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§1. Introduction.

The main purpose of the present paper is to prove a result concerning certain
“particle” or “multi-configuration” spaces. Such spaces have become in recent years
objects of much interest because of their connection with spaces of holomorphic
mappings from Riemann surfaces to complex manifolds, and with mathematical
physics. However, they are also of interest for another reason: they often provide
convenient models for various mapping spaces, particularly loop spaces (see e.g.
[Ma], [Mc], [Se1], [Se2], [GKY1], [GKY2], [GKY3], [Gu2], [K], [H]). The known
results relating particle spaces and mapping spaces fall into two basic types.

The first consists of “stable results”, which assert that an “infinite particle space”
is homotopy (or homology) equivalent to a certain function space. There are general
methods for proving such results. An account of one such method, based on the so
called “scanning map” of Segal, has been given by Kallel ([K]).

The results of the second type are “unstable”. Infinite particle spaces have
a natural filtration by “finite” subspaces containing less than a given number of
particles. In all known cases homotopy (or homology) groups of these subspaces
stabilize. More precisely, let C denote an “infinite particle space” and let

C0 ⊂ C1 ⊂ . . . ⊂ Ci ⊂ . . . ⊂ C

be a filtration by finite particle spaces. Results of the second type state that
the inclusion maps Ci → Ci+1 are homotopy (or homology) equivalences up to
some dimension k = k(i) such that k(i) → ∞ as i → ∞. Together with the
corresponding stable result, this implies that the spaces Ci can be viewed as finite
dimensional approximations to the function space of the stable theorem. A large
number of such unstable results is known, but there is no really general method
for proving them (though probably the one that comes closest is due to Vassiliev,
[Va]).

The classical cases involve symmetric products and related spaces. As a first ex-
ample, for any connected space X, consider the free abelian monoid on X, denoted
by SP∞(X, ∗) (where ∗ is a chosen basepoint in X.) This is an “infinite particle

1



space” which can be viewed as a direct limit of maps SPi(X) ↪→ SPi+1(X) where
SPi(X) denotes the i-th symmetric product of X and the inclusion map is given
by adding the basepoint.

The relevant stable result in this situation asserts that the limit space SP∞(X, ∗)
is homotopy equivalent to the infinite loop space

∏∞
i=0 K(H̃i(X,Z), i). The unsta-

ble result asserts that the map SPi(X) ↪→ SPi+1(X) is a homotopy equivalence up
to dimension i. Hence SPi(X) may be considered as a finite dimensional approxi-
mation of

∏∞
i=0 K(H̃i(X,Z), i).

As a second example, consider the space of all finite subsets of Rn. This space is,
of course, disconnected, in fact it is the disjoint union

⊔
i≥0 Ci(Rn), where Ci(X)

denotes the space of all subsets of X of cardinality i. There are natural maps (up to
homotopy) Ci(Rn)→ Ci+1(Rn) given by “adding a point near infinity”. By taking
the direct limit of these maps we can construct a connected infinite particle space
C∞(Rn). In this case the stable result is due to Segal ([Se1]) and the unstable one
to Arnold ([Ar], but see also the appendix to §5 of [Se2]). The former asserts that
there is a homology equivalence C∞(Rn) → Ωn

0Sn. The latter says that the map
Ci(Rn) → Ci+1(Rn) is a homology equivalence up to dimension [i/2]. Together
they give a finite dimensional configuration space approximation to Ωn

0Sn.

There is also another “classical” example of this kind, invented by McDuff ([Mc]).
One considers the space C±(X) of configurations of “positive and negative parti-
cles” on X. Its elements are equivalence classes of pairs of finite subsets (S, T ) of
X, such that whenever the same point of X is an element of both S and T it can be
“cancelled”. In other words, a positive particle and a negative particle can “collide
and disappear”. The space of positive and negative particles is an infinite particle
space, and, as usual, is the limit of finite spaces of positive and negative particles.
McDuff’s result asserts that the identity components of C±(C) and Ω2

(
S2×S2/∆

)
are homotopy equivalent. Probably because the space C±(C) has, until now, lacked
connections with other well known spaces of topology or geometry (we describe one
such connection below) McDuff’s result has attracted little attention. In particu-
lar, the natural question concerning the validity of an unstable version of McDuff’s
theorem does not appear to have been discussed. The purpose of this paper is to
provide such an unstable theorem:

Theorem 1.1. Let C±d (C) denote the space of positive and negative particles in C,
with no more than d particles of either kind. Then the inclusion map

C±d (C)→ C±(C)

is a homology equivalence up to dimension [d/2] and is a homotopy equivalence up
to dimension [(d− 1)/3].

