Groupoids, C*-Algebras and Index Theory

Nigel Higson
Lecture at FIM, July 10, 2004

1 Introduction

My goal in this talk is to introduce some topics in Alain Connes’ noncommutative
geometry, organized around the notion of groupoid and involving for the most part
elaborations of the index theory of Atiyah and Singer.

2 Groupoids and Noncommutative Geometry

Groupoids figure prominently in Alain Connes’ noncommutative geometry, where
noncommutative algebras serve as the coordinate rings for a variety of highly
singular spaces — for example the space of leaves of a foliation or the space of
orbits of a group action on a manifold.

2.1 Definition. A groupoid is a small category (the collections of all morphisms
and all objects are sets) in which every morphism is invertible.

It is often convenient to present a groupoid by specifying its set of objB¢ts,
and the seG of all morphisms, together with the followirggructure maps

() The sourceandrangemapss,r: G — B, which map each morphism to its
source and range.

(i) The compositionmapo: G? — G, whereG'? is the set of composable
pairs of morphisms it:

GY ={(y1,v2) € G x G :71(y2) = s(y1)}



(iif) The unitmape: B — G which maps each object to the corresponding iden-
tity morphism

(iv) Theinversemapi: G — G which sends each object to its inverse.

2.2 Example. Suppose that group acts on a seB. Build a groupoidA x B as
follows. The object space & and the morphism space is the set of triples

AxXxB={(by,a,b;)eBxAxB:a-b;=>by}
The source and range maps are
s(bz,a,by) =b; and r(bs,a,b;) =b;,
while the composition is
(b3, az,bz) o (ba, ar,by) = (b3, azas, by).

The identity ab is (b, 1, b) and the inverse dfb,, a,b;) is (b;,a”',b,). Thisis
thecrossed product groupoidssociated to the action 8f on B.

Noncommutative geometry adopts what might be calledgihetient space
picture of groupoid theory. We focus on the object sp&cef a groupoid, and
we think of the morphisms in the groupoid as defining an equivalence relation on
B: two objects are equivalent if there is a morphism between them. Two objects
might be equivalent for more than one reason, and the groupoid keeps track of
this.

It is customary in mathematics to form the quotient space from an equivalence
relation, but even in rather simple examples the ordinary quotient space of gen-
eral topology can be highly singular, and for example not at all a manifold. The
groupoid serves as a smooth stand-in for the quotient space in these situations,
and using it one can study for example the cohomology of the quotient space, and
even its geometry.

2.3 Example. The crossed-product groupoid construction gives a perfect illustra-
tion of this. Let us consider, for instance, the action of the grdugn the unit
circle T in which the generator ¢f acts by rotation of the circle through an angle
which is an irrational multiple oft. The quotient spacg/Z is a disaster as a topo-
logical space — there are no non-trivial open sets at all — and the gro#poill
serves as a stand-in. This is in fact a fundamental example in noncommutative
geometry.



Of particular interest among groupoids, and especially easy to handle, are the
smooth groupoids:

2.4 Definition. A smooth groupoids a groupoid for which the s& of all mor-
phisms and the sa& of all objects are smooth manifolds; for which the source
and range maps r: G — B are submersions; and for which the other remaining
structure maps (composition, units, inverses) are smooth.

2.5 Remark. It is a consequence of the fact thaands are submersions that the
setG? of composable pairs of morphisms, is a smooth submanifold 8fG.

Before continuing, we need to sketch out what might be calledahslies
picture of groupoids, which is a little different in perspective from the quotient
space picture. In the families picture we view a groupoid as, first and foremost,
the family of smooth manifolds

Gy={yeG:s(y)=x]}

parametrized byx € B. If n: x — y is a morphism inG, then there is an
associated diffeomorphism
Ry: Gy — Gy

defined byR,(y) = v on. In this way we view the groupoi¢ as a smooth
family of smooth manifolds, on which acts the collection of all the intertwining
diffeomorphismsk,,.

Of interest in many contexts are familes of smoothing kerkely,,v1) de-
fined on the fibers o6, which are equivariant with respect to the action of the
diffeomorphismsR,;: thusky(v2,v1) = k«(y2 o1n,v1 on) whenn: x — y. Such
families correspond to smooth functions Gn Indeed from a smooth function
f: G — C we obtain an equivariant family of smoothing kernlkelson the spaces
G, by the formulak, (v2,v1) = f(v2y; ).

In other to consider kernel functions as operators (for instance on the spaces
L2(G,)) we need to speicify measures on the fibg(s

2.6 Definition. A Haar systenon a smooth groupoi@ is a family of smooth
measurest, on the fiberss, of G such that

(i) If fis a smooth, compactly supported function @nthen jGX fdu, is a
smooth function orB; and

(i) If v: x — yisamorphismirG, then the right-translation opera®y: G, —
G4 IS measure-preserving.



