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Global and local descriptions
A bundle of finite sets is a set map

p : E → B,

such that p−1(b) is a finite set for all b ∈ B.

The bundle p : E → B gives rise to local data:

Φp : B → FinSet : b → p−1(b),

where FinSet is the set of finite sets.

Any set map Φ : B → FinSet can be globalized: let

EΦ = {(b, x) | x ∈ Φ(b), b ∈ B}

and
pΦ : EΦ → B : (b, x) 7→ b.
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The tautological bundle

Let
FinSet∗ = {(X , x) | X ∈ FinSet, x ∈ X}.

The tautological bundle of finite sets is the map

τset : FinSet∗ → FinSet : (X , x) 7→ X .

Observe that τ−1
set (X ) = X for all X ∈ FinSet.
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Classification

Proposition
The bundle τset classifies bundles of finite sets.

Proof.
The globalization pΦ : EΦ → B of Φ : B → FinSet fits into
a pullback square

EΦ

pΦ

��

// FinSet∗
τset

��
B

Φ // FinSet

.

Moreover, it is obvious that

pΦp = p and ΦpΦ
= Φ

for all p : E → B and for all Φ : B → FinSet.
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The local description

Let Cat denote the category of small categories

Let B denote any category. Local category bundle data
over B is a functor

Φ : B → Cat.
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The global description

A functor P : E → B is a bundle of categories if it is a split
opfibration with small fibers

, i.e.:
(Existence of a lift)

e
∃ bβe

// β∗e ∈ E

P

��

↓ P

P(e)
∀ β

// b ∈ B.
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The global description

(Universal property of the lift)

e bβe

//

δ

""
β∗e ∃! bγ // e′

↓ P

P(e)
β //

P(δ)

;;b
∀ γ // P(e′)
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The global description

(γβ)∗(e)

e bβe

//

cγβe
55kkkkkkkkkkkkkkkkkk β∗e bγβ∗e

// γ∗β∗e

↓ P

P(e)
∀ β // b

∀ γ // c

and ÎdP(e)e = Ide for all e.

Each P−1(b) is a small category.
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Associated bundles

Proposition
For any F : A → B, there is a natural factorization

A
F //

S ��?
??

??
??

B

EQ

NN

_Y
?

%
�

P

??�������

such that P is bundle of categories, QS = IdA and there
is a natural transformation SQ ⇒ IdE.

The proof is highly analogous to the usual proof that any
continuous map can be factored as a homotopy
equivalence followed by a fibration.
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Invariance under pullback

Proposition

If P : E → B is a bundle of categories and F : A → B is
any functor, then the pullback

F ∗P : E×
B

A → A

of P along F is also a bundle of categories.

The proof is very straightforward.
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The tautological bundle

Let Cat∗ be the category of pointed, small categories:

Ob Cat∗ = {(A, a) | A ∈ Ob Cat, a ∈ Ob A};

Cat∗
(
(A, a), (B, b)

)
= {(F , f ) | F : A → B, f : F (a) → b}.

The tautological bundle of categories is the functor

τcat : Cat∗ → Cat :

{
(A, a) 7→ A
(F , f ) 7→ F .

Observe that τ−1
cat (A) ∼= A for all small categories A.
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Classification

Theorem
The bundle τcat classifies bundles of categories.

Proof.
Local to global: Given local category bundle data
Φ : B → Cat, consider the pullback

EΦ

PΦ

��

// Cat∗
τcat

��
B Φ // Cat.

Since τcat is a bundle of categories, PΦ is also a
bundle of categories. (PΦ is exactly the Grothendieck
construction on Φ.)
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Classification
Proof.

Global to local: Given a bundle of categories
P : E → B, define ΦP : B → Cat by ΦP(b) = P−1(b)
and

e1
bβe1 // β∗e1

e0

ξ

OO

bβe0 // β∗e0

dIdb′=Φ(β)(ξ)

OO

↓ P

b

P(bβe1◦ξ)

))

β

55 b′.
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The “geometric” viewpoint

A morphism β : b → b′ in B can be seen as a “path” from
b to b′.

The functor ΦP(β) : P−1(b) → P−1(b′) can therefore be
seen as “parallel transport” along the path β from the
fiber over b to the fiber over b′.

