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1.

INTRODUCTION AND SUMMARY OF RESULTS.

1 .1 . The present paper is the outcome of an attempt to apply to the
principal problems of the theory of partitions the methods, depending
upon the theory of analytic functions, which have proved so fruitful in
the theory of the distribution of primes and allied branches of the analytic
theory of numbers.

The most interesting functions of the theory of partitions appear as
the coefficients in the power-series which represent certain elliptic modular
functions. Thus p (?i), the number of unrestricted partitions of ft, is the
coefficient of xn in the expansion of the function

(1.11, /(*> = 1 +

If we write

(1.12) x = q2 = elni\

where the imaginary part of T is positive, we see that/(a) is substantially
the reciprocal of the modular function called by Tannery and Molkt 1I(T) ;
that, in fact,

(1 . 13) h(r) = qt*q0 = q- IT (1-q*") = fpr.

* A short abstract of the contents of part of this .paper appeared under the title " Une
formule asymptotique pour le nombre des partitions de n ", in the Gumptcs rcndus, January
2nd,1917.

t P. A. MacMahon, Combinatory Analysis, Vol. 2, 1916, p. 1.
X J. Tannery and J. Molk, Fonctions elliptiques, Vol. 2, 1896, pp. 31 et seq. We shall

follow the notation of this work whenever we have to quote formulae from the theory of
elliptic functions.
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The theory of partitions has, from the time of Euler onwards, been
developed from an almost exclusively algebraical point of view. It con-
sists of an assemblage of formal identities—many of them, it need hardly
be said, of an exceedingly ingenious and beautiful character. Of asymptotic
formulas, one may fairly say, there are none.* So true is this, in fact,
that we have been unable to discover in the literature of the subject any
allusion whatever to the question of the order of magnitude of p{n).

1.2. The function p (?i) may, of course, be expressed in the form of
an integral

by means of Cauchy's theorem, the path F enclosing the origin and lying
entirely inside the unit circle. The idea which dominates this paper is
that of obtaining asymptotic formulae for p(n) by a detailed study of the

* We should mention one exception to this statement, to which our attention was called
by Major MacMahon. The number of partitions of n into parts none of which exceed r is the
coefficient p,{n) in the series

ThiB function has been studied in much detail, for various special values of >\ by Cayley,
Sylvester, and Glaisher : we may refer in particular to J. J. Sylvester, " On a discovery in the
theory of partitions ", Quarterly Journal, Vol. 1, 1857, pp. 81-85, and " On the partition
of numbers ", ibid., pp. 141-152 (Sylvester's Works, Vol. 2, pp. 86-89 and 90-901; J. W. L.
Glaisher, "On the number of partitions of a number into a given number of parts",
Quarterly Journal, Vol. 40, 1909, pp. 57-143 ; " Formulfe for partitions into given elements,
derived from Sylvester's Theorem ", ibid., pp. 275-348 ; " Formula; for the number of parti-
tions of a number into the elements 1,2,3, ..., n up to n = 9 ", ibid., Vol. 41, 1910,
pp. 94-112 : and further references will be found in MacMahon, I.e., pp. 5lJ-71, and E. Netto,
Lehrbuch der Combinatorik, 1901, pp. 146-15S. Thus, for example, the coefficient of x" in

as is easily found by separating the function into partial fractions. This function may also
be expressed in the orms

!*£ (n + 3)"- + (-*- cos 2 i r n ) '~ (I sin &*'*)'"•'>

where [n] and {n\ denote the greatest integer contained in n and the integer nearest to ?i.
These formulae do, of course, furnish incidentally asymptotic formulae for the functions i n
question. But they are, from this point of view, of a very trivial character: the interest
which they possess is algebraical.
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integral (1. 21). This idea is an extremely obvious one; it is the idea
which has dominated nine-tenths of modern research in the analytic
theory of numbers: and it may seem very strange that it should never
have been applied to this particular problem before. Of this there are no
doubt two explanations. The first is that the theory of partitions has
received its most important developments, since its foundation by Euler,
at the hands of a series of mathematicians whose interests have lain
primarily in algebra. The second and more fundamental reason is to be
found in the extreme complexity of the behaviour of the generating func-
tion f(x) near a point of the unit circle.

It is instructive to contrast this problem with the corresponding
problems which arise for the arithmetical functions Tr(n), %(n), \j/{n),
//(??), d{n), ... which have their genesis in Riemann's Zeta-function and
the functions allied to it. In the latter problems we are dealing with
functions defined by Dirichlet's series. The study of such functions pre-
sents difficulties far more fundamental than any which confront us in the
theory of the modular functions. These difficulties, however, relate to the
distribution of the zeros of the functions and their general behaviour at
infinity : no difficulties whatever are occasioned by the crude singularities
of the functions in the finite part of the plane. The single finite singu-
larity of C,{s), for example, the pole at s = 1, is a singularity of the
simplest possible character. It is this pole which gives rise to the
dominant terms in the asymptotic formulae for the arithmetical functions
associated with £(s). To prove such a formula rigorously is often exceed-
ingly difficult; to determine precisely the order of the error which it
involves is in many cases a problem which still defies the utmost resources
of .analysis. But to write down the dominant terms involves, as a rule,,
no difficulty more formidable than that of deforming a path of integration
over a pole of the subject of integration and calculating the correspond-
ing residue.

In the theory of partitions, on the other hand, we are dealing with
functions which do not exist at all outside the unit circle. Every point
of the circle is an essential singularity of the function, and no part of the
contour of integration can be deformed in such a manner as to make its
contribution obviously negligible. Every element of the contour requires
special study; and there is no obvious method of writing down a
" dominant term."

The difficulties of the problem appear then, at first sight, to be very
serious. We possess, however, in the formulae of the theory of the linear-
transformation of the elliptic functions, an extremely powerful analytical
weapon by means of which we can study the behaviour of f(x) near any
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assigned point of the unit circle.* It is to an appropriate use of these
formulfe that the accuracy of our final results, an accuracy which will, we
think, be found to be quite startling, is due.

1.3. It is very important, in dealing with such a problem as this, to
distinguish clearly the various stages to which we can progress by argu-
ment? of a progressively " deeper " and less elementary character. The
earlier results are naturally (so far as the particular problem is concerned)
superseded by the later. But the more elementary methods are likely to
he applicable to other problems in which the more subtle analysis is
impracticable.

We have attacked this particular problem by a considerable number
of different methods, and cannot profess to have reached any very precise
conclusions as to the possibilities of each. A detailed comparison of the
results to which they lead would moreover expand this paper to a quite
unreasonable length. But we have thought it worth while to include a
short account of two of them. The first is quite elementary ; it depends
only on Euler's identity

—an identity capable of wide generalisation—and on elementary alge-
braical reasoning. By these means we show, in section 2, that

(1.32) e-Un<<p{n)<eIW\

where A and B are positive constants, for all sufficiently large values of n.
It follows that

(1 . 33) A*/n < loĝ J {n) < By/n ;

and the next question which arises is the question whether a constant G
exists such that

(1.84) logjp(w) ~Cs/n.

We prove that this is so in section 3. Our proof is still, in a sense,
" elementary ". It does not appeal to the theory of analytic functions,
depending only on a general arithmetic theorem concerning infinite series;

* See CT. H. Hardy and J. E. Littlewood, "Some problems of Diophantine approxima-
tion (II: The trigonometrical series associated with the elliptic Theta-functions)", Ada
Matliematica, Vol. 37, 1914, pp. 193-238, for applications of the formulre to different but not
unrelated problems.
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but this theorem is of the difficult and delicate type which Messrs. Hardy
and Littlewood have called " Tauberian ". The actual theorem required
was proved by us in a paper recently printed in these Proceedings*. It
shows that

(1.35) C = %;

in other words that

(1 • 36) p (n) = exp • IT y (|*) (1 + e) •,

where e is small when n is large. This method is one of very wide appli-
cation. It may be used, for example, to prove that, if pis) (n) denotes the
number of partitions of n into perfect s-th powers, then

/ 1

r (i + -^

It is certainly possible to obtain, by means of arguments of this
general character, information about p in) more precise than that furnished
by the formula (1.36). And it is equally possible to prove (1 . 36) by
reasoning of a more elementary, though more special, character: we have
a proof, for example, based on the identity

n

np(n) = 2 cr(v)p(n — v),

where a-(v) is the sum of the divisors of v, and a process of induction.
But we are at present unable to obtain, by any method which does not
depend upon Cauchy's theorem, a result as precise as that which we
state in the next paragraph, a result, that is to say, which is " vraiment
asymptotique ".