Haar systems may be proved to exist in much the same way that Haar measures
are proved to exist on Lie groups. Any two Haar systéms$ and{u. } differ by a
smooth, positive functioion the object spacé: thusp, = f(x)u,, for all x. For
our purposes this means that there is an essentially unique choice of Haar system,
as there is in the Lie group case. We shall assume from now on that attached to
each smooth groupoid there is a fixed Haar system.

2.7 Definition. Let G be a smooth groupoid. Thenvolution algebraf G is the
spaeC(G) of smooth, compactly supported functions Gnequipped with the
following associative convolution product:

f1afaly) = j f1ly on ) 2(n) dpgiy) ()-

GS(Y)

Thus CZ(G) is made into an associative algebra, consisting of equivariant
families of smoothing operators on the fiberdf
The operation

f(y) =f(y ).
makesC (G) into ax-algebra. For many applications in geometry and topology
it is useful to complete thig-algebra so as to obtain@ -algebra:

2.8 Definition. Let G be a smooth groupoid with right Haar system. Define rep-
resentations
Ae: C2(G) — B(L*(Gy))

by the formulas

Adf)h(y) =fxh(y) = J f(y on " h(n) dpsey) ().

Gs(v)

The reduced groupoidC*-algebraof G, denotedC;(G), is the completion of
C>(G) in the norm
]l = supl[Ax(f)l| 5(12(6.))-

Returning to the quotient space picture, the groupdidalgebra is Alain
Connes’ substitute for the algebra of continuous, complex-valued functions on
the quotient space associated3o



2.9 Example. The C*-algebra of the crossed product groupoid associated to an
irrational rotation action o¥ on the circle is the famousrational rotation alge-

bra, or noncommutative torud . It is the C*-algebra generated by two unitary
elementdl andV subject to the relatioblV = exp(ix) VU, wherex is the angle

of rotation.

Let us consider in more detail the irrational rotation actiorZodn the unit
circle, and the associated crossed product grou@oid Z x T. The C*-algebra
A« = C;(G) is an algebra consisting of continuous operator-valued functions on
the circle which are invariant under the irrational rotation actiof. @n the cir-
cle. This might at first seem surprising since of course every continuous, scalar
function on the circle which is invariant under an irrational rotation must be con-
stant. However the fact that our functions are operator valued allows for some
interesting possibilities, as follows. First, the spaGgsall identify with Z. The
functions which constitute elements ©f(G) are continuous functions from the
unit circle intoB (£2(Z)) which are equivariant under the actionZbivhich com-
bines irrational rotation on the circle with translation(ffZ). Two examples are
the functiondll andV given by the formulas

Wp(n) =d(n+1) and V.p(n)=explian)zdp(n),

wherez € T, n € Z, andd € (*(Z). They satisfy the relatioblV = exp(ix)VU,
and they generate th& -algebraC;(G).

2.10 Remark. The families picture is especially appropriate when we consider the
von Neumann algebraf a groupoidG. This is a certain von Neumann algebra
completion ofC(G), and it consists ohll bounded, measurable and equivariant
families of bounded operators on the field of Hilbert spd&é§G,)}. These von
Neumann algebras figured prominently in Connes’ early work on noncommutative
geometry.

3 K-Theory and Index Theory

The main cohomological invariant of Connes’ non-commutative spaces, or indeed
of C*-algebras in general, is-theory. TheK-theory groups of &*-algebra can
be defined as the homotopy groups of the stable general linear g&iup(A):

Kj(A) = m;1(GL (A)).

IMost of the C*-algebras of interest to us fail to be unital, and for these the definition of
GLw (A) has to be appropriately tailored.




The famous Bott periodicity theorem generalize€tealgebrak-theory and as-
serts thak;(A) = Kj;2(A), for all j, using which we can extend the definition of
K;(A) to all integer indices. If A is the commutative_*-algebra of continuous,
complex-valued functions on a compact spAdbdenk,(A) is isomorphic to the
Atiyah-Hirzebruch topologicak-theoryK* (X).

Elements ofC*-algebraK-theory groups are obtained from constructions which
produce invertible matrices ove€r‘-algebras, loops of invertible matrices, and so
on, and an important source of these constructions is index theory. Suppose for
example thaD is an elliptic linear partial differential operator on a closed mani-
fold M (we will review the theory of these in the next section)DIfs self-adjoint
then we may apply to it Hilbert space spectral theory and form functicins),
of D. It follows from regularity theory for elliptic operators thatfifis a rapidly
decreasing function thefD) is in fact a smoothing operator @vi, and in partic-
ular a compact operator drf(M).? In fact if f is any continuous function which
vanishes at infinity thefi( D) is a compact operator. Using this fact it is possible
to construct an element I0B) € K, (K(L*(M)), whereX(L?(M)) denotes the
C*-algebra of compact operators &AM ). Which particulark;-group the class
Ind(D) belongs to depends on the symmetryldf If we assume, for example,
thatD has the “supersymmetric” form

0 D
>~ (o, %)

which is common in geometry théb®] belongs to thé&,-group. Now, the group
Ko(X) identifies withZ, and under this identification If®) corresponds to none
other than the Fredholm index bf, .

