Appendix A

Hermite polynomials and Hermite functions

Real Hermite polynomials are defined to be
2/ d™
Hy(u) = (1) /2?6“2/2, u€ R,n € INo, (A.1)

which are coefficients in expansion of power series for exp{tu — t?/2} as function
of t:

oo
tn
exp{tu — t?/2} = Z HHn(u), t,u € R. (A.2)
n=0
By this expansion formula we have:
Theorem A.1 Hermite polynomials have the following expression:

(n/2] (=1)kun—2k

=n! ~
H,(u) = n! ky:o 2R " © IN. (A.3)
Conversely,
[n/2] o
" =nl 22,%,("_2 e No. (A4)

{H,, n € IN} satisfy the following differential equations

H),(u) =nHp,_1(u), n>1, (A.5)
H!/(u) — uH],(u) + nH,(u) = 0, n>0 (A.6)

and recursion formula:

Hyo(u) =1, Hi(u)=u,
H,1(u) = uHp(u) — nHp—1(u), n>1, (A7)

as well as multiplication formula:

Hy(w) Hy (u) = gk! (’Z) (Z) Hoon—ai (1) (A.8)
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Moreover, for any A € IR it holds that

[n/2] k yn—2k
(A2 = 1)kAn
)\u) = n' E mHn_zk(u). (Ag)
Proof.  Replacing the power series of e and e~*/2 with respect to t

into eq. (A.2) and comparing the coefficients of t™ on both sides, we obtain
egs. (A.3) and (A.4). Differentiating eq. (A.2) with respect to v and comparing
the coefficients of power series we get (A.5) and (A.6). Again from eq. (A.2) we
know

el mtn

> °
m!n!

m,n=0

s+ 1)2
H,(u)Hp(u) = exp{(s +t)u — (s+¢) + st}

2
=
J=0

( 0 ktk

©, smn LT m\ (n
!
> min! & k(k) (k) Hunin—2k-

The multiplication formula (A.8) is obtained by comparing the coefficients of
s™t™. In particular, the recursion formula (A.7) is obtained by letting m = 1 in
eq. (A.8). Finally, it follows from eq. (A.2) that

o0

ZﬂH (Au) = ex; )\tu—ﬁ
n " - oxp 2

n=0
242 2 _ 12
exp{)\tu— At + (A 5 ) }

2
_ (,\t — 1)kt2k
= Z = Hi () Z >
=0
Letting j 4+ 2k = n in the last expression, we obtain
o [n/2] 2k
n 1)k~
Zt > ‘m n—2k (1),
k=0
by comparing the coefficients of t*, we then have eq. (A.9). 1

Considering the Gaussian measure on IR:

y(du) = (2r) " 2exp{—u?/2}du
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and the Hilbert space L?(IR,7), we have

Theorem A.2 Hermite polynomials constitute an orthogonal system in
L*(R,) :

/RHm(u)Hn(u)'y(du) = nldmn, m,n € INg. (A.10)

Denote i = /—1. Then

Hy,(u) = / (u £ 3v)™y(dv), n € INy, (A.11)
R
moreover,
H,(u+v) = g (:) uan_k(v), n € INy. (A.12)

When t? < 1, we have

o t" 1 t2u? — 2tuv + t2o?
ST, = ————exp{ — . .
2 (w)Hp(v) — exp{ 0= %) } (A.13)

Proof. 1t follows from eq. (A.2) that

Py I ACLAGIES

m,n=0

z/mexp{(su)u— 32;t2}7(du)

2 4 42 2
+t +1
——eXp{—s 2 +(s 3 ) }——e”

Comparing the coefficients of s™¢"™ we obtain eq. (A.10). Using contour integra-
tion we have

/]R exp{t(u % iv)}y(dv) = exp{tu - g}

By expansion in power series of ¢ (using eq. (A.2) for right-hand side) and com-
paring the coefficients of t™ we prove eq. (A.11). From eq. (A.11) we know

Ho(u+v) = /R (u+ v+ ig) ™y (dy)

= é (Z) b /}R(v +iy)" " *v(dy),
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which implies eq. (A.12). Again by eq. (A.11) we have

oo

> T H(w)Ha(v)

n=0

= / / exp{t(u + iz)(v + iy) }y(dz)y(dy).
RJR

A direct computation of the integral yields eq. (A.13). 1

It follows from eq. (A.4) and multiplication formula (A.8) that Hermite poly-
nomials constitute a linear base of polynomial ring. In view of eq. (A.10) and
density of polynomials in L?(IR,~), we know that {(n!)~'/2H,} is an orthonor-
mal base of L?(IR,~). Now consider the Hilbert space L2(IR) = L?(IR, du), where
du is Lebesgue measure. For f € L?(IR), define

Jf(u) = n/%e¥* 14 f(u/V2). (A.14)

Then
Moreover,

T f(u) = 774 2 £(\/2u). (A.15)
Hence J : L%(R) — L*(IR,~) is an isomorphism for Hilbert spaces. Let
hn(uw) = (n!)"Y2J71H,(u)
= (nl)~V2p= 1412 [, (\/2u). (A.16)

Then {hn,n € INo} constitute an orthonormal base of L?(IR). They are called
Hermite functions. By definition and properties of Hermite polynomials we have

hly(u) + uhy(u) = V2nh,_1(u), n>1. (A.17)

In addition, the following estimates are very useful, for the proof see Hille-
Phillips[1] or G.Szegd[1].
Theorem A.3 For any fized u € IR, we have

hn(u) = O(n~ 14y, (A.18)
/ ‘ hn(v)dv = O(n™3/4). (A.19)
0
Moreover,
|hnllze = sup |hn(u)| = O(n~1/12), (A.20)
u€R

Az = /]R |hn(uw)|du = O(n'/*). (A.21)
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Since Hy(u) = (n!)}/211/4e%*/4h, (u/\/2), it follows from (A.20) that
| Hn(u) |< e(nh)1/2e%/4, (A.22)

More precisely, we may take ¢ = 1.2 in the above inequality and (A.22) is then
called Cramér’s estimate (cf. Erdélyi[l], p.208).