To say that the map f : X → Y is a homotopy (or homology) equivalence up to
dimension N means that the induced map f∗ : πi(X)→ πi(Y ) (or f∗ : Hi(X,Z)→
Hi(Y,Z)) is bijective when i < N and surjective when i = N .
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One reason why this result seems interesting to us is the rather large difference
between the homology and homotopy stabilization dimensions. Generally, in those
cases where both a homology and homotopy stabilization can be proved, the stabi-
lization dimensions turn out to be very close (e.g. see [Se2], [GKY1], [Gu1], [Gu2],
[H]) and there are no reasons to believe that they should be different. However, in
this case there are reasons to believe that the difference between the homology and
homotopy stabilization dimensions may be genuine and not just a consequence of
the method of proof (cf. [GKY3]). We also feel that the technique of proof, and
in particular the passage from a homology stabilization theorem to a homotopy
stabilization theorem, may have a wider applicability and is thus interesting in its
own right.

Another reason for possible interest in this result is that McDuff’s space C±(C)
is in fact related to a space with a more geometrical character. Let M2 denote
the subvariety of CP 3 defined by the equation z2

1 = z2z3 (a quadric cone); this is
homeomorphic to the space

(
S2 × S2/∆

)
. Let Hold(S2, M2) be the space of based

holomorphic maps S2 →M2 of degree d. Then it follows from [Gu1] that the limit
space limd→∞Hold(S2, M2) is homotopy equivalent to Ω2

0

(
S2 × S2/∆

)
. Moreover,

Hol(S2, X) can be identified with a subspace of the moduli space of framed Yang-
Mills instantons on S4 ([At]) and it may be worthwhile investigating the unstable
result for the space C±(C) from these alternative points of view.

§2. The stable result.

Our main results concern the configuration space of “positive and negative par-
ticles” ([Mc]). This space is obtained from the usual configuration space of distance
particles by a “Grothendieck construction”, i.e. by “adjoining inverses”. However,
its nature becomes clearer when we view it as a special case of a more general
construction, and we shall give some results in this additional generality.

Let AG(X) denote the free abelian topological group generated by a based space
X ([DT]). We refer to the elements of AG(X) as divisors on X. A positive divisor
is one of the form

∑
i

nixi, with ni ≥ 0 for all i. If Y ⊂ X is a closed subspace let

AG(X, Y ) denote the group

AG(X, Y ) = AG(X/Y, ∗) ∼= AG(X)/ AG(Y ).

As is pointed out in [DT], in the case (X, Y ) = (S2,∞) the elements of AG(X, Y )
can be thought as “rational functions” on C, where we consider S2 as the space
C ∪∞. In other words, a finite formal sum∑t

j=1 αjxj −
∑l

i=1 βiyi ∈ AG(S2,∞)

(where αj , βi ≥ 1 are integers and xj , yi ∈ C)

may be identified with the rational function

f(z) =
(z − x1)α1(z − x2)α2 . . . (z − xt)αt

(z − y1)β1(z − y2)β2 . . . (z − yl)βl
.
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This should not be confused with the better known spaces of rational functions
studied by Segal in [Se2]. In Segal’s case the zeros and the poles of a rational
function are not allowed to coincide. In our case the zeros and poles can coincide,
and if this happens the function is identified with the one obtained by cancellation
of common factors of the numerator and the denominator. In particular our space
of “rational functions” is not topologized as a subspace of the space of continuous
mappings Ω2S2.