1 .4. Our next step was to replace (1. 36) by the much more precise
formula

(1.41) p w

The proof of this formula appears to necessitate the use of much more

* G. H. Hardy and S. Ramanujan, "Asymptotic formulae concerning the distribution
of^integers of various types ", Proc. London Math. Soc, Ser. 2, Vol. 16, 1917, pp. 112-132.

t In our note in the Comptes rendus in ^3 is misprinted as 47r^3.
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powerful machinery, Cauchy's integral (1. 21) and the functional relation

(1 • 42)

where

(1 • 43)

= ^ r , v/ (1(* T )

x = exp i —
4TT 2

loe(l/a;)j '

This formula is merely a statement in a different notation of the relation
between h(r) and 7i.(T), where

T = , a = d=0, 6 = 1, c = - 1;

VIZ. h(r)= ^ (

It is interesting to observe the correspondence between (1.41) and the
results of numerical computation. Numerical data furnished to us by
Major MacMahon gave the following results: we denote the right-hand
side of (1.41) by CT (/?.).

n

10

20

50

80

p(n)

42

027

204226

15796476

•w(n)

43 104

692-385

•217590-490

16606781-567

v/p

1-145

1104

1-065

1-051

It will be observed that the progress of z&lp towards its limit unity is
not very rapid, and that zs— p is always positive and appears to tend
rapidly to infinity.

1.5. In order to obtain more satisfactory results it is necessary to
construct some auxiliary function F{x) which is regular at all points of
the unit circle save x = 1, and has there a singularity of a type as near
as possible to that of the singularity of f{x). We may then hope to ob-

* Tannery and Molk, I.e., p. 265 (Table XLV, 5).
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tain a much more precise approximation by applying Cauchy's theorem
to f—F instead of to F. For although every point of the circle is a
sintfiihir point of/, x = 1 is. to put it roughly, much the heaviest singu-
larity. When x->l by real values, f(x) tends to infinity like an expo-
nential , 2

exp — : ;
1 i 6(1—x) I

when x = re2*"''1'1,

p a n d q be ing co-pr ime in tegers , and r->l, \fu)\ t ends to inf ini ty
like an exponent ia l

( *> )
e X p i (>qHl - r ) I '

while , if x = re2$ni,

where 6 is irrational, \f(x) | can become infinite at most like an exponential
of the type

The function required is

(1.51)

where
A f cosh CX,,-1 I

(1 .53) G = 2TT/V6 = 7rV(§), XH = Vin-J?).

This function may be transformed into an integral by means of a general
formula given by Lindeloff ; and it is then easy to prove that the
" principal branch " of F(x) is regular all over the plane except at x = 1+;

* The statements concerning the " rational " points are corollaries of the formulae of the
transformation theory, and proofs of them are contained in the body of the paper. The pro-
position concerning "irrational" points may be proved by arguments similar to those used
by Hardy and Littlewood in their memoir already quoted. It is not needed for our present
purpose. As a matter of fact it is generally true that f(x)—> 0 when 8 is irrational, and very
nearly as rapidly as y( l —r). Ic is in reality owing to this that our final method is so
successful.

t E. Lindelof, Lc calcul des residus el ses applications a la thiorie des fonctions
(Grauthier-Villars, Collection Borel, 1905), p. 111.

I We speak, of course, of the principal branch of the function, viz. that represented by
the series (1.51) when x is small. The other branches are singular at the origin.

SER. 2. VOL. 17. NO. 1307. G
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and that
F(x)-X(x),

•where

is regular for x = 1. If we compare (1. 42) and (1 . 54), and observe that
fix') tends to unity with extreme rapidity when x tends to 1 along any
regular path which does not touch the circle of convergence, we can see
at once the very close similarity between the behaviour of / and F inside
the unit circle and in the neighbourhood of x = 1.

It should be observed that the term —1 in (1. 52) and (1. 54) is—so
far as our present assertions are concerned—otiose: all that we have said
remains true if it is omitted; the resemblance between the singularities
of / and F becomes indeed even closer. The term is inserted merely in
order to facilitate some of our preliminary analysis, and will prove to be
without influence on the final result.

Applying Cauchy's theorem to/— F, we obtain

where D is any number greater than

IC = W(f).

1. 6. The formula (1.55) is an asymptotic formula of a type far
more precise than that of (1. 41). The error term is, however, of an ex-
ponential type, and may be expected ultimately to increase with very great
rapidity. It was therefore with considerable surprise that we found what
exceedingly good results the formula gives for fairly large values of n.
For n = 61, 62, 63 it gives*

1121538-972, 1300121*359, 1505535*606,

while the correct values are

1121505, 1300156, 1505499.

The errors 33*972, —34641, 36*606

are relatively very small, and alternate in sign.
The next step is naturally to direct our attention to the singular

* In the Comptes rendus we misstated the second number as 1300111.
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point of fix) next in importance after that at x = 1, viz., that at
x = — 1 ;,and to subtract from fix) a second auxiliary function, related
to this point as F(x) is to x = 1. No new difficulty of principle is in-
volved, and we find that

1 (1 /pCK*\ ( IV1 fl

a. 81) pM JL * ( « ) + L I > IpM = ( ) + I
where D is now any number greater than jjC. It now becomes obvious
why our earlier approximation gave errors alternately of excess and of
defect.

It is obvious that this process may be repeated indefinitely. The
singularities next in importance are those at x = e*ni and i = &"''; the
next those at x = I and x = — I; and so on. The next two terms in
the approximate formula are found to be

v .„ cos (4;i7r—T
Jy IT) -=- (-r—

and -^—cos (i«7r—|7r) ^ -
7T dn n

As we proceed further, the complexity of the calculations increases. The
auxiliary function associated with the point x = ,?2}"n/'' involves a certain
24fjr-th root of unity, connected with the linear transformation which must
be used in order to elucidate the behaviour of f(x) near the point; and
the explicit expression of this root in terms of p and </, though known, is
somewhat complex. But it is plain that, by taking a sufficient number of
terms, we can find a formula in which the error is

0(eCA>),

where v is a fixed but arbitrarily large integer.

1.7. A final question remains. We have still the recourse of making
v a function of it, that is to say of making the number of terms in our
approximate formula itself a function of n. In this way we may reason-
ably hope, at any rate, to find a formula in which the error is of order
less than that of any exponential of the type eatl; of the order of a
power of n, for example, or even bounded.

When, however, we proceeded to test this hypothesis by means of the
numerical data most kindly provided for us by Major MacMahon, we found
a correspondence between the' real and the approximate values of such
astonishing accuracy as to lead us to hope for even more. Taking

G 2
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n = 100, we found that the first six terms of our formula gave

190568944783
+ 348-872

-2-598
+ •685
+ •318
— •064

190569291-996 ,

while i>(100) = 190569292;

so that the error after six terms is only "004. We then proceeded to
calculate p (200), and found

3, 972, 998, 993, 185-896
+ 36, 282-978

-87*555
+ 5-147
+ 1-424
+ 0-071
+ 0-000*
+ 0-043

8, 972, 999, 029, 388004 ,

and Major MacMahon's subsequent calculations showed that p (200) is, in
f a c t ' 3, 972, 999, 029, 388.

These results suggest very forcibly that it is possible to obtain a formula
for p(n), which not only exhibits its order of magnitude and structure, but
may be used to calculate its exact value for any value of ??. That this is
in fact so is shown by the following theorem.

Statement of the main theorem.

