
Appendix A 

Hermite polynomials and Hermite functions 

Real Hermite polynomials are defined to be 

which are coefficients in expansion of power series for exp{ tu - t 2 /2} as function 

of t: 

By this expansion formula we have: 

Theorem A.1 Hermite polynomials have the following expression: 

Conversely, 
[n/2] 

n _ ,'" H n - 2k (U) 
u - n. L...J 2k k!(n _ 2k)!' n E INo. 

k=O 

{Hn' n E IN} satisfy the following differential equations 

H~(u) = nHn- 1 (u), 

H~(u) - uH~(u) + nHn(u) = 0, 

and recursion formula: 

Ho(u):=I, H 1(u)=u, 

Hn+l(U) = uHn(u) - nHn_ 1(u), 

as well as multiplication formula: 

n:2: 1, 

n:2:0 

n:2:1, 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 
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Moreover, for any), E IR it holds that 

[n/2] (),2 _ I)k ),n-2k 
Hn(>\u) = n! L kk'( _ k)' Hn- 2k(U). 

k=O 2 . n 2 . 
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(A.9) 

Proof. Replacing the power series of etu and e- t2 / 2 with respect to t 

into eq. (A.2) and comparing the coefficients of tn on both sides, we obtain 
eqs. (A.3) and (AA). Differentiating eq. (A.2) with respect to u and comparing 
the coefficients of power series we get (A.5) and (A.6). Again from eq. (A.2) we 
know 

= ~ (s+t)j H.( )~ sktk 
6 ., J U 6 k' 
j=O J. k=O' 

= ~ Hj(u) ~ (j)i+ktj - 1+k 
.6 j!k! 6 l . 
J,k=O 1=0 

Letting l + k = m, j - l + k = n in the last expression, we have 

00 mtn mAn ( ) ( ) L ~!n! L k! 7 ~ Hm+n- 2k. 
m,n=O k=O 

The multiplication formula (A.8) is obtained by comparing the coefficients of 
smtn. In particular, the recursion formula (A.7) is obtained by letting m = 1 in 
eq. (A.8). Finally, it follows from eq. (A.2) that 

Letting j + 2k = n in the last expression, we obtain 

00 [n/2] (),2 _ I)k ),n-2k 

~ tn ~ 2kk!(n _ 2k)! Hn- 2k (U), 

by comparing the coefficients of tn, we then have eq. (A.9). • 
Considering the Gaussian measure on 1R: 

'Y(du) = (27r)-1/2exp{ -u2 /2}du 
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and the Hilbert space L 2(lR,'Y), we have 

TheoreIYl A.2 Hermite polynomials constitute an orthogonal system in 
L2(lR,'Y) : 

m,n E INa. (A. 10) 

Denote i = A. Then 

n E INa, (A.ll) 

moreover, 

n E INa. (A.12) 

When t2 < 1, we have 

(A.13) 

Proof. It follows from eq. (A.2) that 

r { S2 + t 2 } = 1lR exp (s + t)u - -2- 'Y(du) 

=exp{_s2;t2 +(s~t)2}=est 

= ~ (st)n. 
L..J n! 
n=O 

Comparing the coefficients of smtn we obtain eq. (A.lO). Using contour integra-
tion we have 

1m. exp{t(u ± iv)h(dv) = exp { tu - ~}. 

By expansion in power series of t (using eq. (A.2) for right-hand side) and com­
paring the coefficients of tn we prove eq. (A.ll). From eq. (A.ll) we know 

Hn(u + v) = IlR (u + V + iyt'Y(dy) 

= t (~)uk h (v+iy)n-k'Y(dy), 
k=O lR 
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which implies eq. (A.12). Again by eq. (A.ll) we have 

= iJRL exp{t(u + ix)(v + iY)h(dx)"'((dy). 

A direct computation of the integral yields eq. (A.13). • 
It follows from eq. (A.4) and multiplication formula (A.8) that Hermite poly­

nomials constitute a linear base of polynomial ring. In view of eq. (A.lO) and 
density of polynomials in L2(JR, ,), we know that {(n!)-1/2 Hn} is an orthonor­
mal base of L2(JR, ,). Now consider the Hilbert space L2(JR) = L2(JR, du), where 
du is Lebesgue measure. For f E L2(JR), define 

(A.14) 

Then 

Moreover, 
(A.15) 

Hence J : L2(JR) --t L2(JR,,) is an isomorphism for Hilbert spaces. Let 

hn(u) == (n!)-1/2J- 1Hn(u) 

= (n!)-1/2 7r-l/4e-u2 /2 Hn( vlzu). (A.16) 

Then {h n , n E IN o} constitute an orthonormal base of L2 (JR). They are called 
Hermite functions. By definition and properties of Hermite polynomials we have 

n?1. (A.17) 

In addition, the following estimates are very useful, for the proof see Hille­
Phillips[l] or G.Szego[I]. 

Theorem A.3 For any fixed u E JR, we have 

Moreover, 

hn(u) = O(n-l/4), 

ioU hn(v)dv = O(n-3 / 4 ). 

IlhnilLOO == sup Ihn(u)1 = O(n-l/12), uEJR 
IIhnllL' == L Ihn(u)ldu = O(n1/4). 

(A.18) 

(A.19) 

(A.20) 

(A.21) 
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(A.22) 

More precisely, we may take c = 1.2 in the above inequality and (A.22) is then 
called Cramer's estimate (cf. Erdelyi[1],p.208). 


