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1. Introduction.

This article is designed to provide an introduction to some examples of triangulated cate-
gories that arise in the study of G-equivariant cohomology theories for a compact Lie group
G. We focus on cohomology theories whose values are rational vector spaces since one may
often give explicit algebraic constructions of the triangulated category in that case.

As general references for equivariant cohomology theories see [3, 13, 14].

2. Examples of equivariant cohomology theories

Here are some examples of reduced equivariant cohomology theories on a based G-space
X.

• Borel cohomology theories: F ∗(EG+ ∧G X) for any non-equivariant cohomology
theory F ∗(·). [Here EG is the universal free G space, and EG+ is the same space
with a G-fixed basepoint adjoined].
• Equivariant K-theory K∗

G(X): The theory is defined for unbased compact G-
spaces Y by taking KG(Y ) to be the Grothendieck group of equivariant vector bundles
on Y . This defines K0

G(X) = ker(KG(X) −→ KG(∗)) in the usual way, and this is
extended to all degrees by Bott periodicity. Note that K0

G = KG(∗) = R(G), the
complex representation ring, and K1

G = 0.
• Equivariant Bordism MU∗

G(X): The stabilized form of bordism of G-manifolds
with a complex structure on their stable normal bundle defined by tom Dieck. [15]

3. Definition of genuine cohomology theories

A näıve equivariant cohomology theory is a contravariant exact functor

F ∗
G : Based G-spaces −→ Graded abelian groups.

If in addition F ∗
G(·) is equipped with an extension to an RO(G)-graded theory in such a way

that
F k+V

G (SV ∧X) ∼= F k
G(X)

for any representation V (where SV is the one point compactification of V ), we say that
F ∗

G(·) is a ‘genuine’ equivariant cohomology theory. The Examples in Section 2 all have the
stronger property that they are complex stable in the sense that

F
k+|V |
G (SV ∧X) ∼= F k

G(X)
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for every complex representation V . This is clear by the Serre spectral sequence for the
Borel theories, it follows from Bott periodicity for equivariant K theory, and it is built into
the definition for stabilized bordism.

One reason (beyond the existence of interesting examples) for considering genuine coho-
mology theories is that if H ⊆ K there is an induction map indK

H : F ∗
H(X) −→ F ∗

K(X) in
addition to the restriction map map resK

H : F ∗
K(X) −→ F ∗

H(X) that exists for any näıve
theory and is induced by the projection G/H+ −→ G/K+. Henceforth we drop the adjective
‘genuine’ since all cohomology theories will be genuine.

It is convenient to work in a context where equivariant cohomology theories are repre-
sented. Indeed, one may form the model category G-spectra [3], which can be thought of as
a category of stable based G-spaces. Thus every based G-space gives rise to a suspension
spectrum Σ∞X, and for every G-equivariant cohomology theory F ∗

G(·) there is a G-spectrum
F so that

F ∗
G(X) = [Σ∞X, F ]∗G,

where [A, B]G means maps in the homotopy category of G-spectra. Henceforth we omit the
notation Σ∞ for the suspension spectrum functor.

As in the case of non-equivariant spectra, one may attempt to classify thick subcategories
of finite G-spectra, but there are some additional complications. For instance, if X is a finite
p-local G-spectrum the geometric fixed point spectrum XH has a chromatic type nX(H).
N.P.Strickland [18] has studied the functions nX that can occur. For example, chromatic
Smith theory shows that nX(H) ≥ nX(K)− 1 if K is normal and of index p in H.

4. Ordinary equivariant cohomology and Mackey functors

The basic building blocks for G-spaces are the cells (G/H ×Dn, G/H × Sn−1) for closed
subgroups H and n ≥ 0. Thus the relevant 0-spheres are G/H+. Accordingly a cohomol-
ogy theory F ∗

G(·) satisfies the dimension axiom if F i
G(G/H+) = 0 for i 6= 0 and all closed

subgroups H. A cohomology theory satisfying the dimension axiom is called an ordinary
cohomology theory. Note also that

F i
G(G/H+) = [G/H+, F ]iG = [S0, F ]iH = πH

−i(F )

so F represents an ordinary cohomology theory if and only if all its equivariant homotopy
groups are concentrated in degree 0.