Suppose now thak is a smooth groupoid with compact object space, and
assume th&tD,} is a smooth, equivariant family of self-adjoint differential oper-
ators on the fiber&, of G. If we apply to the operator®, a rapidly decreasing
function f then eachf(D,) is a smoothing operator, and so is represented by a
kernel functionk,(y2,v1). These kernels vary smoothly wikh and are invariant
under right translations, in the sense that:ifx — y then

ky(v2,v1) = k«lyv20m,v101m).

Accordingly they give rise to a single smooth functifin on G via the formula
fo(y) = k«(v, e), wherex = s(y), that ew employed earlier.

2Here and elsewhere, we are going to neglect in our notation the fadDthaty act not on
scalar functions but on sections of some vector bundle.
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3.1 Theorem.Let G be a smooth groupoid with compact object spBcketD =
{D} be a smooth, equivariant family of elliptic, first order differential operators
on the fiberss, of G. If f is a continuous function dR which vanishes at infinity
then the above construction defines an elenfigre C;(G).

3.2 Remarks. The extra hypothesis, that the operatbrs are of first order, is

used to satisfy a support condition — recall tli&{(G) is a completion of the
compactly supportedmooth functions oM. For a general continuous function

f, the kernelk, associated to the operatf{iD,) may not be a smooth function,

but rather just a distribution. So the statement of the theorem has to be interpreted
with some care. Whds true is that iff has compactly supported Fourier trans-
form then the functiorip on G, assembled from the kernédg(y,,v1), is smooth

and compactly supported. The interpretation of the statefiiert C;(G), for a
general continuous functiofiwhich vanishes at infinity, is made via an approxi-
mation argument.

3.3 Example. Associate to a smooth, closed manifditithe pair groupoid M x
M with object spacé, source and range maps

s(my,my) =my; and r(my,my)=my,

and composition
(m3, m2) o (M, my) = (M3, mq).

The identity morphism ath € M is (m, m), and the inverse ofm,, m;) is

(my, m,). Looking at the pair groupoic = M x M from the families point

of view, we find that all the fiber&,,, identify with M, in such as way that the
intertwining map<k,;: G, — G, are all the identity map oM. So a single oper-
atorD on M gives rise to a (effectively constant) equivariant family of operators
on the fibers of the pair groupoid. Applying the theorem we obtain the statement
f(D) € K(L?(M)) that we noted earlier.

A richer collection of examples is provided by the theory of foliations. In
order to avoid some complications we shall consider here only foliated manifolds
(M, F) with trivial holonomy It is not important, in this survey, to know the
meaning of this hypothesis. But for example if the leaves of the foliation are
simply connected then the foliation automatically has trivial holonomy.

3.4 Definition. Let (M, F) be a foliated manifold, with trivial holonomy. The
foliation groupoidG (M, F) is, in the families picture, the union

G (M) F) - UmGMI—TTh
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wherelL,, is the leaf of the foliation which containa € M. ThusG(M, F) may
alternately be thought of as the space

G(M,F) ={(m,, m;) € M x M| m; andm; belong to the same leaf

The source and range maps are the projection ontmthendm,-coordinates, re-
spectively. Composition is given by the formutas, m,)o(m;, m) = (ms3, my);
the identity morphism atn is (m, m), and the inverse dfm;, my) is (m;, m,).

The reason for the hypothesis of trivial holonomy is that using it we can give
G(M, F) a very natural smooth groupoid structure, which however we shall not
describe here. (In general the definition&fM, F) requires some modification —
one must replace the leaves, by their “holonomy covers.”) We may therefore
form the groupoidC*-algebra, which is called thioliation C*-algebraand is
denotedC; (M, F).

Now if (M, F) is a compact, foliated manifold, andlif is a leafwise elliptic
operator orM (meaning thaD restricts to each of the leavesf, and is elliptic
there), then by means &-theory constructions we hinted at earlier we obtain
a class IndD) € K.(C3(M,F)). This is theK-theoreticindexof the leafwise
elliptic operatorD, and the subject of Connes’ index theorem for foliations. It
has many of the familiar properties from classical index theory. For example (for
those familiar with some index theory) the index of the leafwise signature operator
is a (leafwise) homotopy invariant, while the leafwise index of the Dirac operator
is zero in the presence of positive (leafwise) scalar curvature.