If n, m are non-negative integers, we denote by AGn,m(X, Y ) ⊂ AG(X, Y ) the
subset of elements of the form∑n

j=1 αjxj −
∑m

j=1 βjyj ∈ AG(X, Y ),

where and xj 6= xi, yj 6= yi if j 6= i.

1 ≤ αj ≤ n, 1 ≤ βj ≤ m are integers, xj , yj ∈ X − Y,

The space AGn,m(S2,∞) can be identified with the space of “rational functions”
whose numerators are monic polynomials with roots of multiplicity ≤ n and whose
denominators are monic polynomials with roots of multiplicity ≤ m. When n = m
we shall write AGn(X, Y ) = AGn,n(X, Y ) and AGn(X) = AGn(X, ∅).

Let AGn,m(X, Y ) ⊂ AG(X, Y ) denote the subset of elements of the form∑
j αjxj −

∑
j βjyj ,

where xi 6= xj , yi 6= yj ∈ X − Y if i 6= j,

αj , βj ≥ 1 are integers and
∑

j αj ≤ n,
∑

j βj ≤ m.

In particular, if n = m, we shall write AGn(X, Y ) = AGn,n(X, Y ) and AGn(X) =
AGn(X, ∅). We can view the space AGn(S2,∞) as the space of “rational functions”
which can be represented as quotients of monic polynomials with numerators of
degrees ≤ n and denominators with degrees ≤ m.

Note that in the first case above we consider pairs of divisors of arbitrary de-
grees but with bounded multiplicity while in the second case the divisors have
bounded degrees (hence of course also bounded multiplicity). Thus AGn,m(X, Y ) ⊂
AGn,m(X, Y )

The following theorem generalizes theorem 1.3 of [Mc] and can be proved in the
same way.

Theorem 2.1. There is a homotopy equivalence

S : AGn(C) '−→ Ω2
0 AGn(S2,∞).

Sketch of Proof. The proof consists of two parts. First one considers the “scanning”
map

S : AGn(C)→ Map∗(C ∪∞, AGn(S2,∞)) = Ω2
0 AGn(S2,∞)
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and shows that it is a homotopy equivalence, using the technique introduced by Se-
gal in [Se2]. One than completes the argument by showing that there is a homotopy
equivalence

AGn(S2,∞) ' AGn(S2,∞).

using essentially the same argument as in [Mc].

For n = 1 the space AG1(X) is the space of finite sums∑
i

xi −
∑

k

yk (xi 6= xj , yk 6= yl if i 6= j, k 6= l)

This is just the space of configurations positive and negative particles denoted by
C±(X) in ([Mc]). On the other hand, the space AG1(S2,∞) is the space of elements
of AG(S2,∞) of the form a− b, i.e.

AG1(S2,∞) ∼= (S2 × S2)/∆, where ∆ is the diagonal.

Thus, for n = 1, theorem 1 indeed coincides with theorem 1.3 of [Mc] (with M = C).

In general, the space AGn(S2,∞) is just given by the quotient

SPn(S2)× SPn(S2)/ ∼

where the equivalence relation ∼ is generated by the following relation:

(δ + η, γ + η) ∼ (δ + ν, γ + ν)

for divisors δ, γ, η, ν on S2 such that deg(δ + η) = deg(γ + η) = deg(δ + ν) =
deg(γ + ν) = n.

From now on we shall consider only the case n = 1 and X = C. Analogous
results hold for the general case but the statements and proofs are considerably more
complicated. We shall however retain our notation AG1(X) instead of McDuff’s
C±(X).

For each configuration

ξ =
d1∑

j=1

xj −
d2∑

i=1

yi ∈ AG1(X),

we define the (total) charge of ξ by

charge(ξ) = d1 − d2.

Since π0(AG1(C)) ∼= π2((S2 × S2)/∆) = Z, there is a decomposition into path-
components:

AG1(C) =
∐
d∈Z

AG1,k(C)

5



where we take
AG1,k(C) = {ξ ∈ AG1(C) : charge(ξ) = k}.