However the groups F i
G(G/H+) for various subgroups H are related. First, define the

stable orbit category SO to be the full subcategory of the homotopy category of G-spectra
with objects G/H+, it has morphisms SO(G/H+, G/K+) = lim

→ V
(SV ∧G/H+, SV ∧G/H+)G,

where (A, B)G denotes homotopy classes of G-maps. We may then define an additive functor

πG
i (F ) : SO −→ Ab

by πG
i (F )(G/H+) = πH

i (F ). Quite generally, any additive functor M : SO −→ Ab is called a
Mackey functor, and if we rewrite it by taking M ′(H) := M(G/H+) then the way to think of
a Mackey functor is that if K ⊆ H then there is a restriction map resH

K : M ′(H) −→M ′(K)
(induced by the projection π : G/K −→ G/H), a conjugation map cg : M ′(H) −→ M ′(Hg)
(induced by right multiplication by g−1 as a map G/Hg −→ G/H), and an induction map
indH

K : M ′(K) −→ M ′(H) (induced by a certain stable map G/H −→ G/K (the dual of
π if G is finite). These satisfy the Mackey induction restriction formula (or Feshbach’s
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generalization if G is of positive dimension [2]). If G is finite there is a purely algebraic
definition [1], which can be shown to be equivalent to this definition via topology.

Lemma 4.1. Ordinary cohomology theories correspond bijectively to Mackey functors.

Proof: We have seen that the zeroth homotopy group of an ordinary cohomology theory
defines a Mackey functor, and conversely, given a Mackey functor M we may construct a
cohomology theory H∗

G(·; M) by using cellular chain complexes, or alternatively construct
the representing Eilenberg-MacLane G-spectrum HM directly by realising a resolution of
M by free Mackey functors. �

5. All cohomology is ordinary for finite groups.

It is an immediate consequence of Serre’s calculation of the rational homotopy of spheres
that every non-equivariant rational cohomology theory is ordinary. Here is a generalization
to any finite group; a precursor for equivariant K-theory was the early result of Slominska
[17]

Theorem 5.1. [12] If G is a finite group then every rational cohomology theory F ∗
G(·) is

ordinary:

F k
G(X) ∼=

∏
n

Hk+n
G (X; πG

n (F )).

Proof: For the proof we define a related cohomology theory. Given any injective rational
Mackey functor I we may define a cohomology theory hI∗G(·) by

hIn
G(X) = Hom(πG

n (X), I),

There are two special facts about finite groups that let us proceed.

Lemma 5.2. If G is finite every rational Mackey functor is injective.

Proof: This is due to the fact that the rational Burnside ring splits as a product of copies
of Q and Maschke’s theorem. �

For each n we may therefore choose the map F −→ ΣnhπG
n (F ) corresponding to the

identity map of πG
n (F ), and we may assemble these to give a map

F
'−→

∏
n

ΣnhπG
n (F ).

Lemma 5.3. The spectrum hI is an Eilenberg-MacLane spectrum: hI = HI.

Proof: Since πG
0 (G/H+) = [·, G/H+]G is the free functor, it is clear that hI has the correct

homotopy groups in degree 0. We must calculate hIn
G(G/H+) for each subgroup H, and

show that it is zero if n 6= 0.
For this we need to examine the functor πG

n (G/H+), which is made up from the groups
πK

n (G/H+). The tom Dieck splitting theorem for the G-space X states

πK
n (X) =

⊕
(L)

πn(EWK(L)+ ∧WK(L) XL)
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where the sum is over K-conjugacy classes of subgroups L. Since we are working rationally,
the homotopy may be replaced by homology, and since the groups concerned are finite, there
is no higher homology; since X = G/H+ is zero dimensional the result follows. �

It follows that the map ν induces an isomorphism of πH
n for all n and H and is therefore an

equivalence by the Whitehead theorem: the G-spectrum F splits as a product of Eilenberg-
MacLane spectra

F
'−→

∏
n

ΣnHπG
n (F ).

