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Abstract . We discuss differentiable stacks and their cohomology. We try to give
all necessary definitions, avoiding technical machinery as far as possible. In the last
section we focus on the example of S1-gerbes and explain the relation to projective
(Hilbert-)bundles.

Introduction
These are notes of two lectures given at the Forschungsseminar Bunke-Schick

during the Spring term 2004. My task was to explain the notions of stacks and
twists. Since this should serve as an introduction to the subject I tried to
avoid most of the algebraic language, hoping to make the concept of stacks
more understandable. These notes do not claim much originality, all concepts
from the theory of algebraic stacks are explained in the book of Laumon and
Moret-Bailly [LMB00]. I tried to translate the differentiable setting which is
used in [LTX] and [FHT] into this language.

The plan of the text is as follows. We start with the example of the stack
classifying G−bundles, to motivate the abstract definition of stacks. This defi-
nition, given in the first section does not look very geometric, therefore we
introduce the notion of charts (sometimes called presentations) in the second
section. This allows us to define topological and differentiable stacks. In the
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algebraic setting, this concept was introduced by Deligne and Mumford in
their famous article on the irreducibility of the moduli space of curves. Their
definition allowed to introduce a lot of geometric notions for stacks and it
provided a way of thinking about a differentiable stack as a manifold in which
points are allowed to have automorphisms. In the third section we then compare
this approach with the groupoid–approach which seems to be better known in
topological contexts. The fourth section then defines sheaves, bundles and their
cohomology on differentiable stacks. We also provide some easy examples to
give an idea of how to do calculations in this setup.

In the last two sections we then give a definition of twists or S1−gerbes
and we show that they are classified by elements in H2( , S1). To compare
this with the approach via projective bundles, we then introduce the notion of
a local quotient stack, which is used in [FHT] to give a definition of twisted
K-theory. For S1-gerbes on a local quotient stack we give a construction of a
PU-bundle on the stack which defines the gerbe.

1. Motivation and the first definition of stacks
The simplest example of a stack is the classifying stack of G−bundles: Let

G be a topological group. In topology one defines a classifying space BG
characterized by the property that for any good space (e.g., CW-Complex):

Map(X,BG)/homotopy = {Isom. classes of locally trivial G−bundles on X}.

This defines BG uniquely up to homotopy. For finite groups G this space has
the additional property, that the homotopy classes of homotopies between two
classifying maps are identified with isomorphisms between the corresponding
G−bundles.

Such a definition of BG is not well suited for algebraic categories, because
there a good notion of homotopy is not easy to define. Moreover even in analytic
categories the spaces BG usually are infinite dimensional and therefore more
difficult to handle.

Regarding the first problem, one could ask the naive question: Why don’t
we look for a space BG for which Map(X,BG) is the set of isomorphism classes
of G−bundles on X? Of course such a space cannot exist because locally every
bundle is trivial, thus the corresponding map should be locally constant, thus
constant on connected components of X. But not every bundle is globally
trivial.
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On the other hand, this argument is somewhat bizarre, because usually
G−bundles are defined by local data. The problem only arises because we
passed to isomorphism classes of bundles.

Thus the first definition of the stack BG will be as the (2-)functor assigning
to any space X the category of G−bundles on X. The axioms for such a functor
to be a stack will be modeled on the properties of this particular example.
Namely the axioms assure that we can glue bundles given on an open covering.
This basic example should be held in mind for the following definition of a
stack.

Further, to compare this definition with usual spaces one has to keep in
mind the Yoneda lemma: Any space/manifold M is uniquely determined by
the functor Map( ,M) : Manifolds → Sets. This holds in any category (see
Lemma 1.3 below).

Therefore, instead of describing the space, we will first consider the corre-
sponding functor and try to find a geometric description afterwards.

Definition 1.1. A stack M is a (2−)functor

M : Manifolds→ Groupoids ⊂ Cat,

i.e.:
– for any manifold X we get a category M (X) in which all morphisms are

isomorphisms, and
– for any morphism f : Y → X we get a functor

f∗ : M (X)→M (Y )

(id∗ has to be the identity),
– for any Z

g−→ Y
f−→ X a natural transformation Φf,g : g∗f∗ ∼= (g ◦ f)∗,

which is associative whenever we have 3 composable morphisms.
For a stack M we require the 2-functor to have glueing-properties (to make
these more readable(1), we write |U instead of j∗, whenever U

j
↪→ X is an open

embedding):
1. We can glue objects: Given an open covering Ui of X, objects Pi ∈M (Ui)

and isomorphisms ϕij : Pi|Ui∩Uj
→ Pj |Ui∩Uj

which satisfy the cocycle condition
on threefold intersections ϕjk◦ϕij = ϕik|Ui∩Uj∩Uk

there is an object P ∈M (X)
together with isomorphisms ϕi : P |Ui

→ Pi such that ϕij = ϕj ◦ ϕ−1
i .

(1)cf. first remark below
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2. We can glue morphisms: Given objects P, P ′ ∈M (X), an open covering
Ui of X and isomorphisms ϕi : P |Ui → P ′|Ui such that ϕi|Ui∩Uj = ϕj |Ui∩Uj ,
then there is a unique ϕ : P → P ′ such that ϕi = ϕ|Ui .

Remarks 1.2.
1. Formally the glueing conditions make use of the natural transformations

for the inclusions Ui ∩ Uj ↪→ Ui ↪→ X, this is not visible above, because of our
notation |Ui∩Uj . For example write Uijk = Ui ∩Uj ∩Uk, denote jijk,ij : Uijk →
Uij , jij,i : Uij → Ui, jijk,i : Uijk → Ui the inclusions. Then we have natural
transformations

Φijk,ij,i : j∗ijk,ijj
∗
ij,i → j∗ijk,i.

In the condition to glue objects

ϕjk|Uijk
◦ ϕij |Uijk

= ϕik|Uijk

we would formally have to replace ϕij |Uijk
by the composition:

j∗ijk,iPi
Φijk,ij,i−→ j∗ijk,ijj

∗
ij,iPi

j∗ijk,ijϕij−→ j∗ijk,ijj
∗
ij,jPj

Φ−1
ijk,ij,j−→ j∗ijk,jPj

and similarly for the other maps, but this makes the condition hard to read.
2. Our functor BG, assigning to any manifold the category of G−bundles is

a stack.
3. We could replace manifolds by topological spaces in the above definition.

This is usually phrased as giving a stack over manifolds and a stack over topo-
logical spaces respectively.

4. Stacks form a 2−category: Morphisms F : M → N of stacks are given
by a collection of functors F ∗X : N (X) → M (X) and, for any f : X → Y , a
natural transformation Ff : f∗F ∗X

∼=−→ F ∗Y f
∗. Thus morphisms of stacks form a

category, morphisms between morphisms of stacks (i.e., natural transformations
ϕX : FX → GX satisfying Gf ◦ ϕX = ϕY ◦ Ff ) are written as M 44⇓

**
N .

Note that all 2-morphisms are invertible, since all maps in the categories M (X)
and N (X) are invertible.

5. The inclusion Sets → Groupoids (associating to each set the category
whose objects are elements of the set and the only morphisms are identities)
is a full embedding. By the Yoneda lemma we know that the functor Top →
Functors is a full embedding, thus we get a full embedding Top→ Stacks. This
embedding assigns to a space X the stack X defined as X(Y ) = Map(Y,X),
this is a stack, since maps can be glued, pull-back functors are given by the
composition of maps.

6. Grothendieck topology of maps with local sections: Bundles, (in fact any
stack), satisfy a better glueing condition, namely we do not need that the
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j : Ui ↪→ X are injective. Whenever we have a map ∪Ui
p−→ X such that p

has local sections (i.e., for all points x ∈ X there is a neighborhood Ux and
a section s : Ux → ∪Ui of p, in particular p is surjective). Then the glueing
condition also holds, if we replace Ui∩Uj by the fibered product Ui×X Uj . We
say that the stack is a stack for the local-section-topology. This point of view
will be important to define charts for stacks.

(If we wanted to stay in the category of manifolds instead of topological
spaces, we should require the map p to be a submersion, in order to have
fibered products.)