If the leaves of the foliated manifoldM, F) are actually the fibers of a sub-
mersionM — Z then the foliationC*-algebra is very closely related ©,(Z),
the algebra of continuous functions on the base, and indegd; (M, F)) is iso-
morphic toK,(Cy(Z)), which is in turn isomorphic to the Atiyah-Hirzebruéh
theoryK*(Z). In this case the element Ifid) is given by the Atiyah-Singer index
of families construction. In general it is a rather more elaborate object.

4  The Tangent Groupoid
The constructions in the last section raise two issues:
e Develop index theory in a variety of contexts; for example, for foliations..

e Develop tools to compute thé-theory groups of groupoi@*-algebras.



In this section we shall consider the first. We shall look at classical index theory
from a groupoid point of view. The approach generalizes very easily to foliations
and other situations.

Let M be a smooth manifold. We are going to define tduggent groupoidf
M, which is a smooth groupoifiM whose object space is the proddvdt x R.
In the families picture, the tangent groupoiddf consists of repeated copies of
M, together with the tangent spacEsM. These are joined together to form the
fibers of a single smooth map TM — M x R. In order to describe how this is
done we need to review two rather simpler constructions, which we shall combine
to form TM.

Thetangent bundl®ef M, TM, can be thought of as a family of groups — the
vector space$,,,M — parametrized by, and in this way it can be thought of as
a groupoid with object spadel. Thus the source and range maps are

s(X,m)=m and r(X,m)=m,
while composition is given by the formula
(X, m,0) o (Y,m,0) = (X+Y,m,0).

The identity map atn € M is the morphisn{0, m), and the inverse afX, m) is
(—X, m). The tangent bundle is a smooth groupoid.

Thepair groupoidon M was introduced in the last section. ItNé x M, with
object spacéV, source and range maps

s(my,my) =m; and r(mz,my)=my,
and composition
(M3, m2) o (M2, myq) = (m3, my).
The identity morphism atn € M is (m, m), and the inverse ofm,, m;) is

(my, my).

4.1 Definition. Let M be a smooth, open manifold. Thengent groupoicf M
is the groupoidl'M constructed as the disjoint union of groupof@ls= Ucr Gy,
whereGy = TM andGy = M x M, whent # 0.

Thus the object space f@M is the disjoint union of the object spaces for the
groupoidsGy, and since the object space for edghis M, we can identify the

3We denote elements M as pairs{X, m), wherem € M andX € T,, M.
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object space of M with M x R. The source, range and other structure maps for
TM are defined “fiberwise,” using the structure maps in each

We are going to topologiz€M. To do so, it will be convenient to write to
write elements of5, = TM as triples(X, m,0), wherem € M andX € T,,M.
Whent # 0 we shall write elements o6, = M x M as triples(m;, mq,t),
wherem;, m, € M. Thus we shall regariM as the space

TM = TM x{0} U M x M x R*.

We shall think of a triplgd m;, m4, t) as an “approximate tangent vector” which is
close to a real tangent vectére TM if the difference quotient(m,) —f(m,)|/t
is close toX(f) on smooth function$ € C>*(M).

4.2 Definition. Let M be a smooth manifold. The spa@ is equipped with
the weakest topology (the one with the fewest open sets) such that forf each
C>(M) the map
(X, m,0) — X(f)

f(mz) — f(my)

t
from TM into R, is continuous, and in addition the maps: TM — M x R are
continuous.

(my,my,t) —

The topology ori’M is Hausdorff. Moreover it is locally Euclidean:

4.3 Lemma. Let M be a smooth manifold. MV is an open subset &1 then the
set
TW = TWx{0} U WxW xR*

is an open subset GfM. Moreover if¢p: W — R™is a diffeomorphism onto an
open subset then the mdp TW — R™"xR™ xR defined by the fomulas

@ (X, m,0) = (D(X), p(m),0)

d(mz) — d(my)

O (my, my, t) = ( n

)(b(m]))t)

is @ homeomorphism onto an open subset. O]

4.4 Remark. We denote byD¢: T,,U — R™ the derivative ofp atm € U (we
are identifying the tangent spa®" at the pointd (m) with R™ itself).
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4.5 Definition. Let us call the magb: TW — R™ x R™ x R the standard local
coordinate charbn TM associated to the local coordinate chiuwn M.

The standard local coordinate charts determin&aatlas of charts for the
manifold TM.;

4.6 Lemma. Let W and V be open subsets of a smooth manifd and let
®: TW — R™R"xR and¥: TV — R™R™ xR be the standard local coordiante
charts associated to local coordinate chadis W — R™ andy: V — R™ The
composition o @' is a smooth map from one open subseRdfx R™ x R to
another.

Proof. The inversed ' is given by the formula

(D, (v2), 7' (v1),0) ift=0

1 _
¢ (vZ)W’t)_{(d)_](t\)2+v1)>¢_1(v1)>t) ift#0

Using the notatio® =1 o ¢!, the compositio® = ¥ o @' is therefore given
by the formula

(D6W1 (W2)> e(W1)> O) ift=0
O(wy, wi,t) = (G(th+V\:)—6(w1))e(W1))t) 1 0.

