Deformation classes of invertible field theories
and the Freed—Hopkins conjecture

Daniel Grady

March 17 2023

1/17



Background

2/17



Background

m Want to understand the moduli stack of quantum systems
with fixed symmetry type Hy.

2/17



Background

m Want to understand the moduli stack of quantum systems
with fixed symmetry type Hy.

m What is a quantum system? Mathematical axioms?

2/17



Background

m Want to understand the moduli stack of quantum systems
with fixed symmetry type Hy.

m What is a quantum system? Mathematical axioms?

m |dea (Freed—Hopkins): The low energy physics of a “gapped”
system should be approximated by a topological field theory.

2/17



Background

m Want to understand the moduli stack of quantum systems
with fixed symmetry type Hy.

m What is a quantum system? Mathematical axioms?

m |dea (Freed—Hopkins): The low energy physics of a “gapped”
system should be approximated by a topological field theory.
The homotopy type of the moduli stack should be determined
by low energy behaviour.

2/17



Background

m Want to understand the moduli stack of quantum systems
with fixed symmetry type Hy.

m What is a quantum system? Mathematical axioms?

| The low energy physics of a “gapped”
system should be approximated by a topological field theory.
The homotopy type of the moduli stack should be determined
by low energy behaviour.

m By Wick-rotating to Euclidean field theories, we can use
Segal's axioms to model the low energy effective theory.

2/17



Background

m Want to understand the moduli stack of quantum systems
with fixed symmetry type Hy.

m What is a quantum system? Mathematical axioms?

| The low energy physics of a “gapped”
system should be approximated by a topological field theory.
The homotopy type of the moduli stack should be determined
by low energy behaviour.

m By Wick-rotating to Euclidean field theories, we can use
Segal's axioms to model the low energy effective theory.

m Unitarity manifests itself as reflection positivity after Wick
rotation.
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Conjecture (Freed—Hopkins)
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m Consider a 1-d sigma model with target manifold X:

(x %= X)— Vi
(v:[0,1] = X,7(0) =x,7(1) = y) = (Ly : Vik = V)

m If we require that the field theory is smooth, we get the data
of a vector bundle with connection on X.

m Every vector bundle with connection on X also gives rise to a
field theory. In fact, we have an equivalnece at the level of
moduli stacks (Berwick-Evans, Pavlov):

Fun®(Bordy, Vect) 2 Vect (X)

m If L, only depends on the homotopy class of v, the theory is
topological (homotopy invariant). The corresponding vector

bundle is flat.
4/17
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m In the case of invertible field theories, the FT take values in
Line C Vect.

m The inclusion of isomorphism classes of topological field
theories into all field theories is

[X,B(C*)°] = H}(X;C*) —— [X, ByC*]

def. classes
B

H?(X;Z)

m The image of § is the torsion subgroup.

5/17



Reflection positivity

m Fix a symmetry type H, (compact Lie group) and a
representation py : Hy — Oy.

6/17



Reflection positivity

m Fix a symmetry type H, (compact Lie group) and a
representation py : Hy — Og4. We require that SOy C pg(Hqg).

6/17



Reflection positivity

m Fix a symmetry type H, (compact Lie group) and a
representation py : Hy — Og4. We require that SOy C pg(Hqg).

m If d > 3 and py(Hy) = SOy, then

Hg = K x Sping/((ko, —1)) K = ker(pq)

6/17



Reflection positivity

m Fix a symmetry type H, (compact Lie group) and a
representation py : Hy — Og4. We require that SOy C pg(Hqg).

m If d > 3 and py(Hy) = SOy, then

Hy4 = K x Sping/((ko, —1)) K = ker(pq)

m An (Hy, pg)-structure on a bordism an Hg-subbundle P — B
of the bundle of orthonormal frames. Equivalently, it is a lift:

BH,
P Pd

Fr
B——B Od
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m A choice of hyperplane reflection o € Oy gives rise to an
automorphism ¢, of Hy.

B ¢, induces an involution 8 on the bordism category, sending
(B,P — B) to (B,P" — B). The bundle P’ — B is the
Hg-bundle obtained by precomposing the original Hy-action
on P by the automorphism ¢, .

m A reflection structure on a field theory

Z Bordgd — Vect

is a natural iso

Z(BB) = Z(B).
m Given a field theory with reflection structure Z, we have a
hermitian form

h:Z(B)®Z(B)=Z(B)® Z(8B) = Z(B)® Z(BY) — C.

m If his positive definite, we say that the field theory is positive.
7/17



Full-extended reflection positive invertible theories

8/17



Full-extended reflection positive invertible theories

m Restricting to invertibe field theories, we replace Vect by
Line. Going to fully-extended invertible field theories,
Freed—Hopkins replace Line by Zd+1lz(1).