The following lemma shows, that with the above definition of BG we really
get a classifying object for G−bundles:

Lemma 1.3 (Yoneda lemma for stacks). Let M be a stack (defined for
manifolds or topological spaces). For any space X denote by X the associated
stack (i.e., X(Y ) = Map(Y,X)). Then there is a canonical equivalence of
categories: M (X) ∼= MorStacks(X,M ).

Proof. Given P ∈M (X) we define a morphism FP : X →M by

X(Y ) 3 (Y
f−→ X) 7→ f∗P ∈M (Y ).

For any isomorphism ϕ : P → P ′ in M (X) we define a natural transformation
Aϕ : FP → FP ′ by f∗ϕ : f∗P → f∗P ′. Conversely, given a morphism F :
X →M we get an object PF := F (idX) ∈M (X), any automorphism F → F
defines an isomorphism of PF .

One checks that the composition of these constructions is equivalent to the
identity functor.

Remark 1.4. Will often write X instead of X.

Example 1.5 (Quotient stacks). Let G be a Lie group acting on a man-
ifold X via act : G × X → X. We define the quotient stack [X/G, act] (or
simply [X/G]) as

[X/G, act](Y ) := 〈(P p−→ Y, P
f−→ X) |P → Y a G-bundle,f G-equivariant〉.

Morphisms of objects are G−equivariant isomorphisms.

Remarks 1.6.
1. For G acting trivially on X = pt the quotient [pt/G] is the stack BG

classifying G-bundles.
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2. If G acts properly and freely, i.e. X → X/G is a G−bundle, then [X/G] ∼=
X/G, because any f : P → X defines a map on the quotient P/G = Y →
X/G and the canonical morphism P → Y ×X/G X is then an isomorphism of
G−bundles.

2. Geometry I: Charts
To translate geometric concepts to the (2-)category of stacks, Deligne and

Mumford introduced a notion of charts for stacks.
In our example BG the Yoneda-lemma 1.3 shows that the trivial bundle on

a point pt defines a map pt → BG. By the same lemma any X
fP−→ BG is

given by a bundle P → X. Therefore, if we take a covering Ui → X on which
the bundle is trivial, then fP |Ui

factors through pt → BG. In particular, this
trivial map is in some sense surjective (see Definition 2.3 for a precise definition,
we will say that this map has local sections)!

Even more is true: First note that the (2-)category of stacks has fibered
products:

Definition 2.1. Given a diagram of morphisms of stacks:

M

F

��
M ′ F ′

// N

we define the fibered product M ×N M ′ to be the stack given by:

M ×N M ′(X) := 〈(f, f ′, ϕ)|f : X →M , f ′ : X →M ′, ϕ : F ◦ f ⇒ F ′ ◦ f ′〉.

Morphisms (f, f ′, ϕ)→ (g, g′, ψ) are pairs of morphisms

(ϕf,g : f → g, ϕf ′,g′ : f ′ → g′)

such that
ψ ◦ F (ϕf,g) = F ′(ϕf ′,g′) ◦ ϕ.

(We will use brackets 〈 〉 as above to denote groupoids instead of sets { })

Remark 2.2. This defines a stack, because objects of M ,N glue and mor-
phisms of N ,M ,M ′ glue.
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We calculate the fibered product in our example above: Given
X

fP

��
pt // BG

the fibered product pt×BG X as the stack given by:

pt×BG X(Y ) =

〈
Y

��

g // X

��
ϕ

y� {{
{{

{{
{

{{
{{

{{
{

pt // BG

〉

= 〈(g, ϕ)|g : Y → X and ϕ : g∗P
∼=−→ G× Y 〉

∼= {(g, s)|g : Y → X and s : Y → g∗P a section}
∼= {g̃ : Y → P} = P (Y )

The first ∼= notes that to give a trivialization of g∗P is the same as to give a
section of g∗P , in particular the category defined above is equivalent to a set.
The second ∼= assigns to g̃ the composition of g̃ with the projection P → X
and the section induced by g̃.

By the last description, we get an equivalence pt×BGX ∼= P , i.e., pt→ BG
is the universal bundle over BG.

Definition 2.3. A stack M is called a topological stack (resp. differentiable
stack) if there is a space (resp. manifold) X and a morphism p : X →M such
that:

1. For all Y →M the stack X ×M Y is a space (resp. manifold).
2. p has local sections (resp. is a submersion), i.e., for all Y → M the

projection Y ×M X → Y has local sections (resp. is a submersion).
The map X → M is then called a covering or an atlas of M (in the local-
section-topology).

The first property is very important, it therefore gets an extra name:

Definition 2.4. A morphism of stacks F : M → N is called representable
if for any Y → N the fibered product M ×N Y is a stack which is equivalent
to a topological space.

This definition is the requirement that the fibres of a morphism should be
topological spaces and not just stacks. We will see later, that for topological
stacks this condition is equivalent to the condition that the morphism F is
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injective on automorphism groups of objects. The easiest example of such a
map is the map pt → BG we have seen above. The easiest example of a map
which is not representable is the map BG → pt forgetting everything (take
Y = pt).

Example 2.5 (Quotient-stacks). The example of quotients by group ac-
tions [X/G] are topological stacks (resp. differentiable, if X,G are smooth). An
atlas is given by the quotient map X → [X/G], defined by the trivial G−bundle
G×X → X, the action map G×X act−→ X is G−equivariant.

Just as in the case of G−bundles one shows that for any Y → [X/G] given
by a G−bundle P → Y there is a canonical isomorphism Y ×[X/G]X ∼= P (the
argument is given a second time in Lemma 3.1 below).

Some easy properties of representable morphisms are:

Lemma 2.6.
1. (Composition) If F : K →M and G : M → N are representable, then

F ◦G is representable.
2. (Pull-back) If F : M → N is representable, and G : M ′ → N is

arbitrary then the projection M ′ ×N M →M ′ is representable.
3. (Locality) A morphism F : M → N of topological stacks is representable

if and only if for one atlas Y → N the product M ×N Y → M is again an
atlas.

4. If M is a topological stack, then for any two morphisms fi : Yi →M the
fibered product Y1 ×M Y2 is again a topological space.

Proof. For the first claim note that Y ×N K ∼= (Y ×N M )×M K , the latter
is a space by assumption.

The second is similar: Y ×M ′ (M ′ ×N M ) ∼= Y ×N M .
If M → N is representable, then Y ×N M is a topological space and for

any T →M we have T ×M (Y ×N M ) = T ×N Y → Y has local sections.
On the other hand, if Y ×N M → M is an atlas, then for all T → N

which factor through T → Y → N the pull back T ×N M is again a space.
For an arbitrary T → N the projection Y ×N T → T has local sections by
assumption. This shows, that the fibered product T ×N M is a stack which is
equivalent to a functor, and that there is a covering Ui of T , such that Ui×N M
is a space. Now functoriality of fibered products assures, that these spaces can
be glued, thus T ×N M is a space.

For the last statement, note that Y1 ×M Y2
∼= (Y1 × Y2) ×M×M M where

the map ∆ : M →M ×M is the diagonal map. Thus the assumption may be
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rephrased as “the diagonal ∆ : M → M ×M is representable” and then the
claim follows from (3).

Remark 2.7. In the last statement of the lemma, there is a natural map
Y1×M Y2 → Y1×Y2, but in general this is not an embedding, thus the diagonal
M →M ×M is not an embedding in general.

One should also note that the fibered product Y1 ×M Y2 represents the
functor of maps T → Y1 × Y2 together with an isomorphism of the two pull
backs of the objects p∗i (Yi →M ), therefore it is sometimes denoted

Isom(Y1
f1−→M , Y2

f2−→M )

or simply Isom(f1, f2). In particular one sees that the automorphisms of a map
f : Y →M are given by sections of the map Aut(f) := (Y ×MY )×Y×Y Y → Y ,
because a map from a space T to Aut(f) is the same as a map s : T → Y
together with an isomorphism ϕ : f ◦ s⇒ f ◦ s.

Any property of maps which can be checked on submersions can now be
defined for representable morphisms of differentiable stacks, simply requiring
that the property holds for one atlas:

Definition 2.8. A representable morphism M → N is an open embedding,
(resp. closed embedding, submersion, proper, ...) if for one (equivalently any)
atlas Y → N the map M ×N Y → Y is an open embedding (resp. closed
embedding, submersion, proper, ...).