By a version of the Taylor expansion, there is a smooth, matrix-valued function
0(wy,wq) onR™ x R™ such that

O(twy +wy) —0(wy)  ~
" = 0(wz, wi)wy,

while §(O,w1) is the derivative 0B atw. So we see that

DO, y ) if t =
Ofwa ) = | (DO (200w, 0) =0
(G(th,w1)wz,6(w1),t) if t 7& 0.
This is clearly a smooth function. O

We have therefore obtained a smooth manifMd. It is clear that the source
maps: TM — M xR is a submersion since in the local coordinates of Lemma 4.3
it is a coordinate projection. To verify th@tM is in fact a smooth groupoid, it is
convenient to consider first the case whete= R™, in the following way:
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4.7 Example. The map®: TR™ — R™x R™x R defined by

®: (v2,v1,0) = (v2,v1,0)
V) —V
©: (va,v1,t) = (F— v ) (E#£0)

is a diffeomorphism. Indeed it is the (globally defined) standard coordinate chart
on TR™ associated to the “identity” chartidR™ — R™. Now consider the space

G={(wy,a,wq) : wi,wr € R"xR,a € R",w, = alAwy },
where the operation is defined by
aA(v,t) = (v+ta,t).

Thus theA operation defines an action of the grolip= R™ onR™ xR, and our
spaceG is the corresponding crossed product groupbid (R™xR). The smooth
manifold G identifies withR™ x R™ x R by droppingw, from (w5, a, wy). Using

this, we can consider the diffeomorphisbnto be a diffeomorphism froffiR™ to

G by the formulas

@ (v2,v1,0) = ((v1,0),v2, (v1,0))
)(V1)t)) (t;éO)

But it is evident thatD is actually an isomorphism of groupoids (in other words,
@ is compatible with all the groupoid structure maps). It therefore follows that a
TR™ is a smooth groupoid, as required, sirigéés certainly a smooth groupoid.

(D(VZ>V1>t) = ((VZ) t)) 2o Y

To summarize:

4.8 Proposition. Denote byG = A x R™! the transformation groupoid associated
to the action of the group. = R™ on the spac®&™' = R™xR given by the formula

aA(v,t) = (v+ta,t) (a e R and(v,t) € R™").
The mapd: TR™ — G which is given by the formulas
@ (v2,v1,0) = ((v1,0),v2, (v1,0))
2 (v t) (£0).

is an isomorphism of smooth groupoids. ]

O (v, v1,t) = ((va, 1),
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4.9 Remark. The groupoidTR™ only depends on the smooth structurelRt,
whereas, superficially at least, the groupGid= A x R™' depends very much on
the vector space structure Bf*. The proposition shows that this dependence is
an illusion.

4.10 Proposition. If M is any smooth manifold, théiMl is a smooth groupoid.

Proof. Since smoothness is a local property, we can check this in a coordinate
neighbourhoodV. Since the construction afW is coordinate-independent we
can assume thav = R", and thereby reduce to the example just consideréd.

To understand what the tangent groupoid is good for, we need to recall some-
thing about the regularity theory of ordky elliptic linear partial differential op-
erators.

4.11 Definition. If D is a linear operator o then for each pointn of M we
can form thanodel operatoD ,,, which is the translation-invariant, homogeneous
operator onl,,M which best approximate® at the pointm. Thus if, in local
coordinatesD = Z‘odgk aa%, where thea, are coefficient functions, then

Dim =2y ao(m)2s.

The theory of translation-invariant, homogeneous operators is easily devel-
oped using Fourier theory:

4.12 Proposition. Let D be a translation-invariant, self-adjoint homogeneous
partial differential operator on a vector spadé The following are equivalent:

() D is hypoelliptic (that is, iDu = v in the sense of distributions, anadvfis
smooth, thent is smooth).

(ii) If fis a rapidly decreasing, thef{D) is a smoothing operator.

(iii) The Fourier transform ob, which is multiplication operator on sdy’*(V*),
is represented by a functiom on V* which is invertible everywhere expect
the origin. ]

The main theorem in elliptic regularity theory says thdDifs a general oper-
ator on a manifold, and if each model operdioy, is hypoelliptic, therD itself is
hypoelliptic. In fact:

4.13 Theorem.Let D be a self-adjoint, linear partial differential operator on a
closed manifold\l. Assume that each model operaioy, is hypoelliptic. Then:
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(i) D is hypoelliptic.
(ii) If fis arapidly decreasing, thef{D) is a smoothing operator.

4.14 Definition. If each D, is hypoelliptic thenD is said to be elliptic. The
symbolof D is collection of model operators @, or equivalently the functioo
on T*M obtained from the Fourier transforms of all the model operators.