THEOREM.—Suppose that

* This term vanishes identically.«



1917.] ASYMPTOTIC FORMULA IN COMBINATORY ANALYSIS. 85

where 0 and \n are defined by the equations (1 . 53), for all positive
integral values of q ; that p is a positive integer less than and prime to q ;
that coPi,, 'is a ZAq-th root of unity, defined when p is odd by the formula

( 1 . 721)

and when q is odd by the formula

/—r)\ r I / 1 \
( 1 . 722) w.,,. = (—£-\ exp — • t(<? — 1 ) + T ^ 1(Z ) (2p— p

\ q I L t " \ q I
where (a/b) is the symbol of Legend-re and Jacobi*, and p' is any positive
integer such that l-\-pp' is divisible by q ; that

(1.73) A,,{n)= S^c-2"'"' '/";

and that a is any positive constant, and, v the integral part oj a^/n.
Then

(1.74) jp(w) = 2 ^ 0
• i

so that p(n) is, for all sufficiently large values of n, the integer nearest to

( 1 . 75) 2 Aq<f>q.i

Tt should be observed that all the numbers A,, are real. A table of
A,, from q — 1 to </ = 18 is given at the end of the paper (Table II).

The proof of this theorem is given in section 5 : section 4 being de-
voted to a number of preliminary lemmas. The proof is naturally some-
what intricate ; and we trust that we have arranged it in such a form as
to he readily intelligible. In section 6 we draw attention to one or two
questions which our theorem, in spite of its apparent completeness, still
leaves open. In section 7 we indicate some other problems in combina-
tory analysis and the analytic theory of numbers to which our method
may be applied ; and we conclude by giving some functional and numerical
tables : for the latter we are indebted to Major MacMahon and Mr. H. B. C.
Darling. To Major MacMahon in particular we owe many thanks for the

* See Tannery and Molk, I.e., pp. 104-106, for a complete set of rules for the calculation
of the value of (alb), which is, of course, always 1 or —1. When both p and q are odd it is
indifferent which formula is adopted.
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amount of trouble he has taken over very tedious calculations. It is cer-
tain that, without the encouragement given by the results of these calcu-
lations, we should never have attempted to prove theoretical results
at all comparable in precision with those which we have enunciated.

2.

ELEMENTARY PROOF THAT eAVn<p(v)< eB'n FOR SUFFICIENTLY LARGE

VALUES OF 71.

2 . 1 . In this section we give the elementary proof of the inequalities
(1.32). We prove, in fact, rather more, viz., that positive constants H
and K exist such that

(2.11) — e"ll<p (•»)< — «8**">
n n

for n ^ 1.* We shall use in our proof only Euler's formula (1 . 81) and
a debased form of Stirling's theorem, easily demonstrable by quite ele-
mentary methods : the proposition that

lies between two positive constnnts for all positive integral values of n.

2 .2 . The proof of the first of the two inequalities is slightly the
simpler. It is obvious that if

x'1 = (1— x)(l — x2) ...(I — xr)

so that^,(?z) is the number of partitions of n into parts not exceeding r,
then

(2 . 21) pr(ii) = pr-M+Pr-i(n-r)+pr-i{n-2r)+... .

* Somewhat inferior inequalities, of the type

2^K»] <p(n) <n]: '"'-,

may be proved by entirely elementary reasoning ; by reasoning, that is to say, which depends
only on the arithmetical definition of p (n) and on elementary finite algebra, and does not pre-
suppose the notion of a limit or the definitions of the logarithmic or exponential functions.
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We shall use this equation to prove, by induction, that

•r-nr~l

(2.22) p M >

It is obvious that (2.22) is true for r = 1. Assuming it to be true
for r = s, and using (2 .21), we obtain

2>H-I(W)> —r, {n-1 + ( « - s - ] r 1 + (« -2«~2r 1 + ...;-

_ s _ (n*—(n—s—iy , (n—s — lY—(v — 2s — 2Y , |
^ (s!.)a \ s (s + 1) + * (s + 1) + •' • )'

This proves (2.22). Now p(n) is obviously not less than ^r(n), whatever
the value of r. Take r = [V'1] : then

by a simple application of the degenerate form of Stirling's theorem men-
tioned above.

2 . 3. The proof of the second inequality depends upon Euler's
identity. If we write

we have

(2 . 31) qr(n) = gr_

and

(2 .32) p{n) = fy1(n-

WTe shall first prove by induction that

(2.33) 9 r ( H ) < J - ± _ L _ .

This is obviously true for r — 1. Assuming it to be true for r = s, and
using (2 . 31), we obtain

«'+ l ( w )
(2,-1)! wf
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m{m—1) am~- b2

if m is a positive integer, and a, b, and a—6 are positive, while if
a—&<0, and w is odd, the term {a—b)m may be omitted. In this
inequality write

a = ;i+sa—&s — fc {k = 0, 1, 2, ...), 6 =

and sum with respect to k. We find that

(2.9+1) 2 . 2 | 2

and so

2 (2 l s - l ) ! ( s ! ) 2 ^ (2.9+1)!

Hence (2 . 33) is true generally.
It follows from (2 . 32) that

But, using the degenerate form of Stirling's theorem once more, we find
without difficulty that - ^r~,

<

where K is a constant. Hence

p w < 8A-

This is the second of the inequalities (2 . 11).

3.

APPLICATION OF A TAUBERIAN THEOREM TO THE DETERMINATION OF THE

CONSTANT C.

3 . 1 . The value of the constant

is most naturally determined by the use of the following theorem.

If g(x) = Sanxw is a power-series with positive coefficients, and

log g (x) — ^ 3 ^
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when x-> 1, then

logsn = log (aQ+al+...-\-an) ~ 2^/{An)

when n-> <x>.

This theorem is a special case* of Theorem C in our paper already re-
ferred to.

Now suppose that

g (x) = {l-x)f{x) = 2\p{n)-p{n-l)} x11 - (1_a;2)(1_a.3)(1_a,4) •

Then au = p {n)—p (n— 1)

is plainly positive. And

(3 . 11) \ogg(x) = 2 log ̂  = 2 ~ ^ ~ — 2 -pr = ^ Z ^ ,

when a; -> 1.1 Hence

(3. 12) log^(n) = a0+Oi +•••+«•«

where C = f27r/V6 = TT ^{%), as in (1 . 53).

3 . 2. There is no doubt that it is possible, by " Tauberian " argu-
ments, to prove a good deal more about p (u) than is asserted by (3.12).

* L.c. p. J29 (with a = 1).
i This is a special case of much more general theorems : see

K. Knopp, " Grenzwerte von Reihen bei der Anniiherung an die Konvergenzgrenze",
Inaugural-Dissertation, Berlin, 1907, pp. 25 et seq. ;

K. Kriopp, " Uber Lambertsche Reihen", Journal ftir Math., Vol. 142, 1913,
pp. 283-315;

G. H. Hardy, "Theorems connected with Abel's Theorem on the continuity of
power series", Proc. London Math. Soc, Ser. 2, Vol. 4, 190G, pp. 247-2G5
(pp. 252, 253);

G. H. Hardy, "Some theorems concerning infinite series ", Math. Ann., Vol.64,
1907, pp. 77-94 ;

G. H. Hardy, "Note on Lambert's series". Proc. London Math. Soc, Ser. 2, Vol. 13,
1913, pp. 192-198.

A direct proof is very easy : for

vx"-1 (1 — x) < 1-s" < v(l — x),

. ,—-*-.•< log 0(3!) < / 2X-.--
1—xv 1—xw
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The functional equation satisfied by f(x) shows, for example, that

a relation far more precise than (3 .11). From this relation, and the fact
that the coefficients in g(x) are positive, it is certainly possible to deduce
more than (3.12). But it hardly seems likely that arguments of this
character will lead us to a proof of (1.41). It would be exceedingly in-
teresting to know exactly how far they will carry us, since the method is
comparatively elementary, and has a much wider range of application
than the more powerful methods employed later in this paper. We must,
however, reserve the discussion of this question for some future occasion.

4.

LEMMAS PRELIMINARY TO THE PROOF OF THE MAIN THEOREM.

4 . 1 . We proceed now to the proof of our main theorem. The proof
is somewhat intricate, and depends on a number of subsidiary theorems
which we shall state as lemmas.

Lemmas concerning Farey's series.

4 .21 . The Farey's series of order m is the aggregate of irreducible
rational fractions , /r. . . ^ ,

PIQ (0 < P < <Z ^ "0,

arranged in ascending order of magnitude. Thus

it 1 1 1 1 "2 I 2 X 1 ± X 2 H '•* ± r> £ I.
T» T» T>' 7>> 5 ' T> S> 7T> 7> 2> 7» 5> 3 ' 7» ? ' f>> (?' 7> T

is the Farey's series of order 7.