The statement about cohomology theories follows. �

6. Algebraic models for categories of rational cohomology theories.

The idea is that for any compact Lie group G there is an abelian category A(G) modelling
rational G-equivariant cohomology theories. On a practical level, we want to be able to
calculate in this homotopy category, but if we understand the category completely we can
also construct interesting new cohomology theories [8]. The idea is that objects of A(G)
should be a rather small, and based on information easily accessible from the cohomology
theories they represent.

Conjecture 6.1. For a compact Lie group G there is an abelian category A(G) and a Quillen
equivalence

G-spectra/Q ' dgA(G)

such that

(1) A(G) is abelian
(2) InjDim(A(G)) = rank(G)
(3) The category consists of sheaves of modules over a space of closed subgroups of G;

the object corresponding to a cohomology theory E∗
G(·) has fibre over H built from

the Borel theory E∗
TWG(H)(ETWG(H)+ ∧XH). The additional structure is built from

these Borel theories using their relation under localization and inflation.
(4) The model of E∗

G(·) is built from its values on spheres and a little extra structure.

6.1. Consequences of the conjecture. Note immediately that if the conjecture holds we
have an equivalence of homotopy categories

Ho(G-spectra/Q) ' D(A(G))

as triangulated categories. This reduces to algebra the problem of classifying rational equi-
variant cohomology theories and the process of calculation with them. Furthermore, it
provides a universal homology theory

πA(G)
∗ : G-spectra −→ A(G)

and an Adams spectral sequence

Ext∗,∗A(G)(π
A(G)
∗ (X), πA(G)

∗ (Y ))⇒ [X, Y ]G∗
4



for calculation. Finally, because of the injective dimension of A(G), the Adams spectral
sequence is only non-zero on s-line for 0 ≤ s ≤ r, so the calculation is very accessible.

6.2. Status of the conjecture.

• G finite. The conjecture is true. From the result of Section 5 it is not hard to see

A(G) =
∏
(H)

QWG(H)-mod.

• The circle group G = T . Again the theorem is true. Indeed, [5] constructs A(G)
and shows that there is a triangulated equivalence of homotopy categories. Shipley
[16] upgraded this to a Quillen equivalence. We describe the models for free T -spectra
in Section 7 and the model for semifree spectra in Section 8.
• The groups G = O(2), SO(3) and their double covers. In this case the equiva-

lence of homotopy categories is proved in [6, 7].
• The tori G = T g. The Adams spectral sequence exists [9], and in [10, 11] we show

that the Quillen equivalence holds.

7. Free T -spaces.

We spend the rest of the article on the circle group G = T , and to simplify the discussion
we consider actions with restricted isotropy. In this section we give a complete classification
of rational cohomology theories on free T -spaces.

First note that an arbitrary space X is equivalent to a free T -space if and only if the map
ET+∧X −→ S0∧X = X is an equivalence. For homotopical work it is convenient to adopt
this as the definition of a free space or spectrum.

Lemma 7.1. Cohomology theories on free T -spaces are represented by free spectra.

Proof: If X is free then [X, F ]∗T ←− [X, F ∧ ET+]∗T is an isomorphism since maps from a
free space into a non-equivariantly contractible space are null-homotopic. Hence F ∗

T (·) is
represented by the free T -spectrum ET+ ∧ F . �

We may thus concentrate on classifying free T -spectra.

Lemma 7.2. For any free X, the homotopy groups πT
∗ (X) are naturally a module over Q[c],

where c is of degree −2. Furthermore, πT
∗ (X) is torsion in the sense that every element is

annihilated by a power of c.