Since ΦP(β′) ◦ ΦP(β) = ΦP(β′β), a “connection” giving
rise to this “parallel transport” would have to be flat.

Thus: bundles of categories can be thought of as functors
endowed with a flat connection.

(The nonflat case corresponds to considering
pseudofunctors B → CAT.)
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Example: covering spaces

For any topological space X , let Π(X ) denote its
fundamental groupoid, i.e., Ob Π(X ) = X and Π(X )(x , x ′)
is the set of based homotopy classes of paths from x to
x ′.

If p : E → B is a covering map of topological spaces, then
Π(p) : Π(E) → Π(B) is bundle of categories.

The corresponding local data Φp : Π(B) → Cat is such
that Φp(b) is the fundamental groupoid of p−1(b).
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Other examples
Categories fibered over groupoids (and therefore
stacks)

Hopf algebroids: a Hopf algebroid (A, Γ) over a
commutative ring R gives rise to a functor

AlgR → Gpd ↪→ Cat.

(Flores) Classifying spaces for families of subgroups:
to a discrete group G and a family F of subgroups of
G, there is associated a functor

R : OF → Cat : G/H → G/H.

The nerve of ER is then a model for EFG: it is a
G-CW-complex such that every isotropy group
belongs to F and the fixed-point space with respect
to any element of F is contractible.
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The local description

Recall that Cat admits a monoidal structure, given by
cartesian product.

Let B denote any monoidal category.

Local monoidal bundle data over B is a monoidal functor

Φ : B → Cat.
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The global description

Let B and E be monoidal categories.

A strict monoidal functor P : E → B that is a bundle of
categories is a bundle of monoidal categories if the lifts
satisfy:

β̂e ⊗ β̂′e′ = β̂ ⊗ β′e⊗e′ ,

for all β : P(e) → b and β′ : P(e′) → b′ in B.
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The tautological bundle

The tautological bundle of categories

τcat : Cat∗ → Cat

is a bundle of monoidal categories.
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Classification
Theorem
The tautological bundle τcat classifies bundles of
monoidal categories.

Proof.
Using the constructions of the previous classification
theorem, we see that

Φ : B → Cat monoidal ⇒

PΦ : EΦ → B bundle of monoidal categories

and

P : E → B bundle of monoidal categories ⇒

ΦP : B → Cat monoidal .
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The “geometric” viewpoint

If P : E → B is a bundle of monoidal categories, then the
associated “parallel transport” is such that

P−1(b0)× P−1(b′0)

ΦP(β)×ΦP(β′)
��

µ // P−1(b0 ⊗ b′0)

ΦP(β⊗β′)
��

P−1(b1)× P−1(b′1)
µ // P−1(b1 ⊗ b′1)

commutes for all “paths” β : b0 → b1 and β′ : b′0 → b′1.
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Example: modules over a fixed ring

Let R be a ring, and let X be a left R-module.

Let (R,⊗, I) be the monoidal category where
Ob R = N;
R(m, n) = Mnm(R), the set of (n ×m)-matrices with
coefficients in R;
composition is given by matrix multiplication;
m ⊗m′ := m + m′, I := 0 and for all M ∈ Mnm(R),
M ′ ∈ Mn′m′(R)

M ⊗M ′ :=

[
M 0
0 M ′

]
.

Let X be the category with one object ∗ and with
morphism set equal to X .
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Example: modules over a fixed ring

Let ΦX : R → Cat denote the functor given by

ΦX (m) = X×m

and

ΦX (M) : X×m → X×n :

{
∗ 7→ ∗
~x 7→ M~x

for all ~x =

x1
...

xn

 ∈ X×n.

It is easy to see that ΦX is monoidal and therefore gives
rise to a bundle of monoidal categories

PX : EX → R.
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Example: modules over a fixed ring

Proposition
The categories of left and of right modules over a fixed
ring R embed into the category of bundles of monoidal
categories over R.
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The matrix bicategory

MAT is specified by
MAT0 = Ob Set and
for all U, V ∈ MAT0,

MAT(U, V ) = CatU×V ,

where U and V are seen as discrete categories.