LEMMA 4 .21.—If plq, p'/q' are tivo successive terms of a Farey's
series, then

(4.211) p'q-pq—l.

This is, of course, a well known theorem, first observed by Farey and
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first proved by Cauchy.* The following exceedingly simple proof is due
to Hurwitz.t

The result is plainly true when m = 1. Let us suppose it true for
m = k; and let p/q, p'/q' be two consecutive terms in the series of
order k.

Suppose now thaty/<?" is a term of the series of order A;+l which
falls between plq and p'\q'. Let

p"q—pq" = X > 0, p'q"—p"q' = fx>0.

Solving these equations for p", q", and observing that p'q—pq' = 1, we
obtain „

p" = /up + \p', q" =

Consider now the aggregate of fractions

where A and n are positive integers without common factor. All of these
tractions lie between plq and p'\q ; and all are in their lowest terms,
since a factor common to numerator and denominator would divide

X =

and fi =

Each of them first makes its appearance in the Farey's series of order
/mq-\-\q', and the first of them to make its appearance must be that for
which X = 1, fx = 1. Hence

p" = p+p', q" = q + q',

p"q—pq" =p'q"-p"q' = 1.

The lemma is consequently proved by induction.

LEMMA 4 . 22.—Suppose that plq is a term of the Farey's series of
order m, and p"jq", p'/q' the adjacent terms on the left and the right:

* J. Farey, " On a curious property of vulgar fractions", Phil. Mag., Ser. 1, Vol. 47,
1816, pp, 385-386; A. L. Cauchy, "Demonstration d'un theoreme curieux sur les nom-
bres ", Exercises demathtmatiques, Vol. 1, 1826, pp. 114-116. Cauchy's proof was first pub-
lished in the Bulletin de la SocUU PMloviatique in 1816.

t A. Hurwitz, "Ueber die angeniiherte Darstellung der Zahlen durch rationale Briiche ",
Math. Ann., Vol. 44, 1894, pp. 417-436.
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and let jPttj denote the interval

V 1 P | 1

(i) the intervals jp>q exactly Jill up the continuum (0, 1), and (ii) the
length of each of the parts into which jp>l, is divided by plq\- is greater
than l/2mq and less than 1/mq.

(i) Since

1 . 1 _ J^ _ p'q—pq' _ j / p_

the intervals just fill up the continuum.

(ii) Since neither q nor q' exceeds m, and one at least must be less
than m, we have

')

Also q-\-q' > m, since otherwise (p-\-p')l(q-\-q') would be a term in the
series between pjq and p'/q'. Hence

qiq+q') mq

Standard dissection of a circle.

4 . 23. The following mode of dissection of a circle, based upon Lemma
4 . 22, is of fundamental importance for our analysis.

Suppose that the circle its denned b\

Construct the Farey's series of order m, and the corresponding intervals
jPt,,. "When these intervals are considered as intervals of variation of 6,
and the two extreme intervals, which correspond to abutting arcs on the
circle, are regarded as constituting a single interval £\, i, the circle is divided
into a number of arcs d

* When p/q is 0/1 or 1/1, only the part of this interval inside (0, 1) is to he taken ; thus
jo, I is 0t l/(w + l) and ji, i is 1 —l/(m + l), 1.

t See the preceding footnote.
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where q ranges from 1 to m and p through the numbers not exceeding
and prime to q.* We call this dissection of the circle the dissection Sm.

Lemmas from the tlieory of the linear transformation of the elliptic
modular functions.

4 . 3. LKMMA 4 . 31.—Suppose that q is a positive, integer ; that ]) is a
positive integer not exceeding and prime to q ; that p' is a positive, integer
such that l-\-pp' is divisible by q ; that w>v<q is defined by the formula
(1.721) or (1.722); that

x = exp \- —— , x' = exp I \- -± ,
l \ q q ' V qz q '

where the real jiart of z is positive ; and that

Then fix) = W|1, (/̂ exp ( ^ - ^ ) fix').

This lemma is merely a restatement in a different notation of well
known formulae in the transformation theory.

Suppose, for example, that j> is odd. If we take

a=p, b = —q, c = —-££. t d — _p>^

so that ad—be = 1 ; and write

x = q* = e2niT, x' = Q* = e2ir iT,

8 0 t b f t t r = ^ + ^, T = ^ - + - i ;
q q q qz

then we can easily verify that

T =
a-\-br'

Also, in the notation of Tannery and Molk, we have

* p = 0 occurring with q = 1 only.
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and the formula for the linear transformation of h(r) is

h(T) =

where \/(a-\-br) has its real part positive.* A little elementary algebra
will show the equivalence of this result and ours.

The other formula for cop>q may be verified similarly, but in this case
we must take

a = —p, b = q, c = -££-, d = p.

We have included in the Appendix (Table I) a short table of some
values of iap,q, or rather of (logwP(g)/7ri.

LEMMA 4.32.—The function f (x) satisfies the equation

(4.821) /(*) = »Msj {£ log (£)} **, exp [ g j q j ^ j ) M,,».

where

<4.dZ4) xPiq-xe , i P t , - e x p | gaiogd/Xft,)^ q

This is an immediate corollary from Lemma 4 . 31, since

z =

, _ 27T

' x ~GXP V ^

If we observe that

we see that, if x tends to e2iMri/7 along a radius vector, or indeed any regular
path which does not touch the circle of convergence, the difference

tends to zero with great rapidity. It is on this fact that our analysis is
based.

* Tannery and Molk, I.e., pp. 113, 267.
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Lemmas concerning the auxiliary function F(((x).

4.41. The auxiliary function Fa(x) is defined by the equation

•j.

Ftt(x) = Z\f,n(n)xn.
i

, . . . d coshaX,t—1where \un (n) = j - ,
(in \ n

A(l = V(w—jfV. a>0.

LEMMA 4.41.—Suppose that a cut is made along the segment (1, x )
in the plane of x. Then Fa{x) is regular at all points inside the region
thus defined.

This lemma is an immediate corollary of a general theorem proved by
Lindelbf on pp. 109 et seq. of his Galcul des rvsidus.*

The function *. U) = £ j(z£?

satisfies the conditions imposed upon it by Lindelof, if the number which
he calls a is greater than ^ ; and

(4 . 411) Fa(x) =

if x — reie, 0 < 0 < 2TT, ,r = exp • ^(log r+i6)}.

4 . 42. LEMMA 4 . 42.—Suppose that D is the region defined by the
inequalities

-Tr<-60<0<60<Tr, ro<r, 0<r0<l,

and that log(l/#) has its principal value, so that log(l/x) is one-valued,
and its square root two-valued, in D. Further, let

g(1/x)} - 1 ] 'X«(s> = V M T log ft/a;)} a?"1- [exp j 4 l o g ( 1 / x ) }

value of the square root being chosen which is positive when

* LindeliJf gives references to Mellin and Le Roy, who had previously established the
theorem in less general forms.
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0 < x < 1. Then - , . . .

is regular inside D.*

We observe first that, when 6 has a fixed value between 0 and 'LIT, the
integral on the right-hand side of (4.411) is uniformly convergent for
TJ? <J a <; a0. Hence we may take a = ^ in (4 . 411;. We thus obtain

1
X il f

1—7fiz=*;ti'a(-ii+it)dt+ixi!>
o i- e j

i e

where the \/{it) and ^(—it) which occur in ^ ( ^ 5 + ^ ) and ^a{^—it)
are to be interpreted as e^^Jt and e~ini^t respectively. We write this
in the form

(4 .421) Fa{x) = XaW+ix* \ _ ^ i t . i,a(?
Jo e — i .

r
saj', where X«(a:) = ixjt \ xuyjsa(^j;4-if)di.

Jo

Now, since \xil\ = e~et, j a r * | = e9',

the functions 0 are regular throughout the angle of Lemma 4 . 42. And
V* Jo dt \ «Jt

where X = i jog —, /* = «v
/ l-

The form of this integral may be calculated by supposing X and ,u pOSltlVS,
when we obtain

e xt«» Â  ^ _ 2 ^
0 dw \ w I JJc

Hence

(4 . 422) Xn(x) = VI TT log (1/*)I ** [exp { 4 ] ^ ^ } ~ l ] = X^l

and the proof of the lemma is completed.