Note that if M and N are spaces then every map is representable and we
get the usual notion of open embedding, etc.

In particular, this definition gives us a notion of open and closed substacks.

Example 2.9. For quotient-stacks [X/G] open and closed substacks are
given by open and closed G−equivariant subspaces Y ↪→ X, which define
embeddings [Y/G] ↪→ [X/G].

Properties that can be checked on coverings of the source of a map (i.e., to
have local sections, or in the differentiable category to be smooth or submersive)
can even be defined for any morphism of stacks:

Definition 2.10. An arbitrary morphism M → N of differentiable (resp.
topological) stacks is smooth (or a submersion) (resp. has local sections), if for
one (equivalently any) atlas X → M the composition X → N is smooth (or
a submersion) (resp. has local sections), i.e., for one (equivalently any) atlas
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Y → N the fibered product X ×N Y → Y is smooth (or a submersion) (resp.
has local sections).

The equivalence of the condition to be satisfied for one or for any atlas is
proved as in Lemma 2.6.

Note that we can glue morphisms of stacks, i.e., given an atlas X → M
and a morphism M → N of topological or differentiable stacks we get an
induced morphism X → N together with an isomorphism of the two induced
morphisms X ×M X // // N , which satisfies the cocycle condition on X×M

X ×M X.
Conversely, given f : X → N together with an isomorphism p1 ◦ f ⇒ p2 ◦ f

of the two induced maps X×M X → N , which satisfies p∗23ϕ◦p∗12ϕ = p∗13ϕ on
X×

3
M we get a morphism M → N as follows: For any T →M we get a map

with local sections X ×M T → T and a map X ×M T → N together with a
glueing data on X×M X×M T = (X×M T )×T (X×M T ), and by the glueing
condition for stacks this canonically defines an element in N (T ).

In particular, a morphism M → BG is the same as a G-bundle on an atlas
X together with a glueing datum on X ×M X satisfying the cocycle condition
on X×M X×M X. If M = [X/H] is a quotient stack then X×M X ∼= H×X,
thus this is the same as an H−equivariant bundle on X.

More generally, for any class of objects which satisfy descent, i.e., which can
be defined locally by glueing data, we can define the corresponding objects over
stacks to be given as a glueing-data on one atlas. For example vector bundles,
Hilbert-bundles, smooth fibrations.

Definition 2.11. A G−bundle over a stack M is given by a G−bundle PX

over an atlas X → P together with an isomorphism of the two pull-backs of
p∗1PX → p∗2PX on X×MX satisfying the cocycle condition on X×MX×MX.

The same definition applies to vector bundles, Hilbert bundles, locally trivial
fibrations with fiber F .

Remark 2.12. Note that for any f : T →M (in particular for any atlas)
this datum defines a G−bundle PT,f → T , because by definition X ×M T → T
has local sections, and we can pull-back the glueing datum to

(X ×M X ×M T ) ∼= (X ×M T )×T (X ×M T ).

Therefore this automatically defines a differentiable/topological stack P
p−→

M (and p is representable) via:

P(T ) = 〈(f : T →M , s : T → PT,f a section)〉.



J. Heinloth: Notes on Stacks 11

An atlas of this stack is given by (PX , s : PX
diag−→ PX ×X PX). The mul-

tiplication map glues, therefore this stack also carries a natural morphism
G×P →P.

Remark 2.13. This shows that universal bundles on stacks classifying
G−bundles or other geometric objects exist automatically. Further, since we
can glue morphisms of stacks the classifying stack will also classify G−bundles
on stacks.

Remark 2.14. Note further, that given a G−bundle P on a stack M and
a map f : T →M the glueing datum for the two pull backs of PT,f to T ×M T
defines an action of Aut(s) on f∗P = PT,f .

The notion of a G−bundle could be defined directly in the language of
stacks. These definitions tend to get clumsy, because one has to take care of
automorphisms:

Let G be a Lie group, a locally trivial G-bundle over an analytic stack M

is a stack P together with a representable morphism P
p−→ M , an action

G×P
act−→P together with an isomorphism ϕ : p ◦ act

∼=−→ p, such that act is
simply transitive on the fibers of p, an isomorphism ϕ2 making the diagram

G×G×P

m,idP

��

idG,act// P

act

��
G×P

act // P

commute, such that in the induced isomorphisms in the associativity dia-
gram coincide. Further, there has to be a two morphism making the diagram

P
e,id //

id

##HH
HH

HH
HH

H G×P

act

��
P

commute, compatible with multiplication. Finally to make a

bundle locally trivial there should exist an atlas X →M such that the induced
bundle P ×M X → X is trivial.

Claim. The two notions of G-bundles coincide. (We will never use this.)

Example 2.15. Once more, note that pt → [pt/G] is a G−bundle over
pt. The action map G × pt → pt is trivial. And we note that pt → [pt/G]
corresponds to the trivial bundle, thus a trivialization of this bundle induces
canonical isomorphisms ϕ.
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3. Topological stacks as topological groupoids
We can generalize the example of quotients by group actions as follows:

Given an atlas X →M , the two projections X ×M X // // X define the source
an target morphisms of a groupoid, the diagonal is the identity, interchanging
the factors the inverse and the composition is given by the projection to the
first and third factor of

X ×M X ×M X ∼= (X ×M X)×X (X ×M X)→ X ×M X.

We will denote this groupoid by X•.
Conversely, any groupoid Γ1 // // Γ0 defines a topological stack:

[Γ0/Γ1](Y ) := 〈(P p−→ Y, P
f−→ Γ0) a locally trivial Γ− bundle 〉

Recall that a locally trivial Γ-bundle is a diagram

P
f //

p

��

Γ0

Y

together with an action Γ1 ×Γ0 P → Γ0 which is equivariant with respect to
composition of morphisms in Γ1, such that there is a covering U → Y and
maps fi : U → Γ0 such that P |U ∼= f∗i Γ•. Note that such a trivialization is the
same as a section U → P (obtained from the identity section of Γ).

Since we can glue Γ-bundles this is a stack. As in the case of quotients we
have:

Lemma 3.1. The trivial Γ-bundle Γ1 → Γ0 induces a map Γ0
π−→ [Γ0/Γ1]

which is an atlas for [Γ0/Γ1], the map π is the universal Γ-bundle over [Γ0/Γ1].
The groupoids Γ and Γ0,• are canonically isomorphic.

Proof. We only need to show, that for any Y fP−→ [Γ0/Γ1] given by a bundle P ,
there is a canonical isomorphism P

∼=−→ Γ0 ×[Γ0/Γ1] Y . This is seen as before:

(Γ0 ×[Γ0/Γ1] Y )(T ) ∼= 〈(T f−→ Y, T
g−→ Γ0, ϕ : fP ◦ f → π ◦ g〉

∼= 〈(f, g, ϕ : f∗P ∼= g∗Γ1)〉
∼= {(f, f̃ : T → P )|prY ◦ f̃ = f}
∼= {f̃ : T → P} = P (T ).
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Next one wants to know, whether two groupoids Γ•,Γ′• define isomorphic
stacks. From the point of view of atlases this is easy: Given two atlases

X
p−→M , X ′

p′−→M

we get another atlas refining both, namely

X ×M ×X ′ → X →M

is again an atlas (since both maps are representable and have local sections,
the same is true for the composition).

Furthermore X ×M X ′ → X is a locally trivial X ′• bundle. This shows:

Lemma 3.2. Two groupoids Γ•,Γ′• define isomorphic stacks if and only if
there is a groupoid Γ′′• which is a left Γ• bundle over Γ′0 and a right Γ′• bundle
over Γ0 such that both actions commute.

Example 3.3. If we have a subgroup H ⊂ G acting on a space X, then
[X/H] ∼= [X×HG/G], since the maps X ← X×G→ X×HG define a G-bundle
over X and an H-bundle over X ×H G.

Similarly, if H ⊂ G is a normal subgroup, acting freely on X, such that
X → X/H is a principal H−bundle, then [X/G] ∼= [(X/H)/(G/H)], because
G×H X is a G/H-bundle over X and a G-bundle over X/H.

