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Background

Want to understand the moduli stack of quantum systems
with fixed symmetry type Hd .

What is a quantum system? Mathematical axioms?

Idea (Freed–Hopkins): The low energy physics of a “gapped”
system should be approximated by a topological field theory.
The homotopy type of the moduli stack should be determined
by low energy behaviour.

By Wick-rotating to Euclidean field theories, we can use
Segal’s axioms to model the low energy effective theory.

Unitarity manifests itself as reflection positivity after Wick
rotation.
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Theorem (Freed–Hopkins)

Let H = colimd→∞Hd be a stable symmetry type. There is a
bijective correspondence

deformation classes of reflection
positive invertible d-dimensional
extended topological field theories
with symmetry type (Hd , ρd)

 ∼= [MTH,Σd+1IZ(1)]tor

Where MTH is the Thom spectrum associated to the stable
symmetry type.

Σd+1IZ(1) is the (d + 1)-fold suspension of the Anderson dual
of the sphere.
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Toy example

Consider a 1-d sigma model with target manifold X :

(x : ∗ → X ) 7→ Vx

(γ : [0, 1]→ X , γ(0) = x , γ(1) = y) 7→ (Lγ : Vx → Vy )

If we require that the field theory is smooth, we get the data
of a vector bundle with connection on X .

Every vector bundle with connection on X also gives rise to a
field theory. In fact, we have an equivalnece at the level of
moduli stacks (Berwick-Evans, Pavlov):

Fun⊗(BordX1 ,Vect)
∼= Vect×∇(X )

If Lγ only depends on the homotopy class of γ, the theory is
topological (homotopy invariant). The corresponding vector
bundle is flat.
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In the case of invertible field theories, the FT take values in
Line ⊂ Vect.

The inclusion of isomorphism classes of topological field
theories into all field theories is

[X ,B(C×)δ] = H1(X ;C×) //

β
))

[X ,B∇C×]

def. classes
��

H2(X ;Z)

The image of β is the torsion subgroup.
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Reflection positivity

Fix a symmetry type Hd (compact Lie group) and a
representation ρd : Hd → Od .

We require that SOd ⊂ ρd(Hd).

If d > 3 and ρd(Hd) = SOd , then

Hd = K × Spind/⟨(k0,−1)⟩ K = ker(ρd)

An (Hd , ρd)-structure on a bordism an Hd -subbundle P → B
of the bundle of orthonormal frames. Equivalently, it is a lift:

BHd

ρd
��

B
Fr //

P
==

BOd
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A choice of hyperplane reflection σ ∈ Od gives rise to an
automorphism ϕσ of Hd .

ϕσ induces an involution β on the bordism category, sending
(B,P → B) to (B,P ′ → B). The bundle P ′ → B is the
Hd -bundle obtained by precomposing the original Hd -action
on P by the automorphism ϕσ.

A reflection structure on a field theory

Z : BordHd
d → Vect

is a natural iso
Z (βB) ∼= Z (B).

Given a field theory with reflection structure Z , we have a
hermitian form

h : Z (B)⊗ Z (B) ∼= Z (B)⊗ Z (βB) ∼= Z (B)⊗ Z (B∨)→ C.

If h is positive definite, we say that the field theory is positive.
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Full-extended reflection positive invertible theories

Restricting to invertibe field theories, we replace Vect by
Line. Going to fully-extended invertible field theories,
Freed–Hopkins replace Line by Σd+1IZ(1).

Theorem (GMTW, Schommer-Pries)

The homotopy type of the fully-extended bordism category BordHd
d

is ΣdMTHd .

A field theory Z : BordHd
d → Σd+1IZ(1) canonically factors as

BordHd
d

//

��

Σd+1IZ(1)

ΣdMTHd

88

The involution β induces an involution on ΣdMTHd .
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By definition, the Anderson dual IZ(1) sits in a long homotopy
fiber/cofiber sequence

. . .→ Σd IZ(1) → Σd IC → Σd IC× → Σd+1IZ(1) → . . . .

Complex conjugation on C induces a Z/2-action on IC ∼= HC.
The space of Z/2-actions on IZ(1) that is compatible with the
conjugation action is not contractible. Freed and Hopkins
make a prefered choice of action γ.

The deformation classes of (nontopological) reflection theories
are conjectured correspond to maps of equivariant spectra

Z : (ΣdMTHd)
β → (Σd+1IZ(1))

γ .

I will not discuss positivity in the extended setting.
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The map Σd IC× → Σd+1IZ(1) in the long fiber/cofiber
sequence induces a map

[ΣdMTHd ,Σ
d IC× ]→ [ΣdMTHd ,Σ

d+1IZ(1)]

whose image is the torsion subgroup, i.e., the deformation
classes of topological invertible field theories.