* Both Fa (z) and x« (*) are two-valued in D. The value of F,, (x) contemplated is
naturally that represented by the power series.
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Lemmas 4. 41 and 4.42 show that x = 1 is the sole finite singularity
of the principal branch of Fa(x).

4 . 43. LEMMA 4 . 43.—Suppose that P, 6V and A are positive con-
stants, Qx being less than x. Then

for 0 < ? < P , e i < d < 2 x - 0 1 > 0 < a < A

We use K generally to denote a positive number independent of x and
of a. We may employ the formula (4 .411). It is plain that

1—e-™
< Ke

d^ ( cosh ay 7 (i—•£•%) — 1 )

dz} Jiz—Th-) j

where rj is the imaginary part of z. Hence

\Fa(x)\<,

4 .44. LEMMA 4 . 44.—Let c be a circle whose centre is x = 1, and
whose radius S is less than unity. Then

\Fa(x)-Xa(x)\<Ka*,

if x lies in c and 0 < a ̂  A, K = K(S, A) being as before independent
of x and of a.

If we refer back to (4 .421) and (4 . 422), we see that it is sufficient to
prove that

< <Ka*.
and we may plainly confine ourselves to the first of these inequalities.
We have

xu d ( cosh a</(it) —
\ V

Rejecting the extraneous factor, which is plainly without importance, and
integrating by parts, we obtain

cosh a*/(it)—1 7 ,dt,

SEB. 2 . VOL. 17 . NO. 1308.
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u Am ixu\0SX , 27rA-'l4ir i+2ir{

where $(*) = - e_T^i+2rt_1 + ( 6 - . l W ^ _ 1 ) g •

Now | B | < £x and | xu I < tf eH It follows that

and | O(a0 | < K \ e--.[ | sinh'2

Jo v C

—77 {cosh a-s/(^^) —cos a.\/(^^\
Joy*

K e nw ( cosh— —cos-^:
Jo V y A y iil

^ dw

o.

PROOF OF THE .MAIN THEOREM.

5 . 1 . We write

(5 .11) FVt q(x) = a,, q - ^ Fch(xP, 1),
try A

where G = TJVI> «A« = xe~2pnilq; and

(5.12) * ( » ) = / ( * ) - 2 2 2fftl/(x),

where the summation applies to all values of p not exceeding g and prime
to q, and to all values of q such that

(5.13) l < g < i ' = [oV»]»

a being positive and independent of n. If then

(5.14) FP,q(x) = XcPi)Jtnx
n,

we have

(5.15) p ( n )

where F is a circle whose centre is the origin and whose radius B is less



1917.] ASYMPTOTIC FORMULA IN COMBINATORY ANALYSIS. 99

than unity. We take

where ft also is positive and independent of n.
Our object is to show that the integral on the right band side of

(5 .15) is of the form O(«~*) ; the constant implied in the 0 will of course
be a function of a and ft. It is to be understood throughout that O's are
used in this sense ; 0(1), for instance, stands for a function of x, n, p, q,
a, and ft (or of some only of these variables) which is less in absolute
value than a number K = K(a, ft) independent of x, n, p, and q.

We divide up the circle T, by means of the dissection 3V of 4 .23, into
arcs gPi (, each associated with a point Be2rnil''; and we denote by tjPt q the
arc of F complementary to £,,, q. This being so, we have

say. We shall prove that each of these sums is of the form 0(>i~}); and
we shall begin with the second sum, which only involves the auxiliary
functions F.

Proof that 2/,,i(; =

5 . 21. We have, by Cauchy's theorem,

(5-211) »•„ =

where £,,,,, consists of the contour LMNM'L' shown in the figure. Here
L and L' are the ends of £,,,,„ LM and M'L' are radii vectores, and MNM'
is part of a circle I \ whose radius j ^ is greater than 1. P is the point
e~'mllq; and we suppose that Bl is small enough to ensure that all points
of LM and M'L' are at a distance from P less than £. The other circle c
shown in the figure has P as its centre and radius \. We denote LM by
% „ ilf'I/ by CT^ 7, and MNM' by yP), : and we write

(5.212) jP,q = \ = f + f + ( = ;•;,„+./;,9+i;;y.
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The contribution of 'ZjPt ,t.

5 . 22. Suppose first that x lies on yVt ,t and outside c. Then, in virtue
of (5 .11) and Lemma 4 . 43, we have

(5. 221) Fp>IJ(x) =

If on the other hand x lies on yP,q, but inside c, we have, by (5 . 11) and
Lemma 4 . 44,

(5-222) F,,,,, (x) — x,:, u (x) = O(q~::),

where

(5 . 2221) x?>, q&) = "V,'/ ~^> Xch (*P,.,) •

But, if we recur to the definition of x*^) m Lemma 4 . 42, and observe
that

~2

if x = reie and r > 1, we see that

(5.223) Xr.<,(x)
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on the part of yv<(, in question. Hence (5.221) holds for all yp>n. It
follows that

(5 . 224) 2/ft „ = 0 (R;n 2 r) = Oirv R~n).*

This sum tends to zero more rapidly than any power of nf and is there-
fore completely trivial.

The contributions of ^jl>q and S/,3,,.

5 . 281. We must now consider the sums which arise from the integrals
along CTPJ q and zjPt q; and it is evident that we need consider in detail only
the first of these two lines. We write

(5.231D , ; „

In the first place we have, from (5 .222),

since

(5 . 2312) R~n = ( l - &) >l = 0(1).

Thus

(5 . 2313) 2/ ; , , = 0 ; n~l S q~s-\ = O(«~5).
0 ( )

5 . 232. In the second place we have

It is plain that, if we substitute y for xe~'ipiHltl, then write x again for y,
and finally substitute for xc/</ its explicit expression as an elementary

* Here, and in many passages in our subsequent argument, it is to be remembered that
the number of values of p, corresponding to a given q, is less than q, and that the number of
values of q is of order Sn. Thus we have generally
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function, given in Lemma 4 . 42, we obtain

(5 . 2321) j"hq = OWq) \E(x) — 1 [ \ l (log —) x~n~*:; dx = 0{\/q) J,

say, where

(5.23211) S(x) = ex p • ' r - ^

and the path of integration is now a line related to x = 1 as TO-,,,,, IS to
x = <?2>)ir;/y: the line defined by a; = reiB, where R < •/• < Elt and 6> is
fixed and (by Lemma 4 . 22) lies between 1/2^ and l/(p.

Integrating J by parts, we find

- ^ ) J = -[\E(x)-l] yj(logy) x^*'1*]"'"(5 . 2322)

+ ^ 2 \E(x) (log - j ) " x~*-v dx = J

say.

5 . 233. In estimating Jv J2, and J3, we must bear the following tacts
in mind.

(1) Since x\^R, it follows from (5.2312) that | j i | " ' l = 0 ( l )
throughout the range of integration.

(2) Since l—R = Pjn and 1/Zqi> < 6 < 1/qv, where »» = [u*/n], we
have

when r = R, and ,— , . = 0{q«/n),

throughout the range of integration.

(3) Since | J fa) | = exp

E{x) is less than 1 in absolute value when r > 1. And, on the part of
the path for which r < 1, it is of the form

exp 0 (-s^a = exP 0(1) = 0(1).\q nu J

It is accordingly of the form 0(1) throughout the range of integration.
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5 . 234. Thus we have, first

(5 . 2341) J, = 0(1) 0(1) O(Rin)+O(l) Oiq-hr1') 0(1) = O(g-»n-*)t

secondly

(5 . 2342) J2 = 0(1) 0(qW) T' - ^ = O(q*n~\

J l : '}' •'

and thivdly

(5 . 2343) .78 = 0(q-2) 0(1) 0(V/V) [ " - ^ = 0 ($-!»-*).