Finally we can identify morphisms of stacks in terms of groupoids, if the
morphism is a submersion, then in [LTX] these are called generalized homo-
morphisms.

Given a morphism M
f−→ N of topological stacks, and atlases X →

M , Y → N we can form the fibered product X ×N Y → X. Since N → Y
is a locally trivial Y• bundle, this is a (right) Y• bundle as well. Furthermore,
since the map X → N factors through M we also get a X• (left) action on
X ×N Y . Note that (by definition) the map X ×N Y → Y is a submersion if
and only if M → N is a submersion.

Conversely, suppose we are given X ← P → Y , together with commuting
actions of X• and Y• on P , such that P is a locally trivial Y• bundle over X.
Then the X• action on P is a descent datum for the Y•-bundle, which defines
a Y• bundle over M , thus a morphism M → N .

Of course, the simplest case of this is the most useful, namely a morphism
of groupoids X• → Y• induces a morphism of the associated quotient stacks,
(P as above is then obtained by pulling back Y• to X = X0).
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4. Geometry II: Sheaves, cohomology, tangent spaces,
dimension, normal bundles

Given a representable submersion M → N we define the dimension of the
fibers rel.dim(M /N ) as the dimension of the fibers of M ×N Y → Y for any
Y → N . This is well defined, because the relative dimension does not change
under pull-backs.

Given an analytic stack M define its dimension by choosing an atlasX →M
and defining dim M := dim(X) − rel.dim(X/M ). This is independent of the
atlas (check this for a submersion X ′ → X →M ).

Definition 4.1. A sheaf F on a stack is a collection of sheaves FX→M for
any X →M , together with, for any triangle

X
f //

h
⇒
��6

66
Y

g��		
	

M

with an isomorphism ϕ : g ◦ f → h, a morphism of sheaves Φf,ϕ : f∗FY→M →
FX→M , compatible for X → Y → Z (we often write Φf instead of Φf,ϕ). Such
that Φf is an isomorphism, whenever f is an open covering.

The sheaf F is called cartesian if all Φf,ϕ are isomorphisms.

Remarks 4.2.
1. Instead of giving sheaves FX→M for all X →M , we could as well only

give the global sections FX→M (X), together with restriction maps for U → X.
Thus a reader not afraid of sites, will prefer to say that F is a sheaf on the big
site of spaces over M (with the standard open topology).

2. A cartesian sheaf F is the same as a sheaf FX→M =: FX on some atlas
X → M together with a descent datum, i.e., an isomorphism Φ : pr∗1FX →
pr∗2FX on X ×M X which satisfies the cocycle condition on X×

3
M :

Given such a sheaf this defines a sheaf on every T → M , because we get
an induced descent datum on X ×M T → T , this defines a sheaf on T . Of
course, this is compatible with morphisms, since for S f−→ T → M the pull
back commutes with descent.

Conversely, given a cartesian sheaf F and an atlas X → M we get an
isomorphism Φ := Φ−1

pr2
◦ Φpr1

: pr∗1FX → pr∗2FX on X ×M X. This satisfies
the cocycle condition, since on X×

3
M we have pr∗12(Φpr1

) = Φ−1
pr12
◦ Φpr1

and
therefore pr∗12Φ = Φ−1

pr2
◦ Φpr1 .
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3. One might prefer to think only of cartesian sheaves on a stack, unfor-
tunately this category does usually not contain enough injectives. But the
subcategory of cartesian sheaves is a thick subcategory of all sheaves, i.e. a full
category closed under kernels, quotients and extensions.

We can define global sections of a sheaf on M . For cartesian sheaves we can
simply choose an atlas X →M and define

(1) Γ(M ,F ) := Ker( Γ(X,F ) //// Γ(X ×M X) ).

Lemma 4.3. For a cartesian sheaf F on M the group Γ(M ,F ) does not
depend on the choice of the atlas.

Proof. First note that the lemma holds if X is replaced by an open covering
X ′ = ∪Ui → X →M , because FX→M is a sheaf.

Secondly we only need to check the lemma for refinements, i.e. an atlas
X ′ → M which factors X ′ f−→ X → M such that f has local sections. But
then by assumption any global section defined via X ′ induces one on X.

Similarly to the above construction, one can – as for G−bundles – give a
simplicial description of cartesian sheaves on a stack as follows: Choose an
atlas X →M . Then a sheaf on M defines a sheaf on the simplicial space X•,
i.e. a sheaf Fn on all Xn, together with isomorphisms for all simplicial maps
f : [m]→ [n] from f∗Fn → Fm.

Again we call a sheaf on a simplicial space cartesian, is all f∗ are isomor-
phisms.

Conversely for any map T →M a cartesian sheaf on X• defines a sheaf on
the covering X×M T → T , via the formula 1. This formula only defines global
sections, but we can do the same for any open subset U ⊂ T .

Remark 4.4. Note that the functor Shv(M )→ Shv(X•) defined above is
exact.

Example 4.5. A cartesian sheaf on a quotient stack [X/G] is the same as
a G−equivariant sheaf on X.

The category of sheaves of abelian groups on a stack M has enough injec-
tives, so we want to define the cohomology of H∗(M ,F ) as the derived functor
of the global section functor. By the last example, for quotients [X/G] this will
be the same as equivariant cohomology on X.

As noted before, to define cohomological functors we have to consider arbi-
trary sheaves on M resp. on X•. We define global sections as:

Γ(M ,F ) := lim
←

Γ(X,FX→M )
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Where the limit is taken over all atlases X →M , the transition functions for

a commutative triangle X ′
f //

h
⇒
��7

77
X

g��		
	

M

are given by the restriction maps Φf,ϕ.

Lemma 4.6. For a cartesian sheaf F on a stack M the two notions of
global sections coincide.

Proof. For any atlas X → M the maps X ×M X → M are atlases as well.
Thus we get a map

lim
←

Γ(X ′,FX′→M )→ Ker( Γ(X,F ) // // Γ(X ×M X) ).

Conversely we have seen in lemma 4.3 that we can define a map in the
other direction as well. And it is not difficult to check that these are mutually
inverse.

One tool to compute the cohomology of a sheaf on M is the spectral sequence
given by the simplicial description above:

Proposition 4.7. Let F be a cartesian sheaf of abelian groups on a stack
M . Let X →M be an atlas and F• the induced sheaf on the simplicial space
X• then there is an E1 spectral sequence:

Ep,q
1 = Hq(Xp,Fp)⇒ Hp+q(M ,F ).

The spectral sequence is functorial with respect to morphisms X
��

// Y
��x� xx

xxxx

M // N

, for

atlases X,Y of M and N .

Proof. (e.g., [Del74],[Fri82]) For a cartesian sheaf F on M we denote by F•
the induced sheaf on X•. We first show that H∗(M ,F ) is the same as the
cohomology of the simplicial space X• with values in F•.

Recall that global sections of a sheaf F• on X• are defined as

Γ(X•,F•) := Ker( Γ(X,F ) // // Γ(X ×M X),F ).

Thus for any cartesian sheaf F on M we have H0(X•,F•) = H0(M ,F ).
We can factor the the cohomology functor on X• as follows: First Rπ•,∗

from the derived category of sheaves on X• to the derived category of simplicial
sheaves on M , then the exact functor tot taking the total complex of a simplicial
complex and finally take the cohomology over M .

Now for any U →M we can calculate (Rπ•,∗F•)|U as the direct image of the
simplicial space X•×M U

πU−→ U over U . But for any sheaf FU on U we know
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that tot(RπU,•,∗π
∗
UFU ) ∼= F , because πU has local sections: Indeed, since the

claim is local on U we may assume that πU has a section s : U → X ×M U .
But if we denote XU := X ×M U then Xn ×M U = XU ×U · · · ×U XU and
therefore the section s induces sections Xn → Xn+1 which induce a homotopy
on tot(RπU,•,∗π

∗F ) proving that this complex is isomorphic to F .
Thus we have shown that H∗(M ,F ) = H∗(X•,F•).
The spectral sequence is defined via the same construction, factoring H∗ into

RΓ•(K) := (RΓ(Kn))n, which takes values in the derived category of simplicial
complexes and the (exact) functor taking the associated total complex tot.

