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A ppendix A

A proof of LBG ~  Ad(EG)

Proposition A .0.4. Let G be a topological group having the homotopy type of a C W  

complex. Then L B G  is homotopy equivalent to Ad(EG) as fiberwise monoids over 

BG. That is, there exists a fiberwise monoid L B G / G  over B G  and maps

L B G  £- L B G / G  - t  Ad(EG)

such that £ and ip are both morphisms of fiberwise monoids over B G  and homotopy 

equivalences.

Remark A .0.5. That L B G  ~  Ad(EG)  is a “well-known fact” which suffers from a 
lack of good references. The reader may see [10] for a similar but simpler proof in the 
case that G  is a discrete group.

Proof. Let G  —> E G  B G  be a universal principal G-bundle. Define 

L B G  =  {ct : /  —> E G  | p (a (0)) =  p (a(l))}

a n d  give L B G  th e  c o m p a c t-o p e n  to p o lo g y . L B G  h a s  a  free  r ig h t a c tio n  o f G 1 by  

pointwise multiplication, and hence also a free right action of G  (by embedding G  

G 1 as the constant maps). In particular there is a commutative diagram where both
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APPENDIX A. A  PROOF OF LBG  ~  AD(EG) 73

columns are principal bundles:

G  ► G 1

L B G  ------  ̂ L B G

L B G / G  — U  L B G / G 1 =  LBG.

Since the inclusion G  -̂> G 1 is a homotopy equivalence and L B G / G  and L B G  both 
have the homotopy type of a CW complex, we see that £ is a homotopy equivalence by 
Whitehead’s Theorem. Furthermore, L B G / G  and L B G  both have fiberwise monoid 
structures over B G  given by concatenation of paths and £ is clearly a morphism of 

fiberwise monoids over BG.

Now A d(E G )  is defined as (E G  x G )/G  where G  acts on E G  x G  by (x ,g )h  =  

(xh, h~lgh). Define ip : L B G  —> E G  x G  by ip (a) — (ck(1),y) where o;(0) =  a(l)g . 
Then ip induces a morphism of principal G-bundles:

G  -------- G

L B G  E G  x G

L B G / G  — Ad(EG)

To see that pi is G-equivariant, take a  £ L B G  and h £ G, and let 'ip(a) =  (a (l),g ).
Then ip(ah) =  ( a ( l ) h ,k )  where a ( l ) h k  — a(0)h  =  a( l )gh .  Hence k = h~l gh and
ip(ah) =  ip(a)h.

Let us first check that ip is a morphism of fiberwise monoids over BG.  Suppose 
that a,  P £ L B G / G  are in the same fiber over BG.  Then there exist (non-unique)
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representatives a,  (3 G L B G  of a  and /3, respectively, such that /3(0) =  <5(1). Write

4>(a) =  (5(1), 9 ) 

i(P) = 00(1), h).

Then from Diagram A.l one sees that 0 (a-(3) =  ((3(1), hg).

m

d (l)  =  (3(l)h =  P(0)

) d

(3(l)hg =  a ( l ) g  =  d(0)

Figure A.l: Multiplication in L B G / G

Notice that the fiberwise multiplication in L B G / G  is well-defined independent of 
the choices of a  and (3. Hence ^ ( a  ■ (3) = [/3(1), hg]. On the other hand, in Ad(EG)  

we have

[d(l),g\ • 0 (1 ) ,  h] =  0 ( l ) h , g \  ■ 0 (1 ) ,  h] =  

0 ( 1  ) ,h gh~l ] ■ 0 ( 1 ) ,  h] =  0 ( l ) , h g h ~ 1h] =  0 ( 1 ) ,  hg].

Hence 0 (a  ■ (3) =  ip(cx) ■ ^((3) so ip is a morphism of fiberwise monoids over BG.
T o see t h a t  -0 is a  h o m o to p y  eq u iv a len ce , i t  is e n o u g h  to  see t h a t  0  is. F ix  a

contraction F  : E G  x /  —> E G  of E G  to a point y0. This gives a canonical path 7 y : 
/  —> E G  from y to y0 for any y G EG,  by 7 y(t) = F(y, t). Define 0 : E G  x G —> L B G
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by:
i l z g ( 2 t )  

\ l z ( 2 - 2 1 )

0 < t  <  I

< t <  1.

Then (cpoip)(a) is the path from a(0) to a ( l)  that traverses 7 a(0) in time \  and then 

traverses 7 a(i) backwards in time <p o ip is homotopic to the identity map on LBG  
by the homotopy G : L BG  x I  —> L B G ,

G(a, s)(t) = <

F(a(0),2t)  

F ( a ( l ) , 2 - 2 t )

0 < t  <  1  -  §

F(a(Yz-s( t -  f)) , s)  § < f <  1

1 - f  < t < l .

(A.l)

On the other hand, (ip o <p)(z,g) =  (z,g). Hence ip is a homotopy equivalence. Then 
ip is also, so

LHG ~  L B G / G  ~  Ad(EG).

□
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