From (5 . 2841), (5 . 2342), (5 . 2343), and (5 . 2322), we obtain

and, from (5 . 2321), //,, 7 = O(n-;)

Summing, we obtain

(5.2344) 2yZ.7=0(w-' - q)+0(n-'> Z q2)

5 . 235. From (5 . 2311), (5 . 2313), and (5 . 2344) we obtain

(5.2351) 2/J,v= O(M-I);

and in exactly the same way we can prove

(5 . 2352) - lj;t., = 0(n-1).

And from (5 . 212/, (5 . 224), (5 . 2351), and (h . 2352) we obtain, finally,

(5.2353) 2/V,,, = 0(/r*).

Proof that I-/,,.,, = 0(n";').

5 . 31. We turn now to the discussion of

U')-^,.(/(u-)^__r
xH+l JiP
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say, where pPt q(x) = wPi,, y ' {J^ log — J xp\ q,

Xp>q(x) = xP,,,(x)+pPtl,(x) — pp>q{x) E(xPtJ,

E(.r) being defined as in (5 . 23211).

Discussion of S./p fy and 2J;
3

)( / .

5 . 32. The discussion of these two sums is, after the analysis which
precedes, a simple matter. The arc £Pt q is less than a constant multiple
of 1/q^n; and x~n = 0(1) on £,>r Also

by

(5.

(5 . 222); and

321)

since 1 xPi q \

He

(5.

nee

322) 2 ,

and

(5. 323) 2 ,

V
= R:

Tl, '1 =

(log - i - ) = 0

= l-C8/n),

K,= O(q-U

Oln-i Z 1

| aw jjilf 71 < 1/qv.

"*) = O(n-i);

Discussion of SJ^,,.

5 . 33. From (4 . 321) and (5 . 2221), we have

(5 . 331) f(x)-Xp>u(x) = coPt ,t y •[ ^ log ( ^ - ) • x*';,E(xp, q) il(x'Pt,),

where Q(^) = / ( ^ ) - 1 = H q—̂— — 1 = 2 p(v) *",
i \ 1—^ '

if | ^ | < 1, and
I 47T2

- f 47r2l0g(l/E)
- exp L g

^) "I
2+02}Jf
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where 6 is the amplitude of xp>,,. Also

i = o ;,/(j,+£)j- = o(-L),
while log(l/.#) is greater than a constant multiple of 1/w. There is
therefore a positive number o, less than unity and independent of n
and of q, such that

K../l< o;

and we may write Q{x'fit»,) = O ( \ x P t u \ ) .

We have therefore

E(xPi „) Q(x'll<tl) = O(| x'n, (/1 -'•) 0( | < , |) = 0 ( | x',,.,\«) = 0 (1 ) ;

and so, by (5 . 321),

log-i

And hence, as the length of £/)iV is of the form 0(1/q^n), we obtain

(5 . 832) 2 j ; f/ = 0 f /t"3 2

5 . 34. From (5 . 311), (5 .322), (5 . 328), and (5 . 882), we obtain

(5.341) 2JP,H= O0i-}).

Completion of the proof.

5 . 4. From (5 . 15), (5 .17), (5 . 2353), and (5 . 341), we obtain

(5.41) p (n ) -S2c / ) i ( / , , = 0(;i~J).

d cosh(C\n/q) — l
t r'"'" " T V 2 A<I dn

where Aq = 2<oPt.,e-*njmil''.

All that remains, in order to complete the proof of the theorem, is to show
that i .,.,,. , . ,

coBh(C\Jq) — l

may be replaced by le^-1'1;
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and in order to prove this it is only necessary to show that

v , d J>eCK»<"-cosh(C\M + l _
</<o<v'«) dn A,,

On diiferentiating we find that the sum is of the form

Thus the theorem is proved.

6.

ADDITIONAL REMARKS ON THE THEOREM.

6 . 1 . The theorem which we have proved gives information about p(n)
which is in some ways extraordinarily exact. We are for this reason the
more anxious to point out explicitly two respects in which the results of
our analysis are incomplete.

6 . 21. We have proved that

where the summation extends over the values of q specified in the theorem,
for every fixed value of a ; that is to say that, when a is given, a number
A" = K(a) can be found such that

for every value of n. It follows that

(6.211) p(n)= \lAq(f>ri},

where \x\ denotes the integer nearest to x, for n ^ ii0, where n0 = no(a)
is a certain function of a.

The question remains whether we can, by an appropriate choice of a,
secure the truth of (6 . 211) for all values of n, and not merely for all
sufficiently large values. Our opinion is that this is possible, and that it
could be proved to be possible without any fundamental change in our
analysis. Such a proof would however involve a very careful revision of
our argument. It would be necessary to replace all formulae involving O's
by inequalities, containing only numbers expressed explicitly as functions
of the various parameters employed. This process would certainly add
very considerably to the length and the complexity of our argument. It
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is, as it stands, sufficient to prove what is, from our point of view, of the
greatest interest; and we have not thought it worth while to elaborate it
further.

6 . 22. The second point of incompleteness of our results is of much
greater interest and importance. We have not proved either that the series

2 A ,,</>„

is convergent, or that, if it is convergent, it represents })(n). Nor does it
seem likely that our method is one intrinsically capable of proving these,
results, if they are true—a point on which we are not prepared to express
any definite opinion.

It should be observed in this connection that we have not even dis-
covered anything definite concerning the order of magnitude of Aq for large
values of q. We can prove nothing better than the absolutely trivial
equation A,, = O(q). On the other hand we cannot assert that An is, for
an infinity of values of q, effectively of an order as great as q, or indeed
even that it does not tend to zero (though of course this is most unlikely).

6 . 3. Our formula directs us, if we wish to obtain the exact value of
2)(n) for a large value of n, to take a number of terms of order </n. The
numerical data suggest that a considerably smaller number of terms will
be equally effective; and it is easy to see that this conjecture is correct.

Let us write

and let us suppose that a. < 2. Then

l .*,#, = £. O(r> o (ij) o.«*""> = o

since \Jq e^"1'1 decreases steadily throughout the range of summation.*
Writing \Jn\y for x, we obtain

0 (VP
Jl /a

* The minimum occurs when q is about equal to 2C^n.
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It follows that it is enough, when n is sufficiently large, to take

Llog n

terms of the series. It is probably also necessary to take a number of
terms of order yW(log n) ; but it is not possible to prove this rigorously
without a more exact knowledge of the properties of Aq than we possess.

6 .4. We add a word on certain simple approximate formulae for
\og p(n) found empirically by Major MacMahon and by ourselves. Major
MacMahon found that if

(6.41) \og1Qp{)i)=^/(n+4)-an,

then a», is approximately equal to 2 within the limits of his table of values
of p(n) (Table IY). This suggested to us that we should endeavour to
find more accurate formulae of the same type. The most striking that
we have found is

(6 . 42) Iog10p(") = -V- M

the mode of variation of an is shown in Table III.
In this connection it is interesting to observe that the functiou

(which ultimately tends to infinity with exponential rapidity) is equal to
•973 for n = 80000000000.

FURTHER APPLICATIONS OF THE METHOD.

7 . 1 . We shall conclude with a few remarks concerning actual or
possible applications of our method to other problems in Combinatory
Analysis or the Analytic Theory of Numbers.

The class of problems in which the method gives the most striking
results may be denned as follows. Suppose that q(n) is the coefficient
of xn in the expansion of F(x), where F(x) is a function of the form

( 7 1 1 )

•Since / < - . , .

the arguments with a negative sign may be eliminated if this is desired.
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f(x) l)eing the function considered in this paper, the a's, 6's, a's, and
ft's being, positive integers, and the number of factors in numerator and
denominator being finite; and suppose that j 2̂  (re) | tends exponentially
to infinity when x tends in an appropriate manner to some or all of the
points e2'mil''. Then our method may be applied in its full power to the
asymptotic study of q (n), and yields results very similar to those which
we have found concerning p(v).

Thus, if

so that q{n) is the number of partitions of n into odd parts, or into unequal
parts*, we find that

Mr-frr) ^ Jo [&TrV (4 (« + A H ] + • • • •

The error after [a\/«] terms is of the form 0(1). We are not in a posi-
tion to assert that the exact value of q(n) can always be obtained from
the formula (though this is probable) ; but the error is certainly bounded.

If *"(*) = 0^) = 7 / ^
so that q {») is the number of partitions of n into parts which are both
odd and unequal, then

q («) = ^ Jo [i-fV U (}l - id !• J

The error is again bounded (and probably tends to zero).