The spectral sequence is the spectral sequence of the double complex corre-
sponding to the simplicial complex.

This spectral sequence gives one way to transport the properties of the co-
homology of manifolds to stacks:

Proposition 4.8.
1. (Künneth Isomorphism) There is a natural isomorphism

H∗(M ×N ,Q) ∼= H∗(M ,Q)⊗H∗(N ,Q).

2. (Gysin sequence) For smooth embeddings Z ↪→M of codimension c there
is a long exact sequence:

→ Hk−c(Z ,Q)→ Hk(M ,Q)→ Hk(M −Z ,Q)→
In particular, the restriction Hk(M ,Q)→ Hk(M −Z ,Q) is an isomorphism
for k < c− 1.

This helps to do some well known cohomology computations in the language
of stacks:

Example 4.9. Let G be a group acting trivially on a space X. To give a
G−equivariant morphism from a G−bundle on a space T to X is the same as
to give a map T → X, thus [X/G] ∼= X × [pt/G]. And thus

H∗([X/G],Q) ∼= H∗(X,Q)⊗H∗([pt/G],Q).

Let T ∼= (S1)n be a torus. Then BT ∼= (BS1)n, because any T -bundle
is canonically the product of S1-bundles, once an isomorphism T ∼= (S1)n is
chosen. Thus H∗(BT,Q) ∼= H∗(BS1,Q)⊗n.

Finally we want to calculate H∗([pt/S1],Q) ∼= Q[c1] a polynomial ring with
one generator of degree 2. One way to do this is as follows: By the spectral
sequence 4.7 we see that the morphisms [C/C∗] → [pt/C∗] ← [pt/S1] induce
isomorphisms in cohomology, where the action of C∗ on C is the standard
action. This is because H∗(C × (C∗)n,Q) ∼= H∗((S1)n,Q). The same is true
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for [CN/C∗]→ [pt/C]. But here we can use the Gysin sequence: The inclusion
0 → CN induces a closed embedding [pt/C∗] → [CN/C∗] of codimension N .
The open complement [CN − 0/C∗] ∼= CPN−1, because the C∗ action is free
outside the origin. This proves the claim.

For the definition of f! maps in K−theory we need to define normal bundles,
at least for nice representable morphisms:

Lemma/Definition 4.10. Let f : M → N be a representable morphism
of differentiable stacks satisfying one of the following conditions:

1. f is a smooth submersion.
2. f is a smooth embedding.

Let Y p−→ N be any smooth atlas of N . Then normal bundle TM×N Y→Y

descends to a vector bundle TM→N on M . This does not depend on the choice
of Y and is called the normal bundle to f .

Proof. We only need to note that formation of the normal bundle commutes
with pull-back. Therefore the two pull backs of the normal-bundle of M×N →
Y to (M ×N Y )×M (M ×N Y ) are both canonically isomorphic to the normal
bundle to (M ×N (Y ×N Y )→ (Y ×N Y ). Therefore the bundle descends to
a bundle on M .

Since for manifolds formation of the normal bundle commutes with pull-
backs, the same holds for stacks:

Corollary 4.11. If M → N is a morphism as in the above lemma and
g : N ′ → N is an arbitrary morphism, then TM×N N ′→N ′ ∼= g∗TM→N .

Similarly one gets short exact sequences for the normal bundle of a compo-
sition, because the corresponding sequences for an atlas descend.

Tangent spaces to differentiable stacks will only be stack-versions of vector
bundles. Nevertheless define:

Lemma/Definition 4.12 (Tangent stacks). Let M be a differentiable
stack and X →M be a smooth atlas. Then we can take the tangent spaces to
the groupoid X•:

T (X ×M X ×M X) // //// T (X×MX) //// TX

by functoriality this is again a groupoid, the quotient [TX/T (X ×M X)] is
independent of the choice of X and is called TM , the tangent stack to M .
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The fibers of the projection TM → M are isomorphic to [V/W ], where
V,W are finite dimensional vector spaces, and W acts on V by some linear
map W → V , which is not injective in general.

5. S1-Gerbes or twists
Informally a gerbe(2) over some space X is a stack X → X which has the

same points as X, i.e. the points of X are isomorphism classes of objects in
X (pt). An S1-gerbe is a gerbe such that the automorphism groups of all points
pt→X are isomorphic to S1 in a continuous way.

The easiest example of such an object is [pt/S1]→ pt. More generally these
objects occur naturally in many moduli-problems, e.g. every U(n)-bundle with
flat connection on a compact Riemann surface has an automorphism group S1,
in good situations the stack of such objects is a S1-gerbe over the coarse moduli
space. This gerbe gives the obstruction to the existence of a Poincaré bundle
on the coarse moduli-space. Finally these objects seem to appear naturally in
K-theoretic constructions, since the choices of Spinc-structures on an oriented
bundle form a S1-gerbe (locally there is only one such choice, but the trivial
Spinc-bundle has more automorphisms).

Definition 5.1. Let X be a space. A stack X
π−→ X is called a gerbe over

X if
1. π has local sections, i.e., there is an open covering ∪Ui = X and sections

si : Ui →X of π|Ui
.

2. Locally over X all objects of X are isomorphic, i.e., for any two objects
t1, t2 ∈X (T ) there is a covering ∪Ui = T such that t1|Ui

∼= t2|Ui
.

A gerbe X → X is called a (continuous) S1-gerbe if for any T → X, together
with a section s : T →X there is an isomorphism Aut(s) := (T ×X T )×T×T

T ∼= S1 × T as family of groups over T , which is compatible with composition
of morphisms T ′ s′−→ T

s−→X .

Remarks 5.2.
1. As one might expect, the condition that the automorphism group of any

object is S1 implies that for any section s : T →X the map T×X T → T×X T
is an S1-bundle. Since the fibres of this map are given by two points together
with a morphism between the images in X the fibres are S1−torsors. To see
that the map is indeed a locally trivial bundle one can replace T by T ×X T

(2)Gerbe is the french word for sheaf, to avoid another wrong translation (cf. faisceaux,
champ etc.) there seems to be an agreement to keep the french word - or at least its spelling.
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in the above definition to get an isomorphism (T ×X T )×(T×XT ) (T ×X T ) ∼=
S1 × (T ×X T ) (one only has to write down, the functor represented by the
left hand side).

2. An S1-gerbe over a topological/differentiable space X is always a topolog-
ical/differentiable stack, an atlas is given by the sections si. By the previous
remark we know that Ui ×X Ui is a space and the two projections are S1-
bundles, in particular smooth.

This also shows that we might replace the condition that the automorphism
groups are isomorphic to S1 for all objects, by the same condition for sections
of one atlas of X. Representability of arbitrary fibered products T1×X T2 then
follows, since locally over X we can glue S1-bundles. (This definition will be
explained more carefully below.)

3. As in the case of bundles, one there is also a notion of discrete S1-gerbe,
simply by choosing the discrete topology for S1 in the above definition.

4. Any S1-gerbe on a contractible space is trivial, i.e. isomorphic to

X × [pt/S1]→ X.

Perhaps this is obvious. If not, one might reason as follows: Choose a
covering Ui of X with sections si : Ui → X, such that all Ui, Ui ∩ Uj are
contractible. Then Ui ×X Uj → Ui ∩ Uj is a locally trivial S1 bundle, thus
trivial. Therefore the obstruction to glue the sections si gives an element in
H2(X,S1) = 0 (the classification of gerbes will show that this H2 classifies
S1-gerbes).

5. A gerbe with a section is called neutral. Gerbes which are isomorphic to
X × [pt/G]→ X for some group G are called trivial gerbes over X.

We will need a generalization of the above, to include gerbes over topological
stacks M instead of spaces X. Again we only have to replace coverings by
representable morphisms with local sections:

Definition 5.3. Let M be a topological stack. A stack M τ π−→ M is
called a gerbe over M if

1. π has local sections, i.e. there is an atlas X →M and a section s : X →
M τ of π|X .