It is easy to see that AG1,k(C) ' AG1,l(C) for any k, l. We consider the case k = 0
only. Let AGd

1,0(C) denote the finite dimensional subspace of AG1,0(C) defined by

AGd
1,0(C) = {

d∑
j=1

xj −
d∑

j=1

yj ∈ AG1,0(C)} ⊂ AG1,0(C).

This is the “finite particle space” that we shall investigate.

§3. The unstable result.

Recall that the space AG1,0(C) is the union of finite dimensional subspaces
AGd

1,0(C)’s,
AG1,0(C) = lim

d→∞
AGd

1,0(C).

To prove theorem 1, it is sufficient to show that following two assertions hold:

Theorem 3.1. Let id : AGd
1,0(C)→ AGd+1

1,0 (C) be the inclusion map.

(1) The map id is a homology equivalence up to dimension [d/2], and

(2) it is a homotopy equivalence up to dimension [(d− 1)/3].

In this section we shall prove the first of the above two statements.

Let U ⊂ C be an open set. Choose an open subset V ⊂ U ⊂ C homeomorphic
to U and 6= U . Next choose any point z ∈ U − V and fix it. Now define the
stabilization map Cd(U)→ Cd+1(U) by adding the point z “from the edge ”:

Cd(U)
∼=−−−−→ Cd(V ) −−−−→ Cd+1(U)

{x1, · · · , xj} −−−−→ {x1, · · · , xj , z}

Of course, this definition of depends on the choices of V and the point z but the
homotopy class of the stabilization map is independent of the choices made.

Next, recall the following result ([Se2]):

Lemma 3.2. For any open subset U ⊂ C, the stabilization map Cd(U)→ Cd+1(U)
is a homology equivalence up to dimension [d/2]. ¤

For a subset U = C − {finite points} and each finite subset ξ ⊂ U , let Cξ
d(U)

denote the subspace

Cξ
d(U) = {α ∈ Cd(U) : α ∩ ξ 6= ∅}.
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Lemma 3.3. The stabilization map Cξ
d(U)→ Cξ

d+1(U) is a homology equivalence
up to dimension [(d− 1)/2].

Proof. Let ξ = {z1, · · · , zm}. The proof is based on the induction on m.

If m = 0, this follows from (3.2). If m = 1, since Cξ
d(U) ∼= Cd−1(U − {z1}) the

assertion follows. For the inductive step we use the fact that

C
{z1,...,zm+1}
d (U) = C

{z1,...,zm}
d (U) ∪ C

{zm+1}
d (U),

with
C
{zm+1}
d (U) ∼= Cd−1(U − {zm+1}),

and C
{z1,...,zm}
d (U) ∩ C

{zm+1}
d (U) ∼= C

{z1,...,zm}
d−1 (U − {zm+1}).

Assuming the statement for m, we obtain the statement for m+1 from the Mayer-
Vietoris sequence and the 5-Lemma. However, since C

{z1,...,zm}
d (U) ∩ C

{zm+1}
d (U)

is not an open subset of C
{z1,...,zm+1}
d (U) the above argument cannot be applied

directly. Instead, let ε > 0 be a sufficiently small fixed number. We replace the set
C
{z1,...,zm+1}
d (U) by the set

Uz1,...,zm = {{x1, . . . , xd}: such that |xi − zj | < ε/100 for some 1 ≤ i ≤ d, 1 ≤
j ≤ m}.

Similarly we replace C
{zm+1}
d (U) by the open subset

V zm+1 = {{x1, . . . , xd}: such that |xi − zm+1| < ε/100 for some 1 ≤ i ≤ d}.
Without loss of generality we can assume that all the xi are far away, say |xi−xj | > 1
for i 6= j, and that all the zi are also far apart, say |zi − zj | > 1 for i 6= j. Thus
there can be no more than one zk very close to a given xj . We can now see that

C
{z1,...,zm+1}
d (U) ' Uz1,...,zm , C{zm+1}

n ' V zm+1

and Uz1,...,zm ∩ V zm+1 ' C
{z1,...,zm}
d−1 (U − {zm+1}). ¤

Proof of Theorem 3.1 (1). From now on we shall write Cd = Cd(C). Note that
there is a homeomorphism

AGd+1,d+1
1 (C) ∼= AGd,d

1 (C) ∪f (Cd+1 × Cd+1)

where the identification map f is given by

Cd+1 × Cd+1
⊃←−−−− Dd+1,d+1

f−−−−→ AGd,d
1

({xj}, {yi}) −−−−→
∑

j xj −
∑

i yi

and we take
Dd1,d2 = {(α, β) ∈ Cd1 × Cd2 : α ∩ β 6= ∅}.