Proof: Note that [ET+, ET+]T∗ acts on πT
∗ (X) = πT

∗ (X ∧ ET+). Now calculate

[ET+, ET+]T∗ = [ET+, S0]T∗ = [BT+, S0]T∗ = H∗(BT+) = Q[c].

For the torsion statement, note that any element x ∈ πT
∗ (X) is supported on a finite sub-

complex K, and πT
∗ (K) is bounded below. Since c is in degree −2, the statement follows. �

We are now equipped to state the classification.
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Theorem 7.3. Associating the module πT
∗ (F ∧ ET+) to the cohomology theory F ∗

T (·) gives
a bijective correspondence

Cohomology theories on free T -spaces↔ Torsion Q[c]-modules

Furthermore, for any free T -spectra X and F , there is a short exact sequence

0 −→ ExtQ[c](π
T
∗ (ΣX), πT

∗ (F )) −→ [X, F ]T∗ −→ HomQ[c](π
T
∗ (X), πT

∗ (F )) −→ 0.

We first need the Whitehead theorem.

Lemma 7.4. If X and Y are free and f : X −→ Y is a map inducing an isomorphism of
πT
∗ , then f is an equivalence.

Proof: Change of groups and the Gysin sequence. �

Proof: The short exact sequence is an Adams spectral sequence. The method of proof is
therefore standard. We need only note that there are realizable injectives F for which the
short exact sequence exists, and that any free T -spectrum can be resolved by these.

To realize an injective, note that

πT
∗ (ET+) = π∗(ΣBT+) = H∗(ΣBT+) = Σ−1Q[c, c−1]/Q[c]

is c-divisible and hence injective. It is easy to show

[X,ET+]T∗
∼= HomQ[c](π

T
∗ (X), πT

∗ (ET+))

(both sides are cohomology theories in X so only need to check on X = T+). This establishes
the injective case.

Let us now show there are enough injectives of this form, and that they and the result-
ing resolutions are realizable. First, there are algebraically enough injectives of the form
πT
∗ (ET+). For simplicity assume that F is bounded below and of finite type. Hence we may

construct an embedding πT
∗ (F ) −→ πT

∗ (
∨

i Σ
niET+) where the wedge is locally finite and

hence equivalent to the product. We may then lift it to a map F −→
∨

i Σ
niET+ =: I. Since

Q[c] is of injective dimension 1, the mapping cone J also has injective homotopy, and, as a
matter of algebra, this is necessarily isomorphic to πT

∗ (
∨

j ΣnjET+) for suitable integers nj.
By the injective case of the short exact sequence we can construct a map from the cofibre
to this wedge, and by 7.4 it is an equivalence. This gives a cofibre sequence F −→ I −→ J ,
realizing the injective resolution of πT

∗ (F ), and where I and J are both wedges of suspensions
of ET+ (for which the theorem is known). Now apply [X, ·]T∗ and obtain the exact sequence.

The classification of free T -spectra now follows easily. To construct enough spectra we
realize a resolution of a torsion Q[c]-module. To show that if πT

∗ (X) ∼= πT
∗ (Y ) then X ' Y ,

we just lift the algebraic isomorphism to a map X −→ Y and then apply 7.4 to deduce it is
an equivalence. �

Corollary 7.5. There is an equivalence of triangulated categories

Free T -spectra ' D(Isomorphism classes of torsion Q[c]-modules)

where the derived category on the right is obtained from dg torsion Q[c]-modules by inverting
homology isomorphisms.
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Proof: Use the Adams short exact sequence and the fact that c is in degree 2, together with
a Toda bracket argument. �

8. Semi-free T -spaces.

In this section we give a complete classification of rational cohomology theories on semi-
free T -spaces (those whose isotropy groups are either 1 or T ). The pattern of the argument
is very similar to that in Section 7, so we will omit most of the proofs.