2. Locally over M all objects of M τ are isomorphic, i.e. for any two objects
t1, t2 ∈ M (T ) and lifts s1, s2 ∈ M τ (T ) with π(si) ∼= ti, there is a covering
∪Ui = T such that s1|Ui

∼= s2|Ui .
A gerbe M τ →M is called a (continuous) S1-gerbe if there is an atlas X p−→
M of M , a section (s : X → M τ , ϕ : π ◦ s ⇒ p) such that there is an
isomorphism Φ : Aut(s/p) := (X ×Mτ X) ×X×M X X ∼= S1 × X as family of



J. Heinloth: Notes on Stacks 21

groups over X, such that on X ×M X the diagram

Aut(s ◦ pr1/p ◦ pr1)
pr∗1Φ

))SSSSSSSSSSSSSS

∼= // Aut(s ◦ pr2/p ◦ pr2)
pr∗2Φ

uukkkkkkkkkkkkkk

X ×M X × S1

,

where the horizontal map is the isomorphism given by the universal property
of the fibered product, commutes (i.e. the automorphism groups of objects of
M̃ are central extensions of those of M by S1).

Example 5.4.
1. The easiest example of a S1-gerbe on a quotient stack [X/G] is given by a

central extension S1 → G̃
pr−→ G, then G̃ also acts on X and pr induces a map

[X/G̃] π−→ [X/G], which defines a gerbe over [X/G]: The atlas X → [X/G]
lifts to [X/G̃], this shows (1). And (2) follows, because locally any map T → G

can be lifted to G̃.
Finally the map S1 → G̃ induces a morphism [X/S1]→ [X/G̃] which induces

an isomorphism X × [pt/S1] ∼= [X/S1]
∼=−→ X ×[X/G] [X/G̃]. This shows the

last condition of the definition.
2. This generalizes to groupoids: An extensions of a groupoid Γ1 // // Γ0

by S1 is a groupoid Γ̃1 //// Γ0 with a morphism: Γ̃1 ////

p

��

Γ0

id

��
Γ1 //// Γ0

such that

p is an S1-bundle and the S1-action commutes with the source and target
morphisms.

As before this defines a S1-gerbe [Γ0/Γ̃1]→ [Γ0/Γ1].

Remarks 5.5.
1. As before a S1-gerbe is always a differentiable stack, the section s : X →

M τ of the particular atlas X →M is an atlas for M τ :
The map s is representable, because by base-change (Lemma 2.6) X ×M

M τ → M τ is representable and the canonical map X → X ×M M τ in-
duced by s is surjective by definition and representable since X ×X×M Mτ X ∼=
Aut(s/p) ∼= S1 ×X.

Thus the free action of Aut(s/p) induces a structure of an S1 bundle on
X ×Mτ X → X ×M X. As in remark 5.2(1) one can prove that this map is a
locally trivial S1-bundle.
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Furthermore, the last condition of the definition ensures, that this defines
an S1–extension of groupoids. Thus every S1 gerbe can be constructed as in
the example given above.

2. Since we just saw that for any T
s−→ M τ π−→ M the group Aut(s/s ◦

π) is representable, locally canonically isomorphic to S1 we get a canonical
isomorphism Aut(s/s ◦ π) ∼= S1 × T . Thus again we could have used this as a
definition of S1-gerbes.

3. Thus we can pull-back gerbes: For any N → M and any S1−gerbe
M τ → M the stack N τ := M τ ×M N is a S1-gerbe over N , since for any
T → N τ we have T ×N N τ = T ×N (N ×M M τ )T = T ×M M τ .

4. A morphism of S1-gerbes is a morphism of the corresponding stacks over-
the base stack, which induces the identity on the central S1 automorphisms of
the objects.

As before we call a gerbe neutral if it has a section. To state this in a different
way recall that for any bundle P on M̃ and any s : T → M̃ we get an action
of Aut(s) on s∗P. In particular for a line bundle L the pull back carries an
S1-action. Thus S1 acts on every fibre by a character χ = ()n : S1 → S1, where
n is some integer, constant on connected components of T resp. M̃ . A line
bundle on M̃ is called of weight n if n is constant on all connected components.

Lemma 5.6. For a S1-gerbe π : M̃ →M the following are equivalent:
1. M̃ →M has a section s.
2. M̃ ∼= [pt/S1]×M as stacks over M .
3. There is a unitary line bundle of weight 1 on M̃ .

Proof: Of course 2. ⇒ 1.. Furthermore, the universal bundle pt → [pt/S1]
is of weight 1, thus 2.⇒ 3..

Given a unitary line bundle of weight 1 we get a morphism M̃ →M ×BS1.
This map induces an isomorphism on automorphism groups of objects, because
the kernel of the map AutM̃ → AutM is S1 and this kernel is mapped isomor-
phically to the automorphisms of S1 bundles, since we started from a bundle
of weight 1. The map is also locally essentially surjective on objects, because
locally every object of M can be lifted to an object of M̃ and locally every
S1-bundle is trivial. And finally the map is a gerbe, since locally all objects in
the fibre are isomorphic. This implies that the map is an isomorphism.

This also shows, that the total space of the S1-bundle is isomorphic to M ,
thus any line bundle of weight 1 induces a section.
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Finally, given a section M → M̃ we get an isomorphism S1×M ∼= M ×M̃
M ×M×M M M = M ×M̃ M . The compatibility condition shows, that this
makes M into an S1-bundle over M . �

Remark 5.7. The descriptions 2. and 3. of the lemma show that line
bundles on M act on trivializations of a S1-gerbe. In description 2. this is
because a morphism to [pt/S1] is the same as a unitary line bundle on M and
in description 3. one sees, that two line bundles of weight 1 differ by a line
bundle on M .

There is a description of isomorphism classes of gerbes in terms of cocycles,
see for example [Bre94] and [Cra]. We write S 1 for the sheaf of continuous
sections of the trivial bundle S1 ×M →M :

Proposition 5.8.
1. Let M be a topological stack. Then there is a natural bĳection

{Isom. classes of S1-gerbes over M } ∼= H2(M ,S 1).

The same holds if S1 is replaced by any abelian, topological group.
2. If M is a differentiable stack such that the diagonal ∆ : M → M ×

M is proper, then the boundary map of the exponential sequence induces an
isomorphism H2(M ,S 1)

∼=−→ H3(M ,Z).

Indication of the proof: The two parts of the theorem are of very different
nature, they are only put in one statement, because the cocycles in (2), called
Dixmier-Douady classes, are often used to characterize gerbes.

For the first part we will first describe how to associate a cohomology class
to a gerbe M τ .

Choose an atlas X →M which is the disjoint union of contractible spaces,
e. g., take any atlas Y and then chose a covering of Y by contractible spaces.
We use the spectral sequence Hp(X×

q+1
M ,S 1) ⇒ Hp+q(M ,S 1) to calculate

H2(M ,S 1). By the choice of X this is:

H2(X, S 1) = 0 . .

H1(X, S 1) = 0 H1(X ×M X, S 1)
d1 //

d2

++WWWWWWWWWWWW H1(X
×3

M , S 1)
.

H0(X, S 1) // H0(X ×M X, S 1)
d1 //

H0(X
×3

M , S 1)
d1 //

H0(X
×4

M , S 1)
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Where the differentials d1 are given by the alternating sum over the pull-
backs (since the spectral sequence is constructed from a simplicial object by
taking alternating sums of the simplicial maps).

As explained before the choice of a trivialization of the pull-back X
s−→

Xτ = X ×M M τ of M τ to X induces a map p̃ : X →M τ and an S1-bundle

P := X ×Mτ X = Isom(p̃ ◦ p1, p̃ ◦ p2)→ Isom(p ◦ p1, p ◦ p2) = X ×M X

thus a class in H1(X ×M X,S 1).
This actually lies in the kernel of d1, because on X×

3
M the composition

induces an isomorphism

Φ123 : Isom(p̃ ◦ p1, p̃ ◦ p2)⊗ Isom(p̃ ◦ p2, p̃ ◦ p3)
∼=−→ Isom(p̃ ◦ p1, p̃ ◦ p3).