Same equivariantly.

To prove the theorem, one must do the following:

1 Enhance the Hd -structure on bordisms to a differential
Hd -structure (including connections on bundles).

2 Construct a geometric refinement Σd IC×
sm

whose “deformation

spectrum” is Σd+1IZ(1). The refinement should see the smooth
structure of C×.
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The main theorem

Theorem (G.)

The following spaces are isomorphic in the homotopy category of
spaces

1 Smooth deformations of field theories with smooth
(Hd , ρd)-structure: Id(Hd) := Fun⊗(BordHd

d ,Σd IC×
sm
)

2 Smooth deformations of field theories with differential

(Hd , ρd)-structure: Id(H∇
d ) := Fun⊗(Bord

H∇
d

d ,Σd IC×
sm
)

3 Smooth deformations of field theories with flat

(Hd , ρd)-structure: Id(Hfl
d) := Fun⊗(Bord

Hfl
d

d ,Σd IC×
sm
)

4 The space of morphisms of spectra:
Map(ΣdMTHd ,Σ

d+1IZ(1)).
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In our formalism, geometric structures on bordisms are
encoded by simplicial presheaves on FEmbd .

Objects of FEmbd are submersions M → U with
d-dimensional fibers, U ⊂ Rn, U ∼= Rn. Morphisms are
fiberwise open embeddings.

The presheaf H∇
d is given by the homotopy pullback

H∇
d

//

��

B∇Hd

��

Riem
LC // B∇GLd

A vertex in H∇
d (M → U) is a fiberwise principal Hd -bundle

with connection, a Riemannian metric and a connection
preserving isomorphism of bundles between the associated
bundle with connection with the fiberwise tangent bundle,
with the Levi-Civita connection.
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bundle with connection with the fiberwise tangent bundle,
with the Levi-Civita connection.
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A choice of hyperplane reflection gives an automorphism of
B∇Hd , which induces an automorphism of H∇

d .

We again have an involution at the level of bordism categories

β : Bord
H∇

d
d → Bord

H∇
d

d

The object IC×
sm

is a sheaf of spectra on cartesian spaces,
defined using Brown representability (Patchkoria and
Pstragowski).

That is, IC×
sm

satisfies:

[X , IC×
sm
] ∼= hom(π̃0(X ),C×),

where the hom is taken in sheaves of abelian groups.

There is a Z/2-action on IC×
sm
, compatible with complex

conjugation.
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Recall the functor

∫ : Sh∞(Cart;Sp)→ Sp,

which is homotopy left adjoint to the locally constant functor.

The functor IC× sits in a long fiber cofiber sequence

. . .→ Σd IZ(1) → Σd ICsm → Σd IC×
sm
→ Σd+1IZ(1) → . . . .

Since C deformation retracts through group homomorphisms
to 0, applying ∫ gives an equivalence

∫ Σd IC×
sm

≃→ Σd+1IZ(1)
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The homotopy type of the bordism category BordHd
d is

computed as the composition of two functors

C∞Cat⊗∞,d

|·|→ Sh(Cart; Sp)
∫→ Sp

Theorem (G., Pavlov)

Fix d ≥ 0. We have an equivalence

∫ |BordH
fl
d

d | ≃ ΣdMTHd

The canonical map Hfl
d → H∇

d of flat bundles into all bundles
induces an equivalence

∫ BordH
fl
d

d → ∫ BordH
∇
d

d

Argument has an h-principle flavor.
15 / 17



We have an equivalence

Fun⊗(Bord
H∇

d
d ,Σd IC×

sm
)

≃← Fun⊗(|BordH
∇
d

d |,Σ
d IC×

sm
)

and a map (taking deformations)

Fun⊗(|BordH
∇
d

d |,Σ
d IC×

sm
)

∫→ Fun⊗(∫ |BordH
∇
d

d |, ∫ Σ
d IC×

sm
).

The right side was computed as

Fun⊗(∫ |BordH
∇
d

d |, ∫ Σ
d IC×

sm
) ≃ Map(ΣdMTHd ,Σ

d+1IZ(1))

Since Σd IC× is homotopy invariant, we have also have

Fun⊗(∫ |BordH
∇
d

d |,Σ
d IC×) ≃ Map(ΣdMTHd ,Σ

d IC×)

The canonical inclusion IC× → IC×
sm

therefore induces a map

Map(ΣdMTHd ,Σ
d IC×)→ Map(ΣdMTHd ,Σ

d+1IZ(1))

Taking π0 the image is the torsion subgroup of deformation
classes of topological theories.
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Thank you!
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