Now the fundamental problem in index theory, solved by Atiyah and Singer,
is to compute the index of an elliptic operator in terms of the symbol. The tangent
groupoid fits very nicely into index theory because of the following result:

4.15 Proposition. Let M be a smooth manifold and I&) be a linear partial
differential operator orM of orderk. The family of operators on the fibers of the
tangent groupoid which is given by the formulas

Dy =t“D whent#0; and D,o=Dn
is smooth and equivariant.

So in some sense the tangent groupoid allows us to smoothly interpolate be-
tween the symbol of an operator (the family of model operaioyg and the
operator itself (which appears heretat 1).

To make use of this observation, let us go back to the definition of the groupoid
G = TM, which we constructed as a disjoint union of groupoiis EachG;
is a smooth groupoid in its own right, and so each has a grouptidigebra
Cx(Gy). Whent = 0 we obtain, by Fourier transform, tli&-algebraCy(T*M) of
continuous functions, vanishing at infinity, on the cotangent bulmtid. When
t #£ 0 we obtain the compact operat&L%(M)).

The fact that the groupoids; fit together smoothly to form a single smooth
groupoid implie4 that their groupoidC*-algebras fit together to form what is
called acontinuous fieldof C*-algebras. But if A} is any continuous field of
C*-algebras, then th&-theory groups;(A.) have the property that any, €
K;(Ay,) can be canonically prolonged to a family € K;(A.), for all t neart,.

(In fancy language, th&;(A) form the stalks of a pre-sheaf ov&r)

In our present case, since all thig are identical fort # 0, this prolongation

process determines a homomorphism

K (CA(Go)) = K (CR(G1)).

4To be accurate, this is a common, but not completely general, fact about smooth families of
groupoids.
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4.16 Definition. Theanalytic index majs the homomorphism
Ind: K°(T*M) — Ko(K(L2(M))) = Z

obtained from the above construction by identifyi@g(G,) with Co(T*M) and
C3(Gy) with K(L2(M)).

The symbol ofD — the family of model operato®,,, — defines an element
in K,(Cx(Go)) by the process hinted at in the last section, &nhdself defines
an element oK*(C3(Gy)). The former is the same as tBgmbol clasgo] €
K°(T*M) which appears in the work of Atiyah and Singer; the latter identifies
with the Fredholm index oD, as discussed in the previous section. It follows
from the interpolation property of the tangent groupoid that the analytic index
map takes the symbol class to the Fredholm index.

The construction of the analytic index map, which puts the index problem
squarely in the context d-theory, is a major step in thie-theory proof of the
Atiyah-Singer index theorem. There are other ways to define it — for example
Atiyah and Singer originally approached the construction through the theory of
pseudodifferential operators. The groupoid approach has the advantage that it
extends very naturally to more complex situations, for example to foliations.

The reader is referred to Connes’ book for an interesting approach to the re-
maining parts of the proof of the Atiyah-Singer index theorem via groupoid the-
ory.

5 The Baum-Connes Conjecture

Let M be a smooth, connected manifold and denotévbits universal covering
space. Now form the tangent groupdid/. The groupr = 71;(M) acts properly
and freely by diffeomorphisms aml, and hencer acts onlT'M, also properly and
freely.

5.1 Definition. Denote byT,.M the quotient space obtained by dividifig/ by
the action ofr.

The spacé M is a smooth manifold and indeed a groupoid with object space
M x R. Itis not the tangent groupoid fdvl. Like TM, the groupoidl',;M can be
thought of as a family of groupoids ovE, and likeTM the groupoid oved € R
is TM, the tangent bundle d¥1. However the groupoid over=£ 0 is not the pair
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groupoidM x M but the quotieniM x . M of the cartesian produd?l x M by
the diagonal action of.

We can think ofM x, M as the space of triplegn,, x, m;), wherex is a
homotopy class of paths iNM connectingm; to m,. From this point of view,
the groupoid operations are easy to describe: the source and range maps send
(my, @, my) to m; andm;, respectively, while composition is given by the for-
mula

(M3, 0z, M) 0 (My, 0, M) = (M3, X20t7, My),

wherex;x; denotes concatination of paths.

From the families point of view, elements of the groupoid algebra correspond
to equivariant (appropriately supported) smoothing operators on the universal cover
M. TheC*- -algebra of the groupoid is faithfully represented[é(ﬂ\/l) as the norm
closure of the algebra of-equivariant smoothing operators .

5.2 Proposition. K(C%(M x, M)) = K(C3(n)).

This is not difficult. In fact the groupoid€*-algebra turns out to bilorita
equivalent(in the sense of*-algebra theory) to the group*-algebra ofrt. This
is a much stronger statement, which certainly implies thakttieeory groups are
isomorphic.

Now, by following the procedure described in the preceding section, and by
invoking the above proposition, we obtain from the groupbjg\l a homomor-
phism ofK-theory groups

w: K(T*M) — K(C%(m)).

