization”. Namely, he
generalizes the notion of a minimal k-algebra [7] to a minimal K S-extension
given by a special sequence of augmented k-algebras

E:B - C -5 A,
where A is free as a graded commutative k-algebra generated by some graded
k-module M = {M,};>0. If My = 0 then the extension E is called positive.
In [4] it is shown that for any map v : B — E [4] of connected k-algebras,
where B is augmented, there is a unique (up to isomorphism) minimal K S-
extension

E:B->C- A
and a homology isomorphism p : C' — E such that poi = ~.

The extension E together with the map ¢ : C — FE is called a KS-
minimal model for . In particular, for a k-algebra A and the canonical
map k — A one gets a minimal algebra M, together with a homology

isomorphism p4 : M4 — A called the minimal model for A.
An object A = {A"},>0 in DGAy, is called complete if

(1) A™ is a complete linearly topological k-module and the differential
d: A" — A" is continuous for all n > 0,

(2) multiplication A™ x A™ — A" is uniformly continuous for all
n,m > 0 (with respect to the linear product topology on A™ x A™).

The key example of a complete algebra is produced as follows. For the
field of rationals Q and a simplicial set X one can form a Q-algebra A%
by taking collections of Q-polynomial forms on each simplex (sums of terms



88 M. GOLASINSKI

of type w(to, ..., tn) dt;, A ... ANdt;, where w is a Q-polynomial) that agree
when restricted to common faces (see [1] for more details). We define a
natural topology on the Q-module A% of n-forms on X as follows: for any
map 2 : A(l) — X, the k-submodules ker(A% (z) : A% — A7), where
A(l) is the l-simplex, form a fundamental system of neighborhoods of zero
in A% . The following proposition holds.

PROPOSITION 1.4. Let X be a simplicial set. Then:

(1) the natural topology on A% is complete for all n >0,

(2) the multiplication A% x AR — AWT™ of differential forms is uni-
formly continuous (with respect to the product topology on A% x AR),

(3) the differential d% : A% — AT is continuous.

Proof. (1) First, observe that for a simplicial map z : A(l) — X there
is an isomorphism A’y /ker A7 ~ A7) of discrete Q-modules. Then the
map

¢p: A% — lim A% /ker A7~ lim A}
T:A(l)—X T:A(l)—X
such that ¢(w) = (A% (w))z:a0)—x, for w € A%, is the required topological
isomorphism.

(2) For a simplicial map = : A(l) — X and the corresponding open
k-submodule V' = ker(A"+™(7) : AL — AZJ(FIT) consider the subspaces
Up = ker(A"(z) : A% — A%)) and Uz = ker(A™(z) : AR — AR)
of A% and A%}, respectively. Then the image of U; x A% and A% x U,
under the multiplication map of differential forms is contained in V', so the
multiplication is uniformly continuous.

(3) The differential d% is natural with respect to X, hence it is continuous
as well. m

Write DGA,, for the subcategory of DGA}, determined by complete dif-
ferential graded k-algebras.

For a minimal k-algebra M let M(n) be its subalgebra generated by el-
ements of degree at most n. Then M is said to be nilpotent if each M (n)
is constructed from M (n — 1) by a finite number of elementary extensions
(see [4] for details). A homologically connected k-algebra A is said to be
nilpotent if its minimal model M4 is nilpotent. If X is a (connected) nilpo-
tent simplicial set then the de Rham Q-algebra A% of differential forms is
nilpotent as shown in [1]. If a k-algebra A is augmented let A = ker(A — k)
be its augmentation ideal. Recall that decomposability of the differential d
of A means that d(A) C A- A.

Let T be an El-category and kI-DGAj the category of all covariant
functors from I to DGAy, called kl-algebras (or systems of k-algebras). We
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say that a kl-algebra A is complete if the algebras A(I) are complete for
all I € Ob(I) and A is injective if the left kI-modules A" are injective for
n >0, where A" (1) = (A(I))™ for all I € Ob(I).

For any complete injective (as a kl-module) kl-algebra .4 and a complete
left kI-module M we consider two types of cohomology of A.

(1) The kl-module H™(A) such that H"(A)(I) = H"(A(I)) for I €
Ob(I) and n > 0.

