STRING TOPOLOGY OF CLASSIFYING SPACES

A DISSERTATION
 SUBMITTED TO THE DEPARTMENT OF MATHEMATICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Appendix A

A proof of $L B G \simeq A d(E G)$

Proposition A.0.4. Let G be a topological group having the homotopy type of a CW complex. Then $L B G$ is homotopy equivalent to $\operatorname{Ad}(E G)$ as fiberwise monoids over $B G$. That is, there exists a fiberwise monoid $\widetilde{L B G} / G$ over $B G$ and maps

$$
L B G \stackrel{\xi}{\leftarrow} \widetilde{L B G} / G \xrightarrow{\psi} A d(E G)
$$

such that ξ and ψ are both morphisms of fiberwise monoids over $B G$ and homotopy equivalences.

Remark A.0.5. That $L B G \simeq \operatorname{Ad}(E G)$ is a "well-known fact" which suffers from a lack of good references. The reader may see [10] for a similar but simpler proof in the case that G is a discrete group.

Proof. Let $G \rightarrow E G \xrightarrow{p} B G$ be a universal principal G-bundle. Define

$$
\widetilde{L B G}=\{\alpha: I \rightarrow E G \mid p(\alpha(0))=p(\alpha(1))\}
$$

and give $\widetilde{L B G}$ the compact-open topology. $\widetilde{L B G}$ has a free right action of G^{I} by pointwise multiplication, and hence also a free right action of G (by embedding $G \hookrightarrow$ G^{I} as the constant maps). In particular there is a commutative diagram where both
columns are principal bundles:

Since the inclusion $G \hookrightarrow G^{I}$ is a homotopy equivalence and $\widetilde{L B G} / G$ and $L B G$ both have the homotopy type of a CW complex, we see that ξ is a homotopy equivalence by Whitehead's Theorem. Furthermore, $\widetilde{L B G} / G$ and $L B G$ both have fiberwise monoid structures over $B G$ given by concatenation of paths and ξ is clearly a morphism of fiberwise monoids over $B G$.

Now $A d(E G)$ is defined as $(E G \times G) / G$ where G acts on $E G \times G$ by $(x, g) h=$ $\left(x h, h^{-1} g h\right)$. Define $\tilde{\psi}: \widetilde{L B G} \rightarrow E G \times G$ by $\psi(\alpha)=(\alpha(1), g)$ where $\alpha(0)=\alpha(1) g$. Then ψ induces a morphism of principal G-bundles:

To see that ψ is G-equivariant, take $\alpha \in \widetilde{L B G}$ and $h \in G$, and let $\tilde{\psi}(\alpha)=(\alpha(1), g)$. Then $\psi(\alpha h)=(\alpha(1) h, k)$ where $\alpha(1) h k=\alpha(0) h=\alpha(1) g h$. Hence $k=h^{-1} g h$ and $\psi(\alpha h)=\psi(\alpha) h$.

Let us first check that ψ is a morphism of fiberwise monoids over $B G$. Suppose that $\alpha, \beta \in \widetilde{L B G} / G$ are in the same fiber over $B G$. Then there exist (non-unique)
representatives $\tilde{\alpha}, \tilde{\beta} \in \widetilde{L B G}$ of α and β, respectively, such that $\tilde{\beta}(0)=\tilde{\alpha}(1)$. Write

$$
\begin{aligned}
\tilde{\psi}(\tilde{\alpha}) & =(\tilde{\alpha}(1), g) \\
\tilde{\psi}(\tilde{\beta}) & =(\tilde{\beta}(1), h)
\end{aligned}
$$

Then from Diagram A. 1 one sees that $\tilde{\psi}(\tilde{\alpha} \cdot \tilde{\beta})=(\tilde{\beta}(1), h g)$.

Figure A.1: Multiplication in $\widetilde{L B G} / G$

Notice that the fiberwise multiplication in $\widetilde{L B G} / G$ is well-defined independent of the choices of $\tilde{\alpha}$ and $\tilde{\beta}$. Hence $\psi(\alpha \cdot \beta)=[\tilde{\beta}(1), h g]$. On the other hand, in $\operatorname{Ad}(E G)$ we have

$$
\begin{aligned}
& {[\tilde{\alpha}(1), g] \cdot[\tilde{\beta}(1), h]=[\tilde{\beta}(1) h, g] \cdot[\tilde{\beta}(1), h]=} \\
& \quad\left[\tilde{\beta}(1), h g h^{-1}\right] \cdot[\tilde{\beta}(1), h]=\left[\tilde{\beta}(1), h g h^{-1} h\right]=[\tilde{\beta}(1), h g] .
\end{aligned}
$$

Hence $\psi(\alpha \cdot \beta)=\psi(\alpha) \cdot \psi(\beta)$ so ψ is a morphism of fiberwise monoids over $B G$.
To see that ψ is a homotopy equivalence, it is enough to see that $\tilde{\psi}$ is. Fix a contraction $F: E G \times I \rightarrow E G$ of $E G$ to a point y_{0}. This gives a canonical path γ_{y} : $I \rightarrow E G$ from y to y_{0} for any $y \in E G$, by $\gamma_{y}(t)=F(y, t)$. Define $\phi: E G \times G \rightarrow \widetilde{L B G}$
by:

$$
\phi(z, g)(t)= \begin{cases}\gamma_{z g}(2 t) & 0 \leq t \leq \frac{1}{2} \\ \gamma_{z}(2-2 t) & \frac{1}{2} \leq t \leq 1\end{cases}
$$

Then $(\phi \circ \tilde{\psi})(\alpha)$ is the path from $\alpha(0)$ to $\alpha(1)$ that traverses $\gamma_{\alpha(0)}$ in time $\frac{1}{2}$ and then traverses $\gamma_{\alpha(1)}$ backwards in time $\frac{1}{2} . \phi \circ \tilde{\psi}$ is homotopic to the identity map on $\widetilde{L B G}$ by the homotopy $G: \widetilde{\widetilde{L B G}} \times I \rightarrow \widetilde{L B G}$,

$$
G(\alpha, s)(t)= \begin{cases}F(\alpha(0), 2 t) & 0 \leq t \leq 1-\frac{s}{2} \tag{A.1}\\ F\left(\alpha\left(\frac{1}{1-s}\left(t-\frac{s}{2}\right)\right), s\right) & \frac{s}{2}<t<1-\frac{s}{2} \\ F(\alpha(1), 2-2 t) & 1-\frac{s}{2} \leq t \leq 1\end{cases}
$$

On the other hand, $(\tilde{\psi} \circ \phi)(z, g)=(z, g)$. Hence $\tilde{\psi}$ is a homotopy equivalence. Then ψ is also, so

$$
L B G \simeq \widetilde{L B G} / G \simeq A d(E G)
$$