8/17



Full-extended reflection positive invertible theories

m Restricting to invertibe field theories, we replace Vect by
Line. Going to fully-extended invertible field theories,
Freed—Hopkins replace Line by Zd+1lz(1).

Theorem (GMTW, Schommer-Pries)

The homotopy type of the fully-extended bordism category Bordg"
is YIMTH,.

m A field theory Z : Bordgd — Zd+1lZ(1) canonically factors as
Bord[! —— T4+
| -~
Y9IMTHy

m The involution 3 induces an involution on ~¢MTHj.
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m By definition, the Anderson dual /71y sits in a long homotopy
fiber/cofiber sequence

o= Ty = T = ek = T gy —

m Complex conjugation on C induces a Z/2-action on Ic = HC.

m The space of Z/2-actions on Iz that is compatible with the
conjugation action is not contractible. Freed and Hopkins
make a prefered choice of action ~.

m The deformation classes of (nontopological) reflection theories
are conjectured correspond to maps of equivariant spectra

Z: (ZIMTHg)? — (29 yq))7.

I will not discuss positivity in the extended setting.
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m The map ¥%cx — £9" 14y in the long fiber/cofiber
sequence induces a map

[EIMTHy, E%cx] — [EIMTHy, T iy )]

whose image is the torsion subgroup, i.e., the deformation
classes of topological invertible field theories.

m Same equivariantly.
m To prove the theorem, one must do the following:
Enhance the Hy-structure on bordisms to a differential
Hgy-structure (including connections on bundles).
Construct a geometric refinement Zd/csxm whose “deformation
spectrum” is £9"1/;(1). The refinement should see the smooth
structure of C*.
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The main theorem

Theorem (G.)

The following spaces are isomorphic in the homotopy category of
spaces

Smooth deformations of field theories with smooth
(Hg, pa)-structure: lg(Hq) := Fun®(Bord’f, ¥ fox )
Smooth deformations of field theories with dé'fferentia/
(Hy, pa)-structure: Iq(HY) := Fun®(Bordztd ,Zdl(csxm)
Smooth deformations of field theories with rzat
(Ha, pa)-structure: Ig(#H1) := Fun®(Bord), £/ )
The space of morphisms of spectra:
Map(ZdMTHd, Zd+llz(1)).
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m In our formalism, geometric structures on bordisms are
encoded by simplicial presheaves on FEmby.

m Objects of FEmby are submersions M — U with
d-dimensional fibers, U C R", U &£ R". Morphisms are
fiberwise open embeddings.

m The presheaf ’Hy is given by the homotopy pullback

,Hg _— Bde

|

Riem % ByGLy

m A vertex in Hy (M — U) is a fiberwise principal Hy-bundle
with connection, a Riemannian metric and a connection
preserving isomorphism of bundles between the associated
bundle with connection with the fiberwise tangent bundle,

with the Levi-Civita connection.
12/17
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m A choice of hyperplane reflection gives an automorphism of
Bv Hg, which induces an automorphism of Hdv.

m We again have an involution at the level of bordism categories
HY HY
B : Bord, ¢ — Bord,*

m The object ICqu is a sheaf of spectra on cartesian spaces,
defined using Brown representability (Patchkoria and
Pstragowski).

m That is, leXm satisfies:
(X, 1 S><m] = hom(7o(X),C*),

where the hom is taken in sheaves of abelian groups.
m There is a Z/2-action on [.x , compatible with complex
conjugation.
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m Recall the functor
[ : Shoo(Cart; Sp) — Sp,

which is homotopy left adjoint to the locally constant functor.

m The functor Igx sits in a long fiber cofiber sequence

o= Ty = e, = T T gy —

m Since C deformation retracts through group homomorphisms
to 0, applying [ gives an equivalence

[ lex =5 zd“/Z(l)

14 /17



m The homotopy type of the bordism category Borde" is
computed as the composition of two functors

COOCa,tgi,d L Sh(Cart; Sp) ER Sp

Theorem (G., Pavlov)

Fix d > 0. We have an equivalence

fl
[ Bord}4| ~ £IMTH,

m The canonical map ’Hg — ’Hy of flat bundles into all bundles
induces an equivalence

fl v
[ Bord?d = [ Bord?d

m Argument has an h-principle flavor.
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The right side was computed as

’HV
Fun®( [ [Bord,? |, [ £%cx ) ~ Map(Z9MTHg, 94 1))

m Since X9/« is homotopy invariant, we have also have
Fun®(J [Bord’ |, £%/ex) = Map(E¢MTHg, 5cx)

m The canonical inclusion Igx — I(csxm therefore induces a map
Map(E9MTHg, =91« ) — Map(Z¢ MTHy, Z9 1))

m Taking mp the image is the torsion subgroup of deformation

classes of topological theories. 1617



Thank you!
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