Appendix A

Hermite polynomials and Hermite functions

Real Hermite polynomials are defined to be

$$H_n(u) \equiv (-1)^n e^{u^2/2} \frac{d^n}{du^n} e^{-u^2/2}, \quad u \in \mathbb{R}, n \in \mathbb{N}_0,$$
(A.1)

which are coefficients in expansion of power series for $\exp\{tu - t^2/2\}$ as function of t:

$$\exp\{tu - t^2/2\} = \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(u), \quad t, u \in \mathbb{R}.$$
 (A.2)

By this expansion formula we have:

Theorem A.1 Hermite polynomials have the following expression:

$$H_n(u) = n! \sum_{k=0}^{[n/2]} \frac{(-1)^k u^{n-2k}}{2^k k! (n-2k)!}, \quad n \in \mathbb{N}_0.$$
(A.3)

Conversely,

$$u^{n} = n! \sum_{k=0}^{[n/2]} \frac{H_{n-2k}(u)}{2^{k}k!(n-2k)!}, \quad n \in \mathbb{N}_{0}.$$
 (A.4)

 $\{H_n, n \in \mathbb{N}\}$ satisfy the following differential equations

$$H'_{n}(u) = nH_{n-1}(u), \qquad n \ge 1,$$
 (A.5)

$$H_n''(u) - uH_n'(u) + nH_n(u) = 0, \qquad n \ge 0$$
 (A.6)

and recursion formula:

$$\begin{aligned} H_0(u) &\equiv 1, \qquad H_1(u) = u, \\ H_{n+1}(u) &= u H_n(u) - n H_{n-1}(u), \qquad n \geq 1, \end{aligned}$$
 (A.7)

as well as multiplication formula:

$$H_m(u)H_n(u) = \sum_{k=0}^{m \wedge n} k! \binom{m}{k} \binom{n}{k} H_{m+n-2k}(u).$$
(A.8)

Appendix A Hermite polynomials and Hermite functions

Moreover, for any $\lambda \in I\!\!R$ it holds that

$$H_n(\lambda u) = n! \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(\lambda^2 - 1)^k \lambda^{n-2k}}{2^k k! (n-2k)!} H_{n-2k}(u).$$
(A.9)

Proof. Replacing the power series of e^{tu} and $e^{-t^2/2}$ with respect to t into eq. (A.2) and comparing the coefficients of t^n on both sides, we obtain eqs. (A.3) and (A.4). Differentiating eq. (A.2) with respect to u and comparing the coefficients of power series we get (A.5) and (A.6). Again from eq. (A.2) we know

$$\sum_{m,n=0}^{\infty} \frac{s^m t^n}{m!n!} H_m(u) H_n(u) = \exp\left\{ (s+t)u - \frac{(s+t)^2}{2} + st \right\}$$
$$= \sum_{j=0}^{\infty} \frac{(s+t)^j}{j!} H_j(u) \sum_{k=0}^{\infty} \frac{s^k t^k}{k!}$$
$$= \sum_{j,k=0}^{\infty} \frac{H_j(u)}{j!k!} \sum_{l=0}^{j} \binom{j}{l} s^{l+k} t^{j-l+k}.$$

Letting l + k = m, j - l + k = n in the last expression, we have

$$\sum_{m,n=0}^{\infty} \frac{s^m t^n}{m!n!} \sum_{k=0}^{m \wedge n} k! \binom{m}{k} \binom{n}{k} H_{m+n-2k}.$$

The multiplication formula (A.8) is obtained by comparing the coefficients of $s^m t^n$. In particular, the recursion formula (A.7) is obtained by letting m = 1 in eq. (A.8). Finally, it follows from eq. (A.2) that

$$\begin{split} \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(\lambda u) &= \exp\left\{\lambda tu - \frac{t^2}{2}\right\} \\ &= \exp\left\{\lambda tu - \frac{\lambda^2 t^2}{2} + \frac{(\lambda^2 - 1)t^2}{2}\right\} \\ &= \sum_{j=0}^{\infty} \frac{(\lambda t)^j}{j!} H_j(u) \sum_{k=0}^{\infty} \frac{(\lambda^2 - 1)^k t^{2k}}{2^k k!}. \end{split}$$

Letting j + 2k = n in the last expression, we obtain

$$\sum_{n=0}^{\infty} t^n \sum_{k=0}^{[n/2]} \frac{(\lambda^2 - 1)^k \lambda^{n-2k}}{2^k k! (n-2k)!} H_{n-2k}(u),$$

by comparing the coefficients of t^n , we then have eq. (A.9).