We will see below, that the associativity of the composition exactly means
that this also lies in the kernel of d2. Furthermore we may view Φ123 as a sec-
tion of the bundle p∗12P⊗p∗23P⊗(p∗13P )−1. This shows that the choices of Φ123,
which define an associative composition form a torsor for ker(H0(X×

3
M ,S 1)→

H0(X×
4
M ,S 1)). Two such choices define isomorphic gerbes, whenever we

change Φ123 by an automorphism of P , i.e., an element of H0(X×
2
M ,S 1).

To see that this construction defines an element in H2(M ,S 1) we have to
check that the we found an element in the correct extension of the E11

2 by the
E0,2

2 term and that the differential d2 corresponds to associativity. Accepting
this for a moment, we see that the process can be reversed:

Cohomology classes as above can be used to glue a groupoid over X×MX →
X. The boundary maps in the spectral sequence assure the associativity of
the composition. (One should note that in the construction Φ123 also defines
isomorphisms P−1 ∼= tw∗P where tw = ()−1 : X ×M X → X ×M X is the
inverse map of the groupoid X×•M , and trivialization of the restriction of P to
the diagonal P |∆(X).)

To analyze the differentials of the spectral sequence we have to recall its
construction: We have to chose acyclic resolutions of S1 on X×

i
M . Thus we

choose a covering X2
α of X×M X such that all the intersections X2

α1
∩· · ·∩X2

α3

are acyclic (this condition could be avoided if we would allow for another index).
Then we chose a covering X3

β of X×3
M which has the same property, such that

all projections prij : X×
3
M → X×

2
M map X3

β to some X2
prij(β). We do the same

for X×4
M and get a covering X4

γ . Taking global sections of S1 over these spaces
we get a double complex from which the spectral sequence is induced, the
total complex calculates H∗(M ,S 1). Thus writing X2

αα′ for the intersection
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X2
α ∩X2

α′ we calculate H2(M ,S 1) as the cohomology of:⊕
α

H0(X2
α) d1−→

⊕
α,α′

H0(X2
αα′ ,S

1)⊕
⊕

β

H0(X3
β ,S

1)

d2−→
⊕

αα′α′′

H0(X2
αα′α′′ ,S

1)⊕
⊕
β,β′

H0(X3
ββ′ ,S

1)⊕
⊕

γ

H(X4
γ ,S

1)

And the differentials are the sum of the simplicial and the covering differentials.
Thus the components of d2 are:

d2(sαα′ , sβ)α,α′,α′′ = sαα′s
−1
αα′′sα′α′′

d2(sαα′ , sβ)β,β′ = pr
∗
12spr12(β)pr12(β′)pr

∗
13s

−1
pr13(β)pr13(β′)pr

∗
23spr23(β)pr23(β′) − sβ + sβ′

d2(sαα′ , sβ)γ = pr
∗
123spr123(γ)pr

∗
124s

−1
pr124(γ)pr

∗
134spr134(γ)pr

∗
234s

−1
pr234(γ)

More precisely, the indices on the right hand side depend on the projections.
If the first component is zero sαα′ defines an S1-bundle P on X ×M X. The
vanishing of the second summand assures that sβ defines a section of pr∗12P ⊗
pr13 ∗ P−1 ⊗ pr∗23P . And finally the third summand guarantees associativity
as claimed.

�(1)

The second part of the proposition depends on the existence of a Haar-
measure on compact groupoids (i.e. groupoids defining stacks with proper
diagonal M →M ×M , in particular all automorphism groups of objects are
proper over the parameter space).

Using this Crainic [Cra] shows that a generalization of the Poincaré lemma
holds for such stacks, i.e. the sheaves of continuous R-valued functions are
acyclic. Therefore by the exponential sequence H2(M ,S 1) ∼= H3(M ,Z).

�

Remark 5.9. As one might expect from the proof above, the group struc-
ture of H2(X,S 1) can also be implemented as an operation on stacks: Given
S1-gerbes M τ , M τ ′ on M one can take the fibred product M τ×M M τ ′ , which
is an S1 × S1 and forget the anti-diagonal S1−automorphisms. To avoid tech-
nical arguments we can simply choose an atlas X →M on which both gerbes
are trivial. Then we have already seen that X ×Mτ×M Mτ′ X → X ×M X is
an S1 × S1-bundle and the multiplication S1 × S1 → S1 defines an associated
S1-bundle X1 → X ×M X and it is not difficult to check, that this defines a
groupoid X1 //// X .

In the special case of quotient stacks and gerbes given by two group exten-
sions this is simply the Yoneda product of extensions.
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Another description of gerbes is via projective bundles. Given any (possibly
finite dimensional) Hilbert space H. One gets an exact sequence of groups:

1→ S1 → U(H)→ PU(H)→ 1

By the first example of gerbes this defines an S1–gerbe BU→ BPU. In parti-
cular for any PU bundle P on a space X we can pull back this gerbe to X via
the classifying morphism X → BPU. The category of sections X×BPUBU(T ) is
the category of U bundles on T together with an isomorphism of the associated
PU bundle and the pull back of P to T .

This shows that the gerbe obtained in this way corresponds to the image of
P under the boundary map δ : H1(X,PU)→ H2(X,S 1). In particular if H is
n-dimensional we may factorize this map via the sequence:

0→ Z/nZ→ SU(n)→ PU(n)→ 0,

i.e., the classes obtained in this way are n-torsion.
For the purpose of this Seminar it will be sufficient to note that the gerbes

that arise naturally in K−theory are always obtained by PU bundles, this will
be explained in the next section.

If X is a manifold (and not a stack), then the fact that BPU is a K(Z, 3)-
space (if H is an infinite dimensional Hilbert space) shows, that δ is an isomor-
phism, thus any S1 gerbe arises in this way.

This is less clear for differentiable stacks, and Proposition 2.38 in [LTX]
gives the result. Unfortunately, since I am not an analyst, their proof is to
short for me. In section 6 we will prove that all S1-gerbes arise from projective
bundles, if the stack is a local quotient stack, a notion also defined in that
section.

In K-theory one can define Thom-isomorphisms for Spinc-bundles and one
can do the same for bundles on stacks (although one has to be a bit careful
with the definition the Thom-space of a bundle). As remarked before the
choices of Spinc-structure define a S1 gerbe, simply pulling back the universal
gerbe BSpinc → BSU(n). Thus every bundle P on a a space X defines a
gerbe Xτ → X such that the pull back of P to Xτ has a canonical Spinc-
structure. (We get a stack and not a space, because the sequence of groups
is S1 → Spinc → SO in contrast to orientation problems where the cokernel
imposes the obstruction).

If the bundle is not orientable one first has to chose some Z/2 covering on
which one chooses an orientation. And then one takes the above gerbe on the
orientation covering.
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Again one has to be careful defining a group structure on these objects, since
if we have two bundles which admit Spinc-structures on the orientation cover,
their tensor product does not necessarily admit a Spinc structure on the sum
of the orientation coverings.

The obstruction comes from the universal example on BZ/2 × BZ/2 and
this gives a geometric description of the cup product of two torsion-classes:

Lemma 5.10. Given finite abelian groups A,B,C and a bilinear form <
,>: A×B → C, then:

1. <,> defines an abelian extension 0 → C → G → A × B → 0 by the
cocycle σ(a, b, a′, b′) =< a,−b′ > + < a′,−b >.

2. Given an A-bundle PA and a B-bundle PB on a space X corresponding
to classes c(PA) ∈ H1(X,A), c(PB) ∈ H1(X,B). Define a C gerbe on X, given
by the pull back of the gerbe BG→ BA×BB defined in (1), via the classifying
map X → BA×BB. The Dixmier Douady class of this gerbe is the cup product
c(PA) ∪ c(PB).

Proof. Since the cup product commutes with pull-backs, we only may assume
X = BA×BB and take PA, PB the universal bundles.

In this case the standard atlas pt→ BA×BB is acyclic, as well as all fibered
products pt×B(A×B) · · · ×B(A×B) pt.

Thus the spectral sequence we used to calculate the Dixmier-Douady classes
is a complex. The class of the universal C-gerbe therefore is given by the cocycle
s(a, b, a′, b′) =< a,−b′ > + < a′,−b >. And the same cocycle represents the
cup-product.