7



There is a homeomorphism

AGd+1,d+1
1 (C)/Ad.d

1 (C) ∼= (Cd+1 × Cd+1)/Dd+1,d+1.

Hence it suffices to show that the inclusion map j : Dd+1,d+1 → Cd+1 × Cd+1 is a
homology equivalence up to dimension [d/2].

To do so, we need:

Lemma 3.4. (1) The stabilization map s1 : Dd1,d2 → Dd1+1,d2 is a homology
equivalence up to dimension [(d1 − 1)/2].

(2) The stabilization map s2 : Dd1,d2 → Dd1,d2+1 is a homology equivalence up
to dimension [(d2 − 1)/2].

We postpone the proof of (3.4) and first prove part (1) of theorem 3.1

Consider the homotopy commutative diagram

Dd+1,d+1
s1−−−−→ Dd+2,d+1

j

y∩ s2

y
Cd+1 × Cd+1

s′−−−−→ Dd+2,d+2,

where s′ is the stabilization map given by adding points at infinity.

By (3.4), the map s2 ◦s1 is a homology equivalence up to dimension [d/2]. Hence
the induced homomorphism

j∗ : Hk(Dd+1,d+1)→ Hk(Cd+1 × Cd+1)

is injective when k ≤ [d/2]− 1.

If s : Cd → Cd+1 is a stabilization map, then by (4.2), the map s×s : Cd×Cd →
Cd+1 × Cd+1 is a homology equivalence up to dimension [d/2]. Since s × s is
homotopic to the composite of maps

Cd × Cd
s′−→ Dd+1,d+1

j−→ Cd+1 × Cd+1

the homomorphism

j∗ : Hk(Dd+1,d+1)→ Hk(Cd+1 × Cd+1)

is surjective when k ≤ [d/2].

Thus j is a homology equivalence up to dimension [d/2]. This completes the
proof of (1) of theorem 3.1. ¤
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Proof of Lemma 3.4. Since (1) and (2) are completely analogous we only prove the
former.

Let p2 : Dd1,d2 → Cd2 (respectively. q2 : Dd1+1,d2 → Cd2) be the second projec-
tion. Consider the commutative diagram

Cξ
d1
−−−−→ Cξ

d1+1y y
Dd1,d2

s1−−−−→ Dd1+1,d2

p2

y q2

y
Cd2

=−−−−→ Cd2

where ξ ∈ Cd2 is a fixed configuration and vertical sequences are fibrations.

Since the stabilization map Cξ
d1
→ Cξ

d1+1 is a homology equivalence up to di-
mension [(d1−1)/2] (from (3.3)), s1 is also a homology equivalence up to dimension
[(d1 − 1)/2]. ¤

§4. Universal covering spaces.

In this section we consider the universal covering of Ad
1,0(C) and give the proof

of (2) of theorem 3.1.

Let F (X, m) denote the ordered configuration space {(x1, · · · , xm) ∈ Xm : xi 6=
xj if i 6= j}.

Lemma 4.1. If d ≥ 2, π1(Ad
1,0(C)) ∼= Z/2.

Proof. It follows from the method given in appendix of [GKY1] that π1 = π1(Ad
1,0(C))

is abelian. So it suffices to show that

(*) H1(Ad
1,0(C),Z) ∼= Z/2 for d ≥ 2.

Let us write
Cm = Cm(C) and Ad

1,0 = Ad
1,0(C).