~ f{x2) - l 4 9

q(u) has no very simple arithmetical interpretation; but the series is
none the less, as the direct reciprocal of a simple 3-function, of particular

* Cf. MucMahon, loc. cit., p. 11. We give at the end of the paper a table (Table V) of
the values of q (n) up to n = 100. This table was calculated by Mr. Lading.
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interest. In this case we find

4-7T dto V^ 2 - * () dn ^n

The error here is (as in the partition problem) of order 0{n~^, and the
exact value can always be found from the formula.

7 . 2. The method may also be applied to products of the form (7.11)
which have (to put the matter roughly) no exponential infinities. In such
cases the approximation is of a much less exact character. On the other
hand the problems of this character are of even greater arithmetical
interest.

The standard problem of this category is that of the representation of
a number as the sum of s squares, s being any positive integer odd or
even.* We must reserve the application of our method to this problem
for another occasion ; but we can indicate the character of our main result
as follows.

If >•.,(//) is the number of representations of n as the sum of .s squares,
we have

1 f(r*)\* i f(r)]%-' \ fir^l2*

F(x) = 2rM)x* = (l + 2* + 2*'+...)' - , •; ( ^ = '/^» Jff i iL _
We find that

(7-21) ,.,(„) = _ z t . M i . - i v £ j L + 0 ( n J O |

where cq is a function of q and of n of the same general type as the
function Aq of this paper. The series

(7.22) 2 ^

is absolutely convergent for sufficiently large values of s, and the summa-
tion in (7 .21) may be regarded indifferently as extended over all values of
q or only over a range 1 ^ q ^ a^/n. It should be observed that the
series (7 .22) is quite different in form from any of the infinite series
which are already known to occur in connection with this problem.

7 .3 . There is also a wide range of problems to which our methods

* As s well known, the arithmetical difficulties of the problem are much greater when s
is odd.
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are partly applicable. Suppose, for example, that

so that p2(n) is the number of partitions of n into squares. Then F(x) is
not an elliptic modular function ; it possesses no general transformation
theory: and the full force of our method cannot be applied. We can
still, however, apply some of our preliminary methods. Thus the
" Tauberian " argument shows that

And although there is no general transformation theory, there is a formula
which enables us to specify the nature of the singularity at x = 1. This
formula is

X n {1 - 2<r2*"<"'*) cos 2*V (n/s) + e-
4"«nl:) \.

i

By the use of this formula, in conjunction with Cauchy's theorem, it is
certainly possible to-obtain much more precise information about ]f(n),
and in particular the formula

p*(n) - 3-i(47m)-; K( | )P e2";'37ri{C(l)}''1".

The corresponding formula for ps(;n), the number of partitions of n into
perfect s-th powers, is

pUn) ~ (2TT)-N

[The series in (7 .21) may be written in the form

l y S
7 r " ' T,hs-l V WP< <I --nvirila

it- ~ i, e ,

where &)P)̂  is always one of the five numbers 0, einl, e~*m, —eJirv, — e~in>.
When s is even it begins

COS ( f m r -
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It has been proved by Ramanujan that the series gives an exact repre-
sentation of rs(n) when s = 4, 6, 8 ; and by Hardy that this is also true
when s = 8, 5, 7. See Ramanujan, " On certain trigonometrical sums and
their applications in the Theory of Numbers" ; Hardy, " On the expression
of a number as the sum of any number of squares, and in particular of five
or seven".*—Added April 19th, 1918.]

p

1
1
1
2
1
3
1
2
3
4
1
5
1
2
3
4
5
6
l

3
5
7
1
2
4
5
7
8
1
3
7
9
1
2

9

1
2
3
,,
4
,,
5
,,
,,
,,
6
,,
7
,,
,,
,,
t f

,,
8

,,

,,

,.

9

• >

, ,

10
,,
,,
,,

11

••

log «„. ,/irt

0
0
1/13

- 1 / 1 3
1/8

- 1 / 8
1/5
0
0

- 1 / 5
5/18

-5 /18
5/14
1/14

-1 /14
1/14

-1 /14
-5 /14

7/16
1/16

- 1 / 1 6
- 7 / 1 6

14/27
4/27

-4 /^7
4/!s7

-4/27
-14/27

3/5
0
0

- 3 / 5
15; 22
5/22

TABLE

P

3
4
5
6
7
8
9

10
1
5
7

11
1
2
3
4
5
6
7

8
9

10
11
12

1
3
5
9

11
13

1
2
4
7

11
,,
,,
,,
,,
,,
,,
,,

12
,,
,,
,,

13
,,
,,
,,
,,

,,
,,

,,
,,
,,
,,

14
,,
,,
,,
,,
,,

15
,,
,,

••

I: «w

og «,.,/*»

3/22
3/22

-5 /22
5/22

-3 /22
-3 /22
-5/22
-15/22

55/72
- 1 / 7 2

1/72
-55/72

11/13
4/13
1/13

- 1 / 1 3
0

-4 /13
4/13
0
1/13

-1 /13
- 4 / 1 3
-11/13

13/14
3/14
3/14

-3 /14
-3 /14
-13/14

1/90
7/18
19/90

-7 /18

V

8
11
13
14

1
3
5
7
9

11
13
15

1
2
3
4
5
6
7

8
9

10
11
12
13
14
15
16
1
5
7

11
13
17

2

15
,.
,,
11

16
f(

,,
>f

,,
(f

M

11

17
( |

f p

f t

t f

M

t 9

,,
,,
,,

,,
,,
,,
,,
,,

18
,,
,,
,,

'•

l0ga,,,/.i

7/18
-19/90
-7/18
-1/90
-29/32
-27/32
-5/32
-3/32

3/32
5/32
27/32
29/32

-14/17
8/17
5/17
0
1/17
5/17
1/17

-8/1?
8/17

-1/17
-5 /17
-1/17

0
-5 /17
-8/17

14/17
-20/27

2/27
-2 /27

2/27
-2 /27

20/27

• The first paper is in course of publication in the Transactions of tlie Cambridge Philo-
sophical Society. An account of the second is to appear shortly in the Proceedings of tJie
National Academy of Sciences (Washington, D.C.) ; see also Records of Proceedings at Meet-
ings, March 1918.
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TABLE I I : Aq

A* — cosnir.

A-A — 2 COS (fnir — jftir).

Ah = 2 COS (§nir — \ir) + 2 COS 5«7r.

A7 •- 2 cos (fnir — -^TT) + 2 COS {fylw—fair) + 2 COS (fnir + ^TT).

4* = 2 cos (inir—T
7^ir) + 2 cos {fnir—feir).

A,, — 2 COS (fnir— |$w) + '2 COS (|w- ^T T ) + 2 COS (§«T + jyTr).

Au, = 2 COS (sttir— fir) + 2 CO8 §nir.

^4n = 2 cos (TVl7r~5§7r) + 2 cos (TT'IT —5
5
57r) + 2 cos (&»* ~ ? k n ' ) + 2 cos(T

8
Tnir —2

327r)
+ 2 cos(£$n*- + 55

2ir)

AV1 = 2 cos (^?nr—||JT) + 2 cos (fnir + ygjr).

41 3 = 2cos(T
2

3n7r—-^ir) + 2cos (T
4

3njr-T
4

S7r) + 2cos(T
6

5nrr—-J^T) + 2COS (TV

4 H = 2 COS (̂ TO)T— f-f w) + 2 COS (f JITT — -^TT) + 2 COS (fnir— TVr) .

Alh = 2 COS f ^ m r — g^jir) + 2 COS (-^nw — ̂ gir) + 2 COS ( T V l i r ~ 5 § ' r ) + 2 COS (4-5'l7r + T
7
ff7r).

4 n; = 2 COS (|7l7r + I f ir) + 2 COS (§n7T + §JJT) + 2 COS (§?lw + 5
s
g7r) + 2 COS (|n7r + 3

3
5ir).