(2) The cohomology H™(A, M) = H"(Hom(M, A)) with coefficients in
M for n > 0, where {Hom(M, A™)},,>¢ is a cochain complex in the category
of complete left kI-modules. For a projective resolution M ™) of M in the
category of complete kI-modules we form the double complex Hom (M =) A).
The standard homological algebra arguments yield a spectral sequence

ER? = Ext?(M, HI(A)) = HPT(A, M).

Notice that the injectivity of A (as a kl-module) implies the convergence of
this sequence and H" (A, M) = Hom(M, H"(A)) if M is projective.

2. Injective extension of systems of algebras. The spectral se-
quence considered in the previous section plays a key role in a construction
of an injective minimal model for a complete injective kl-algebra A, for an
El-category I. This is the reason why the injectivity of A (as a kl-module)
is necessary. Theorem 2.1 in this section shows that for any complete kl-
algebra A there exists a complete injective kl-algebra Q(.A) and a natural
cohomology isomorphism A — Q(A).

Hereafter, we assume that I is an El-category with the filtration () =
To CTy...C Ty =1Is(I) such that [ € Ty, J € Ty, I < J implies k > [ and
all kI-algebras A are homologically connected, i.e. satisfy H°(A) = k, where
k is the constant kI-module determined by a field k. To show the main result
we need some constructions. An augmented k-algebra A is called acyclic if
H™(A) =0 for all n > 0, where A is the augmentation ideal of A. If M is
a graded k-module then the k-algebra §(M) freely generated by M & sM,
where sM is a copy of M with a shift of degree +1 and d(m) = sm for
m € M, is an augmented acyclic k-algebra. In particular, for a kl-algebra A
and I € Ob(I) we get an associated system F(E;S7.A) of acyclic kl-algebras
such that F(E;S1A)(J) = §(ErS1A(J)) for J € Ob(I), where E; and Sy
are functors defined in the previous section. Now we are in a position to
present a generalization of Theorem 1 in [2].

THEOREM 2.1. If 1 is an EI-category such that k[I] is a semisimple ring
for all I € ob(l) and there is a filtration

D=ToCThC...CTn=1Is(I)
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satisfying the above condition then for any complete kl-algebra A there is
a complete and injective (as a kl-module) kl-algebra Q(A) and a natural
inclusion iy : A — Q(A) which is a cohomology isomorphism.

Proof. We proceed by induction over the filtration of Is(I) to construct
a sequence of kl-algebras and natural inclusions

A=D0(A) 2% 9(A4) 5 mE (A) = Q(A)

which are cohomology isomorphisms.
Let Q0(A) = A and Q4 (A) be a kl-algebra such that

2(A)() = {jﬁﬁ o8 Mzen BS54 1T

The value of £ (A) on a morphism ¢ : J — K in the category I is defined as
follows. If K ¢ Ty then the map Qi (A)(¢) : Q1(A)(J) — Qi1(A)(K) is in-
duced by the maps A(¢) : A(J) — A(K) and ErSi(A)(¢) : ErSi(A)(J) —
ErSi(A)(K). For K € Ty the map Q1(A)(¢) is determined by the maps
A(9) : A(T) — A(K) and [Tjeq, (BrSrA)(J) =5 (ExcSiA) () B2 )
(ExSgA)(K) = Sg A A(K), where m is the projection map and 7
the inclusion Sk A — A(K). Write ig : Qo(A) — Q;(A) for the canoni-
cal inclusion; it is a cohomology isomorphism since §([[7cp, ErS1A)(J) are
acyclic k-algebras for all J € Ob(I).
Given 9;(A) let Q;11.A be a kl-algebra such that

[N ) @3 Tser,,, ErSIQUAT) i T ¢ Tpp,
A A = {azwu) otherwise,

The values of Q;4+1(A) on morphisms are defined in the same way as for
Qq(A). Write ¢ @ 9Q;(A) — Qi+1(A) for the canonical inclusion which
is a cohomology isomorphism since F(]] fer,, 1S 1Q1A)(J) are acyclic k-
algebras for all J € Ob(I). Define Q(A) = Q,,(A) and i4 = iyp—10...0
io + A — Q(A). Then iy is a cohomology isomorphism and from the
construction it follows that Q is a functor and ¢ : idppga, — Q is a natural
transformation, where idypga, is the identity functor.