Horizontal composition

MAT(U, V )×MAT(V , W ) −→ MAT(U, W ) : (A, B) 7→ A∗B

is given by matrix multiplication, i.e.,

(A ∗ B)(u, w) =
∐
v∈V

A(u, v)× B(v , w)

for all u ∈ U and w ∈ W .
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The local description

Let B be any small bicategory.

Local bicategory bundle data over B consist of a lax
functor Φ : B → MAT.

This is a sort of “parametrized” version of the local data
for a bundle of monoidal categories. In particular, local
bicategory bundle data is obtained when local data for a
bundle of monoidal categories is “suspended.”
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The global description

A strict homomorphism of bicategories Π : E → B is a
bundle of bicategories if

The induced functor on hom-categories
Π : E(e, e′) → B

(
Π(e),Π(e′)

)
is a bundle of

categories for all 0-cells e, e′ in E.

The composition functors

E(e, e′)× E(e′, e′′)

Π×Π

��

c // E(e, e′′)

Π

��
B

(
Π(e),Π(e′)

)
×B

(
Π(e′),Π(e′′)

) c // B
(
Π(e),Π(e′′)

)
are morphisms of bundles of categories.

The associator and the unitors in B lift to the associator
and the unitors in E.
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The pointed matrix bicategory

MAT∗ is specified by
(MAT∗)0 = Set∗ and
for all (U, u), (V , v) ∈ (MAT∗)0,

MAT∗
(
(U, u), (V , v)

)
= Cat

(
U×V ,(u,v)

)
∗ ,

where
(
U × V , (u, v)

)
is seen as a discrete, pointed

category.

Horizontal composition is again given by matrix
multiplication.
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The tautological bundle

The tautological bundle of bicategories is the strict
homomorphism

τbicat : MAT∗ → MAT

given by forgetting basepoints.
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Classification

Theorem
The bundle τbicat classifies bundles of bicategories.

Proof.
Local to global: Given local bicategory bundle data
Φ : B → MAT, consider the pullback

EΦ

ΠΦ

��

// MAT∗

τbicat

��
B

Φ // MAT.

Then ΠΦ is a bundle of bicategories, a sort of
parametrized Grothendieck construction on Φ.
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The “geometric” viewpoint: fibers over 1-cells

Let Π : E → B be a bundle of bicategories.

Let f : b → b′ be a 1-cell in B. Let e, e′ be 0-cells of E

such that Π(e) = b, Π(e′) = b′.

The fiber category Fibf
e,e′ over f with respect to (e, e′):

f̂ ∈ Ob Fibf
e,e′ ⇒ f̂ : e → e′ and Π(f̂ ) = f

and

α ∈ Fibf
e,e′(f̂ , f̂ ′) ⇒ α : f̂ → f̂ ′ and Π(α) = Idf .
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The “geometric” viewpoint: parallel transport
along 2-cells

Since Π : E(e, e′) → B
(
Π(e),Π(e′)

)
is a bundle of

categories, for each 2-cell

b

f

$$

g

::⇓ τ b′

there is a functor

∇τ
e,e′ : Fibf

e,e′ −→ Fibg
e,e′ .
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The “geometric” viewpoint: parallel transport
and composition

Furthermore, for all

b

f

$$

g

::⇓ τ b′

f ′

%%

g′

99⇓ τ ′ b′′

in B,

Fibf
e,e′ × Fibf ′

e′,e′′
C //

∇τ
e,e′×∇

τ ′
e′,e′′

��

Fibf ′f
e,e′′

∇τ ′τ
e,e′′

��

Fibg
e,e′ × Fibg′

e′,e′′
C // Fibg′g

e,e′′

commutes.
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Examples

Charted bundles with coefficients in a topological
bicategory (cf., Baas-Dundas-Rognes or
Baas-Bökstedt-Kro) naturally give rise to bundles of
bicategories.

Parametrized Kleisli constructions.

The domain projection from the Bénabou bicategory
of cylinders in a fixed bicategory B down to B is a
bundle of bicategories.
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Work in progress

K-theory: All these categories of bundles admit
“Whitney sum” and “tensor product”-type operations.
What information does the associated “bundle
K-theory” carry? Should englobe both topological
and algebraic K-theory.

Homotopy theory: How do these bundle notions
interact with the homotopy theory of Cat and of
Bicat?
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