First we deal with the case d = 2. recall that

A2
1,0(C) = A2

1,0 ' A1
1,0 ∪f C2 × C2,

where f : D2 → A1
1,0 is the identification map. Since A1,0(C) is contractible, we

have A2
1,0 ' (C2 × C2)/D2. We begin by showing that H1(D2) ∼= Z⊕ Z.
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Let A be the closed subspace of D2 consisting of configurations (α, β) ∈ C2×C2

such that α = β. Thus, A = C2 ' S1, and H1(A) ∼= Zγ, where γ is (the Hurewicz
image of) a loop which interchanges the two distinct points. Let A′ be the open
neighbourhood of A in D2 consisting of configurations (α, β) ∈ C2 × C2 such that
α and β have at least one common point, z say, and the remaining two points
z1, z2 are such that |z1 − z2| < 1

10 max{|z − z1|, |z − z2|}. It is clear that A,A′

are homotopy equivalent. We consider the Mayer-Vietoris sequence for the open
covering D2 = A′ ∪ (D2 − A) of D2. We have D2 − A ∼= F (C, 3), since an element
of D2 −A corresponds to three distinct points, one positive, one negative, and one
“neutral”. It follows from the known homology of F (C, n) that H1(D2 − A) ∼=
Zγ+− ⊕ Zγ+0 ⊕ Zγ−0, where γ+− is a loop which moves the positive point once
around the negative point, and similarly for γ+0, γ−0. A similar discussion for
A′ ∩ (D2 − A) ' S1 × S1 shows that H1(A′ ∩ (D2 − A)) ∼= Zδ+− ⊕ Zδ+0 (here
δ−0 ' δ+0). It follows now from the Mayer-Vietoris sequence that H1(D2) ∼=
Zγ ⊕ Zγ0

∼= Zγ ⊕ Zγ+0.

Let us now consider the homology exact sequence of the pair (C2×C2, D2). We
have just identified H1(D2), and we have H1(C2 × C2) ∼= Zη ⊕ Zξ, where η is a
loop which interchanges two positive points and ξ is a loop which interchanges two
negative points. The map H1(D2)→ H1(C2×C2) is given by γ 7→ η+ξ, γ−0 7→ 2ξ.
Hence H1(C

±,0
2 ) ∼= Z/2 as required; it is generated by a loop which interchanges

two points of the same type.

The case d ≥ 4 follows from the results for the case d = 2. In fact, from (1) of
theorem 3.1, if d ≥ 4, then the induced map

H1(Ad
1,0)

∼=−→ H1(A1,0) ∼= H1((S2 × S2)/∆) = Z/2

is an isomorphism and the case d ≥ 4 is clear.

Finally we deal with the case d = 3. From (1) of theorem 3.1, we know that the
induced homomorphisms

(a) Z/2 = H1(A2
1,0) −→ H1(A3

1,0)

and

(b) H1(A3
1,0)

i∗−→ H1(A4
1,0) = Z/2

are surjective. Hence from (a), H1(A3
1,0) = 0 or Z/2. However, in the former case,

since i∗ is surjective we deduce from (b) that H1(A4
1,0) = 0. This is a contradiction;

hence we have shown that H1(A3
1,0) = Z/2. ¤

Definition 4.2. (1) Let Am ⊂ Σm denote the alternating subgroup of the m-th
symmetric group of m letters {1, 2, · · · , m}. Define the space C̃m(X) by

C̃m(X) =


{±1} m = 0
X × {±1} m = 1
F (X, m)/Am m ≥ 2
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where the group Am ⊂ Σm acts on the space F (X, m) by the permutations of
coordinates. Let C̃(X) =

∐
m≥0 C̃m(X) (disjoint union). There is a non-trivial

double covering C̃(X)→ C(X) =
∐

m≥0 Cm(X). Each element ξ = [x1, · · · , xm] ∈
C̃m(X) can be viewed as a usual configuration {x1, · · · , xm} with fixed orientation.
We call C̃(X) “the oriented configuration space” on X. The group Z/2 acts freely
on C̃(X) by the change of orientation.

(2) Let ≈ denote the equivalence relation on C̃(X) × C̃(X) generated by the
relation

([ξ], [η]) ≈ ([ξ − {x}], [η − {x}])

if x ∈ ξ ∩ η (ξ, η ∈ C(X)).