6. Local quotient stacks
Freed, Hopkins and Teleman define K−functors only for local quotient

stacks, so we need to introduce this concept and we show that for these stacks
any gerbe arises from a projective Hilbert bundle, and the latter is almost
uniquely determined by the gerbe. References for this section are [FHT],[LTX]
and the preprint of Atiyah and Segal [AS].

Definition 6.1. A differentiable stack M is called a local quotient stack if
there is a covering Ui of M by open substacks, such that each Ui

∼= [Ui/Gi],
where Gi is a compact Lie group acting on a manifold Ui.

Quite a lot of stacks have this property, a very general result was recently
given in [Zun]. Of course if a stack M is a local quotient stack, then the
diagonal M →M ×M is proper. We say that M has proper isotropy.
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By the standard slice theorems (e.g. [DK00] Chapter 2) to be a local
quotient stack is a local property as follows (note that we assumed the Lie
groups to be compact):

Lemma 6.2. (To be local quotient stack is a local property) Let M be a local
quotient stack, X →M an atlas. Given a point x ∈ X and x ∈ U ⊂ X open
there is an open substack U ⊂ M together with a presentation U ∼= [Y/G]
where G is a compact Lie group acting on a contractible manifold Y , and a
commuting diagram:

U // M

Y

f

OO

// [Y/G]

OO

and x ∈ Im(f).

Corollary 6.3. Any S1-gerbe on a local quotient stack is again a local quo-
tient stack.

Proof of Lemma 6.2. Shrinking M we may assume that M ∼= [X ′/G′] is a
global quotient stack. Further we may assume that X = X ′, because the
projections of the fibered product X ′ ← X ×M X ′ → X are submersions, thus
we may choose a preimage x̃ of x in the fibered product and a local section
X ′ ⊃ U → X ′ ×M X passing through x̃.

But now we can find a contractible slice of the group action, which gibes us
a local presentation as U = [D/StabG(x)] , where D is a ball and the action of
the stabilizer of x comes from the linear action on the tangent space at x.

Proof of Corollary 6.3. We may assume M = [X/G] is a global quotient. Since
gerbes on contractible spaces are trivial, we may apply the last lemma to get a
covering of M by open substacks of the form [Y/H] such that the given gerbe is
trivial on Y . Since Y is contractible, the gerbe is induced form a S1−extension
of H.

To end the section on local quotient stacks, we want to show that for these
stacks any S1-gerbe is defined by a projective bundle, which can be chosen in
an almost canonical way (up to non canonical isomorphism). To this end we
first need the concept of a universal Hilbert bundle, as defined in [FHT].
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Definition 6.4 (Freed, Hopkins, Teleman [FHT])
A Hilbert bundle H on a differentiable stack M is called universal if any

other Hilbert bundle H ′ is a direct summand of H. A universal Hilbert bundle
is called local if its restriction to any open substack is universal.

Lemma 6.5 ([FHT] C.3). A universal bundle H on a stack M has the
absorption property: For any Hilbert bundle H ′ on M there is an isomorphism
H ⊕H ′ ∼= H.

The basic proposition is:

Proposition 6.6 ([FHT] C.4). Let M be a local quotient stack. Then
there exists a universal Hilbert H bundle on M . This bundle is local, and its
group of unitary automorphisms is weakly contractible.

We sketch the argument of [FHT]: On manifolds all Hilbert bundles are
trivial, because the infinite unitary group U is contractible. Now let M be a
global quotient stack [X/G] (G a compact Lie group). Let π : X → [X/G] be
the universal G bundle on [X/G]. Then for any Hilbert bundle H on [X/G]
the bundle π∗H is trivial, and there is a canonical injection H → π∗π

∗H ,
where π∗ means the bundle of fiber wise L2 sections. Thus π∗ of the trivial
Hilbert bundle on X is a universal bundle which is local.

Now the global automorphisms of this Hilbert bundle areG-equivariant maps
from X → U(H ⊗ L2(G)), and the space of these maps is contractible ([AS]
Proposition A3.1). Thus for a local quotient stack one can glue the local bundles
and the result is unique up to isomorphism. Thus it gives a universal bundle
on M .

6.1. S1-gerbes on local quotient stacks. To see that any S1 gerbe
arises from a projective bundle one is tempted to use the cohomology sequence
coming from the short exact sequence 1→ S1 → U→ PU→ 1. Unfortunately
there is no nice definition of H2 for non-abelian groups, therefore we need some
preparations, to get canonical elements in H1(M ,PU).

First we need an absorption property for projective bundles, which I learned
from [AS].

Lemma 6.7. Let M be any topological stack.
1. The tensor product induces a map

⊗ : H1(M ,U)×H1(M ,PU)→ H1(M ,PU).
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2. The tensor product does not change the induced gerbe, i.e., denote by ∂
the boundary map ∂ : H1(M ,PU)→ H2(M ,S 1), then for any Hilbert bundle
H and any projective bundle P on M we have ∂(H ⊗ P ) = ∂(P ).

Proof. Any isomorphismH⊗H ∼= H induces a group homomorphism U×PU→
PU. This is well defined up to inner automorphisms of PU.

For the second part we only have to note that the choice of a Hilbert U
structure on P also induces one on H ⊗ P , and this is compatible with the
S1 action on U, thus the gerbes coming from the obstruction to such a lift are
isomorphic.

Definition 6.8. (Atiyah-Segal(3) [AS]) A projective Hilbert bundle P (i.e.
a PU-Bundle) on a differentiable stack M has the absorption property if for
any Hilbert bundle H on M there is an isomorphism H ⊗ P ∼= P .

We denote the set of isomorphism classes of projective bundles having the
absorption property by H1(M ,PU)abs.

Remark 6.9. If Huniv is a universal Hilbert bundle on a stack M and P
is any projective bundle, then Huniv ⊗ P has the absorption property.

Lemma 6.10. Let M be any differentiable stack. Then the map
H1(M ,PU)abs → H2(M ,S 1)

is injective.

Proof. Let P be a projective bundle, having the absorption property and let
π : M̃ →M be the S1-gerbe of Hilbert bundle structures on P . Then π∗P ∼=
P(H) for some Hilbert bundle H on M̃ .

Aside on weights: Because S1 is canonically contained in the automorphism
group of any object of M̃ , it acts on the sections of any Hilbert bundle H on
M . Thus the canonical decomposition of the sheaf of sections of H induces
a decomposition o H = ⊕i∈ZHi, according to the characters of S1, called
weights. Bundles of weight 0 – i.e. bundles for which H = H0 – are pull-backs
of Hilbert bundles on M . Bundles of weight 1 – i.e. H = H1 – are exactly
the bundles, which induce projective bundles on M whose associated gerbe is
M̃ .

Thus in our situation H is a bundle of weight 1 and we want to show, that
it has the absorption property for Hilbert bundles of weight 1 on M̃ . Let H ′

be an irreducible Hilbert bundle of weight one on M̃ . Then H ⊗H ′,∗ has

(3)In their article [AS] this property is called regular, we keep the terminology of [FHT]
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weight 0, thus H ⊗H ′∗ ∼= π∗(HM ). Since P has the absorption property,
we know that H ∼= H ⊗ π∗(H ′′∗)⊗. Thus H ⊗H ′∗ has a non vanishing
section (even countably many linear independent sections), which proves the
absorption property.

By uniqueness of universal bundles this shows that H is determined by the
gerbe.

Remark 6.11. If there is a universal Hilbert bundle on M , which is local,
then the restriction to open substacks preserves the absorption property. And
conversely it is then enough to check this property locally.

Proposition 6.12. Every S1-gerbe on a local quotient stack M comes from
a projective bundle. Moreover, the natural map

H1(M ,PU)abs → H2(M ,S 1)

is an isomorphism.

Proof. Let M̃ be an S1-gerbe on M . By Lemma 6.3 this is again a local
quotient stack and therefore it has a universal Hilbert bundle H̃ . As in the
previous lemma, we denote the direct summand of weight 1 of H̃ by H̃1. This
bundle is non-trivial, since it is locally the gerbe is defined by a group extension,
thus locally the bundle is non trivial. Thus H̃1 defines a projective bundle on
M , which gives the gerbe.
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