This map has been extensively studiedifralgebra theory, and is known as the
Baum-Connes assembly mdp can be thought of as associating to a symbol of
an elliptic differential operator oM a K-theoretic “index” of therr-equivariant
operator orM obtained from this symbol.

It is quite instructive to consider the case whafds a torusli™. Hererr is of
course the free abelian grody, and by Fourier theory(}(Z™") is isomorphic to
C(T™) (actually, the torus which appears here is “dual” to the one we began with,
but we can identify the two). On the other handAfis a torus, then the cotangent
bundleT*M is trivial and so by Bott periodicity, th&-theory of T*M identifies
with the K-theory of M. We obtain the following diagram, in which the bottom
map is the one induced from the Baum-Connes assembly map by the two vertical

16



isomorphisms.
K(T*M) — K, (C3(m))

Bottll =iF0urier

K (T™) K=(T™)

!/

Now, the remarkable fact about his bottom version of the Baum-Connes assembly
map is that it is equal to its own inverse: the compositiop0fvith itself is the
identity map onK(T™). This is aK-theoretic version of what is known in other
contexts asourier-Mukai duality

This example suggests to a willing mind the following quite sweeping conjec-
ture.

5.3 Conjecture (Baum and Connes)If M is any aspherical manifold, and =
71(M), then the Baum-Connes assembly map

u: K5 (T"M) — K. (C} ()
is an isomorphism of abelian groups.

5.4 Remark. In fact the above is part of more general conjecture, which provides
aformula forK, (C3(G)) whenG is any locally compact (second countable) topo-
logical group®

The Baum-Connes conjecture is a close relative of the topological rigidity
conjecture discussed in Weinberger's talk (the Borel conjecture). It has some
quite striking implications — for example it implies Novikov’s conjecture on the
homotopy invariance of higher signatures — and for this and other reasons it has
been the topic of a great deal of research. One of the main reasons for attacking
the Novikov conjecture through the Baum-Connes conjecture is that the major
tool of K-theory — the Bott periodicity theorem — or at least a set of techniques
related to the Bott Periodicity theorem, can be brought to bear on the problem.

The conjecture is known to be true in a quite a few cases. Roughly speaking
they fall into two classes. Theaagerup propertys a property of locally compact
groups which is a strong negation of Kazhdan’s property T (groups which have
both the Haagerup property and Kazhdan’s property T are automatically compact).

SThis, in turn was formerly part of a still more general conjecture which did the same for
arbitrary (second countable) locally compact groupoids. In this ultimate generality however the
conjecture is now known to be false.
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Examples include all amenable groups, all Coxeter groups, complex hyperbolic
groups, and a few exotica, like Thompson’s gréupligson and Kasparov proved

the Baum-Connes conjecture for all groups with the Haagerup property. In another
direction, Vincent Lafforgue proved the Baum-Connes conjecture in a number of
instances which mostly relate to the realm of negative curvature. For instance,
building on Lafforgue’s work, Yu and Mineyev were able to prove the Baum-
Connes conjecture for all word-hyperbolic groups.

The major outstanding problem is to prove the conjecture for lattices in semi-
simple groups. Not much is known here beyond the rank one case, although Laf-
forgue’s work did settle the case of uniform latticesSin(3).

Actually, the Novikov conjecture does not require the full strength of the
Baum-Connes conjecture, only the (rational) injectivity of the Baum-Connes as-
sembly map. This injectivity has been proved in a much wider class of examples,
including for example all linear groups. In fact thé-algebrak-theory approach
to the Novikov conjecture has proved to be perhaps the most effective one avail-
able.

6 Index Theory on Contact Manifolds

We conclude with a variation on the tangent groupoid for a class of hypoelliptic,
but not elliptic, operators. This has been worked out recently by Erik van Erp.

Let M be a smooth manifold and I&tbe a codimension-one subbundle of the
tangent bundle. LeN be the quotient of the tangent bundletbyit is of course a
line bundle onM.

The vector spacés,, & N, are equipped with a natural Lie algebra structure,
in which N,,, is central and the Lie bracket of two elemeMsY € E,, is the
element ofN,,, defined by the following procedure: exteixdandY to vector
fields onM; take their Lie bracketX, Y]; and take the image dX, Y], in the
guotient spac®\,,,. This prescription does not depend on the extensioisarfd
Y that we chose.

6.1 Definition. The subbundlé& is acontact structureon M if each Lie algebra

E.n @ N, is aHeisenberd.ie algebra. This means that there are basis elements
X1, Y1, ..., Xy, Y of Hyy @andZ of N, such thatX;, X;] = 0, [Yy,Y;] = 0, and
[Xi,Yj] - 61]'Z.