It remains to show that Q(.A) is injective, i.e. by [3] it can be written
as a product of kl-modules ErM for some I € Ob(I) and k[I]-modules M.
Again the argument goes inductively over the filtration of Is(I). First observe
that 9Q;(A) as a graded kl-module contains the injective graded kl-module
HieTl E;A(I). Therefore, there is a split short exact sequence of graded
kI-modules

0— J] ErA(I) — 91(A) - Ry — 0,
jETl
where R1(I) =0 for I € T and S;Q1(A) = S;R; for I € Ty. In particular,
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S A = Ri(I) for I € Ty \ Ty. Then from the construction of Q5(.A) it
follows that the injective kl-module [7op ErA(I) @ [Irer g, ErRi(l) is
contained in 9Q5(.A). Hence there is a split short exact sequence

0— [ BrA @ [ ErRi(I) = Q2(A) — Ry — 0,
IeT, IeT>\Ty
where Ry(I) =0 for I € Ty and S;Q2(A) = S; Ry for I € Ty. In particular,
S[QQ(.A) = RQ(I) for I € T3 \TQ.

Assume that Qi(A) ~ [ljeq, ErAU) @ [ljep\p ErB1(I) & ...
.0 erTl\Tl—l ErR;_1(I) ® R; as kI-modules, R;(I) = 0 for I € T; and
S[QZ(A) = SrR; for I g T;. Then S[QZ.A(I) = Rl(I) for I € Tl—&—l \Tl and
Q414 contains an injective kl-module [T7., ErA(D)®]Ireq,\q, ErR1(1)®
o] fery\n B 1R (I) and there is a split short exact sequence

0= [[ A e [ ER(De...e ][] ERU)
Ien Ie\Ty IeT; 1\Ty
—9Q111(A) — Rj41 — 0,

where Ry 1(I) =0 for I € Tjyq and S;Quy1A = Ry for I € Tyyo \ Tiqq.
Finally, we obtain Q(A) = Qm(A) = [[7cq, ErAUT) ® [Iep,\ 7, ErB1(I) &
@ [Trer, 7, _, Erltm—1(I) as a graded kl-module, since Ry, (I) = 0 for
I €T, so Q(A) is injective as a graded kI-module. m

If £ is the constant kl-algebra determined by a field k then k is not in
general injective as kl-module. But for any kl-algebra A (injective as a

klI-module) there is a map Q(k) — A of I-algebras extending the canonical
inclusion k£ — A as follows from a more general fact.

PROPOSITION 2.2. Let T be an EI-category satisfying the above condi-
tions. If f : A — B is a map of kl-algebras and B is injective as a kI-module
then there is an extension map f : Q(A) — B of kl-algebras.

Proof. We construct by induction over the filtration of Is(I) a sequence
of maps f;: Q;(A) — Bforl=0,1,...,n.
Let fo = f. Given f; : Q;(A) — B such that the diagram

Q1 (A) — S 0)(A)

commutes we construct a map ﬁ+1 : Qi+1(A) — B as follows. The kI-
algebra B is injective, so by [3] there is an isomorphism of kl-modules B ~
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[[7cis(ErSiB and ﬁ induces maps EISIE : ErSiQi(A) — E;SB for
I € Ob(I). Then fl together with these maps determines a map ﬁ—i—l :
Qi+1(A) — B. The map f = f,, has the required property. =

A kl-algebra A with a map Q(k) — A is called a kl-algebra under Q(k)
or a based kl-algebra. A based injective, nilpotent and complete kl-algebra
M is said to be minimal if it satisfies the following:

(1) there is an inclusion Q(k) — M;

(2) M(I) is a positive K S-extension of Q(k)(I) for all I € Ob(I);

(3) M(I) is a minimal K S-extension of Q(k)(I) for all terminal I €
Ob(D);

(4) if d is the differential of M then d|g, r¢ is decomposable for all I €
Ob(T).

A kl-algebra A is called nilpotent if A(I) is nilpotent for all I € Ob(I).
We shall show in the forthcoming paper that injective minimal kl-algebras
play the same role in the category of nilpotent complete kl-algebras as min-
imal algebras in the category of nilpotent k-algebras.
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