Considering the Gaussian measure on $I\!\!R$:

$$\gamma(du) \equiv (2\pi)^{-1/2} \exp\{-u^2/2\} du$$

and the Hilbert space $L^2(I\!\!R,\gamma)$, we have

Theorem A.2 Hermite polynomials constitute an orthogonal system in $L^2(\mathbb{R},\gamma)$:

$$\int_{\mathbb{R}} H_m(u) H_n(u) \gamma(du) = n! \delta_{mn}, \qquad m, n \in \mathbb{N}_0.$$
(A.10)

Denote $i = \sqrt{-1}$. Then

$$H_n(u) = \int_{\mathbb{R}} (u \pm iv)^n \gamma(dv), \qquad n \in \mathbb{N}_0, \tag{A.11}$$

moreover,

$$H_n(u+v) = \sum_{k=0}^n \binom{n}{k} u^k H_{n-k}(v), \qquad n \in \mathbb{N}_0.$$
 (A.12)

When $t^2 < 1$, we have

$$\sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(u) H_n(v) = \frac{1}{\sqrt{1-t^2}} \exp\left\{-\frac{t^2 u^2 - 2tuv + t^2 v^2}{2(1-t^2)}\right\}.$$
 (A.13)

Proof. It follows from eq. (A.2) that

$$\begin{split} &\sum_{m,n=0}^{\infty} \frac{s^m t^n}{m!n!} \int_{\mathbb{R}} H_m(u) H_n(u) \gamma(du) \\ &= \int_{\mathbb{R}} \exp\left\{ (s+t)u - \frac{s^2 + t^2}{2} \right\} \gamma(du) \\ &= \exp\left\{ -\frac{s^2 + t^2}{2} + \frac{(s+t)^2}{2} \right\} = e^{st} \\ &= \sum_{n=0}^{\infty} \frac{(st)^n}{n!}. \end{split}$$

Comparing the coefficients of $s^m t^n$ we obtain eq. (A.10). Using contour integration we have

$$\int_{I\!\!R} \exp\{t(u\pm iv)\}\gamma(dv) = \exp\left\{tu - \frac{t^2}{2}\right\}.$$

By expansion in power series of t (using eq. (A.2) for right-hand side) and comparing the coefficients of t^n we prove eq. (A.11). From eq. (A.11) we know

$$egin{aligned} H_n(u+v) &= \int_{I\!\!R} (u+v+iy)^n \gamma(dy) \ &= \sum_{k=0}^n inom{n}{k} u^k \int_{I\!\!R} (v+iy)^{n-k} \gamma(dy), \end{aligned}$$

254

Appendix A Hermite polynomials and Hermite functions

which implies eq. (A.12). Again by eq. (A.11) we have

$$\begin{split} &\sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(u) H_n(v) \\ &= \int_{I\!\!R} \int_{I\!\!R} \exp\{t(u+ix)(v+iy)\} \gamma(dx) \gamma(dy). \end{split}$$

A direct computation of the integral yields eq. (A.13).

It follows from eq. (A.4) and multiplication formula (A.8) that Hermite polynomials constitute a linear base of polynomial ring. In view of eq. (A.10) and density of polynomials in $L^2(\mathbb{R}, \gamma)$, we know that $\{(n!)^{-1/2}H_n\}$ is an orthonormal base of $L^2(\mathbb{R}, \gamma)$. Now consider the Hilbert space $L^2(\mathbb{R}) = L^2(\mathbb{R}, du)$, where du is Lebesgue measure. For $f \in L^2(\mathbb{R})$, define

$$Jf(u) \equiv \pi^{1/4} e^{u^2/4} f(u/\sqrt{2}).$$
 (A.14)

Then

$$\|Jf\|_{L^{2}(I\!\!R,\gamma)}^{2} = \|f\|_{L^{2}(I\!\!R)}^{2}$$

Moreover,

$$J^{-1}f(u) = \pi^{-1/4} e^{-u^2/2} f(\sqrt{2}u).$$
 (A.15)

Hence $J : L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R}, \gamma)$ is an isomorphism for Hilbert spaces. Let

$$h_n(u) \equiv (n!)^{-1/2} J^{-1} H_n(u)$$

= $(n!)^{-1/2} \pi^{-1/4} e^{-u^2/2} H_n(\sqrt{2}u).$ (A.16)

Then $\{h_n, n \in \mathbb{N}_0\}$ constitute an orthonormal base of $L^2(\mathbb{R})$. They are called *Hermite functions*. By definition and properties of Hermite polynomials we have

$$h'_{n}(u) + uh_{n}(u) = \sqrt{2n}h_{n-1}(u), \qquad n \ge 1.$$
 (A.17)

In addition, the following estimates are very useful, for the proof see Hille-Phillips[1] or G.Szegö[1].

Theorem A.3 For any fixed $u \in \mathbb{R}$, we have

$$h_n(u) = O(n^{-1/4}),$$
 (A.18)

$$\int_{0}^{u} h_{n}(v)dv = O(n^{-3/4}).$$
 (A.19)

Moreover,

$$||h_n||_{L^{\infty}} \equiv \sup_{u \in \mathbf{R}} |h_n(u)| = O(n^{-1/12}),$$
 (A.20)

$$||h_n||_{L^1} \equiv \int_{I\!\!R} |h_n(u)| du = O(n^{1/4}).$$
 (A.21)

Appendix A Hermite polynomials and Hermite functions

Since
$$H_n(u) = (n!)^{1/2} \pi^{1/4} e^{u^2/4} h_n(u/\sqrt{2})$$
, it follows from (A.20) that
 $|H_n(u)| \le c(n!)^{1/2} e^{u^2/4}$. (A.22)

More precisely, we may take c = 1.2 in the above inequality and (A.22) is then called Cramér's estimate (cf. Erdélyi[1], p.208).