If M is a contact manifold then it may be shown tihatis locally equivalent
to the Heisenberg Lie groupl — the simply connected Lie group whose Lie
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algebra is the Heisenberg Lie algebra — in much the same way that a general
manifold is locally equivalent t®™. Thus there are local diffeomorphisms from
M to H which carry the subbundle onto the subbundle of the tangent bundle of
H spanned by the vector field§ andY;j, fori,j = 1,...,n. This is a version of
Darboux theorem from the theory of symplectic manifolds.

Now a Heisenberg Lie groupl admits a one-parameter family of endomor-
phisms,x;: H — H, defined by the following Lie algebra formulas:

o (Xi) =tXi,  o(Y;) =tY;, and «(Z) =t*Z

Whent # 0 these are of course automorphisms. Using the one-parameter family
we can define an action of the grotipon the spacél x R by the formula

hA(k,t) = (¢ (h)k, t).

This of course mimics a construction that we made in Section 4 in the context
of the abelian Lie grouf®R™. It suggests the following global construction on a
contact manifold.

6.2 Definition. Let (M, H) be a contact manifold. Itsl-tangent groupoids the
groupoidTyM constructed as the disjoint union of groupofgls= Ucr G, where
Go = HM, the bundle of Heisenberg Lie groups owdrassociated to the bundle
of Lie algebrast & N, andG; = M x M, whent # 0.

Suppose thaw! is diffeomorphic to the Heisenberg grot via a diffeomor-
phism¢ which maps the contact bundle bt to the contact bundle dfl. If we

use the notation
hi —h;,

t
in the Heisenberg group (being careful, of course, to note that this does always
not behave in exactly the same way as its commutative counterpart), then we
can borrow a formula from Section 4 and define an isomorphism of groupoids
®: ThM — H x (HxR) by the formulas

{ ®(h,m,0) = ((m,0), Ddh, (m,0))

= a(t")(hyhy")

d(mz) — p(my)

(D(mZamht) = ((mZ)t)> t

HereD ¢ denotes the map on Lie groups induced from the derivativ, @fhich
is a homomorphism at the level of Lie algebras.
The following result has been proved by Erik van Erp:
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6.3 Theorem. There is a smooth groupoid structure on tHetangent groupoid
TyM which is functorial with respect to inclusions of open sets into contact man-
ifolds, and for which the standard chars defined above are diffeomorphisms.

This suggests an index theory dfi“elliptic” operators on contact manifolds,
which is based on model operators which are not translation invariant operators on
tangent vector spaces but instead are translation invariant operators on the “tan-
gent” Heisenberg Lie groups associated to a contact structure. This theory indeed
exists, and it can be approached in a very conceptual way through the tangent
groupoid.

The necessary analysis was investigated first by Hormander and then devel-
oped by Stein and his coworkers. If is a linear partial differential operator on
a contact manifolaV then at each pointh of M there is anodel operatoD,,,,
which is a (right) translation invariant, homogenéblisear partial differential
operator on the tangent Heisenberg Lie grélupM.

6.4 Theorem. Let D be a self-adjoint, linear partial differential operator on a
contact manifold M, H). Assume that each model operaioy, is hypoelliptic.
Then:

(i) D is hypoelliptic.
(ii) If fis arapidly decreasing, thef{D) is a smoothing operator.
In particular, if M is closed therD is Fredholm.

6.5 Definition. The H-symbolof D is collection of model operators @. Let us
say thatD is H-elliptic if each of the model operatof3,,, is hypoelliptic.

It should be stressed that that the analysi$ledlliptic operators on contact
manifolds is rather more complicated than the standard elliptic theory, due to the
more complicated nature of the Fourier transform for Heisenberg groups. In ad-
dition, we should note that althoudtrelliptic operators are hypoelliptic, they are
definitely not elliptic.

Since the tangent Heisenberg groups are honcommutativé{-ganbol is
a more complicated object than the classical symbol. Wbes H-elliptic, the
symbol defines an element notK?(T*M), as in the Atiyah-Singer theory, but
rather an element iy (C5(HM)), theK-theory of the groupoid *-algebra asso-
ciated to the bundle of Heisenberg tangent Lie groups.

5The term “homogeneous” refers to the fact tiat, transforms in a homogeneous fashion
under the scaling automorphismsg introduced earliero, (D, ) = t*D .
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6.6 Theorem (van Erp). The analytic index map
Ind: Ko(C3(HM)) — Ko(K(LA(M))) = Z

associated to thél-tangent groupoid maps the symbol class oft&elliptic op-
erator D to the Fredholm index db.

On the basis of this result, which neatly packages all of the analysitt of
elliptic operators using-theory for noncommutativ€*-algebras, van Erp has
formulated and proved in his thesis the Atiyah-Singer index theoreirfeltiptic
operators on contact manifolds. Indeed, from here, there is a simple reduction to
the classical index theorem of Atiyah and Singer, since a noncommutative Thom
isomorphism theorem of Connes implies thatC;(HM)) = K*(T*M).
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