AK = 2 COS (x^nir + \%ir) + 2 COS (-̂ TCir — ^ i r ) + 2 COS (lynir—T
5

7n) + 2 0 0 8 ^ 1 ^ + 2 COS(f^»Tr — ^ i r )

+ 2 cos (|f7i7r—-f̂ mr) + 2 cos (xl' l ' r~-ry'r) + 2 cos (xf^w + T
8iy7r)

.4|s = 2 COS (|mr + |^TT) + 2 COS (|nir — ̂ 7;r) + 2 COS (|mr + 2 ^ ) .

It may be observed that

A-n = 0 ( i t i l , 2 (mod 5)),

Aut = 0 (n = 1, 2 (mod 5)),

A- = 0 (n = 1, 8, 4 (mod 7)),

4 n = 0 (n = 1, 2, 3, 5, 7 (mod 11)),

4,:t = 0 (n s 2, 3, 5, 7, 9, 10 (mod 13)), Au = o(n = l, 3, 4 (mod 7)),

4li; = 0 (n ~ 0 (mod 2)), 4,7 = 0 (« = 1, 3, 4, 6, 7, 9, 13, 14 (mod 17))

while 4,, 43, 43, 44, 4fi, 48) 4U, 41;, 415, and 4,s never vanish.

TABLE I I I : log,,,? (n) = V" { ^ ( 1 l + 1 0 ) - o , . } .

n

1

3

10

30

100

300

1000

3000

a,,

3-317

3-17G

3-011

2-951

3-036

3-237

3-537

3-838

n

10000

30000

100000

300000

1000000

3000000

10000000

30000000
oo

a,,

4-148

4-364

4-448

4-267

3-554

2-072

-1-188

-6-796

2. VOL. 17. NO. 1309.
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TABLE IV*: p(ti).

1...
2 ...

3 ...

4 ...

5 ...

6 ...

7 ...

8 ...

9 ...

10 ...

11 ...

12 ...

13 ...

14 ...

15 ...

16 ...

17 ...

18 ...

19 ...

20 ...

21 ...

22 ...

23 ...

24 ...

25 ...
20 ...

27 ...

28 ...

29 ...

30 ...
31 ...

32 ...

33 ..
34 ...

35...

36 ...

37 ...

38 ...

1
2

3

5

7

11

15

22

30

42

56

77

101

135

176

231

297

385

490

627

792

1002

1255

1575

195S

2436

3010

3718

4565

5604

6842

8349

10143
12310

14883
17977

21637

26015

39
40

41

42

43

44

45

46

47

48
49

50

51

52

53

54

55

56

57

58
59
60
61

62
63
64

65

66

67

68

69

70

71
72

73
74

75

76

... 31185

... 37338

... 44583

... 53174

... 63261

... 75175

... 89134

... 105558

... 124754

... 147273

... 173525

... 204226

... 239943

... 281589

... 329931

... 386155

... 451276

... 526823

... 614154

... 715220

... 831820

... 966467

... 1121505

... 1300156

... 1505499

... 1741630

... 2012558

... 2323520

... 2679689

... 3087735

... 3554345

... 4087968

... 4697205

... 5392783

... 6185689

... 7089500

... 8118264

... 9289091

77 ...

78 ...

79 ...

80 ...

81 ...

82 ...

83 ...

84 ...

85 ...

86 ...

87 ...

88 ...

89 ...

90 ...

91 ...

92 ...

93 ...

94 ...

95 ...

96 ...

97 ...

98 ...

99 ...

100 ...

101 ...
102 ...

103 ...

104 ...

105 ...

106 ...

107 ...

108 ...

109 ...
110 ...

Ill ...
112 ...

113 ...

114 ...

10619863

12132164

13848650

15796476

18004327

20506255

23338469

26543660

30167357

34262962

38887673

44108109

49995925

56634173

64112359

72533807

82010177

92669720

104651419

118114304

133230930

150198136

169229875

190569292

214481126

241265379

271248950

304801365

342&25709

384276336

431149389

483502844

541946240
607163746

679903203

76100215G

851376628

952050665

115
116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138
139

140

141

142

143

144

145

146

147
148
149

150

151
152

... 1064144451

... 1188908248

... 1327710076

... 1482074143

... 1653668665

... 1844349560

... 2056148051

... 2291320912

... 2552338241

... 2841940500

... 3163127352

... 3519222692

... 3913864295

... 4351078600

... 4835271870

... 5371315400

... 5964539504

... 6620830889

... 7346629512

... 8149040695

... 9035836070

... 10015581680

... 11097645016

... 12292341831

... 13610949895

... 15065878135

... 16670689208

... 18440293320

... 20390982757

... 22540654445

... 24908858009

... 27517052599

... 3038S671978

... 33549419497

... 37027355200

... 40853235313

... 45060624582

... 4968628S421

* The numbers in this table were calculated by Major MacMahon, by means of the re-
currence formulae obtained by equating coefficients in the identity

[l~x-x"- + xb + x1-z^-xx:' +...) 2 p(n)x" = 1.
o

We have verified the table by direct calculation up to n = 158. Our calculation of p (200)
from the asymptotic formula then seemed to render further verification unnecessary.
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TABLE IV.—Continued.

153 ...

154 ...

155 ...

15G ...

157 ...

158 ...

159 ...

160 ...

161 ...
162 ...

163 ...

164 ...

54770336324

60356673280

60493182097

73232243759

80630964769

88751778802

97662728555

107438159466

118159068427

129013904637

142798995930

156919475295

165 ...

166 ...

167 ...

168 ...

169 ...

170 ...

171 ...

172 ...

173 ...

174 ...

175 ...

176 ...

172389800255

189334822579

207890420102

228204732751

250438925115

274768617130

301384802048

330495499613

302326859895

397125074750

435157697830

476715857290

177 ...

178 ...

179 ...

180 ...

181 ...

182 ...

183 ...

184 ...

185 ...

180 ...

187 ...

188 ...

522115831195

571701605655

6-25S46753120

684957390936

749474411781

819876908323

896684817527

980462880430

1071823774337

1171432692373

12800110-42268

1398341745571

189 ...

190 ...

191 ...

192 ...

193 ...

194 ...

195 ...

196 ...

197 ...

198 ...

199 ...

200 ..

1527273599625

1667727404093

1820701100652

1987276856363

2168627105469

2366022741845

2580840212973

2814570987591

3068829878530

334536598309R

3646072432125

3972999029388

TABLE V: q(n).*

n

i—
i

2 ...
3 ...
4 ...
5 ...
6 ...
7 ...
8 ...

9 ...

10 ...

11 ...

.12 ...

13 ...

14 ...

15 ...

]0 ...

37 ..

18 ...

19 ...

20 ...

21 ...

22 ...

23 ...

24 ...

25 ...

fti

1

1

2

2

3

4

5

6
8
10

12

15

18

22

27

32

38

46

54

64

70

89
104
122
142

n
26 ...

27 ...

28 ...

29 ...

30 ...

31 ...

32 ...

33 ...

34 ...

35 ...

36 ...

37 ...

38 ...

39 ...

40 ...

41 ...

42 ...

43 ...

44 ...

45 ...

40 ...

47 ...

48 ...

49 ...

50 ...

c,,
165

192

222

256

296

340

390

448

512

585

668

760

864

982

1113

1260

1426

1610

1816

204S

230i

2590

2910

3264

3658

n
51 ...
52 ...

53 ...

54 ...

55 ...

56 ...

57 ...

5S ...

59 ...

60 ...

61 ...

62 ...

63 ...

64 ...

65 ...

66 ...

07 ...

08 ...

69 ...

70 ...

71 ...

72 ...

73 ...

74 ...

75 ...

c,.
4097

4582

5120

5718

6378

7108

7917

8808

9792

10S80

12076

13894

14S48

16444

18200

20132

22250

24576

27130

29927

32992

36352

40026

44046

48446

n
76 ...

77 ...

7S ...

79 ...

80 ...

81 ...

82 ...

83 ...

34 ...

85 ...

86 ...

87 ...

88 ...

89 ...

90 ...

91 ...

92 ...

93 ...

94 ...

95 ...

96 ...

97 ...

98 ...

99 ...

100 ...

c,,
53250

58499

64234

70488

77312

84756

92864

101698

111322

121792

133184

145578

159046

173682

189580

206848

225585

245920

267968

291874

317788

345856

376256

409174

444793

* We are indebted to Mr. Darling for this table.
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