This induces an equivalence relation ≈ on C̃(X)×Z/2 C̃(X) and we write

˜AG1(X) = (C̃(X)×Z/2 C̃(X))/ ≈ .

It is easy to see that there is a non-trivial double covering

p : ˜AG1(X)→ AG1(X).

Let
˜AG1,0

d
(X) = p−1(AGd

1,0(X)).

If d ≥ 3, there is a non-trivial double covering

p : ˜AG1,0
d
(X)→ AGd

1,0(X).

The following result follows from (4.1):

Lemma 4.3. The map p : ˜AG1,0
d
(C)→ AGd

1,0(C) is a universal covering. ¤

Recall the following result, proved in [GKY3]:

Proposition 4.4 ([GKY3]). Let U = C− {finite points}. The stabilization map

C̃d(U)→ C̃d+1(U)

is a homology equivalence up to dimension [(d− 1)/3]. ¤

By means of methods analogous to the ones we used to prove (3.3) and (3.4) we
can obtain from 4.4 the following results, whose proofs we omit.
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Lemma 4.5. Let U = C− {finite points}. Let

C̃ξ
d(U) = {[η] ∈ C̃d(U) : η ∩ ξ 6= ∅}.

Then the stabilization map
C̃ξ

d(U)→ C̃ξ
d+1(U)

is a homology equivalence up to dimension [(d− 2)/3]. ¤

Lemma 4.6. Let

D̃d1,d2 = {[ξ1], [ξ2]) ∈ C̃d1(C)× C̃d2(C) : ξ1 ∩ ξ2 6= ∅}.

(1) The stabilization map

D̃d1,d2 → D̃d1+1,d2

is a homology equivalence up to dimension [(d1 − 2)/3].

(1) The stabilization map

D̃d1,d2 → D̃d1,d2+1

is a homology equivalence up to dimension [(d2 − 2)/3]. ¤

Now we can prove (2) of theorem 3.1.

Proof of Theorem 3.1 (2).

Since ˜AG1,0
d
(C) → AGd

1,0(C) is a universal covering, it suffices to show that

the inclusion map ˜AG1,0
d
(C) → ˜AG1,0

d+1
(C) is a homology equivalence up to

dimension [(d− 1)/3].

Recall that there is a homeomorphism

˜AG1,0
d
(C) ∼= ˜AG1,0

d
(C) ∪f (C̃d+1(C)×Z/2 C̃d+1(C)).

Hence

˜AG1,0
d+1

(C)/ ˜AG1,0
d
(C) ∼= (C̃d+1(C)×Z/2 C̃d+1(C))/D̂d+1,d+1

where we take

D̂d1,d2 = {([ξ1], [ξ2]) ∈ C̃d1(C)×Z/2 C̃d2(C) : ξ1 ∩ ξ2 6= ∅}.

Hence it also suffices to show that the inclusion

D̂d+1,d+1 → C̃d+1(C)×Z/2 C̃d+1(C)

is a homology equivalence up to dimension [(d− 1)/3]. By a method similar to the
one given in the proof of (1) of theorem 3.1, this assertion follows from:
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Lemma 4.7. (1) The stabilization map

D̂d1,d2 → D̂d1+1,d2

is a homology equivalence up to dimension [(d1 − 2)/3].

(2) The stabilization map

D̂d1,d2 → D̂d1,d2+1

is a homology equivalence up to dimension [(d2 − 2)/3].

Proof of (4.7). We only prove (1) since (2) can be proved in an analogous way.
Consider the commutative diagram

D̃d1,d2

s′−−−−→ D̃d1+1,d2y y
D̂d1,d2

s−−−−→ D̂d1+1,d2y y
BZ/2 =−−−−→ BZ/2

where vertical sequences are fibrations.

Since s′ is a homology equivalence up to dimension [(d1 − 2)/3] from (4.6), s is
also a homology equivalence up to dimension [(d1 − 2)/3]. ¤

Hence this completes the proof of theorem 3.1. ¤
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