First note that an arbitrary space X is equivalent to a semi-free T -space if and only if the
map ET+ ∧ X −→ EF+ ∧ X is an equivalence, where EF is the universal F-space, where
F is the set of finite subgroups. For homotopical work it is convenient to adopt this as the
definition of a semi-free space or spectrum.

Lemma 8.1. Cohomology theories on semi-free T -spaces are represented by semi-free spec-
tra. �

Thus we turn to the study of semifree T -spectra.
Now, for any semi-free X we have a cofibre sequence

ET+ ∧X −→ X −→ ẼF ∧X,

where ẼF =
⋃

V T =0 SV is H-contractible for all finite H. We described the spectra ET+∧X

in Section 7, and it is easy to see that ẼF ∧X ' ẼF ∧XT , so that ẼF ∧X is determined
by the graded rational vector space π∗(X

T ). It thus remains to describe how to splice these
two pieces of information. For this we take the cue from the classical Localization theorem
which states that if X is finite and semifree then

H∗(ET+∧T X)[1/c] ∼= H∗(ET+∧T XT )[1/c] ∼= H∗(BT+)[1/c]⊗H∗(XT ) = Q[c, c−1]⊗H∗(XT ).

Thus the Borel cohomology of X very nearly determines the cohomology of the fixed point
space. Inspired by this we may define an appropriate category.

Definition 8.2. The localization category A has objects β : N −→ Q[c, c−1] ⊗ V , where N
is a Q[c]-module, and β is a Q[c]-map which becomes an isomorphism when c is inverted.
We call N the nub, V the vertex and β the basing map. The morphisms in A are given by
commutative squares in which the map is the identity on Q[c, c−1].

The following lemma is an elementary exercise.

Lemma 8.3. The category A is abelian and of injective dimension 1. In fact the objects

(I −→ 0) with I an injective torsion Q[c]-module, and (Q[c, c−1] ⊗ V
1−→ Q[c, c−1] ⊗ V )

together give enough injectives. �

The final three results are direct counterparts of results in Section 7.
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Lemma 8.4. For any semi-free X, the object

πA
∗ (X) =

(
πT
∗ (X ∧DET+) −→ πT

∗ (X ∧DET+ ∧ ẼF) ∼= Q[c, c−1]⊗ π∗(X
T )

)
is an object of A.

Proof: The cofibre of the map X ∧DET+ −→ X ∧DET+ ∧ ẼF is X ∧DET+ ∧ ET+; this
is free and hence its homotopy is annihilated when c is inverted. �

We are now equipped to state the classification.

Theorem 8.5. Associating the module πA
∗ (F ) to the cohomology theory F ∗

T (·) gives a bijective
correspondence

Cohomology theories on semifree T -spaces↔ Isomorphism classes of objects of A

Furthermore, for any semifree T -spectra X and F , there is a short exact sequence

0 −→ ExtA(πT
∗ (ΣX), πT

∗ (F )) −→ [X, F ]T∗ −→ HomA(πT
∗ (X), πT

∗ (F )) −→ 0. �

Corollary 8.6. There is an equivalence of triangulated categories

Semifree T -spectra ' D(A)

where the derived category on the right is obtained from dg objects of A by inverting homology
isomorphisms. �

9. Some applications.

Here are some consequences which do not require much explanation to state.

• The Atiyah-Hirzebruch spectral sequence for F ∗
T (X) with X free collapses if and only

if πT
∗ (F ∧ ET+) is injective over Q[c].

• (McClure) The Atiyah-Hirzebruch spectral sequence for K∗
T (X) with X free always

collapses.
• For an arbitary semifree space X, the K-theory K∗

T (X) is determined by the map

H∗(ET+ ∧T XT ) −→ H∗(ET+ ∧T X).

• There are infinitely many non-isomorphic finite indecomposable semi-free spectra
with πT

∗ (ET+ ∧X) ∼= πT
∗ (ET+ ∧ (S0 ∨ S2 ∨ S4)) and π∗(X

T ) ∼= π∗(S
0 ∨ S2 ∨ S4)
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